
 
 

 
 
 
 
 
 
 
 

ABSTRACT 
 

A DICOM Viewer Plugin to Aid Diagnosis of Ligamentous Injuries of the Occipital 
Cervical Complex 

 
Jacob Hoffman 

 
Director: Dr. Brian Garner, PhD 

 
 

 Large magnitude deceleration of the human body, such as that experienced in an 

automobile accident, has the potential to cause whiplash in the neck. The ligaments in the 

occipital-cervical complex, or OCC, of the neck may be damaged to the extent that a 

sudden disturbance of the head may cause paralysis or death. The injury often presents 

itself as bone pulled out by ligaments, and is thus visible in x-rays and CT scans. 

However, in the case that a ligament is damaged, the only indication of injury in a CT 

scan is an enlargement of the interval between the base of the skull and the second 

cervical vertebra, otherwise known as the BDI. The present study investigated the 

viability of a medical image viewer plugin to aid in the diagnosis of injuries to the 

Occipital Cervical Complex, or OCC. Comparing the output of the plugin to 

measurements of the BDI made by a doctor reveals that the plugin can reliably produce a 

measurement when told the location of the bones involved, though its measurements are 

on average over a millimeter different than those of the doctor. However, this study 

reveals that there is a future in applying computer vision to injury detection in CT scans. 
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CHAPTER ONE 

Introduction 
 
 

Background 
 

 Large magnitude deceleration of the human body, such as that experienced in an 

automobile accident, has the potential to cause whiplash in the neck. The ligaments in the 

occipital-cervical complex, or OCC, of the neck may be damaged to the extent that a 

sudden disturbance of the head may cause paralysis or death. Despite the danger, such 

injuries may not clearly present upon initial medical examination. Two of these types of 

injuries are known as Atlanto-occipito Dissociations, or AOD, and Atlanto-axial 

Dissociations, or AAD (Chaput et al., 2011). 

 
 The OCC, AOD and AAD 
 
 The OCC is understood to be the region of the cervical spine extending from the 

occiput to the second cervical interspace (Chaput et al., 2011). Bones involved in the 

OCC are the base of the skull, the Atlas, otherwise known as C1 of the cervical spine, and 

the Axis, or C2. The base of the skull has a circular opening through which the brain stem 

descends into the spinal column. The inferior tip of the skull in the sagittal plane is the 

basion. The Atlas is a circular vertebra that supports the globe of the skull. The Axis 

resides beneath the Atlas and possesses a protrusion called the dens. 

The dens is the pivot point of the Atlas, and is thus inserted through the Atlas’ 

circular opening and aligns with the basion of the skull. The distance between the basion 

and the superior tip of the dens is called the Basion-Dens Interval, or BDI. 
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On the lateral mass of the Atlas are 

two regions that align with the articular 

surfaces of the occipital condyle. The space 

between these surfaces is called the Atlanto-

Occipital Interval, or AOI (Bertozzi, Rojas, 

& Martinez, 2009). A third metric, the 

Lateral Mass Interval or LMI, is defined as 

the distance between the top of the arch of 

the Axis to the bottom of the arch of the 

Atlas measured on the coronal cut 

transecting the dens at its midpoint (Chaput 

et al., 2011). 

AODs occur when the Atlas and the 

skull are further away from each other than 

they should be. AADs occur when the Atlas 

and the Axis are further away from each 

other than they should be. Both are due to 

damage to the ligaments in the neck and 

cause excessive strain on the brain stem. In this state, these vertebrae are unstable and 

even a minor jarring, such as stepping off of a sidewalk, can lead to catastrophic failure in 

the neck and instantly cause quadriparesis or even death.  

 
 
 
 
 

Figure 1.1 A close-up of the OCC. The basion-
dens interval is the gap directly between the two 
features.

Basion 

Dens 

Figure 1.2 An artist’s rendition of the OCC. 
Note how C1 is a ring that rests on top of C2. 
(Source: Gray’s Anatomy.) 

C1 

C2
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The BDI and AOI as Indicators of AOD and AAD 
 
 Measurements of the BDI, AOI, and LMI have been used to diagnose patients 

with AOD and AAD. Though the AOI has not been a reliable indicator of OCC injuries, 

the LMI is useful the BDI has been used to great effect (Chaput, Walgama, Song, 

Hanson, & Rahm, 2009). BDIs exceeding 10mm or LMIs greater than or equal to 4mm 

are good indications of an OCC injury, while BDIs > 9.1mm and LMIs > 3.5mm should 

warrant further analysis with an MRI for viewing ligaments involved (Chaput et al., 

2011). 

Problem 
 
 As opposed to broken bones which are clearly visible in X-rays and CT scans, 

OCC injuries involve the ligaments of the neck. Since ligaments are soft tissue, they do 

not appear in X-ray or CT images. However, they are visible in MRIs, and thus 

diagnosing OCC injuries with MRIs is relatively straightforward. The difficulty arises 

from the fact that such injuries typically present themselves in victims of automobile 

accidents, and thus broken bones are of greatest concern and are checked for first with a 

CT scan. 

Upon seeing no broken bones present, a doctor might assume that the patient 

should be released. An experienced spinal surgeon would be able to spot the telltale signs 

of an OCC injury in a CT scan with ease, but an emergency room doctor may not. While 

the measurements of the BDI and the LMI provided by Chaput et al. provide a standard 

method for recognizing the signs of an OCC injury in a CT scan, it requires an acute 

knowledge of the specific points from which the measurements are taken. Furthermore, 
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since the difference between healthy and unhealthy is small, errors in measurement 

selection can undermine the validity of the diagnosis. 

On top of this, the values identified by Chaput et al. are from a relatively small 

sample size, and thus are difficult to generalize to all patients. Dr. Christopher Chaput at 

Scott & White Hospital in Temple, Texas has expressed desire for an automated method 

to calculate the intervals that were investigated in his recent study. Since the publication 

of Dr. Chaput’s last research article, he has accumulated CT scans of both healthy and 

unhealthy OCCs from over eight-hundred patients. Calculating the intervals based off of 

this larger sample would produce more accurate measurements. However, computing all 

the data would be an arduous task. An automated method would be able to address this 

need. 

An automated diagnostic tool would also provide doctors with a warning when 

the CT scan of a patient suffering from OCC injury is loaded. This would eliminate the 

difficulty of diagnosing OCC injuries with CT scans, saving lives in the process. If the 

Figure 1.3 A comparison of a healthy patient (left) and an injured patient (right). The difference 
between life and death in this type of injury is a matter of a few millimeters. 
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injury can be discovered in time, the patient has a high chance of survival. Very few 

patients survive untreated OCC injuries (Dominguez, Rahm, & Chaput 2009). 

Another challenge with CT scans is that no two image series are alike. Though 

measures are taken by technicians to provide consistency through every series, a program 

cannot be guaranteed to receive each series at the same orientation and contrast setting. 

Often critical aspects of the OCC are omitted simply because technicians are unaware of 

the need for their inclusion due to the rarity of such injuries. 

Since CT scans are manipulated on what is known as a DICOM viewer, an 

automated method would need to interact with a CT series through DICOM image 

software. A variety of DICOM viewers are available, but few of them are open source. 

 
Purpose 

 
The purpose of this study is to create a software module that can warn doctors in 

the event that a patient displays the characteristics of an OCC injury. A software module 

such as this can be incorporated as a plugin for existing, commercially available software 

packages, and has the potential to help prevent the paralysis and deaths of hundreds of 

individuals each year that would otherwise go untreated. It would also allow for the 

computation of a more general assessment of what constitutes a healthy OCC. The 

versatility of the plugin would allow for it to be used in emergency rooms around the 

nation. 
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Solution 
 

Plan overview 
 
 The product of this research will be a program that will aid doctors in the 

diagnosis of OCC injuries. It will interact with the DICOM viewer OsiriX, an open 

source application that allows for programs such as this one to connect to it as a ‘plugin.’ 

The program will be able to recognize key features of the OCC without confusing it with 

other parts of the cervical spine and without being thrown off by variations in hue, noise, 

or orientation of the CT scan. Using Dr. Chaput’s method of identifying OCC injuries, 

the software will automatically measure the BDI of the patient and warn the user if the 

measurement falls outside a normal range. The BDI was chosen as the indicator because 

it is the most straight-forward to measure and provides a good prediction of the health of 

the patient. The software will be composed of several files of code written primarily in 

C++ to allow for multi-platform portability. The output of the software will be compared 

to measurements made at Scott and White Hospital. 

 
Thesis overview 

 This thesis is organized into four chapters, including this Introduction as Chapter 

I. Chapter II details the methods used to analyze the image series. Chapter III contains the 

results of this study. Chapter IV discusses the results and makes recommendations for the 

future of this project.  
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CHAPTER TWO 

Methods 
 
 

Algorithms Overview 
 
 In order for a computer algorithm to measure the distance between bones, it is 

necessary for it to be able to distinguish the edges of bones. This chapter provides a 

detailed description of the process by which the software discerns the dens and the basion 

of the OCC from the rest of a CT-series. 

The initial prototype featured a simple approach for distinguishing bone by using 

a threshold. Figure 2.3 depicts the result of applying different thresholds to the same 

image. The prototype used a threshold of ‘200,’ the result of which can be viewed in 

Figure 2.10 B. While it served well for a proof of concept in the early stages of the thesis, 

it was severely limited in its dependability since it made a gross assumption for all CT-

series and was tied to OsiriX’s proprietary representation of image data. In other words, 

bone may not always appear at the same intensity in all series and if the algorithm were 

to be ported to a new DICOM viewer, it would need to be reprogramed. 

 It became evident that a more sophisticated algorithm was needed. The current 

method is independent of any pre-prescribed pixel value for defining bone. Figure 2.1 

outlines the algorithm that the software uses to determine the edges of bone. It draws 

from the Canny Edge Detector (Canny 1986), in that it considers both edge direction and 

magnitude. It differs in that it does not use hysteresis in isolating the edges, but instead 

applies separate thresholding methods to the gradient magnitude image and gradient 

direction image to isolate regions of the image that contain an edge.  
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Figure 2.1 Graphical representation of the edge isolation algorithm. The process ends at morphological 
thinning. Note that there is a split in the flowchart where the gradient magnitude image and the gradient 
direction image are treated separately. Doing this assures that if one step destroys part of an edge, the 
OR of both paths may fix it before the thinning process. Not shown is a smoothing step that is applied 
after the gradient magnitude filter, before local thresholding is applied. Note that though the gradient 
magnitude and direction filters are shown being applied simultaneously, the magnitude filter is applied 
first, followed by the direction filter, since the software implementation does not use multi-threading. 
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The software begins the process by isolating bone from non-bone. It is a threshold 

that replaces all pixels with a value beneath the threshold with the value of the threshold. 

It adapts to each image by selecting a value that excludes as much non-bone intensities as 

possible without eliminating any bone from the image. 

After this, two copies of the resultant image are passed through separate filters. 

One filter is the gradient magnitude filter. It replaces each pixel in the image with a 

grayscale value that represents the magnitude of the local gradient in the pixel’s 3x3 

neighborhood. It is then passed through a mean filter that replaces each pixel in every 3x3 

neighborhood with the mean intensity of the neighborhood. This is to reduce the 

influence of noise on the thresholding that follows. 

The other image copy is passed through the gradient direction filter. This replaces 

each pixel with a value, zero through seven, which represents the compass direction of 

the gradient in the 3x3 neighborhood of each pixel. The subsequent step thresholds the 

image in a process this thesis refers to as ‘variance thresholding.’ Inspired by O’Gorman 

and Clowes work detecting curves with the Hough Transform (O’Gorman and Clowes, 

1973), it assumes that the gradient near an edge has less variance than elsewhere in an 

image. It converts each pixel in the gradient directions image to a unit vector and sums 

the pixels in each 3x3 neighborhood. If the summed vectors result in a line that exceeds a 

specified radius, the neighborhood is considered to have high ‘agreement’ and thus low 

variance. 

The thresholding of the images containing the gradient magnitude and direction 

results in binary images where pixels with a value of one are interpreted as near a true 

edge. This thesis refers to these areas as ‘edge-regions.’ Once both images are 



 

10 
 

thresholded, they are combined using a logical OR operator. This step functions just like 

an OR in computer science and produces a binary image whose edge-regions include 

those from both the gradient magnitude and gradient direction images. The motivation for 

combining the two images is to prevent the loss of an edge in the thresholding processes; 

if an edge is severed in the gradient magnitude filter, it may not be in the variance filter, 

and vice versa. 

After combining the two binary images into one, the edge-regions can be reduced 

to edges via morphological thinning (Changxian 1998). These one-pixel-wide lines are 

extracted from the exterior in each object in the image. This provides a means for 

navigating the CT series three-dimensionally to find the best image for measuring the 

BDI. 

The following section describes in detail the operation of each step in the process 

of isolating edges. The section that follows describes the method by which the ‘best’ 

view of the BDI is found and calculated. 

 
Algorithms in Detail 

 
Distinguishing Bone from Non-bone 
 
 A CT scan produces an image based on the density of the material scanned. 

Within a CT image, denser material, such as bone, appears with higher intensity (lighter) 

pixels, whereas less dense material, such as skin and muscles, appears with lower-

intensity (darker) pixels. In order for the software to distinguish the difference between 

bone and non-bone, it must first understand the difference between “light” and “dark.” 

This subsection describes the approach used in the algorithm to distinguish the light 

pixels representing bone material from the darker pixels representing non-bone material. 
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 The difficulty in teaching a computer to focus on bone is that there is no 

affirmative pixel value for bone in any CT scan; bones in one part of the image may 

appear brighter or darker than other bones in another part of the image. The reasons for 

these differences are numerous, including density, focus, orientation, etc. Bones between 

series are not guaranteed to have the same hue either, as differences in the patient, 

equipment, and technician all contribute to minute differences between series’ 

appearances. 

 Thus, selecting a specific threshold for all CT scans to help the computer know 

the difference between bone and non-bone is an unsuitable approach. However it is 

necessary for the computer to make this distinction, as this prevents the program from 

taking the gradient of pixels that do not correspond to bone; once the gradient magnitude 

or gradient direction filter is applied, it is impossible to detect whether a pixel 

corresponds to bone or otherwise. This is problematic, as a CT scan may contain sharp 

edges that would be prominent in a gradient magnitude image where there is no bone, 

such as the back of the neck or the esophagus in Figure 2.8. Therefore, a particular value 

is chosen for each image in order to draw the line between bone and flesh. This is done 

by considering every pixel’s intensity in the image. 

First, the number of possible intensities is determined by subtracting the value of 

the maximum intensity in the image from the value of the minimum intensity. Using this 

information, a histogram of the image’s intensities is constructed. The histogram is 

converted to a probability density function by dividing each value in the histogram by the 

total number of possible intensities. This is then converted to a cumulative density 
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function by replacing each value in the probability density function by the cumulative 

sum. A generic cumulative density function can be seen in Figure 2.2. 

Next, the threshold is determined from the cumulative density function. This is 

done by first assuming that a CT-scan will have a bimodal distribution of pixels; a 

grouping of bright pixels that correspond to bone and a grouping of darker pixels that 

correspond to everything else. In the cumulative density function of a CT-scan, there will 

be two rises in the function that occur at the intensities where these groupings lie. To 

select the threshold, the cumulative density function is compared to that of a hypothetical 

image with the same range of pixel intensities, but no modality in pixel distribution 

except for having the same proportion of minimum pixels as the CT-scan.  

Figure 2.2 A generic representation of the cumulative density function, or just cumulative probability, 
of a CT-scan image. Global thresholds are determined from this distribution by comparing the CDF of 
an image’s pixels to that of a hypothetical image, shown in red, that has the same minimum and 
maximum intensities as the CT-scan. In the hypothetical image, each intensity has equal 
representation, thus giving rise to a flat probability distribution (except for the minimum value), hence 
the steady slope in the CDF. The threshold is determined by starting at MAX in the spectrum and 
computing the left-hand delta of each intensity, comparing it to 2x the slope of the hypothetical 
image’s CDF. If the delta of a particular intensity is greater than 2x the slope of the hypothetical CDF, 
that intensity is made the threshold for the whole image. 
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The cumulative distribution function would be a straight line beginning at the 

proportion of minimum pixels and increasing to one. Taking advantage of this, the 

threshold is chosen to be the brightest intensity whose probability on the cumulative 

distribution function is increasing with respect to intensity twice as fast as the 

hypothetical distribution. The reason for doubling the slope of the hypothetical 

distribution is to push the threshold down to the left to ensure that all pixels that 

correspond to bone are included. Every pixel whose intensity is less than the threshold is 

replaced by the value of the threshold. All other pixels are left the same. 

The result of using this threshold is to allow the computer to distinguish edges 

that are associated with bone from the edges of other objects. Figure 2.13 shows that 

after applying the filter, the sharp edge produced by the back of the neck has almost 

completely disappeared from the gradient magnitude image. The next section details how 

the gradient magnitude is calculated. 

 
Computing the Gradient Magnitude of an Image 
 
 The next step in processing the image is to compute its gradient magnitude. The 

reason for not using the threshold generated in the previous step as an absolute 

determiner of the edge of bone is because the edge of a bone as perceived by humans 

does not immediately begin where the hue of flesh ends, but is where the hue of the bone 

is changing most rapidly near where flesh meets bone. This necessitates an algorithm that 

produces an image whose pixels represent the magnitude of the gradient in the original 

image. Calculating the gradient at each pixel only considers the three-by-three 

neighborhood of each pixel. It is only necessary to consider how the gradient is 

immediately changing. The process of retrieving the neighborhood is relatively easy: 
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store the eight surrounding pixels in an eight-membered array, where the elements 0 

through 7 are ordered clockwise around the center pixel, starting with the pixel directly 

above the center and ending with the pixel to the upper left of the center. 

 

7 0 1 

6 center 2 

5 4 3 

 
 
 
 
 

 

0 1 2 3 4 5 6 7 

  
 

The array contains the intensities of the surrounding pixels. If we assume the dark 

gray pixels have a value of 20 and the light gray pixels have a value of 100, the array 

would contain the following data: 

 

100 100 20 20 20 100 100 100 

 
 
 The gradient of the neighborhood is then calculated by subtracting the value of 

each element from the element to its right in the array, except at member 7 whose value is 

subtracted from member 0. The result using the previous example would produce the 

array at the top of the next page. 

Figure 2.3 A 3x3 
neighborhood with pixels 
labeled with the indices 
used by this thesis. The 
arrow shows how the 
neighborhood is 
‘unwrapped’ into a one-
dimensional array for 
further analysis. The 
subsequent arrays show 
example values and the 
accompanying gradient. 
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0 0 -80 0 0 80 0 0 

 
 
 From this point, calculating the gradient magnitude is trivial: simply subtract the 

minimum member of the gradient array from the maximum member and divide by 2. 

Thus the pixel center will have a value of 80 in the gradient image since it is in the 

neighborhood of an 80-pixel gradient. 

 
Smoothing the Gradient 
 
 After the gradient has been computed, it must be smoothed out to reduce noise. 

This is done after taking the gradient instead of before since smoothing filters remove 

information from the image, and it is best for complex algorithms to have access to as 

much information as possible. However, the next step requires the image to be turned into 

a binary image. Since a yes-no decision is going to be made for every pixel, it is best to 

make sure that noise is not a factor in making a decision at that step. The smoothing 

method used is a mean filter on the three-by-three neighborhood of each pixel. 

 Each pixel in the resulting image is the average of the nine pixels in its three-by-

three neighborhood in the original image. Applying the mean filter to the gradient 

magnitude output makes a significant difference in the output of locally thresholding the 

image. 

 
Locally Threshold the Gradient Magnitude 
 
 After the gradient magnitude image has been created and filtered, a threshold is 

applied to it to create a binary image where pixels with a value of 1 are near the true edge 

between bone and non-bone. In order to do this, it is assumed that bright pixels in the 
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gradient image correspond to an edge, since the human eye detects edges where an image 

is changing rapidly. 

 Thresholding the gradient magnitude with a global value for the entire image is 

unsuitable, since a few bones are likely to have some faint edges. Instead, a local 

threshold is applied to each pixel’s 3x3 neighborhood. 

 The algorithm will set the corresponding pixel in the output image to 1 if the 

center pixel in the original image is at least brighter than a specified percentage of the 

difference between the maximum and minimum pixels in its neighborhood. Figure 2.14 

and Figure 2.15 demonstrate the effects of this form of local thresholding on the gradient 

magnitude, with Figure 2.15 showing the output of different percentages. The end 

product uses a percentage of 50%, so if a pixel is brighter than the average of the 

maximum and minimum pixels in its neighborhood, it will become a 1. 

 After this binary image has been created, it is set aside temporarily while the 

gradient direction of the image is computed and thresholded. 

 
Computing the Gradient Magnitude of the Image 
 
 Since a gradient of a function not only has magnitude, but direction, the gradient 

magnitude function also produces an image of the gradient direction of a CT scan. This 

information is useful because consistency of the gradient’s direction can provide more 

reliable edge information than the gradient’s magnitude in noisy scenes (Law et al. 2006). 

This thesis refers to the inconsistency of an edge as ‘variance.’ 

 Computing the gradient direction of an image is similar to the process of taking 

the gradient. But before continuing, consider the following neighborhood: 
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7 0 1 

6 c 2 

5 4 3 

 
 
 Imagine that the pixels are blocks whose height is indicated by their intensity. So, 

let the dark pixels have a height of 0, and let the light pixels have a height of 1. This leads 

to the following three-dimensional interpretation of the above neighborhood: 

 
 Gradient: 
 

0 0 -1 0 0 1 0 0 

 

Figure 2.4.a An 
example 3x3 
neighborhood. Light 
pixels have a value of 
1, dark pixels have a 
value of 0. 

Figure 2.4.b The middle image shows a three-dimensional interpretation of the neighborhood in 
Figure 2.4.a. The bottom image is the gradient of the neighborhood, calculated in the same manner 
as it is in the gradient magnitude filter. 
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When the gradient is computed using the same method as in the gradient 

magnitude, the array contains the height of the jump that needs to be made in order to 

reach the next pixel when moving around c in a clockwise manner. Furthermore, notice 

that the minimum and maximum values in the array correspond to the points where the 

edge passes through the neighborhood. For consistency, the direction of the edge is 

considered to always point from the pixel corresponding to the minimum value in the 

array to the maximum. The direction of the edge is chosen from the eight compass point 

directions. Figure 2.5 shows how these directions are mapped to the eight indices ranging 

from zero to seven used to denote the neighborhood’s pixels relative to the center. 

 

 

We store the direction of the edge as a value from Figure 2.5 directly in the pixel 

corresponding to c in a temporary image. An example of this is shown in Figure 2.9, with 

each direction being assigned to a grayscale value. 
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When all of the edge directions are computed and stored in the temporary image, 

each three-by-three neighborhood in the temporary image is scanned. A generic 

neighborhood might look like this: 

 
 
 If we sum up all the unit directions stored in the pixels, we get a line whose 

magnitude represents the agreement of all the directions stored in the neighborhood. If 

the resultant line is short, this means that the presence of an edge is weak in this 

neighborhood. If the line is long, this means that an edge’s presence is strong. We can 

threshold what we consider to be adequate agreement in the neighborhood by specifying 

a threshold radius: 

 
 
 
  

Figure 2.7 The vector sum of the edge directions in Figure 2.6. The dashed line represents a 
threshold. If the sum results in a line that exceeds this radius, the center pixel of the corresponding 
neighborhood in the output image is changed to a 1. Otherwise it is a 0.  
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If the summed directions stored in the neighborhood exceed a radius of 7.07, then 

the pixel in the output image that is in the center of the neighborhood is set to 1, 

otherwise it is set to 0. Figures 2.16, 2.17, and 2.18 demonstrate the output of variance 

filtering. Thus pixels of a value of 1 in the binary image are pixels that are near an edge. 

 
Combining the Variance and the Gradient 
 
 Now that both the variance and gradient have produced binary images that 

represent edge regions, it is time to combine them so that any pixels that may represent 

an edge that were missed in one image will be added to the other. The logical equivalent 

of this is a logical OR, so we essentially create an image that is the addition of the binary 

images produced by the variance and gradient. Figure 2.21 shows the combined output of 

the variance and gradient filters. 

 
Isolating the Edges of Bone 
 
 The product of the previous processes is a binary image where pixels with a value 

of 1 are pixels that are near a true edge. By assuming that the pixels that represent the 

true edge are in the middle of these regions, the next step in isolating them is to ‘eat 

away’ the outside pixels so that nothing but a line is left (Changxian 1998). 

 The method for doing this is a continuous process that scans the image multiple 

times, removing pixels with each pass. The pixels to be removed have a value of 1 and do 

not have more than two pixels with a value of 1 in its 3x3 neighborhood that are not 

touching each other. This ensures that pixels that constitute a line are not removed, but all 

others are. This is applied to every pixel in an image, making a single pass. Since it is 

unknown how many pixels need to be removed before only one-pixel-thin lines are left, 
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this process typically takes thousands of passes, making it a time-consuming algorithm 

especially when executed to completion. Instead, the algorithm stops the first time it 

performs a pass where it removes less than or equal to 1000 pixels. Observe in Figure 

2.24 how there is little difference between running the algorithm to completion and 

stopping it before removing all eligible pixels. 

 Once this has been done, the outside edges of the bones must be isolated from the 

network of lines that appears inside of each bone as a by-product of this process. This is 

done by tracing the outside of each bone onto an output image, as seen in Figure 2.25. 

 The preceding series of filters combine to form a robust edge detection method, 

capable of finding edges even in images like Figure 2.26 where the edge is fuzzy. Now 

that the algorithms have been explained, the next section will describe how they are 

applied. 

Applying the Algorithms 
 

 Now that the algorithmic approach for isolating the edges of bones has been 

explained, the following section shall describe how the methods are applied to a CT 

series to measure the BDI. The software can either attempt to automatically identify the 

basion and the dens, or let the user mark both with a point region of interest, or ROI, with 

the ROI tool in OsiriX. If no ROI has been placed on a series, the automatic method is 

used. 

 In general, the ‘best’ view of C2 is the cross-section where the top of the dens is 

higher than the top of the dens in the adjacent slices in a CT series. The ‘best’ view of the 

basion similarly is the cross-section where it is higher than the adjacent slices in the 

series. Whether the user marks C2 and the basion or not, the software checks adjacent 
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images to find the optimal points to measure the BDI. The basion and the dens do not 

necessarily have to lie in the same image, as in Figure 2.30. When the BDI is measured, 

it does not factor depth in the CT series, since measurements made by doctors are done in 

the plane of the image (Chaput et al. 2011). 

 If the BDI exceeds 10mm, the user is warned that the patient is likely suffering 

from an injury. The output is temporarily written onto the output image itself, along with 

the measurement value. The procedure for testing the software consists of a trial series of 

CT series that were never used to configure the algorithms. The series are evaluated by 

the software and the output measurements are compared with measurements from Scott 

and White Hospital. 

 
Identifying C2 
 
 Once a CT-scan series is loaded, the program begins its analysis with the image at 

the middle of the series. It checks to see if the image contains the slice of C2 at the 

middle of the neck. If it does not contain the cross-section of C2, the program will 

continue checking images by radiating outwards from the middle of the series. If no 

proper image is found after checking 10 images, the program assumes that this series is 

not the sagittal view of the cervical spine. 

 If the program finds C2, it then traces to the top of C2 in that image and checks if 

the top of C2 is lower in both adjacent images. If this is not the case, the program will 

move to the image in the direction where C2’s top is increasing in height. Otherwise, the 

program is ready to begin searching for the basion. 
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They method by which C2 is identified uses a hard-coded set of descriptors that 

apply to each shape in the image. The values for these descriptors were set through trial 

and error. 

 The descriptors used to identify C2 are as follows: 

 

 Height of the object must be greater than its width. 

 Height of the object must be less than three times the width. 

 If one were to draw a rectangle around the object that fully enclosed all its parts, 

the area of this rectangle must be greater than 2,500 pixels and less than 20,000 

pixels. 

 The perimeter of the object’s edge must be at least 250 pixels long and at most 

2,000 pixels long. 

 The object’s upper left corner must not be in the furthest left 10% of the image. 

 The object’s upper left corner must not be in the furthest right 30% of the image. 

 The object’s upper left corner must not be in the upper 10% of the image. 

 The object’s upper left corner must not be in the lower 50% of the image. 

 

All of these items must be met by an object for it to be considered a possible 

candidate for the trace of C2. If the object passes the test, the program moves to the 

object’s center and traces to the right until it reaches the edge. It then moves up the edge 

to the top of C2. If the adjacent cross-sections of C2 have lower tips than the current one, 

then this coordinate of the tip is recorded for later use in measuring the BDI. 
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Identifying the Basion 
 
 The basion, like C2, has a set of descriptors that define the computer’s 

understanding of its shape. Once C2 has been found, the program then searches for the 

basion in that same image. It then checks the adjacent images to see if the coordinate at 

the bottom of the basion is higher than the one in the current image. If the basion is 

higher in adjacent images, the plugin will continue searching for the basion until the 

highest instance is found. Typically the basion and dens reside in the same image, but in 

some cases they can be in separate ones. Figure 2.30 contains an example of when the 

basion and dens are in separate images. If the basion cannot be found, an error is reported 

to the user, as in Figure 2.29, where the plugin was run on a non-sagittal view of the 

cervical spine. 

 The descriptors used to define the basion are as follows: 

 

 If one were to draw a rectangle around the object that fully encloses the shape, the 

area of more than 100 square pixels. 

 The centroid, or the average of the edge coordinates, of the object must be in the 

left 60% of the image. 

 The centroid of the object must not be in the left 10% of the image. 

 The bottom of the object must be higher than the top of C2. 

 The object’s width must be less than 1.5 times the object’s height. 

 If the area of the object is greater than 400 pixels: 

o The object’s centroid must be higher than the center of the imaginary 

rectangle enclosing the object. 
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o The object’s centroid must be at least the distance from the left edge of the 

image equal to the distance from C2’s centroid to the left edge minus the 

width of C2. 

 If the area of the object is less than or equal to 400 pixels: 

o The object’s centroid must not be in the left 20% of the image. 

o The object’s centroid must be at least the distance from the left edge of the 

image equal to the distance from C2’s centroid to the left edge minus the 

width of C2. 

o The distance between the object’s centroid and the top of the image must 

be less than the distance from C2’s centroid to the top minus the height of 

C2. 

 
If all of these requirements are met, the object is considered the basion. If the 

bottom of the basion is higher than the bottom of the cross-sections of the basion in the 

adjacent images in the series, this coordinate is taken down for measuring the BDI. 

 
Measuring the BDI 
 
 The BDI is measured as the two-dimensional distance between the top of C2 and 

the bottom of the basion. Though the three-dimensional distance can be calculated, the 

study done by Dr. Chaput does not account for depth in his measurements. Thus the BDI 

is measured only in 2D and displayed to the user as in Figure 2.28. 
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Figure 2.8 Gradient magnitude of an image. The original is on the left, the output is on the right. The 
output has been scaled to enhance contrast. Note in the output image the areas of greatest intensity 
are located where edges in the original image are most distinct.

Figure 2.9 Gradient directions of an image. Eight grayscale values represent the eight compass 
directions that the gradient can ‘flow’ towards. Note that pixels not associated with an edge are 
chaotic with respect to their neighbors, whereas pixels located on an edge tend to agree with their 
neighbors on the direction of the local gradient. 



 

27 
 

 

  

A B 
C D 
Figure 2.10 Thresholding at arbitrary values. A was thresholded at 100, B was thresholded at 
200. C was thresholded at 300, and D was thresholded at 400. Note that pixels brighter than the 
threshold become a 1, and all others become a 0. See that as the threshold increases, more bone 
data is removed, with image D actually losing entire parts of the spine. The first version of the 
plugin used 200 as a universal threshold for finding the edges of bone. Since OsiriX stores 
pixel intensity on an arbitrary scale, a more sophisticated method of edge detection was 
necessary. 
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Figure 2.11 Result of Adaptive Global Thresholding. See how the algorithm chooses a value that 
eliminates all non-bone related pixels. Said pixels are replaced by the threshold value, so that there 
will not be a sharp edge added to bone where the true edge does not exist. 

Figure 2.12 Another example of Adaptive Global Thresholding. Note that even with significantly 
fewer bones in the image, the algorithm still selects a good threshold as long as the original image 
has a strong bimodal intensity distribution. 



 

29 
 

 

 

 

  

Figure 2.13 Effect of Adaptive Global Thresholding on the gradient operator. See how applying the 
global threshold helps the computer see the difference between the stark edges of the back of the 
neck and the esophagus and that of bone. 

Figure 2.14 Local thresholding of the gradient. The output image retains any pixel that is brighter 
than 30% of the pixels in each 3x3 neighborhood. 
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A B 
C D 
Figure 2.15 Local thresholding of the gradient after global thresholding. Each image retains pixels 
from the gradient that are brighter than a particular percentage of the pixels in each 3x3 
neighborhood. A’s percentage is 30%, B’s is 40%. C is set at 50%, and D is at 60%. The 50% used 
in C was used as the metric in the plugin. 
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Figure 2.16 The result of variance thresholding. The output image retains pixels whose 3x3 
neighborhood in the gradient direction image has 6 pixels of the same value. Note that the output 
had also been passed through the global threshold to remove the back of the neck. 

Figure 2.17 A close-up of the output in Figure 2.16. See how a solid region forms around the edges 
of each bone. The center of this region is the location of the true edge as perceived by the human 
eye. 
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A B 
C D 
Figure 2.18 Variance thresholding at increasing radii. The radius in A is 3. The radius in B is 4. The 
radius in C is 6. The radius in D is 7. The term ‘radius’ refers to the sum of the gradient direction 
unit vectors in each 3x3 neighborhood. Notice that the difference between C1 and C2 becomes 
evident to the computer in C, but in D bones are becoming fragmented. 
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A B 
Figure 2.20 Comparison of edge-region detection by means of variance analysis in A and by 
gradient magnitude in B. 

Figure 2.19 Effect of the mean filter. The image on the left is the product of the thresholded gradient 
without any prior smoothing. The image on the right was passed through a mean filter once before 
going through the gradient operator. Note how the difference between C1 and C2 is more noticeable 
after the filter has been applied. 
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Figure 2.21 The result of combining Figure 2.20 A and Figure 2.20 B. They are combined by an 
OR operator. The purpose of combining the two images is to reduce the chances of fragmenting an 
edge. This helps to prevent the edge-narrowing step from destroying an object’s outline. 
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A B 
C D 
Figure 2.22 Illustrating the effects of adjusting the parameters of the gradient-based edge finder 
and the variance-based edge finder. In A the gradient was locally thresholded at 40% and the 
variance was thresholded at a radius of 5. B was at 40% and 7. C was at 50% and 5. D was at 
50% and 7. Image D is identical to Figure 2.14, and its parameters are used in the final product. 
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Figure 2.23 An example of thinning the edge regions to a single, one-pixel thick edge. The image 
on the left is identical to Figure 2.21, and the image on the right is the product of the thinning 
process. Note how closed loops are preserved, whereas line segments are eaten away. The plugin 
does not fully thin the picture, that is, it does not continue to remove pixels until there are only 
closed loops. 

A B 
Figure 2.24 Demonstrating the difference between partial thinning (A) and full thinning (B). Note 
that there is little to no difference between the outline of the dens and the basion in A and in B, 
however B takes a full second to produce whereas A takes a fraction of a second. The process in A 
ends when less than 1000 pixels are removed in a pass. 



 

37 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.25 Edges are traced out of the thinned image. These edges are used for the subsequent 
measurement and shape detection methods. 

Figure 2.26 The image on the left is a view of the base of the skull and the top of C1. The image 
was passed through the same edge detection algorithm. The image on the right demonstrates that the 
algorithm is capable of finding edges even when they are much fuzzier than those found in the 
sagittal view of the neck. 
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Figure 2.27 The original sagittal view of the cervical spine with the detected edges overlaid. 
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Figure 2.28 An example of the output generated by the plugin. The dens and the basion were 
detected automatically in this instance. The line drawn between the two features is the BDI, 
measured at a deadly 11.91mm. 
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Figure 2.29 Result of running the plugin on a series that is not the sagittal view of the neck. If the 
plugin cannot find C2, it assumes that it is an improper view. 
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Figure 2.30 The plugin is capable of finding the basion and dens even when they are in separate 
images. Note that the length of the BDI does not include depth in its calculation, since in standard 
practice doctors do not take this into account in their measurements. 
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CHAPTER THREE 

 
Results 

 
 

The following table contains the measurements provided from Scott and White 

Hospital and those generated by the plugin. There are two columns for the algorithm, one 

for the automated detection of the dens and basion, and another for when the dens and 

basion were indicated by the user. Twenty-one images were successfully anonymized and 

evaluated by Dr. Chaput and the algorithm. 

 
Performance of Automatic Dens and Basion Recognition 

 
While the original plan for the plugin did not require automated detection of the 

dens and basion, throughout development it began to show promise. However, Table 3 

reveals that the plugin could identify the bones successfully only seven times out of 

twenty-one. This includes instances where neither features were recognized, where the 

dens was recognized and the basion was not, and vice versa. 

 
Performance of Assisted Dens and Basion Recognition 

 
By using point-ROIs, the basion and dens could be identified by the user for the 

plugin. This supersedes the plugin’s method of automatic detection, and explains its 

drastically improved performance. The plugin successfully made a measurement of the 

BDI all but three of the twenty-one test series. The numbers generated by this version of 

the algorithm were used to compute the average difference between the measurements 

from Scott and White and those generated by the plugin.  
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Table 3.1 Summary of measurements made at Scott and White Hospital and those made by the plugin. Red 
cells correspond to CT-series that were unsuccessfully measured by the respective algorithm. The plugin 
generated measurements that were on average 1.33mm longer than those made at Scott and White Hospital. 

Patient ID 
Scott & White 
Measurement 

Automatic 
Detection 

Assisted 
Detection 

Difference In Measurement 
(Assist ‐ Scott) 

1010  4.60    4.34 ‐0.26

1011  5.98    5.78 ‐0.2

1016  3.79    5.10 1.31

1018  4.97 6.64 6.64 1.67

1022  6.52 8.44 8.44 1.92

1024  6.67    7.82 1.15

1026  5.35    6.26 0.91

1027  3.77 5.78 5.78 2.01

1028  5.37    5.86 0.49

1029  6.07    5.40 ‐0.67

1030  5.78    6.49 0.71

1031  5.75      

1032  5.75 7.42 7.42 1.67

1033  5.91    2.93 ‐2.98

1034  8.63 9.30 9.30 0.67

1039  7.07    11.00 3.93

1040  6.41    7.39 0.98

1041  5.87 5.03 5.03 ‐0.84

1042  7.57 9.18 9.18 2.01

1045  5.16      

1047  7.02      

Average:  1.33

 

Failed to measure properly 

All measurements are in MM 

 
 

The plugin managed to successfully produce a measurement of the BDI fully 

automatically seven times out of twenty-one. When the user indicated where C2 and the 

basion were located in the CT-series, the plugin produced a measurement successfully 

nineteen times out of the same sample of patients. On average, the plugin’s 
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measurements were 1.33mm different than Dr. Chaput’s measurements. Despite this, the 

plugin only incorrectly predicted if a patient was injured once. The measurement for 

patient 1039 was 11mm, over the 10mm interval used to predict a ligamentous injury. Dr. 

Chaput’s measurement of patient 1039’s BDI is 7.07mm, signifying that the patient was 

not injured even though the plugin would say that they are. Out of the twenty-one 

measurements provided by Dr. Chaput, the plugin produced larger measurements all but 

in five instances. 
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CHAPTER FOUR 

Discussion and Conclusion 
 
 

Analysis of Results 
 

Automatic detection of the basion and dens was tried, but was not critical to the 

project. The results clearly indicate that the automatic method was unsuccessful. The 

assisted method performed much better than the automated method. By allowing the user 

to select the basion and C2, much of the guesswork was taken out of the hands of the 

computer. However, the assisted method still failed to measure the BDI of three of the 

same series that the automated method struggled with. Figure 4.1 depicts patient 1031, 

whose BDI measures in the normal range with a value of 5.75mm. The automated 

method failed to recognize C2 and the basion because it saw them as connected. The light 

area in between the two bones was mistaken for bone. The same problem prevented the 

assisted method from producing a valid measurement. Thus the difficulties encountered 

by both algorithms on these series were a result of the algorithms. 

 
Possible Explanations for Mistaken Bone 
 

One possible explanation for the algorithm mistaking flesh for bone is the fact 

that the local thresholding applied to the gradient filter does not have a minimum 

requirement for selecting a pixel. Even if the gradient at a particular pixel is 1, as long as 

it is greater than the surrounding gradient pixels, it will count. This was done so that even 

the faintest bone would not be excluded. However this reveals that doing so has caused 

more problems than it has prevented. The global thresholding applied initially was also 
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designed to include faint bones, and so this problem could be rectified if either of them is 

adjusted to be stricter in their thresholding. 

Another patient that both algorithms had difficulty measuring was patient 1045. 

This time the plugin mistook the faint object highlighted by the box in Figure 4.2 as 

being part of the basion. Since the bottom of this object is lower than the bottom of the 

basion, the algorithm selected it as the basion and thus it measured the BDI to be 

extremely large. Again, the approach for fixing this would be to adjust the thresholding 

methods in order to prevent faint objects from registering. 

 
The Measurements Were Longer Than the Official Ones 
 
 The plugin for the most part generated measurements that were longer than the 

ones made by Dr. Chaput. The reason is that what was found to be the tip of the dens and 

bottom of the basion must have been off from the points used at Scott and White. There 

are many possible factors explaining this. It is certain that it is not the thresholding 

methods that contribute to this, since they tend to add to the size of bone. This would 

make measurements smaller, as seen in Figure 4.3, where the bottom of the basion is 

estimated to be lower than where the actual bottom is. 

 Instead, the blame might be placed on the skeletonization, or edge-thinning 

method. It has a tendency to make the top edge of bone lower than where the human eye 

would perceive it. Observe in Figure 4.4, how the bone’s top edge is beneath where one 

would perceive it to be. 

 After inspecting the code, it was found that the reason this happens is that the 

skeletonization process only scans the image from top to bottom. When the algorithm 

was first created, this was not seen as an issue. However in retrospect it is evident that 
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this method of scanning, by removing pixels from the top of a region first and from the 

bottom of a region last, pushes the top edge of an object to the bottom of its edge region. 

 To fix this, the process would need to scan from not only top to bottom, but also 

bottom to top, left to right, and right to left. This would help keep the thinned-out edges 

towards the middle of their edge regions. 

 
Future Developments and Relevant Research 

 
This project is planned to continue development into a finished product that has 

the potential to be sold commercially. This section describes ways in which the plugin 

may be improved to make it into a stand-alone product. 

 
Make the Plugin Independent of OsiriX 

 
Though OsiriX possesses an impressive plugin API, it would be in the plugin’s 

best interest to be completely independent of any particular DICOM viewer. This would 

make it available to a broader customer base, since OsiriX is only available to Macintosh 

users. In fact, the plugin was first written in Objective-C before being ported to C++ to 

support this need. It was also the motivation for creating a series of algorithms that are 

designed to detect edges without any set threshold, since ‘200’ in OsiriX could be an 

entirely different intensity in another DICOM viewer. 

Another possibility would be to make the plugin entirely independent of any 

DICOM viewer by giving it its own ability to open CT-series. A working prototype of 

this has already been made by Dr. Garner, taking advantage of the GLUT libraries of 

OpenGL. 

 



 

48 
 

Improving the Existing Algorithms 
 
An obvious improvement that the plugin must go through is to address the issues 

experienced in its first trial run. The adaptive thresholding needs to be more exclusive of 

bone, and the skeletonization algorithm must be changed to make passes in all directions, 

rather than just scan in one direction. A larger set of trial images would help with tuning 

the algorithm’s performance, since it was built on an initial test-bed of just 5 CT-series. 

Biasi et al. at the University of Milan devised a method for characterizing plaque 

in the carotid artery by means of CT scan. The study investigated the use of CT scanning 

as a screening tool for patients suffering from lesions in the carotid artery (Biasi et al. 

1998). This bears striking similarity to this thesis, in that this thesis applies image 

processing techniques to a CT series to screen patients for a specific injury. The study 

done by Biasi et al. focuses on deriving a specific metric for determining if a patient 

needed surgical attention while this thesis applies an already existing metric. In future 

research, it may be necessary to conduct a study that focuses on manipulating the 

parameters used in the algorithms and set up an image processing standard for this type 

of injury. 

 
Improving the Automated Method 

 
Adding versatility to the plugin would bring more value to it. Allowing it to make 

measurements in other parts of the body would make it a handy tool in other diagnostic 

situations that involve injuries that easily go unnoticed. It may be sufficient to have the 

user tell the plugin which region of the body that they are currently using, or possibly 

obtain this information from the DICOM viewer. However, if the plugin could store a 

‘dictionary’ of shapes that correspond to bones in different parts of the body, it could still 
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just rely on the user selecting a bone and handling it from there. Further research in 

applying a neural network to the algorithm would be interesting. 

Soler et al. developed a fully automated segmentation algorithm of the liver and 

surrounding tissue for automated surgery (Soler et al. 2001). Instead of using a neural 

network, a vast series of assumptions are made about how the liver appears in CT series. 

Their algorithm works for approximately 85% of all livers, the other 15% being 

comprised of those that are oddly-shaped. It used more constraints and assumptions than 

this study. This thesis experienced a similar success rate and with more specific 

assumptions about CT scans (such as always setting the global threshold above a certain 

value), it could decrease its rate of failure. 

Armato et al. developed a fully automated method for detecting lung nodules with 

a success rate of 70% (Armato et al. 2001). They implemented a comparative method for 

separating nodules from non-nodules, which was not done in this thesis. Perhaps most of 

their success owed to their database of 43 CT scans that provided their algorithms with 

ample reference material to make decisions upon. This study used only five series to 

build its definition of C2 and the basion. Having access to more images and 

implementing machine learning techniques could allow this algorithm to become much 

smarter in its approach to image segmentation and object recognition. 

 
Conclusion 

 
In conclusion, this project has proved that the assisted measurement of the BDI 

via a DICOM viewer plugin is an entirely possible venture. Though it is clear that the 

plugin is still in need of future development, such an investment would not be in vain. 

The successful trials of the plugin demonstrate that there is a future in applying computer 
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vision to CT-scans, helping to prevent the occurrence of avoidable deaths associated with 

whiplash injury. 
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Figure 4.1 A close-up of the BDI of patient of 1031. Both the automated method and the assisted method failed 
to measure the BDI of this patient. The problem arises from the light gray area in-between the basion and the 
dens. The algorithms mistake this area for bone, and assume that the two features are connected. The solution to 
this would be to adjust either the global thresholding filter or the local thresholding filter applied to the gradient 
to be more exclusive of lighter bones. 

Figure 4.2 A close up of the BDI of patient 1045. The boxed area shows a faint object that the plugin mistook 
for part of the basion. The most likely reason the two objects are connected is due to the fact that both the 
local or global adaptive thresholding filters are designed to be as inclusive of bone as possible. 
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Figure 4.3 A close-up of the BDI of patient 1041. Note how the bottom of the basion was found to be 
much lower than where a human would detect it. This is due to the conservative nature of the adaptive 
thresholding algorithms. 

Figure 4.4 A close-up of a bone that has been passed through the edge detection methods. Notice how 
the detected top edge of the bone is far from where the human eye would perceive it to be. The bottom 
edge is also a bit off, but not to the extent the top is. The likely cause for this is that the skeletonization 
method only scan downwards. A proposed method would have the algorithm scan in the three other 
compass directions. 
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