
ABSTRACT

Ab Initio Formation Energy Calculations for Defect Complexes in Diamond, ZnSe
and CdS for Room-Temperature Quantum Computing

Ethan W. Dickey

Director: Enrique P. Blair, Ph.D.

Quantum computers are beginning to demonstrate a potential for practical
uses in data security, protein folding, artificial intelligence and machine learning,
and economics. Current obstacles to reliable large-scale quantum computers in-
clude better decoherence times, improved error correction schemes, and consis-
tent fabrication. Creating a qubit (quantum bit) that can exist at room tempera-
ture makes large progress in each of these obstacles while decreasing operational
costs (by eliminating the need for cryogenic cooling). Diamond has shown promis-
ing results when a defect known as the Nitrogen Vacancy (NV) complex is intro-
duced via doping into the crystal. However, diamond is expensive to fabricate
and foundries that can do so are rare. ZnSe and CdS, by contrast, can be grown
at lower temperatures and pressures than diamond, and do not require the ex-
pensive retooling of foundries for the higher pressure and temperature required
in diamond fabrication. This study provides a methodology and computational
structure with which to identify semiconductors with similar desirable electronic
properties as the NV defect in diamond and identifies potential defects for the two
specified semiconductors of interest. This work may guide experimental explo-
ration of quantum technologies based on semiconductor defects and could lead
to lower cost, room-temperature qubits that are easily fabricated using the vast
infrastructure of the current semiconductor industry.
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CHAPTER ONE

1 Introduction

A quantum computer is a type of computer which can perform certain tasks

much faster than a classical computer. These tasks are executed with quantum

bits, or qubits, a type of computational bit based more fundamentally on the laws

of physics (via superposition). With the power that qubits bring comes an in-

escapable complexity in their implementation.

1.1 A Brief History

From ion-traps to quantum annealing to superconducting transmons [1, 2, 3],

the vast majority of modern attempts at quantum computation involve cooling the

system to sub-1 Kelvin temperatures in a way that results in high-maintenance,

low-coherence-time qubits. This process is expensive to maintain and even more

expensive to perform long enough to get any useful computational power out of it.

Due to an ever-increasing interest in the power of quantum computation (most di-

rectly the power to break RSA (Rivest–Shamir–Adleman) encryption, the encryp-

tion standard that the world runs on), investors have been less concerned about

how to make quantum computers run at room temperature and more focused on

how to increase the number of qubits we can practically use, as soon as possible.

No one wants to be last in establishing hacker-proof communications. However,

this leaves practical attempts at room-temperature quantum computation trailing

far behind.
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1.2 Motivation

Attempts at creating a practical room-temperature qubit have been focused

around the Nitrogen Vacancy (NV) point defect in diamond, which has shown

promising results because of diamond’s wide band gap and ability to house a

deep-center defect (further discussed in Section 2.3). Fabrication of diamond, how-

ever, is an expensive process that very few of the existing foundries can perform.

Research on the horizon focuses on identifying compound semiconductors that

exhibit the same optimal electronic characteristics that the NV defect center in di-

amond does and can be easily fabricated by existing industrial infrastructure.

With the power of modern computation, density functional theory (DFT, [4, 5])

has developed from just an idea to a powerful tool in the computation of the elec-

tronic structure of many-body systems. With this theory, researchers can imagine

and explore physical implementations of a qubit even before it is realized in a labo-

ratory. This computational study seeks to provide guidance for both future studies

and experimental work in identifying point defects in compound semiconductors

useful for implementation of a qubit that are also easily fabricated within existing

industrial infrastructure.
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CHAPTER TWO

2 Background

First-principles calculations are a way of accurately predicting the electronic

structure of a material without the expense and logistics of fabrication and test-

ing. Through this method, predictions can be made about which materials will be

useful for quantum computing. Making these predictions requires a wide com-

prehension of DFT and the methods surrounding it. This chapter covers many of

those topics, including present-day room-temperature qubits, why ZnSe and CdS

were selected as candidate material hosts, stable charged defects, formation en-

ergy, chemical potential, and periodic supercell corrections. For further readings,

see Ref. [6, 7].

2.1 Present-Day Room-Temperature Quantum Computing

Room temperature quantum computers are required for any sort of mass pro-

duction and distribution of a quantum chip. Similar to a Graphics Processing Unit

(GPU), the Quantum Processing Unit (QPU) will be an accessory to classical com-

putation, performing certain tasks much faster than a classical computer can while

leaving the majority of computation to them.

The nitrogen vacancy (NV) center in a diamond lattice (a wide-band-gap semi-

conductor) is a promising implementation of a qubit because it can be initialized,

measured, and manipulated at room-temperature for use in quantum information

processing. The NV center is a compound defect comprised of two adjacent point

defects, a carbon vacancy (VC) and a nitrogen substitution (NC), as seen in the left

panel of Fig. 1. These defects can create a potential well and allow us to effectively

trap an electron in these sites.
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Figure 1: (Left) A C vacancy and a C-to-N substitution form an NV center in diamond. (Right) A
Zn vacancy and a Se-to-F substitution form a FSeVZn defect complex in ZnSe.

The NV center in diamond is of particular interest because of the defect’s ro-

bustness. The NV center can be initialized, manipulated, and measured with high

fidelity at room temperature [6]. For a stable qubit, diamond hosts this defect com-

plex. However, the two individual defects must also be studied as they make up

the NV center.

Unfortunately, diamond synthesis is expensive because it requires tempera-

tures and pressures beyond that of a normal semiconductor foundry. Other wide-

band-gap semiconductors can be much more cost-effective to grow than diamond,

and many can host defects with similar properties to the NV complex in diamond.
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2.2 ZnSe and CdS

Two particular wide-band-gap semiconductors of interest in this study are ZnSe

and CdS. They were chosen because their wide band gap admits deep-level de-

fects, allowing for optical interfaces to the defect states without causing interfering

electronic states in the host [6]. Additionally, ZnSe may be isotopically purified to

provide a spin-free host matrix, which minimizes spin-dephasing of defect-based

qubits [8]. ZnSe has received less attention as a host matrix for NV-like defects

than have diamond and SiC [9, 10]. While F and Cl defects have been studied in

ZnSe [8], it is presently unknown what other charged defects may be useful for im-

plementing qubits in ZnSe, nor under what conditions they are stable. While CdS

has been studied for use in quantum dots [11], its usefulness as a wide-band-gap

semiconductor host matrix for a qubit is presently unknown. However, CdS’s elec-

tronic structure is very similar to that of ZnSe, so it was chosen for further study

as well.

2.3 Stable Charged Defects

While making point defects is a well developed and understood process [12],

finding useful (stable) charged defects is a challenging process. Charged defects

are point defects with a nonzero charge at the defect site. As mentioned in Sec-

tion 2.1, properties of a point defect that make it useful to quantum computing

include the ability to initialize, manipulate, and measure the defect with high fi-

delity at room temperature. Due to these qualifications, most point defects must

be charged. In addition, there are two distinguishing characteristics of the NV

center (specifically, the -1 charge state, NV-1) in diamond that make it suitable for

quantum computing. Firstly, since the NV-1 center’s bound states are highly lo-
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calized (due to the wide band gap of diamond), they remain very isolated from

potential sources of decoherence [6]. Secondly, the way the defect behaves in its

excited state allows for high fidelity optical initialization and measurement. The

presence of both of those properties at room temperature is what distinguishes it

from other forms of qubits. Most present-day attempts that use solid state systems

either require extremely cold temperatures for thermal equilibrium or can only

be measured in an ensemble [6]. For further discussion on what characteristics a

host material and a candidate defect center should exhibit to reproduce those two

distinguishing characteristics, see Ref. [6].

It is possible to predict the overall charge states, q, of a semiconductor point de-

fect which allow it to be useful for quantum computation the way the NV-1 center

in diamond is [6]. To be useful, the charged defect should have spin-conserving

transitions that allow RF or optical interfacing to its electronic state.

Specifically, we define a compound semiconductor with constituent elements

A and B as AB. Let AB have an A vacancy (VA) adjacent to a B → X substitution

(XB). The defect defined as

XBVq
A (1)

is said to have appropriate spin-conserving transitions if ne, the number of elec-

trons participating in its electronic state, is [6]

ne ∈ {4, 6}. (2)

Additionally, it can be shown that for all q in Equation (1),

q = NX − ne, (3)

where NX is the number of valence electrons for element X. For example, in ZnSe,
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Element Group (NX) ne = 4 ne = 6

1 -3 -5
2 -2 -4
3 -1 -3
4 0 -2
5 +1 -1
6 +2 0
7 +3 +1

Table 1: The useful charge states q for charged defects of the form XBVq
A. Here, q is calculated for

impurity X in various element groups.

a FSeVq
Zn defect (right panel of Fig. 1) should have q = 1 or q = 3 to be stable, since

NF = 7. This method can be quickly expanded to calculate the useful charge states

q for defect element X in any other groups on the periodic table. These predictions

are listed in Table 1.

2.4 Defect Formation Energy

After stable charge states have been identified, the doping conditions under

which the charged defect XBVq
A is stable must be identified. Doping is intention-

ally introducing defects (impurities) into a material and is key to controlling the

electronic properties of bulk semiconductors [13]. Desired doping conditions may

be determined from a plot of the formation energy of the system as a function of

Fermi level for various defects in different charge states. These calculations yield

insight into which defects are the most energetically favorable at certain Fermi lev-

els, where Fermi level is the work required to add one electron to a solid-state

body. The Fermi level in relation to the bands of a body is critical in determining

electrical structure of that body. From the formation energy plot we can determine

which regions the desired charged defects are stable in and from those regions,

determine the doping conditions to place the Fermi level in that region.

The formation energy of the defect, Ef [XBVq
A], may be calculated using first-
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principles. This process can be executed using the supercell method [7] (as further

discussed in Section 3.1.4) using density functional theory (DFT) software. The

formation energy can be calculated as follows:

Ef [XBVq
A] = Ebulk − E[XBVq

A]−
∑
z

nZµZ + q(εF + εVBM + ∆V ), (4)

where Ebulk and E[XBVq
A] represent the total energy of the pristine and defected

supercells, respectively; nZ is the number of element Z atoms removed from the

lattice to form the defect complex; µZ is the chemical potential of element Z; εF is

the Fermi energy relative to εVBM in the range εF ∈ [0, Eg], where Eg is the semicon-

ductor’s band gap, measured from the valance band maximum to the conduction

band minimum; εVBM is the valence band maximum; and ∆V is a term that in-

cludes both the electrostatic correction term (further discussed in Section 2.6) and

a term that aligns the Fermi levels of the pristine and defected supercells. Note

that this equation becomes more complicated with compound semiconductors, a

topic further elaborated on in Section 2.5.

Once the formation energy for each charge state of each defect at a range of

Fermi levels has been calculated, the useful charge states can be extracted. For-

mally, defect α is more stable than defect β if

Ef [α] < Ef [β]. (5)

Additionally, the slope of the plot εF vs Ef [α] is equal to q. By plotting Ef [α]

for different q values over the range 0 < εF < Eg, where charged defects are the

most stable can be determined. If the lowest Ef [α] at a given εF is chosen as Ef
min[α]

and plotted vs εF, the slope of Ef
min[α] at εF indicates the most stable q at that point.

Thus, εF, which can be controlled by the dopant concentration [14], provides a sort

of “tuning knob” for selecting the defect’s stable charge state q.
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Figure 2: Defect formation energy in diamond as a function of the Fermi level, εF, indicates that a
VC center in the q = −1 charge state is most stable for a crystal doped to around 2.6 < εF < 4.2 eV.

For example, Fig. 2 shows Ef
min for the carbon monovacancy (VC) in diamond.

The slope of each of the components of this graph represent the charged state that

is most stable in that region. For example, from relative Fermi level of 0 to around

1.2, the q = +1 charge state is most stable. This graph indicates that the q = −1

state can be selected by doping the Fermi level to around 2.6 < εF < 4.2 eV relative

to the valance band maximum.

2.5 Chemical Potential

The chemical potential of elementary semiconductors and molecules are rela-

tively easy to calculate. For these, the chemical potential is the total energy of the

elementary compound divided by the total number of atoms in it.

With compound semiconductors and molecules, it becomes more complicated.

Essentially, we want to put bounds on what the chemical potential could be and try
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to make those bounds as close as possible. For upper bounds, the process is simple.

Let’s use ZnSe as an example. For the chemical potential of Zn (µZn), we know that

it must be less than or equal to the naturally occurring chemical potential of Zn,

µZn[bulk],

µZn ≤ µZn[bulk]. (6)

The same is true for Se,

µSe ≤ µSe[bulk]. (7)

Otherwise, bulk Zn and Se would be more stable than the ZnSe crystal and pre-

cipitation would occur, forming a bulk Zn or Se phase [8]. In addition, for a single

unit cell of ZnSe, the sum of the chemical potentials of Zn and Se is equal to the

ground state total energy of that system,

µZn + µSe = EZnSe. (8)

Finally, for a ZnSe crystal to be stable, we require that the energy of the system

must be less than the energy of bulk Zn and bulk Se by themselves:

EZnSe < µZn[bulk] + µSe[bulk]. (9)

We express this difference using a term called the enthalpy of formation, ∆Hf [ZnSe],

which is a measure of the stability of the system:

EZnSe = µZn[bulk] + µSe[bulk] + ∆Hf [ZnSe], (10)

where ∆Hf [ZnSe] must be negative for the system to be stable.
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Using equations (8) and (10), the variation in µZn and µSe is often parameterized

by the scalar λ which varies between 0 and 1 [8], as follows:

µZn = µZn[bulk] + λ∆H (11)

µSe = µSe[bulk] + (1− λ)∆H, (12)

with 0 ≤ λ ≤ 1, where

λ→ 0 =⇒ Zn-rich conditions, and

λ→ 1 =⇒ Se-rich conditions.
(13)

Native (pristine) ZnSe has λ = 0.5.

The chemical potential of a pristine host material can be calculated by multi-

plying the total number of each atom by its chemical potential:

µZnSe =
∑
i

niµi = nZnµZn + nSeµSe. (14)

The chemical potential of a defected host material (with impurity X) is calculated

the same way:

µZnSe/X =
∑
i

niµi = nZnµZn + nSeµSe + nimpµimp. (15)

Briefly back to formation energy, Santos et al. [8] simplifies the formation en-

ergy equation to

Ω = Edef − Ebulk −
∑
i

niµi (16)

for formation energy Ω of a defected compound semiconductor, where ni is the

number of atoms of element i that are added or removed from the pristine crystal
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to create the defect with its respective chemical potential µi [8]. For defected ZnSe

(with one type of defect),

Ω = Edef − Ebulk − nZnµZn − nSeµSe − nimpµimp. (17)

Following the discussion from Santos et al. [8], substituting equations (11) and

(12) back into the formation energy Equation (17) yields

Ω(λ, µimp, EF ) =Edef − Ebulk

− nZn(µZn[bulk] + λ∆H)

− nSe(µSe[bulk] + (1− λ)∆H)

− nimpµimp

+ q(εF + εVBM + ∆V ),

(18)

where the last term is added to account for charged defect-defect interactions and

the electrostatic correction term.

2.6 Periodic Supercell Corrections

For all of the big calculations required in Equation (18), a single unit cell will

not suffice. Fig. 3 shows that the unit cell is a simple configuration that can be used

to represent a lattice with a defect on the molecular level. More specifically, a unit

cell is the smallest system of atoms that can be used to represent the entire lattice

by repeating it periodically. Interactions between the atoms of the unit cell and its

repeated images throughout the extended, infinite crystal arise because of periodic

boundary conditions inherent in plane-wave basis DFT calculations.

Theoretically, solving the set of Schrödinger equations for a lattice requires cal-

culation of an infinite number of wavefunctions for an infinite number of elec-
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trons that extend throughout the entire solid. However, since particles in a perfect

crystal lattice are arranged regularly, Bloch’s Theorem can be used to express the

wavefunctions of the solid as wavefunctions in reciprocal space (also known as

momentum space or k-space). Through this transformation, the infinite number of

wavefunctions for an infinite number of electrons gets reduced to the number of

electrons in the unit cell [15].

When running the formation energy calculations, it becomes necessary to dis-

tance the defect in the unit cell from its images in the repeated lattice. This min-

imizes cell-image interactions, reflecting the likely physical reality of having de-

fects in a diffuse limit which does not affect the Fermi level. If the image unit cell

is used, defect-defect interaction is not only possible, but probable. The supercell

solves this problem by simply increasing the amount of surrounding lattice that is

given with the defect, as can be seen in Fig. 4. In practice, the supercell is made by

repeating the pristine image unit cell N×N×N times and then introducing a single

defect into the entire structure. This process can be carried to very high N, when

required (Fig. 5).

In this periodic supercell method, defect-defect interaction avoidance has to

be balanced with runtime. With higher N (in NxNxN repetition) comes quadrati-

cally higher runtimes, as an increase from 2x2x2 to 3x3x3 increases the number of

atoms to consider by 19 (8 → 27) times the number of electrons per atom. How-

ever, larger supercells also more naturally support ionic relaxation, which puts the

system closer to its most relaxed state. Supercell corrections are used to compen-

sate for image interactions in smaller supercells so that shorter runtimes can be

achieved. This post-processing step is discussed further in Section 3.1.4.
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Figure 3: Diamond unit cell with a NV defect
complex. The N substitution (NC) is

highlighted in blue and is adjacent to the C
vacancy (VC).

Figure 4: Diamond supercell with a NV defect
complex. The N substitution (NC) is

highlighted in blue and is adjacent to the C
vacancy (VC).

Figure 5: Titanium dioxide unit cell and supercell configurations used for molecular simulation.
Retrieved from [16].
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CHAPTER THREE

3 Methodologies

This chapter explains the various methodologies that are used to gather and an-

alyze the data relevant to this research. The methodologies will include the overall

process and work flow, the VASP computing package, and convergence and opti-

mization of system parameters.

3.1 Process

The process through which formation energy plots are created is long and com-

plicated. The following subsections will briefly discuss each important step along

the way and conclude with a summarizing flowchart.

3.1.1 Convergence

To start formation energy calculations, first we need to calibrate known con-

stants to our system. This serves two purposes: firstly, it allows us to verify that

we are running the correct simulation and parameters. Secondly, it provides a fine

tuning to what is set up in order to get better end results. If constants from outside

the setup are used, when mixed with calculated values from inside the system,

then oftentimes the resultant values (the simulation results that actually matter)

are skewed (as there are two different data biases/perspectives going into it). This

process is discussed more in Section 3.3.

3.1.2 Lattice Structure

The way in which a semiconductor naturally forms is important to the atomic

structure fed into the calculations of that semiconductor’s electronic structure.
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Figure 6: The arrangement of atoms in the
diamond lattice structure. Retrieved from [17].

Figure 7: The arrangement of atoms in the
zincblende lattice structure. Retrieved from

[18].

Three elementary semiconductors (C, Si and Ge) form in the diamond lattice struc-

ture (as illustrated in Fig. 6). When running calculations on diamond, it is impor-

tant to use the diamond lattice structure (clearly).

Additionally, many interesting compound semiconductors have the structure

zincblende, which is very similar to the diamond lattice structure except it in-

corporates a second element, as illustrated in Fig. 7.

The reason this section must exist is because CdS does not conform to the typ-

ical structure of interesting semiconductors. Natural CdS exists in two forms:

hawleyite and greenockite (Fig. 8, Fig. 9). When forming CdS using chemical

precipitation methods, hawleyite (cubic) CdS is formed. This matches the pattern

established above as hawleyite is a cubic zincblende form, as can be seen in Fig. 8.

3.1.3 Unit Cell Calculations

Next, the simulation runs Self-Consistent Field (SCF) calculations on a unit cell

to set up the more complicated simulations. These simple SCF calculations lay the

groundwork for the band gap calculation.
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Figure 8: The arrangement atoms in the
hawleyite (cubic) lattice structure. Retrieved

from [19].

Figure 9: The arrangement atoms in the
greenockite (hexagonal) lattice structure.

Retrieved from [19].

The band gap is measured from the valance band maximum to the conduction

band minimum (as seen in Fig. 10) and represents a range of energies that the host

material’s electrons cannot occupy. If researchers can make a defect whose en-

ergy state exists in this band gap, it would provide optimal conditions for a qubit.

Calculating the band gap is one of the most important steps in this process as it

restricts the formation energy plot, giving the exact bounds on what Fermi lev-

els are possible (as going above or below this level would put the defect outside

the band gap). However, it is well-known that DFT underestimates the band gap

[20, 21]. There are two solutions to this problem: either correct the calculation by

applying the GW Correction [22] to the Non-Self Consistent Field (NSCF) calcu-

lations or opt for using Hybrid Density Functionals instead of NSCF calculations.

Hybrid density functionals add some fraction of the Hartree-Fock exchange in or-

der to circumvent the expensive calculation of the GW Correction, leading to fast

and accurate descriptions of the electronic structure and a better depiction of the

band structure [23, 24].
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Figure 10: The band structure of diamond in k-space with Valance Band Maximum and
Conduction Band Minimum labeled. Calculated using methods described in Section 4.1.1.

3.1.4 Supercell Calculations

After obtaining the band gap from unit cell SCF and correction steps, the su-

percell calculations begin. Unit cell calculations are good enough for the band gap

calculation because the lattice is pristine, so cell-cell interactions are kept to what

is expected. However, when adding defects to a system, it is important to mini-

mize the defect-defect interactions (caused by two defects being close enough to

each other that they affect the other’s relaxation calculations). This is solved by

introducing supercells, which are N×N×N copies of the host material’s unit cell,

typically with a single defect. For these calculations, N ∈ [1, 2]; any larger values

for N cause the calculations to take too long to run (weeks). Additionally, accurate

calculations can be obtained with little relative error at those N values. A pristine

supercell (one with no defects) is used to calculate the chemical potential of the

bulk host material as discussed in Section 2.5.
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From the pristine supercell, each point defect can be formed and the total en-

ergy of the system for each charge state is calculated (using the typical SCF method).

Once each of these calculations has run, an electrostatic correction program called

sxdefectalign [25] is run in order to correct for nonzero charge state defect-defect

interactions. As the final step in the supercell calculations, the energy difference

between the pristine supercell and each charge state for each defect is calculated

(with the correction term added in). These energy differences are utilized when

calculating the formation energy and are the primary output of this step.

3.1.5 Chemical Potential Reference Values

Following the discussion from Section 2.5, the chemical potential of a defected

host material is obtained from the sum of the chemical potentials for each of the

component atoms (Equation (15)). The chemical potential of an individual mate-

rial can be computed by taking the most naturally occurring form of the element,

calculating its total energy, and dividing that by the total number of atoms in the

material. This can be done with a simple pristine unit cell calculation. For example,

in a C lattice (diamond) with a N vacancy (the NV-1 defect), the chemical potential

of N is calculated by taking its most naturally occurring form, N2, and calculating

its total energy. Dividing that value by the total number of N atoms in the lattice

gives the chemical potential of N.

3.1.6 Post-Processing and Visualization

The post processing begins with calculation of the formation energy for each

charge state as defined in Equation (4). This step provides a set of formation energy

lines as seen in Fig. 11. From these lines, the minimum of each formation energy

at any given Fermi level is taken in order to form the final formation energy plot

as seen in Fig. 12. On the x-axis is the Fermi level (εF) with respect to the valance
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Figure 11: Formation energy as a function of
Fermi level for each charge state for the NV
defect in diamond. Each line represents a

different charged state.

Figure 12: Formation energy plot for the NV
defect in diamond. This represents the

minimum trace of Fig. 11.

band maximum (VBM) of bulk diamond. On the y-axis is the formation energy of

the system (as a result of taking the minimum formation energy of each charged

defect at that point). These plots are further discussed in section 4.1.

3.1.7 Flowchart

Each of the previous steps and what useful data comes out of each one is illus-

trated in Fig. 13.
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3.2 VASP

VASP (Vienna Ab initio Simulation Package) is a software package designed to

model materials at the atomic scale using ab initio (first principles) calculations [26].

This software package is useful for calculating the electronic structure of a system

using different methods (SCF, NSCF, Hybrid Functionals, etc.); in turn, total energy

can be used to optimize and converge certain simulation parameters (lattice con-

stant “a,” sampling of the points in k-space “kpoints,” plane wave energy cutoff,

etc.).

The input files required to run a calculation with VASP are large and compli-

cated, so John Kitchen’s open-source VASP wrapper was adapted for our purposes

[27, 28]. This software provides a Python interface for defining crystal structures,

generating VASP input files for complex workflows, and for post-processing data.

An alternative software called PyCDT was considered for use originally, as

it claims to ”expedite the setup and post-processing of defect calculations with

[VASP]” (Broberg et al. [29]). Diving into the software package, it did help with

the setup successfully (generation of input files), but did not perform the band gap

correction that was needed. It does support the NSCF calculations (see Section

3.1.3) which do a partial correction term calculation, but neither the full GW cor-

rection nor Hybrid Functionals calculation were found. Additionally, the software

package was recently updated to a new version of Python and was not thoroughly

tested. Several requests were made to the developers to fix said bugs, but there are

no active contributors to the project so these errors were slow to be fixed. For all

of these reasons, a simpler wrapper was chosen (John Kitchen’s) and a shell out-

side of that was developed which incorporates all of the components of a proper

formation energy calculation.

Modifications to the VASP Wrapper pertain to both input generation and the
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output processing. Input generation functionality added includes pristine and de-

fected supercell creation, supercell ionic relaxation, and number of valance elec-

trons in a system calculation. Output processing tools mainly work with retrieving

the band structure as well as calculating and plotting the formation energies.

3.3 Convergence and Optimizing System Parameters

Convergence is the process of systematically guaranteeing that enough com-

putational precision is used to obtain consistent results. A system will often not

converge if the initial guesses of several parameters are too far off. Taking these

system parameters, we can make our initial guess better by individually converg-

ing the total energy of the system with respect to each parameter.

These calculations are necessary to perform on each new system separately be-

cause every research group uses difference processing software to perform calcula-

tions. Well-known values can be used as a starting point, but need to be adapted to

fit the current setup. Comparing certain resultant values to other research groups’

values also allows validation of the system setup.

Converging and optimizing system parameters converges the total energy to

the meV (less than 1 meV of change from one value to the next). At least three

values are converged/optimized for every semiconductor that is tested:

1. The plane wave energy cutoff (“ecut”) is an upper bound on the plane-

wave energies used to model the physical system. The electronic wavefunc-

tions for these bound states are theoretically infinite due to the Fourier series

that represents the plane wave basis set, but plane waves with lower kinetic

energy typically have a much higher impact on the total energy [15]. Prac-

tically, we can see convergence of the total energy without going over 1000

eV. Formally, the plane wave energy cutoff is converged with respect to the
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maximum total energy TE such that

for each ∆Ecut ≥ 1 Ry, ∆TE < 1 meV. (19)

2. The kpoints value Kp is converged for a similar issue. In momentum space

(k-space), the original periodic lattice is transformed into the reciprocal lat-

tice, an equivalent form that allows for a more careful study of the structure

of the lattice. However, the wavefunctions much be calculated at each point

in the region of k-space that the problem exists in (a continuum of points)

[15]. Therefore, we use a value “kpoints” to determine the density of sam-

pling that occurs in k-space.

Formally, similarly to the plane wave energy cutoff, kpoints Kp is converged

with respect to the maximum total energy TE such that

∆TE < 1 meV, Kp ∈ N∗. (20)

3. The lattice constant a defines the spacing between atoms in the given lattice.

The DFT prediction for amay be found by optimizing the total system energy

a as a function of the lattice constant (as the system will most naturally rest

in the least energetic state). Formally, the lattice constant is optimized with

respect to the total energy such that at a point xm,

TE(xi) >TE(xm) < TE(xj)

∀xi, xm, xj ∈ R | xi < xm < xj.

(21)
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This is optimized to the meV, such that

TE(xm)− TE(xi) < 1 meV and

TE(xj)− TE(xm) < 1 meV.
(22)

In addition to each semiconductor that is tested, each time a pristine (non-

defected) calculation is run on a material, those parameters must be converged

or optimized. Some examples include in the chemical potential calculation of N,

Zn or S, where each element must be individually calibrated before their chemical

potentials can be calculated.

Some systems require additional parameters to be converged. The primary

example of this nitrogen. When calculating its chemical potential, it is necessary

to evaluate nitrogen’s total energy in its most relaxed state, which is the gaseous

form N2. Making N2 requires specification of the air gap constant. This value helps

specify how much space is between each N2 center. In a lattice, it is not necessary

to specify this because the periodicity of a lattice and the fact that it is a solid

require the edges of each cell to be connected and form the lattice. In N2, because

it is gaseous, it is necessary to space out the N2 centers to their most relaxed state

(converged per the 1 meV standard).
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CHAPTER FOUR

4 Results and Analysis

This chapter shows results for the various calculations performed during the

course of this research. It also provides a methodology and computational struc-

ture for future work, along with recommendations and explanations on where ex-

actly to go. The calculations covered include diamond band structure and forma-

tion energy as well as ZnSe and CdS band structure. It then provides recommenda-

tions for the formation energy calculations on ZnSe and CdS along with a structure

to perform these calculations.

4.1 Diamond Results

4.1.1 Band Structure

The band structure of diamond was identified with DFT using a SCF calculation

which was then interpreted and corrected using hybrid functionals. When plotting

the band structure of a material, the full bands spectrum can be confusing to view

(Fig. 14). The k-vector graph is a plot of the band structure in k-space, as discussed

in Section 3.3. The DOS graph is a plot of the Density of States, which is not strictly

important to this research (as the k-space band structure graph is sufficient), has

applications to the broader chemistry of semiconductors [30].

However, the usefulness of the full bands spectrum plot is restricted as we

just want to focus on the valence band maximum and conduction band minimum.

Zooming in, Fig. 15 displays a closer look at the valance band maximum and con-

duction band minimum. From the plot, it can be gleaned that the semiconductor

does have a wide band gap, spanning 5.226 eV.
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Figure 14: Limited bands spectrum of a pristine diamond lattice. Both the k-vectors and density of
states plots are shown.

Figure 15: Limited bands spectrum of a pristine diamond lattice shown in k-space.
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4.1.2 Formation Energy

When comparing formation energies across multiple defects, it is useful to plot

all minimum energy lines on the same graph. This serves two purposes: firstly

to see which has the lowest formation energy and secondly to see which charged

defects are stable in the range [0, Eg] (where Eg is the pristine semiconductor’s

band gap). The minimum energy lines are the most energetically favorable charge

state at a given Fermi level for a defect. For a more in-depth explanation of this

process, see Section 3.1.6.

Charge states in Fig. 16 are indicated by the slopes of the lines. For example,

on the NV line, we can read off the charge states left to right as +1, 0, -1, and -2. As

identified in table 1, the useful charge states for an element in group 5 (nitrogen)

are±1. Reading off the graph, the NV-1 charge state is stable when doped between

2.76 and 4.49 eV. While the NV+1 charge state is technically accessible, doping to

Fermi levels approaching 0 with respect to the valance band maximum is much

harder, so the -1 charge state is primarily targeted.

This calculation of NV in diamond formation energy serves to validate the ex-

isting setup and system parameters used. By referencing Weber et al. [6], compar-

isons can be made between formation energy plots and band gap values. Specif-

ically, while the band gap is a little smaller than Weber et al., the formation en-

ergy plots are nearly identical. This is likely because Weber et al. used the more

computationally-intensive GW correction while this research was performed with

hybrid functionals. In this way, future results for semiconductors with no reference

literature are also validated.

Fig. 16 also shows that the NV defect complex is energetically favorable to inde-

pendent VC and NC defects. This is because the formation energy for the NV defect

complex is less than the sum of independent VC and NC defects. The physical im-
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Figure 16: Formation energy plot for the nitrogen defect in diamond. VC represents the carbon
vacancy, NC the nitrogen substitution for carbon, and NV the carbon vacancy + nitrogen

substitution. On the x-axis is the Fermi level (εF) in reference to the valance band maximum
(VBM) of bulk diamond.

plication of this is that if both a VC and NC defect are introduced into the lattice, it

is energetically favorable for them to “find” each other to form a NV defect.

4.2 ZnSe Results

4.2.1 Band Structure

The ZnSe band structure is obtained very similarly to diamond. Using a pris-

tine unit cell, SCF and then NSCF calculations are run and then post-processed by

the VASP Wrapper. Fig. 17 shows the bands structure for ZnSe, with the band gap

equal to 1.137eV. The band gap calculations for ZnSe were not run with Hybrid

Functionals (instead with SCF + NSCF), and so are subject to DFT’s well-known

underestimation of the band gap.
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Figure 17: Limited bands spectrum of a
pristine ZnSe lattice shown in k-space.

Figure 18: Limited bands spectrum of a
pristine CdS Hawleyite lattice (as discussed in

Section 3.1.2) shown in k-space.

4.3 CdS Results

4.3.1 Band Structure

Utilizing the methods described in Section 3.1.3, the band structure for CdS was

calculated and is shown in Fig. 18. It should be noted that CdS’s band structure

appears very similar to ZnSe’s band structure (Fig. 17). The band structures differ

only slightly. One key difference between the two is that ZnSe’s band gap is larger,

but only by 10% as calculated here (and 17.5% with band gap corrections, as seen

in literature [8, 31]). This is one of the reasons why both were chosen for this

computational study.

The band gap for CdS is calculated to be 1.028 eV. Similar to ZnSe, CdS also

was not run with Hybrid Functionals, and so is subject to DFT’s well-known un-

derestimation of the band gap. Hybrid Functionals are a complicated step to take,

and so the method to calculate them has been shown for diamond’s band gap in

Appendix A. For additional readings on using Hybrid Functionals, see Ref. [32].
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Compound A (B) Impurities (X) Charge Range (q) Defect Formula

ZnSe Zn (Se) F [-2, +3] FZnV[−2,+3]
Se

Cl [-2, +3] ClZnV[−2,+3]
Se

Se (Zn) F [-2, +3] FSeV
[−2,+3]
Zn

Cl [-2, +3] ClSeV
[−2,+3]
Zn

CdS Cd (S) F [-2, +3] FCdV[−2,+3]
S

Cl [-2, +3] ClCdV[−2,+3]
S

S (Cd) F [-2, +3] FSV[−2,+3]
Cd

Cl [-2, +3] ClSV[−2,+3]
Cd

Table 2: Selected defects (XBVq
A) and charge state ranges for ZnSe and CdS.

This project developed a complex workflow using Python tools for performing

formation energy calculations in semiconductors for charged defects. It validates

that workflow for the NV center in diamond at the level of DFT calculations and

hybrid functionals. It also began to apply the workflow to analyze ZnSe and CdS

systems.

4.4 Future Work

In this project, future work includes formalizing the formation energy calcula-

tions for ZnSe and all of its intended defects. Additionally, once ZnSe has been

thoroughly studied, CdS will be studied as a potential housing structure for room-

temperature qubits. Since ZnSe and CdS have similar electronic structures, similar

defects will be studied in both.

Future work on ZnSe and CdS begins with the calculation of Zn, Se, Cd and S

chemical potentials within the confines of our current system. From there, defects

such as F and Cl will be introduced according to table 2.

To study each defect, there is a 5-step process which builds on top of the re-

search efforts already undertaken:
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1. Calculate the chemical potential of the most naturally occurring form of the

defect. For example, for the N defect in Diamond, the chemical potential of N

is calculated using N2. Alternatively, reference from literature can be drawn.

2. Modify the Python-based solver for the VC defect complex in diamond (Ap-

pendix B) for ZnSe/CdS. Plug the chemical potential into this solver for the

electronic structure of ZnSe/CdS with a substitution defect. This set of cal-

culations should include charge states in the range [-2, +3], for completeness

and cohesion with all of the other defect calculations. Analyzing these results

will help catch potential bugs as well as validate calculations.

3. Modify the Python-based multi-defect solver made for diamond (Appendix

C) for ZnSe/CdS. Use this to solve for all 3 types of defects (host-vacancy,

host-substitution, and defect-vacancy) across charge states in the range [-2,

+3] for each target defect.

4. Utilize the results of step 3 to calculate and plot the formation energy for each

defect.

5. Repeat steps 3 and 4 for each desired defect listed in Table 2.

After all of these steps, formation energy plots will be generated like the one

in Fig. 16. Based on these plots, stable charge states for each defect can be identi-

fied and Fermi levels for the predetermined so-called useful charge states will be

determined.
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CHAPTER FIVE

5 Conclusions

This work found formation energies for the NV defect complex in diamond,

utilizing the VC and NC defect formation energies along the way. With these re-

sults, this work guides future theoretical and experimental exploration of semi-

conductors with electronic properties similar to that of the NV defect in diamond.

Specifically, this work targets future exploration of ZnSe and CdS and provides a

guide of how exactly to explore these compound semiconductors.

Through the calculation of formation energy for many defects and charge states,

the determination of energetically favorable semiconductor/defect combinations

can be made. The predetermined useful charged defects states can be used to make

room-temperature qubits for quantum information processing (QIP). While QIP is

still in its infancy, we are already starting to see potential applications in data se-

curity, protein folding, artificial intelligence/machine learning, and economics.
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APPENDIX A

Diamond Unit Cell With Hybrid Functionals

This block of code demonstrates how to calculate the band gap of diamond

using hybrid functionals in a Python environment using the ab initio computational

simulation package VASP as well as the VASP Wrapper by John Kitchen [27]. This

block of code can be run on any computing cluster with VASP.6.X installed.

————————————– BEGIN CODE BLOCK ————————————–

1 #OS stuff
2 import subprocess as sp
3 import os
4 from pathlib import Path
5 import sys
6 #ase/vasp stuff (calculator object and atoms container)
7 from ase import Atoms
8 from ase.io import write
9 from ase.build import bulk

10 from vasp import Vasp
11 from vasp.vasprc import VASPRC
12 #math tools
13 import numpy as np
14

15 #used in a lot of places for file structure, etc
16 system_name = "diamond"
17 system_path = system_name + "/unitcellHybridFunctionals/"
18

19 #Create and go to the correct directory
20 # create the system directory as needed
21 Path(system_path).mkdir(parents=True, exist_ok=True)
22 prevDir = os.getcwd()
23 os.chdir(system_path)
24

25 # create the ’images’ directory as needed
26 Path(’images’).mkdir(exist_ok=True)
27

28 #Node stuff
29 VASPRC[’queue.q’] = ’batch’
30 queue = VASPRC[’queue.q’]
31 VASPRC[’queue.nodes’] = 24
32 VASPRC[’queue.ppn’] = 4
33

34 #system constants
35 a = 3.5717948718 # lattice const
36 ecutwfc = 750 # energy cutoff

35



37 N_RELAX = 2 # shells of relaxation
38

39 formula = ’C’
40

41 #where is the pristine supercell
42 ref_pot_full = "pristine/LOCPOT"
43

44 #lattice structure for 1x1x1 cell
45 lattice = [[a, 0.0, 0.0], # work with cubic cell
46 [0.0, a, 0.0],
47 [0.0, 0.0, a]]
48

49 basis = [[0.0, 0.0, 0.0],
50 [0.5, 0.5, 0.0],
51 [0.0, 0.5, 0.5],
52 [0.5, 0.0, 0.5],
53 [0.25, 0.25, 0.25],
54 [0.75, 0.75, 0.25],
55 [0.25, 0.75, 0.75],
56 [0.75, 0.25, 0.75]]
57

58

59

60 ############################################################
61 #Hybrid Functionals band structure calculation
62 ############################################################
63 #Creates the pristine unit cell for you in the background
64 latticeConst = a
65 pristine = bulk(formula, ’diamond’, a=latticeConst)
66 write("images/" + system_name + f"_pristine.cube", pristine)
67

68 r = pristine.positions
69 X = pristine.symbols
70

71 print("Locations of all the atoms:")
72 for j, rj in enumerate(r):
73 print(’{0}: ({1}, {2}, {3})’\
74 .format(X[j], rj[0], rj[1], rj[2]))
75

76 #set up vasp object
77 homedir = os.getcwd()
78 imgdir = os.path.join(homedir, ’images’)
79 jobdir = os.path.join(homedir, ’pristine’)
80 VASPRC[’queue.jobname’] = f"pristine_diamond"
81 calc = Vasp(jobdir, # output dir
82 xc=’PBE’,
83 kpts=[9, 9, 9],
84 encut= ecutwfc,
85 ismear=0, sigma=0.01,
86 lcharg=True, # you need the charge density
87 lwave=True, # and wavecar for the restart
88 gamma=[0,0,0],
89 atoms=pristine)
90
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91 #get the energy of the system (SCF calculation)
92 Epristine = calc.potential_energy
93 calc.stop_if(Epristine is None)
94 os.system(’rm pristine*.e*’)
95 print(f’The total energy is: {Epristine:8.04f} eV’)
96 print(’forces = (eV/ang)\n {0}’\
97 .format(pristine.get_forces()))
98

99 # p = bands figure
100 npoints, band_energies, p, Egap, Ecbm, Evbm =
101 calc.get_bandstructure_v02(
102 kpts_path=[(’$L$’, [0.5, 0.5, 0.5]),
103 (r’$\Gamma$’, [0.0, 0.0, 0.0]),
104 (r’$\Gamma$’, [0.0, 0.0, 0.0]),
105 (’$X$’, [0.0, 0.5, 0.5]),
106 (’$X$’, [0.0, 0.5, 0.5]),
107 (’$U$’, [0.25, 0.625, 0.625]),
108 (’$K$’, [0.375, 0.75, 0.375]),
109 (r’$\Gamma$’, [0, 0, 0])],
110 kpts_nintersections=10, ylim=(None, 50))
111

112 if p is None:
113 calc.abort()
114 else:
115 print(f’###PRISTINE CALCS###\n ’\
116 ’EPristine: {Epristine}\n Energy gap: {Egap}\n ’\
117 ’Conduction band minimum: {Ecbm}\n ’\
118 ’Valance band maximum: {Evbm}’)
119

120 figname = f’{imgdir}/{system_name}-fcc-’\
121 ’bandstructure_diamond.png’
122 p.savefig(figname)
123 print(f’\n#+caption: Band structure for ’\
124 ’{system_name} crystal.\n[[./{figname}]]\n’)
125

126 # Create a band structure plot using sumo-bandplot
127 banddir = os.path.join(jobdir, ’bandstructure’)
128 os.chdir(banddir)
129 sumo_cmdlist = [’sumo-bandplot’, ’-d’, imgdir]
130 sp.Popen(sumo_cmdlist)
131

132 figname = os.path.join(imgdir, ’band.pdf’)
133 figname2 = os.path.join(imgdir, f’{system_name}’\
134 ’-bands-DFT-HSE.pdf’)
135 if os.path.exists(figname):
136 os.rename(figname, figname2)
137 print(f’band structure plot:\n {figname2}’)
138

139 #go back to the folder where we started
140 os.chdir(prevDir)
141

————————————— END CODE BLOCK —————————————
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APPENDIX B

Solver for VC Defect Complex in Diamond

This block of code demonstrates how to calculate the formation energy for the

VC defect complex in diamond for charged states in the range [-2, 3]. The code is

in a Python environment and uses the ab initio computational simulation package

VASP as well as the VASP Wrapper by John Kitchen [27]. This block of code can be

run on any computing cluster with VASP.6.X installed.

————————————– BEGIN CODE BLOCK ————————————–

1 #OS stuff
2 import subprocess as sp
3 import os
4 from pathlib import Path
5 import sys
6 #ase/vasp stuff (calculator object and atoms container)
7 from ase import Atoms
8 from ase.io import write
9 from ase.build import bulk

10 from vasp import Vasp
11 from vasp.vasprc import VASPRC
12 #math tools
13 import numpy as np
14 import matplotlib.pyplot as plt
15 from mpl_toolkits.mplot3d import Axes3D
16 #tools to deal with calculations
17 import supercell_defect_relaxation as sdr
18 import AnalysisTools as ant
19 from vasp import defectTools as dTools
20

21 #used in a lot of places for file structure, etc
22 system_name = "diamond"
23 N = 2 # NxNxN supercell
24 system_path = system_name + "/supercell/n_" + str(N)
25

26 #Create and go to the correct directory
27 # create the system directory as needed
28 Path(system_path).mkdir(parents=True, exist_ok=True)
29 prevDir = os.getcwd()
30 os.chdir(system_path)
31

32 # create the ’images’ directory as needed
33 Path(’images’).mkdir(exist_ok=True)
34
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35 #Node stuff
36 VASPRC[’queue.q’] = ’batch’
37 queue = VASPRC[’queue.q’]
38 VASPRC[’queue.nodes’] = 8
39 VASPRC[’queue.ppn’] = 8
40

41 #system constants
42 a = 3.5717948718 # lattice const
43 ecutwfc = 750 # energy cutoff
44 #(defined earlier for folder structure)
45 #N = X # NxNxN supercell
46 nRelax = 2 # shells of relaxation
47 q_min = -3 # charge min
48 q_max = 3 # charge max
49 eps = 5.7 # dielectric constant of diamond
50 avg = 2 # averaging length, in Bohr
51

52 #[RECALCULATED BELOW]
53 #Eg = 4.141 # [eV] ESTIMATED bandgap of diamond
54 mu_C = -250.80891 # [eV] Chemical potential of carbon
55 mu_N = -383.9205 # [eV] Chemical potential of nitrogen
56 #[RECALCULATED BELOW]
57 #EVBM = 9.664 # [eV], valence band maximum
58 plot_points=100 # points in a formation energy plot
59

60 #Creates a plot that uses all lines instead of
61 # just the bottom of the plot
62 PLOT_ALL_FORMATION_LINES = True
63

64 #define the list of defects
65 add_C = [-1]#-1, -2
66 #add_N = [0, 1, 1]
67

68 #define the list of charges to try for each defect
69 q_arr = list(range(q_min, q_max + 1))
70

71 #chemical formula
72 formula = "C8"
73

74 #where is the pristine supercell
75 ref_pot_full = "pristine/LOCPOT"
76

77 #lattice structure for 1x1x1 cell
78 lattice = [[a, 0.0, 0.0], # work with cubic cell
79 [0.0, a, 0.0],
80 [0.0, 0.0, a]]
81 basis = [[0.0, 0.0, 0.0],
82 [0.5, 0.5, 0.0],
83 [0.0, 0.5, 0.5],
84 [0.5, 0.0, 0.5],
85 [0.25, 0.25, 0.25],
86 [0.75, 0.75, 0.25],
87 [0.25, 0.75, 0.75],
88 [0.75, 0.25, 0.75]]
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89

90 ’’’
91 Step 1: Standard self-consistent run
92 See: [1] https://www.vasp.at/wiki/index.php/Si_bandstructure#

Standard_self-consistent_.28SC.29_run
93 ’’’
94 #Creates the unit cell for you in the background
95 atoms = Atoms(symbols=formula,
96 scaled_positions=basis,
97 cell=lattice,
98 pbc=(1, 1, 1))
99 ######################PRISTINE Calculations

########################
100 #make the pristine supercell
101 pristine = sdr.makeSupercellPristine_rep(atoms, N, N, N)
102

103 #set up vasp object
104 homedir = os.getcwd()
105 jobdir = os.path.join(homedir, ’pristine’)
106 calc = Vasp(jobdir, # output dir
107 xc=’PBE’,
108 kpts=[9, 9, 9],
109 encut= ecutwfc,
110 ismear=0, sigma=0.01,
111 lcharg=True, # you need the charge density
112 lwave=True, # and wavecar for the restart
113 lvtot=True,
114 gamma=[0,0,0],
115 atoms=pristine)
116

117 #get the energy of the system (SCF calculation)
118 Epristine = calc.potential_energy
119 calc.stop_if(Epristine is None)
120 _, _, p, Egap, Ecbm, Evbm =
121 calc.get_bandstructure(
122 kpts_path=[(’$L$’, [0.5, 0.5, 0.5]),
123 (r’$\Gamma$’, [0.0, 0.0, 0.0]),
124 (r’$\Gamma$’, [0.0, 0.0, 0.0]),
125 (’$X$’, [0.0, 0.5, 0.5]),
126 (’$X$’, [0.0, 0.5, 0.5]),
127 (’$U$’, [0.25, 0.625, 0.625]),
128 (’$K$’, [0.375, 0.75, 0.375]),
129 (r’$\Gamma$’, [0, 0, 0])],
130 kpts_nintersections=10)
131

132 if p is None:
133 calc.abort()
134 else:
135 print(f’###PRISTINE CALCS###\n ’\
136 ’EPristine: {Epristine}\n ’\
137 ’Energy gap: {Egap}\n ’\
138 ’Conduction band minimum: {Ecbm}\n ’\
139 ’Valance band maximum: {Evbm}’)
140

40



141

142 #####Start defected calculation
143 #make the defected supercell
144 #type 1 is a single atom vacancy
145 defected = sdr.add_defect(pristine.copy(), nRelax, 1, ’center’)
146 #calculate the number of electrons for this defect
147 NELECT_defect = dTools.calcNElect(defected)
148

149 #draw atoms object
150 write("images/" + system_name + f"_defect_vacancy_{N}x{N}x{N}.png"

,
151 defected, show_unit_cell=2);
152

153 #initialize storage arrays
154 num_q_state = len( q_arr )
155 EDIFF = np.zeros( num_q_state ) # [eV] uncorrected energy

difference
156 EDIFFCORR = np.zeros( num_q_state ) # [eV] corrected energy

difference
157

158 #Run all calculations before trying to retrieve them
159 for i in range(0, 2):
160 # Iterate over the charge values
161 for q_idx, q in enumerate(q_arr):
162 #set up vasp object
163 homedir = os.getcwd()
164 imgdir = os.path.join(homedir, ’images’)
165 defectFolder = ’vacancy_q’ + str(q) + ’_nRelax’ + str(nRelax)
166 jobdir = os.path.join(homedir, defectFolder)
167 #*-1 because nelect is number of electrons (-1 charge each)
168 tot_num_electrons = NELECT_defect + -1*q
169 calc = Vasp(jobdir, # output dir
170 xc=’PBE’,
171 kpts=[9, 9, 9],
172 encut= ecutwfc,
173 ismear=0, sigma=0.01,
174 lcharg=False, # you need the charge density
175 lwave=False, # and wavecar for the restart
176 #output LOCPOT file (for sxdefectalign)
177 lvtot=True,
178 ibrion=1, # ionic relaxation
179 nelmin=4,
180 nelect=(tot_num_electrons),
181 gamma=[0,0,0],
182 atoms=defected)
183 #get the energy of the system (SCF calculation)
184 Edef = calc.potential_energy
185 print("Edef = ", Edef)
186 if i == 1:
187 calc.stop_if(Edef is None)
188 #make sure sxdefectalign is running in the
189 # right subdirectory
190 os.chdir(defectFolder)
191 print("Running defect alignment in defect folder "\
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192 + defectFolder)
193

194 EnergyCorrection =
195 ant.defectAlignment("../" + ref_pot_full, "LOCPOT",
196 N, q, ecutwfc, eps, avg, a,
197 location=’center’, VASP_RUN=True)
198

199 print("Energy correction for nelect "\
200 + str(tot_num_electrons)\
201 + ": " + str(EnergyCorrection))
202 Ediff = Edef - Epristine
203 Ediff_corr = Edef - Epristine + EnergyCorrection
204

205 EDIFF[q_idx] = Ediff
206 EDIFFCORR[q_idx] = Ediff_corr
207 #go back home
208 os.chdir(homedir)
209 ##end calculation loop
210 #clean up from jobs run
211 os.system(’rm DefaultJob.e*’)
212

213

214 #Now, the for-loop over charge states is complete. Let us
calculate the

215 # formation energy for the defect.
216 print("EDIFF: ", EDIFF)
217 print("EDIFFCORR: ", EDIFFCORR)
218 print("Calculating formation energy for diamond vacancy")
219 print("Raw energy differences: ", EDIFF)
220

221 mu = [Epristine/((N**3)*8.0),]
222 n_atoms_added = [add_C[0],]
223

224 EFermi, EFormMin, EForm =
225 ant.formationEnergy(
226 Egap, #ESTIMATED band gap of host material [eV]
227 plot_points, #points in a formation energy plot
228 q_arr, #list of charge states
229 EDIFFCORR, #corrected energy difference [eV]
230 Evbm, #valence band max (from own calcs) [eV]
231 mu, #list of chem. pot.s of all elements involved
232 # by species
233 n_atoms_added) #list of number of all elements involved
234 # by species
235

236 #Plot formation energy!!!
237 plt.clf()#clear anything previously using the plot
238

239 if PLOT_ALL_FORMATION_LINES:
240 for j, qval in enumerate(q_arr):
241 temp_line = plt.plot(EFermi[0,:], EForm[j,:],
242 Label="$q = {0}$"\.format(qval))
243 idx = round((0.25)*plot_points)
244 plt.text(EFermi[0, idx], EForm[0, idx],
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245 ’$V_C$’,
246 verticalalignment=’top’,
247 horizontalalignment=’left’,
248 color=temp_line[0].get_color())
249

250 plt.grid(True)
251 plt.legend()
252 plt.xlim((0, None))
253 plt.ylim((0, None))
254 plt.ylabel(’E (eV)’)
255 plt.xlabel(’$\epsilon_F - \epsilon_{VBM}$ (eV)’)
256 plt.savefig(f’images/FormationEnergyPlot_N{N}_nl{nRelax}’\
257 ’_d{avg}_all.png’)
258

259 plt.clf()
260 temp_line = plt.plot(EFermi[0,:], EFormMin[0,:])
261 idx = round((0.25)*plot_points)
262 plt.text(EFermi[0, idx], EFormMin[0, idx],
263 ’$V_C$’,
264 verticalalignment=’top’,
265 horizontalalignment=’left’,
266 color=temp_line[0].get_color())
267

268 plt.grid(True)
269 plt.xlim((0, None))
270 plt.ylim((0, None))
271 plt.ylabel(’E (eV)’)
272 plt.xlabel(’$\epsilon_F - \epsilon_{VBM}$ (eV)’)
273 plt.savefig(f’images/FormationEnergyPlot_N{N}_nl{nRelax}_d{avg}_’\
274 ’minTrace.png’)
275

276 #go back to the folder where we started
277 os.chdir(prevDir)
278

————————————— END CODE BLOCK —————————————
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APPENDIX C

Compound Solver for VC, NC and NV Defect Complexes in Diamond

This block of code demonstrates how to calculate the formation energy for the

VC defect complex in diamond for charged states in the range [-2, 3]. This code

uses the hybrid functionals-derived band gap from Appendix A. The code is in

a Python environment and uses the ab initio computational simulation package

VASP as well as the VASP Wrapper by John Kitchen [27]. This block of code can be

run on any computing cluster with VASP.6.X installed.

————————————– BEGIN CODE BLOCK ————————————–

1 #OS stuff
2 import subprocess as sp
3 import os
4 from pathlib import Path
5 import sys
6 #ase/vasp stuff (calculator object and atoms container)
7 from ase import Atoms
8 from ase.io import write
9 from ase.build import bulk

10 from vasp import Vasp
11 from vasp.vasprc import VASPRC
12 #math tools
13 import numpy as np
14 import matplotlib.pyplot as plt
15 from mpl_toolkits.mplot3d import Axes3D
16 #tools to deal with calculations
17 import supercell_defect_relaxation as sdr
18 import AnalysisTools as ant
19 from vasp import defectTools as dTools
20

21 #used in a lot of places for file structure, etc
22 system_name = "diamond"
23 N = 2 # NxNxN supercell
24 system_path = system_name + "/supercellHybridFunctionals/n_" + str

(N)
25

26 #Create and go to the correct directory
27 # create the system directory as needed
28 Path(system_path).mkdir(parents=True, exist_ok=True)
29 prevDir = os.getcwd()
30 os.chdir(system_path)
31 # create the ’images’ directory as needed
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32 Path(’images’).mkdir(exist_ok=True)
33

34 #Node stuff
35 VASPRC[’queue.q’] = ’batch’
36 queue = VASPRC[’queue.q’]
37 VASPRC[’queue.nodes’] = 16
38 VASPRC[’queue.ppn’] = 4
39

40 #system constants
41 a = 3.5717948718 # lattice const
42 ecutwfc = 750 # energy cutoff
43 #(defined earlier for folder structure)
44 #N = X # NxNxN supercell
45 N_RELAX = 2 # shells of relaxation
46 q_min = -3 # charge min
47 q_max = 3 # charge max
48 eps = 5.7 # dielectric constant of diamond
49 avg = 2 # averaging length, in Bohr
50

51 #obtained from my Hybrid Functionals calculations
52 EgapHybrid = 5.22599 # [eV] ESTIMATED bandgap of diamond
53 #[RECALCULATED BELOW]
54 #mu_C = -250.80891 # [eV] Chemical potential of carbon
55 mu_N = -8.3234 # [eV] Chemical potential of nitrogen
56 #obtained from my Hybrid Functionals calculations
57 EvbmHybrid = 9.13 # [eV], valence band maximum
58 plot_points=100 # points in a formation energy plot
59

60 #Creates a formation energy plot that uses all lines
61 # instead of just the bottom of the plot
62 PLOT_ALL_FORMATION_LINES = True
63

64 ##Defect constants -- doing this with an array of objects instead
of

65 ## parallel arrays for clarity
66 # Defect codes
67 # 1 --> vacancy
68 # 2 --> substitution
69 # 3 --> vacancy and adjacent substitution
70 # shortName = name that we can put on files, no spaces
71 # fullName = full name for the ouptut
72 # latexSym = usually for graphs
73 # substitution = symbol of substituted element (only for defect

code 2)
74 # neighborSub = symbol of substituted element in neighbor (only

for
75 # defect code 3)
76 class DefectContainer:
77 def __init__(self, shortName, fullName, latexSym, addedC, addedN,
78 defectCode, substitution, neighborSub):
79 self.shortName = shortName
80 self.fullName = fullName
81 self.latexSym = latexSym
82 self.addedC = addedC
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83 self.addedN = addedN
84 self.defectCode = defectCode
85 self.substitution = substitution
86 self.neighborSub = neighborSub
87

88 defectContainers = [DefectContainer(
89 shortName = ’C_vac’,
90 fullName = ’carbon vacancy’,
91 latexSym = ’$V_C$’,
92 addedC = -1,
93 addedN = 0,
94 defectCode = 1, #vacancy
95 substitution = None,
96 neighborSub = None
97 ), DefectContainer(
98 shortName = ’N_sub’,
99 fullName = ’nitrogen substitution’,

100 latexSym = ’$N_C$’,
101 addedC = -1,
102 addedN = 1,
103 defectCode = 2, #substitution
104 substitution = ’N’,
105 neighborSub = None
106 ), DefectContainer(
107 shortName = ’NV’,
108 fullName = ’nitrogen vacancy’,
109 latexSym = ’$NV$’,
110 addedC = -2,
111 addedN = 1,
112 defectCode = 3, #vacancy and adjacent substitution
113 substitution = None,
114 neighborSub = ’N’
115 )]
116 DEFECT_LOC = ’center’
117

118 #define the list of charges to try for each defect
119 q_arr = list(range(q_min, q_max + 1))
120

121 #chemical formula
122 formula = "C8"
123

124 #where is the pristine supercell
125 ref_pot_full = "pristine/LOCPOT"
126

127 #lattice structure for 1x1x1 cell
128 lattice = [[a, 0.0, 0.0], # work with cubic cell
129 [0.0, a, 0.0],
130 [0.0, 0.0, a]]
131

132 basis = [[0.0, 0.0, 0.0],
133 [0.5, 0.5, 0.0],
134 [0.0, 0.5, 0.5],
135 [0.5, 0.0, 0.5],
136 [0.25, 0.25, 0.25],
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137 [0.75, 0.75, 0.25],
138 [0.25, 0.75, 0.75],
139 [0.75, 0.25, 0.75]]
140

141

142

143 #’’’
144 #Step 1: Standard self-consistent run
145 # See: [1] https://www.vasp.at/wiki/index.php/Si_bandstructure#

Standard_self-consistent_.28SC.29_run
146 #’’’
147 #Creates the unit cell for you in the background
148 atoms = Atoms(symbols=formula,
149 scaled_positions=basis,
150 cell=lattice,
151 pbc=(1, 1, 1))
152

153 ######################PRISTINE Calculations
########################

154 #make the pristine supercell
155 pristine = sdr.makeSupercellPristine_rep(atoms, N, N, N)
156 write("images/" + system_name + f"_pristine_{N}x{N}x{N}.cube",

pristine)
157

158 #set up vasp object
159 homedir = os.getcwd()
160 jobdir = os.path.join(homedir, ’pristine’)
161 VASPRC[’queue.jobname’] = f"pristine_{N}x{N}x{N}"
162 calc = Vasp(jobdir, # output dir
163 xc=’PBE’,
164 kpts=[9, 9, 9],
165 encut= ecutwfc,
166 ismear=0, sigma=0.01,
167 lcharg=True, # you need the charge density
168 lwave=True, # and wavecar for the restart
169 lvtot=True,
170 gamma=[0,0,0],
171 atoms=pristine)
172

173 #get the energy of the system (SCF calculation)
174 Epristine = calc.potential_energy
175 calc.stop_if(Epristine is None)
176 _, _, p, Egap, Ecbm, Evbm =
177 calc.get_bandstructure(
178 kpts_path=[(’$L$’, [0.5, 0.5, 0.5]),
179 (r’$\Gamma$’, [0.0, 0.0, 0.0]),
180 (r’$\Gamma$’, [0.0, 0.0, 0.0]),
181 (’$X$’, [0.0, 0.5, 0.5]),
182 (’$X$’, [0.0, 0.5, 0.5]),
183 (’$U$’, [0.25, 0.625, 0.625]),
184 (’$K$’, [0.375, 0.75, 0.375]),
185 (r’$\Gamma$’, [0, 0, 0])],
186 kpts_nintersections=10)
187
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188 if p is None:
189 calc.abort()
190 else:
191 print(f’###PRISTINE SCF CALCS###\n ’\
192 ’EPristine: {Epristine}\n ’\
193 ’Energy gap: {Egap}\n ’\
194 ’Conduction band minimum: {Ecbm}\n ’\
195 ’Valance band maximum: {Evbm}’)
196 os.system(’rm pristine_*.e*’)
197

198 #Precaution: since I’m using the hybrid functional values for
199 # Egap and Evbm
200 Egap = Ecbm = Evbm = None
201

202 ######################DEFECTED Calculations
########################

203 #initialize storage arrays
204 numChargeStates = len(q_arr)
205 numDefects = len(defectContainers)
206 for i in defectContainers:
207 i.EDiff = np.zeros(numChargeStates)
208 i.EDiffCorr = np.zeros(numChargeStates)
209

210 #initialize chemical potential array
211 #carbon chemical potential is the
212 # pristine energy / number of carbon atoms
213 mu_C = Epristine/((N**3)*8.0)
214 mu = [mu_C, mu_N] #chemical potentials
215 print("Using carbon chemical potential of " + str(mu[0])\
216 + " and a nitrogen chemical potential of " + str(mu[1]))
217

218 #Run all calculations (i=0) before trying to retrieve them and
219 # use them (i=1)
220 for i in range(0, 2):
221 # Iterate over defects
222 for dfObj in defectContainers:
223 print(f"###RUNNING DEFECT CALCS FOR {dfObj.shortName}, i={i} "\
224 "(0 = calc run, 1 = post processing)##")
225 #make the defected supercell
226 #type 1 is a single atom vacancy
227 defected = sdr.add_defect(pristine.copy(),
228 N_RELAX,
229 dfObj.defectCode,
230 DEFECT_LOC,
231 dfObj.substitution,
232 substitutionNeighbor=dfObj.neighborSub)
233 print(f"##############################################"\
234 "N_RELAX={N_RELAX}, "\
235 "dfObj.defectCode={dfObj.defectCode}, "\
236 "DEFECT_LOC={DEFECT_LOC}")
237

238 #calculate the number of electrons for this defect
239 NELECT_defect = dTools.calcNElect(defected)
240

48



241 #draw atoms object
242 write("images/" + system_name
243 + f"_defect_{dfObj.shortName}_{N}x{N}x{N}.png",
244 defected, show_unit_cell=2)
245 write("images/" + system_name
246 + f"_defect_{dfObj.shortName}_{N}x{N}x{N}.cube", defected)
247

248 # Iterate over the charge values
249 for q_idx, q in enumerate(q_arr):
250 print(f"#####Charge {q}#####")
251 #set up vasp object
252 #homedir = os.getcwd()#[already calculated]
253 imgdir = os.path.join(homedir, ’images’)
254 defectFolder = f’{dfObj.shortName}/q{q}_nRelax{N_RELAX}’
255 jobdir = os.path.join(homedir, defectFolder)
256 #*-1 because nelect is number of electrons (-1 charge each)
257 tot_num_electrons = NELECT_defect + -1*q
258 VASPRC[’queue.jobname’] =
259 f"{dfObj.shortName}_q{q}_{N}x{N}x{N}"
260 calc = Vasp(
261 jobdir, # output dir
262 xc=’PBE’,
263 kpts=[9, 9, 9],
264 encut= ecutwfc,
265 ismear=0, sigma=0.01,
266 lcharg=False, # you need the charge density
267 lwave=False, # and wavecar for the restart
268 lvtot=True, # output LOCPOT file (for sxdefectalign)
269 ibrion=1, # ionic relaxation
270 nelmin=4, # used with ionic relaxation
271 nelect=(tot_num_electrons),
272 gamma=[0,0,0],
273 atoms=defected)
274 #get the energy of the system (SCF calculation)
275 Edef = calc.potential_energy
276 print("Edef = ", Edef)
277 if i == 1:
278 calc.stop_if(Edef is None)
279 #make sure sxdefectalign is running in
280 # the right subdirectory
281 os.chdir(defectFolder)
282

283 print("Running defect alignment in defect folder "
284 + defectFolder)
285

286 EnergyCorrection = ant.defectAlignment(
287 homedir + "/" + ref_pot_full, "LOCPOT",
288 N, q, ecutwfc, eps, avg, a,
289 location=DEFECT_LOC, VASP_RUN=True)
290

291 print("Energy correction for nelect "
292 + str(tot_num_electrons) + ": "
293 + str(EnergyCorrection))
294 dfObj.EDiff[q_idx] = Edef - Epristine
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295 dfObj.EDiffCorr[q_idx] =
296 Edef - Epristine + EnergyCorrection
297

298 #go back home
299 os.chdir(homedir)
300 #ENDIF defect alignment
301 #ENDFOR charge loop
302

303 #############DEFECTED Post ProcessingCalculations###############
304 #if we’re in the postprocessing stage
305 if i == 1:
306 #Now, the for-loop over charge states is complete.
307 # Let us calculate the formation energy for the defect.
308 print("Calculating formation energy for " + dfObj.fullName)
309 print("Raw energy differences: ", dfObj.EDiff[:])
310

311 #number of added/removed host and defect atoms
312 n_atoms_added = [dfObj.addedC, dfObj.addedN]
313 EFermi, EFormMin, EForm =
314 ant.formationEnergy(
315 #ESTIMATED band gap of host material [eV]
316 EgapHybrid,
317 #points in a formation energy plot
318 plot_points,
319 #list of charge states
320 q_arr,
321 #corrected energy difference [eV]
322 dfObj.EDiffCorr,
323 #valence band max (from own calcs) [eV]
324 EvbmHybrid,
325 #list of chem. potentials of all elements
326 # involved by species
327 mu,
328 #list of number of all elements
329 # involved by species
330 n_atoms_added)
331

332 #Store for convenience and later use
333 dfObj.EFermi = EFermi
334 dfObj.EFormMin = EFormMin
335 dfObj.EForm = EForm
336 ##end calculation loop
337 #clean up from jobs run
338 os.system(’rm *_*x*x*.e*’)
339

340

341

342 ######################Formation Energy Plots
!########################

343 plt.clf()#clear anything previously using the plot
344

345 #If we want a plot of all the formation energy lines,
346 # not just the bottom trace of the whole plot
347 if PLOT_ALL_FORMATION_LINES:
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348 k = 0 #moves the latex label down the line on the plot
349

350 #for each defect
351 for dfObj in defectContainers:
352 plt.clf()#clear anything previously using the plot
353

354 #for each charge state
355 for j, qval in enumerate(q_arr):
356 temp_line = plt.plot(dfObj.EFermi[0,:],
357 dfObj.EForm[j,:],
358 Label="$q = {0}$".format(qval))
359 idx = round((0.25 + k*0.05)*plot_points)
360 plt.text(dfObj.EFermi[0, idx],
361 dfObj.EForm[0, idx],
362 dfObj.latexSym,
363 verticalalignment=’top’,
364 horizontalalignment=’left’,
365 color=temp_line[0].get_color())
366

367 #set plot settings
368 plt.grid(True)
369 plt.legend()
370 plt.xlim((0, None))
371 plt.ylim((None, None))
372 plt.ylabel(’E (eV)’)
373 plt.xlabel(’$\epsilon_F - \epsilon_{VBM}$ (eV)’)
374 plt.savefig(f’images/FormationEnergyPlot_{dfObj.shortName}_’\
375 ’N{N}_nRelax{N_RELAX}_d{avg}_all.png’)
376

377 #move label left to right
378 k += 1
379

380 #Plot the actual formation energy plot (min trace of graph)
381 plt.clf()#clear anything previously using the plot
382 k = 0 #moves the latex label down the line on the plot
383 for dfObj in defectContainers:
384 temp_line = plt.plot(dfObj.EFermi[0,:], dfObj.EFormMin[0,:])
385 idx = round((0.25 + k*0.05)*plot_points)
386 plt.text(dfObj.EFermi[0, idx], dfObj.EFormMin[0, idx],
387 dfObj.latexSym,
388 verticalalignment=’top’,
389 horizontalalignment=’left’,
390 color=temp_line[0].get_color())
391

392 #move label left to right
393 k += 1
394

395 plt.grid(True)
396 plt.xlim((0, None))
397 plt.ylim((0, None))
398 plt.ylabel(’E (eV)’)
399 plt.xlabel(’$\epsilon_F - \epsilon_{VBM}$ (eV)’)
400 plt.savefig(f’images/FormationEnergyPlot_N{N}_’\
401 ’nRelax{N_RELAX}_d{avg}_minTrace.png’)
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402

403 #go back to the folder where we started
404 os.chdir(prevDir)
405

————————————— END CODE BLOCK —————————————
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