
ABSTRACT

A Power Contrast of Tests for Homogeneity of Covariance Matrices in a
High-Dimensional Setting

Ben J. Barnard, Ph.D.

Chairperson: Dean M. Young, Ph.D.

Multivariate statistical analyses, such as linear discriminant analysis, MANOVA,

and profile analysis, have a covariance-matrix homogeneity assumption. Until recently,

homogeneity testing of covariance matrices was limited to the well-posed problem,

where the number of observations is much larger than the data dimension. Linear di-

mension reduction has many applications in classification and regression but has been

used very little in hypothesis testing for equal covariance matrices. In this manuscript,

we first contrast the powers of five current tests for homogeneity of covariance ma-

trices under a high-dimensional setting for two population covariance matrices using

Monte Carlo simulations. We then derive a linear dimension reduction method specif-

ically constructed for testing homogeneity of high-dimensional covariance matrices.

We also explore the effect of our proposed linear dimension reduction for two or more

covariance matrices on the power of four tests for homogeneity of covariance matrices

under a high-dimensional setting for two- and three-population covariance matrices.

We determine that our proposed linear dimension reduction method, when applied

to the original data before using an appropriate test, can yield a substantial increase

in power.
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CHAPTER ONE

Introduction

In multivariate statistical analysis, if the data dimension p is greater than the

sample size n, then the corresponding sample covariance matrix is singular. We, there-

fore, cannot perform classical multivariate statistical methods because we are unable

to invert the sample covariance matrix. The high-dimensional statistical inference

problem concerns scenarios when the data dimension exceeds the sample size. High-

dimensional covariance-matrix testing has become necessary because of the increas-

ing ability to collect, store, and analyze high-dimensional data. The high-dimensional

problem has been explored in the literature for covariance matrices in articles such

as Schott (2007), Ledoit and Wolf (2002), and Srivastava (2005).

In this dissertation, we are interested in the problem of contrasting the power

of tests for homogeneity of population covariance matrices in the high-dimensional

setting (HPCHDS ). In Chapter Two we contrast power curves of five two-population

HPCHDS tests. We restrict our results to differences in the hyper-volume of two

and three covariance matrices. We also perform randomization tests using these five

HPCHDS tests on real data. Essentially, we determine that a test proposed by Sri-

vastava et al. (2014) yields the largest omnibus power in our power simulations.

In Chapter Three we derive and apply a new linear dimension reduction (LDR)

method for two covariance matrices and examine the effect on the power for the

two-covariance matrices hypothesis testing problem for HPCHDS. More specifically,

using five covariance matrix structures previously utilized in the HPCHDS literature,

we apply our new LDR method and contrast the subsequent powers of four tests

for HPCHDS. We also perform a randomization test on real data using our LDR

method in combination with the four HPCHDS test statistics . We conclude that
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while the test proposed by Chaipitak and Chongcharoen (2013) does not uniformly

yield the largest power, it is the best omnibus HPCHDS test in the sample-size and

high-dimensional scenarios examined here.

Last, in Chapter Four we derive a new LDR matrix for (k > 2) high-dimensional

population covariance matrices. We then devise a LDR matrix for (k > 2) high-

dimensional sample covariance matrices and examine the effect of LDR on the powers

of four HPCHDS tests. Again, in our simulations, we use covariance matrix structures

previously utilized in the HPCHDS literature to apply LDR and then contrast esti-

mated powers of four high-dimensional tests for homogeneity of covariance matrices.

Also, we perform randomization tests on a real dataset and contrast the effect of using

linear dimension reduction versus the effect of using no dimension reduction on the

powers on the four HPCHDS tests. In summary, we determine that the application

of our proposed LDR method prior to the use of an appropriate HPCHDS test can

yield a substantial power increase.
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CHAPTER TWO

A Power Contrast of Five Tests for Homogeneity of Population Covariance Matrices
in a High-Dimensional Setting

Abstract

We compare and contrast the powers of five tests for testing for homogeneity of

two population covariance matrices in a high-dimensional setting for various sample-

size and parameter configuration scenarios. To examine the powers of the five tests, we

conduct relatively large Monte Carlo simulations for five population covariance-matrix

structures. Also, we perform permutation tests on a real dataset and compare the

results. We determine that a test proposed by Srivastava et al. (2014) generally yields

the largest power of the five competing tests for the covariance-matrix structures and

parameter configurations considered here, as well as for the leukemia dataset of Golub

et al. (1999). Furthermore, we determine that tests proposed by Schott (2007) and

Srivastava and Yanagihara (2010) yield relatively poor power.

2.1 Introduction

Data where the dimension is greater than the sample size, which is commonly

referred to as high-dimensional data, is an increasingly prominent complication in

present-day statistical applications. Many high-dimensional data applications arise in

disciplines such as genomics, portfolio analysis, and functional data imaging. Gener-

ally, one cannot use conventional multivariate analysis procedures to analyze these

data configurations because many of these statistical methods require the sample size

to be greater than the data dimension.

Here, we are interested in the relative efficacy of five recently-proposed hypoth-

esis tests for homogeneity of population covariance matrices in a high-dimensional

scenario (HPCHDS ). That is, here we consider power contrasts for two population
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HPCHDS hypothesis tests. When we conduct this HPCHDS hypothesis test, the

respective null and alternative hypotheses are H0 : Σ1 = Σ2 and HA : Σ1 6= Σ2.

Although multiple HPCHDS tests have been proposed, little work on contrasting the

powers of these tests has been performed. Here, we compare and contrast the powers

of five HPCHDS tests via Monte Carlo simulations for five population covariance-

matrix structures.

We contrast the estimated powers of these HPCHDS tests as a function of the

sample size and the data dimension for each covariance structure. Also, using these

five HPCHDS tests on a real dataset, we contrast the results via permutation tests.

Overall, we determine that an HPCHDS test proposed by Srivastava et al. (2014)

generally yields the largest power of the five competing tests for the covariance-matrix

structures and parameter configurations considered here. The test from Srivastava

et al. (2014) also performs well on the Golub dataset.

In recent years, multiple HPCHDS tests have been proposed. Many such tests

have been motivated by the work of Ledoit and Wolf (2004), who proposed a high-

dimensional squared Frobenius norm (HDSFN ) as a criterion for HPCHDS testing.

For Σi ∈ R≥p , i = 1, 2, we have that

HDSFN :=
1

p
tr
(
Σ2

1

)
+

1

p
tr
(
Σ2

2

)
− 2

p
tr (Σ1Σ2) . (2.1)

The divisor p in (2.1) is typically omitted in the classical squared Frobenius norm for

two real matrices but yields several desirable properties as described in Ledoit and

Wolf (2004).

The general consensus in the HPCHDS literature is that the first HPCHDS

test was introduced by Schott (2007). Other HPCHDS tests based on the HDSFN

include those from Srivastava (2007), Srivastava et al. (2014), and Ahmad (2017).

Ishii et al. (2016) have proposed an HPCHDS test that is based on the first principal

component and the corresponding loadings, and employs noise-reduced eigenvalue

estimators. Also, Srivastava and Yanagihara (2010) and Chaipitak and Chongcharoen
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(2013) have proposed tests that use estimated summands of the HDSFN . In contrast,

the methods of Chen et al. (2010) and Peng et al. (2016) have used banded estimators

and transformations to increase the power of their tests.

We have structured the remainder of this paper as follows. In Section 2.2, we

introduce notation and define estimators for the population means and population

covariance matrices. In Section 2.3, we describe five recently published two-population

HPCHDS tests. We then outline our Monte Carlo simulations for contrasting their

powers in Section 2.4 and present our power simulation results for contrasting the

powers in Section 2.5. We next apply the five HPCHDS tests to a gene-expression

dataset in Section 2.6 and compare and contrast the test characteristics. Finally, we

conclude with a brief discussion of our overall power results in Section 2.7.

2.2 Notation and Preliminaries

We use the notation Rm×n to represent the vector space of all m × n matrices

over the real field R. Also, we let RS
n represent the set of all n×n symmetric matrices

with entries from R. In addition, we let R≥n be the cone of all n×n symmetric positive

semi-definite matrices over R and let R>
n denote the interior of the cone R≥n . Moreover,

we let C (A) represent the column space of A ∈ Rm×n, and we let In signify the n-

dimensional identity matrix. We define the transpose, trace, and rank of A by AT ,

tr (A), and rank(A), respectively. In addition, we use the notation MNpn(M, In⊗Σ)

to denote a matrix-normal distribution, where M ∈ Rp×n is the mean matrix, Σ ∈ R>
p ,

and ⊗ signifies the Kronecker product. Also, let Xi :=
[
xi1

... xi2
... · · · ... xini

]
∈ Rp×ni

,

represent a data matrix of ni observations sampled from the ith population, so that

Xi ∼ MNpni
(Mi, Ini ⊗ Σi) with Mi ∈ Rp×ni

, Σi ∈ R>
p , and i = 1, 2. Therefore,

xij ∼ Np(µi,Σi) are independent p-dimensional random vectors for i = 1, 2, and j =

1, 2, ..., ni. In addition, we use the horizontally concatenated matrix X :=
[
X1

... X2

]
∈

Rp×N to represent the complete data matrix, where N :=
∑2

i=1 ni.
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For i = 1, 2, we use the ith sample mean

xi :=
1

ni
Xij

to estimate the ith population mean µi, where j is an ni × 1 vector of ones. Also, we

use the ith sample covariance matrix

Si :=
1

ni − 1
Xi

(
Ini
− 1

ni
Jni

)
XT
i , (2.2)

to estimate the ith population covariance matrix, where Jni
is an ni × ni matrix of

ones. Additionally, let Vi := (ni−1)Si represent the Gram matrix of (2.2) and, finally,

let

S :=
1

n

k∑
i=1

Vi

denote the pooled sample covariance, where n := N − 2.

2.3 Five Tests for the Homogeneity of Two Population Covariance Matrices
Performed Under a High-Dimensional Setting

We now describe five HPCHDS tests for two population covariance matrices.

Namely, we consider the tests derived in Schott (2007), Srivastava and Yanagihara

(2010), Chaipitak and Chongcharoen (2013), Srivastava et al. (2014), and Ahmad

(2017). We also state their asymptotic distributions under the null hypothesis for

these tests.

2.3.1 Schott (2007)

Schott (2007) has proposed a test for HPCHDS based on HDSFN given in (2.1).

Because researchers routinely examine thousands of gene expressions with sample sizes

typically less than N = 100, Schott (2007) used a DNA microarray-data example to

motivate his work. For notational consistency throughout this paper, we do not use

the original notation of the test from Schott (2007). Srivastava and Yanagihara (2010)
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have expressed the test statistic proposed in Schott (2007) as

QSc :=
â21 + â22 − 2

p
tr (S1S2)√

V̂ar(qSc)

, (2.3)

where â21 and â22 are given in (A.2), qSc := â21 + â22 − 2
p
tr (S1S2) estimates the sum

of squared elements of [Σ2 −Σ1], and

V̂ar(qSc) = 4â22

(
1

n1 − 1
+

1

n2 − 1

)2

.

We refer to the HPCHDS test using the test statistic QSc by TSc. Schott (2007) has

shown that V̂ar(qSc)
P−→ Var (qSc) if H0 is true and also that QSc ∼̇ N(0, 1) under H0

as (p, n1, n2)→∞. However, because of a dearth of competing HPCHDS tests at the

time of publication, this paper includes only a contrast between the power of TSc and

the power of the likelihood ratio test for ni > p, i = 1, 2.

2.3.2 Srivastava and Yanagihara (2010)

Next, Srivastava and Yanagihara (2010) have proposed a test based on an es-

timator of
[
tr
(
Σ2
i

)
/ tr (Σi)

2], i = 1, 2. That is, the test presented by Srivastava and

Yanagihara (2010) has compared the sum of squared elements to the sum of the

squared eigenvalues via a ratio. Their HPCHDS test statistic is

QS10 :=
â21/â

2
11 − â22/â212√
̂Var(qS10)

,

where â21 and â22 are given in (A.2), â11 and â12 are given in (A.1), qS10 := â21/â
2
11−

â22/â
2
12, and

̂Var(qS10) =

(
4â22
â41

+
2

p

(
â32
â61
− 2â2â3

â51
+
â4
â41

))(
1

(n1 − 1)
+

1

(n2 − 1)

)
,

where â2 is given in (A.3), â3 is defined in (A.4), and â4 is defined in (A.5). We refer

to the HPCHDS test using the test statistic QS10 by TS10.

Srivastava and Yanagihara (2010) have proven that ̂Var(qS10)
P−→ Var (qS10).

Also, provided H0 holds, they have shown that QS10 ∼̇ N(0, 1) as (p, n1, n2) → ∞.
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Furthermore, they have provided simulated power contrast of the power of TS10 and

the power of TSc.

2.3.3 Chaipitak and Chongcharoen (2013)

Chaipitak and Chongcharoen (2013) have developed a test based on an esti-

mator of the ratio tr
(
Σ2
i

)
/ tr

(
Σ2
j

)
, where i, j = 1, 2, and i 6= j. Their test statistic

is

QC :=
â21/â22 − 1√

V̂ar(qC)

,

where â21 and â22 are given in (A.2), qC := â21/â22 − 1, and

V̂ar(qC) = 4

{
2â∗4
pâ22

(
1

n1 − 1
+

1

n2 − 1

)
+

(
1

(n1 − 1)2
+

1

(n2 − 1)2

)}
,

where â2 is given in (A.3) and â∗4 is defined in (A.6). We refer to the HPCHDS test

using the test statistic QC by TC .

Chaipitak and Chongcharoen (2013) have shown that V̂ar(qC)
P−→ Var (qC),

assuming H0 is true, and have also shown that QC ∼̇ N(0, 1) under H0 as (p, n1, n2)→

∞. Additionally, they have compared and contrasted powers of TC , TSc, and TS10 for

four different covariance matrix structures for the two-population covariance matrices

case.

2.3.4 Srivastava et al. (2014)

Srivastava et al. (2014) have improved upon the test (2.3) by replacing â2i and

â2 with the unbiased, consistent estimators â2si and â2s, respectively. For i = 1, 2,

they let

â2si :=
(ni − 2) (ni − 1) tr (V2

i )− n (n− k) tr (D2
i ) + tr (Vi)

2

pni (ni − 1) (ni − 2) (ni − 3)

and

â2s :=
1

N

(
k∑
i=1

niâ2i

)
,
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where Di := diag
(
bTi1bi1, . . . ,b

T
ini

bini

)
, bij = (xij − xi) , i = 1, 2, and j = 1, . . . , ni.

We simplify their test statistic to

QS14 :=
â21Sr

+ â22Sr
− 2

p
tr (S1S2)√

̂Var(qS14)

,

where qS14 := â21Sr
+ â22Sr

− 2
p
tr (S1S2) and

̂Var(qS14) = 4â22s

(
1

(n1 − 1)2
+

1

(n2 − 1)2

)
.

We refer to the HPCHDS test using the test statistic QS14 by TS14.

Srivastava et al. (2014) have also shown that ̂Var(qS14)
P−→ Var (qS14), assuming

H0 is true, and that QS14 ∼̇ N(0, 1) under H0 as (p, n1, n2) → ∞. Additionally, they

have shown that the power of TS14 is larger than the power of TSc for one type of

covariance matrix structure.

2.3.5 Ahmad (2017)

Ahmad (2017) has proposed one of the newest tests in the HPCHDS literature

that is based on the squared Frobenius norm without the p-divisor. We give the test

statistic from Ahmad (2017) as

QA :=
E1 + E2 − 2E12√

̂V ar(qA)
,

where E12 := tr (S1S2) and qA := E1 + E2 − 2E12. For i = 1, 2,

Ei :=
(ni − 1)

ni (ni − 2) (ni − 3)

{
(ni − 1) (ni − 2) tr (Si)

2 +
[
tr (Si)

]2
− ni

(ni − 1)

ni∑
j=1

(xij − xi)
T (xij − xi) (xij − xi)

T (xij − xi)

}
and

V̂ar(qA) = 4
[
tr
(
S2
) ]2( 1

n1

+
1

n2

)2

.

Ahmad (2017) has shown that E12
P−→ tr (Σ1Σ2) and Ei

P−→ tr
(
Σ2
i

)
, i = 1, 2, and

has further demonstrated that V̂ar(qA)
P−→ Var (qA), assuming H0 is true. Additionally,
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under H0, he has shown that QA ∼̇ N(0, 1) as (p, n1, n2) → ∞. However, the power

of TA has not been contrasted with the power of any other HPCHDS tests.

2.4 Monte Carlo Power Simulation Description

We now describe the Monte Carlo simulation designs we used to contrast

POW (TSc), POW (TS14), POW (TA), POW (TS10), and POW (TC), where POW (T(∗))

represents the estimated power of the test T(∗).

2.4.1 Simulation Covariance Structures

The covariance matrix structures used in our Monte Carlo simulations were

selected from the HPCHDS tests literature. We have compared test powers across

five different covariance matrix structures with balanced group sample sizes of 10.

First, we used the constant-times-identity covariance-matrix structure. For our

simulation, the parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = Ip

and

HA : Σ1 = Ip and Σ2 = σ2Ip.

Second, we utilized the compound-symmetric covariance matrix class. For our

simulation, the null and alternative hypotheses for testing for homogeneity of compound-

symmetric population covariance matrices are

H0 : Σ1 = Σ2 = σ2
1Ip + σ2

2Jp

and

HA : Σ1 = σ2
1Ip + σ2

2Jp and Σ2 = σ2
1AIp + σ2

2AJp.

Third, we used the autoregressive covariance-matrix structure. Here, the null

and alternative hypotheses for the homogeneity of autoregressive covariance matrices
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are

H0 : Σ1 = Σ2 = U0

and

HA : Σ1 = U0 and Σ2 = U1,

where U0 = σij = 0.1|i−j| and U1 = σij = 0.3|i−j| and where 1 ≤ i, j ≤ p.

Fourth, we used the heterogeneous autoregressive covariance-matrix structure.

These heterogeneous autoregressive covariance-matrix structures are similar to those

in Srivastava et al. (2014), and were created as follows. First, let σl := 1+(−1)l+1Ql/2,

where Ql ∼ Unif(0, 1) and l = 1, 2, . . . , p. Then, the null and alternative hypotheses

for the homogeneity of heterogeneous autoregressive covariance matrices are

H0 : Σ1 = Σ2 = σiσj0.1
|i−j|

1
10

and

HA : Σ1 = σiσj0.1
|i−j|

1
10 and Σ2 = σiσj0.3

|i−j|
1
10 ,

respectively, where 1 ≤ i, j ≤ p.

Last, we examined an unstructured covariance-matrix configuration that has no

discernible pattern, which we modeled as

H0 : Σ1 = Σ2 = U1

and

HA : Σ1 = U1 and Σ2 = U2.

Here, the parameters for the null and alternative hypotheses are

U1 = σij = σji :=


(−1)i+j

(
0.10
j

)
, i < j

1, i = j
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and

U2 = σij = σji :=


(−1)i+j

(
0.05
j

)
, i < j

1, i = j.

2.4.2 Simulated Critical Values

First, we used Monte Carlo simulations to check the accuracy of the suggested

asymptotic critical values and corresponding significance levels of the HPCHDS tests

TA, TSc, TS10, TC , and TS14. The results of these simulations are given in Appendix A.

Because many of the asymptotic significance levels were so different from α = 0.05,

we simulated critical values for each of the five test for various combinations of data

dimension and class sample size. More specifically, we generated 10,000 independent

multivariate normal datasets of ni observations, i = 1, 2, from a Np(0,Σ) distribu-

tion, where Σ is the common population covariance matrix if H0 is true. We next

determined the appropriate simulated critical values for each test by calculating

SCV 1−α/2 := inf
{
x ∈ R : 1− α/2 ≤ F̂T(∗)(x)

}
,

and

SCV α/2 := sup
{
x ∈ R : α/2 ≥ F̂T(∗)(x)

}
,

where F̂T(∗)(x) is the empirical CDF for the test T(∗) and α = 0.05.

2.4.3 Powers of the HPCHDS tests

To estimate the power of each HPCHDS test for a given p and ni, i = 1, 2, we

generated 10, 000 independent multivariate normal datasets from each of the popula-

tions modeled as Np(0,Σi), i = 1, 2, where Σi are the population covariance matrices

under the alternative hypothesis. Using the alternative-hypothesis parameters, we

calculated the test values TA,j, TSc,j, TS10,j, TC,j, TS14,j for each of the j simulated

datasets, 1 ≤ j ≤ 10, 000. We then calculated the estimated powers for each test T(∗)
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and for each common sample size and data dimension using

POW (T(∗)) :=

10,000∑
j=1

I
[
T(∗),j ∈ RR(T(∗))

]
10, 000

,

where RR(T(∗)) is the rejection region for the test T(∗) and I[·] is the indicator function.

We performed the power simulations in parallel using R and the covTestR package.

2.4.4 Simulation Design Summary

Tables [2.1, A.6– A.9] display the simulated powers for of the HPCHDS tests.

We performed Monte Carlo simulations to contrast the powers of the HPCHDS tests

for common sample sizes of ni ∈ {5, 10, 15, 20}, i = 1, 2, and data dimensions of

p ∈ {20, 40, 80, 160}. In Figures [2.1 – 2.5], we have displayed Monte Carlo simulation

power-curve comparisons plotted against common sample sizes ni ∈ {5, 10, 15, 20}, i =

1, 2, with p = 160. For Figures [A.1 – A.5], we have fixed the common sample size at

ni = 10 and have conducted simulations for p ∈ {11, 12, . . . , 160}. We computed the

simulations in parallel using R and the covTestR package.

2.5 Simulations Contrasting the Powers of Five Tests for Homogeneity of Two
Population Covariance Matrices in a High-Dimensional Setting

Here, we present power curve figures for p = 160 and common sample sizes

ranging from ni = 5 to ni = 40, i = 1, 2. We also include power curves for fixed sample

size ni = 10 and p = 2, 3, . . . , 160. The power curves were fitted using generalized

linear models with b-splines.

2.5.1 A Power-Simulation Summary Table

Table 2.1 shows POW (TA), POW (TC), POW (TSc), POW (TS10), and POW (TS14)

when we simulated the five HPCHDS tests for two heterogeneous autoregressive

covariance-matrix structure described in Subsection 2.4.1. The columns of Table 2.1

correspond to the tests TA, TC , TSc, TS10, and TS14, and the rows are the combina-
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tions of data dimension and sample size in ascending order. We see that POW (TS14)

yielded the largest power for each combination of sample size and data dimension

considered here and that POW (TC) and POW (TSc) tended to yield substantially

inferior powers for most data dimensions and sample sizes.

Table 2.1: A table contrasting POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS on two heterogeneous autoregressive population

covariance structures.

p n1 = n2 POW (TA) POW (TC) POW (TSc) POW (TS10) POW (TS14)
20 5 0.12 0.06 0.06 0.06 0.13

10 0.21 0.13 0.14 0.22 0.25
15 0.40 0.26 0.20 0.30 0.45

40 5 0.21 0.07 0.08 0.07 0.21
10 0.38 0.17 0.19 0.35 0.46
15 0.45 0.23 0.38 0.50 0.48
20 0.58 0.30 0.43 0.71 0.78

80 5 0.24 0.11 0.10 0.08 0.29
10 0.52 0.25 0.27 0.47 0.62
15 0.64 0.33 0.34 0.69 0.78
20 0.80 0.42 0.58 0.86 0.93

160 5 0.34 0.18 0.14 0.12 0.40
10 0.67 0.42 0.38 0.64 0.78
15 0.84 0.57 0.56 0.83 0.92
20 0.92 0.66 0.73 0.94 0.97

2.5.2 Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and POW (TS14)
for Constant-Times-Identity Covariance Matrix Structures

Figure 2.1 presents curves for POW (TA), POW (TC), POW (TSc), POW (TS10),

and POW (TS14) for two population covariance matrices with a constant-times-identity

covariance matrix structure with parameters Σ1 = Ip and Σ2 = (1.5)Ip. The data

dimension was p = 160, and common sample sizes were ni ∈ {5, 6, ..., 40}, i = 1, 2. For

all common sample sizes considered here POW (TS14) = 1.0 uniformly. In addition,

POW (TA) and POW (TC) yielded similar power curves with POW (TA) > POW (TC).

Both POW (TA) and POW (TC) attained a power of 1.0 for n1 = n2 ≥ 17, and

POW (TS10) was essentially negligible regardless of the value of ni, i = 1, 2. Finally,
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POW (TSc) attained mild gains as ni increased and attained a maximum power value

of 0.30 at ni = 40, i = 1, 2.
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Figure 2.1: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with two constant-times-identity population co-
variance matrices with parameters Σ1 = Ip and Σ2 = (1.5)Ip. The common sample
sizes were ni ∈ {5, 6, ..., 40}, i = 1, 2, with p = 160.

2.5.3 Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and POW (TS14)
for Two Compound-Symmetric Covariance Matrix Structures

Figure 2.2 displays the curves for POW (TA), POW (TC), POW (TSc), POW (TS10),

and POW (TS14) for testing forHPCHDS having two compound-symmetric covariance

matrix structures with parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip +

(0.05)Jp. The data dimension was p = 160, and the common sample size was ni ∈

{5, 6, ..., 40}, i = 1, 2. Here, POW (TS14) yielded the largest power value of 0.90
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when ni = 40, i = 1, 2. Also, POW (TSc) and POW (TC) produced similar curves

with POW (TC) being slightly larger than POW (TSc) for all considered values of

ni, i = 1, 2. In addition, POW (TA) yielded the largest power for smaller common sam-

ple sizes but was overtaken by POW (TS14) near n1 = n2 = 10. Moreover, POW (TS10)

yielded the smallest power value for ni ∈ {5, 6, ..., 40}, i = 1, 2.
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Figure 2.2: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for HPCHDS with two compound-symmetric population covariance ma-
trices with parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip + (0.05)Jp. The
common sample sizes were ni ∈ {5, 6, ..., 40}, i = 1, 2, with p = 160.

2.5.4 Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and POW (TS14)
for Two Autoregressive Covariance Matrix Structures

Figure 2.3 presents the power curves for POW (TA), POW (TC), POW (TSc),

POW (TS10), and POW (TS14) for two autoregressive population covariance struc-
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tures with parameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|, p = 160, and common sam-

ple ni ∈ {5, 6, ..., 40}, i = 1, 2. As ni increased, POW (TS14) attained the largest

power values, as shown in Figure 2.3. Also, POW (TSc) gained little power as ni in-

creased, and POW (TS10) did not show increased power until ni = 25, i = 1, 2. In

addition, POW (TA) produced the largest power for small common sample sizes, but

POW (TS14) yielded superior power for all ni ≥ 15, i = 1, 2.
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Figure 2.3: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with two autoregressive population covariance ma-
trix structures with parameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|. The common sample
sizes were ni ∈ {5, 6, ..., 40}, i = 1, 2, with p = 160.
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2.5.5 Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and POW (TS14)
for Two Heterogeneous Autoregressive Covariance Structures

Figure 2.4 presents power curves for POW (TA), POW (TC), POW (TSc), POW (TS10),

and POW (TS14), for testing HPCHDS for two population covariance matrices with

heterogeneous autoregressive covariance matrices. Here, p = 160, and the common

sample size was ni ∈ {5, 6, ..., 40}, i = 1, 2. We observed that POW (TS14) was supe-

rior for all ni and attained a maximum POW (TS14) = 1.0 at ni = 30. Also, POW (TA)

and POW (TS10) produced comparable curves attaining maximum powers of 1.0 for

ni ≥ 30, i = 1, 2. In contrast, POW (TSc) and POW (TC) yielded the two smallest

curves for all ni considered here.
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Figure 2.4: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing the HPCHDS with two heterogeneous autoregressive covari-
ance matrix structures. The common sample sizes were ni ∈ {5, 6, ..., 40}, i = 1, 2, for
p = 160.
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2.5.6 Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and POW (TS14)
for Two Unstructured Population Covariance Matrices

Figure 2.5 displays power curves for the five HPCHDS tests for two unstruc-

tured covariance matrices. Here, p = 160, and the common sample size was ni ∈

{5, 6, ..., 40}, i = 1, 2. For all values of ni, POW (TS14) was superior and attained a

maximum POW (TS14) = 1.0 at ni = 32. Also, POW (TC) and POW (TSc) curves

were similar and were uniformly least powerful.
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Figure 2.5: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing the HPCHDS with two unstructured population covariance
matrix structures. The common sample sizes were ni ∈ {5, 6, ..., 40}, i = 1, 2, for
p = 160.
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2.6 A Real-Data Example for Testing the Homogeneity of Two High-Dimensional
Population Covariance Matrices Contrasting the Tests TA, TC, TSc, TS10, and

TS14

In this section, we evaluate the differences in the performance of the HPCHDS

tests TA, TC , TSc, TS10, and TS14 using real data. The data we use originated in Golub

et al. (1999). However, we utilized the dataset from Ramey (2016). The Golub dataset

contains 47 patients with acute lymphoblastic leukemia, which can be further sepa-

rated into luekemia from T-cell and B-cell lymphocytes, and 25 patients with acute

myeloid leukemia.

Because we could not rely on the accuracy of suggested asymptotic critical

values, we performed permutation tests for each HPCHDS statistic considered here

and, thus, assumed the observations were exchangeable. We first determined a critical

value for each statistic and then compared each of the original empirical test scores

with the corresponding critical values using the permutation test procedure. Table

2.2 presents the results of our five HPCHDS tests using permutation tests. For the

tests TA, TS10, and TS14, we rejected the null hypothesis that the population covari-

ance matrix for the subjects with acute lymphoblastic leukemia was homogeneous

to the covariance matrix for subjects with acute myeloid leukemia. In contrast, we

failed to reject the hypothesis of homogeneous population covariance matrices when

utilizing the tests TC and TSc. This power-contrast result is a similar conclusion to

that obtained in the simulated power studies in the previous section.

Table 2.2: Test-results summary table of the HPCHDS tests TA, TC , TSc, TS10, and
TS14 applied to the Golub et al. (1999) data set.

Test Lower Crit. Val. Upper Crit. Val. test Val. p-value Decision
TC -4.198 4.557 4.258 0.056 FTR H0

TSc -9.648 10.611 9.230 0.051 FTR H0

TS10 -4.449 5.004 6.563 0.011 Reject H0

TS14 -5.237 4.782 5.441 0.024 Reject H0

TA -1.736 1.273 1.312 0.045 Reject H0
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2.7 Discussion

In summary, we have compared and contrasted the powers for POW (TA),

POW (TC), POW (TSc), POW (TS10), and POW (TS14) for two population covariance

matrices. We have examined the powers for these five HPCHDS tests for five different

covariance structures via Monte Carlo simulations and have shown that, except for

very small sample sizes, the test proposed by Srivastava et al. (2014) was generally

the most powerful of the competing HPCHDS tests considered here. Also, we have

shown that POW (TC) and POW (TSc) were inferior to POW (TS14) for all considered

sample sizes and data dimensions considered here.

Finally, we contrasted the characteristics of the HPCHDS tests TA, TC , TSc,

TS10, and TS14 for testing two population covariance matrices using permutation tests

on the Golub dataset. For the tests TA, TS10, and TS14, we rejected the null hypothesis

of covariance homogeneity at the α = 0.05 level. These test results mirrored the

conclusions determined from our Monte Carlo power simulations. Thus, we concluded

that TS14 yielded superior power to the HPCHDS tests TC and TSc and is marginally

more powerful than TA and TS10.
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CHAPTER THREE

Linear Dimension Reduction for Power Improvement of Tests for Homogeneity of
Two Population Covariance Matrices in a High-Dimensional Setting

ABSTRACT

We develop a linear dimension reduction (LDR) technique to improve the

power of tests for the homogeneity of two population covariance matrices in a high-

dimensional scenario (HPCHDS ). Using Monte Carlo simulations, we contrast the

powers of four HPCHDS tests calculated with reduced-dimension data from our LDR

method with the powers of these four tests calculated from the original data. We also

perform a permutation tests using real data to contrast the no-LDR and post-LDR

test characteristics. Our proposed LDR technique yields substantial power increases

for certain HPCHDS tests considered here. We conclude that the test of Chaipitak

and Chongcharoen (2013), when calculated with reduced-dimensional data using our

LDR method, yields the best power for most of the considered population covariance

structures and on the a high-dimensional real dataset from Alon et al. (1999).

3.1 Introduction

In many scientific disciplines, including biomedical imaging, magnetic resonance

imaging, tomography, and financial portfolio analysis, one may collect data where the

data dimension is greater than the group sample size. We label this type of data

as “high-dimensional data." For a fixed sample size, increasing the data dimension

increases the estimator variability, thus making statistical inference more inaccurate.

Also, if the data dimension is greater than the group sample size, then the correspond-

ing sample covariance matrix is singular and, therefore, one cannot conduct classical

multivariate statistical analysis.
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In this paper, we derive and apply an LDR matrix for two sample covariance

matrices to reduce the number of estimated parameters, thus often yielding more

powerful hypothesis tests for HPCHDS. In particular, we compare the powers of

four HPCHDS tests calculated after applying our proposed LDR method on the

original data to the powers of these four tests calculated from the original data. We

employ Monte Carlo simulations with five covariance structures previously utilized

in the HPCHDS literature. We restrict the differences in the covariance matrices to

the differences in the hyper-volume as measured by the determinant while ignoring

differences in the eigenvector orientation. We also contrast the four HPCHDS tests

calculated with no-LDR data against the four tests calculated with post-LDR data

using a permutation test procedure on a real high-dimensional dataset. For both the

simulations and the real dataset, we determine that the proposed LDR method, when

used with appropriate tests, can yield a considerable increase in power.

The current consensus in the HPCHDS literature is that Schott (2007) was

the first to introduce a HPCHDS test which has been based on a high-dimensional

squared Frobenius norm (HDSFN ) for two symmetric nonegative-definite matrices

given by Ledoit and Wolf (2004). This norm is

HDSFN :=
1

p
tr
(
Σ2

1

)
+

1

p
tr
(
Σ2

2

)
− 2

p
tr (Σ1Σ2) . (3.1)

The inclusion of the divisor p in (3.1) yields several desirable properties that one can

find in Ledoit and Wolf (2004). Some HPCHDS tests motivated by summands of

(3.1) include those of Srivastava (2007), Srivastava et al. (2014), and Ahmad (2017).

Also, Ishii et al. (2016) have proposed a test based on the first principal compo-

nents from each sample covariance matrix and the corresponding loadings composed

of noise-reduced estimators. Srivastava and Yanagihara (2010) and Chaipitak and

Chongcharoen (2013) have proposed HPCHDS tests that use ratios of the summands

of (3.1). In contrast, the methods of Chen et al. (2010) and Peng et al. (2016) use

banded estimators and transformations to increase the power of their tests.
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The remainder of the paper is organized as follows. In Section 3.2 we define

notation used throughout the remainder of the paper. We then present four two

population HPCHDS tests in Section 3.3. Next, in Section 3.4, we describe a new LDR

method that for two-population HPCHDS tests to ostensibly increase their power. We

then describe our simulation design and the covariance matrix structures used for the

simulations in Section 3.5. In Section 3.6, we present our power-contrast results from

the Monte Carlo simulations for the tests from Chaipitak and Chongcharoen (2013),

Ahmad (2017), Srivastava and Yanagihara (2010), and Ishii et al. (2016), calculated

from the original data with post-LDR data. We then apply these HPCHDS tests

using no-LDR and post-LDR data to a real high-dimensional dataset in Section 3.7

and contrast the corresponding p-values and hypothesis decision results. Finally, we

offer some concluding remarks in Section 3.8.

3.2 Notation

We use the notation Rm×n and Rn×n to represent the vector space of all m× n

and n × n matrices over the real field R, respectively, and we let the symbol RS
n×n

represent all n×n symmetric matrices of real numbers. In addition, we use the symbol

R≥n to represent the cone of all symmetric nonnegative-definite matrices in Rn×n and

the symbol R>
n to represent the interior of the cone of all symmetric positive-definite

matrices in Rn×n. We also use C (A) to represent the column space of A ∈ Rm×n.

We let In ∈ Rn×n signify the n × n identity matrix. For A ∈ Rm×n, we define

the transpose of A and the Moore-Penrose pseudoinverse of A by AT and A+, re-

spectively, and we note that AA+ is the orthogonal projection onto C (A). We denote

the trace of a matrix A ∈ Rn×n by tr (A) and the rank of A ∈ Rm×n is denoted by

rank(A). Also, we use SV D(A) to represent the singular value decomposition of A.

In addition, we use the notation MNpn(M, In ⊗Σ) to denote a matrix-normal

distribution where M ∈ Rp×n is the mean matrix and Σ ∈ R>
p . Also, let Xi :=
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[
xi1

... xi2
... · · · ... xini

]
∈ Rp×ni

, represent a data matrix sampled from the ith pop-

ulation so that Xi ∼ MNpn(Mi, In ⊗ Σi) with Mi ∈ Rp×n, Σi ∈ R>
p , and ⊗ is the

Kronecker product. Therefore, xij ∼ Np(µi,Σi) are independent p-dimensional mul-

tivariate normal random vectors for i = 1, 2, and j = 1, 2, . . . , ni. We also use the

horizontally concatenated matrix X :=
[
X1

...X2

]
to represent the complete data ma-

trix. Additionally, we use the notation POW (T(R∗)) to indicate the estimated power

of the test T(R∗), and DPOW
(
T(R∗), T(∗)

)
:= [POW (T(R∗))−POW (T(∗))], where T(R∗)

represents a test calculated with post-LDR data and T(∗) represents a test calculated

from the original data.

For i = 1, 2, we use the estimator of µi,

xi :=
1

ni
Xij

and the estimator of Σi,

Si :=
1

ni − 1
Xi

(
Ini
− 1

ni
Jni

)
XT
i ,

where Jni
∈ Rni×ni

is a matrix of ones and j ∈ Rni×1 is a vector of ones. Then, let

Vi := (ni − 1)Si

be the gram matrix of the ith sample covariance matrix Si, i = 1, 2, and let

S :=
V1 + V2

n1 + n2 − 2

be the pooled sample covariance matrix.

3.3 Four Hypothesis Tests for the Homogeneity of Two Covariance Matrices in the
High-Dimensional Setting

Using a Monte Carlo simulation, we first compared the powers of an assortment

of HPCHDS tests and found four tests that performed relatively well. These tests have

been proposed by Srivastava and Yanagihara (2010), Ishii et al. (2016), Chaipitak and

Chongcharoen (2013), and Ahmad (2017).
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3.3.1 Srivastava and Yanagihara (2010)

Srivastava and Yanagihara (2010) have proposed the test statistic

QS10 :=
k∑
i=1

(â21 − â22)
̂Var(qS10)

,

where â21 and â22 are defined in (B.1), qS10 := (â21 − â22), and

̂Var(qS10) :=
4â2
p

(
pâ2 + 2 (n1 − 1)

(n1 − 1)2
+
pâ2 + 2 (n2 − 1)

(n2 − 1)2

)
,

where â2 is defined in (B.2). We refer to the HPCHDS test performed using the test

statistic QA by TA.

Srivastava and Yanagihara (2010) have proven that ̂Var(qS10)
P−→ Var (qS10) and,

assuming H0 is true, have also shown that QS10 ∼̇ N(0, 1) as (p, n1, n2) → ∞. The

power of TS10 was first contrasted to powers of other HPCHDS tests in Srivastava

and Yanagihara (2010).

3.3.2 Ishii et al. (2016)

Ishii et al. (2016) have proposed an HPCHDS test using ratios of the largest

eigenvalues and the corresponding eigenvectors of the two sample covariance matrices

Si, i = 1, 2. Ishii et al. (2016) have proposed the HPCHDS test statistic

QI := λ̃∗h̃∗γ̃∗, (3.2)

where

λ̃∗ :=
max

(
λ̃11, λ̃21

)
min

(
λ̃11, λ̃21

)
is the ratio of the larger of the two noise-reduced eigenvalues to the smaller of the

two noise-reduced eigenvalues and

λ̃i1 := λ̂i1 −
tr (Si)− λ̂i1
ni − 2

, i = 1, 2,

are the noise-reduced eigenvalues of Si, i = 1, 2, respectively. The term h̃∗ is the ratio

of the noise-reduced first eigenvectors,

h̃∗ := max
(∣∣∣h̃T1 h̃2

∣∣∣ , ∣∣∣h̃T1 h̃2

∣∣∣−1) ,
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where

h̃i1 :=
{
(n− 1)λ̃i1

}−1/2 (
X i −X i

)
ûi1,

are the first noise-reduced principal component direction vector for group i and ûi1

is the first unit eigenvector of i, i = 1, 2. The final component of the test (3.2) is

γ̃∗ := max
(
κ̃1
κ̃2
,
κ̃2
κ̃1

)
,

where

κ̃i := tr (Si)− λ̃i1.

Ishii et al. (2016) have shown that under H0, QI ∼̇ Fn1−1,n2−1 as p→∞. We denote

the HPCHDS test conducted using the test statistic QI by TI .

The test (3.2) compares only the information contained in the first principal

component and the loading of the covariance matrices minus some noise. Also, Ishii

et al. (2016) did not compare the power of their HPCHDS test with the powers of

competing tests.

3.3.3 Chaipitak and Chongcharoen (2013)

Chaipitak and Chongcharoen (2013) have developed a test based on an estima-

tor of the ratio
[
tr
(
Σ2
i

)
/ tr

(
Σ2
j

)]
. We write their test statistic as

QC :=
â21/â22 − 1√

V̂ar(qC)

,

where â21 and â22 are defined in (B.1), qC := â21/â22 − 1, and

V̂ar(qC) = 4

{
2â∗4
pâ22

(
1

n1 − 1
+

1

n2 − 1

)
+

(
1

(n1 − 1)2
+

1

(n2 − 1)2

)}
,

where â2 is given in (B.2) and â∗4 is defined in (B.3). We refer to the HPCHDS test

performed using the test statistic QC by TC .

In addition, Chaipitak and Chongcharoen (2013) have shown that V̂ar(qC)
P−→

Var (qC), assuming H0 is true, and that QC ∼̇ N(0, 1) under H0 as (p, n1, n2) →

27



∞. Also, they have contrasted the power of TC with the powers of HPCHDS tests

from Schott (2007), and Srivastava and Yanagihara (2010) on four covariance matrix

structures for the two-covariance-matrix HPCHDS case.

3.3.4 Ahmad (2017)

Ahmad (2017) has proposed the HPCHDS test statistic

QA :=
E1 + E2 − 2E12√

V̂ar(qA)

,

where qA := E1 + E2 − 2E12, E12 := tr (S1S2),

Ei :=
(ni − 1)

ni (ni − 2) (ni − 3)

{
(ni − 1) (ni − 2) tr

(
S2
i

)
+
[
tr (Si)

]2
− ni

(ni − 1)

ni∑
j=1

(xij − xi)
T (xij − xi) (xij − xi)

T (xij − xi)

}
,

i = 1, 2, and

V̂ar(qA) = 4
[
tr
(
S2
) ]2( 1

n1

+
1

n2

)2

.

We refer to the HPCHDS test conducted using the test statistic QA by TA.

Ahmad (2017) has proven that V̂ar(qA)
P−→ Var (qA), assuming H0 is true, and

has shown that QA ∼̇ N(0, 1) under H0 as (p, n1, n2) → ∞. However, he did not

contrast the power of TA with the power of other HPCHDS tests.

3.4 Linear Dimension Reduction for Improved Power of Tests of
Covariance-Matrix Homogeneity for Two Population Covariance Matrices

Under a High-Dimensional Setting

Below, we first prove a separability theorem for a new LDR method for two

population covariance matrices. Our new LDR model matrix for two high-dimensional

covariance matrices is based on a property proposed by Peters et al. (1978), who

defined the concept of a linear sufficient matrix for reducing the dimension of two

multivariate normal population covariance matrices. We also propose a new LDR

method for two sample covariance matrices. Then, we employ our LDR matrix for two
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sample covariance matrices to increase the power of two population HPCHDS tests.

Using the singular value decomposition (SVD) of Eckart and Young (1936), we derive

the LDR matrix for two sample covariance matrices that allows us to retain most of

the distinguishing information in [S2 − S1] and, therefore, distinguishing information

for [Σ2 −Σ1].

To prove our LDR model theorem, we present the symmetrized Kullback-Leibler

separability measure for two positive-definite matrices as

SKL(Σ1,Σ2) :=

[
log
|Σ2|
|Σ1|

+ tr(Σ−12 Σ1)

]
+

[
log
|Σ1|
|Σ2|

+ tr(Σ−11 Σ2)

]
. (3.3)

We now derive our new LDR model matrix for two population covariance ma-

trices and demonstrate its ability to preserve information concerning [Σ1 −Σ2] in a

reduced dimension.

Theorem. Suppose we have two multivariate normal populations with covariance

matrices Σi ∈ R>
p , i = 1, 2, and let

H := [Σ2 −Σ1] . (3.4)

Next, let SV D(H) = FΛG ∈ Rp×p, where F ∈ Rp×r and rank(F) = rank(H) =

r < p. Also, let the separability measure SKL(Σ1,Σ2) be defined in (3.3). Then,

SKL(Σ1,Σ2) = SKL(F+Σ1F
+T ,F+Σ2F

+T ).

Proof. The proof follows from Lemmas B.2.2 and B.2.3 in Appendix B.

Next, let

Ĥ := [S2 − S1] , (3.5)

where rank(Si) < p, i = 1, 2, be an estimator of H, given in (3.4). Because rank(Ĥ) =

n1 + n2 − dim
[
C
(
S1

)
∩ C
(
S2

)]
and Si ∈ R≥p , i = 1, 2, one cannot directly apply

the theorem to obtain the LDR matrix F+ ∈ Rq×p when we desire a q < rank(Ĥ).

Moreover, we often wish to obtain a low-dimensional representation of the original
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data with dimension q, where 1 ≤ q � rank(Ĥ) � p. However, motivated by the

theorem, we can construct an LDR matrix that preserves much of the original p-

dimensional information in the original data for the distinguishing aspects of the two

covariance matrices Si ∈ R≥p , i = 1, 2, by using the SVD.

Let SV D(Ĥ) = UΛVT and let U(q) denote the first q eigenvectors of Ĥ corre-

sponding to the q < p largest singular values of Ĥ. Next, let F̂p×q := U(q). Then, be-

cause
[
[̂Fp×q

]T ∈ Rq×p and
[
F̂p×q

]+ ∈ Rq×p span the same subspace, we use
[
F̂p×q

]T as

the LDR matrix for reducing the original feature dimension to the reduced dimension

q, where 1 ≤ q < rank(Ĥ), while preserving much of the separability information be-

tween the estimated covariance matrices Si ∈ R≥p , i = 1, 2. Therefore, we believe that

mapping the high-dimensional data matrix onto C([̂Fp×q]
T ) will enhance our ability to

detect differences in the individual population covariance matrices Σi ∈ R>
p , i = 1, 2,

because of the decreased number of parameters that must be estimated.

3.5 Monte Carlo Simulation Design

3.5.1 Simulation Covariance Structures

The five covariance matrix structures used in our Monte Carlo simulations were

selected from the HPCHDS literature. We have compared test powers across five

different covariance matrix structures. The group sample sizes used in the simulations

were n1 = n2.

First, we used the constant-times-identity covariance matrix structure. For our

simulation, the parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = Ip

and

HA : Σ1 = Ip and Σ2 = σ2Ip.
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Second, we use the compound-symmetric covariance matrix class. For our sim-

ulation, the null and alternative hypothesis parameters are

H0 : Σ1 = Σ2 = σ2
1Ip + σ2

2Jp

and

HA : Σ1 = σ2
1Ip + σ2

2Jp and Σ2 = σ2
1AIp + σ2

2AJp,

respectively, where Jp ∈ Rp×p is a matrix of ones.

Third, we use the autoregressive covariance matrix structure. For our simula-

tion, the parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = U0

and

HA : Σ1 = U0 and Σ2 = U1,

where U0 = σij = 0.1|i−j|, U1 = σij = 0.3|i−j|, and 1 ≤ i, j ≤ p.

Fourth, we use the heterogeneous autoregressive covariance matrix structure.

For our simulation, we use the heterogeneous autoregressive covariance matrix struc-

tures similar to those in Srivastava et al. (2014), which we create as follows. First,

let σl := 1 + (−1)l+1Ql/2, where Ql ∼ Unif(0, 1) and l = 1, 2, . . . , p. Then, the

parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = σiσj0.1
|i−j|

1
10

and

HA : Σ1 = σiσj0.1
|i−j|

1
10 and Σ2 = σiσj0.3

|i−j|
1
10 ,

respectively, where 1 ≤ i, j ≤ p.
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Last, we examine an unstructured covariance matrix structure that has no struc-

ture or pattern, which we model as

U2 = σij = σji :=


(−1)i+j

(
0.10
j

)
, i < j

1, i = j

and

U3 = σij = σji :=


(−1)i+j

(
0.05
j

)
, i < j

1, i = j.

Then, for testing HPCHDS with unstructured covariance matrices, we note that the

parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = U2

and

HA : Σ1 = U2 and Σ2 = U3.

3.5.2 Monte Carlo Power Simulation Description

We now describe the simulation design we use to contrast the powers for the

two population post-LDR HPCHDS tests TRA, TRCB, TRSc, and TRS10 and the two-

population, no-LDR HPCHDS tests TA, TCB, TSc, and TS10. Using the statistical pro-

gramming software R, we generated 10,000 independent multivariate normal vectors

from Np(0,Σ), where Σ ∈ R>
p is the common covariance matrix under H0 for group

i = 1, 2. For each sample dataset X(j), j = 1, . . . , 10, 000, we estimated M by M̂(j),

as in (3.5), and calculated SV D(M̂(j)) to extract our LDR matrix
[
F̂

(j)
p×q
]T . Next,

we reduced the dimension of the sample data by mapping the full-dimensional data

matrix X(j) onto C
([

F̂
(j)
p×q
]T) so that Y(j) =

[
F̂

(j)
p×q
]T

X(j), where q is the targeted

reduced-data dimension. We then calculated the empirical test value T(∗),j from the
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reduced data vectors yij, i = 1, 2, and j = 1, 2, . . . , ni, and determined the simulated

critical values (SCVs) for TRA, TRC , and TRS10 using

SCV 1−α/2 := inf
{
x ∈ R : 1− α/2 ≤ F̂T(R∗)(x)

}
(3.6)

and

SCV α/2 := sup
{
x ∈ R : α/2 ≥ F̂T(R∗)(x)

}
, (3.7)

where F̂T(R∗)(x) is the empirical distribution function of the test T(R∗). For TRI the

SCV was calculated as

SCV 1−α := inf
{
x ∈ R : 1− α ≤ F̂T(RI)

(x)
}
. (3.8)

We used the significance level α = 0.05 as our decision criterion to perform each

individual HPCHDS hypothesis test. Additionally, we determined the critical values

for the tests TA, TCB, TSc, and TS10 via the methods described in (3.6), (3.7), and

(3.8), but using the original-dimension datasets X(j).

To determine the power for each test, given q and ni, i = 1, 2, we generated

10,000 independent multivariate normal random vectors from each of the Np(0,Σi)

populations, where Σi ∈ R>
p , i = 1, 2, are the covariance matrices assuming HA.

For each complete sample dataset X(j) ∈ Rp×N , where N :=
∑2

i=1 ni, we extracted

the LDR matrix
[
F̂

(j)
p×q
]T and then reduced the data dimension by mapping the full-

dimensional data matrix X(j) onto C
(
[̂F

(j)

p×q]
T

)
so that Y(j) =

[
F̂

(j)
p×q
]T

X(j). We then

calculated the test T(R∗),j for each j, where 1 ≤ j ≤ 10, 000, using each reduced-data

matrix Y(j) and estimated the power by

POW (T(R∗)) =

10,000∑
j=1

I[T(R∗),j ∈ RR(T(R∗)]

10, 000
, (3.9)

where RR(T(R∗)) is the rejection region for the test T(R∗) and I[·] is the indicator func-

tion. We applied a method similar to that given in (3.9) but using the original unre-

duced datasets X(j) to estimate POW (TA), POW (TC), POW (TI), and POW (TS10).
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We performed power simulations for the common sample sizes n1 = n2 ∈

5, 10, 15, 20 and the full-data dimensions p ∈ 20, 40, 80, 160 and summarized the

results for POW (TRA), POW (TRC), POW (TRI), POW (TRS10) and for POW (TA),

POW (TC), POW (TI), and POW (TS10) in 3.1. Also, in the five figures shown be-

low, we displayed curves for POW (TRA), POW (TRC), POW (TRI), and POW (TRS10)

plotted against the reduced dimension q for q ∈ {1, 2, ..., 159}. We also provided

power-difference curves plotted versus the reduced dimension q for q ∈ {1, 2, ..., 159}

DPOW (TRA, TA), DPOW (TRC , TC), DPOW (TRI , TI), and DPOW (TRS10, TS10) ,

where DPOW
(
T(R∗), T(∗)

)
:= [POW (T(R∗)) − POW (T(∗))] for the tests T(R∗) and

T(∗). The original-data dimension was p = 160 and the sample size was n1 = n2 = 10.

The simulations were run in parallel using R and the covTestR package.

3.6 Monte Carlo Power Simulation Results

In this section we present our simulated power-contrast results for the HPCHDS

tests TA, TC , TI , and TS10, calculated with no LDR, and the HPCHDS tests TRA, TRC ,

TRI , and TRS10, calculated after we applied LDR to the sample observations from each

group. We display the power-simulation results in Table 3.1 below and in Figures 3.1–

Figures 3.5. We used generalized linear models with b-splines to fit the power curves

and the power-difference curves.

3.6.1 A Simulation-Summary Table for POW(TRA), POW(TRC), POW(TRI), and
POW(TRS10) for Two Autoregressive Covariance Matrices

Table 3.1 shows the post-LDR powers POW (TRA), POW (TRC), POW (TRI),

and POW (TRS10) for two autoregressive covariance matrix structures with param-

eters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|, q ∈ {5, 10, 15, 20} when ni = 5 and for

q ∈ {10, 20, 30, 40} when ni = 10. We also report the no-LDR powers POW (TA),

POW (TC), POW (TI), and POW (TS10) for configuration scenarios with p ∈ {80, 160}

and ni = {5, 10}, i = 1, 2.
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Table 3.1: A table contrasting POW(TRA), POW(TRC), POW(TRI), and
POW(TRS10) with POW(TA), POW(TC), POW(TI), and POW(TS10) when testing
for HPCHDS for two autoregressive population covariance matrices with parameters

Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|.

p n1 = n2 q POW(TRA) POW(TRC) POW(TRI) POW(TRS10)
80 5 5 0.00 1.00 0.02 0.00

10 0.00 0.93 0.00 0.00
15 0.01 0.78 0.35 0.00
20 0.01 0.66 0.29 0.00

10 10 0.00 1.00 0.00 1.00
20 0.00 0.98 0.01 0.36
30 0.00 0.83 0.12 0.16
40 0.00 0.55 0.10 0.05

160 5 5 0.00 1.00 0.03 0.99
10 0.00 0.99 0.00 0.00
15 0.00 0.97 0.40 0.00
20 0.00 0.94 0.40 0.00

10 10 0.00 1.00 0.00 0.9
20 0.00 1.00 0.01 0.52
30 0.00 1.00 0.19 0.20
40 0.00 0.99 0.25 0.13

p n1 = n2 p POW(TA) POW(TC) POW(TI) POW(TS10)
80 5 80 0.10 0.03 0.04 0.06

10 80 0.16 0.02 0.06 0.05
160 5 160 0.10 0.02 0.05 0.06

10 160 0.14 0.02 0.05 0.06

As shown in Table 3.1, POW (TRC) was increased significantly over POW (TC)

because of the application of our LDR method prior to the HPCHDS hypothesis test.

However, POW (TRI) was less than POW (TI) and POW (TRA) was considerably less

than POW (TA) because of the use of LDR on the full-dimensional data prior to

the hypothesis test. We also found circumstances in which the use of LDR increased

POW (TRS10) over POW (TS10). Thus, we observed that a reduction in the data di-

mension prior to calculating the empirical test value by using our LDR method can

yield a considerable increase in test power or can cause a relatively large decrease in

power, depending on the hypothesis test used.
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3.6.2 Power Curves and Power-Difference Curves for TRA, TRC, TRI , and TRS10 for
Two Constant-Times-Identity Covariance Structures

In Figure 3.1, we present plots for the post-LDR power curves for TRA, TRC , TRI ,

and TRS10 and for the difference in the post-LDR power curves DPOW (TR∗, T∗). The

powers for the HPCHDS tests when p = 160 were POW (TA) = 0.86, POW (TC) =

0.13, POW (TI) = 0.11, and POW (TS10) = 0.01. The HPCHDS hypothesis tests

were performed for two constant-times-identity covariance matrices with parameters

Σ1 = Ip and Σ2 = (1.5)Ip. Comparing the two groups of plots, we see similar trends in

power and power-difference curves. Three of the power curves have maximum power

at or near the common sample size ni = q = 10, i = 1, 2.

We see that POW(TRC) was relatively small for q > 75 but increased as q

decreased, attaining a maximum power of 1.0 at q = 20. Also, POW(TRS10) yielded

discernible power for q < 25 and peaked at q = 10 with POW(TRS10) = 0.95. In

addition, POW (TRI) = 0.40 was the maximum power for TRI , which occurred at

q = 19, while POW (TRA) decreased as q decreased. However, DPOW (TRA, TA) < 0

for all q, where q ∈ {1, 2, ..., 159}. Also, DPOW (TRS10, TS10) and DPOW (TRC , TC)

peaked to nearly 1.0 and 0.90 at q = 10, respectively. Thus, applying our LDR method

for two covariance matrices prior to calculating the HPCHDS tests TRS10 and TRC

yielded a significant increase in the maximum power. The DPOW (TRI , TI) curve

peaked at q = 13 with a power increase of 0.27. Also, POW (TA) had the largest power

among the reported no-LDR HPCHDS tests. The fact that DPOW (TRA, TA) < 0

for q, where q ∈ {1, 2, ..., 159}, as seen in the power-difference plot, suggested that we

lost a substantial amount of information concerning the difference between covariance

matrices because of the use of LDR.
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Figure 3.1: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two constant-times-
identity covariance matrices with parameters Σ1 = Ip and Σ2 = (1.5)Ip. The reduced-
data dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160,
and the common sample size was ni = 10, i = 1, 2, 3.

3.6.3 Power Curves and Power-Difference Curves for TRA, TRC, TRI , and TRS10 for
Two Compound-Symmetric Covariance Matrices

In Figure 3.2, we present plots for the power curves constructed after application

of our LDR method for the tests TRA, TRC , TRI , and TRS10 and plots for the difference

in the post-LDR power curves from the original-dimension powers. The HPCHDS

hypothesis tests were performed for two compound symmetric covariance matrices

with parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip + (0.05)Jp. The no-

LDR powers were POW (TA) = 0.30, POW (TC) = 0.02, POW (TI) = 0.05, and
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POW (TS10) = 0.02 at p = 160. Three power curves have maximums at or near the

common sample size ni = q = 10, i = 1, 2, which is denoted by the vertical line in

Figure 3.2.
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Figure 3.2: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two compound symmetric
population covariance matrices with parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 =
(0.95)Ip+(0.05)Jp. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original
data dimension was p = 160, and the common sample size was ni = 10, i = 1, 2, 3.

The curve for POW (TRS10) peaked to 0.87 at q = 10, which is also the common

sample size. Additionally, POW (TRC) ≈ 1.0 for q ∈ {10, 11, ..., 35} and consistently

yielded the largest power when q ≤ 112. In addition, POW (TRI) was maximized at

q = 27 with POW (TRI) = 0.37, which was relatively small. Again, POW (TA) was
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the largest power among the four no-LDR HPCHDS tests. However, POW (TRA)

decreased as q decreased and never yielded a power value greater than POW (TA).

The curve for POW (TRC) considerably increased as q was reduced and peaked

at q = 20 with DPOW (TRC , TC) ≈ 1.0. Also, DPOW (TRS10, TS10) peaked in power

increase at q = 10 with a difference of 0.87. We see that POW (TRI) peaked at

0.37 when q = 19. In the power-difference plot, DPOW (TRA, TA) < 0 for q ∈

{1, 2, ..., 159}, and, therefore, we again found that the application of LDR to the

original data decreased the power for TA for all considered values of q.

3.6.4 Power Curves and Power-Difference Curves for TRA, TRC, TRI , and TRS10 for
Two Autoregressive Covariance Structures

In Figure 3.3, we present plots for the post-LDR power curves for tests TRA,

TRC , TRI , and TRS10 and plots for the difference in the reduced-dimension power

curves from the original-dimension powers POW (TA) = 0.14, POW (TC) = 0.02,

POW (TI) = 0.05, and POW (TS10) = 0.06 for p = 160. The hypothesis tests for

HPCHDS were performed for two autoregressive covariance matrices with parameters

Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|. We first see that two power curves have maximums

at the common sample size denoted by the solid vertical line. The maximum for

POW (TRS10) occurred at q = 16. Also, for this autoregressive covariance matrix

structure, POW (TRC) = 1 was the maximum power for each of the reduced data

dimensions q ∈ {9, 10, ..., 30} and was the most powerful post-LDR HPCHDS test

examined here.

Also, POW (TRS10) had almost no discernible power increase for q > 50. How-

ever, POW (TRS10) was maximized at q = 10 where POW (TRS10) ≈ 0.86. In addition,

POW (TRI) = 0.40 was the maximum power at q = 19, and POW (TRC) produced

the largest power among all post-LDR tests when q was reduced to q ∈ {9, 10, ..., 30}.

Once again, the plot of POW(TRA) monotonically decreased as q was reduced.
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Figure 3.3: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two autoregressive co-
variance matrices with parameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|. The reduced-data
dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160, and the
common sample size was ni = 10, i = 1, 2, 3.

We also see that DPOW (TRS10, TS10) had a maximum power increase of 0.88

at q = 11 and that DPOW (TRC , TC) ≈ 1.0 for q < 50. IN addition, POW (TI) was

maximized at q = 25, where DPOW (TRI , TI) ≈ 0.38. Clearly, DPOW (TRC , TC) had

the largest positive power difference for all q. Additionally, DPOW (TRA, TA) < 0 for

all q, where q ∈ {1, 2, ..., 159}.
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3.6.5 Power Curves and Power-Curve Differences for the tests TRA, TRC, TRI , and
TRS10 for Two Heterogeneous Autoregressive Covariance Matrices

In Figure 3.4, we present plots for the reduced-dimension power curves for tests

TRA, TRC , TRI , and TRS10. We also show the power difference in the reduced-dimension

power curves from the original-dimension powers, which were POW (TA) = 0.67,

POW (TC) = 0.01, POW (TI) = 0.07, and POW (TS10) = 0.52 at p = 160. The

hypothesis tests for HPCHDS were performed for two heterogeneous autoregressive

covariance matrices. Comparing the power and power-difference plots, we see similar

trends in the power and power-difference curves. We also see that two power curves

have maximum power at or near the common sample size ni = q = 10, i = 1, 2,

which is denoted by the solid vertical red line. For the heterogeneous autoregressive

covariance matrix structure, POW (TA) had the largest power for tests calculated

with the unreduced data.

We see that POW (TRC) increased as q was reduced and peaked at q = 10

with POW (TRC) = 0.90 and that POW (TRS10) decreased as q was initially reduced

but then increased in power for q ∈ {9, 10, ..., 20}. Also, POW (TRS10) attained its

maximum of 0.75 at q = 9. Additionally, POW (TRI) peaked at 0.40 for q = 19.

Not surprisingly, we found that POW (TA) produced the largest power among the

considered no-LDR HPCHDS tests.

In the power-difference plots, DPOW (TRC , TC) attained a maximum power

increase of 0.89 at q = 10, whereas DPOW (TRA, TA) < 0 for q ∈ {1, 2, ..., 159} once

again. Also, DPOW (TRS10, TS10) yielded a maximum power increase of 0.24 over the

no-LDR power of TS10 when q = 9, and DPOW (TRI , TI) = 0.36 was the maximum

power increase which occurred at q = 20.
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Figure 3.4: Reduced-dimension power curves and power-difference curves for
POW (TRA), POW (TRC), POW (TRI), and POW (TRS10) for two heterogeneous
autoregressive covariance matrices. The reduced-data dimensions were q ∈
{1, 2, ..., 159}, the original data dimension was p = 160, and the common sample
size was ni = 10, i = 1, 2, 3.

3.6.6 Power Curves and Power-Curve Differences for the tests TRA, TRC, TRI , and
TRS10 for Two Unstructured Covariance Matrices

In Figure 3.5 we display the power curves for POW (TRA), POW (TRC), POW (TRI),

and POW (TRS10) for two unstructured population covariance matrices plotted against

q for q ∈ {1, 2, ..., 159}. The curves for POW (TRI) was hardly discernible for q >

25, and the curves for POW (TRA) and POW (TRS10) were similar. We see that

POW (TRA) = 0.27 was the maximum power and it occurred at q = 159 and

POW (TRS10) ≈ 0.14 was the maximum power that was attained at q = 159. Also,
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POW (TRC) had a small peak in power of 0.07 at q = 7. From Figure 3.5 we see that

the only practically significant increase in power was DPOW (TRI , TI) = 0.38.
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Figure 3.5: Reduced-dimension power curves and power-difference curves for
POW (TRA), POW (TCR), POW (TRI), and POW (TRS10) for two unstructured co-
variance matrices. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original
data dimension was p = 160, and the common sample size was ni = 10, i = 1, 2, 3.

3.6.7 Selection of the Reduced Dimension q for LDR

We have shown that LDR can substantially increase the power of certain tests

for HPCHDS provided an appropriate q < p is chosen. However, the practitioner

testing for HPCHDS cannot feasibly check every possible value of q.

A common approach would be to use one of many existing methods to determine

the essential rank of M̂ and, thus, an appropriate q. However, we emphasize that an
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optimal value of q that yields maximum power depends on the chosen test, the type of

population covariance matrices being tested, and the group sample sizes. Therefore,

we do not recommend using only a rank-estimation method such as those found in

Cook and Forzani (2009) and Rohde and Tsybakov (2011).

In Figures 3.1 – 3.5 we have shown the common sample size ni with a solid

vertical line. For the tests that showed improvement in power, most obtained maxi-

mum power at or near the common sample size ni = q, i = 1, 2. Though some tests

plateaued in power increase for q > ni, i = 1, 2, and have multiple optimal values

of q, we recommend reducing the data dimension to q = mini=1,2 ni when the group

sample sizes are approximately equal. This reduced data dimension criteria will not

always yield the largest possible increase in power but should supply the researcher

with a relatively good increase in power from the original-data dimension.

3.7 A Contrast of the Original-Data tests TA, TC, TI , and TS10 and the
Reduced-Data tests TRA, TRC, TRI , and TRS10 on Real Data

In this section, we examine the efficacy of our proposed LDR technique for

the conservation of separability of the covariance matrices on a real high-dimensional

dataset from Alon et al. (1999), as curated by Ramey (2016). The Alon dataset

contains gene expression levels for 40 tumor and 22 normal colon tissues of 6500 human

genes from an Affymetrix oligonucleotide array. Alon et al. (1999) recommended using

the 2000 genes with the highest minimal intensity across the 62 samples.

To test for HPCHDS for two population covariance matrices, we performed

permutation tests for each test considered in this paper to determine critical values for

all tests considered here both with and without first applying LDR. We created 1000

permutations of the Alon dataset and the post-LDR dataset by randomly assigning

the 62 samples into the two classes. Using the permutation test distributions, we then

calculated the permuted critical values for the test statistics, TA, TI , TS10, and TC
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and for the test statistics, TRA, TRC , TRI , and TRS10 at the α = 0.05 level. Table 3.2

presents the results of our permutation tests.

Table 3.2: Comparison and contrast of characteristics of the HPCHDS tests TA, TC ,
TI , and TS10 calculated with the original data and the HPCHDS tests TRA, TRC ,
TRI , and TRS10 calculated after the application of LDR to the Alon dataset.

Full-Dimension test TC TI TS10 TA
Full-Dimension Lower Crit. Val. -9.111 - -3.625 -4.237
Full-Dimension Upper Crit. Val. 8.582 3.550 3.871 4.100
Full-Dimensionla Test Value 2.872 1.982 2.619 5.046
Full-Dimension p-Value 0.534 0.448 0.356 0.035
Full-Dimension Test Decision FTR H0 FTR H0 FTR H0 RejectH0

Reduced-Dimension test TRC TRI TRS10 TRA
Reduced-Dimension Lower Crit. Val. -1.711 - -6.898 -9.669
Reduced-Dimension Upper Crit. Val. 1.643 2.551 7.051 9.523
Reduced-Dimension Test Value 1.909 6.143 6.475 5.523
Reduced-Dimension p-Value 0.012 0.001 0.125 0.786
Reduced-Dimension Test Decision Reject H0 Reject H0 FTR H0 FTR H0

After performing LDR on the original data, we reduced the data dimension from

p = 2000 to q = 22, which is the group-minimal sample size. The tests TRC and TRI

yielded empirical test scores greater than the permutation tests’ larger critical values

at the α = 0.05 level. The reduction of the p-values (PVs) for these two HPCHDS

tests was markedly substantial. More specifically, We determined that the PV for TC

calculated with the original data was PV (TC) = 0.534 and the PV for the reduced-

data test was PV (TRC) = 0.012. Also, for the full-dimensional-data, the PV for the

original-data test TI was PV (TI) = 0.448, while PV (TRI) = 0.001. Again, for the

Alon dataset, the differences [PV (TRC) − PV (TC)] and [PV (TRI) − PV (TI)] were

considerable. Also, PV (TRS10) was substantially smaller than PV (TS10) but did not

change the full-data-dimension hypothesis-test decision.

Finally, for the post-LDR test, TRA, PV (TRA) actually increased considerably

over PV (TA). As a result, the test decision for the no-LDR test TA was to reject H0,
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while the test decision for the test TRA was to fail to reject H0 at the α = 0.05 level

– thus POW (TA) > POW (TRA).

3.8 Discussion

In summary, we have derived and applied a new LDR method for two covariance

matrices to four tests for testing HPCHDS, yielding the new HPCHDS tests TRA, TRC ,

TRI , and TRS10. Using a Monte Carlo simulation, we have compared and contrasted the

powers of the four HPCHDS tests for two population covariance matrices calculated

before and after LDR was performed on the original data for all possible reduced

dimensions. Here, using Monte Carlo simulations and a real dataset, we have shown

that the HPCHDS tests proposed by Srivastava and Yanagihara (2010) and Chaipitak

and Chongcharoen (2013), when combined with our proposed LDR method for two

covariance matrices, can be considerably more powerful than the power of these tests

used without first applying LDR to the original data. Also, we have discovered that

the post-LDR test TRA can be considerably less powerful than the no-LDR test TA

calculated from the full-dimensional data.

Finally, after applying LDR, we have applied the four HPCHDS tests considered

here to a real dataset by using permutation test procedures. The application of our

LDR method for two covariance matrices appears to have yielded a considerable power

increase over the original-data power for the HPCHDS tests TRC , TRI , and TRS10.
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CHAPTER FOUR

Linear Dimension Reduction for Power Improvement of tests for Homogeneity of
Three of More Population Covariance Matrices for a High-Dimensional Scenario

ABSTRACT

We derive and apply a linear dimension reduction (LDR) technique for multi-

ple high-dimensional covariance matrices when testing the homogeneity of three or

more multivariate-normal population covariance matrices under a high-dimensional

setting. Using Monte Carlo simulations, we examine the change in power for test-

ing homogeneity of population covariance matrices under a high-dimensional setting

(HPCHDS ). That is, we examine the difference in the powers for four tests calculated

from the full-dimensional data versus the powers of the same tests after applying

LDR to the original data. We also perform permutation tests on real data and de-

termine that the use of our LDR method prior to the actual test can considerably

improve power. We conclude that a test proposed by Ahmad (2017), when calculated

with data from our LDR method, yields a remarkable power improvement for the

parameter and sample-size configurations considered here.

4.1 Introduction

In many scientific fields of study, such as biomedical imaging, magnetic reso-

nance imaging, tomography, and financial portfolio analysis, one collects high-dimensional

data that is greater than the group sample size or sample sizes. In general, increasing

the sample size decreases estimator variability, which improves statistical inference.

Alternatively, for a fixed sample size, increasing the data dimension increases esti-

mator variability, thus making statistical inference more uncertain. Also, if the data

dimension is greater than the group sample size, the corresponding sample covariance

matrix is singular and, therefore, non-invertible. Thus, one cannot perform many clas-
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sical multivariate statistical analyses, and new methods of analysis are often necessary

to analyze data in high dimensions. Here, we are concerned with testing hypotheses

of homogeneity for (k > 2) population covariance matrices in a high-dimensional

setting, that is when the sample size is less than the data dimension.

Several new approaches have been proposed for testing the equality of high-

dimensional covariance structures. These methods include hard-thresholding such as

the method defined by Chen et al. (2010), partitioning the covariance matrices into

testing the diagonals and the off-diagonals, using random projections to reduce the

data dimension, and using banded estimators and transformations, as in Peng et al.

(2016), to attempt to increase the power of their tests.

In this paper, we derive and explore the efficacy of an LDR matrix for im-

proving the powers of four tests for testing the homogeneity of (k > 2) population

covariance matrices under a high-dimensional setting (HPCHDS ). We perform Monte

Carlo power simulations to compare and contrast the powers for three current and

one proposed (k > 2)-population HPCHDS test after the application of LDR to the

original data. In particular, in our power simulations we use five covariance matrix

structures that have been used in the HPCHDS literature. We restrict the differences

in the covariance matrices to the differences in the hyper-volume as measured by the

determinant while ignoring differences in the eigenvector orientation. In addition, we

also contrast the power of the four HPCHDS tests calculated with post-LDR data

and no-LDR data on a real high-dimensional dataset using permutation tests. We find

that when our LDR technique is applied prior to calculating the tests Srivastava and

Yanagihara (2010), Ahmad (2017), and Schott (2007), one can gain a considerable

increase in the powers.

The first HPCHDS test, generally attributed to Schott (2007), was based on

a high-dimensional squared Frobenius norm (HDSFN ) for two covariance matrices
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given in Ledoit and Wolf (2004). This squared norm is

HDSFN :=
1

p
tr
(
Σ2
i

)
+

1

p
tr
(
Σ2
j

)
− 2

p
tr (ΣiΣj) , i 6= j. (4.1)

The inclusion of the divisor p in (4.1) yields several desirable properties that one

can find in Ledoit and Wolf (2004). Three HPCHDS tests motivated by the HDSFN

have been proposed by Srivastava and Yanagihara (2010), Srivastava et al. (2014),

and Ahmad (2017). In addition, Srivastava and Yanagihara (2010) and Chaipitak

and Chongcharoen (2013) have proposed tests that use ratios of the summands of the

HDSFN.

The remainder of the paper is structured as follows. In Section 4.2 we define

notation used throughout the paper, and describe consistent estimators used in the

considered HPCHDS tests. In Section 4.3 we describe four HPCHDS tests, and in

Section 4.4 we propose a new LDR method to reduce the original data dimension

before calculating (k > 2)-population HPCHDS tests. We then describe our power-

simulation design in Section 4.5. Next, we present our simulation results contrasting

the power of the HPCHDS tests using no-LDR and using post-LDR data in Section

4.6. We then contrast the efficacy of four HPCHDS tests calculated with post-LDR

data to the four tests calculated with the original data on a real high-dimensional

dataset in Section 4.7. Finally, we briefly discuss our power-contrast results from the

application of LDR in Section 4.8.

4.2 Notation

We use the notation Rm×n to represent the vector space of all m × n matrices

over the real field R. The symbol RS
n×n represents all n × n symmetric matrices of

real numbers. The symbol R>
n represents the cone of all symmetric positive-definite

matrices in Rn×n, and the notation R≥n represents all symmetric nonnegative-definite

matrices in Rn×n. In addition, C (A) represents the column space of A ∈ Rm×n and

we use SV D(A) to represent the singular value decomposition of A.
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Also, let Xi :=
[
xi1

... xi2
... · · · ... xini

]
∈ Rp×ni

, represent a data matrix randomly

sampled from the ith population so that Xi ∼ MNpn(Mi, In ⊗ Σi) with Mi ∈ Rp×n

and Σi ∈ R>
p . Therefore, xij ∼ Np(µi,Σi) are independent p-dimensional random

vectors for i = 1, 2, . . . , k, and j = 1, 2, . . . , ni. In addition, we use the horizontally

concatenated matrix X :=
[
X1

...X2
... . . .

...Xk

]
to represent the complete data matrix.

Consider the following estimators for the multivariate-normal parameters µi

and Σi, i = 1, 2, . . . , k, namely, the ith sample mean

xi :=
1

ni
Xij

and the sample covariance matrix

Si :=
1

ni − 1
Xi

(
Ini
− 1

ni
Jni

)
XT
i ,

where Jni
∈ Rni×ni

is a matrix of ones and j ∈ Rni×1 is a vector of ones. Finally, let

Vi := (ni − 1)Si

be the Gram matrix of (4.2) and

S :=

k∑
i=1

Vi

k∑
i=1

(ni − 1)

, i = 1, . . . , k,

be the pooled sample covariance matrix.

4.3 Four tests for Homogeneity of (k > 2) Covariance Matrices Under a
High-Dimensional Setting

We now describe four (k > 2)-population HPCHDS tests. Three of these tests

have been proposed by Schott (2007), Srivastava and Yanagihara (2010), and Ahmad

(2017). Furthermore, we extend the test of Chaipitak and Chongcharoen (2013) from

a two-population HPCHDS test to a (k > 2)-population HPCHDS test. We describe

these (k > 2)-population HPCHDS tests in the following four subsections.
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4.3.1 Schott (2007)

Schott (2007) has proposed an HPCHDS test based on the HDSFN in (4.1).

The test statistic from Schott (2007) is

QSc :=
k∑
i>j

â2i + â2j − 2
p
tr (SiSj)√

V̂ar(qSc)

,

where â2m is defined in (C.3), m = 1, 2, . . . , k, qSc := â2i + â2j − 2
p
tr (SiSj) estimates

the sum of squared elements of the HDSFN, and

V̂ar(qSc) = 4â22

{
k∑
i<j

(
p

(ni − 1)
+

p

(nj − 1)

)
+ (k − 1) (k − 2)

k∑
i=1

(
p

(ni − 1)

)2
}2

,

where â2 is defined in (C.4). We refer to the HPCHDS test performed using the test

statistic QSc by TSc. Schott (2007) has shown that V̂ar(qSc)
P−→ Var (qSc), assuming

H0 is true. Schott (2007) has also shown that QSc ∼̇ N(0, 1) under H0 as (p, ni) →

∞, i = 1, 2, ..., k.

4.3.2 Srivastava and Yanagihara (2010)

Extrapolating from their two-population HPCHDS test, Srivastava and Yanagi-

hara (2010) have extended their test to (k > 2)-population covariance matrices. Their

test statistic is

QS10 :=
k∑
i=1

(
γ̂i − γ̂

)2
ξ̂2i

,

where

γ̂i :=
â2i
â21i
, (4.2)

â1i, is defined in (C.1) , â2i is defined in (C.3), i = 1, 2, . . . , k,

γ̂ :=

k∑
i=1

γ̂i/ξ̂
2
i

k∑
i=1

1/ξ̂2i

is a pooled estimator for the right-hand side of (4.2),

ξ̂2i :=
4

(ni − 1)2

{
â22
â41

+
2(ni − 1)

p

(
â32
â61
− 2â2â3

â51
+
â4
â41

)}
,
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where â1 is defined in (C.2), â2 is defined in (C.4), â3 is defined as (C.5), and â4 is

defined as (C.6). We refer to the HPCHDS test conducted with the test statistic QS10

by TS10. Assuming H0 holds, they have also shown that γ̂i
P−→ tr(Σ2

i )
tr(Σi)

2 , ξ̂2i
P−→ Var

(
γ̂i − γ̂

)
and QS10 ∼̇ χ2

k−1 as (p, ni) → ∞, i = 1, 2, ..., k. The power-contrast simulations in

Srivastava and Yanagihara (2010) have compared the powers of the HPCHDS tests

TSc and TS7 to TS10 for only one population covariance-matrix structure.

4.3.3 Chaipitak-Barnard (2018)

Next, we utilize the pooled estimator â2, given in (C.4), to extend the HPCHDS

test introduced by Chaipitak and Chongcharoen (2013) from the two-covariance-

matrix case to the (k > 2)-covariance-matrix case. Our proposed (k > 2)-covariance-

matrix HPCHDS test statistic is

QCB :=
k∑
i=1

â2i/â2 − 1√
̂Var(qCB)

,

where â2i is defined in (C.3), i = 1, 2, . . . , k, â2 is given in (C.4), qCB :=
∑k

i=1 â2i/â2 − 1,

and

̂Var(qCB) = 4

{
2â∗4
pâ22

k∑
i=1

1

ni − 1
+

k∑
i=1

1

(ni − 1)2

}
,

where â∗4 is defined in (C.7). We refer to the HPCHDS test conducted with the test

statistic QCB by TCB.

4.3.4 Ahmad (2017)

Finally, Ahmad (2017) has extended his HPCHDS test from k = 2 to k > 2

covariance matrices. His test statistic is

QA :=

(k − 1)
k∑
i=1

Ei − 2
k∑
i 6=j

Eij√
V̂ar(qA)

,
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where Eij := tr (SiSj) , 1 ≤ i < j ≤ k. The estimators Ei, qA, and V̂ar(qA) are defined

as

Ei :=
(ni − 1)

ni (ni − 2) (ni − 3)

{
(ni − 1) (ni − 2) tr

(
S2
i

)
+
[
tr (Si)

]2
− ni

(ni − 1)

ni∑
j=1

(xij − xi)
T (xij − xi) (xij − xi)

T (xij − xi)

}
,

qA := (k − 1)
k∑
i=1

Ei − 2
k∑
i 6=j

Eij,

and

V̂ar(qA) = 4
[
tr
(
S2
) ]2

(k − 1)2
k∑
i=1

1

n2
i

+
k∑
i=1

k∑
j=1

i<j

2

ninj

 .

We refer to the HPCHDS test performed using the test statistic QA by TA.

The test qA estimates the sums of squared elements of [Σj−Σi]. Ahmad (2017)

has also proven that V̂ar(qA)
P−→ Var (qA), assuming H0 is true. Additionally, Ahmad

(2017) has shown that for the (k > 2)-HPCHDS case, we have QA ∼̇ N(0, 1) as

(p, ni)→∞, i = 1, 2, 3, provided H0 holds. However, Ahmad (2017) has not contrasted

the power of TA with any other competing HPCHDS tests.

4.4 Linear Dimension Reduction for Power Improvement for Tests for the
Homogeneity of (k > 2) Covariance Matrices in a High-Dimensional Setting

Below, we propose an LDR method and prove a separability theorem concerning

homogeneity for (k > 2) population covariance matrices. Then, using the singular

value decomposition (SVD), we derive an LDR matrix for the sample data that

allows us to retain much of the distinguishing information in the (k − 1) differences

[Sk − S1], [Sk−1 − S1], . . . , [S2 − S1]. Thus, we propose employing an LDR matrix

derived specifically for k sample covariance matrices to increase the power of (k > 2)-

population HPCHDS tests. Our new LDR matrix for (k > 2) population covariance

matrices is based on a property of a linear sufficient matrix for (k > 2) population

covariance matrices proposed by Peters et al. (1978).
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For the proof of the theorem, we need the symmetrized Bregman log-determinant

divergence among k positive-definite matrices, which is

D(Σ1,Σ2, . . . ,Σk) :=
∑
j 6=i

D(Σi,Σj), (4.3)

where 1 ≤ i, j ≤ k , and

D(Σi,Σj) :=
[
tr
(
ΣiΣ

−1
j

)]
− log

[
det
(
ΣiΣ

−1
j

)]
− p, (4.4)

with i 6= j.

We now prove a theorem demonstrating that under certain conditions, our pro-

posed parameter-based LDR matrix for (k > 2) full-rank population covariance ma-

trices preserves the full-dimensional separability measure (4.3) for some reduced di-

mension r, where 1 ≤ r < p.

Theorem. Suppose we have k (k > 2) multivariate normal populations with covari-

ance matrices Σi ∈ R>
p , i = 1, 2, . . . , k, and let

H :=
[
Σ2 −Σ1

...Σ3 −Σ1
... . . .

...Σk −Σ1

]
. (4.5)

Next, let SV D(H) = FΛG ∈ Rp×(k−1)p, where F ∈ Rp×r and rank(F) = rank(H).

Also, let the symmetrized Bregman log-determinant divergence D(Σ1,Σ2, . . . ,Σk) be

defined in (4.3) and (4.4). Then,

D(Σ1,Σ2, . . . ,Σk) = D(F+Σ1F
+T ,F+Σ2F

+T , . . . ,F+ΣkF
+T ).

Proof. The proof follows from Lemma C.2.2 in Appendix C.

Next, let

Ĥ :=
[
S2 − S1

...S3 − S1
... . . .

...Sk − S1

]
be an estimator of H, where H is given in (4.5). Because rank(Ĥ) 6= rank(H)

and rank(Ĥ) is unknown, one cannot directly apply the above theorem to obtain
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an operational LDR matrix F+ ∈ Rp×q that preserves the full-feature covariance

matrix separability measure D(Σ1,Σ2, . . . ,Σk). Moreover, we often wish to obtain

a very low dimensional representation of dimension q for the original data, where

1 ≤ q � rank(Ĥ) ≤ rank(H). That is, we desire to construct an LDR matrix that

yields low-dimensional data from the original data that preserves almost all of the orig-

inal p-dimensional information in the data concerning the differences [Sk−S1], [Sk−1−

S1], . . . , [S2 − S1].

First, let SV D(Ĥ) = UΛVT , let U(q) denote the concatenated q eigenvectors

of Ĥ corresponding to the q largest singular values, and let F̂p×q := U(q). Then[
F̂p×q

]+ ∈ Rq×p is an LDR matrix for reducing the feature dimension from p to q,

where 1 ≤ q < rank(Ĥ), while preserving most of the separability information in the

estimated covariance matrices Si ∈ R≥p , i = 1, 2, . . . , k.

Mapping the high-dimensional data matrix X onto C
(
[F̂

(q)
p×q]

+
)
could enhance

our ability to detect differences in the covariance matrices Si ∈ R≥p and, thus, dif-

ferences in Σi ∈ R>
p , i = 1, 2, . . . , k, because of the decreased number of param-

eters that must be estimated. However, the LDR matrices
[
F̂p×q

]+ ∈ Rq×p and[
F̂p×q

]T ∈ Rq×p span the same subspace. Therefore, we use the computationally

simpler matrix
[
F̂p×q

]T ∈ Rq×p as our LDR matrix to reduce the data from p to q

dimensions.

4.5 Monte Carlo Power Simulation Design

4.5.1 Simulation Covariance Structures

The covariance matrix structures in our Monte Carlo simulations were selected

from the HPCHDS literature. We have compared test powers across five covariance

matrix structures. The group sample sizes used in these simulations were n1 = n2 =

n3.
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First, we use the constant-times-identity covariance-matrix structure. For our

simulation, the parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = Σ3 = Ip

and

HA : Σ1 = Σ3 = Ip and Σ2 = σ2Ip,

respectively.

Second, we use the compound-symmetric covariance matrix class for our simu-

lation. The parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = Σ3 = σ2
1Ip + σ2

2Jp

and

HA : Σ1 = Σ3 = σ2
1Ip + σ2

2Jp and Σ2 = σ2
1AIp + σ2

2AJp,

respectively, where Jp ∈ Rp×p is a matrix of ones.

Third, we use the autoregressive covariance-matrix structure for our simulation.

The parameters for the null and alternative hypotheses are

H0 : Σ1 = Σ2 = Σ3 = U0

and

HA : Σ1 = Σ3 = U0 and Σ2 = U1,

where U0 = σij = 0.1|i−j|, U1 = σij = 0.3|i−j|, 1 ≤ i, j ≤ k.

Fourth, we use the heterogeneous autoregressive covariance-matrix structure.

For our simulation, we use the heterogeneous autoregressive covariance-matrix struc-

tures similar to those in Srivastava et al. (2014). These are created as follows. First,

let σl := 1 + (−1)l+1Ql/2 where, Ql ∼ Unif(0, 1) and l = 1, 2, . . . , p. The simulation

parameters are

H0 : Σ1 = Σ2 = Σ3 = σiσj0.1
|i−j|

1
10
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and

HA : Σ1 = Σ3 = σiσj0.1
|i−j|

1
10 and Σ2 = σiσj0.3

|i−j|
1
10 ,

respectively, where 1 ≤ i, j ≤ k.

Last, we examine an unstructured covariance-matrix structure, which we model

as

U2 = σij = σji :=


(−1)i+j

(
0.10
j

)
, i < j

1, i = j

and

U3 = σij = σji :=


(−1)i+j

(
0.05
j

)
, i < j

1, i = j.

Then, the simulation covariance matrices are

H0 : Σ1 = Σ2 = Σ3 = U2

and

HA : Σ1 = Σ3 = U2 and Σ2 = U3.

4.5.2 Monte Carlo Power Simulation Description

We now describe the simulation design used to compare the powers for the

three-population no-LDR HPCHDS tests TSc, TS10, TCB, and TA and the post-LDR

HPCHDS tests TScR, TS10R, TCBR, and TAR. Our goal is to discover evidence that

our proposed LDR method improves the power of these four tests. Using R, we gener-

ated 10,000 independent matrix-normal sample-data matrices from MNp(0, Ini
⊗Σi)

populations, where Σi ∈ R>
p , i = 1, 2, 3, are the covariance matrices under HA.

We then determined SV D(M̂(j)) to extract the matrix
[
F̂

(j)
p×q
]T ∈ Rq×p. Next, for

N :=
∑3

i=1 ni, we reduced the dimensions of the sample data by mapping the full-

dimensional data matrix X(j) ∈ Rp×N onto C([̂F
(j)

p×q]
T ) so that the jth reduced-data
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set is Y(j) =
[
F̂

(j)
p×q
]T

X(j), where q is the targeted reduced-data dimension. We then

calculated T(∗R),j from each simulated reduced data matrix Y(j) and calculated the

simulated critical values (SCVs) for TAR, TCBR, and TScR by

SCV 1−α/2 = inf
{
x ∈ R : 1− α/2 ≤ F̂T(∗R)

(x)
}

and

SCV α/2 = sup
{
x ∈ R : α/2 ≥ F̂T(∗R)

(x)
}
,

where F̂T(∗R)
(x) is the empirical distribution function of T(∗R) with α = 0.05. For TS10R

the SCV was determined with

SCV 1−α = inf
{
x ∈ R : 1− α ≤ F̂T(S10R)

(x)
}
.

We used a similar approach to determine SCVs for the no-LDR tests TSc, TS10, TCB,

and TA except using the unreduced datasets X(j).

Then, for each considered reduced dimension q, we generated 10,000 indepen-

dent multivariate normal samples from Np(0,Σi) distributions for i = 1, 2, . . . , k,

where Σi ∈ R>
p is the ith population covariance matrix under the HA. Next, we re-

duced the original-data dimension by mapping the jth complete dataset X(j) onto

C
(
[̂F

(j)

p×q]
T

)
. That is, we applied the linear transformation Y(j) =

[
F̂

(j)
p×q
]T

X(j) and

then calculated the tests T(∗R),j from the reduced data-matrix Y(j) for each j, where

1 ≤ j ≤ 10, 000. We then estimated the power by

POW (T(∗R)) :=

10,000∑
j=1

I[T(∗R),j ∈ RR(T(∗R))]

10, 000
,

where RR(T(∗R)) is the rejection region for the test T(∗R) and I[·] is the indicator

function. We also calculated POW (TSc), POW (TS10), POW (TCB), and POW (TA)

in a similar manner, but using the unreduced datasets X(j).

We determined POW (TScR), POW (TS10R), POW (TCBR), and POW (TAR) and

POW (TSc), POW (TS10), POW (TCB), and POW (TA) for the common sample sizes
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of ni ∈ 5, 10, 15, 20, i = 1, 2, 3, and complete-data dimensions of p ∈ 20, 40, 80, 160.

These power values are presented in Table 4.1. Also, power curve simulation re-

sults, plotted versus q, are displayed for POW (TAR), POW (TCBR), POW (TScR),

and POW (TS10R) using post-LDR data. In addition, power-difference curves, plotted

versus q, are shown in Figures 4.1–4.5 for ni = 10, i = 1, 2, 3, and p = 160 for each

q, where q ∈ {1, 2, . . . , 159}. We performed the power simulations in parallel using R

and the covTestR package.

4.6 Monte Carlo Simulation Power-Contrast Results

In this section, we present our simulated power-contrast results. Let the nota-

tion POW (T(∗)) represent the power of the test T(∗), and let DPOW
(
T(∗R), T(∗)

)
:=[

POW (T(∗R))−POW (T(∗))
]
. We provide a table of power values and we provide five

figures displaying the curves for POW (T∗) and power-difference curves forDPOW
(
T(∗R), T(∗)

)
.

The power and power difference are are reported for each HPCHDS test at each q

such that q ∈ {1, 2, . . . , 159}. We fit all power curves using generalized linear models

with b-splines.

4.6.1 Power-Simulation Summary Table

In Table 4.1 we present the post-LDR values for POW (TAR), POW (TCBR),

POW (TScR), and POW (TS10R) calculated with post-LDR data. We also report POW (TA),

POW (TCB), POW (TSc), and POW (TS10) for the same HPCHDS tests calculated

with the unreduced data. The powers were reported for the scenarios with p ∈

{80, 160}, ni ∈ {5, 10}, i = 1, 2, 3, and for q ∈ {5, 10, 15, 20} with ni = 5, i = 1, 2, 3

and q ∈ {10, 20, 30, 40} with ni = 10, i = 1, 2, 3.

The overwhelming result in the table is that our proposed LDR method, applied

to the original data, can yield a surprisingly large increase in the post-LDR powers

POW (TAR), POW (TScR), and POW (TS10R) compared to POW (TA), POW (TSc),

and POW (TS10) even though one may not map to the optimal q for a particular
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sample size or sizes. As the table shows, the application of LDR to the original

data can cause a decrease in POW (TScR) as compared to POW (TSc). Hence, the

application of LDR to the original high-dimensional data does not guarantee increased

power.

Table 4.1: A Table Contrasting POW (TAR), POW (TCBR), POW (TScR), and
POW (TS10R) with POW (TA), POW (TCB), POW (TSc), and POW (TS10) for
Testing HPCHDS for three autoregressive population covariance matrices with

parameters Σ1 = Σ3 = 0.1|i−j| and Σ2 = 0.3|i−j|.

p n1 = n2 = n3 q POW (TAR) POW (TCBR) POW (TScR) POW (TS10R)
80 5 5 0.89 0.08 0.01 0.84

10 0.99 0.34 0.97 0.90
15 0.63 0.02 1.00 0.09
20 0.58 0.03 1.00 0.15

10 10 1.00 0.00 0.00 0.92
20 1.00 0.15 0.01 0.58
30 0.97 0.01 1.00 0.01
40 0.89 0.01 1.00 0.01

160 5 5 0.76 0.36 0.00 0.91
10 1.00 0.45 1.00 0.08
15 0.74 0.01 1.00 0.16
20 0.70 0.01 1.00 0.24

10 10 1.00 0.00 0.00 0.99
20 1.00 0.63 0.12 0.99
30 1.00 0.05 1.00 0.11
40 0.99 0.00 1.00 0.02

p n1 = n2 = n3 p POW (TA) POW (TCB) POW (TSc) POW (TS10)
80 5 80 0.08 0.07 0.03 0.05

10 80 0.13 0.09 0.02 0.04
160 5 160 0.13 0.09 0.02 0.04

10 160 0.13 0.12 0.01 0.06

4.6.2 Power Curves and Power-Difference Curves for the TAR, TCBR, TScR, and
TS10R Tests for Three Constant-Times-Identity Covariance Structures

In Figure 4.1, we present plots for the post-LDR power curves for POW (TAR),

POW (TCBR), POW (TScR), and POW (TS10R) and the power-difference curves de-

scribed in Subsection 4.6.1. The original-dimension powers were POW (TA) = 0.78,
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POW (TCB) = 0.71, POW (TSc) = 0.01, and POW (TS10) = 0.01. The HPCHDS

hypothesis tests in this section were performed for three constant-times-identity co-

variance matrices with parameters Σ1 = Σ3 = Ip and Σ2 = (1.5)Ip.
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Figure 4.1: Reduced-dimension curves and power-difference curves for POW(TAR),
POW(TCBR), POW(TScR), and POW(TS10R) with three constant-times-identity co-
variance matrices with parameters Σ1 = Σ3 = Ip and Σ2 = (1.5)Ip. The reduced-data
dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160, and the
common sample size was ni = 10, i = 1, 2, 3.

Comparing the power and power-difference plots, we had similar trends in the

two sets of curves. We also observed that the powers POW (TAR), POW (TCBR),

POW (TScR), and POW (TS10R) had curves with maximums between the individual

group sample size ni, i = 1, 2, 3, denoted by the solid vertical line and the sum of

the sample sizes denoted by the dotted vertical line. The curves POW (TScR) and
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POW (TS10R) displayed maximum powers near 1.0. Also, TCBR displayed a maxi-

mum power of POW (TCBR) ≈ 0.70 at q = 155. Furthermore, POW (TAR) = 1.0

for q, where q ∈ {8, 9, . . . , 105}. For the power-difference curves, the maximum

DPOW (TAR, TA) value was 0.24 for q, where q ∈ {6, 7, . . . , 100}. Also, the maxi-

mum DPOW (TS10R, TS10) value occurred at q = 12 with a maximum power increase

near 0.99, and we observed that DPOW (TScR, TSc) attained an increase of 0.99 for

q, where q ∈ {25, 26, . . . , 112}. However, DPOW (TCBR, TCB) was negative for every

considered value of q.

4.6.3 Power Curves and Power-Difference Curves for the TAR, TCBR, TScR, and
TS10R Tests for Three Compound-Symmetric Covariance Structures

In Figure 4.2, we present plots for POW (TAR), POW (TCBR), POW(TScR), and

POW (TS10R) tests and DPOW (TS10R, TS10), DPOW (TAR, TA), DPOW (TScR, TSc),

and DPOW (TCBR, TCB). The full-dimension powers at p = 160 were POW (TA) =

0.26, POW (TCB) = 0.19, POW (TSc) = 0.1, and POW (TS10) = 0.03. The HPCHDS

hypothesis tests in this section were performed for three compound-symmetric covari-

ance matrices with parameters Σ1 = Σ3 = 0.99Ip+0.01Jp and Σ2 = 0.95Ip+0.05Jp.

We see that POW (TScR) and POW (TAR) produced similar power curves that

increased as the reduced-data dimension decreased. Also, POW (TScR) = 1.0 for q ∈

{25, 26, . . . , 100} but decreased rapidly for q < 25. Additionally, POW (TS10R) = 1.0

for q ∈ {10, 11, . . . , 18}. The test TS10R yielded a maximum power increase at q = 18

with DPOW (TS10R, TS10) = 0.96 while DPOW (TScR, TSc) 0.99 was the maximum

power increase at q, where q ∈ {31, 32, . . . , 100}. Also, DPOW (TAR, TA) = 0.75 was

the maximum which was at q = 50. Also, DPOW (TCBR, TCB) peaked at q = 18 with

a value of 0.35. Thus, all tests considered here yielded an increase in power for some

q because of the application of LDR for multiple covariance matrices to the original

data.
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Figure 4.2: Reduced-dimension curves and power-difference curves for POW(TAR),
POW(TCBR), POW(TScR), and POW(TS10R) with three compound symmetric covari-
ance matrices with parameters Σ1 = Σ3 = 0.99Ip+0.01Jp and Σ2 = 0.95Ip+0.05Jp.
The reduced-data dimensions were q ∈ {1, 2, ..., 159}, p = 160, and the common
sample size was ni = 10, i = 1, 2, 3.

4.6.4 Power Curves and Power-Difference Curves for the TAR, TCBR, TScR, and
TS10R Tests for Three Autoregressive Covariance Structures

In Figure 4.3, we present plots for the reduced-dimension power curves for

TAR, TCBR, TScR, and TS10R and for the difference in the reduced-dimension power

curves from the original-dimension powers. The reduced-dimension powers and the

power-differences were plotted versus each positive integer q for q ∈ {1, 2, ..., 159}.

The original-dimension powers for p = 160 were POW (TA) = 0.13, POW (TCB) =

0.12, POW (TSc) = 0.01, and POW (TS10) = 0.06. The covariance matrices for which
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the power comparisons in this section were performed were for three autoregressive

covariance matrices with parameters Σ1 = Σ3 = 0.1|i−j| and Σ2 = 0.3|i−j|. In the

power-curve plot, POW (TScR) = 1.0 was attained at q = 100,
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Figure 4.3: Reduced-dimension curves and power-difference curves for POW(TAR),
POW(TCBR), POW(TScR), and POW(TS10R) with three autoregressive covariance
matrices with parameters Σ1 = Σ3 = 0.1|i−j| and Σ2 = 0.3|i−j|. The reduced-data
dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160, and the
common sample size was ni = 10, i = 1, 2, 3.

and POW (TAR) = 1.0 occurred at q = 45. Also, POW (TScR) decreased rapidly as

q decreased for q < 25 and POW (TScR) = 0.0 at q = 20. In addition, POW (TS10R)

had a sharp peak at POW (TS10R) = 1.0 for q = 15.

In the power-difference plot, DPOW (TAR, TA) = 0.87 was the maximum in-

crease, which occurred at q = 8, and DPOW (TScR, TSc) ≈ 1.0 was attained for q
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where q ∈ {30, 31, . . . , 120}. Also, DPOW (TCBR, TCB) ≈ 0.50 was the maximum

which occurred at q = 18. Thus, DPOW (TAR, TA) > 0, DPOW (TCBR, TCB) > 0,

and DPOW (TS10R, TS10) > 0, which implied a power increase when LDR was first

applied to the original data.

4.6.5 Power Curves and Power-Difference Curves for the TAR, TCBR, TScR, and
TS10R Tests for Three Heterogeneous Autoregressive Covariance Structures

In Figure 4.4, we display curves for POW (TAR), POW (TCBR), POW (TScR),

and POW (TS10R) plotted versus q where q ∈ {1, 2, . . . , 159}, along with the cor-

responding power-difference curves. The full-dimension powers at p = 160 were

POW (TA) = 0.61, POW (TCB) = 0.49, POW (TSc) = 0.01, and POW (TS10) = 0.67.

The hypothesis tests for HPCHDS were performed for three heterogeneous autore-

gressive covariance matrices at p = 160. The power plots reveal that POW (TAR) and

POW (TS10R) yielded power maximums at or near the common sample size denoted

by the solid vertical line.

Here, POW (TAR) = 1.0 occurred at q = 20, and POW (TScR) = 0.62 was the

maximum which was attained at q = 35. Also, POW (TCBR) generally decreased as

q was reduced. In addition, POW (TS10R) peaked at 0.95 at q = 10. In the power-

difference plot, DPOW (TAR, TA) peaked at q = 12 with a value near 0.39. The

curve DPOW (TS10R) yielded a maximum power increase of 0.28 at q = 10, while

DPOW (TScR) peaked at q = 35 with a value of 0.62. Last, DPOW (TCBR) was

negative for all q.
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Figure 4.4: Reduced-dimension curves and power-difference curves for POW(TAR),
POW (TScR), POW(TCBR)and pow(TS10R) with three heterogeneous autoregressive
covariance matrices. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original
data dimension was p = 160, and the common sample size was ni = 10, i = 1, 2, 3.

4.6.6 Power Curves and Power-Difference Curves for the TAR, TCBR, TScR, and
TS10R Tests for Three Unstructured Covariance Structures

In Figure 4.5, we present plots for POW (TAR), POW (TCBR), POW (TScR),

and POW (TS10R) and plots for the difference in the post-LDR power curves from the

original-dimension power curves plotted versus q. For p = 160, POW (TA) = 0.67,

POW (TCB) = 0.21, POW (TSc) = 0.01, and POW (TS10) = 0.77. The HPCHDS tests

were performed for three unstructured population covariance matrices.
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Figure 4.5: Reduced-dimension curves and power-difference curves for POW(TAR),
POW(TCBR), POW(TScR), and POW(TS10R) with three unstructured covariance ma-
trices. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original data dimen-
sion was p = 160, and the common sample size was ni = 10, i = 1, 2, 3.

In the power curve plot, we see that POW (TAR) and POW (TCBR) yielded

essentially parallel power curves with little or no increase in power as q was decreased.

The maximums for these two tests were POW (TAR) = 0.75 and POW (TCBR) = 0.24.

Also, POW (TSc) = 0.29 was the maximum at q = 1. Additionally, POW (TS10R)

decreased monotonically in power as the q was decreased and attained a maximum

power of 0.76 at q = 159.

In the power-difference plot, DPOW (TAR, TA) yielded a maximum power in-

crease at q = 5 with a value of 0.08. Also, DPOW (TAR, TA) had almost no change
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for q, q ∈ {1, 2, . . . , 159}, and DPOW (TScR, TSc) = 0.25 was the maximum power

increase which occurred at q = 1. Lastly, The curve DPOW (TS10R,TS10
) was negative

for all considered q.

4.6.7 Selection of the Reduced Dimension q

We have shown that our proposed sample LDR method for three covariance ma-

trices can significantly improve POW (TAR), POW (TCBR), and POW (TScR). How-

ever, the practitioner cannot feasibly check every possible power value for all q to

determine the optimal reduced dimension. In Figures 4.1 – 4.5, we have displayed the

common sample size ni with a solid vertical line and the total sample size
∑k

i=1 ni

with a dashed line. For the tests that showed improvement in power, the HPCHDS

tests considered here usually attained maximum power for q between the individual

group sample size and the sum of the common sample size. Even though some tests

plateaued in power increase before the common sample size, we recommend reducing

to a dimension q, where mini ni ≤ q ≤
∑k

i=1 ni, i = 1, 2, . . . , k, when the class sample

sizes are approximately equal. For very small sample sizes, we found evidence that

one should choose q, where
∑k

i=1 ni. Using these guidelines for determining q will not

necessarily yield the largest possible power increase. However, one should generally

obtain a power increase, provided one does not use a test when the use of LDR is dele-

terious or with a spiked power curve. More work should be performed on determining

a reduced dimension q for the case where the sample sizes are markedly different.

We emphasize that the optimal dimension q that yields maximum power de-

pends on the test employed, the population covariance structure being tested, and

the group sample sizes. For these reasons, we do not recommend using only a rank

estimation method, such as those found in Luo and Li (2016), Cook and Forzani

(2009), and Rohde and Tsybakov (2011).
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4.7 A Contrast of the Tests TA, TCB, TSc, and TS10 and TAR, TCBR, TScR, and
TS10R on a Real Dataset

In this section we contrast POW (TA) with POW (TAR), POW (TCB) with POW (TCBR),

POW (TSc) with POW (TScR), and POW (TS10) with POW (TS10R) on a real-world

data from Khan et al. (2001) as curated by Ramey (2016). The Khan dataset con-

tains 63 sample observations with p = 2, 308 features and k = 4 groups. We performed

permutation tests to determine appropriate empirical critical values and then com-

pared the results of four HPCHDS tests, calculated with and without the application

of our LDR matrix. Using our LDR method on the original data, we reduced the data

dimension from p = 2000 to q = 22, which is the group-minimal sample size.

To accomplish this HPCHDS test characteristic contrast, we created 1,000 per-

mutations of the Khan dataset by randomly assigning the 63 observation vectors into

one of the four classes as if the data vectors were exchangeable. We then reduced the

original feature dimension of the datasets to the common sample size and obtained

the observed tests for each of these 1,000 permuted datasets. Finally, we compared the

empirical test scores from the reduced and original datasets with the corresponding

empirical critical values calculated from the respective permuted-test distributions.

Table 4.2 presents the HPCHDS test comparison results of the permutation

tests. in Table 4.2 we see that the reduction of the p-values (PVs) of the three

HPCHDS tests TSC , TS10, and TA was substantial. The PV for the test TSC calculated

with the original data was PV (TSC) = 0.456, while the PV for the reduced-data test

TSCR was PV (TRC) = 0.041. Also, for the full-dimensional-data, the PV for the

original-data test TS10 was PV (TS10) = 0.432, while the PV for the reduced-data

test TS10R was PV (TS10R) = 0.013. In addition, for the full-dimensional-data, the PV

for the original-data test TA was PV (TA) = 0.325, while for the reduced-data test

PV (TAR) = 0.032.
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Thus, our real-data LDR application demonstrated that for certain HPCHDS

tests and with an appropriate reduced dimension q, one can attain a considerable

power increase. However, a power decrease can occur if an inappropriate HPCHDS

test is combined with our LDR method. As an example, the post-LDR test, TCB,

PV (TCBR) actually increased considerably over PV (TCB). As a result, the test deci-

sion for the no-LDR test TCB was to reject H0, while the test decision for TCBR was

to fail to reject H0 at the α = 0.05 level.

Table 4.2: A table contrasting the characteristics of the full-dimensional tests TA,
TCB, TSc, and TS10 with the reduced-dimension tests TAR, TCBR, TScR, and TS10R for

HPCHDS when applied to the Alon dataset.

Original-Dimension test TCB TSc TS10 TA
Full-Dim. Lower Crit. Val. -2.188 -3.501 - -2.001
Full-Dim. Upper Crit. Val. 3.240 3.675 3.611 1.418
Full-Dim. Empirical test 2.661 1.359 1.184 1.093
Full-Dim. p-Value 0.561 0.456 0.432 0.325
Full-Dim. Test Decision FTR H0 FTR H0 FTR H0 FTR H0

Reduced-Dimension test TCBR TScR TS10R TAR
Reduced-Dim. Lower Crit. Val. -10.179 -2.894 - -3.255
Reduced-Dim. Upper Crit. Val. 9.828 3.385 2.369 3.265
Reduced-Dim. Empirical test 2.583 3.789 3.261 3.735
Reduced-Dim. p-Value 0.785 0.041 0.013 0.032
Reduced-Dim. Test Decision FTR H0 Reject H0 Reject H0 Reject H0

4.8 Discussion

In summary, we have derived and applied a new LDR method for preserving

the information for detecting the differences among k > 2 covariance matrices. We

have used our proposed LDR method to reduce the original-data dimension and have

then considered the change in powers for POW (TAR), POW (TScR), POW (TS10R),

and POW (TCBR). Using Monte Carlo simulations, we have contrasted the powers of

these (k > 2)-population HPCHDS tests calculated with post-LDR data and have

determined that TAR and TScR yielded superior power in most cases examined here for
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various parameter and sample size considerations. Finally, we have demonstrated the

efficacy of the HPCHDS tests TAR, TScR, andTS10R, calculated with post-LDR data, on

a real dataset using permutation tests. We determined that POW (TAR)� POW (TA)

and POW (TScR)� POW (TSc) because of the reduction in the number of parameters

required to be estimated.
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APPENDIX A

Chapter Two Appendix

A.1 Definitions of Statistics

The following estimators are incorporated into several of the HPCHDS test

statistics considered in Chapter 2. First,

â1i :=
1

p(ni − 1)
trVi

P−→ trΣi

p
(A.1)

and

â1 :=
1

pN
trV

P−→ trΣ

p

denote estimators of the average of the eigenvalues of Σi, i = 1, 2, and Σ ∈ R>
p ,

respectively, where Σ is the pooled population covariance matrix. Next,

â2i :=
1

p (ni − 2) (ni + 1)

{
trV2

i −
1

ni − 1
(trVi)

2

}
P−→ trΣ2

i

p
(A.2)

and

â2 :=
1

p (n− 1) (n+ 2)

{
trV2 − 1

n
(trV)2

}
P−→ trΣ2

p
. (A.3)

Also, for i = 1, 2 and n := N − 2, we have that

â3 :=
1

n (n2 + 3n+ 4)

{
1

p
trV3 − 3n (n+ 1) pâ2â1 − np2â31

}
(A.4)

and

â4 :=
1

n (n3 + 6n2 + 21n+ 18)

(
1

p
trV4−2pn

(
2n2 + 6n+ 9

)
â1− (A.5)

2p2n (3n+ 2) â21â2−pn
(
2n2 + 5n+ 7

)
â22 − np3â41

)
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denote the consistent estimators for trΣ3/p and trΣ4/p, respectively. Last, from

Chaipitak and Chongcharoen (2013), we have

â∗4 :=
(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)

n5(n2 + n+ 2)p
× (A.6)(

trS4 − 4

n
trS2 trS− 2n2 + 3n− 6

n (n2 + n+ 2)

(
trS2

)2
+

2 (5n+ 6)

n (n2 + n+ 2)
trS2 (trS)2 − 5n+ 6

n2 (n2 + n+ 2)
(trS)4

)
.

A.2 Simulated Significance Levels for Suggested Asymptotic Critical Values and
Power Contrast Tables

For the significance-level simulations, we generated 10,000 independent multi-

variate normal datasets fromNp(0,Σi), where Σi, i = 1, 2, are the covariance matrices

of interest under H0. The test statistics TA, TSc, TS10, TC , and TS14 were each calcu-

lated from the datasets for each iteration assuming H0 was true. We calculated the

simulated significance level using

SSL :=

∑10,000
j=1 I[T(∗),j ∈ RR(T(∗))]

10, 000
,

where RR(T(∗)) is the rejection region for the test statistic T(∗), T(∗),j is the test-

statistic value corresponding to the jth simulated dataset, and I[∗] is the indicator

function.

Tables A.1–A.5 display the simulated significance levels of the test statistics TA,

TC , TSc, TS10, and TS14 using the suggested asymptotic critical values associated with

the significance level α = 0.05. The tables show that the simulated significance levels

were often considerably different from the assumed asymptotic significance level of

α = 0.05. Because of the relatively poor accuracy of the asymptotic significance levels

for the considered sample sizes, we use simulated critical values for each HPCHDS

test statistic for all power-comparison simulations.
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Table A.1: Simulated actual significance levels of the tests TA, TC , TSc, TS10, and
TS14 for HPCHDS for two constant-times-identity covariance-matrix structures with

parameters Σ1 = Ip and Σ2 = (1.5)Ip using the suggested asymptotic standard
normal critical values corresponding to α = .05.

p n1 = n2 SSL(TA) SSL(TC) SSL(TSc) SSL(TS10) SSL(TS14)
20 5 0.00 0.00 0.03 0.01 0.09

10 0.00 0.01 0.03 0.02 0.03
15 0.00 0.02 0.03 0.01 0.02

40 5 0.00 0.00 0.03 0.01 0.01
10 0.00 0.02 0.03 0.02 0.01
15 0.00 0.03 0.03 0.02 0.01
20 0.00 0.05 0.03 0.02 0.01

80 5 0.00 0.00 0.03 0.01 0.01
10 0.00 0.03 0.03 0.03 0.02
15 0.00 0.04 0.04 0.02 0.02
20 0.00 0.05 0.04 0.03 0.01

160 5 0.00 0.00 0.03 0.01 0.01
10 0.00 0.04 0.05 0.06 0.03
15 0.00 0.05 0.05 0.04 0.01
20 0.00 0.05 0.05 0.04 0.01

Table A.2: Simulated actual significance levels of the tests TA, TC , TSc, TS10, and
TS14 for HPCHDS for two compound-symmetric covariance-matrix structures with

parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip + (0.05)Jp using the
suggested asymptotic standard normal critical values corresponding to α = .05.

p n1 = n2 SSL(TA) SSL(TC) SSL(TSc) SSL(TS10) SSL(TS14)
20 5 0.00 0.01 0.03 0.11 0.09

10 0.00 0.01 0.03 0.03 0.03
15 0.00 0.01 0.03 0.08 0.03

40 5 0.00 0.00 0.03 0.08 0.10
10 0.00 0.01 0.03 0.02 0.10
15 0.00 0.03 0.03 0.02 0.06
20 0.00 0.04 0.03 0.02 0.03

80 5 0.00 0.00 0.03 0.12 0.11
10 0.00 0.01 0.03 0.04 0.09
15 0.00 0.03 0.03 0.01 0.03
20 0.00 0.04 0.05 0.01 0.03

160 5 0.00 0.01 0.03 0.11 0.10
10 0.00 0.03 0.03 0.06 0.06
15 0.00 0.04 0.06 0.04 0.03
20 0.00 0.04 0.05 0.04 0.03
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Table A.3: Simulated actual significance levels of the tests TA, TC , TSc, TS10, and
TS14 for HPCHDS for two autoregressive covariance-matrix structures with

parameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j| using the suggested asymptotic standard
normal critical values corresponding to α = .05.

p n1 = n2 SSL(TA) SSL(TC) SSL(TSc) SSL(TS10) SSL(TS14)
20 5 0.00 0.01 0.03 0.11 0.01

10 0.00 0.01 0.03 0.07 0.01
15 0.00 0.01 0.03 0.05 0.02

40 5 0.00 0.02 0.03 0.10 0.01
10 0.00 0.02 0.03 0.02 0.01
15 0.00 0.01 0.03 0.02 0.01
20 0.00 0.04 0.03 0.03 0.01

80 5 0.00 0.02 0.03 0.16 0.06
10 0.00 0.02 0.03 0.04 0.01
15 0.00 0.02 0.03 0.03 0.00
20 0.00 0.02 0.03 0.02 0.00

160 5 0.00 0.02 0.03 0.13 0.01
10 0.00 0.02 0.05 0.05 0.01
15 0.00 0.02 0.05 0.03 0.00
20 0.00 0.02 0.03 0.04 0.00

Table A.4: Simulated actual significance levels of the tests TA, TC , TSc, TS10, and
TS14 for HPCHDS for two heterogeneous autoregressive covariance-matrix
structures using the suggested asymptotic standard normal critical values

corresponding to α = .05.

p n1 = n2 SL(TA) SL(TC) SL(TSc) SL(TS10) SL(TS14)
20 5 0.00 0.01 0.12 0.03 0.08

10 0.00 0.03 0.11 0.03 0.07
15 0.00 0.03 0.11 0.03 0.03

40 5 0.00 0.02 0.11 0.02 0.09
10 0.00 0.03 0.10 0.03 0.04
15 0.00 0.03 0.09 0.03 0.03
20 0.00 0.03 0.09 0.03 0.01

80 5 0.00 0.01 0.10 0.02 0.11
10 0.00 0.02 0.09 0.03 0.10
15 0.00 0.02 0.05 0.02 0.09
20 0.00 0.03 0.05 0.03 0.08

160 5 0.00 0.01 0.10 0.02 0.10
10 0.00 0.03 0.08 0.03 0.08
15 0.00 0.03 0.05 0.05 0.06
20 0.00 0.04 0.05 0.05 0.05
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Table A.5: Simulated actual significance levels of the tests TA, TC , TSc, TS10, and
TS14 for HPCHDS for two unstructured covariance-matrix structures using the
suggested asymptotic standard normal critical values corresponding to α = .05.

p n1 = n2 SSL(TA) SSL(TC) SSL(TSc) SSL(TS10) SSL(TS14)
20 5 0.00 0.10 0.03 0.04 0.06

10 0.00 0.07 0.03 0.03 0.03
15 0.00 0.07 0.03 0.03 0.04

40 5 0.00 0.07 0.03 0.02 0.07
10 0.00 0.02 0.03 0.02 0.03
15 0.00 0.02 0.03 0.03 0.01
20 0.00 0.02 0.03 0.01 0.01

80 5 0.00 0.11 0.03 0.03 0.07
10 0.00 0.05 0.03 0.04 0.10
15 0.00 0.06 0.03 0.02 0.08
20 0.00 0.05 0.04 0.03 0.07

160 5 0.00 0.10 0.03 0.04 0.08
10 0.00 0.06 0.04 0.06 0.06
15 0.00 0.05 0.06 0.05 0.03
20 0.00 0.04 0.05 0.04 0.03

Table A.6: A table contrasting POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS on two constant-times-identity population

covariance structures with parameters Σ1 = Ip and Σ2 = (1.5)Ip.

p n1 = n2 POW (TA) POW (TC) POW (TSc) POW (TS10) POW (TS14)
20 5 0.27 0.08 0.03 0.05 0.37

10 0.71 0.41 0.08 0.01 0.32
15 0.90 0.80 0.12 0.02 0.40

40 5 0.28 0.05 0.02 0.05 0.65
10 0.76 0.54 0.04 0.00 0.74
15 0.97 0.78 0.08 0.00 0.70
20 1.00 0.97 0.12 0.00 0.63

80 5 0.30 0.07 0.01 0.02 0.93
10 0.81 0.59 0.04 0.00 0.98
15 0.90 0.88 0.06 0.00 0.98
20 1.00 0.99 0.10 0.00 0.99

160 5 0.33 0.25 0.00 0.02 1.00
10 0.86 0.74 0.01 0.00 1.00
15 0.99 0.98 0.05 0.00 1.00
20 1.00 1.00 0.07 0.00 1.00
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Table A.7: A table contrasting POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS on two compound-symmetric population

covariance structures with parameters
Σ1 = (.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip + (0.05)Jp.

p n1 = n2 POW (TA) POW (TC) POW (TSc) POW (TS10) POW (TS14)
20 5 0.07 0.04 0.06 0.05 0.07

10 0.09 0.06 0.05 0.05 0.08
15 0.10 0.07 0.05 0.06 0.09

40 5 0.07 0.06 0.07 0.05 0.08
10 0.09 0.08 0.08 0.04 0.08
15 0.10 0.08 0.07 0.04 0.12
20 0.13 0.09 0.07 0.04 0.14

80 5 0.11 0.06 0.05 0.05 0.10
10 0.15 0.10 0.07 0.05 0.13
15 0.17 0.12 0.10 0.04 0.19
20 0.25 0.14 0.13 0.02 0.29

160 5 0.14 0.08 0.07 0.04 0.11
10 0.30 0.15 0.12 0.02 0.31
15 0.41 0.19 0.17 0.02 0.44
20 0.52 0.30 0.22 0.02 0.55

Table A.8: A table contrasting POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS on two autoregressive population covariance

structures with parameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|.

p n1 = n2 POW (TA) POW (TC) POW (TSc) POW (TS10) POW (TS14)
20 5 0.09 0.07 0.06 0.07 0.08

10 0.13 0.09 0.07 0.08 0.13
15 0.17 0.12 0.06 0.08 0.20

40 5 0.08 0.07 0.04 0.04 0.08
10 0.12 0.08 0.07 0.04 0.14
15 0.17 0.09 0.07 0.06 0.25
20 0.25 0.11 0.07 0.06 0.33

80 5 0.10 0.08 0.06 0.06 0.08
10 0.16 0.09 0.06 0.05 0.16
15 0.20 0.12 0.07 0.05 0.24
20 0.26 0.15 0.08 0.05 0.34

160 5 0.10 0.07 0.05 0.05 0.07
10 0.14 0.09 0.06 0.05 0.11
15 0.20 0.12 0.06 0.05 0.20
20 0.28 0.18 0.07 0.06 0.31
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Table A.9: A table contrasting POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS on two unstructured population covariance

structures.

p n1 = n2 POW (TA) POW (TC) POW (TSc) POW (TS10) POW (TS14)
20 5 0.10 0.07 0.06 0.11 0.14

10 0.17 0.08 0.09 0.23 0.26
15 0.26 0.09 0.10 0.38 0.35

40 5 0.13 0.08 0.07 0.13 0.16
10 0.21 0.08 0.11 0.27 0.30
15 0.25 0.12 0.13 0.38 0.35
20 0.32 0.15 0.17 0.44 0.46

80 5 0.15 0.09 0.08 0.21 0.21
10 0.24 0.10 0.13 0.31 0.33
15 0.30 0.13 0.15 0.42 0.45
20 0.39 0.18 0.19 0.50 0.59

160 5 0.19 0.10 0.10 0.25 0.25
10 0.28 0.13 0.13 0.35 0.39
15 0.40 0.16 0.17 0.44 0.56
20 0.46 0.20 0.20 0.54 0.63
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A.3 Figures

0.00

0.25

0.50

0.75

1.00

40 80 120 160
Feature Dimension

P
o
w

e
r

Test Statistic
TA
TC

TSc
TS10
TS14

Figure A.1: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with constant-times-identity covariance matrices
with parameters Σ1 = Ip and Σ2 = (1.5)Ip. The data dimension was increased from
p = 11 to p = 159 and ni = 10, i = 1, 2.
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Figure A.2: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with compound-symmetric covariance matrices
with parameters Σ1 = 0.99Ip+0.01Jp and Σ2 = 0.95Ip+0.05Jp. The data dimension
was increased from p = 11 to p = 159, and the common sample size was ni = 10.
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Figure A.3: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with autoregressive covariance matrices with pa-
rameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|. The data dimension was increased from
p = 11 to p = 159, and the common sample size was ni = 10.
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Figure A.4: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with heterogeneous autoregressive covariance ma-
trices. The data dimension was increased from p = 11 to p = 159, and the common
sample size was ni = 10.
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Figure A.5: Curves for POW (TA), POW (TC), POW (TSc), POW (TS10), and
POW (TS14) for testing HPCHDS with unstructured covariance matrices. The data
dimension was increased from p = 11 to p = 159, and the common sample size was
ni = 10.
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APPENDIX B

Chapter Three Appendix

B.1 Definitions of Statistics

The following four estimators of the summands for the HDSFN in (3.1) are

used in two HPCHDS test statistics in Chapter 3. First,

â1i :=
1

p(ni − 1)
trVi

P−→ trΣi

p

and

â1 :=
1

pn
trV

P−→ trΣ

p

are consistent estimators of the average of the eigenvalues of the individual population

covariance matrices and the pooled covariance matrix, respectively. Next,

â2i :=
1

p (ni − 2) (ni + 1)

{
trV2

i −
1

ni − 1
(trVi)

2

}
P−→ trΣ2

i

p
(B.1)

and

â2 :=
1

p (n− 1) (n+ 2)

{
trV2 − 1

n
(trV)2

}
P−→ trΣ2

p
, (B.2)

where n = n1+n2−2. Srivastava (2005) has shown that the estimators (B.1) and (B.2)

are consistent for estimating the average of the squared elements for the individual

population covariance matrices and the pooled covariance matrix, respectively.

For the HPCHDS test statistic given in Chaipitak and Chongcharoen (2013),

we have

â∗4 :=
(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)

n5(n2 + n+ 2)p
(B.3)(

trS4 − 4

n
trS2 trS− 2n2 + 3n− 6

n (n2 + n+ 2)

(
trS2

)2
+

2 (5n+ 6)

n (n2 + n+ 2)
trS2 (trS)2 − 5n+ 6

n2 (n2 + n+ 2)
(trS)4

)
.
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B.2 Lemmas for the Theorem

Lemma B.2.1. Let

H := [Σ2 −Σ1],

where Σi ∈ R>
p for i = 1, 2. Additionally, let SV D(H) = FΛG ∈ Rp×p. Further, let

F ∈ Rp×q with rank(F) = q < p, and C = R
[
I− FF+

]
, where R ∈ R(p−q)×p such

that rank (C) = p− q. Then, for i = 1, 2,

(a) FF+Σi = ΣiFF+,

(b) CΣ2C
T = CΣ1C

T ,

(c)
(
F+ΣiF

+T
)−1

= FTΣ−1i F,

(d) F+ΣiC
T = 0.

Proof. The proof of (a) – (c) follows from the fact that
(
I− FF+

)
(Σi − Σ1) = 0.

The proof of (d) is trivial.

Lemma B.2.2. Let F ∈ Rp×q such that rank (F) = q and let C = R
[
I− FF+

]
,

where R ∈ R(p−q)×p and rank (C) = p − q, and let Σi ∈ R>
p for i = 1, 2, such

that properties (b) and (d) of Lemma B.2.1 hold. and let W :=

[
F+T ...CT

]T
so that

rank (W) = p. Then,
|Σ2|
|Σ1|

=

∣∣F+Σ2F
+T
∣∣

|F+Σ1F+T |
.

Proof. Because W is full rank, we have that
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|Σ2|
|Σ1|

=

∣∣WΣ2W
T
∣∣

|WΣ1WT |

=

∣∣∣∣∣∣∣
F+Σ2F

+T F+Σ2C
T

CΣ2F
+T CΣ2C

T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
F+Σ1F

+T F+Σ1C
T

CΣ1F
+T CΣ1C

T

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
F+Σ2F

+T 0

0 CΣ1C
T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
F+Σ1F

+T 0

0 CΣ1C
T

∣∣∣∣∣∣∣
=

∣∣F+Σ2F
+T
∣∣ ∣∣CΣ1C

T
∣∣

|F+Σ1F+T | |CΣ1CT |

=

∣∣F+Σ2F
+T
∣∣

|F+Σ1F+T |
.

Lemma B.2.3. Let F ∈ Rp×q such that rank (F) = q and let C = R
[
I− FF+

]
,

where R ∈ R(p−q)×p and rank (C) = p − q, and let Σi ∈ R>
p for i = 1, 2, such that

properties (a) and (c) of Lemma B.2.1 hold. Then,

tr
(
Σ−12 Σ1

)
= tr

[(
F+Σ2F

+T
)−1 (

F+Σ1F
+T
)]
.
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Proof. Using properties (a) and (c) of Lemma B.2.1, we have that

tr
[(

F+Σ2F
+T
)−1 (

F+Σ1F
+T
)]

= tr
[(

FTΣ−12 F
) (

F+Σ1F
+T
)]

= tr
[(

FTΣ−12 F
) (

F+Σ1F
+T
)]

= tr
(
FTΣ−12 Σ1FF+F+T

)
= tr

(
FTΣ−12 Σ1F

+TFTF+T
)

= tr
(
FTΣ−12 Σ1F

+TF+F
)

= tr
(
FTΣ−12 Σ1F

+T
)

= tr
(
Σ−12 Σ1F

TF+T
)

= tr
(
Σ−12 Σ1F

+F
)

= tr
(
Σ−12 Σ1

)
.
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B.3 Tables

Table B.1: A table contrasting POW(TRA), POW(TRC), POW(TRI), and
POW(TRS10) and POW(TA), POW(TC), POW(TI), and POW(TS10) when testing
for HPCHDS for two constant-times-identity population covariance matrices with

parameters Σ1 = Ip and Σ2 = (1.5)Ip.

p n1 = n2 q POW(TRA) POW(TRC) POW(TRI) POW(TRS10)
80 5 5 0.00 0.99 0.02 0.00

10 0.01 0.71 0.00 0.00
15 0.01 0.47 0.29 0.00
20 0.02 0.29 0.24 0.01

10 10 0.00 1.00 0.01 1.00
20 0.00 0.57 0.00 0.04
30 0.00 0.15 0.08 0.01
40 0.00 0.03 0.03 0.02

160 5 5 0.00 0.99 0.03 1.00
10 0.00 0.94 0.00 0.00
15 0.01 0.86 0.38 0.00
20 0.01 0.75 0.34 0.00

10 10 0.00 1.00 0.02 1.00
20 0.00 0.99 0.35 0.03
30 0.00 0.90 0.16 0.01
40 0.00 0.64 0.17 0.00

p n1 = n2 p POW(TA) POW(TC) POW(TI) POW(TS10)
80 5 80 0.30 0.01 0.05 0.01

10 80 0.81 0.03 0.08 0.00
160 5 160 0.33 0.01 0.06 0.01

10 160 0.86 0.13 0.11 0.01
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Table B.2: A table contrasting POW(TRA), POW(TRC), POW(TRI), and
POW(TRS10) and POW(TA), POW(TC), POW(TI), and POW(TS10) when testing
for HPCHDS for two compound-symmetric population covariance matrices with

parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip + (0.05)Jp.

p n1 = n2 q POW(TRA) POW(TRC) POW(TRI) POW(TRS10)
80 5 5 0.00 1.00 0.02 0.00

10 0.00 0.91 0.00 0.00
15 0.01 0.81 0.32 0.00
20 0.01 0.66 0.28 0.00

10 10 0.00 1.00 0.02 1.00
20 0.00 0.96 0.01 0.37
30 0.00 0.80 0.12 0.16
40 0.01 0.54 0.08 0.08

160 5 5 0.00 1.00 0.02 0.99
10 0.00 0.98 0.00 0.00
15 0.00 0.97 0.44 0.00
20 0.00 0.94 0.38 0.00

10 10 0.00 1.00 0.02 1.00
20 0.00 1.00 0.25 0.19
30 0.00 0.99 0.21 0.09
40 0.00 0.96 0.23 0.04

p n1 = n2 p POW(TA) POW(TC) POW(TI) POW(TS10)
80 5 80 0.11 0.04 0.06 0.03

10 80 0.15 0.03 0.06 0.04
160 5 160 0.15 0.02 0.06 0.04

10 160 0.30 0.02 0.05 0.02
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Table B.3: A table contrasting POW(TRA), POW(TRC), POW(TRI), and
POW(TRS10) and POW(TA), POW(TC), POW(TI), and POW(TS10) when testing
for HPCHDS for two heterogeneous autoregressive population covariance matrices.

p n1 = n2 q POW(TRA) POW(TRC) POW(TRI) POW(TRS10)
80 5 5 0.01 0.95 0.01 0.00

10 0.03 0.46 0.01 0.01
15 0.05 0.36 0.25 0.01
20 0.06 0.25 0.19 0.02

10 10 0.02 0.79 0.01 0.64
20 0.18 0.20 0.01 0.12
30 0.25 0.12 0.06 0.16
40 0.34 0.06 0.04 0.20

160 5 5 0.00 0.99 0.02 0.99
10 0.03 0.64 0.01 0.00
15 0.04 0.56 0.35 0.00
20 0.04 0.49 0.30 0.00

10 10 0.00 0.94 0.01 0.83
20 0.14 0.38 0.24 0.12
30 0.18 0.25 0.13 0.11
40 0.23 0.22 0.12 0.21

p n1 = n2 p POW(TA) POW(TC) POW(TI) POW(TS10)
80 5 80 0.24 0.03 0.05 0.11

10 80 0.52 0.01 0.06 0.33
160 5 160 0.34 0.03 0.07 0.12

10 160 0.67 0.01 0.07 0.52
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Table B.4: A table contrasting POW(TRA), POW(TRC), POW(TRI), and
POW(TRS10) and POW(TA), POW(TC), POW(TI), and POW(TS10) when testing

for HPCHDS for two unstructured population covariance matrices.

p n1 = n2 q POW(TRA) POW(TRC) POW(TRI) POW(TRS10)
80 5 5 0.01 0.27 0.00 0.07

10 0.08 0.10 0.00 0.09
15 0.09 0.09 0.18 0.09
20 0.09 0.08 0.14 0.10

10 10 0.16 0.07 0.01 0.07
20 0.19 0.02 0.01 0.12
30 0.20 0.02 0.08 0.13
40 0.21 0.02 0.05 0.14

160 5 5 0.05 0.30 0.00 0.08
10 0.10 0.10 0.00 0.10
15 0.10 0.10 0.23 0.10
20 0.10 0.09 0.24 0.10

10 10 0.17 0.07 0.01 0.06
20 0.21 0.02 0.23 0.13
30 0.22 0.02 0.06 0.13
40 0.22 0.02 0.05 0.13

p n1 = n2 p POW(TA) POW(TC) POW(TI) POW(TS10)
80 5 80 0.15 0.04 0.04 0.12

10 80 0.24 0.02 0.06 0.15
160 5 160 0.19 0.04 0.04 0.17

10 160 0.28 0.01 0.06 0.17
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B.4 Figures
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Figure B.1: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two constant-times-
identity covariance matrices with parameters Σ1 = Ip and Σ2 = (1.5)Ip. The reduced-
data dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160,
and the common sample size was ni = 5, i = 1, 2, 3.
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Figure B.2: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two compound-symmetric
covariance matrices with parameters Σ1 = (0.99)Ip + (0.01)Jp and Σ2 = (0.95)Ip +
(0.05)Jp. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original data di-
mension was p = 160, and the common sample size was ni = 5, i = 1, 2, 3.

94



Test Statistics
TRA
TRC
TRI
TRS10

ni

  0.0

  0.5

  1.0

P
ow

er

−1.0

−0.5

0.0

0.5

1.0

0 50 100 150
Reduced Feature Dimension

P
ow

er
 D

iff
er

en
ce

s

Figure B.3: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two autoregressive co-
variance matrices with parameters Σ1 = 0.1|i−j| and Σ2 = 0.3|i−j|. The reduced-data
dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160, and the
common sample size was ni = 5, i = 1, 2, 3.
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Figure B.4: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two heterogeneous autore-
gressive covariance matrices. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the
original data dimension was p = 160, and the common sample size was ni = 5, i =
1, 2, 3.
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Figure B.5: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for two unstructured covari-
ance matrices. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original data
dimension was p = 160, and the common sample size was ni = 5, i = 1, 2, 3.
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APPENDIX C

Chapter Four Appendix

C.1 Definitions of Statistics

The following estimators of six parameters of certain summands of the HDSFN

in (4.1) are used in several of the HPCHDS test statistics considered here. First, for

i = 1, 2, . . . , k,

â1i :=
1

p(ni − 1)
trVi

P−→ trΣi

p
(C.1)

and

â1 :=
1

pn
trV

P−→ trΣ

p
(C.2)

denote estimators of the average of the eigenvalues of the ith sample covariance matri-

ces and the pooled covariance matrix, respectively. The consistency of these estimators

has been proven by Srivastava (2005). Next,

â2i :=
1

p (ni − 2) (ni + 1)

{
trV2

i −
1

ni − 1
(trVi)

2

}
P−→ trΣ2

i

p
, (C.3)

and

â2 :=
1

p (n− 1) (n+ 2)

{
trV2 − 1

n
(trV)2

}
P−→ trΣ2

p
(C.4)

with

n =
k∑
i=1

(ni − 1),

where ni is the sample size for population i, i = 1, 2, . . . , k. The consistency of these es-

timators has been shown by Srivastava and Yanagihara (2010). Next, for i = 1, 2 . . . , k,

â3 :=
1

n (n2 + 3n+ 4)

{
1

p
trV3 − 3n (n+ 1) pâ2â1 − np2â31

}
(C.5)
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and

â4 :=
1

n (n3 + 6n2 + 21n+ 18)

(
1

p
trV4−2pn

(
2n2 + 6n+ 9

)
â1− (C.6)

2p2n (3n+ 2) â21â2−pn
(
2n2 + 5n+ 7

)
â22 − np3â41

)
denote the consistent estimators for trΣ3/p and trΣ4/p, respectively. Also, a statistic

based on a form from Chaipitak and Chongcharoen (2013) for i = 1, 2 . . . , k, is

â∗4 :=
(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)

n5(n2 + n+ 2)p
(C.7)(

trS4 − 4

n
trS2 trS− 2n2 + 3n− 6

n (n2 + n+ 2)

(
trS2

)2
+

2 (5n+ 6)

n (n2 + n+ 2)
trS2 (trS)2 − 5n+ 6

n2 (n2 + n+ 2)
(trS)4

)
.

C.2 Lemmas for the Theorem

Lemma C.2.1. Let

H := [Σ2 −Σ1
... Σ3 −Σ1

... . . .
... Σk −Σ1],

where Σi ∈ RS
p for i = 1, 2, . . . , k. Additionally, let SV D(H) = FΛG ∈ Rp×(k−1)p,

and let F ∈ Rp×q with rank(F) = q < p, and C = R
[
I− FF+

]
, where R ∈ R(p−q)×p

such that rank (C) = p− q. Then, for 1 ≤ i, j ≤ k, i 6= j, we have

(a) CΣiC
T = CΣjC

T

(b) F+ΣiC
T = 0.

Proof. The proof of follows from the facts that from the fact that
(
I− FF+

)
(Σi −

Σ1) = 0 and that Σi ⊥
[
I− FF+

]
.

Lemma C.2.2. Let F ∈ Rp×q where rank (F) = q, and let C = R
[
I− FF+

]
, where

R ∈ R(p−q)×p and rank (C) = p − q, and let Σi ∈ R>
p for i = 1, 2, . . . , k, such that
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Lemma C.2.1 holds. Also, let W :=
[
F+T ...CT

]T so that rank (W) = p. Then, for

1 ≤ i, j ≤ k, , i 6= j, we have det
(
ΣiΣj

−1) = det
[(

F+ΣiF
+T
) (

F+Σ−1j F+T
)−1].

Proof. Using Lemma C.2.1 and the fact that rank(W) = p, we have

det
(
ΣiΣ

−1
j

)
= det

(
[WΣiW

T ][WΣjW]−1
)

= det


F+ΣiF

+T F+ΣiC

CΣiF
+ CΣiC

T




F+ΣjF

+T F+ΣjC

CΣjF
+ CΣjC

T


−1

= det


F+ΣiF

+T 0

0 CΣ1C
T




F+ΣjF

+T 0

0 CΣ1C
T


−1

= det


(F+ΣiF

+T
) (

F+ΣjF
+T
)−1

0

0
(
CΣ1C

T
) (

CΣ1C
T
)−1



= det


(F+ΣiF

+T
) (

F+Σ−1j F+T
)−1

0

0 I




= det

[(
F+ΣiF

+T
) (

F+Σ−1j F+T
)−1] .
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C.3 Tables

Table C.1: A table contrasting POW (TAR), POW (TCBR), POW (TScR), and
POW (TS10R) with POW (TA), POW (TCB), POW (TSc), and POW (TS10) for testing
HPCHDS for three constant-times-identity population covariance matrices with

parameters Σ1 = Σ3 = Ip and Σ2 = (1.5)Ip.

p n1 = n2 = n3 q POW (TAR) POW (TCBR) POW (TScR) POW (TS10R)
80 5 5 0.91 0.08 0.04 0.93

10 0.95 0.06 0.99 0.95
15 0.84 0.01 1.00 0.02
20 0.80 0.01 1.00 0.03

10 10 1.00 0.00 0.20 0.99
20 1.00 0.01 0.86 0.86
30 1.00 0.06 1.00 0.00
40 0.99 0.20 1.00 0.00

160 5 5 0.88 0.12 0.07 0.96
10 1.00 0.10 1.00 0.77
15 0.86 0.00 1.00 0.03
20 0.85 0.00 1.00 0.04

10 10 1.00 0.03 0.40 0.99
20 1.00 0.01 1.00 1.00
30 1.00 0.00 1.00 0.00
40 1.00 0.00 1.00 0.00

p n1 = n2 = n3 p POW (TA) POW (TCB) POW (TSc) POW (TS10)
80 5 80 0.24 0.42 0.00 0.01

10 80 0.72 0.65 0.01 0.00
160 5 160 0.27 0.02 0.00 0.00

10 160 0.78 0.71 0.01 0.01
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Table C.2: A table contrasting POW (TAR), POW (TCBR), POW (TScR), and
POW (TS10R) statistics with POW (TA), POW (TCB), POW (TSc), and POW (TS10)
for testing HPCHDS for three compound-symmetric population covariance matrices

with parameters Σ1 = Σ3 = 0.99Ip + 0.01Jp and Σ2 = 0.95Ip + 0.05Jp.

p n1 = n2 = n3 q POW (TAR) POW (TCBR) POW (TScR) POW (TS10R)
80 5 5 0.89 0.08 0.01 0.85

10 0.99 0.35 0.97 0.87
15 0.66 0.02 0.99 0.09
20 0.56 0.03 1.00 0.14

10 10 1.00 0.00 0.00 0.93
20 1.00 0.11 0.01 0.61
30 0.97 0.01 0.99 0.00
40 0.86 0.02 0.99 0.01

160 5 5 0.77 0.38 0.00 0.92
10 0.99 0.46 0.99 0.18
15 0.73 0.02 1.00 0.13
20 0.71 0.02 1.00 0.24

10 10 1.00 0.00 0.00 0.99
20 1.00 0.62 0.11 0.99
30 1.00 0.00 1.00 0.02
40 0.99 0.00 1.00 0.04

p n1 = n2 = n3 p POW (TA) POW (TCB) POW (TSc) POW (TS10)
80 5 80 0.11 0.08 0.05 0.05

10 80 0.12 0.12 0.02 0.04
160 5 160 0.12 0.10 0.04 0.05

10 160 0.26 0.19 0.01 0.03
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Table C.3: A table contrasting POW (TAR), POW (TCBR), POW (TScR), and
POW (TS10R) statistics with POW (TA), POW (TCB), POW (TSc), and POW (TS10)
for testing HPCHDS for three heterogeneous autoregressive population covariance

matrices with parameters Σ1 = Σ3 = 0.1|i−j| and Σ2 = 0.3|i−j|.

p n1 = n2 = n3 q POW (TAR) POW (TCBR) POW (TScR) POW (TS10R)
80 5 5 0.84 0.05 0.01 0.64

10 0.87 0.33 0.34 0.46
15 0.53 0.18 0.74 0.07
20 0.49 0.21 0.65 0.08

10 10 1.00 0.01 0.00 0.74
20 0.97 0.24 0.02 0.42
30 0.72 0.30 0.26 0.30
40 0.64 0.32 0.12 0.40

160 5 5 0.89 0.14 0.00 0.83
10 0.98 0.45 0.62 0.76
15 0.68 0.15 0.93 0.09
20 0.66 0.17 0.91 0.14

10 10 1.00 0.01 0.00 0.95
20 1.00 0.24 0.23 0.62
30 0.96 0.28 0.61 0.18
40 0.92 0.25 0.54 0.26

p n1 = n2 = n3 p POW (TA) POW (TCB) POW (TSc) POW (TS10)
80 5 80 0.24 0.15 0.02 0.14

10 80 0.48 0.33 0.01 0.51
160 5 160 0.32 0.25 0.01 0.24

10 160 0.61 0.49 0.01 0.67
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Table C.4: A table contrasting POW (TAR), POW (TCBR), POW (TScR), and
POW (TS10R) statistics with POW (TA), POW (TCB), POW (TSc), and POW (TS10)

for testing HPCHDS for three unstructured population covariance matrices.

p n1 = n2 = n3 q POW (TAR) POW (TCBR) POW (TScR) POW (TS10R)
80 5 5 0.47 0.15 0.01 0.05

10 0.42 0.15 0.02 0.09
15 0.40 0.14 0.02 0.04
20 0.39 0.14 0.02 0.07

10 10 0.69 0.20 0.00 0.28
20 0.65 0.19 0.00 0.39
30 0.63 0.18 0.00 0.39
40 0.62 0.17 0.00 0.58

160 5 5 0.53 0.16 0.00 0.04
10 0.49 0.18 0.01 0.06
15 0.47 0.15 0.02 0.01
20 0.45 0.15 0.02 0.02

10 10 0.75 0.21 0.00 0.11
20 0.72 0.24 0.00 0.12
30 0.70 0.22 0.00 0.11
40 0.69 0.22 0.00 0.19

p n1 = n2 = n3 p POW (TA) POW (TCB) POW (TSc) POW (TS10)
80 5 80 0.37 0.12 0.00 0.34

10 80 0.61 0.16 0.00 0.75
160 5 160 0.42 0.14 0.00 0.43

10 160 0.67 0.21 0.01 0.77
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C.4 Figures
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Figure C.1: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for three constant-times-
identity covariance matrices with parameters Σ1 = Σ3 = Ip and Σ2 = (1.5)Ip. The
reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was
p = 160, and the common sample size was ni = 5, i = 1, 2, 3.
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Figure C.2: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for three compound-
symmetric covariance matrices with parameters Σ1 = Σ3 = (0.99)Ip +
(0.01)Jp and Σ2 = (0.95)Ip + (0.05)Jp. The reduced-data dimensions were q ∈
{1, 2, ..., 159}, the original data dimension was p = 160, and the common sample
size was ni = 5, i = 1, 2, 3.
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Figure C.3: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for three autoregressive co-
variance matrices with parameters Σ1 = Σ3 = 0.1|i−j| and Σ2 = 0.3|i−j|. The reduced-
data dimensions were q ∈ {1, 2, ..., 159}, the original data dimension was p = 160,
and the common sample size was ni = 5, i = 1, 2, 3.
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Figure C.4: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for three heterogeneous
autoregressive covariance matrices. The reduced-data dimensions were q ∈
{1, 2, ..., 159}, the original data dimension was p = 160, and the common sample
size was ni = 5, i = 1, 2, 3.
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Figure C.5: Reduced-dimension power curves and power-difference curves for
POW(TRA), POW(TRC), POW(TRI), and POW(TRS10) for three unstructured co-
variance matrices. The reduced-data dimensions were q ∈ {1, 2, ..., 159}, the original
data dimension was p = 160, and the common sample size was ni = 5, i = 1, 2, 3.
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sufficient statistics. Sankhyā: The Indian Journal of Statistics, Series A,
40(3):303–309.

Ramey, J. A. (2016). datamicroarray: collection of data sets for classification.

Rohde, A. and Tsybakov, A. B. (2011). Estimation of high-dimensional low-rank
matrices. Ann. Statist., 39(2):887–930.

Schott, J. R. (2007). A test for the equality of covariance matrices when the
dimension is large relative to the sample sizes. Computational Statistics &
Data Analysis, 51(12):6535–6542.

Srivastava, M. S. (2005). Some tests concerning the covariance matrix in high
dimensional data. Journal of the Japan Statistical Society, 35(2):251–272.

Srivastava, M. S. (2007). Testing the equality of two covariance matrices and
independence of two sub-vectors with fewer observations than the dimension.
In International Conference on Advances in Interdisciplinary Stistics and
Combinatorics, University of North Carolina at Greensboro, NC, USA.

Srivastava, M. S. and Yanagihara, H. (2010). Testing the equality of several
covariance matrices with fewer observations than the dimension. Journal of
Multivariate Analysis, 101(6):1319–1329.

Srivastava, M. S., Yanagihara, H., and Kubokawa, T. (2014). Tests for covariance
matrices in high dimension with less sample size. Journal of Multivariate
Analysis, 130:289–309.

111




