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Although gentamicin is a useful antibiotic, it results in permanent auditory and vestibular 
ototoxicity by damaging inner ear hair cells. A.aurita jellyfish ephyrae have functionally and 
morphologically similar hair cells to humans. They show permanent hair cell loss after exposure 
to 3.5 mM dose of gentamicin.  

Research objectives include determining whether lower doses of gentamicin (1mM) 
administered over a longer period of time can have therapeutic benefit free of permanent 
toxicity, while also evaluating the suitability of A.aurita jellyfish ephyrae to model 
aminoglycoside induced ototoxicity.  
Methods: 30 controls were exposed to artificial sea water (ASW) for one hour, and subsequent 
groups of 30 ephyrae were exposed to 1 mM gentamicin solutions for 1h, 24h, or 48h. Ephyrae 
were allowed to recover for one hour in ASW. The numbers of pulsations in one minute at 
baseline before exposure to gentamicin were then compared to pulsations/minute after transfer to 
ASW. 
Results: Ephyrae were paralyzed during 1mM gentamicin exposure, but jellyfish exposed to up 
to 48 hours of gentamicin recovered 92% of pulsatile function.   
Conclusions: 1 mM gentamicin is strong enough to paralyze ephyrae, but toxicity is, in fact, fully 
reversible.  A. aurita is a positive animal model on which to study human ototoxicity.           
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CHAPTER ONE 
 
 

Background 
 
 

Anatomy of the Ear  
 
 

The ear consists of three parts, the outer ear, the middle ear, and the inner ear. The 

outer ear and the middle ear are responsible for transmitting sound to the inner ear. The 

inner ear transduces vibrations of the perilymph into nervous impulses that are 

transmitted further to the auditory lobe. The inner ear consists of two labyrinths. The 

bony labyrinth lies within the temporal bone and the membranous labyrinth lies within 

the bony labyrinth. The inner ear derives from an auditory vesicle of ectodermal origin 

from the embryo’s head, and the vesicle eventually forms a utricle and a saccule. The 

utricle and saccule lie in a central part of the temporal bone, called the vestibule, and the 

utricle branches into three semicircular canals and the saccule proceeds on to form the 

cochlea.  

The cochlea is responsible for hearing, and the vestibular apparatus is responsible 

for balance. The cochlea and vestibular apparati have different functions, but they 

morphologically and functionally both operate by hair cells. Hair cells are specialized 

sensory mechanoreceptors which are called hair cells because they contain a bundle of 

stereocilia that contain actin and which sense fluid movement in cavities of the inner ear. 

Hair cells in the cochlea are innervated by the cochlear nerve. Hair cells of the vestibular 

apparatus are located in the utricle and saccule in sensory epithelium of the macula 
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located on swellings called ampullae at the base of the semicircular canals. The macula’s 

neuroepithelial cells are innervated by the vestibular nerve. 

 
 

Anatomy and function of the cochlea1 
 
 
The cochlea is the main auditory part of the inner ear. It runs as an anterior to 

posterior coiled loop which is wider at its base similar to a conch shell, containing about 

three turns. It contains three fluid filled cavities, including, from top to bottom, scala 

tympani, scala media, and the scala vestibuli. The scala tympani and scala vestibuli both 

contain a fluid called perilymph, which contains a high concentration of potassium ions 

and low concentration of sodium ions, and is thus similar in composition to cerebrospinal 

fluid. The scala media contains endolymph, which, in contrast to perilymph, has a high 

concentration of sodium ions and a low concentration of potassium ions.   For sound 

transmission, the vibration of tympanic membrane leads to successive vibrations of the 

three middle ear ossicles, the foot plate of the stapes in the oval window, the perilymph in 

the scala vestibule, and finally vibrations of the basilar membrane. At its basal end, the 

basilar membrane is stiff but gradually becomes wider and more flexible. Higher 

frequency sounds displace the basilar membrane near the oval window, and lower 

frequency sounds displace the basilar membrane further away from the oval window. The 

Organ of Corti lies inside the cochlea and has hair cells characterized by “hair” or 

stereocilia. The cells are attached at their base on the basilar membrane, and the tips of 

the cell fuse with the tectorial membrane. As sound waves vibrate the basilar membrane, 

a shearing force between the basilar membrane and the tectorial membrane develops, and 

the stereocilia are bent back and forth which leads to depolarization in hair cells and 



3 
 

creation of electrical signals.  Hair cells are of two types: the outer hair cells (OHC) and 

the inner hair cells (IHC). Both types of cells consist of stereocilia which are shorter near 

the modiolus and taller laterally. While both types have afferent and efferent endings, 

IHC have more afferent endings. OHC amplify the vibrations, and the IHC convert the 

mechanical signald via ion channels into electrical signals. Auditory nerve fibers rest 

below the hair cells and pass these signals on to the brain.  

 

 

 

 

 

Figure 1: Vestibular Apparatus2 

Anatomy and Function of the Vestibular Apparatus 

 

In the vestibule, neuroepithelial cells line the saccule and the utricle; these cells 

detect linear acceleration. These cells are classified as “hair cells” because of their 

stereocilia. Stereocilia are covered by a gelatinous layer that contain calcium carbonate 

crystals called “otoliths” that change position based on head movements related to 

gravity. The shearing of the hair cells against the gelatinous layer can cause deformation 

of the hair cells, resulting in action potentials that that are carried via the vestibular 

branch of the eighth cranial nerve. Similarly, the semicircular canals have receptor areas 

in their ampullae called cristae ampullaris, which detect angular acceleration. Cristae are 
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also covered with a gelatinous layer, called the cupula.  Movement of the cupula over the 

cristae leads to bending of stereocilia and generation of action potentials. Unlike cochlear 

hair cells, each vestibular hair cell consists of a bundle of 50-100 stereocilia and a single 

kinocilium.3  From the vestibular apparatus, signals go to neurons that control eye 

movements in the Vestibulo-ocular reflex (VOR) and to the cortex for coordinating body 

muscles for balance.  

 

 

 

 

 

 

Figure 2: Crista2  

Aminoglycoside Ototoxicity  
 
 
Commonly used medications which lead to sensorineural hearing loss (mostly a result of 

hair cell loss) include aminoglycoside antibiotics, platinum-based anti-cancer 

medications of which Cis-platinum is the lead example, loop diuretics, macrolide 

antibiotics, and antimalarial medications.4  Other common causes of hair cell loss related 

sensorineural deafness are aging (presbycusis) and exposure to intense noise. This review 
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is limited to the ototoxicity by aminoglycosides. Mechanism of damage by Cis-platinum 

is similar to that of aminoglycosides, and involves the formation of free radicals.5  

Aminoglycoside6 antibiotics include gentamicin, a prototype aminoglycoside 

(used in our research for that reason), tobramycin, kanamicin, neomycin, and amikacin. 

They are obtained either from actinomycetes in the soil, which are a kind of gram-

positive bacteria, or from their synthetic derivatives. They inhibit protein synthesis by 

selectively targeting prokaryotic ribosomes and thus do not affect eukaryotic cells.  

Aminoglycoside antibiotics, including gentamicin, are sometimes the best option 

to treat acute gram-negative infections, and they are most often used to treat bone 

infections, urine infections, and other recurrent pseudomonas lung infections in patients 

with cystic fibrosis. They are a second-line antibiotic for tuberculosis, which affects 

almost a third of the world’s population. Aminoglycosids are reemerging as a choice in 

anti-tubercular medications as resistance to first-line antibiotics increases.7 

Aminoglycosides can be produced at very low cost, making them very attractive to 

populations where these infections commonly spread as life-threatening epidemics. Other 

advantages to aminoglycosides are that they are (1) hypoallergenic, (2) more bactericidal 

than many other antibiotics, and (3) have less antibiotic resistance such as is seen 

commonly in fluoroquinoloes, which are another class of  antibiotics used to treat gram 

negative infections. Although aminoglycosides are such highly valuable antibiotics, their 

use is forcibly declined because of their severe ototoxicity and nephrotoxicity. The 

mechanisms by which aminoglycosides cause oto- and nephro-toxicity are strikingly 

similar.5 
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Approximately one third of patients who use aminoglycoside antibiotics for acute 

infections experience at least some degree of hearing loss, and about 15% patients who 

use aminoglycosides for acute infections experience some degree of vestibular 

symptoms.8  In patients with tuberclosis who used aminoglycoside antibiotics for six to 

twelve months, some degree of hearing loss occured in all patients.7 Aminoglycoside 

antibiotics differ in their degree of toxicity; neomycin is the most toxic, followed by 

gentamicin, kanamycin, tobramycin, amikacin, and netimicin. Amikacin, neomycin and 

streptomycin are more likely to damage the cochlea, and gentamicin and streptomycin are 

more likely to affect the vestibular hair cells.9  

The mechanism of aminoglycoside ototoxicity has been researched extensively. 

As evidenced by fluorescent tags, aminoglycosides first enter the endolymph from the 

blood and then affect hair cells. They accumulate in inner ear cavities and persist even 

after cleared from the serum.10 The antibiotic enters hair cells through nonselective 

channels of stereocilia although precise receptor mechanisms remain unclear.11 Some 

researchers postulate that the cationic portions of the aminoglycoside interact with the 

anionic portions of the hair cells, which results in their rapid transport into the hair 

cells.12 Cationic portions accumulate inside lysosomes, similar to their action in tubular 

cells in the kidneys.13.  Other researchers present evidence that mutant mice which do not 

express the gene Myosin VIIIA are protected against aminoglycoside ototoxicity, 

suggesting that proteins which are expressed by Myosin VIIIA facilitate aminoglycoside 

ototoxicity. The most convincing evidence, however, suggests that the main mechanism 

of damage is mediated through aminoglycoside reactions with transition metals, 

especially iron, to form free radicals or Reactive Oxygen Species (ROS) which cause hair 
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cell apoptosis or necrosis.14, 15,16 In one study, aspirin decreased hair cell loss by 75%,17  

presumably because salicylates c.helate ions are free radical scavengers. Vestibular 

toxicity is also mediated by ROS.18 

 
 

Impact of Senorineural Hearing Loss (SNHL) on Quality of Life 
 
 

Almost 15% of U.S. adults have decreased hearing. 19 SNHL associated with hair 

cell loss is the most common reason. Because hair cell loss is irreplaceable in humans and 

all mammals in general, most cases of deafness involve permanent deafness. Patients who 

do not hear well experience feelings of alienation and depression. 20  Although hearing 

aids and cochlear implants can help, loss of hearing affects people severely. Ototoxic 

drugs and aging also lead to loss of hair cells in the vestibule, which is also a permanent 

loss. Affected patients have dizziness, poor balance, or ataxia, abnormal eye movements 

(nystagmus), and often nausea and vomiting as a result of the unsteadiness and sensation 

of spinning. The vestibule-ocular reflex (VOR) is the most important vestibular pathway 

and is affected bilaterally by aminoglycosides which enter through the endolymph from 

bodily serum. Patients with their VOR negatively impacted by aminoglycosides suffer 

most commonly from oscillopsia. Vestibular dysfunction causes significant emotional 

distress, frequent hospitalizations, and can even be financially taxing due to difficulties 

with driving and employment.21 

Patients with loss of hair cells have few ameliorating options. As yet, regeneration 

of human hair cells has not been possible.22 Animal research, however, is underway to 

find drugs that can trigger hair cell regeneration in the human ear. In January 2013, 

Harvard researchers showed, for the first time, that regeneration of hair cells can occur in 
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mammals, specifically in a murine model. To trigger regeneration of these hair cells, 

patients used a drug that inhibits a protein called Notch which inhibits regeneration.23 

Further investigation concerning Notch remains.  

Until sensorineural hearing loss can be treated in humans, one of the options for 

severely deaf patients is to consider surgical placement of cochlear implants24. These 

mechanical devices work by acting directly on cochlear nerves using electrical impulses 

instead of using the usual basilar membrane deflections as a stimulus.  Although hearing 

is improved by such surgical replacements, patients also ultimately are at a risk for 

meningitis 30 times more than the general population. Additionally, the device and 

implantation of the implant can cost over $40,000. For these reasons, better alternatives 

to cochlear implants are being researched.   

 
 

Viability of Aurelia aurita as an Animal Model for Ototoxicity 
 
 
Aurelia aurita are transparent jellyfish that belong to the philum Cnidaria.25 26 

Cindarians are aquatic animals mostly found in marine waters. They include jellyfish, 

hydras, sea anemones, corals, and the Portuguese man-of-war. They all have stinging 

cells called cnidocytes, and the name "Cnidarian" literally means "stinging creature" in 

Latin. Aurelia are commonly referred to as moon jellyfish, which are the most common 

scyphozoan jelly fish, and they are commonly found near North American shores, 

typically at about a depth of 20 meters.  Cnidarians are carnivores; smaller jellyfish eat 

zooplankton and bigger jellyfish can also eat crustaceans. They are invertebrates with 

radial symmetry and three layers: an ectoderm, mesoglea, and endoderm.  
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Cnidarians change their form in alternate generations. 27 28 The adult sexual 

generation is a form referred to as a medusa. This has the well-known appearance of a 

typical jellyfish with an upper umbrella and lower tentacles facing downwards. The upper 

surface of the umbrella is smooth and is called exumbrella and the undersurface is 

referred to as the subumbrella, which has an orifice that serves as both mouth and anus of 

the jellyfish. This undersurface has a membrane called the velum to which are attached 

the tentacles and at its center is the mouth which leads to a gastrovascular cavity.  

Medusa are either male with sperm producing gonads or females with ova producing 

gonads. Their mating and sexual reproduction leads to production of eggs, which hatch 

and lead to production of tiny oval hairy and short-lived structures called planulae that 

eventually attach to a substrate to become polyps. Polyps are the alternate generation to 

medusa, and jellyfish spend more time in the polyp generation than in the medusa 

generation. 29 In contrast to medusa, polyps are sedentary or sessile with tentacles facing 

up and are cylindrical forms that attach themselves to solid substrates such as rocks. This 

appearance is typically seen in coral reef. They grow by budding, and they attach to each 

other to form large colonies. Polyps reproduce asexually by cloning in a process called 

strobilation. In strobilation, the stalk portion of the polyp develops transverse grooves 

leading to a stack of discs appearance. Each of these discs proceeds to bud off into tiny 

baby jellyfish called ephyrae, the larval stage of the jellyfish.30 The ephyrae eventually 

become medusa, marking a return to the sexual generation. The extent of strobilation is 

variable, but healthier polyps will give rise to more ephyrae more quickly. Monodisc 

stobilation generates a singly ephya per stobila, while polydisk strobilation produces up 

to 30 ephyrae.31, 32 Ephyrae, which are about 4 to 15 mm in size grow to become the adult 
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(medusa) form of the jellyfish, which can have a breadth of several feet. Except for size, 

ephyrae and medusae are morphologically similar. 33 

Jellyfish have an advanced but non-centralized nervous system with nerves 

throughout their body, which is called a Nerve Net, and jellyfish use the nerve net to 

respond to the environment.  This nerve net covers the subumbrella, but it is also 

distributed throughout the body so that the whole body of the jellyfish is stimulated in 

response to an insult anywhere on the body. These nerve impulses then accumulate in 

eight neuronal aggregations or ganglia called rhopalia that are found at regular intervals 

on the margin of the bell (the umbrella) in both the medusa and the ephyrae.34 These 

ganglia are interconnected by longitudinal tracts across the velum on the subumbrella, 

and in a circular tract called inner nerve ring on the bell margin. Each rhopalia contains a 

gravity sensor by which jellyfish can perceive if they are floating up or down or are tilted. 

The rhopalia may also contain olfactory sensors, light sensors, and eyes. Each rhopalia 

has two ocelli that have the appearance of being photoreceptors.35 Rhopalia aid jellyfish 

when they seek deeper water to avoid sunlight or if water currents are too strong as in 

stormy weather.   



11 
 

 

Figure 4: Jellyfish Rhopalia36  

Cnidarians are the most primitive animals to show such neurological prowess, and 

they are more advanced than sponges in that they use very fast signal conduction to react 

with quickly directed behavior in response to complex sensory stimuli. They also exhibit 

complementary internally generated rhythmic behavior related to pulsatile swimming.  

Their nerve nets for feeding and movement appear independent, and the rhopalia have a 

regular rhythm to coordinate swimming and show pulsations even when isolated in 

vitro.37  

Jellyfish have coronal, longitudinal, and radial muscles. Circular muscle 

contraction expels water from the subumbrellar cavity to propel the body forward, and 

the coronal muscle pulsates to help the animal move. The loose gelatinous mesoglea 

helps keeps jellyfish buoyant. They are capable of upwards movement, with quick 

upwards pulsations followed by a slow sinking in which they spread tentacles again to 

maximize catching prey.38  The swimming is like the opening and closing of an umbrella, 
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in which the opening collects the water in the subumbrellar cavity and its closing propels 

the animal in the opposite direction. The direction of swimming depends on location of 

food, threat, or other environmental factors such as light and temperature.  One review 

concluded that Aurelia’s “swimming in response to somatosensory stimulation, 

swimming down in response to salinity, diving in response to turbulence, avoiding rock 

walls” are not simple reflexes but require specialized sensory receptors to provide 

feedback to directed behavior.39     

Although rhopalia coordinate jellyfish motor movements by directing muscle 

contraction, sensory information is provided to the system by clusters of hair cells which 

are present on the velum, the membrane of the subumbrellar surface, and on the bases of 

tentacles.40 Mechanoreceptors associated with the cnidocytes of Aurelia send impulses 

through axons which run through the jellyfish’s central nervous system.41  Mechanical 

currents near these hair cells lead to evoked potentials which are transducted 

intracellularly. Potentials transmitted intracellulary from the nerve ring were actually able 

to be recorded in Aglathia, another species of jellyfish.  

The jellyfish hair cells is remarkably similar to the human inner ear hair cell and 

is also extremely sensitive to changes in position and environment.  Hair cells are 

directionally sensitive, and morphological polarization of the hair cell bundle in 

vertebrates is related to this functional directionality.42  Deflections of the hair bundle 

towards its long end evoke depolarizations, while deflections in the opposite direction 

produce hyperpolarizations; deflections at right angles to this axis produce no change in 

membrane potential.43  Such characteristics hint that the cnidarian hair cell must be 

evolutionarily related to the human hair cell. 
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Research has shown that hair cells in jellyfish and in vertebrates (including the 

human ear) are similar morphologically and functionally. Hair cells in jellyfish have a 

central non-motile cilium surrounded by a collar of microvilli. 40 The microvilli are 

graded in length, from long on one side to short on the other, giving the collar a marked 

polarity and the cilium is located at the long end. Such a hair bundle is amazingly also the 

central feature of the human hair cell. While jellyfish hair cells are simple and fewer, they 

share the 9+2 pattern of microtubules of ciliae in humans.  In jellyfish, however, the 

stereocilium, however, does not appear to be involved in mechanoelectrical transduction, 

whereas in humans where they are vital to eventual signal transduction.44  

The tactile hairs on the velum of jellyfishes are set in specific orientation 

suggesting that, like vertebrates, they too are mechanoreceptors that possess directional 

sensitivity. The velum is also a delicate membrane that vibrates on receiving mechanical 

currents, and its relationship to hair cells is similar to the relationship the basilar 

membrane holds in relation to hair cells in the organ of Corti.40 While jellyfish hair cells 

are strictly sensory neurons, vertebrate hair cells are epithelial structures which each 

connect to an afferent neuron at their ends. The similar morphology and function predict 

that effects of toxins on hair cells of invertebrate jellyfish should mirror the effects of 

toxins on vertebrate hair cells, including those in the human ear. Additionally, since hair 

cells serve as primary sensors of orientation in jellyfish, impairments in behavioral 

swimming and pulsing abilities can be correlated to degree of damage to hair cells.  
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Existing Animal Models for Studies in Ototoxicity 

Loss of hair cells is the most common reason of hearing loss, and hair cell loss is 

considered permanent in mammals. The only viable solution to permanent hair cell loss is 

to discover safe means by which hair calls in the human ear can be stimulated to 

regenerate. The inner ear, however, which houses the hair cells, is relatively inaccessible, 

and research in ototoxicity is made even more difficult because the changes that occur in 

dying hair cells are at a microscopic level. Additionally, molecular mechanisms that can 

be significant enough to influence hair cell regeneration are complex.  

For over two decades, researchers have attempted to study ototoxicity in animal 

models. Scientists have studied the effectiveness of different animal models for human 

ototoxicity by examining behavioral responses to aminoglycosides and intense noise, 

impairment of responses to auditory brain-stem evoked potentials following 

aminoglycoside exposure, and the morphological changes that can occur in vitro on cell 

cultures of hair cells. Science has successfully regenerated hair cells in evolutionarily 

“lower” animals, such as birds, fish, and invertebrates, but mammalian animal models 

which both are sensitive to aminoglycoside exposure and are able to regenerate lost hair 

cells remain elusive. The remaining chapter discusses the three most commonly used 

animal models for aminoglycoside ototoxicity, the chicken, mouse, and zebrafish, and 

compares and contrasts them to this study’s newly proposed jellyfish model for 

aminoglycoside ototoxicity. 

 Chickens.  As mentioned before, hair cell regeneration was found to be common 

in birds, including chicken, quail, parakeets, and other birds, and indeed some scientists 
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posit birds as currently the most positive animal models we have for human otoxoxicity. 

Current research postulates that the hair cells are able to be regenerated because 

supporting cells develop into newer hair cells. 45 Strikingly, regeneration in auditory 

ephithelia is possible even after exposure to high-intensity sound, aminoglycosides, and 

Cis-platinum. Regeneration of hair cells in birds is promising because even though birds 

are not vertebrates, they are warm blooded animals, and thus closer to the vertebrate than 

fish. Just as hair cells in the chicken cochlea can regenerate, hair cells in vestibular 

epithelia can also be spontaneously regenerated, as evidenced in chicken vestibular 

apparati.46 Limitations of using the bird as a viable animal positive model include of 

course expense, size, and limited reproducibility with long gestation periods. 

 
 
 

Mice.  Although mice and rats have the ability to undergo transgenic 

experimentation and can reproduce relatively easily, aminoglycoside ototoxicity was 

previously not studied in mice or rats because it was believed that they were resistant to 

these antibiotics.  Neverthless, Wu et al in 2001 found that mice did in fact show ototoxic 

side effects, similar to humans, in response to aminoglycoside exposure. Aminglycoside 

exposure reduced the degree of brain stem evoked auditory responses, affected vestibular 

function, and led to a loss of both auditory and vestibular hair cells.47 Mice also show 

impaired swimming ability, evidence of disordered vestibular dysfunction, after 

aminoglycoside exposure. Although avian regeneration gave hope that hair cell 

regeneration may occur in mammalian species, scientists failed to regenerate hair cells in 

the gerbil48, and there was, in fact, no hair cell regeneration after embryonic day 14. 49  
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Although a few cultured murine supporting cells do differentiate into hair cells in vitro, 

recovery from this damage was limited mainly to vestibular compensation. 50,51  

Nevertheless, in January 2013, scientists were able to regenerate, for the first 

time, lost hair cells in mice with the aid of a drug that inhibited Notch, an inhibitor of hair 

cell mitosis.23 Conclusions of this study have yet to be tested on humans, and further 

research remains to establish mice as positive models for hair cell regeneration.  

 

 
Zebrafish.  Zebrafish have emerged recently as a possible model for 

aminoglycoside ototoxicity. An obvious limitation to using the zebrafish as a model for 

human ototoxicity is that zebrafish are cold blooded vertebraes. They do, however, have 

transparent inner ears, an easily accessible lateral line which is located outside their body, 

and mechanoreceptors exist in both locations. The mechnoreceptors are histologically 

and functionally similar to hair cells in the inner human ear. These hair cells help the 

zebrafish in sensing environmental stimuli such as water currents, prey, and danger and 

responding with change in direction and manner of swimming. Just as murine, avian, and 

human hair cells, zebrafish hair cells are sensitive to aminoglycosides and Cis-platinum.  

The pattern of hair cell loss is also remarkably similar to the loss of hair cells in the organ 

of Corti, proceeding from the base to the apex of the cochlea, and from the outer hair 

cells to the inner hair cells. Moreover, just as sensorineural hearing loss in humans 

manifests as loss of hearing of higher frequency sounds, the zebrafish have fewer brain 

stem provoked auditory responses in responses to sounds of higher frequency.  
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Inhibiting Notch in zebrafish also regenerated hair cells, and at a remarkably rapid 

rate.52,56 The similarity of human hair cells to zebrafish hair cells, combined with the 

ability to regenerate hair cells rapidly in zebrafish, has resulted in their being used 

already to test otoxtoxicity of several chemicals.57  

 
 
 
Jellyfish.  As discussed previously, jellyfish ephyrae can also serve as a positive 

animal model of ototoxicity. Jellyfish ephyrae possess hair cells that are similar to human 

hair cells in both morphology and polarity.  They generate action potentials in response to 

minor mechanical displacements of the velum, which is very reminiscent of the basilar 

membranes in the human cochlea and vestibular epithelia. 40 

Using moon jellyfish Aurelia, and its larval stage ephyrae, as models for 

development of graviceptors were first pioneered by Dr. Sprangenberg starting in the 

1960s. She noted that rhopalia of ephyrae developed statocysts with statoliths, ocelli, 

ciliated mechanoreceptors cells, and gravireceptors, all of which feature hair cells as their 

basic units. 53 Amazingly, the development of these rhopalia is so hardy that they emerge 

even in ephyrae grown in space.54  

Like zebrafish, jellyfish can also reproduce quickly and reliably over long periods 

of time. Dr. Spangenberg’s lab, for instance, features a polyp colony that was started in 

1935 by Frank J. Lambert in Essex, England. 55  

 
 
 
Advantages of Using Aurelia as Animal Model for Ototoxicity.  The zebrafish is 

the most important competitor for the jellyfish; birds are inconvenient animal models and 
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murine animals have yet to show reliable hair cell recovery. Aurelia possess four major 

advantages over zebrafish to be a positive model for aminoglycoside ototoxicty.  

1. Movements of ephyrae can be studied immediately after their metamorphosis from 

polyps. At 12 to 21 degrees C, ephyrae increase in size from 4 mm to 1.4 cm over 14 

days. Their small size is preferable to the relatively larger size of other animals, such 

as the jellyfish, which can grow up be about 6 cm in size.56  

2. The zebrafish develops its nervous system slower than A. aurita. Complex behaviors 

such as responses to visual and auditory stimuli are only apparent from 5 days after 

fertilization.57 Sexual maturity can take up to three months.58 Perhaps most 

importantly, the semicircular canals are not functional until the zebrafish are a month 

old.59   

3. A. aurita govern their movements almost entirely by mechanoreceptors since they 

have such a rudimentary vision system. Since zebrafish have tetrachromatic vision 

(ability to see ultraviolet light), which is actually even more advanced than human 

trichromatic vision, behavioral impairments due to aminoglycoside exposure may be 

mitigated by their spectacular ocular vision. 60 Degree of behavioral impairment in 

Aurelia will therefore correlate more closely with extent of vestibular hair cell 

impairment.  

4. Jellyfish and other cnidarians use only jet propulsions, which can originate only from 

their nervous system. Aglantha, for instance, have a burst speed of 13 body lengths 

per second. 61 This is in contrast to fishes which propel with their tails and can use 

water currents.  Thus, changes in swimming ability (an easily monitored behavioral 
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trait) will more likely and more reliably be indicative of nervous system dysfunction 

in jellyfish than in zebrafish.  

Nevertheless, the zebrafish remain a very attractive model because of the extent 

of research that has been done on them. Zebrafish research results in one thousand 

publications a year. Neurological studies on Aurelia is limited to the studies Dr. 

Spangenberg has conducted in the past thirty years.  

 
 

Previous Studies of Ototoxicity on Aurelia aurita  
 

 
Recently, studies by other researchers at our laboratory have found a significant 

dose-dependent relationship in loss of hair cells both functionally and morphologically 

when gentamicin was used in doses of 1mM, 2mM, and 3.5mM. Specifically, 

morphological hair cell loss occurred in rhopalia of Aurelia ephyrae that were exposed to 

gentamicin at a 3.5mM.62  

 

Research Objectives and Importance of Research 

 
While it was apparent that jellyfish hair cells experience permanent histological 

damage when exposed to 3.5mM gentamicin after even a short duration period, it remains 

unclear if gentamicin exposure for a longer period at a smaller dose would also result in 

irreversible hair cell loss.  

This study seeks to explore if 1 mM gentamicin is a strong enough dose to affect 

jellyfish hair cells, which are both functionally and morphologically similar to human 

hair cells, while still allowing for hair cell recovery and reversible toxicity. The possible 
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impacts of longer exposure to gentamicin were also tested. Jellyfish were exposed to 0, 1, 

24, and 48 hours of gentamicin, and their pulsatile activity was recovered before and after 

their exposure to gentamicin. Pulsatile activity is linearly correlated to degree of 

functionality of hair cells. 

The study has the potential to have long term implications. If toxicity is shown to 

be reversible in jellyfish, which have hair cells remarkably similar to mammalian hair 

cells, then gentamicin, an important and effective antibiotic, can perhaps be further 

investigated with the aim of eventually reintroducing it at a smaller dose over a longer 

period of time to human populations. 

This study also aims to further study and evaluate the suitability of Aurelia 

auritarita as an efficient model for aminoglycoside ototoxicity. 
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CHAPTER TWO 
 
 

Materials and Methods 
 
 
 

Culturing Ephyrae 
 
 

All experiments were conducted in the laboratory of Dr. Dorothy Sprangenberg at 

Eastern Virginia Medical School in Norfolk, Virginia. The lab collects Aurelia auritarita 

polyps yearly in Norfolk, Virginia , and they were cultured in artificially made sea water 

(ASW). Strobilation (metamorphosis) was induced by iodine which jellyfish use to 

synthesize jellyfish-thyroxine, or by thyroxine /1,2/.  Iodine and thyroxine solutions were 

made up in ASW to achieve concentrations of 1 x 105M for induction of metamorphosis. 

The cultures were fed Artemia salina (brine shrimp) once weekly and transferred to 

artificial sea water in clean culture dishes pre-treated with anion-exchange beads to 

remove iodide. Within 72 hours of inducing strobilation at 28C,  ephrae develop eight 

ganglion like rhopalia and the ability to swim and balance themselves similar to medusa 

jellyfish.  The rhopalia give rise to mechanoreceptor cells(“hair cells”)63. Very similar 

hair cells have been found in other animals, including vertebrates64.  Aurelia auritarelia 

use these cells to sense gravity and correct orientation.65  Rhopalia also stimulate 

spontaneous rhythm of the animal’s pulse, and the connections of the rhopalia  with the 

giant fiber nerve net conduct excitation at each beat. The giant fibers then propagate the 

contraction wave over both radial and circular muscles. 
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Figure 5: Life Cycle of Laboratory-Grown Aurelia auritarita (not drawn to size) 
Representations 
A. Polyp which self-replicates by budding 
B. Strobilation stages (B and B1 represent early stages, B2 represents a late stage showing ephrae 
formation) 
C. Post strobilation stages (C represents free-swimming ephyrae) 
D. Medusa 
E. Planular larvae 
 
 
 
Experimental Procedure 

 
 

Once strobilation and growth of ephyrae is complete, the procedure consists of three 

parts: 

1. Preparing test tubes for experimentation and selecting “Swimmer” jellyfish. 

2. Preparing 1mM gentamicin solutions. 

3. Carrying out three comparative experiments involving 40 jellyfish each. Each of 

the jellyfish were exposed to varying duration times of gentamicin 

(“experimentation”).  

These are described in more detail below.  
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Preparing test tubes for Experimentation and Selecting Swimmer Jellyfish 

1. 40 flat bottom, 15 ml glass test tubes were placed in a test tube rack. These were 

the “first set, or priming set” of 40 test tubes.    

2. 10 ml of artificial sea water were put in each of the forty test tubes using a pipette. 

3. Single ephyrae were pipetted from the culturing dish to each of the forty test 

tubes. 

4. Baseline behavior of ephyrae was observed and recorded for each of the ephyrae. 

If any of the ephyrae were not swimmers, they were replaced such that prior to 

starting the experiment all 40 ephyrae were confirmed swimmers.  

5. An ephyra is confirmed as a swimmer by the following two criteria:  

a) Swimmers will be able to consecutively pulse four times in a specific 

direction.  

b) They will exhibit their normal orientation in which the ephyra’s mouth will 

point downwards. 

As explained above, the aforementioned procedure occurred three times to provide for 

three comparative experiments. 
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Preparation of Gentamicin Solutions 
 
 
1mM gentamicin solutions were to be prepared.  

238.79 mg of commercially available Gentamicin Sulphate salt powder (477.59 g/mol; 

Sigma-Aldrich, St. Louis, MO) were put in in 500 ml of ASW and placed in big flask. 

This flask was stored in the refrigerator at 4 degrees C. This was repeated two more 

times. 

The three resulting identical 1 mM gentamicin solutions were used in experimentation.   
 
 
 
Experimentation 
 
 

1. A set of 40 new, rinsed and dried, and numbered test tubes were placed in a test 

tube rack. Each was filled with approximately 10 mL of artificial sea water.  

2. 40 ephyrae that were confirmed swimmers (see above) were pipetted into the set 

of these 40 numbered test tubes.   

3. The number of pulsations per minute in ASW were recorded (“baseline data”).  

4. A second set of 40 new, rinsed and dried, and numbered test tubes were prepared. 

Test tubes 1-10 were filled with 10 mL of ASW, and test tubes 11-40 were filled 

with 10 mL of 1mM gentamicin. 

5. Jellyfish ephyrae were transferred from the first set of test tubes to the 

corresponding test tubes in the second set. Thus, jellyfish in test tubes 11-40 are 

transferred from ASW to 1 mM gentamicin, while jellyfish in test tubes 1-10 

serve as controls (transfer from ASW to ASW). 
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6. After transfer to the second (test) set of test tubes, ephyrae were kept in these test 

tubes for varying durations of time. Trial 1 held the 40 jellyfish in the second set 

of test tubes for one hour, Trial 2 held the jellyfish in the second set of test tubes 

for 24 hours, and Trial 3 held the jellyfish in the second set of jellyfish for 48 

hours. They were placed in incubators.  

7. The number of pulsations per minute were recorded for each jellyfish at set times 

while they were incubated. Observations were taken at 1 hour, 24 hours, and 48 

hours during incubation. (Since Trial 1 held the jellyfish in incubation for only 1 

hour, there is no incubation data for trial 1, only baseline and recovery data).  

8. A third set of 40 new, rinsed and dried, and numbered test tubes were prepared. 

10 mL of ASW were placed in each of these test tubes. 

9. Upon completion of incubation time, the 40 jellyfish were pipetted carefully yet 

again into the third set of test tubes, each of which were filled with artificial sea 

water. 

10. After one hour in artificial sea water, the number of pulsations per minute were 

recorded for each jellyfish (“recovery data”).  
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CHAPTER THREE 
 
 

Results 
 
 
 

Hypotheses 
 
 
Null Hypothesis: There is no difference in the mean percentages of recovery of pulsatile 

motion after an hour in artificial sea water among groups of jellyfish exposed to varying 

durations of exposure times to gentamicin.  

Alternate Hypothesis: The mean percentages of recovery of pulsatile motion after an hour 

in artificial sea water will be less for those groups of jellyfish exposed to gentamicin for a 

longer period of time.  

Four groups of Jellyfish were tested at baseline and after 1 hour of recovery time in 

artificial sea water (ASW) after being exposed to gentamicin for varying durations of 

time.  

a. Group 1- Jellyfish 1-10: No exposure to gentamicin  
b. Group 2-Jellyfish 11-20: 1 hour of exposure to gentamicin 
c. Group 3-Jellyfish 21-30: 24 hours of exposure to gentamicin 
d. Group 4-Jellyfish 31-40: 48 hours of exposure to gentamicin  

 

ANOVA (Analysis of Variance) 

A successful ANOVA depends on sample data meeting three assumptions, listed below. 

The experimental data successfully fulfilled all three assumptions.  
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1. Independently collected samples. 

2. Normality. All groups show a normal distribution, as tested by the Normal 

Distribution Function of Excel.  

3. Homoscedasticity (equality of variances). There is an inequality in variance 

values, and some samples show a relatively large degree of variance (below). This 

can be reversed in future tests by primarily testing a larger sample size. Inequality 

of variances, however, can also possibly reflect an inherent weakness of the 

jellyfish model for aminoglycoside ototoxcity.   

 
 
Data 
 
 
Table 1: Mean Number of Pulses at Baseline in ASW Before Treatment (“Baseline 
Data”) and After One Hour of Recovery in ASW (“Recovery Data”) 
 
 
 
JF
# Group 1 

Before 
Group 1 
After 

Group 2 
Before 

Group 2 
After 

Group 3 
Before 

Group 3 
After 

Group 4 
Before 

Grou
p 4 
After 

1 27 20 116 100 21 36 11 19 

2 44 39 33 19 73 40 46 36 

3 21 35 46 22 70 54 25 54 

4 25 75 35 31 42 38 28 62 

5 51 54 70 70 32 72 52 45 

6 20 34 54 49 45 27 121 46 

7 81 38 10 6 44 21 25 60 

8 26 16 62 51 43 56 42 26 

9 37 46 19 30 42 26 42 47 
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10 44 15 31 33 41 49 26 36 

11 19 LOST 45 42 40 21 11 28 

12 48 36 36 19 40 33 68 20 

13 45 63 28 22 39 25 55 35 

14 70 30 35 27 38 47 12 12 

15 33 60 25 33 37 39 24 6 

16 40 76 27 8 36 36 22 18 

17 87 95 76 18 35 26 16 12 

18 17 22 41 24 34 22 54 19 

19 26 33 67 20 33 28 28 16 

20 21 53 29 20 32 34 22 10 

21 9 12 30 20 31 40 30 30 

22 24 16 17 3 30 28 14 25 

23 62 44 42 LOST 85 31 16 17 

24 20 22 62 15 66 12 20 10 

25 10 10 34 46 38 62 24 26 

26 35 42 30 12 32 24 42 21 

27 34 66 30 29 11 11 36 39 

28 22 21 43 36 81 86 17 33 

29 41 28 74 18 67 55 33 28 

30 91 54 18 22 29 35 16 17 
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Table 2:  Percentile Recovery of Pulsations/Minute  
 
 Group 1 Group 2 Group 3 Group 4 

1 0.740741 0.862069 1.714286 1.727273 

2 0.886364 0.575758 0.547945 0.782609 

3 1.666667 0.478261 0.771429 OUTLIER 

              
4 

OUTLIER 0.885714 0.904762 2.214286 

5 1.058824 1 OUTLIER 0.865385 

6 1.7 0.907407 0.6 0.380165 

7 0.469136 0.6 0.477273 OUTLIER 

8 0.615385 0.822581 1.302326 0.619048 

9 1.243243 1.578947 0.619048 1.119048 

10 0.340909 1.064516 1.195122 1.384615 

            
11 

LOST 0.933333 0.525 1 

12 0.75 0.527778 0.825 0.294118 

13 1.4 0.785714 0.641026 0.636364 

14 0.428571 0.771429 1.236842 1 

15 1.818182 1.32 1.054054 0.25 

16 1.9 0.296296 1 0.818182 

17 1.091954 0.236842 0.742857 0.75 

18 1.294118 0.585366 0.647059 0.351852 

19 1.269231 0.298507 0.848485 0.571429 

20 2.52381 0.689655 1.0625 0.454545 

21 1.333333 0.666667 1.290323 1 

22 0.6875 0.176471 0.933333 1.785714 

23 0.354839 LOST 0.364706 1.0625 

24 1.1 0.241935 OUTLIER 0.5 

25 1 1.352941 1.631579 1.083333 

26 1.2 0.4 0.75 0.5 
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27 1.941176 0.966667 1 1.083333 

28 0.954545 0.837209 1.061728 1.941176 

29 0.682927 0.243243 0.820896 0.848485 

30 0.593407 1.222222 1.206897 1.0625 

*Irregular and nonavailable data points were eliminated. Box plots revealed that jellyfish ephyrae which 
either recovered less than 50% in pulsatile function after treatment (percentile recover <.5) or doubled 
(percentile recovery>2) classify as outliers. Only 4 of 120 points classified as outliers.  
 
N.B. A percentile recovery value over one signifies an increase in the number of pulsations after the 
treatment (or no treatment, in the case of controls) as compared to baseline (before treatment), and a 
percentile recovery value under one signifies a decrease in the number of pulsations after treatment from 
baseline.  
 
 
 

Table 3: Incubation Data  

1 HOUR 12 HOURS 24 HOURS 

JF # P S O P S O P S O 

11 0 NS O- 

12 0 NS O- 

13 0 NS O- 

14 2 NS O- 

15 0 NS O+ 

16 0 NS O- 

17 0 NS O- 

18 0 NS O- 

19 0 NS O+ 

20 0 NS O- 

21 0 NS O- 0 NS O- 

22 0 NS O+ 0 NS O- 

23 0 NS O- 0 NS O+ 

24 0 NS O+ 0 NS O+ 

25 1 NS O+ 0 NS O+ 

26 0 NS O+ 0 NS O- 
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27 0 NS O+ 0 NS O- 

28 0 NS O- 0 NS O+ 

29 0 NS O- 0 NS O- 

30 0 NS O+ 0 NS O- 

31 0 NS O- 0 NS O- 0 NS O- 

32 0 NS O- 0 NS O- 0 NS O- 

33 0 NS O- 0 NS O+ 0 NS O+ 

34 0 NS O- 0 NS O- 0 NS O- 

35 0 NS O- 0 NS O- 0 NS O- 

36 0 NS O- 0 NS O- 0 NS O- 

37 0 NS O- 0 NS O- 0 NS O- 

38 0 NS O- 0 NS O+ 0 NS O- 

39 0 NS O- 0 NS O- 0 NS O- 

40 0 NS O- 0 NS O- 0 NS O+ 

P= Pulsations/Minute 
S= Swimmer (Pulse 4 times in one direction); NS= NonSwimmer 
O+= Correct Orienting (manubrium faces down); O-=Incorrect Orienting . 
 
Jellyfish 11-20 are from Group 2 (1 hour of gentamicin exposure), Jellyfish 21-30 are from Group 3 (24 
hours of gentamicin exposure), and Jellyfish 31-40 are from Group 4 (48 hours of gentamicin exposure).  
 
Table 3 only includes data of jellyfish from test run 1, but subsequent tests showed nearly identical results. 
The complete loss of motor function of the jellyfish while in gentamicin is evident. 
 
Table 4: Summary Statistics 
 
Group Mean Percentile Recovery (Pulses/Minute) Variance 

1 (Controls) 1.179415 

 

.435275 

2 (1 hour exposure to gent.)  0.735432 

 

.134212 

3 (24 hour exposure to gent.) 0.927179 

 

.1111145 

4 (48 hour exposure to gent.) 0.920767 

 

.254335 
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Figure 1: Mean Pulsations/Minute Before and After Treatment 

 

Mathematical Interpretation of Results 

A one way ANOVA (Analysis of Variance) was employed to test if the mean 

number of pulsations before and after treatment was different among groups. The one 

way ANOVA was run by means of Excel.  

A between groups p-value reflects the probability not due to chance that the null 

hypothesis is true (i.e, there is no difference in the mean number of pulsations after one 

hour of recovery in artificial sea water among groups of jellyfish exposed to gentamicin 

for varying amounts of time).  

Four of the 120 jellyfish that we tested had a much lower recovery after exposure 

to gentamicin. We termed these jellyfish as outliers. Although the post-gentamicin 

recovery of jellyfish was complete, and was statistically similar after exposure to either 
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24h (group 3) or 48h (group 4) of gentamicin, our statistical comparison of recovery 

between groups 3 and 4 was done after exclusion of these outliers. 

Groups 3 and 4 (exposure to gentamicin for 24 hours and 48 hours, respectively) 

yielded a p value= .922792. In other words, there is a 92.3% probability (not due to 

chance) that the percentile recovery of pulsatile function from baseline for the jellyfish 

exposed to gentamicin for only 24 hours is no different from jellyfish exposed to 

gentamicin for 48 hours. In other words, hair cells recovered up to almost 100% 

functionality, even after gentamicin exposure. The null hypothesis is supported.  

  The average percentile recovery of the controls is nearly 23% more than groups 

exposed to gentamicin for 24 or 48 hours (as expected). As a result, the one way ANOVA 

comparing all the samples yielded a p value of only 0.021786, reflecting that a significant 

difference was observed in recovery rates among group 1 (controls), group 2, and groups 

3 and 4. Interestingly, Group 2 jellyfish (exposed to gentamicin for only one hour) 

showed the poorest percentile recovery, of only about 70%. On average, of all of the 

groups exposed to any duration of gentamicin (groups 2-4), there was, on average, an 

85% return to baseline motor function after exposure. 
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CHAPTER FOUR 
 
 

Discussion 
 
 
 

Findings 
 
 

Sensorineural hearing loss (SNHL) occurs commonly and is permanent. The 

National Health Interview Survey found that 37 million (1 in 10 Americans) report 

hearing loss.66  20 to 26 million of these Americans have sensorineural hearing loss, and 

40% of individuals older than age 65 have sensorineural hearing loss. Hearing loss has 

the potential to affect physical, cognitive, behavioral and social function as well as 

quality of life, and research has linked SNHL to depression and dementia.67  Because no 

cure exists for SNHL, the emphasis is on prevention. 

SNHL and vestibular ototoxicity are almost always caused by degeneration of 

hair cells in the auditory and vestibular epithelium, and such loss is considered permanent 

because lost hair cells cannot be regenerated in mammals.68  Hair cell loss occurs most 

often as a result of aging (presbycusis) and noise exposure, but also commonly because 

of ototoxicity to aminoglycoside antibiotics such as gentamicin.69 A review of 

aminoglycoside induced ototoxicity concluded that such toxicity leads to permanent 

bilaterally severe, high-frequency SNHL and vestibular hypofunction, and that the 

permanent hearing loss is accompanied by degeneration of hair cells and neurons in the 

cochlea.6 Other reviews have concluded that the permanent hearing loss caused by 

aminoglycosides is predominantly associated with the apoptotic death of outer hair 
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cells,70  and that aminoglycosides generate free radicals within the inner ear, with 

subsequent permanent damage to sensory cells and neurons, resulting in permanent 

hearing loss.71  

Although use of aminoglycosides has become severely limited because of their 

nephrotoxic and ototoxic side effects, aminoglycosides are very useful antibiotics that are 

exceedingly bactericidal and are also inexpensive and hypoallergenic.  Research 

objectives accordingly focused on determining whether gentamicin can be administered 

at a dose strong enough to have therapeutic benefit with negative ototoxic side effects. 

Another objective of the research was to evaluate if Aurelia auritarelita jellyfish ephyrae 

can appropriately model not only aminoglycoside induced ototoxicity, but potentially 

also other SNHL induced dysfunction including presbycusis and noise-related SNHL.    

Current literature shows that permanent aminoglycoside related SNHL and 

vestibular toxicity occurs even in low doses of aminoglycosides. In children, gentamicin 

led to irreversible ototoxicity even in patients without abnormal serum gentamicin 

levels.72 Similarly vestibular toxicity, with associated permanent loss of balance, 

occurred after gentamicin at any dose, in any regimen, and at any serum level.73 Another 

review concluded that gentamicin can cause permanent vestibular and auditory 

ototoxicity and that there is no safe dose of gentamicin. 74 In jellyfish ephyrae, as 

mentioned before, a 3.5 mM dose of gentamicin will result in permanent histological 

impairement of jellyfish hair cells. 
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The results of this study showed that 1 mM of gentamicin is strong enough to have 

a paralyzing impact on jellyfish, but that jellyfish hair cells were not irreversibly 

damaged, as evidenced by an almost 100% recovery to baseline pulsing ability.  

During exposure to gentamicin for any length of time, all jellyfish were fully 

paralyzed and lost all movement. This indicates that the concentration of gentamicin used 

in the experiments was sufficiently high to exhibit toxicity.  Jellyfish almost immediately 

lost all function while in gentamicin and for the entire duration of their time in 

gentamicin (i.e, jellyfish in gentamicin for 48 hours were paralyzed for the full 48 hours). 

Such a complete reaction to the gentamicin is evidence that the gentamicin dose used was 

not minimal and will plausibly have some therapeutic benefit when applied to humans. 

Following exposure to gentamicin, jellyfish recovered almost completely after 

only one hour in artificial sea water. Surprisingly, jellyfish that were exposed to 

gentamicin for 48 hours showed no more adverse effects than jellyfish which were 

exposed to gentamicin for 24 hours. This is promising in that it suggests that 

administering gentamicin over longer periods of time will not result in more irreversible 

damage. In other words, if this data can be extrapolated to humans, exposing human hair 

cells to 1 mM gentamicin for even up to 48 hours, and potentially even longer, will lead 

to no permanent ototoxic damage.  

This study is supported by other studies which have found that the extent of 

damage to hair cells is indeed dose dependent in both the cochlea and the vestibule. At 

low doses of aminoglycosides like gentamicin, hair cell loss is scattered, but higher doses 

of gentamicin result in loss of all hair cells. 75 Low doses will most likely also affect only 
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outer hair cells, and of the hair cells they do affect, they will only affect hair cells which 

reside near the basilar papilla. Higher doses have the potential to not only affect hair cells 

further, but to affect both type 1 and type 2 hair cells.76 

 

 

Limitations 
 
 

Our data has two minor limitations and must be interpreted with attention to these 

limitations. Jellyfish in group 2, which were exposed to gentamicin for only one hour, 

showed significantly lower recovery of pulsatile motion. The significance of this 

observation is unclear. The jellyfish in this group were transferred from artificial sea 

water to gentamicin and back to artificial sea water in a shorter period of time than the 

other groups, and the quick transfer process may have become too taxing. While other 

groups had transfers separated by 24 hours or 48 hours, this group’s transfer to and from 

gentamicin took place in one hour. 

   As noted in chapter three, there was also an inequality of variances in the data. 

This can be alleviated in future studies by increasing the sample size. Nevertheless, the 

large degree of variance can also point to an inherent weakness of the jellyfish model. For 

instance, there is a large degree of variance in the baseline pulsations/minute per jellyfish. 

 
 
  

Future Directions 
 
 

Jellyfish ephyrae efficiently model the maximal dose and duration of gentamicin 

exposure that will not lead to lasting functional and morphological damage to hair cells. 

This experiment linearly correlated pulsatile ability to functionality and intactness of the 
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jellyfish hair cell.  Further experiments can track histologic changes that may occur after 

exposing jellyfish to gentamicin to evaluate if the hair cells recover as well 

microscopically as they do functionally after gentamicin exposure.  

Since gentamicin ototoxicity has been shown to be reversible in jellyfish ephyrae, 

which feature hair cells very similar to mammalian hair cells, future studies can aim to 

further understanding of gentamicin ototoxicity and nephrotoxicity, with the eventual 

hope of reintroducing gentamicin to human populations at smaller doses over longer 

periods of time.  
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