ABSTRACT

Precision Theory for LHC/FCC: New Results for the Five Point Function and
Interface between KKMC-hh and MG5_aMC@NLO

Yang Liu, Ph.D.

Advisor: B. F. L. Ward, Ph.D.

The development of large colliders provides us with the opportunity to discover
the fundamental particles in nature and explore the interactions among them. The
Standard Model (SM) of particle physics reflects our best knowledge of elementary
particles and their interactions at present, which is formulated by a gauge quantum
field theory with gauge symmetry SU(3)c ® SU(2), ® U(1)y. With the discovery
of the Higgs boson, the era of the sub-1% precision on processes such as Z and W
production is approaching us. In order to achieve the 1% theoretical precision tag,
we have to take radiative corrections into account and develop more precise Monte
Carlo generators.

In this dissertation, we first developed the computer realization of the magic
spinor product method in loop integrals proposed by B. F. L. Ward to evaluate the
general five-point function numerically. The result from magic spinor product method
agrees with that from LoopTools overall. Additionally, we also developed an approach
to achieve the next-to-the-leading order QCD and the electroweak (EW) exact O(as®

a?L) corrections, interfacing MG5_ aMC@QNLO with KKMC-hh by merging their LHE



files. By comparing the results of the Drell-Yan process obtained by KKMC-hh,
MG5_aMC@NLO and KKMC-hh interfaced with MG5_aMC@QNLO , at /s = 13 TeV
with the ATLAS cuts on the Z/~* production and decay to lepton pairs, respectively,
we find that the results derived from KKMC-hh interfaced with MG5_aMC@QNLO
would generate enhancements from those derived from MG5_aMC@QNLO, which is

due to the EW corrections provided by KKMC-hh.
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CHAPTER ONE

Standard Model of Electroweak Interation

The standard model (SM) of particle physics represents our best understanding
of elementary particles and their interactions. It is one of the most successful theories,
because its predictions are confirmed with exceptional precision in many experiments.
The SM is a gauge quantum field theory with gauge symmetry SU(3)c ® SU(2);, ®
U(1)y [1-16]. SU(3)¢ is the gauge symmetry of quantum chromdynamics (QCD), the
theory describing strong interactions, and SU(2), @ U(1)y is the gauge symmetry of
electroweak interactions. The SM is contructed by invariance under Poincare group
(translations, rotations and Lorentz boosts) and renormalizablity. The constituents
of matter are spin-1/2 particles (fermions), 6 leptons and 6 quarks that pair up to
transform under SU(2);. The interactions of SM are mediated by spin-1 particles-
gauge bosons. The elementary particles of the SM are listed in Figure 1.1.

If an elementary particle carries the charge of a certain force, it is involved
with the corresponding interaction. Quarks carry color charge (red, green, blue) and
interact through the strong force mediated by massless gluons. The gluon has eight
different states, which carrys a combination of color and anti-color charge in each state
(color SU(3) octet). The up, charm and top quarks carry a fractional electric charge
of 2/3e, while down, strange and bottom quarks carry a fractional electric charge
of —1/3e. The charged leptons(electron, muon and tau) have an integer charge of
—e. All electrically charged particles participate in the electromagnectic interaction

mediated by the massless photon . Each charged lepton is paired with a neutral
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Figure 1.1: The elementary particles of the SM

lepton (electron-, muon-, and tau-neutrino) with extremly low mass. All the particles
participate in the weak interactions since they all carry an isospin, of which the
z-compenent is either +1/2 (u, ¢, t-quark and neutrinos) or —1/2 (d, s, b-quark
and charged leptons). The weak interactions are mediated by the neutral Z or the
electrically charged W# vector bosons. The masses of elementary particles in SM are
acquired thorough the interactions with Higgs fields.

In this chapter, we aim to give a brief introduction of the standard model
of electroweak interactions [17-19]. We will introduce gauge invariance first. The
spontaneous symmetry breaking and Higgs mechanism will be discussed next. Last

we will review the contruction for the Lagragnian of the electroweak interactions.



1.1 Gauge Invariance

1.1.1 Abelian Gauge Invariance: Quantum Electrodynamics
Gauge theories are built with internal symmetries. For example, consider the

U(1) group of phase transformations of a free massive fermion field ¢ (z):

U(@) = e (), (1.1)

where « is an arbitrary phase parameter. The corresponding Lagranian density

L(x) = () (i@ — m)y(x) (1.2)
is invariant under these transformations. According to the Nother theorem, this

symmetry leads to a conserved current,

Ju(x) - QZ(JI)’)/MI/}@J), 8uj,u =0. (13)
The conserved charge,namely, generator of the U(1) symmetry group, can be

written as an integral over the charge density:

Q= /dejg(x). (1.4)

The invariance of the Lagragnian (1.2) under phase rotation indicates that the

phase parameter o has no physical significance so that it could be chosen arbitrarily.
It is unnatural to select a uniquely fixed a over all of the space-time, and it would be

more natural to choose a locally,

U(x) = e (), (1.5)
where a depends on space-time in an arbitrary way. However, this modification brings

a new problem. The Lagrangian (1.2) is no more invariant under the local phase

rotations (1.5), because the derivative 0,1 (z) is transformed under phase rotation



(1.5) by
Bb(x) — e D,p(x) — i€ D0 (w)(x). (16)

To solve this problem, We need to introduce a covariant derivative D,,, which has the

property that Dt transforms under phase rotations like :
D,p(x) — e 0 D (). (1.7)

Such a covariant derivative can only be introduced if there exists another field,
a vector field A, which interacts with the spinor field ¢. The covariant derivative D,

is chosen as
D, =0, +igA, (1.8)

where g is an arbitrary coupling constant, and A, transforms under a local phase

transformation (gauge transformation) as follows:
1
A (z) = A (x) + gaﬂa(x). (1.9)

We could easily verify that covariant (1.8) satisfies the requirement (1.7). Thus
the invariance of the Lagrangian (1.2) under gauge transformations is recovered after
replacing 0, with D,. However, we must add the kinetic term of the A, field for
consistency, which must be gauge invariant in itself (only involving the gauge-invariant

field strength).
F.=0,A,—0,A,. (1.10)

Therefore we obtain the Lagrangian which is invariant under gauge transfor-

mation

L=@il) —m) — }lFWF‘“’. (1.11)



If we identify the spinor field ¢ with electron field, the vector field A, with photon
field and replace g by e (electric charge), we obtain the Lagrangian for quantum
electrodynamics (QED). Note that only the minimal coupling of the photon field to
the electron field of the type e&%wA“ is allowed due to the requirement of local
gauge invariance. Furthermore a mass term for the photon filed of the type m?A,, A*

is forbidden to arise in the Lagrangian.

1.1.2 Non-Abelian Gauge Invariance

The idea of non-Abelian gauge theories was formulated by Yang and Mills [20]
in 1954. We successfully constructed the QED Lagrangian by imposing the local
gauge invariance, U(1). This success encourages us to extend the gauge symmetry
from an Abelian gauge case to a non-Abelian case. We will take the isospin symmetry
as an example to formulate of the Non-Abelian gauge theories. The Lagrangian for

the free protons and neutrons is
L= N(i) —m)N (1.12)
where N represents the isospinor (p,n)?. It is invariant under SU(2) transformations
N — e @0/2y (1.13)
where o = (01,09,03) (0 = Pauli matrices). and « is an arbitrary phase vector.
The isotropic spin currents N ’Y“%O'iN are conserved. And the associated charges
T, = [ d*xN~i0;N generate the algebra of SU(2):
15, T} = i€, T (1.14)
Note that the gauge transformations involving nondiagonal Pauli matrices oy, 09

result in the mixing between p and n states. However, this would not be a problem,



since there would be no physical difference between proton and neutron for the isospin
symmetry. Our selection for p or n totally depends on convention. Therefore it would
be natural to redefine p and n locally in an arbitrary way, namely, we require the

invariance under non-Abelian gauge transformations:

(Z) _, pial@)o/2 (5) (1.15)

where a(z) is an arbitrary spacetime dependent phase vector. We will encounter the
same problem as in the Abelian case discussed above: the derivative d, N which occurs
in the Lagrangian (1.12) will not transform under local gauge transformations as N
itself, and we have to define a proper covariant derivative. To achieve this goal, we
introduce a triplet of vector gauge fields Wﬁ, which transforms under an infinitesimal

gauge transformation as follows:
i i ik Lo
WN — WN + €k WM + ;aMOK (116)
This transformation is analogous to eq. (1.9). The second term shows the local
rotation of the W in the isotropic space. The covariant derivative is defined as
D, =0, +1igW, (1.17)
where W, = %UW“. The Lagrangian of the system is

1 .
~GLGE (1.18)

L:N(ia—m)]\f—4 L

where the wa are the field strength tensors of the vector fields:
G, =0,W. — 0,W,) — ge?"W;, Wy, (1.19)
This approach can be generalized to the case where an arbitrary gauge group

and an arbitrary fermion representation are involved. The only changes are as follows:



(a) Replace the isospin matrices o with the corresponding matrices describing
the transformation properties of the fermions under the gauge group.

(b) Replace €;;;, with the structure constants f;;;, of the gauge group.

Note that the fermions can transform as an arbitrary representation of the
gauge group, while the vector gauge fields must transform according to the adjoint
representation. In the non-Abelian gauge theory, the vector fields interact with each
other directly ("they are charged”). This is not the case in the Abelian theory where
the vector field is neutral. The Lagrangian of the non-Abelian gauge theory (1.18)

describes the interactions of massive fermions with massless gauge bosons.

1.2 Spontaneous Symmetry Breaking

It is known that the weak interactions are mediated by massive vector bosons
Z and W*. However, we have seen above that the non-Abelian gauge invariance
requires the gauge bosons to be massless. This means we must seek another possibility
to introduce masses for the gauge fields in a more subtle way, such that the local gauge
invariance is preserved. This can be realized by generating the gauge boson masses
via a spotaneous breaking of the gauge symmetry.

Usually the equations of motion for a physical system are symmetric under
some symmetry transformations, however, the ground state of the systems is not. For
example, the Hamiltonian for an infinitely extended ferromagnet is invariant under
rotations in space. However, the ground state breaks the rotational symmetry since
the individual spins are always aligned in an arbitrary direction. Similar situations
arise in the field theory often, and we will discuss several examples of spontaneous

breaking field theories.



W>0A>0 LW<0A>0

V(o)
V(o)

- +v

Figure 1.2: The potential V(¢) of the scalar field ¢ in the case u* > 0 (left) and
p? >0 (right)
The simplest example to exhibit the phenomenon of spontaneous symmetry

breaking is the ¢* theory. Consider the Lagrangian
1 15,5, 1.,
L= 5(3’@@@) —ghP - A (1.20)

The Lagrangian (1.20) is invariant under the parity transformation P, defined by
[0) =i —¢. The ground state (vacuum state |0)) of the theory is the one where ¢
vanishes everywhere. It is invariant under the parity transformation: P |0) = |0).

If the parameter p? > 0, the potential V(¢) = %,u2¢>2 + %)\gb‘l has a unique
minimum at ¢ = 0, as shown in Figure 1.2, which corresponds to the vacuum state.

If the parameter u? > 0, the situation is that of a spontaneously broken

symmetry. The potential

V(9) = —5 i1 + 7INI6" (1.21)
shown in Figure 1.2, has minima at

(0190) = £/ =p?/|A| = £v, (1.22)

which corresponds to two possible ground states. These vacuums are not invariant un-

der parity transformation since v # —v. Thus the parity invariance is spontaneously



broken. It is useful to define a new field ¢', for which (0] ¢’|0)=0, i.e. ¢' = ¢ —v. In

terms of ¢ we have

1
Z)\gb"l — \vg® + const. (1.23)

L= L@ d00) — w6 -

We see that the Lagrangian (1.20) with x? < 0 describes self-interacting scalar
particles with mass v/2|p|.

Next, let us consider the theory of a complex scalar field ¢ = ?(aﬁl + o).

Consider the Lagrangian
L= J(0°6°0,0) — 3 —
1 1 Loy o oy 1o o o0
= 58‘%18#@251 + 58“(;528#(/52 —gH (p] + 03) — Z)\(qﬁl + ¢3)°. (1.24)
It is invariant under the phase transformation ¢ — e “¢. For p? > 0 this
Lagrangian describes a self-interacting scalar complex field of mass .
Assume we choose p? < 0 now, then the potential V(¢) has a minimum at
(02 + ¢3) = 2|p|*> = —p?/A. So the minimum of the potential occurs along a circle of
radius \/TQ/)\ around the origin. Because we could pick any point on the circle as
the vacuum state, we are now dealing with an infinite number of possible vacua. Let
us take an arbitrary point on the circle as the vacuum, described by the coordinates
v = (v1,v2). Since the Lagrangian is invariant under phase transformations, we could
let this point lie on the positive real axis, namely, v = (\/TQ/)\), which implies
(01 ¢110) = v/=#?/A, (0] 62 [0) = 0.

Now we define ¢} = ¢; — (0| ¢1 |0), then the Lagrangian (1.24) becomes

1 1 1 A
L = 50"010u0} + 50" 620002 + 16" = SX0d (9" + 07) = (01 + 62"), (1.25)
where v = /—pu?/\. From the Lagrangian (1.25), we see that the field ¢; describes

a particle of mass \/2|ul, but ¢ is still massless.

9



The system described above gives an example of the Goldstone theorem [21-25]:
for every spontaneously broken continuous symmetry, the theory contains massless
Goldstone bosons (spin-0).

The example discussed above exhibits an invariance under the global gauge
group U (1) which is isomorphic to O(2). It could be generalized to involve the gauge

group O(n). Let us consider the Lagrangian

1 1 1
L= 5(3“@8#@) - §ﬂ2¢z¢i - 1)\(@'@')2# =12, ,mn
¢; = real scalar field; summation over i. (1.26)

This Lagrangian is invariant under the group O(n). For p? < 0 the minimum of
the potential is at v = \/T2/)\ The potential V(¢) exhibits the minimum at
bip; = —p?/A, ie. it arises on the n-dimensional sphere of radius \/TQ/A in the
n-dimensional space defined by the fields ¢;. Because of the O(n)-invariance of the
Lagrangian we could select the coordinates of fields so that the vacuum expectation
value of the field vector ¢; is defined as follows:

0

0

Oleloy=| |- (1.27)

v

Note that the first (n—1) components of (0| ¢ |0) are zero, the vacuum remains

invariant under the subgroup O(n — 1). We see that the vacuum expectation value

(0] ¢ |0) breaks the O(n)-invariance in a particular way. Let us see the point (1.27)

10



in the n-dimensional space of the fields ¢;. There are (n — 1) linearly independent
directions to leave this point, but to stay on the sphere which minimizes the potential.
Therefore there must exist (n — 1) massless Goldstone bosons, according to the Gold-
stone theorem. So the Lagrangian (1.26) describes a massive field of mass \/—2u?
and (n — 1) massless Goldstone bosons.

The group O(n) has $n(n — 1) generators, while the subgroup O(n — 1) has
2(n —1)(n — 2) generators. This means (n — 1) generators of O(n) do not leave the
vacuum invariant. On the other hand, we have (n — 1) massless Goldstone bosons,
namely, the number of massless Goldstone bosons is equal to the number of genera-
tors which are broken spontaneously. This feature is a special property of the O(n)
model we have discussed above, but a general feature of spontaneously broken theo-
ries involving scalar fields. The number of Goldstone bosons corresponds always to

the number of the spontaneously broken generators as a consequence of the general

Goldstone theorem [26].

1.3 The Higgs Mechanism
As we discussed above, the local gauge invariance requires gauge bosons to be
massless only. However, in reality, the observed gauge bosons of weak interactions Z
and W are massive. In order to reconcile this contradiction, we need to incorporate
Higgs mechanism [27-29] into the gauge theory, by which spontaneous symmetry

breaking generates a mass for a gauge boson.

1.3.1 The Higgs Mechanism in the Abelian Theory

Let us consider the Lagrangian
L =0"9"0,0 — 112" — A\(¢"0)%, (1.28)

11



which is invariant under the global gauge transformations ¢ — e "¢, ie., U(1)
gauge group. However, we need invariance under the local gauge transformations
¢ — e @@, In order to achieve this goal, we need to introduce a gauge field A

Repeating the procedure outlined in Subsection 1.1.1, we arrive at
* * * 1 v
L= (D"¢) Dy — i*¢" 6 — M¢*¢)* — TR (1.29)
where F,, = 0,A, — 0,A,, and D, = 0, + igA,.

We note that the various fields transform under local gauge transformations

as follows:

o(x) — e Do(x),
Ay () = Ay(z) + é@ua(x). (1.30)

For p? > 0 the Lagrangian (1.29) describes the system of a massive scalar
field, coupled to a massless gauge field A,. If we let g = e(electric charge), then we
are dealing with the scalar electrodynamics.

For p? < 0 the gauge symmetry is spontaneously broken, as discussed in
Section 1.2. We have known that the Lagrangian (1.28) describes a massive scalar
field, accompanied by a massless Goldstone by following the approach outlined in
section 1.2. Next, we will investigate what will happen in case of the gauge invariant

Lagrangian (1.29). Let us make the substitution

¢1 :qb'1—|—<0|gz51 |O> :gb1+v,v =1/ —,uz/)\ (131)
in eq. (1.29). We therefore expand the scalar field ¢(z) around the vacuum expecta-

tion value (0| ¢ |0) and arrive at

1 1 1 1
L= =" 4 S0' 00,01 + 50" 020,00 + S0P AAN — quA DGy (1.32)
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We find that following new terms arise:

1
égQUQA#A“, (1.33)

— gvA, 0" . (1.34)

The term (1.33) could be interpreted as the gauge boson mass term where the mass
m? = g*v? arises from the nonvanishing vacuum expectation value of ¢. However,
the interpretation of the term (1.34) is sort of vague, since it mixes the gauge field
with the Goldstone boson ¢. In order to clarify this condition, let us consider the

gauge transformation ¢ — e~**¢ in terms of ¢ and ¢,.

For an infinitesimal parameter o we have

¢ — (1 —ia)o,
¢1 — 1 — ags,
b2 = P2 + ady, (1.35)
and we find
¢y — ¢ — ad,
P2 = d2 + av + agh, (1.36)

Thus ¢9 undergoes an inhomogenous gauge transformation like the gauge field
A,. So we could use the freedom of gauge to set ¢ = 0, in which the mixing term
(1.34) and the Goldstone boson vanish.

As we see, the introduction of the gauge field A, and the requirement of
local gauge invariance fully change the physical condition: the Lagrangian (1.28)
describes a massive scalar field accompanied with a massless Goldstone boson, while

the Lagrangian (1.29) describes a massive gauge boson A,, and a massive scalar boson
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¢. However, the total number of the particle states remains unchanged. Before
spontaneous symmetry breaking, the theory had four particle states: two spin-zero
particles ¢ and ¢* plus two polarization states of the massless gauge boson A, i.e.
four states in total. After spontaneous symmetry breaking, we have one scalar particle
plus three polarization states of the massive gauge boson A,, i.e. still four states.
Therefore, we could say that the massless gauge boson ”ate” the massless Goldstone
boson to become a massive gauge boson.

The Higgs mechanism introduced above is important for the following dis-
cussion. In general theories involving massive gauge bosons are non-renormalizable,
because of the k,k,/m?-term in the gauge boson propagator. However, in the original
Lagrangian (1.29), the gauge field is formally massless, where no issues with renor-
malizability occurs. It turns out that spontaneous symmetry breaking would not
affect the renormalizibility of the theory [13-15]. Note that for the Abelian gauge
theory described by the Lagrangian (1.28), the spontaneous generation of the gauge
boson mass is not necessary to achieve renormalizability. We would not undermine
the renormalizablity if we introduce a mass term for the gauge boson, provided that
the gauge field A, is coupled with a conserved current. However, this is not valid for
a non-Abelian theory. The spontaneous generation of gauge boson masses is the only
way to ensure renormalizability.

In sum, Higgs meachanism is a remarkable result, suggesting the possibility
of establishing spontaneously broken gauge theories in which the interactions are

mediated by massive gauge bosons.
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1.3.2  The Higgs Mechanism in the Non-Abelian Theory

In order to explore additional complications from spontaneous symmetry break-
ing of a non-Abelian theory, we choose SU(2) gauge theory as a prototype.

At first, we choose a doublet representation of complex scalar fields, coupled

to the gauge fields in a gauge invariant way. Such a Lagrangian is defined by

1 N T .
L=-1GLG" + (8% + iga’B’%) (auqﬁ + igcriBL@ —1PoTo — Ao'e)?, (1.37)

where the scalar field ¢ represents the SU(2) doublet

()

and the o;’s denote the Pauli matrices.

For ;2 > 0 the Lagrangian (1.37) describes a system of massless gauge fields
in interaction with massive scalars of mass p. Now suppose we choose p? < 0, then
the potential V (¢) = p2¢T¢ + A\(¢T¢)? exhibits its minimum at finite values of ¢. The
manifold of points in the space of fields ¢,, ¢, for which the minimum of the potential
V(¢) occurs is invariant under SU(2)-transformations. Therefore, we could choose a
specific SU(2) frame for which we have (0] ¢|0) = \%(2), where v = \/—p2/)\. Form

eq. (2.35) we obtain the mass term of the gauge field, which is

T BB = T (¢ T/r') (BB
- % *[(BL)? + (B2)? + (B3)?]. (1.39)

Thus we could conclude: we obtain massive gauge fields after spontaneous
symmetry breaking. The gauge boson mass matrix is SU(2) symmetric, namely, the
three gauge bosons are degenerate in mass. This is a special feature of the spontaneous

symmetry breaking involving an SU(2) doublet.
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Note that the particle content of the theory includes three massive gauge fields
and one massive scalar field. Three of the scalar fields (four real fields originally) have
been eaten to provide the longitudinal components of the massive gauge fields.

Next, we choose an SU(2) triplet representation of real scalar fields

01
=1 ¢, |- (1.40)

3

We require invariance under the gauge transformation
¢ — g, (1.41)

where the exponential factor is a 3 x 3 matrix. The operator T; generates isospin

rotations about the i-axis and satisfies the usual SU(2) algebra
[T9, T = e T". (1.42)
The explicit matrix representation is
(T = —i€jp. (1.43)

Following the procedure outline in Section 1.2, we have the covariant derivative

as follows

D, =0, —igT;B,, (1.44)
or, in the ajoint representation, the covariant derivative takes the form,
(Du)kl = (Sklau + ngle,uj- (145)

Then the Lagrangian of the theory is

1 y 1 1 1
L= —ZGLVGQL + 5(8”@ - geijkBé'L(ﬁk)(au(bi — G€itm B} om) — §N2¢z’¢z’ - Z)\(@Qbi)z-

(1.46)
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When ¢ is the unique minima of the potential V(¢) = £4%¢;¢; + TA(¢ids)?,
the spectrum is that of an ordinary, isospin-conserving gauge filed theory: three
massive scalar fields, each with mass p, and three massless gauge fields B,. Since
each massless gauge boson has two polarization states, then the number of particle
statesis 3 x 1 +3 x2=09.

If we choose p? < 0, spontaneous symmetry breaking occurs. We could choose
a particular coordinate system of fields such that we have

0
Olo10) =1 o |- (1.47)

()

This vector remains invariant under rotation generated by T3, i.e. the subgroup
U(1) € SU(2), generated by the third generator T3 remains unbroken.
We shift the scalar fields and expand around the v, using
0

» — exp[ (GT + C2T2)1 0 . (1.48)

i
v
v+n
We could exploit the gauge invariance of the theory by letting

0

(T + Csz)] o= 0o |- (1.49)

¢® — exp {—3
v

v+n

With the help of the new gauge, we obtain the Lagrangian

1 1, vi o1
L= 5(a,méwn +2u*n?) — ZGWG“ + 59%2[3;31“ + B2B*] + - (1.50)
From this Lagrangian, we conclude: 1 has become a massive Higgs scalar field,

with mass y/—2u2; the Goldstone bosons 7; and 7, have disappeared completely, i.e.,
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they have been eaten up by gauge fields; the gauge bosons B} and B respective
coupled to the broken generators 77 and 75 have acquired a common mass gv; the
gauge boson BY remains massless, reflecting the invariance of the vacuum under the

generator 73.

1.4 Standard Model of the Electroweak Interactions

1.4.1 The General Ideas for Building Spontaneous Broken Gauge Theories

After investigating the examples above, we are ready to discuss the general
features of spontaneous broken gauge theories. Let us consider a Lagrangian which
is invariant under local gauge transformations of a group GG. The generatos T; follow

the commutation relations
(13, T3] = i fiji T, (1.51)

where 7,5,k = 1,--- N and f;j; is the structure constant of G. An arbitrary in-
finitesimal transformation of the group G could be parametrized by 1 — i¢;T;, where
€;’s are infinitesimal parameters.

The scalar field ¢ is assumed to transform under a n-dimensional representa-
tion of G. We assume that the field ¢ are real, since a complex field ¢ can always be

decomposed into two real ones. For an infinitesimal transformation of G' we have:

The Lagrangian is defined by
1 1 , ,
L=—=1GLG" + 510" +igS: AN (9 + igS;Aju)d] = V(9), (1.53)

where V(¢) is a quartic potential in ¢, invariant under G.
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We assume that spontaneous symmetry breaking occurs and the potential
exhibits its minimum at ¢ = v, where v is a n-dimensional vector. The gauge boson

mass matrix is then given by
(M2)ij == —g2(Sﬂ)> . (Sjv). (154)

In general, there will exist a M-dimensional subgroup G’ of GG, which preserves
an invariance of the vacuum.

Let T;(G') be the generators of G', then T;(G")v = S;(G')v = 0. There exist
(N — M) generators of G, for which T;v # 0, i.e. one has (N — M) Goldstone bosons.
Therefore the N x N dimensional mass matrix denoted in eq.(1.54) is actually an
(N — M) x (N — M) dimensional matrix, if we leave out all terms for which S;v =0
because of the S-invariance of the vacuum. The mass matrix (1.54) needs to be
diagonalized if we would like to find the massive vector bosons of definite mass.
There exist (N — M) massive gauge bosons. The (N — M) Goldstone bosons are
aborbed into the longitudinal components of the (N — M) massive gauge bosons.

Up to now, our discussion mainly focuses on scalar and vector fields. Next, we
need to incorporate fermion fields into the gauge theory, by adding to the Lagrangian

(1.53) the terms
Lo =y (i) — g fradi)r + Or(id — 9fridi)r — (mbpir +hec)  (1.55)
and
L™ = —Gr(Rp)r, + h.c. (1.56)

where 11, 1 g stand for the left-handed and right-handed fermion fields. The fields 1y,
and g transform under G as certain irreducible representations. The matrices f7,

fr denote the transformation properties of the left-handed and right-handed fermion
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fields. In eq. (2.55), we include the Yukawa interaction term of the fermion fields
with the scalar fields. The matrices R are constructed so that 1 z(R¢)i; is invariant
under the gauge group. We also include a bare mass term (migt, + h.c.), which
must be G-invariant.

From the egs. (1.55) and (1.56) we obtain the fermion mass matrix after the

spontaneous symmetry breaking,
Lfermionmass — _ cu)ye( Ro), — myriby, + h.c. (1.57)

After introducing the general properties of spontaneous broken gauge theories,
we are ready to give the general recipe for building renormalizable gauge theories. The
Lagrangian is constructed as follows:

1. Select the gauge group, the representations of left-handed and right-handed
fermions and the scalar fields.

2. Couple the gauge fields invariantly to the fermion and scalar fields.

3. Couple the gauge invariant quartic polynomial of the scalar fields so that
the potential reaches its minimum for nonvanishing vacuum expectation values v.

4. Construct the gauge invariant Yukawa couplings between the fermions and
scalars.

The gauge boson mass matrix has the structure:

1
592U2W3a

the fermion mass matrix is

G - v
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1.4.2  The Glashow-Weinberg-Salam Theory
We are now ready to write down the spontaneously broken gauge theory that

gives experimentally confirmed description of weak and electromagnetic interactions,
a model introduced by Glashow, Weinberg, and Salam (GWS) [1-3]. We begin with

the doublet of the weak isospin consisting of left-handed electron and its neutrino,

gzz<f)L, (1.58)

1
vy = 5(1 — V5)Ve

where the left-handed states are

1
€L = 5(1 —s)e (1.59)
The electron neutrino is known to be nearly massless. It is convenient to idealize it

as exactly massless, in which case the right-handed state
1
Vrp = 5(1 + ’}/5)Ve (160)

does not exist. Thus we have only one right-handed fermion,

v =er = %(1 +5)e, (1.61)
which is an SU(2)-singlet.

Note that we need to have the U(1)-factor in the gauge group SU(2) ® U(1)
to represent the electric charge. This cannot be an SU(2) generator since the pho-
ton couples both to the left-handed and right-handed electron. To incorporate the
electromagnetic interaction, we denote the U(1) generator as “weak hypercharge”, Y.

Requiring that the Gell-Mann-Nishijima relation for electric charge,

1
Q=1Ii+5Y (1.62)
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be satisfied leads to the assignments

YV, =—-1, Yg=-2.

(1.63)

By construction, the weak-isopin projection I3 and the weak hypercharge ¥ commute:

[I5,Y] = 0.

(1.64)

Let us take the group of transformations generated by I and Y to be the gauge group

SU(2), @ U(1)y for the gauge theory. In order to construct the theory, we introduce

the gauge bosons A}, A%, A% for SU(2), and B, for U(1)y.
The Lagrangian for the theory might be written as
], — [Bause 4 Lfermion 4 Lscalar’
and the gauge boson part of the Lagrangian is
auge 1 v 1 v
Lgavee — _Z_lFl’wFl“ — GG
where
F;lw = 8,,AL -9, AL + QGjMAiLA’,f
for the SU(2), gauge fields and

G = 0,B, — 0,B,

for the U(1)y gauge field.

We introduce a complex doublet of scalar fields
¢T
o=
bo
which transforms as an SU(2); doublet and has the hypercharge
Yy=1

by virtue of the Gell-Mann-Nishijima relation.
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Now we are ready to write down the fermion and scalar parts of the Lagrangian:
g i (04 Ly Yo igi0+ Doy + Dok ) 00
and
Lt = (D'¢) (Do) — V('0), (1.71)
where the covariant derivative is
D,=0,+ Z?nguY + %gaiAm (1.72)
and the most general form of the potential is

V(o'¢) = 1(67¢) + [A(679). (1.73)
We also add an interaction term, which involves Yukawa couplings of the scalar to

the fermions,

LY = —Geldi(o'yE) + (D) UR], (1.74)
which is symmetric under SU(2);, ® U(1)y transformations,
Now let us take p? < 0, then the SU(2);, ® U(1)y symmetry is spontaneously

broken. We choose a SU(2) frame so that the vacuum expectation values of ¢ take

the form:

0
0] ¢|0) = 1.75
oo =(, 0 5). (1.75)
where v = y/—p?/|\A|, which breaks both SU(2), and U(1)y symmetries. However,

the electric charge, which is a linear combination of 75 and Y remains unbroken.
The photon will therefore remain massless, while three other gauge bosons will aquire

mass.
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We next expand the Lagrangian about the minimum of the Higgs potential V'

by letting

o=ew (5) (4 iva) o

o= (=570~ (e ) o

oA, — O’iA;#, (1.78)
B, — By, (1.79)

Vi = YR, (1.80)

Wy — exp ( - ZCQZ) (1.81)

We now express the Lagrangian in terms of the U-gauge fields (1.77-1.81)
and explore the results of spontaneous symmetry breaking. The Yukawa part of

Lagrangian has become

vEn,

(Eres + Eren) = —
\/5 CRery, €Ler) — \/§ \/5

so the electron has aquired a mass

LYukawa — Ge

ée (1.82)

me = Gov/V?2 (1.83)
The scalar part of the Lagrangian now becomes
scalar 1 U2 -
Lt = S (@ 0)(Qun) — won” + S [9°|A, — P4 + (' By — gAD)° T 4+ (1.84)
We see immediately that the n field has acquired a mass my = /—2u?; it is the

physical Higgs boson. If we define the charged gauge fields

p=— (1.85)
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the term proportional to g?v? is identified as a mass term for the charge gauge bosons:

21}2

ks

(W P+ W, ), (1.86)

m ‘

corresponding to charged boson masses
My, = gv/2. (1.87)

Then, defining the orthogonal combinations

_g,B'u _|_gAi
Z, = 1 g (1.88)
and
B 4 /A3
A, =929 (1.89)

we see that the netural boson has aquired a mass

Mzo = \/g*9"*v/2 = Myw~+/1+ g%/ g? (1.90)

and that the gauge field A, remains massless.

Next, let us investigate the interactions. We could read off the interations

among the gauge bosons and fermions from L'™™°"  For the charged gauge bosons
we have
IW—r —%(%%‘SLW;‘?L’Y“VLWM)
g - _ _
= ——=[nuy(l — ys)eW, ev.(1 — )W, ], (1.91)

2v2

where we identify the couling constant as

8 V2

2 M2
9o _ Gy (1.92)
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with G is the Fermi constant. Similarly, the neutral gauge boson couplings to

fermions are given by

of 99 Vg2 +g? Z,
L7 =————eéy,eA, — V——vvwwil, + ———
/2 2 TR 92 ® ® /2 2
g“+g g“+g

Zy 2 (9° —g"
12— _
+ W —g €erYuer + TeL%eL . (193)
Thus we can identify A, as the photon, setting
/
9 e. (1.94)

/92 + gl2
It is convenient to introduce a weak mixing angle 0y, to parametrize the mixing

of the neutral gauge bosons. Defining

/

9

¢ = gtanfy, sinfy = g (1.95)
we could rewrite egs. (1.88) and (1.89) as
Z, = —DB,sinfOy + Az cos Oy,
A, =—A,cosby + Az sin Oy . (1.96)

By the virtue of the relation (1.95), the coupling constants of the SU(2), and

U(1)y gauge groups might be written as

e e
= > = > 1.
sin Oy — © 97 s Ow — ¢ (1.97)

And the masses of gauge bosons could be rewritten as

MW:< ra >§ L (1.98)

sin QW ’

My = . (1.99)
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It is therefore convenient to express the interation terms of the Lagrangian

(1.93) in terms of the weak mixing angle as

1 [GpM2
LY = eeyteA ——( 4
LV A

1 (GpM} : 20
_E< 7 ) [2sin” Oyer (1 + y5)eZ,

+(2sin? Oy — Ve (1 — 5)eZ,)] (1.100)

1
3
) vy (1 —ys)vZ,

and the interations terms of the Lagrangian (1.91) can be rewritten as

) GrM\? ] .
JAL f:_( F\'/§W> [Vevu(l—75)€W;67u(1_75)’/ewu]7 (1.101)

from which we could derive Feynman rules for the elementary vertices. These are

shown below.

e
A, ieey,e
e
Ve
I GeM2\ L
Wi —i(%55) 2 2eyu(1 — y5)e
e
e
— G M2 l,
Wi —i(CM ) re, (1 — ),
Ve
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Ve

i (GFMZ\3

_ﬁ( f[ )2V€7u(1_75)

Zz( )§é7 [Re(1+75) + Le(1 — 75)]e,
R, = 2sin® Oy,

L. = 2sin’ 0y — 1.
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CHAPTER TWO
Techniques for the Calculation of Electroweak Radiative Corrections at the
One-Loop Level

In the previous chapter, We have introduced the minimal theory of electroweak
interations, i.e. SU(2);, ® U(1)y theory of electron, proposed by S. L. Glashow [1],
S. Weinberg [2], and A. Salam [3], which exhibited the basic motivations and prin-
cipal features. This theory has been extented to the hardonic degrees of freedom by
S. L. Glashow, J. Tliopoulos and L. Maiani [4]. And the Weinberg-Salam-Glashow-
[liopoulos-Maini model is the most comprehensive formulation of a theory of the
unified electroweak interaction at present. It is theoretically consistent and con-
firmed by all experimentally known phenomena of the electroweak orgin. After the
Weinberg-Salam-Glashow-Iliopoulos-Maini model was proposed, 't Hooft and M. Velt-
man proved its renormalizability [13-16]. Therefore, the standard model of the elec-
troweak interaction is a calculable quantum field theory capable for precision cal-
culations in high energy physics. Theoretical predictions should have a precision
comparable to or even better than the experimental uncertainties. If the experimen-
tal precision of the order of 1% the classical level of the theory is no longer sufficient.
We have to take into account quantum corrections: the radiative corrections.

In this chapter, we will review the corresponding formulae and techniques for
the evaluation of the one loop radiatve corrections for the electroweak theory [30-37].
At first with the help of Faddeev-Popov gauge fixing technique, the complete renor-

malizable Lagrangian for the electroweak SM is given, Next, its renormalization will
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be discussed. Then we will introduce the classification and techniques for calculating
one loop integrals. At last, we will present some explicit calculations of one-loop

radiative correction as illustrations of the method described in this chapter.

2.1 The Model
The classical Lagrangian of the electroweak SM consists of a gauge boson

(Yang-Mills), a scalar(Higgs) and a fermion part
Lclassical — Jgauge + Lscalar 4 Lfermion 4 LYukawa’ (21)

where each of them is seperately gauge invariant.

The gauge boson fields includes an isotriplet W and an isosinglet B,,. The
isotriplet Wj, a = 1,2,3 is associated with the genretor o, (Pauli matrices) of the
group SU(2), and the isosinglet B, is associated with the weak hypercharge Y of

the group U(1)y. The gauge field the Lagrangian is as usual,

L84 = L P — G G (2.2)
where
F, = 0,W, — 0,W, + g2e;uaWiW, (2.3)
for the SU(2) gauge fields and
G =0,B, —0,B, (2.4)

for the U(1)y gauge field. The covriant derivative here is given by

Y
D,u = aﬂ — iggaaW;f -+ ZglEBu (25)

where g1 is the U(1)y gauge coupling and g9 is the SU(2), gauge coupling. The

electric charge operator () is composed of the weak isospin projection I3 and the
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weak hypercharge Y according to the Gell-Mann Nishijima relation.

1
Q=1+ §Y (2’6)
The scalar Lagrangian is as usual:
L3 = (DrY (D, @) — V(D), (2.7)
where
ch(w)) :
d(x) = with Y = 1. 2.8
(1= (i) i o 2
Here, we express the Higgs potential in another way
A TPH)2 2pt
V(®) = Z(d) D) — i o'd (2.9)

where A > 0, 4 > 0 such that it gives rise to spontaneous symmetry breaking.
The fermion part is extended to the lepton families (¢0!) and quark families

(7). The left-handed fermion of each lepton and quark generation are grouped into

SU(2), doublets:
Uy, =51 =)t = (Vll)
L
1 — )b, = “) 2.10
== (1) 2.10)

where | = e, u, 7, u; = u,c,t and d; = d,s,b. And the right-handed fermion are

grouped into singlets:

1
Vr = (1 +3s)0"

(ur)i = %(1 + 75)uis (dr)i = %(1 + 75)d; (2.11)
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Then the fermion Larangrian reads off

pemion ™ (G il + i)

+ Z(@EZLZlleL + ﬂiRUDUiR + szszdzR) (2.12)

And the Yukawa Lagrangian reads

LY = =N [(])iGl (W)@ + (01)iG (ur) ;@ + (91):G(dr); @ + hoe] (2.13)
¢0*

where Gt hgs

i Gy and ij are the Yukawa coupling matrices, ® = ( ) is the charge
conjugated Higgs field and ¢~ = (¢)*.
From the construction of Higgs part of Langragian, we have the vacuum ex-

pection value
(0|20} [* ==~ =+ #0 (2.14)

We expand the scalar field around the ground state so that the Higgs field can be

expressed as

o #(2)
Ble) = (%(v(x) ) + i) (215)

where the compoenents ¢, H and y have zero vaccum expection values. ¢f, ¢~ and
x are unphysical states which can be eliminated by the unitary gauge. The field H

is the physical Higgs field with the mass
My =V2u. (2.16)

The physical gauge fields W,f, Z° and A, are related to Wi and B, by

Wi = T(Wl FiWy),
w
(B)-(5 ) en



where

g2
Vit g
(231

NCE

The physical fermion fields are obtained by diagonalizing the corresponding

Cy = cos Oy =

Sw = sin By =

(2.18)

mass matrices

(fr)i = WUr)a(fL)k
(fr)i = Urr)ir(fr)k (2.19)
where f = v, [, u; and d;.

The resulting masses are

1 7
MZ:§ g%+g§va

1
My = Mzcw = 592717

M, =0,

V2

By identifying the coupling of the photon field A, to the electron with the

(Us.) Gl (Us R mi- (2.20)

mf7l

electrical charge e = V4ma, we have

e= A2 (2.21)

N

The diagonalization of the fermion mass matrices introduces a unitary quark

mixing matrix into the quark-W-boson couplings

Vij = (Uu)in(Uar)l;- (2.22)

Thus, the relations (2.16), (2.20), (2.21) and (2.22) allow us to replace the set

of parameters {g1, g2, A, u%, G', G*, G*} with the parameter {e, My, Mz, My, my;, Vi;}
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which are physical. Furthermore, we could express the Lagrangian (2.1) in terms of
physical parameters and fields.

Next, we need to apply Faddeev-Popov gauge fixing technique [38,39] to quan-
tize Lassical wwhich requires the specification of a gauge. We choose a renormalizable

't Hooft gauge with the following linear gauge fixings
F* = (&) 20" W Fi(e)) 26"
FZ = (60)7 30" Z, — My(¢])3x
P = (&) 20" A, (2.23)
which lead to the gauge fixing Lagrangian
Leeneefixing —%[(F”)Q + (F2)? 4 2F P, (2.24)

L% includes the unphysical components of the gauge fields. To cancel the unphysical
effects, We need to introduce Faddeev Popov ghosts (scalar anti-commuting fields)

u*(x), u*(z) (o = +,7, Z) with the Lagrangian

SF™
368 (x)

LY = 4 (x) u’ (z), (2.25)

where égﬂL(Z) is the variation of the gauge fixing operators F'* under infinitesimal gauge
transformations characterized by 6°(z).

The 't Hooft Feynman gauge £* = 1 will simplify the problem. At lowest
order the poles of the ghost fields, unphysical Higgs fields and longitudinal gauge
fields coincide with the poles of the corresponding transverse gauge fields. Moreover,

thers is no mixing between gauge Higgs and gauge fields.
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With the help of Lgauee-fixing and LFP we obtain the complete renormalizable

Lagrangian for the electroweak SM:
LSM — Lclassical + Lgauge—ﬁxing + LFP. (226)

The corresponding Feynman rules are given in Appendix.A.

2.2 Renormalization in the Electroweak SM

The Lagrangian (2.1) of the miminal SU(2), ® U(1)y model includes a certain
number of free parameters {e, My, Mz, My, my;, V;;}, which have to be determined
experimentally. These parameters could be directly related to experimental quantities
(at the tree-level), but this direct relation is no more valid when it comes to higher
order corrections. We usually called the paramters of the original Lagrangian bare
parameters, which differ from corresponding physical quantities by ultra-violet (UV)-
divergent contributions. These divergences would cancel in relations between physical
quantities in renormalizable theories. The renormalizability of non-Abelian gauge
theories with spontaneous symmetry breaking as proven by 't Hooft [13,14], which
allows meaningful predictions in the electroweak SM.

We are using the counterterm approach to realize the renormalization. Here
the UV-divergent bare parameters are expressed by finite renormalized parameters
and divergent renormalization constants (counterterms). The bare fields may be re-
placed by renormalized fields. The counterterms are fixed through renormalization
condition. These determine the relation between renormalized and physical parame-
ters and can be chosen arbitrarily. The renormalization procedure could be summa-
rized as follows:

° Choose a set of independent parameters.
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° Separate the bare parameters and fields into renormalized parameters, fields

and renormalization constants.

° Choose renormalization conditions to fix the counterterms.

° Express physical quantities in terms of the renormalized parameters.

° Choose input data in order to fix the values of the renormalized parameters.
° Compute predictions for physical quantities as functions of the input data. The

first three steps in the list specify a renormalization scheme.

In this chapter, we are using on-shell renormalization scheme, in which one
chooses counterterms so that the finite renormalized parameters are equal to physical
parameters in all orders of perturbation thoery. The beauty of on shell renormal-
ization scheme is that all paramters (of the electroweak SM) have clear physical
significances and can be measured directly in experiments. In the electroweak SM,
we choose the masses of the physical particles My, Mz, My, my, electric charge e,

and the quarking mixing matrix V;; as renormalizaed parameters.
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2.2.1 Renormalization Constants and Counterterms
We choose the physical paratmeters {e, My, Mz, My, my;, V;;} as independent
parameters. The renormalized quantities and the renormalization constants are de-

fined as follows (bare quantities are denoted by an subscipt 0):
eo=2Zee=(14062.)e,
Mo = My + My,
Mzo = M7+ M3,
MI%I,O = M12{ + (SMJ%D
Myio = My +0my,;
Vijo = (UhVU)y; = Vij + 6Vi;. (2.27)

where U; and U, are unitary since Vj;o and Vj; are unitary.

The counterterms defined above are sufficient to guarantee all S-matrix ele-
ments finite, but it leaves Green function divergent. This is because of the fact that
radiative corrections change the normalization of the fields by an infinite amount. In
order to get finite Green functions we must renormalize the fields as well. Further-
more, radiative corrections yield nondiagonal corrections to the mass matrices such
that the bare fields are no more mass eigenstates. In order to re-diagonalized the mass
matrices one has to introduce matrix valued field renormalization constants, allowing
to define the renormalized fields in such a way that they are the correct physical mass

eigenstates in all orders of the perturbation theory. Therefore, we define renormalized
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fields as follows:

1 1
WOjE = ZVQVVVjE =(1+ §5ZW)Wi,

1 1

(- o= )0
Ay) 1 1 A) A)
ZAZ ZAA lZAZ

5 ij J
%,f,L 1 R
=227 R = (6 + 552,;; )R, (2.28)

Here we do not discuss the renormalization constants of the unphysical ghost
and Higgs fields since they do not affect Green functions of physical particles and the
calculation of physical one-loop amplitudes.

In writing Z = 1+ 0Z we could split the bare Lagrangian L, into the basic

Lagrangian and the counterterm Lagrangian L
Ly=L—+6L. (2.29)

L shares the same form as Lo but depends on renormalized parameters and fields. dL
stands for counterterms, which aborbs the divergernces and unobservable shifts. The

corresponding Feynman rules are list in Appendix.A.

2.2.2 Renormalization Conditions
The renormalization constants described above need to be fixed by imposing
renormalization conditions. These consist of two sets: the conditions defining the

renormalized parameters and the ones defining the renormalized fields.
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In the on-shell scheme all renormalization conditions are formulated for on-
mass-shell external fields. The field renormalization constants, the mass renormaliza-
tion constants and the renormalization constant of the quark mixing matrix are fixed
by the one particle irreducible (1PI) two-point functions. For charge renormalization
we use the three-point function (eey-vertex function).

The renormalized one-particle irreducible two-point functions are defined as

follows (in the 't Hooft-Feynman gauge)

a?/”[’ k b7V

- _g;w(kQ - Mg)aab - i(gm/ - kul]z;nu)i%b(k2) - i%i%b(k?),

where a,b= A, Z, M5 =0.
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= i0ij(p — my,) + ipu_SLE(0?) + por SR (P?) + (mpaw_ 4+ mypwe) S5 ()]
The propagators are obtained as the inverse of the corresponding two-point functions.
The renormalized mass parameters of the physical particles are fixed in such a
way that they are equal to the physical masses. For mass matrices, these conditions
must be realized by the corresponding eigenvalues, which might result in complicated
expressions. These expressions could be simplified by requiring simultaneously the
on-shell conditions for the field renormalization matrices. If the external lines are on
their mass shell, the renormalized 1PI two-point functions are diagonal. This deter-
mines the nondiagonal elements of field renormalization matrices. The renormalized
diagonal elements are fixed so that the residues of the renormalized propagators are
equal to one. By this choice of field renormalization, the renormalization conditions
for the mass parameter require only the corresponding self-energies. Therefore the
renormalization conditions for the two-point functions for on-shell external physical

fields are defined as follows:
RO e (B)liamagy, = 0. RO (R)aay = 0, REAZ () homysy = 0
DA7¢ (k)|re—o = 0, DA (k)[r2=o = 0,
i méﬁfﬂie"(k) ——

: 1 nZZ v . : 1 NAA v .
kQILHAZ% W%FMV € (k’) = —ZEM(]{?), 1}21%0 E%ij € (k’) = —ZGM(]{'),
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~ : 1 A .
%FH(k)’kzzMﬁ = O, kZIi:’JI\I/[z ]{L—W%FH(k> = —1,
H H

%szj(p>uj(p)‘p2=m%j = O? %aj(p/)FgZ(p/)‘p’Q:m? = 07

K

?*mfvi@f

lim I (p)ui(p) = u;(p),

2 2
pPomi, pT — My,

~ A 4 .
lim ui(p')mrg(pf)% = iui(p), (2.30)

pPomi, pe =g,
where €(k), u(p) and @(p’) are the polarization vectors and spinors of the external

fields. R only takes the real part of the loop integrals appearing in the self-energies.

From the equations above we get the conditions for the self-energy functions.
REF (Miy) =0, REFH(MZ) =0, RE3(M3) =0,

347 =0, A =0,
<%V (k?) ONZ7 (k2)

R 08 (k)
ok? Ok?

akQ |k2:0 - 07

|k2:M5V :07§R |k2:M% :0,%
(2.31)

OLH (k)

H 2N
REH (MZ) = 0, R

‘k’QZMIQ{ =0, (232)

SEf.L SfLL
my RELE(mF ) + my ;RELE(m3 ) =0,
mf,j%iff(mji) + mfﬂ-?feflff(m?j) =0,
SR SEfLR

%Ezfi (m3%> +§Rzzfi (m?‘z)

O ~. . ~ .
RELAGP) + REL“GP) + 2REL () ooz o (2:33)

+2m?% —
fi Op?

Note that the longitudinal (unphysical) components of the gauge boson self-energies
drops out for on-shell external gauge bosons.

For the quark mixing matrix Vj;, to the lowest order we have

Vouj = Uyt USHT (2.34)
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where the matrices U/** transform the weak interation eigenstates f to the lowest
order mass eigenstates f
7L?

ULET R = 1l (2.35)
In the on-shell scheme, the higher order mass eigenstates are related to the bare mass
eigenstates in the following way

1
L 77f1L L
i =25 fio (2.36)

The renormalized quark mixing matrix is defined through the rotation from the weak
interaction eigenstates to the renormalized mass eigenstates. In the one-loop level,
the rotation in the fermion wave function renormalization 1 + %5ZL is given by the

anti-Hermitian part §Z47 of §Z*
0ZHM = %(5fo —6zLHh (2.37)
Therefore the renormalized quark mixing matrix is defined as
Vi = (@k + %52;;;4“ ) Vo kn <5nj + %5233“* ) (2.38)
At last, the electric charge is defined as the full eey-coupling for on-shell ex-

ternal particles in the Thomson limit in which all vertex corrctions vanish on shell

and for zero momentum transfer.

= ietuy,u(p)
= p/’
pg?__ p*=m?
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Because of our choice the field renormalization, the correction in the external

legs vanish and we have the condition

a(p) T u(p) | p2—mz = deti(p)yu(p), (2.39)

for the amputated vertex function

Ay
e =

e,D

2.2.3 Explicit Form of Renormalization Constants
Next, we will give the explicit expressions of renormalization constants.

From egs. (2.31) and (2.32), we get for the gauge boson sector

SM2, = REW (M2), §Zw = %%m:%,

IMyz = RE77 (M3), 0Zzz7 = iﬁ%hﬁ:z\@?

0Zaz = —2%%2%2@, 074 = —2%2?;20), 0Zan = —%

SM} = RYM(ME),  6Zy = —m%m:m. (2.40)

From eq. (2.33) we obtain for the fermion sector
Smys = HERIEL () + 2 md ) + 555 (3 ),
0Zf" = ﬁ%[m?,jzy(miﬂ +mpimy S5 ()
+ (mfcz + mQ)fijzij(mff,j)]a i F
0ZL = ﬁéﬁ[m;jzg‘f(m%) +mpamyp S MG ) 4 2mpamp S5 (mF )],
L F ]
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- O ~
02" = —RELH(m3 ) — mi o5 RIEL(07) + SEE07) + S (07 e

f72 8p2 fii
~ o ~
021" = =R mi ) = mi g SRS W) + S0 + S0 s, (241)

The use of R guarantees that the renormalized Lagrangian is real. Moreover we have
0Z% = 0Z;;(m} < m2). (2.42)

The renormalization constant for the quark mixing matrix V;; can be derived

from eq. (2.38)

1
0Viy = 202" — 02" = Va(625" — 0 Z5T)). (2.43)

Inserting eq. (2.41) we obtain

1~ 1
oVij = 5%{7%—2[7”31@2?;("@1@) +m; 'EM’L(m2 )

w,i ik U,
u,l mu,k

+ My iy (S5 (m? ) + S5 (m2))

+ (i g, +mi ) (S5 (mi ) + T () Vi

- ikQ—TrLz'[mg,jZZ’]’L(mZ,ﬂ + mg,kzg}']:(m?i,k)

+ maemay (ST (md ;) + g (md )

i+ i (S ) + S )1 (2.41)
Next, we will determine the charge renormalization §Z, from the eey-vertex.

For generalization, we explore the f fv-vertex for arbitrary fermions f. The renor-

malized vertex function is

f;{g (p,p)) = —i€di; Qs + z'eA;;{j (p.7). (2.45)

44



For on-shell external fermions it can be decomposed as (k = p' — p)

i . A +)u g P
A1) = 6 (AL 0 = s )+ L gy + U 3 ).

Rl me me

(2.46)

According to eq. (2.39), we obtain
0 =a(p) A (p.p)U(p)
_ v 1 f S 1
=t(p)yuu(p)|—Qr(0Ze + 625" + §5ZAA) + Ay (0) + Ag(0) + Uf§5ZZA]
1
— (p)715u(p) [~ QO ZE " + A(0) + ay50224), (247)
where

1 1
6z = 5(52;? +ozity, ezl = 5(525@ — 6z, (2.48)
and vy, ay are the vector and axialvector couplings of the Z-boson to the fermion f.

From eq. (2.47), we have two conditions

1 1
0= —Qf ((SZe + (SZZ-f’Vi + EézAA) + A{/(O) + AQ(O) + ’Uf§5ZZA, (249)

1
0= —Qu0ZL" + Ny (0) + 4y 50Zza. (2.50)

The eq. (2.49) for f = e fixes the charge renormalization constant. The eq. (2.50)
is fulfilled because of a Ward identity (derived from gauge invariance). Furthermore

the same Ward identity yields

1
AL(0) + AL(0) — Qro2)Y + ay50274=0. (2.51)
Inserting this equation we finally obtain (using vy —ay = —@Q fi%)
1 1
02, = —6Zan—-N67,4
2 2 Cw
_ LoAzA(R?) su 277(0) (2.52)

2 0k "“QZO_CW M2

This result is independent of the fermion species, reflecting electric charge universality.
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In the on-shell scheme the weak mixing angle is a derived quantity. It is defined
as [40-42]

M,
MZ’

sin® Oy = s3, = 1 —

(2.53)

using the renormalized gauge boson masses. This definition is process-independent
and valid to all orders of perturbation theory. It is convenient to introduce the

corresponding counterterms
cwo = Ccw + ocw, Sw,o = Sw + OSw, (2.54)

which are directly related to the counterterms to the gauge boson mass due to eq.

(2.53). To one-loop order we have

Sew 1 (5MV2V 5M§) 1§]~%(ZYW(M§V) B Z%Z(M§)>

av 2\ M2, M3 2 M2, M
65W _ _@(SC_W _ _1@%(271/?(]\243[/) . E%Z(iw%)) (255)
Sy sy, cw 2 sy, Mg, M3

We have now got all renormalization constants in terms of unrenormalized self-
energies. In the next section, we will introduce the methods to calculate to one-loop

radiative corrections.

2.3 One-Loop Integrals
Perturbative calculations at one-loop level involve complicated integrals over
the loop momentum (scalar, vetor and tersor integrals). In this section, we will
introduce the basic modern tools for the calculation of loop diagrams [30-32,43], in

which all one-loop intergals can be reduced to the scalar ones.

2.3.1 Scalar One-loop Integrals for N < 4
We first introduce the basic scalar one-loop integrals Ay, By, Cy and Dy, which

were derived in [43].
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We begin by introducing the scalar one-point function

Ao(m) = M/ddq(f;

im? —m? + i€
2\ T
= —m? m r(1- 2
47 2
2
— m? (A “log % + 1), (2.56)

where the UV-divergence is contained in

2

and vg is the Euler’s constant.

The scalar two-point function is given by

(2m)* " [ !
B , = d
o(p10, Mo, M1) 2 q[q2 —mg +i€][(q + p10)? — m3 + ie]

2 2 1
:A—|—2—logm0m1—|—m0 mllogﬁ—w<——r>logr
]

Plo mo  piy \7
(2.58)
where r and % are determined from
2 2 2 1
2+m0+m1 P1o Z€$+1:(x+r)(x—|——>. (2.50)
motny T

For the field renormalization constants, the derivative of By with respect to

p3, is required. It is given by

o 2 _ )2 1
——5Bo(p10, mo, m1) = ST lOg@ + m04m1 (— — r> logr

Ipio Pio my Pip \T
1 41
——1 1 ) 2.60
(e ) oo
The scalar three-point reads
(27W>4_n d 1
C = ——— [ d 2.61
0(P10; P20, Mo, M1, M3) i qDoDng’ ( )
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where
Do = ¢° —mj+ie; Dy = (q+p1)*—mi+ie Dioqg+p2)®—mj+ie (2.62)

In order to compute three-point function, we need to introduce two Feynman param-
eters. The general result for scalar three-point funciton valid for all real momenta
and physical masses was calculated by [43]. Tt can be also expressed into symmetric

form

Co(p10, P20, Mo, M1, M2) = / dl’/ dy[p2” + ploy® + (P30 — Pio — P31y

+ (mf —m3 — pay)x + (mg +mi + p3y — pao)y +m3 —ie] !

i~ 1 ; 1 i1
Y P e B o R T
Yio Yio Yio Yio

Yoi )
(=i Ytog 2] (e )~ i) — 253

(=S (yis 1)) log = y} (2:63)

o

where

Pij = Pi —Pj, DPio = Di,

2 2 2 2
= ——p? 2 4 om2 —m? —m?),
Yo Jor?, [P5e (D5 — Dits — 05 + 2m? —m? — my)
— (pki — pi;)(mj, — mi) + a(ph, — m? +mi)],
1 2
Tix = 2—2[ka m + mk + Oéz] Yit = Yoi — Ti+,
Pk

a = k(plo, Pa1> Pao)s

QO = /i(p?ja mjz‘v mi)(l + Z‘Ep?k), (2'64)
and x is the Kallen function
K(x,y, 2) = Va2 +y? + 22 — 2(xy + yz + 22). (2.65)
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The Spence function Liy(x) is defined as
, bt
Liy(z) = — n log(1 —xt), |arg(l—2x)| <. (2.66)
0
The n-function is defined as
n(a,b) = 2ir[0(—Sa)0(—3b)0(—ab) — 6(Ja)d(—b)0(—SJab)) (2.67)

All np-functions in eq. (2.63) vanish if & and all the masses m; are real.

Next, let us investigate the scalar four-point function Dy(p1o, p2o, P30, M0, M1
,m2, m3), which can be expressed in terms of 16 dilogarithms [44] instead of 24 dilog-
arithms of the result calculated by [43].

The scalar four-point integral can be expressed in the symmetric form

(27W)47n / d 1

D = ——F—— | &g 2.68
0(P10, P20, P30, Mo, M1, M, M3) im? qDODngDg’ ( )

where

Do = q* —mj +ie, Di=(q+p1)* —mi+ie,

Dy = (q+p2)* —m3+ie, Ds=(q+ps3)*—mj+ie (2.69)
We first give some variables and functions before we exhibit the result. We

define
kij = — ! p”, 1<i< <4 (2.70)

m;my;

The quantities r;; and 7;; are defined by
x? + k’,’jl‘ +1= (ZU + Tz‘j)(fﬂ + 1/rij)7
(2.71)
22+ (kij —ie)z + 1= (x4 75)(x + 1/75).
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Note that for real k;; the r;;’s lie either on the real axis or on the complex unit circle.

In addition,

P(yo,y1,v2.03) = Y kwyzyﬂrZyﬁ

0<i<y<3

QWo,y1,0,y3) = (1/r02 — T02)yo + (k’lz — rogko1)y1 + (kag — ro2k03) Y3,

Q(?Jo, 0, v, y3) = (1/?"13 - 7“13)3/3 + (k’lz - T13k23)y2 + (k01 - 7"13k03)yo

and 1 2 is determined by

ax® + bx + ¢ + ied =

-

where
4

\

Furthermore, we introduce

Ve = sgnRfa(xy — 7)),

(

el

=

Tro = Tk,
Tkl = $k/r13,

T2 = kao2/T’137

k$k3 = TTo2,

20

) ot

a = k23/7’13 + rozkor — k037’02/7”13 — k12,
b= (ri3—1/ri3)(roa — 1/702) + korkas — koskiz,
¢ = ko1 /ro2 + rizkes — kosriz/ro2 — ka2,

d = kia — ro2ko1r — rigkas + roar13kos-

kl=1,2,
S0 = To3
51 = To1
S9 = T
S3 = T3

)

) ) )

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)



and

0 . . ~

At last, we introduce
(

n(a,b) for b not real,
1(a.b) = § 27i[0(~ Ima)§(—Imb) — 6(Ima)d(Imb)] for b < 0, (2.78)
0 for b > 0,

\

with b = lim,_,q b.

Then we have the result for real g

1

mimaemzmya(ry — x2)

3 2
{23ty )+ =i o1+ 50
7=0 k

=1

. 1 ,
+Lis (1 + %) + 77(—%]', S—> log (1 + %)1
J J J

2

+ Z(_l)kH |:ﬁ(_xkj7 Sl) [log(Toﬂk;) + log (Q (%, 0,0, 1) — ie)
j T,

k=1

A (0)
0,0,1,rgpex ) .
—i—log(Q( g 027k )+Z€’}/k73k89n(7’021m7"13)):|

~ 1
-n (—xk, ~—) [log( ) + log (Q (%, 1,0,0) — z'e)
T13 713 Ty,

A (0)
1,0,0, ) -
—Hog(—Q( g ) +2€7k73_ksgn(]mr13)>]

T 1
[ ) o )] () (o G0) )
T13 13 13 Ty,

0)
1,0,0 -
+ log(Q( dTOQx ) + ie’yhgksgn(roglmrlg))]

+n<?027%>ﬁ(_$ka_;—i>} } (2.79)

Do(pr0, P20, P30, Mo, M1, Mo, M3) =

o1



In the case that |r;;| = 1 for all r;;, the result can be written as

1

mimemgmya(xy — x3)
3 2
OIE M{Lw<l+w+n< 1) (1 + 521
7=0 k=1
1 Tk
+Lig| 1+ —Tyi, — | log | 1+ —
§j Sj

’ k+1 1 713 ‘TI(CO) 95(0)
-1 Y pp— I Pl1 — —~¢b
S D ) o)

=1

Do(pr0, P20, P30, Mo, M1, Mo, M3) =

1
+n(—xk, roz2) [log(WP(O, 0,1, 7’0237;0)) — T02$§€0)€b’}/k73_k) + log (7“02513;0))}
To2Xy,

1 ril3 © ©
- [77 (—xk, @> +n (7’02, —)} {10g< : (l) P <0, 1, ey ,0) - T2 657k,3—k)
T13 r13 T2, r13 T13
7’021‘,&0) T02 1
+log| —— ) | + (1 = Y s—xsgn(b))n| —zx. — — | 0| ro2, — .
13 13 13

(2.80)

2.3.2 'Tensor Integral Reduction

We have introduced the four basic scalar integrals Agy, By, Cy and D, for
calculations of the perturbative quantum field theory. Besides the scalar integrals we
also need tensor integrals in the perturbative calculations, of which the evaluations
could be very complicated in practice. In order to deal with these complications,
we follow one particular procedure [30,31] in which these tensor structures could be
reduced to linear combinations of scalar integrals.

In general, the one-loop integrals in d-dimensions are classfied with the the
number N of propagators in the denominator and the number P of integration mo-
menta in the numerators. According to power counting, the integrals with P +
D — 2N > 0 are UV-divergent. The divergencies can be regulated by evaluating

the integrals in general dimensions d # 4 (dimensional regularization [15]). The
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UV-divergences would be cancelled in the procedure of the renormalization. For
renormalizable theories we have P < N and therefore a finite number of divergent
integrals.

We define the general one-loop tensor integral as

4-d
N - (27 p) d du1 - 4qup
Tul..lup(pla'“ y PNy T, = - ,le) - ’lﬂ'—2 d qDoDl"'DN,1 (281)
where the denominator factors
Dy =¢q* —mj+ie, D;=(q+p)®—mi+tie, i=1,...,N—1, (2.82)

arising from the propagators in the Feynman diagram. Moreover we introduce

pio = p; and Pij = Di — Pj- (2-83)

P21

PN—-1N—2

Apparently the tensor integrals are invariant under permutations of the propa-
gators D;, i # 0 and totally symmetric in the Lorentz indices p. i€ is an infinitesimal
imaginary part which regulates singularities of the integrand. Its specific choice guar-
antees causality. The parameter 1 has mass dimension and play a role to keep the
dimension of the integrals fixed for varying d. Conventionally 7% is denoted by the
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Nth character of alphabet, i.e. T' = A, T? = B.-- -, and the scalar integrals carry a
subscript 0.

Lorentz covariance of the integrals allows to decompose tensor integrals into
tensors constructed from the external momenta p;, and the metric tensor g,, with

totally symmetric coefficient functions TV Formally we introduce an artificial

i1ip”

momentum py to write terms containg g,, in a compact way
N—1
TN o Dr e ovemos - my) = > TN papis, - Dippp (2.84)
i1, ip=0
the g,, terms are recovered by omitting terms containing an odd number of py’s and

replacing the products of even numbers of py’s by the corresponding totally symmetric

tensor constructed from the g, , for example,

Pou1Pop2 — Guip2
Pou1P0u2P0u3Pops — Jutv19usva + Gu1v3duzva = Juivagu2vs- (2.85)

The explicit Lorentz decompositions for the lowest order integral are easily

derived. The two various two point functions can be written as
BM = pluBla
B;w = g,uVBOO +plup1uB11> (286)

the three point functions reads

2
Cu = plucl +p2u02 = Zpi,ucia
=1

2

Cow = 9 Coo + Z PipPjvCijs

3,j=1
2

2
C,uup = Z(g,uzzpip + guppi,u + guppiu)COOi + Z piupjupkpcijka (287)
i=1 1,7,k=1
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And the various D functions could be expressed as

3 3
D, = prDz', D, = guwDoo + Z PipPiv Dij,
i=1 ij=1
3 3
Dyvp =Y (Guwbio + Guplin + GupPi) Dovi + D, PinPivDrp Diji
i=1 ij,k=1

Duupo‘ = (guugpa + Gup9vo + g,uagup)DOOOO

3
+ Z (G9wPipPjoc + GupPinPjo + GupPivPic

ij=1

+ GuoPivPjp + GuoDiplip + JpoPinPjv) Dooij

3
+ Z piupjupk:pplaDijkzl (288)
1,5,k=1

For a general tensor integral with N > 5, the terms involving g,, should be
omitted since the four dimensional space is spanned by four Lorentz vectors. Fur-
thermore, the decomposition (2.84) should contain at most four Lorentz vectors.

Therefore, the decomposition (2.84) arrives at

4
N N
Tlll"'ﬂP (ph Tty PNy, T, 7mN1) = Z nl...ippi1u1 © o DPup (289)
ity ip=0
where {p1, -+ ,ps} is any set of four linear independent Lorentz vectors out of {py, -+, py_1}.

The symmetry of the tensor integrals under exchange of the propagators gives rise
to relations between the scalar coefficient functions. Exchanging the arguments
(pi,mi) < (pj, m;j) together with the corresponding indices i <+ j leaves the scalar
coefficient functions invariant, for example,
C1(p1, p2, mo, mi, ma) = Ci(p2, p1, Mo, Mo, M1 ),
Coo(p1, P2, mo, m1, ma) = Coo(p2, p1, Mo, M2, M1 ),

Cha(p1, P2, Mo, My, ma) = Cha(p2, pr, Mo, Ma, My). (2.90)
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All one-loop tensor integrals could be expressed itereatively in terms of the
scalar ones Tg¥ (Ao, By, Co, Dy...), using the Lorentz decomposition of the tensor
integrals. We will derive the general procedure for the tensor integral.

The product of the integration momentum g, with an external momentum

could be written in terms of the denominators
1 2 2 2
qpr = §[Dk_DO_fk]a Jk = D, — mj, + mg. (2.91)

Multiplying eq. (2.81) with p, and substituting eq. (2.91) yields

N7k — N np
R.U‘l"‘,U‘Pfl = LpyoppPr

_ 1(27r:u)4_d /ddq Quy * " Qup_y
2 am? Do+ Dy1Dpy1---Dyy

- Qui " " Qup_y _kaM1"'q/LP—1:|
Dy Dy_, D, Dn_,

ST () =T, (0) = AT, ) (2.92)

ol pp—1 M1 pp—1
where the argument & in TV-1 = (k) implies that the propagator Dy was eliminated.

pa-pp 1

Note that 7, (0) has an external momentum in its first propagator. So we need
to perform a shift of the integration momentum to recover it to the form (2.81). All
tensor integrals on the right-hand side of eq. (2.92) have one Lorentz index less than

the original tensor integral. In two of them one propagator is cancelled.

For P > 2, contracting eq. (2.81) with g,, and using

9" q,q, = ¢* = Dy +m{, (2.93)
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yields

N,00 __ 7N _
RNl"'#P72 o Tul"-upgup e
(271',“)4‘1 / d | Qu1 " Qup_o 2uy " " Qup_s
= d -/ e et PPe2
im2 q Dy Dy T mg Dy---Dy
N-—1 2mN
- [TM'”#sz <O) + mOTul-“quz]' (294)

Plugging the Lorentz decomposition (2.84) for the tensor integrals in eqs. (2.92) and
(2.94) we obtain a set of linear equations for the corresponding coefficient functions.
This set decomposes into disjoint set of N — 1 equations for each tensor integral. If

the inverse of the matrix

p% pip2 ot P1PN-1
P21 p% ctr PaPN-1
Xny_1 = (2.95)
PN—-1 DPN-1DP2 - - p%v—1

exists, these can be solved for the invariant functions TV

fipe 10 this way all tensor

integrals are reduced iteratively to scalar integrals T with L < N.

If the matrix Xy_; becomes singular, the reduction algorithm fails. If this is
due to the linear dependence of the momenta we can leave out the linear dependent
vectors of the set {p1,---,py_1} in the Lorentz decomposition bringing in a smaller
matrix X,;. If X, is nonsingular the reduction algorithm works again. This occurs
at the edge of phase space where some of the momenta p; become collinear.

Now we exhibit the results for reduction of arbitrary N-point integrals depend-

ing on M < N —1 linear independent Lorentz vectors in d dimensions for nonsingular
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matrix X,,. Inserting the Lorentz decomposition of Ty, RVX and RN

NK N
Rul ‘pp—1 Tm"'uppzp = Z Rz1 ip 1 Pipn " Pip_qpup_1>
i1, ,ip—1=0
0,0 N _ N,00
Rm WP—1 Tu1~~-upguP = Z Rn ip_oPiipn " Pip_opp_o> <2'96)
] ’Lp 2= =0
into eqs. (2.92) and (2.94), these equations could be solved for T}Y ; :

1
N NOO
T0021 ZP2:D+P_2_M|:ZI ip_2 ZRIWI ZP2:|’

k/
Tk‘]jlmip_l = (XM )kk |:R7,1 Zp 1 Zdlr 0041 4p— 1ZT+1 “ip_ 1:|' (297)
Using the eq. (2.92) and (2.94), the R’s can be expressed in terms of T}, , and

TNV with ¢ < P:

’Lll’

M-1
olaN P—-2—q ~r
R g =T gy GO B0 (U7 DAL
k1=1

P—2—¢q P—2—¢q
M-—1
pP—-2- ~
(777 X Tk
k1,ko=1
M—-1
P—2-gq FN-1
* <P -2 — q) Z jjil"'iqkr“kp,g,q (0):| ) (298)
ki, ,kp_o q:1

1 . .
RZ.’ZQM---M - §{T§1V...i;M...M(k)9(klu, iy My M)

P—1—q P—1—q
BT areag - GV T
—_——
P—1—q
M—1
P—-1—q
- ( 1 > Z lelv ’L}zk‘l (0)
k=1
M—1
P—-1-¢q ~N_
+ ( 9 > Z T«zjlv..-z'ikm(o) +-
ki ko—=1
M—1
P-1l-g¢ TIN-1
T 0 2.99

o8



where @y, -+ iy # M and

1 4. #k, r=1,---,P—1,
O(kliy, -+ ,ip_1) =

0 else.

(2.100)

The indices 7 denotes the i-th momentum of the corresponding N-point function 7V

but to the (i — 1)-th momentum of the (N — 1)-point function T¥~1(K) if i > k. In

sum, with the reduction algorithm above all one-loop integrals can be reduced to the

scalar ones as long as the matrices X,; are nonsingular.

Next we take the reduction of tensor two-point integrals as an example to

illustrate the reduction algorithm describe above.

We start with

(2mp)* " 1
Bo(p1o, Mo, m1) = T dquoD1 = plouB1(P1207 mg, m?).

Using the relation ¢*> = Dy —m? with (for convenience, p1g — p)

1
quE(Dl_DO_f), f:pz—m%—i—mg,

we derive the following relations:
1
P*By(p®, mg, mi) = Q[Ao(mo) — Ao(ma) = fBo(p, mg, m7)].

Therefore we have

1
By (p®, my,mg) = 2—1)2[140(7”0) — Ao(mq) — (m§ —mi — p*) Bo(p, m§, m7)].

The rank two tensor integral can be reduced as follows:

By (p*,mg,m3) = g Boo(p*, mg, m?) + pupy Bui (p*, mg, m3)

29

(2.101)

(2.102)

(2.103)

(2.104)

(2.105)



Multiplying eq.(2.105) by g,, and p, yields

p* By (p?*, m§, m§) + dBoo(p?, mo, m1) = Ao(ma) — miBo(p?, mg, m3)

(2.106)
P*Bui(p®, mg, mg) + Boo(p®, mo, ma) = 5[Ao(m1) — fBo(p?, mg, m3)]
After a simple calculation, we have
1 1 X 1
2 2 9y _
By(p”, mg, my) = A —/0 dx log (/ﬁ) — X
Bi(p*, mg 2:————/ log (L) - 12
1(p°, mg, m7) oA, xdx log 2 BN
B (p*,mg,m3) = EUN —/0 dxx® log (E) — 3N
1/1 ! 1 [t X
322<p2>m37m%> =73 (Z + 1) /0 dxx + 5/0 dxx log (E)
1 /1 1
— 1 <§p2 _ mg — mf) A (2_107)
where
x(x) = —p*a® + (p* — m? + mg)x — mg,
2

Using these relations, we get
2
dBQg(pQ, mo, ml) = 4322(]72, mg, mf) + ?, K2 = p2 — 3(m(2) -+ m%) (2109)
Furthermore we have
K2

pQBll(p27m(2)7 m%) + 4300(192, mo, my) = Ag(mi) — m%Bo(pQ, mg, m%) T

p*Bii(p*, m, mg) + Boo(p?, o, m1) = §[Ao(ma) — fBo(p?, mg, m3)].

(2.110)
At this moment we introduce a X;-matrix (nonsingular)
2
p° 4
(2.111)
p* 1
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and the vector b
by Aog(m?) — miBo(p?, m2,m3) — KTQ
b= - (2.112)
b2 5 [Ao(m1) + fBu(p?, mo, m1))]

Therefore, Byo(p?, mZ, m?) and By (p?, mZ, m?) can be obtained by using the inverse

of matrix X

Bui(p?, mg, m7) by
OV = x . (2.113)

By (p27 m%, m%) ba

Now the tensor two-point integrals have been reduced to the scalar integrals Ay and

By and their explicit expressions are listed as follows:

1
Bi(p*, mj, m7) = 2—292[140(7”0) — Ag(msa) + (mi —m§ — p*) Bo(p*, mg, m3)],
2 2 2
2 9 oy P _3(m0+m1>
Bll(p 7m07m1> - 18p2
Am? — p?
+ 3—p4A0
2

Am?2 — 2p?
3p* : Ao

2 2 2,2
, —mg, —m7) + 3p*mg 2
B , Mg, M),
3! o(p 0,M1)

(mo) — (1)

K(—p

+

2 2 2 2 2 2 2
p® —3(mi+m;) Am*—p Am* +p
B22(p27 m(2)7 m2) == ].80 = 12p2 A0<m0) + 12p2 AO(mQ)
R(_p27 _m27 _m2)
] 110

with Am? =m? — m2.
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2.4 Example for One-loop Radiative Correction Calculations
The discussion above gave us a reduction method to compute one-loop tensor
integrals, which is a powerful tool for perturbative calculations for the Standard
Model.
As illustrations of the reduction method we will present the detailed calculation

of the one-loop amplitude for the decay of the W-boson into massless fermions.

WE(k) = fi(pi) fi(p))- (2.115)
fi
Wt Ny
fi

Figure 2.1. Born Diagram to W — fif;

At the tree level only one Feynman diagram contributes to the amplitude

eV, 1 eVi;
My =——L14 E)=(1— = —2 M7, 2.116
0 =~ o u(p)e(k)5 (1 = )u(pa) = oM, (2.116)

with My = a(p1)e(k)5(1 — v5)v(p2), which leads to the lowest order decay width

CYMW
I'o = ——Viip. 2.117
0 628%,[/| ij]2 ( )

There are six loop digrams and one counterterm diagram at one-loop order (see

Feynman diagrams below)

62



fi

W+

W+

v,z

Figure 2.2. One-loop diagrams to W — fif;

These six diagrams could be grouped into two generics, the first two loop dia-
grams correpsonding one generic diagram and the rest four corresponding to another
generic diagram. So we first compute the two generic diagrams. The amplitude for

the first one is written as follows

SMy = i H’/ddq L
Lo 278 (¢ — M?)(q + p1)*(q — p?)?

u(p1)y" (g7 w- + gl wi)(d + i) ¢ (g5 w- + g5 wy)

(¢ — 12) V(g2 W + g3 wi)v(pa), (2.118)
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where g% represent the generic left- and right-handed fermion-fermion-vector cou-

plings
]3 _ Q282
+ Sw - 2w
— 2w =_ Y 2.119
gf Cu Qf:g S Cu ; ( )
and
1
we = S(1% 7). (2.120)

Algebraic simplification and decomposition into tensor integral gives
d’q 1
My =ip* P /
e 21 (q* — M?)(q + p1)*(q — p*)?

u(p1)[—2(¢ — o) ¢(d + ) + (4 — d)ddd)(91 95 92 w91 g g3 wy)v(p2)

_ 1617T2u(]91)[(2 — d)Cu' ¢y + QCM(%M“ _ ’Y“ﬁ’ﬁ) + 2007?2%}/31]
(91 92 95 w— + 91 93 g5 w4 )v(p2). (2.121)

Inserting the Lorentz decomposition (2.87) yields

oM, = —W(gfgg’g;/\/lf + 91 93 93 MY)

[(2 — d)*Coo — 2k*(C1a + C1 + Cy + Cp)). (2.122)
Finally the amplitude for the first generic diagram arrives at

1 o
M, = —@<gl 95 93 M1 +9T9§92+M1+>

M2\?
[—2k200(0, k*,0,M,0,0) (1 + ﬁ>
M2
— By(Kk?,0,0) (3 + 2?>

+2B,(0, M, 0) (2 + —2) - 2} . (2.123)
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Similarly the amplitude for the second generic diagram is obtained

g [ % u)r (9w + 9w ) (=), (g2 W+ g5 wi )u(pe)
oMz = —ip / @) £la+p)? = M2[(g — p2)? — M)

9319pu(P1 + 2D2 — @)v — 9 (2p1 + D2+ @) p + 90p(2q + p1 — D2) ) €"

1
= 165393(91 92 My + 91 g5 MT)[A(d = 1)Coo = 2k*(Crz + C1 + )]
1 —_ - —
= 1572900 9 My + 9l gy MT)
M2M:2 Vg
[2 (Mf + M+ =L 2) Co(0,k2,0,0, My, My) — (1 N %)

2 2

M M.
Bo(K?, My, M) + (2 + k_21> By(0,0, M;) + (2 + k_j) By(0,0, M2)]

(2.124)
For convenience we define the generic vertex function as follows:
Va(m?,m3, m3, My, My, M) = Bo(m2, My, My) — 2
— (Mg —mi — M{)Cy — (Mg — mj — M;)Cy
—2(m3 —m3 —m3)(C1 + Cy + Cy),
VY, (m?,m2,m2, My, My, M) = 3By(m3, My, My) + 4M2C,,
+ (4m7 + 2m3 — 2mg + Mg — M7)C,

+ (4m3 +2m3 — 2m3 + M; — M3)C,.

(2.125)
so that amplitudes for two generic diagrams can be expressed as
My = —#(ngggﬂ% + 91 95 93 M{)Va(0, £%,0,M,0,0)
My = F17TQ93(9192M1 + 91 g3 ML)V, (0,57,0,0, My, My).
(2.126)
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Next, we only need to insert the actual couplings and masses of the six actual
diagrams into these two generic diagrams and add the counterterm diagram. Finally

we obtain the virtual one loop corrections to the invariant amplitude for W — f; fj

M =— —— VZM
\/_SW o

{000, %200.33.0.0.0.0)+ 5705 V2(0.383.0,012,0.0)
+ Qflvb(()? MI%V: 07 07 Av MW) - Qf]-Vb(O, M{%Va 07 07 MW: )\)
C C
+ S_Wg;zvb(07 MI?V: Oa 07 MZ: MW) - _Wg;jvb(ov M{%Va 07 07 MWa MZ)
w
1 fi, Lt 1 fi L (58W
9 997 S

0M contains infrared divergences and they are regulated with a photon mass .
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CHAPTER THREE

Spinor Techniques

3.1 Introdution

The cross sections of bremsstrahlung processes at high energies in gauge the-
ories are of interest for both theoretical and experimental physicists due to the de-
veolopment of experiments in colliders. In these processes, light leptons and quarks
could be viewed as massless as long as the electromagnetic and strong interactions
are concerned. When the Feynman rules of the theory are determined, the rest of
the work is reduced to the calculation of the amplitudes of Feynman diagrams. The
amplitudes can be computed with the standard manipulations for squaring matrix
elements and summing over the polarizations of the particles.

Although the standard approach is straightforward, it becomes impractical
when both the number of external lines and the number of diagrams involved become
large. To be specific, aftering writting down the amplitude M of the correspond-
ing Feynman diagrams, we usually have an analytic expression for the cross section
> |M|* with a spin and/or color sum or average. The result is usually a function of
Minkowski products of the particle four-momenta.

The calculation of the cross section is facilitated by two considerations. First,
the polarization vector e* of external spin-1 particles could be summed covariantly.

For a massive vector boson with mass m and momentum ¢* we have the spin sum

1
Dot = g

v

(3.1)
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while for a massless vector boson with momentum k* we have in the axial gauge:

PrE" + Brp”
) e = —g 3.2
c'e T (3:2)

where p* is a four-vector different from k*. Second, a product of spinor sandwiches
can be expressed as a trace over a string of Dirac matrices, using spinor projection
operators. For a massive spin—% particle with mass m and momentum p* we have the

spin sum

Y- u(p)u(p) =p +m,

(3.3)
>_u(p)u(p) = p —m.
For a massless fermion with moemntum p* and helicity A\ = £1, we have
ux(p)ur(p) = wap, wr= %(1 + A\75). (3.4)

The above method has some appealing features. The unobserved spins and
polarizations do not arise in the final result; the arbitrary overall complex phases of
the spinors and polarization vectors cancel. The algebraic calculation of the trace
expressions is straightforward and can be performed for any amplitude. However, the
last condition limits the complexity of the problems that can be dealt with. Since we
have to square the amplitude before we can use egs. (3.1)-(3.4), both the number of
traces and their length increases very fast with the order of perturbation theory. It
is very easy to make mistakes.

In order to handle this problem, spinor product methods were proposed by
three groups independently: the CALKUL approach [46-50], “Chinese magic” po-
larization scheme [51], and Kleiss and Stirling Spinor Technique [52]. The essential

idea is that the gauge invariance allows one to use a set of polarization vectors which
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eliminate radiation from one entire side of a charged line and simplify considerably

the calculation. In this chapter, we will introduce these three approaches respectively.

3.2 The CALKUL Approach
First, we introduce the heliciy amplitude approach [46-49] proposed the CALKUL
collaboration (F. A. Berends, P. De Causmaecker, R. Gastmans, R. Kleiss, W. Troost
and T. T. Wu).
For a massless fermion of four-momentum ¢, there are two possible helicity

states u, (q) and u_(q) specified by

us(q) = %(1 + v5)us(q), (3.5)
1:(0) = 7(0) (1% 7). (3.6
By the normalization
u(q)u+(q) +u—(q)u-(q) = ¢, (3.7)
it follows that
(@) () = 5 (1 £ 7). (33

For the anti-fermion of momentum ¢, the relations are similar:

vs(q) = %(1 F v5)v+(q), (3.9)
020) = 7 (0) 5 (1 £ 7). (3.10)
v+(q)02(q) = %(1 F ¥5)d- (3.11)
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It is convenient to apply the Dirac bracket notation.
g, +) = usla), g, +) =v-(q),
4, =) = wg,), lg,—) =v"(q),
(¢, +| = u(q), (¢.—[=70-(0),
(0, =l =1u-(q), (¢,—=70:(q) (3.12)

Then we have

104) (@, = (1 + )¢,

)
0.=) g, —| = 51— 0)g (313)
and
(¢, +lg,+) = (g, ~lg,—) = 0. (3.14)

More generally, for arbitrary ¢; and ¢ satisfying ¢ = ¢5 = 0,
(q1,%[q2, =) = 0. (3.15)

Products like (g1, +|g2, —) are not well defined since each state can carry an arbitrary

phase, but the norm is

oo =) P = tr |50 = 0)s (L), | = 2a). (316)

Next, let us discuss the polarization vectors of the gauge boson. Assume
a massless gauge boson with four-momentum £k is radiated from a charged line for
which ¢, and g_ are the momenta of the outgoing antifermion and fermion. A massless

boson has two polarization states, and the polarizations can be contructed as follows:

el = N[(g:k)a—u — (a-k)gs,], (3.17)

ej = Neuamqiqém,

70



where

N = [2(q1q-)(q+k)(g-K))>. (3.18)
Alternatively, from eq. (3.17), we can introduce the circular polarization vec-

tors

1
€ = \/;(eu +1¢€,), (3.19)

with which we will work from now on.

Using the identity

Z./y'ueuaﬂv - (’Ya’)/ﬁ’yv — Yalpy + YeGay — 779&6)75’ (320)

we have

=~ s Vg (1 95) —¢_g K15 5] (3.21)
which leads to great simplifications. There are several reasons for advantages result-
ing from eq. (3.21):

e If the gauge boson line is next to the the external fermion or antifermion line, only
one ot the terms on the right-hand side of eq. (3.21) gives a non-zero contribution
due to the Dirac equations for massless fermions.

e  When there is a gauge boson line next to the external fermion or antifermion
line, either a factor 1 + 5 or a factor 1 — 5 occurs. This factor ensures for every
other real boson line attached to this fermion line, only one of the two terms on the
right-hand side of eq. (3.21) survives.

e  When the gauge boson line is next to the external fermion line, there is a can-
cellation of the denominator. Assume we have an outgoing electron with momentum

q—, and the emission of a photon with momentum k. If the vertex for the photon
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emission is next to the outgoing electron line, then the amplitude contains a factor

btk . _
u(q-)¢ Z(q—k) N _2\1/§N“(q_)%51g+(1 + wqq;k
= s Vila g, 4+ B(1F ) (3.22)

Therefore the denominator 2(q_k) is cancelled. In the upcoming example, we will
see this denominator cancellation makes a large contribution for the simplicity of the
calculation.

In order to illustrate the nice features of the CALKUL helicity amplitude
method, we will exhibit the explicit computation the amplitude for the singe bremsstrahlung
process in QED.

For the reaction

e (py) +e (p-) = pt(gr) + 1 (g-) + (k) (3.23)

for which the Feynman diagrams are shown below

e (py) i (qy) e (py) (k) 1 (qy)
- (k) - - -
e~ (p-) p(g-) e (p-) 1 (q-)
(1) (2)
e*(py) p(ge) et (py) p(qe)
v(k)
v(k)
e (p-) w(g-) e (p-) n(g-)
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Applying the Feynman rules, we have

e J?L - k _ "
M, = mU(P+)7um¢U(p—)“(Q—)7 v(qy),
€ e oyt ian)
) U{P+ IYH 2( ]f) yo- q— ’V q+),

M, =
’ 2(q+q

z7(p+)’w(1m)ﬁ(qf)ff2(q_k) Yv(gy),

ie? N M—Q[Jr — ¥
2<p+p_)U@H%“(F—)“(QJ’Y W

When the photon is radiated from the electron line, it is convenient to choose

M, =

f(gy). (3.24)

fﬁ = Np[mp_%(l Fv5) — %l’&j‘_(l +95)],
Nyt = 4](pep-) (p4 k) (p-k))2. (3.25)

but for radiation from the muon line, it is advantageous to take

f;i = Nq[%_fh%(l T ) — M_fh(l +7s)],
Nt = 4[(qrq-) (g k) (g-k))>. (3.26)
The two choices are related by a simple phase factor. Let us consider the photon to
be moving along the z-axis. Because the diagrams M; and M together form a gauge-
invariant set, and so do M3 and My, we can make gauge transformations so that the
polarization vector e and e only have components in the xy-plane. Since the have

the same norm, they can differ at most by a phase factor and terms proportional k,
e, = eii‘z’e;t + Bk,
e = (€)= —N,Notrlp, p_kd ¢ K1 F 7)) (3.27)

Now we are ready to calculate the helicity amplitudes which are denoted by

MM (e™), Aa(e7), A3(u™), \a(p™), As(k)). Due to helicity conservation, electron and
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positron helicities must be opposite, as well as the muon helicities. For for all A,
M(+7 +7 +7 +7 )‘5) - M(_a ) +7 +7 )\5)
=M(+,+,—, =, A5) = M(—,—,—,—, X5) = 0. (3.28)

Consider the non-vanishing helicity amplitudes next. Let us introduce the

notation
s=(pr+p ), s=(q¢p +q)%
t=(ps —gqs)’ t'=(p-—q)%
w=(py—q )% u=(p-—q) (3.29)
with
s+ Ft+t Futu =0. (3.30)

For the amplitude M (+, —, +, —, +), only the diagrams M; and M, contribute.

= N alp e spp K = utpita 1 )
+£Nv<pm 1‘2”5 (p-)ulg-)y _”g ,fﬁ 4, k(1 —s)v(as)

N O(P) (1 = s )ulp-)ulg-)y" (P +p_)d_(1 —s)v(as).

(3.31)

74



To simplify this result further, we rewrite the first term for example

- iiN ei¢17(p+)%(g+ +d )p. (1= s)ulp-)ulg-)v"(1 — v5)v(gs)
263N w00 P)d, 4 )P (1 —s)ulp-)ulg-)y"(1 = y5)v(gy)
25 7" v(g+)g (1 —s)v(ps)

x 0(qs)d_(1 = 5)v(ps)
_ die? w@a)pd g, (4, +d )F (1 —75)ulp)

5 e San)g_(1—)v(ps)
 16i€? ulq-)p (1 —ys)ulp-)o(py)d_(1 —5)v(gy)
= 5 Np(p+q7)(Q+q ) tT[ngg (1 _ 75)p+g (1 _ 75)]
= EN S(g-)p, (1= 5 u(p-)o(pa)d (1 —75)0(gs). (3.32)

Performing similar manipulations with the last term in eq. (3.31) we have

ie?

= 5 Va0 P+) (1 = vs)ulp-)ulg-)v"(p, +p_)d_(1 = v5)v(a+)

ie3

= —N qt(q-)p, (L = 75)u(p-)v(p)d(1 — v5)v(g+)- (3.33)

Therefore, we obtain

M(+7 R +a _7 +)

gl Ny, N, -
= —ie* | =Ly ) + “Eleye) | ala)p, (1 = 5)ulp ol )g_(1 = 15)e(as)
~4e3 Y 5" Ny(e, €r) + sNy(e, €, )] (3.34)
(ss')2
For the helicity amplitude M(+, —, —, +,+), only the diagrams M; and Mj

survive and we have, performing similar manipulations

M(+) I _+7 +)

N,
=i | —L(e;

e )+ 2 (e | a)g P, (1= 5 )ulp o) (L 5)0(g)

~ 4e’[' Ny(e b)) + sNy(e, e )] (3.35)
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In a completely analogous way, we have

M(—,+,+,—,+) = 4e’[s'Ny(e, eF) + sNy (e, 1)) Sz: T

M(—,+,—, +,4) ~ 463[81Nq(€;€q+) + sNy(e, €l )] s:’/ T (3.36)
By parity conjugation, we have

M+, —,+,—,—) = 4e®[s'Ny(e, €) + sNp(e, e )] SZ,/)% )

M(+, =, —, 4, —) = 4e’[s'Ny(e, €5) + sNy(e, €)] Szi); )

M(= 44— =) = 4P Ny(e e + sNy(es )] 8;);,

M(=,+,—,+, =) = 4[Ny (e5 eF) + sN(e; €] S:/)% . (3.37)

From egs. (3.34), (3.36) and (3.37), we obtain the unpolarized squared matrix

element

M = 85| N,(eFer) + sNy(eren )Pt :S,“z +u? (3.38)
Introducing the vectors
TSR s SR s 239
we have
N ()2 = — 22,
N e = —5
Riss' NN, (eh e ) (che, )] = équ,,. (3.40)
Furthermore we obtain the spin averaged matrix element
M2 = —eS(y, — e+ (3.41)

ss’
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As it is shown, through the introduction of explicit polarization vectors for
the radiated gauge boson, it is feasible to compute the various helicity amplitudes
for single bremsstrahlung in massless QED in a simple and covariant way. For each
amplitude, only a few diagrams contribute, rendering the calculation very easy. Al-
though we discussed only the process ete™ — putu~, the outline technique could
be applied to all bremsstrahlung process. The introduction of the polarization vec-
tors for the radiated photons bring in relatively simple expressions for the various
helicity amplitudes in all cases in which the fermions are massless. And the intro-
duction of analogous helicity vectors for the external gauge bosons result in similar

simplifications in SU(N) gauge theories.

3.3 The ”"Chinese Magic” Polarization Scheme
The massless spinors with momentum p and helicty A, ux(p), v+(p), u+(p),

v+ (p), satify the relations
pus(p) = pos(p) = pus(p) = pv=(p) =0, p° =0, (3.42)

(LF v5)use = (1 £95)vae = s (1 £ 95) = v+(1 F75) = 0, (3.43)
with the normalization
Ut (p)yuus(p) = V() Vv (p) = 2p,. (3.44)
We use the Dirac convention
us(p) = v = |px)
us(p) = 05 = (p+l, (3.45)
and

lp-) = lp+)", (3.46)
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where [1))° denotes the charge conjugation of the spinor [1)). The following relations

hold for massless momenta p and g,

=) (ol = 501 £, (3.47)
(p+lar) = (p-lg-) =0, (3.48)
(p-la) = —(a-Ip+) (3.49)
(p-Ip+) = (p+|p1) = 0. (3.50)
For simplicity we let
(p-la+) = (pa) ; (3.51)
then
{g-Ip+) = = (pa),
(a+lp-) = (pa)”,
(p+la-) = —(pa)" - (3.52)
and
| (pg) I = 2(pq). (3.53)

The scalar (pq) is called the spinor inner-product [53] which play a vital role in the
”Chinese magic” polarization scheme. Next, we introduce properties of the spinor
inner-product for the following discussions.

In general, for any massless spinor (AL|, we have
(A¢|By) = —(Bx|Ay),

(AllBy) = (B-|wlA-), (3.54)
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where (Ay| = |Ay), and if |AL) has the form

ki K. lax)  (neven)
|As) = (3.55)

b kalas) (0 odd),

then
. ik las) (n even)
|AL)" = (3.56)
—kikylax)  (nodd),
where ¢ is a momentum with ¢* =0 and k; (: = 1,--- ,n) is any momentum with or

without k2 = 0. Thus we have

(p—1ky -+ Kulas) = =gk, - Kilps)  (n even),

(p+lky - Kula-) = = {arlk, - Kilp-)  (n even),

Pilky - Kolar) = — a1k, - Kilp-)  (n even). (3.57)
The matrix |B;) (A;| can be expanded into a linear combination of 1, v,, Vs, 7,75
and 7,7, (1 # v):

21B.) {4y | = (ALl B) 15 (1= 75). (3.5%)
Furthermore, we have
(AhulBy) = (B lA)

(A3 By) (C_#ID-) = 2(AL|D_) (C_|B.). (3.59)
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The circular polarization vectors e of a gauge boson with momentum %, in

which the sign &+ represents the helicity, satisfying the relations below,

(k) = (k)= (") = ()" =0,

(ete”) = —1. (3.60)

The polarization vectors are defined by referring to another momentum (¢* = 0) so

that [53]
e (ks g) = (=Dulk-) (3.61)
m V2 (gk) ’
_ _ (g vulks)
€,(k,q) = AT R (3.62)
and
(ks q) — %nm (] +1as) Gl (363)
¢ (kq) = J,j* 1) (gl + 1) (k1) (3.64)
Furthermore we have
(cg) = () = 0, (3.65)

and when the reference momentum ¢ is transformed into p the polarization vectors

change only by an additional term proportional to k:

e (k,q) = € (k. p) + B (p, ¢, k)k, (3.66)
where
+ _ \/§<pQ> - o X
BF(p,q, k) o (k) B~ (p,a. k) = BT (p.q. k)" (3.67)
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Due to the gauge-invariance of the theories the amplitudes vanish when the polariza-

tion vector of an external gauge boson is set equal to its momentum,
[M]e=r, =0, (3.68)

so the reference momentum could be chosen in an arbitrary way without changing
the amplitude.

The polarization vector defined above differs from that of the CALKUL col-
laboration by a term proportional to & and a phase factor. Thus, all the attractive
features in the CALKUL approach [46,48] are preserved in the ”Chinese magic” po-
larization scheme. Especially some of the helicity amplitudes vanish when an external
boson line is attached to an external fermion line. This can be achieved in the ” Chi-
nese magic” scheme by choosing the reference momentum in the following way: since
the helicity signs appearing in the bra and ket must be the same for the same fermion
line, and we let it be the helicity of the line. When the boson has the same (opposite)
helicity as that of the fermion line attached, the reference momentum is chosen to
be the incoming (outgoing) momentum of the line. Moreover, the polarization vector
is now expressed in terms of the spinors, therefore it gives the factorization of the
amplitude in a natural way.

As an illustration of the helicity amplitude method in ” Chinese magic” scheme
we will present the explicit calculation of helicity amplitudes for the single bremsstrahlung

process. Consider the process

et (p) +e (p) = 1 (d) + 1 (q) +(k), (3.69)
for which the Feynman diagrams are shown below, and the helicity amplitude is writ-

tenas M (A(et), A(e™), A(u™), A(u™), A(~)). For the helicity amplitude M (—, 4+, +, —, +),

81



the polarization vector of the photon should be chosen to be

= ¢ = o) (| o) ] (3.70)
for the diagrams (1) and (2), and
= ) = ) 1) G (371)
for the diagrams (3) and (4).
e™(p') pt(q) et () (k) w(q')
_ (k) - - _
e~ (p) n (g e (p) 1 (q)
(1) (2)
et (p) () et () nh(q)
v(k)
v(k)
e~ (p) p(q) e (p) 1 (q)

(3) (4)

Note that [49, 53] the diagrams (1) + (2) and (3) + (4) form two indepen-
dent gauge invariant subsets of the Feynman diagrams, distinguished by the photon

attachment to different fermion lines, namely,
[My + Mz))ezr, = [Mz) + M) e=s = 0, (3.72)
Because of egs. (3.29) and (3.35) we have

M(6+€_ — ,u_,u_v) = [M(l) + M(Z)]e:eq = [M(g) + M(4)]€:6p. (3.73)
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By eq. (3.22), the calculation is straightforward

M(l)(_7 +, 4=, +) = OJ

(pg)®

Mﬁ(ﬂ,% k),

M(Z)(_7 +,+ =, +) = 2?:63

M(3)(_7 +,+, = +> - Oa

(pq)*

M4 _7+a +7 ] +) = _2i63
wl ) (P'p) (d'q)

B(d,q. k),

where

k) = Y2\
B(p,q, k) )

Therefore the calculation arrives at
M(=,+,+,—,+) = [Mqu) + M) + M) + M|(—, +,+,—, +)
2
= 2i8 U (507 k) — B(q',q, K]
W) gy ¥ PR~ 0 b

As for the norm we have

1
|5(paq7k)|2 = _502(p7Q7k)7
1
p,p, - q,q, = —swp,p, —v\q,q, )
1B, p. k) — B(d q, k) 51 (', p, k) —v(d, ¢, k)
where
p q
vp?Qak: = 7T 3N 7
P4 k) = G ™ by
and
t/?
|M(—, +, +, ,+)|2_—2eﬁg(vp—vq)2,
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where

v, = v(p', pk), vy =v(q,q,k)
s=@'+p)° =20, s=(+a0"=2d9)
t=@—d¢)?=-2007), t'=p-a°=-20pq)
u= (' —q?=-20q), v=(-d)=-20p) (3.80)

In a complete analogous way, we obtain

M (=, +,—, +,4)* = —266%(1}:0 — v,
M (+,—, —,+,H)|* = —266;—;(1}:0 —,)?,
M (+,—,+,—,+)]> = —Qeﬁg—j(vp—vq)2. (3.81)
By parity conjugation, we have
|M(+,—,—,+, ) = —2665(% —v,)%,
|M(+, —, +,—, =) —Qeﬁg(vp — )%,
|M(—,+,4+,—, )| = —2665—;(1117 —v,)%,
|M(—,+,—,+,—)]> = —266:—;(%—%)2. (3.82)

Therefore, the averaged norm for polarized scattering is finally

L L el
ss'

M2 = -2 (v, — vy)% (3.83)

This result is identical with that obtained with CALKUL method [49], but the cal-
culation is simplified.
We have shown that we could simplify the calculation of the various helicity

amplitudes for the single bremsstrahlung process ete”™ — ptu~v in the massless
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QED by introduction the explicit helicity vectors in the ”Chinese magic” polariza-
tion scheme. This technique described here could be utilized for all bremsstrahlung
process. Furthermore the introduction of polarization vectors for the external gauge

boson leads to simplifications in massless gauge theories.

3.4 Kleiss and Stirling Spinor Technique
Besides the CALKUL approach and ”Chinese magic” polarization scheme, let
us introduce another spinor product method, Kleiss and Stirling spinor technique [52].
First we derive expressions for the spinor products. We begin the discussion
by establishing a convention for the overall complex phase of the spinors. Let us

choose two four-vectors kj and k% with the following properties:
]{ZO . ko = 0, kl . kl - —1, k'o : k’l - 0 (384)
Next we define the basic spinor u_(kg) as follows:
u—(ko)ti— (ko) = w_K,, (3.85)
where
1

The spinor u_(kg) is therefore the negative-helicity state of a massless fermion with

momentum ky. The corresponding positive-helicity state is chosen to be
u (ko) = Kyu—(ko)- (3.87)

From these two spinors we could construct spinors for any other lightlike momentum

p as follows:

(3.88)
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From eqs. (3.84)-(3.88) we can derive some useful relations for spinor sand-
wiches for the following discussion. Let I' be an arbitrary string of v matrices, and
let I'* be the same string in the reversed order. Then we find, for arbitrary lightlike

momenta and helicities:

Uy, (pl)ru)\z (pQ) = )‘1>‘2ﬁ'—)\2 (pQ)FRu—Al (pl) (389)

The second useful identity (Chisholm identity) is

{1, (P17 uny (P2) }ru = 2un(p2)tin(pr) + 2u—x(p1)u-x(p2)- (3.90)

Next we discuss the spinor products themselves. For massless fermions with

momenta p; and p, there are two non-zero products:

s(p1,p2) = Uy (p1)u—(p2) = —s(p2. p1),
t(p1,p2) = u—(p1)us(p2) = [s(p2, p1)]" (3.91)

Using eqs. (3.85) and (3.88), we could evaluate s(p1, ps):

ﬁ—(kﬂ)}’}l}’jgmr(ko) B tr(w—%opl%%ﬂ

VA1 ko) (p2 ko) /Alp1 - ko) (p2 - ko)

[(p1 - ko) (p2 - k1) — (p1 - k1) (P2 - ko) — i€ po ki ko PIPS]
VA1 - ko) (pa - ko) '

s(p1,p2) =

(3.92)

In a practical calculation we can specify kj and k}' such that the form of s(p;,p2)
becomes compact. For instance, we take
ki = (0,0,0,0),

K = (0,0,1,0). (3.93)
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This leads to

0o_ % 0o_ .z %
8(p1,p2)—(pi’+@p){p§ pi} —(p‘é’ﬂpz)[é 1} (3.94)
1 1

Py — Da

and t(py, p2) is obtained by complex conjugation. Furthermore, if we have calculated

the spinor product, we immediately obtain the vector product as well:

d(p1,p2) =2p1 - pa = |S(P1>P2)|2- (3.95)
Analogous to the CALKUL and ” Chinese magic” scheme, the spinor products

play a more fundamental role than vector products in practical calculations.
We now proceed to construct the polarization vectors of the external gauge
bosons. Let us consider polarization vectors with states of definite helicities, denoted

by € ans satisfying
6)\']{:0, E)\'G)\ZO,
ey =(h)  even=-1, (3.96)

where k, is the photon momentum, and A = 1. Aslong as the polarization vectors ek

obey the relations (3.96), it is an acceptable choice. We use the following convention:

SIS

ey = Nup(k)y"ur(p), N = [4(p- k)], (3.97)

where p# is an arbitrary vector not collinear to k* or kjj.
Spinors for the massive particle with four momentum p (with p* = m?) could

also be defined in an analogous way in which the spinor for massless particles [54]:

u(p,A) = (p + mu-x(k),
v(p,A) = m(? —m)ux(k). (3.98)

where k* is an arbitrary lightlike vector.

87



The definition (3.98) can be rewritten in terms of massless spinor as follows

m

u(p7)‘) = uk(pk)—i_ u*>\<k>7

V2p -k
m
A) = u_ — ———u)(k 3.99
U(pv ) u )\(pk) \/2p—ku>\( )7 ( )
where
ok g (3.100)
pe=p—hy s b= :

is the light-cone projection of p obtained with the help of the auxiliary vector k.
Therefore we could obtain the explicit expressions of spinor products for the massive

spinors by eq. (3.98):

;

ﬂ(ply A1)“(]727 /\2) - S(pla mq, )\17]727 ma, AQ)?

a(p1, M)v(pe, A2) = S(p1,ma, A1, p2, —ma, —A2),

(3.101)
0(p1, A1)u(pa, A2) = S(p1, —ma, — A1, p2, ma, A2),
0(p1, M)v(p2, A2) = S(p1, —ma, — A1, p2, =g, —A2).
where
[2m9k [2p1k
S(pla maq, )\17p27 mao, /\2> - 6)\1,—)\28)\1 (plkaka) + 5)\1,)\2 (ml % + mo ;;j) .
(3.102)

Up to now we have introduced a calculational tool for helicity amplitudes,
which brings out simplifications in gauge theories. And this approach shares many
essential features with CALKUL helicity amplitude method and ”Chinese magic”
polarization scheme. This formalism can be directly programmed into a computer
due to its symbolic properties, which plays important roles in pertubative calculations

in high energy physics.
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CHAPTER FOUR

Numerical Computations for the Five Point Function

The one loop integrals play an important role in calculating radiative cor-
rections in particle physics since they are manageable for fast MC event generator
execution for arbitrary masses and kinematics for high energy scattering process. It
has been demonstrated that n-point functions at one-loop level can be reduced to
scalar one loop functions [30,31]. Considering representations of the scalar four-point
function for arbitrary masses and momenta relevant to most high energy collider
applications have been given and they fit MC implementation well, it is natural to
attempt expressing higher point-function (n > 5) in terms of the 1, 2, 3 and 4-point
functions. When the problem becomes reducing higher-point functions into expres-
sions in terms of the 1,2,3 and 4-point functions, we are most concerned about the
numerical stability. To solve this problem, B. F. L. Ward presented an approach to
evaluate higher point loop integrals using Chinese magic in the virtual loop integration
variable [55], which is called ”"magic spinor product methods in loop integrals”. Based
on this method, we developed a program to compute the general five-point function
numerically. In this chapter, we first introduce the physics content of "magic spinor
product methods in loop integrals” and then we compare our results with those from
LoopTools [56], which is a package for computation of one-loop integrals based on the
FF package by G. J. van. Oldenborgh [57]. By comparison, it shows the result from

our program is accurate and numerically stable.
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4.1 Magic Spinor Product Approach in Loop Integrals
Here we use the conventions of Refs. [54,58] which are derived from Refs. [51,52].
The five-point function which we analyze is shown in Feynman diagram (c) as fol-
lows. It has many applications in collider precision physics. For example, together
with Feynman diagrams (a) and (b) it generates a gauge invariant contribution to the
ISR for efe™ — ff 4+, f # e. We focus on the application of Chinese magic in the

loop integral in Feynman diagram (c) to illustrate the possible simplifications here.

P P4 b1 yz
q q
AVAVAVAVAVAVAV AVAVAVAVAVAVAV
NNNNANNN
P2 p3 P2 /<1k Ps3
(b)

P1

| RaYaVYaYaVay

b2

»
N



Applying the Feynman rules, we have

Mﬁf\)z,\;,\gxw = (2m)*(p1 +p2 — P} — Py — k)C
/ d'q Y (d+ P, — K+ m)fy (4 +p, +m)y ua
2m)* [(g +p1 — k)2 = mi +ie][(q + p1)? — m7 + ie]
Uy Yold + §) + m2)ys0),
[(q+p1+p2 — k)2 = M3, +iel[(q + p?)* — m3 + ie|(¢* — M, + ie)
e (4.)

where we define massless limit coupling factor

C = C(\, X))
= Q1eG*G (V) + aiXo)(v1 — a1 A1) (vh + ahAg) (va + as))) (4.2)
with the couplings Q1e, GG, and G’ for the 7, V; and V; respectively. In order to obtain
the loop integral in terms of Chinese magic, we take the following kinematics
p = (E,p?)
p2 = (&, —p2)
—py = (E',p'(cos 012 +sin012)) = p)
k = (ko, k(cos 0,2 + sin 6, (cos ¢, + sin ¢, 7)))
pr4pe=—pi—ps+k=(s0)
—Pp3 = Ps, (4.3)
with k° = k, \/s = 2FE. Besides, we introduce the alternative notations pj = —p,
ph = —ps. Now we introduce the two sets of magic polarization vectors asscociated

to the two incoming lines

gy = Go(k)"us(B)
@O = T
@)y = ZEnulo) (4.4)

V2ii_gus(C)
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with 42 = 0 and (? = 0. We choose the basis of the four-dimensional momentum

space as follows:

0, =(E,E2)
ly=(FE,—FE2)

e+ e+ B PR

B \/§<€2—|€1+> B \/5( - y)

_ ol — G —) _ B P
=B I = i (4.5)

where we use the Dirac notations in Refs. [50,52,55]. Note that all four of the basis
four-vector are lightlike so that they can attend in Chinese magic.

We define the loop momentum as
q = ail; (4.6)

with summation over repeated indices. The coefficient «;’s are dertermined as

qls 1
o = m = g(Dg—D2—3+2p2k+M‘2/2)’
ghh, 1
B qly B ql; _ *
BT T

[¢;D; + cs M, + cg( Mg, + 2p2k — s) + c7(2kp1)], (4.7)

(4
oy = ———
4 \/%

where we define the denominators as
Dy :qZ—JM‘Z,1 + 1€
Dy = (q+p1)* —m? +ie
Dy =q+p — K —m] + ie
Dy =q+pi+p»— k* — M, +ie

Dy = (q — ps)* —mj +ie (4.8)
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such that the expansion coefficents {c;} are

csc @ e®  csc@ e csch cot 0/ e — cot
co = csc . ( 1 1 v 1 A

— + —
Ly bivs s Biv/'s
5 cscfiei®r  csc) N cot 01 —cot B,  csch,
¢1 = csc — ,
' T\UBVs Vs Biv/s kO
s, (— cscfie®  cscl, | cotfie —cotf, csc 97> |

Avs VR s i

Co =

B cscier  csch,  cot @i — cot,
03‘CSC¢”< BV s Bivs )
csc 0 e
piEy
¢ = csc <csc fre csclie' | s 0, cotfe — cot 97)
BB Bivs s Biv/s |

csc @ et®  csch cot 0/ e — cot
cse d)'y ( 1 o Y 1 Y ’

C4 = — CSC Oy

Cp = —
" BiVs s Biv/s
c7 = —CsC (bvcs;_oey’ (4.9)

with 8 = £ and ] = %. Therefore the {c;} are determined by the kinematics that
we choose. Note that the Chinese magic now carries over to the loop variable via the

identity
i =l

V2E
1 a;(|+) (Gi+] + [€;—) (6—1) + S )

V2FE

(P2 + |Ip1—)

([la=) (br—| + [6r=) {L2+])

I
AMM

J

([lat) {lit| + [61—) (l2—])

+ ay

i
WE

oyl i + s} o5 + s V2E (1) i + Ip1m) (o)

P2 — [p1t)

.
Il
—_

V2E

m(|ﬁ2+> (p1+] + [p1—) (P2—1)

+ oy

a;([pj+) (pi+1 =+ [pi=) (pi=1) + @s(lp2—) (pr=| + [p1=) (P2+])

M-

1

J

+ ay([pat) (p1+] + [p1—) (p2—|), (4.10)
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where we let {1 = py, {5 = ps since for the numeratior algebra we work in the massless

limit. And we define as well

G = o V2B
T -t V2

~ \/EE Qg

Wy =Qp—— = ———, 4.11
e Py oy S (4-11)

Next, we introduce the representation (4.10) into the numerator, N, of the

integrand in eq (4.1). Then we have the reduction

44/2 ) /
N = m{(/ll (P2 + |p1—) (P2 — |p2t)

+ Az (2 + [Py =) (P — [p1+)) x (As (p2 + =) (Ph — |p1t)

+ As (pr+ [pi—) () — [pit)

+ aa(As (p2 + [p1=) (P — |p2t) + Az (p2 + |p1—) (Ph — [p1+))
X (As (p2 + [p1=) (P2 — Ip1+)

+As(pr + =) (P2 — I +))} (4.12)

from the standard identities

V2

fr, = mnmw (EA ]+ [k = Ay) (6= A ],

VLGVl A) = 2[[6r — A) (Lo — A| + [€2) (€1 A]],
{1 = [6+) (G4 + [6=) (G-, (4.13)

where we defined

Ay =ay (1 + k=) + ag (p2 + |k—),

Ay = (1+aq) (p1+ [k—) + asz (p2 + [k—),
(4.14)

Az = g (p1 — |pat) ,

Ay = ay (p1 — |p2+) ,
\
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for the magic choice f = p;. Note that the Chinese magic trick has eliminated all but
one set of the terms with three factors of the virtual momentum expansion coefficients.
Moreover, in the numerator of the propagator before or after the real emission vertex,
this trick has annihilated the terms associated with plk as well as half of the terms
in the respective virtual momentum expansion in the former case. Compared to the
traditional approach of taking traces on the fermion lines, the Chinese magic trick
has a large fraction of the terms on the right-hand side of eq. (4.12). Specifically
speaking, We need to compute 2RM %M1 in the usual method of taking traces of
fermion lines, where M p is the respective Born amplitude that would interfere with
the one-loop amplitude to generate the one-loop correction ot the respective cross
section. In the Chinese magic representation, we find that only radiation from the
antifermion (ps) incoming line contributes.

Mpi—iy =2m)*(p1 +p2 — P} — py — k)

Qﬂitesz(v; —aj)(v; — a;) (Py — |[p1+)
(k= |p1) (k — [pat) (8" — My, +ie)

X [(p1 = [p24) (P2 + i =) — (P2 = |k4) (K + I —)].

(4.15)

Therefore the calculation for 2RM M 1c) just involves multiplying N in eq. (4.12)
by the complex conjugate of the simple expression and taking twice the real part.
Assume that the traditional approach of taking traces of fermion lines is ap-
plied, we need the trace of two sets of terms with 10 Dirac gamma matrices mul-
tiplied by a factor with the trace of 6 Dirac gamma matrices. If so, we will have
2:9-7-5-4x5-4 = 2520 x 20 = 50400 terms. Each terms requires Passarino-Veltman

(PV) reduction of three, two, and one five-point tensor integrals. By comparison,
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we can appreciate the great simplification that eq. (4.12) represents. We see that
this form of NV in eq. (4.12) has efficiently reduced the problem of reduction of the
five-point function with three, two, one tensor indices in the PV scheme to the ques-
tion of a single scalar five-point and lower four, three, and two point functions with
the coefficients already explicitly written in terms of the center of mass (CMS) kine-
matic variables which are important to efficient MC generations. Furthermore, if we
introduce the result of N in eq. (4.12) into the integral in eq. (4.1), we have the

integrals

d*q D;D;Dy; D;Dj; Dj; 1
/ q i Dk, DD k=0, 4 (4.16)

(2m)*  DoDy1DsD3D,
all of which are determined from the lower point functions when the results for the
representation of the scalar five-point function in terms of four-point functions used
in Refs. [43,59-61]. Then we obtain an advantage: no calculation of wave functions
at complex momenta is required here. Our work results rigorously from Lagrangian
quantum field theory and thus it could be used as a cross check on other possible
approaches.

So far we have simplified considerably the computation and have removed the
Gram determinant-type factors in the tensor integral redcutions. But our calculation
sill depends on the Gram determinant-type denominator factors in the results in
Refs. [43,59-61] for the representation of the five-point function in terms of scalar
four-point functions. In order to achieve a better numerical stability, we need to

replace the representation of the scalar five-point function.
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Let us begin with the identity
¢ =Dy + M‘2/1 —ie = (a;l;)?
= 20&10&25162 + 20(30[46364 = S Qg + gOéqu. (417)

Dividing by Dy - -- D4 and integrating over d*q we have the following representation

of the required scalar five-point function

Eo(p1, D2, P3, Pa, o, My, Mo, M3, M)

1 {_DO(O) L1 [00(13) — Cp(12) — Cy(03) + Co(02)

" Cp, 2537
+ 0, = s+ 20 D) = o)) = M2, (Du(3) = Duf2) )|
— 14;—;; [Aﬁ,o (Do(l) — DO(O)) + 2Ap1 0 (Dn(l) (1)1 — D11(0> (0)1

+ D12(1)p(1)2 — D12(0)p(0)2 + Di3(1)p(1)3 — D13(2)p(2)3 — Do(3)p(3)4

+ Do(2)5(2): ) + M, =5+ 2p2’f>< )]

- —[Zrcjr (coo G+ 1)+ Aryya Do) + 28550 (Du (N5

D)) + Dis))s — Do(j)]?(j)4)>

4 4
+2 ( Z R(cic;)Colif) + Z R(cj(cEMy, + i (Mg, — s+ 2pok) + &5 (2kp1)))
i>j =0

pio)]} w
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where p = p1, pp = p1 — k, p3 = p1 +p2 — k, p = py, mo — My, m1 = my, m = my,
ms = My,, my4 = my, where the coefficient Cp, is

1+ 3%
203%s

1
+ (M‘2/2 — 5+ 2pok)?) + 53%[0502M‘2/1(M‘2/2 — s+ 2pok)

1- B

1

M (M7, — s+ 2pok) +
+ es¢E My, (2kp1) + coct (Mg, — s+ 2pok) (2kp1)]

+ llesl My, + leol* (M, — s+ 2p2k) + [er|*(2kp1)7). (4.19)

e

We have used a mixture of notations from [31,59-61] such that
D; = (q—p;)? —m} +ie = ¢* + 2qp; + P; — M +ie = ¢° + 2qp; + 1,
Aij=r—rj,
Apij = pi — Dj
Dy(j) = four-point scalar function obtained from five-point scalar function
by omitting denominatrorD;,
Co(i,j) = three-point scalar function obtained from five-point scalar function
by omitting denominatrorD; and D;,7 # j (4.20)
where we also use the Passarino-Veltman [31] notation of the four-point one-tensor

integral, D, (j), obtained from the five-point one tensor integral function by omitting

the denominator D;, with

D,(j) = Du(j)p(j)1 + Dia(4)p(j)2 + Dis(4)p(5)s — Do(4)p(5),

where the four-vectors {p(j),} are determined according to Ref. [31]. Note that p(j)4
is only nonzero if it is necessary to shift the g-integration variable by it to reach the

standard form of Passarino-Veltman representation. This expression for Ej, have no
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problem with Gram determinant type denominators.
Ma),_,_, =0, by Chinese magic trick

M(].b)+_+_+ = (27T>4(5<p1 +p2 - pll - p/2 - k)

y 44/2C / d'q N’
(k —Iprt) (k= [p2t) J (2m)* DoD1D3D,y’

where the numerator N’ is given by

N"=((py — [p1+) a1 + (py — |p2+) b1)
X ((p1 = |pat) (P2 + [p1=) — (pr — [k+) (K + [Py —))
+ ((Ph — |p1+) @1 + (py — [pat) bn)
X [=2p1(p2 — k)au + az (p1 — [k+) (k + [p2—)]

with

a1 = (1 +a1)(2pipy) +az (p2 + [p1) () — Ip1t)

bi = a (p2 + [Py —) (p1 — [p1+) + qu(2p1ph),

a1 = (p1 — [p2+) [(1 + a1) (p1 + [P} =) + a3 (p2 + [P1 )],

b = (p1 — |pat) (a2 (p2 + [P1—) + au (p1 + [p1—)].

(4.21)

(4.22)

(4.23)

As we see this method gives a considerable reduction to the known scalar functions

while computing 2RM5 M compared to the traditional method of tracing over

fermion lines.

In sum, we have exhibited that the application of Chinese magic technique in

the virtual loop momentum could reduce significantly the volume of algebra required

for efficient and stable physical calculations of higher point virtual corrections with

the general mass scale. Furthermore, we could construct computer realizations of the
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method described above for evaluating the five-point function. In the next section,

we will exhibit our results and compare them with those from LoopTools.

4.2 Numerical Results for the Five-Point Function E
Based on the magic spinor product method, we have developed a computer
program to calculate the five-point function Fy. In our program, the LoopTools pack-
age is included. The five-point function Ej is calculated with the help of eqs. (4.9),
(4.18) and (4.19). Scalar three-point functions Cy(i, j), scalar four-point functions
Dy(j) and tensor four-point functions D,,(j) are calculated by Looptools. To be

specific, we choose

(

Vs = 500 GeV,
mi = me = 0.510999 x 103 GeV,
my = m,, = 0.1056583 GeV,

le = MV2 =91 G€V7

\

and the kinematics is determined by eq. (4.3).

b1 D2

ms

P4 P3
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Figure 4.3: Percentage difference of Ey(e,,6,) and Ey°"*"(¢,,6,) for /s =
500 GeV, My, =91 GeV, My, =91 GeV and 0] = 30°
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Figure 4.4: Percentage difference of Ey(¢y,6,) and Ey°PT%(¢,,0,) for /s =
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Figure 4.5: Percentage difference of Ey(¢y,6,) and Ey°?T%(¢,,0,) for /s =
500 GeV, My, =91 GeV, My, =91 GeV and 0] = 60°
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Figure 4.6: Percentage difference of Ey(e,,6,) and Ep°"*"(¢,,6,) for /s =
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As we see, the result from magic spinor product method agrees with that from
LoopTools in overall, except several regions. The percentage difference of Ey(¢-,6,)
and Ey°PT%% (4., 6,) is insensitive with ¢, but sensitive with 6. When €, > 90°,
our result mainly fits to that from LoopTool in the region (0° < ¢, < 180°, 0° < 6, <

20°). However, when #; < 75°, our result agrees greatly with that from Looptools.
1
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CHAPTER FIVE

Quantum Chromodynaics

5.1 Introduction to Quantum Chromodynamics

We now come to the other constituent of the standard model of particle physics,
Quantum Chromodynamics (QCD) [6-11]. Quantum Chromodynamics is a non-
Abelian gauge theory of strong interactions. The gauge symmetry of QCD is SU(3)
color. The choice of gauge group must rely on three facts: (a) the group must admit
complex representations in order to distinguish a quark from antiquark; (b) the group
must have completely antisymmtric color singlet to solve the statistical puzzle for the
lowest lying baryons of spin 1/2 and 3/2; (c¢) the number of colors for each kind of
quarks must agree with the data on the total hadronic eTe™ annihilation cross section
and on the 7° — 2v. These requirements make the SU(3)c be the unique choice.
The quanta of SU(3)¢ is called gluon. Since the SU(3)¢ symmetry is unbroken, the
gauge boson, gluon, must be massless. Therefore if A# denotes the gluon field (a is
the color index), ¥¢* the quark field with flavor index i and color index «, the QCD

Lagrangian is

[elassical _ _le Fpa ¥ 4 0 (ilps; — moy ) (5.1)

where
FI = 9P AY — 8 AP + g fap ALAY, (5.2)
DH = 9t — ig AT, (5.3)
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Note that last term g fup.Al AY implies self-interactions of gluons, while there are no
such self-interactions in Abelian gauge theory. 7T, is the generators of the triplet

representation of SU(3)¢, following the commutation relations
[Taa Tb] - Z.fabchca (54)

where f,;. are completely antisymmetric structure constants.
In order to quantize the theory one needs a gauge fixing term to be added to

eq. (5.1). Usually, the gauge fixing term is chosen as follows:

1
2x

[8auge fixing _

(0" A%)2. (5.5)

The introduction of such a term requires the addition of the Faddeev-Popov ghost
interactions in turn,

L = (9"x™) D, (5.6)
where ijb refer to the adjoint representation of SU(3)s. Here we choose a pair of the
ghost fields x* and x®*. It is also possible to choose two real fields x{ and x§ instead
of x* and y**. By setting

1 :
X' = E(X? +1x3) (5.7)
with the Grassmann property
(x4)?* = (x3)> =0, (no summation on a), (5.8)

we can rewrite the Faddeev-Popov ghost term as

L = i(0"x1) D x5 (5.9)
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Therefore, we obtain the complete Lagrangian of the theory

]' a a av 14 a ]' a
L= —7(0.A47 = 0, A0)(9"A™ — OV A™) — (0" A)"
("X (Duxs) + ¢ (id — m)y' — g Fe(9, A% — B, A%) A A
g _ .
—Zf“becdeAZAi’Ac”Ad” — g [ (O XTIXSAS, + g Ty As.

(5.10)

Accordingly we obtain Feynman rules for the Lagrangian of quantum chromodynamics
(see Appendix B). This theory is renormalizable [26].
We are here using the couterterm approach to realize renormalization again

with similar procedure describle in the Section (2.2). We redefine the fields Af, x{,
x5 and ¢ by
Ap = Zi Ay Xoo=Zixion = Zitn, (5.11)
and the parameters g, o and m by
9= Zy4gr, o= Zzap, M= Zymg, (5.12)

where the constants Z3, 23 and Z, denote the gauge field, ghost field and quark field
renormalization constants, respectively, while the constants Z, and Z,, car called the

coupling-constant and mass renormalization constants.

Inserting egs. (5.11) and (5.12) into eq. (5.10), we have

L=LR4LC (5.13)
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where the renormalized Lagrangian LR is precisely equal to £ if the quantities {AZ, X12: ¥ 9, a}t
are replaced by the renormalized ones, {AZ R X12r VR: gR, @ r}. The counterterm La-
grangian £C is given by
L0 = (Zs 1)y A S0 — 0,0 A% + (Zy — DXindun( ~i0")
+(Zy = DUR(Id — mp)y — Zo(Zpn — D)mpvipy
(2= V)50 ™ O Al — O, L) AR A
(T )G AT AL A AY
—(Zy = 1)igrf™ (0" X r)X3rALR
+(Zir — 1)9R@EiTz‘?‘7M¢%AfLRa (5.14)
where 721, Zy, Zl and Z,r are defined as follows:

3
2

Zy = 2,73, Zy= 773,

7y = 2,2522, Zvp = Z,2:22. (5.15)

From this counterterm term we obtain the corresponding Feynman rules (see Ap-
pendix B).

The gauge nature of the theory implies the Slavnov-Taylor identity [62,63],

7y I T 7y
- _=r _ == 5.16

Zy 7,

The Slavnov-Taylor identity ensures the universality of the renormalized coupling
constant gg.

By the power counting analysis in the case of QCD, we have seven amplit-

dues which possess overall divergences. The Feynman diagrams with non-negative

superficial degree of divergence in QCD are outlined below:
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Note that the superficial degrees of divergence d for the self-energy part for
the gluon, Faddeev-Popov ghost and quark and three-gluon vertex are 2, 1, 1 and 1,
respectively, but the actual degrees of divergences of these amplitudes are all loga-
rithmic due to the gauge invariance. Next, we present one-loop contributions to the
seven superficially divergent amplitudes [64—66]:

(i) The gluon self-energy 1% (k) is

119 (k) = ap(kuky — K guv)IL(K), (5.17)
2 T4 1 13 1 .
II(k?) = (ngTRV |:§TRNf — §C’G (? — QR)} - + Z3 — 1+ finite terms, (5.18)
m@wm\ = m@m T T@m
/’>\\
+ oo oo T
\\\(///
T s Rvvoo

where € = (4 — D) /2. In Eq. (5.18) we have taken N; flavors of quarks into account,

and Tk and Cg are the constants defined by
tr[TaTb] - 5abTRa

Jfacafocd = darCa- (5.19)
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Here we have Ty = % and Cg = 3 for SU(3)¢. Note that the one-loop contribution

to the gluon self-energy satisfies the Ward-Takahashi identities,
ab
KHITE, (k) = 0, (5.20)

which is a natural consequence of gauge invariance. Due to this constraint the ampli-
tude Hzl; must have the factor k,k, — k?g,, and the degree of divergence for Hzl;(k:)
is lowered by 2 units. This structure of I1% (k) forbids a mass terms and so there is
no mass renormalization. Therefore the gluon remains massless under the radiative
corrections. In th MS scheme [67] the gauge field renormalization constant Z3 is given

by

% 4 1 13 1

(ii) The Faddeev-Popov ghost self-energy ﬁ“b(k;) is

—anpl  ~
4QR— + Z3 — 1] + finite terms. (5.22)
€

2
~ g 3
1% (k)6 { — (471:)200

Note that the divergent part above is proportional to k? and thus there is no mass
renormalization. So the Faddeev-Popov ghost self-energy remain massless after radia-
tive corrections, too. The ghost field renormalization constant Z in the MS scheme

is given by

2
_ 9r 3 — L 4
Zy =1+ (42 Ca 1 < + O(gR)- (5.23)
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(iii) The quark self-energy 3% (p) is

SY(p) = 0y[(Amp — Bp) — (Z2Zy — 1)mp + (Zo — 1)p] + finite terms,
4 = Ik (34 an)t + O(gh)
N (47)? E an € Ir):
B - -9 ¢ Lot (5.24)
- (4n)2 FORT Ir): '

As we see, the divergence in the quark self-energy consists of two kinds, the mass
type Amp and the kinetic energy type —Bp. Then the mass and quark-field renor-

malization constants in the MS scheme are determined by

Zm = 1+A—B+0(gr)

— 1 gRC(+ )1+ % Crant 1 O(gh)
= (4m)? F aRr (47)2 FQRE 9Rr)>
Zy = 1+ B+0(g})
1
_ g 9k A Cran= + O(gh). (5.25)

(47)°
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(iv) The three-gluon vertex A% (K7, ko, k3) is given by

N
2
avbe : abc g 17 30[R
NS (K ko ks) = —igrf ™ Via(ky, ks, k3){ﬁ {CG (_E * T)
4 1
+§ RNf:| -+ 27— 1} + finite terms, (5.26)
€

@

-

4
T ool

+ permutations —+

where

Vir(k1, ko, ks) = (k1 — k2)aguw + (k2 — k3)ugun + (ks — k1)ugpn- (5.27)
The three-gluon vertex renormalization constant Z; in the MS scheme is

2
g 17 3« 4 1
Zy=1-— ﬁ [(JG (_E + TR> + gTRNf} ~+O(gh). (5.28)
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(v) The ghost-gluon vertex Kﬁbc(k, p,p') has the express

e . 2 arpl =~ )
Aﬁ;e(k?p’p’) — _ZngabCpﬂ [@qTRyCGTRE + 71 — 1:| + finite terms, (529)

- - <~ - <~ - - - - <~ E-_ -~ - + .__(__(&--(--.

%eass?

+ <E<

where the momentum p,, denotes the ghost-line which carries the ghost number flowing
out of the vertex. The ghost-gluon vertex renormalization constant Zy reads in the

MS scheme

2
~ g apl
Zy=1- ﬁc(;?’%z +O(gh). (5.30)

(vi) The quark-gluon vertex A?fﬁ(k:, p,p) is

aii 2 3+« 1
Apib(k%]%pl) = gRIY/Lj—;(;‘ |:(j7f>2 ( RCG + QRCF) g + ZlF — 1:|

+ finite terms. (5.31)
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The quark-gluon vertex renormalization constant 7,z is given by

912% 3+ aR
(4)?

1
le =1- CG + OCRCF) g + O(gé) (532)

(vii) The four-gluon vertex A§L 04 (K1, ko, ks, kq) is

Aal aa (kh k27 k37 k4)

Mg
2
aras) 9 2 4 1
gRVVM1 uj{ (475)2 |:(—§ + OéR> CG + gTRNf} E + Z4 — 1}
+ finite terms, (5.33)

ﬁi

e
anN

+ permutations

Xﬁ@
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where

13,24 14,32 12,34 14,23
W;ﬁﬁj = (f — f )gﬂlﬂ2gﬂ3ﬂ4 + (f - f )gu1usgu2u4
+(f13’42 - f12’34)gmu49u3u2>

JOR = feaeas perae g gk = 1,2, 3,4, (5.34)
The four-gluon vertex renormalization constant Z; in the MS scheme reads

Jh 2 4 1 4
Z4:1_W —§+OéR Cg+§TRNf E—FO(gR). (535)

Now we find that all the one-loop divergences in the seven superficially diver-

gent amplitudes can be cancelled by the contributions of the counter terms derived

from L£¢. Therefore the renormalizability of QCD at the one-loop order is shown.

5.2 Renormalization Group Equation and Asymptotic Freedom

Among renormalizable theories in four spacetime dimensions, non-Abelian
gauge theories are unique because of the exclusive possession of asymptotic freedom.
It is the significant property that makes QCD such a prominent candidate for the
theory of strong interactions in which it gives a substantial basis for incorporating
and extending the successful parton model for describing deep inelastic phenomena.
In this section, we are dedicated to introduce the renormalization group equations,
the concept of running coupling constant, the definition and the physical significance

of asymptotic freedom [6-9,64,68,69].

5.2.1 Renormalization Group Equation
According to the renormalization procedure we subtract all the divergences
from the Green functions systematically order by order in the perturbative theory. In

the subtraction procedure there exists an arbitrariness of defining a divergence part
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in a Green function, i.e., how much of the finite part will be subtracted together with
the infinity. This arbitrariness is equivalent to that in splitting the Lagrangian into a
renormalized Lagrangian and the counterterms and leads to various renormalization
schemes.

The arbitrariness remains while defining the renormalized quantities. For ex-
ample, in QCD, the renormalized coupling constant gz may be defined in terms either
of the three-gluon vertex or of the four-gluon vertex. In general different coupling
constants gr are determined by these different definitions. For QCD, with the help
of Slavnov-Taylor identity, these two coupling constants coincide.

In subtracting the singularities we have to introduce an arbitrary mass scale
p which is called the renormalization scale. For instance, in the on-shell scheme, the
renormalization scale p is choosen as the physical mass of the relevent particle at
which the renormalization condition is established. In the MS scheme, at first glance,
the mass scale seems unnecessary bcause only the pole in the spacetime dimension is
subtracted. However, in fact, the mass dimension of the coupling constant in arbitrary
spacetime dimensions plays a role of the renormalization scale. The renormalization
scale p is arbitrary and persists in the finite part of the Green functions. Therefore
the renormalized Green functions after subtracting divergences remains arbitrary.

In general, the renormalized coupling constant gz and mass mpg depend on the
renormalization scale p for which the subtraction procedure is determined, and the

explicit dependence can be expressed as

mp(i) = Zn(p) " 2m. (5.36)
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The renormalized coupling constant gg(p) and gg(p’) which are defined via two dif-
ferent subtraction procedures characterized by the renormalization scales p and p’

resepectively. They are related to each other by a finite renormalization z,(u’, p1),

9r(H') = 2(1', 1)gr(p), (5.37)

where z,(4/, i) is defined by

210,
/ g
Zo(p's ) = . 5.38
) = 74 (5.38)
Similarly, we have

me(p') = zn (1, W)me(p), (5.39)

where z,, (¢, p) is defined by

- (1)

Note that eq. (5.40) defines a set of finite renormalizations {z,(y/, )} for varying
renormalization scales 1 and p. We treat the finite renormalization (5.40) as a trans-
formation. It can be shown that this set of transformations have group properties [70].

In fact we could define a product of two elements z,(p”, 1) and z, (', @)

2o 1)z (1 1), (5.41)

which stands for the change of ggr(n) through the successive changes of the scales

w— ' — p”. Since

o120 ) = 2 = ), (5.42)

2g(p", pt) the finite renormalization of gr(p) caused by the scale change p — p”.

Therefore the product z,(u”, 1)z, (1, ;1) belongs to the set {z,(x/, u)}. Furthermore,
9 9 9
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the inverse of z,(y/, ;) can be defined by

5 ) = 2 ), (5.43)

and the identity

21 p) =1 (5.44)

belongs to the set {z,(x, 1) }. Therefore the set of finite renormalizations {z,(1’, 1)}
is a Abelian group, called the renormalization group.
Furthermore, we define the renormalized one-particle irreducible (1PI) ampli-

tudes by

Cr(p, gr(p'), me('), 1) = ZrT(p, gr(p), me(p), 1) (5.45)

where Zr is the product of the necessary scaling factors for the set of operators,
depending the number and types of the external lines. For example, in quantum
electrodynamics, I' might be an amputated Green function’s with n. external fermion

lines and n, external photon lines, and then Zr is given by
ne Ny
Iy =4y Zs* . (5.46)
The finite renormalization for I'g is determined by

Cr(p, gr(p'), me(p'), 1) = 2(1', T r(p, grp), mr(u), 1) (5.47)

where the renormalization factor z(p’', i) is defined by

Zr(1)
Zr(p) '

Due to the arbitrarinesses for choosing the renormalization condition and fixing

2y 1) = (5.48)

the renormalization scale 1, we may have many possible expressions for one physical

quantity which depends on the choice of the renormalization scheme and scale. These
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different expressions are connected by a finite renormalization described above. A
natural concern is whether these different expressions for one physical quantity are
equivalent or not. Since they represent one physical quantity and are derived from the
unique Lagranigan, they describe the same physical phenomenon and therefore must
be equivalent. In other words, phyical quantities such as renormalized 1PI amplitudes
are invariant under finite renormalization.

Given that the choice of renormaliazation scale is arbitrary, according to the
discussion above, we conclude that any change in the renormalization scale p can
be compensated by all the renormalized quantities such that the renormalized 1PI
amplitudes remain unchanged. This fact is reflected by the renormalization group
equation [67,71-74].

We can derive the renormalization group equation for the renormalized Green;s
functions by differentiating eq. (5.45) with respect to pu. Considering gr and mg

depend on g, while the unrenormalized amplitude I" does not, we have immediately

that
0 0 0
= — =, —_— = I'r =0, 5.49
g+ Blam) 50 = (g = )| (5.49)
where 3, 7v,, and 7y are defined by
0
B = /L% ,
Holgm
= _Malog mg
m a//[/ g7m7
10log Zr
=_——. 5.50
r 2 ou ( )

We wish to use the renormalization group equation to study the momentum

dependence of the Green function. Assume that all the momentum components vary
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together with the fixed ratio, p = Apgy, where pg is a set of fixed momenta and A is a

momentum scale variable. If I' has the dimensions of mass to the power Dr, then

0 0 0
— — |I'g = DrI bl
ﬂau+mRamR+)\a)\:| R rl R, (55 )

so eq. (5.49) can be rewritten as

0 0 0
{)\— - B(QR)@ —[1+ ’Ym(gR)]mRamR — Dr + 7F<9R)}FR<)\p07gR7mRaﬂ> =0.

(5.52)

Let us define a A-dependent effective coupling and mass through the differential equa-

tions
d
A9 = Bla(A), (5.53)
ASm(3) = ~[1+ (g ))m () (5.54)
and the initial conditions
9(1) = gr, m(1) =mg. (5.55)

Then the eq. (5.52) has the solution

where the exponential term is the "anomalous dimension”. Thus, solution of the
renormalization group equation can be expressed in terms of the running coupling
constant g(A) and the running mass m(A). The asymptotic behavior of the Green’s
functions I'g is governed the asymptotic behavior of the g(A) and m(\).

According to eq. (5.53), the running coupling constant g(\) must tend to a
"fixed point” as k — oo, which may be either the point at infinity, or any zeros of the
B-function. Thus we need to distinguish three different cases qualitatively: (i) If £ at

gr has the same sign as gg , and if there are no zeros of 5 between gr and +oo (for

122



gr > 0 or gr < 0), then |g(\)| must increase, approaching infinity for A — oco. (ii) If
S has zeros, and if the first zero encountered as its argument increases for 5(gg) > 0
or decreases for f(gr) < 0 from gg is as a finite point g, # 0, then g(A) will increase
or decrease t0 g, as k — oo. (iii) If 8 at g has the opposite sign to gg, and has no
zeros between gr and the origin, then |g(A) must decrease from |gg| as A increases,
lg(A)] — 0 as A — oo Such theories are called ”asymptotically free”. In the usual

case, the perturbation theory gives [6-9],

B(gr) = —Bogs — Brgy — Baghy + O(gh). (5.57)

Asymptotically free field theories are of great theoretical interests. In such
theories, the asymptotic behavior of amplitudes is calculable by the perturbation
theory. In the next subsection, we will introduce the renormalization group equation

for QCD and asymptotic freedom in QCD.

5.2.2 Asymptotic Freedom in QCD

First, let us derive the renormalization group equation for QCD in the MS
scheme. Our basic Lagrangian is given by eq. (5.10) and we split it into two parts,
the renormalized part and the counter terms (5.14). We refined the gluon field Af,
ghost field x* and quark field ¢ through eq. (5.11) and the renormalized parameter
gr, mp and ap are defined by eq. (5.12) in terms of renormalization constants Z,,
Zm and Z3. Thus the renormalization group equation for QCD is straightforward and

reads off

0 0 0 0
M@ + B(9r, O‘R)a_gR — Ym(9r, aR)mRamR +d(9r, aR)TR

—naVa(9r, ar) — nrYF(9R, OR) | Tngne = 0, (5.58)
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where I’ is the 1PI renormalized Green’s function with ng external gluon lines

ng,nr

and np external fermion lines (we do not consider the Green functions with external

ghost lines), g, is the dimensionless renormalized gauge coupling constant defined by

g = (%) Z: 9o, (5.59)

with g, = grp™, g0 = gpo € = %, m, = mpg and «, = apr. Here the mass

scale g for the bare coupling constant g is fixed scale while the mass scale u for the
renormalized coupling constant g is a variable. The renormalization group functions

B, Ym; 0, 7o and g are defined by

99,
B(gr, ) = p ) ) (5.60)
/1/ gm,x
0logm,
’Vm(gwar) =—H 9 ) (5'61)
M g,m,x
)6
0(gr ) = po—| (5.62)
au g.m,x
w0log Zs
T r) — & 9 5.63
6 (9rs ar) = 3 o |, (5.63)
(1 0log Zy
rsQr) = 3 5.64
1#(gr, ) = 5 O | (5.64)

Here v and v are the anomalous dimensions of the gluon and quark fields, respec-
tively. The bare parameters g and m are regarded as fixed constants and are free

from the renormalization scale . Then we have

dgr dm
— =0, — =0. 5.65

According to egs. (5.58), (5.59), and (5.64), we have

p dz,

= — — ——=0p. 5.66
B €Jdr Zg dp 9dr ( )
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Therefore, in order to compute the S-function to one-loop order, we need to
know the renormalized coupling constant gr in one-loop order with the renormaliza-
tion scale pu. There are four different ways of doing it because Z, can be evaluated
with four different definitions (5.15). These four approaches are equivalent due to the
Slavnov-Taylor identity (5.16). We here introduce an easy way of calculating Z, by

using the definition

1
7, = 57, (5.67)
With the help of egs. (5.21), (5.23) and (5.30), we obtain
2

gr 1 1
=1 (4@26(110(; - 4TRNf)E + O(gR). (5.68)

Then, we have, according to eqgs. (5.59), (5.66) and (5.68),

o mdZ
5(91%)— €Jr Z, dii dr

110@ - 4TRNf 91212

_ 1 5
111G —ATRN, .

Therefore we find that the coefficient 8y defined in eq. (5.57) is given by

1 11Cg — 4TRN;

Fo = (47)2 3

(5.70)
Asymptotic freedom occurs if fy > 0, i.e., 11Cqg — 4TpN; > 0. For SU(3) Cq = 3

and Tp = %, the condition for the asymptotic freedom is

Thus QCD is asymptotically free as long as the number of quark flavors is less than

16. Note that for Ny = 0 the coefficient (3, is positive definite. It is the presence of
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quarks that can undermine asymptotic freedom. The fundamental origin of asymp-
totic freedom may be traced back to the existence of the three-gluon coupling terms in
the Lagrangian. Since this term is peculiar to the Yang-Mills theory, we can conclude
that the asymptotic freedom is an inherent nature of non-Abelian gauge theory.

So far we discussed the S-function up to one loop order. The S-function up to

two loops [75,76] is given by

B(g) = —Bog® — Brg” + O(g"), (5.72)

where [y is given by eq. (5.70) and

B = @ {%Cé —4 (gca - CF) TRNfl- (5.73)

Next, let us turn to the running coupling constant. The running coupling

constat g(t) at the momentum scale e’ is determined by eq. (5.53), where ¢t = —log \.

We choose the momentum scale to be

el = , (5.74)

where ¢ is the space-like momentum and p is the fixed momentum scale which is

chosen to be the renormalization scale for g(0) = g. Integrating eq. (5.53), we have

90 dq

g
t = —. 5.75
s Blg) (5-75)

Then,we obtain by inserting eq. (5.72) into eq. (5.75)
1 90 gx dg’

t=—= — . 5.76
2/g A2 By + BiA + O(A?) (578)

If we choose g and A sufficient small, then we might safely truncate the perturbative
series for the S-function to this approximation. Keeping only the one loop order we

have

% _ %) | (5.77)
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Therefore the running coupling constant g is given by

2
=2 _ g 1

, 5.78

T T 152807 Bolog(—¢?/A2) (5.78)
where the new momentum scale A is defined by
1

A= pexp|— . 5.79

Il p{ 5 ﬁOQQ} (5.79)

The momentum scale A is referred to as the QCD scale parameter and is the only
adjustable parameter in QCD besides the quark mass. The expression for the running
coupling constant can be improved by taking into account terms with the coefficient

f1 in eq. (5.76). Performing the integration we have

1 1 —2 2
P |:_ L + &1 og 2(50 + 61?2)] (580)
260 Bo 9%(Bo + p19?)
Definin the scale parameter A by
L] (14 Bug/fo) %
A= pexp|— , 5.81
en| g () o
we can rewrite eq. (5.80) as follows:
B 507 <—q2)
— T —log ————— = [olog | — | . 5.82
Bo L+ 19/ Bo Falog A? ( )

Note that eq. (5.81) reduces to eq. (5.79) for f; = 0. The eq. (5.82) can be
solved for g2 iteratively if —¢® > A2,

5 _ 1 | _ Biloglog(=¢*/A%) }
Bolog(—q?/A?) Bo  log(—q/A?) '

Note that the second term in the parentheses in the equation above represents the

(5.83)

next-to-leading order which corresponds to the two loop correction.

In quantum electrodynamics the coupling constant defined on the mass shell
is small enough to ensure the perturbative expansion. However, in quantum chro-
modynamics, there is no method independent of perturbation theory to determine
experimentally the magnitude of the coupling constant. We know nothing about
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the validity of perturbation theory in QCD untill we perform practical perturbative
calculations. Specifically, we first tentatively neglect the question of the validity of
perturbation theory and evaluate the g-function in the lowest order of perturbation
theory. Then we find that the renormalized coupling constant tends to be small as the
relevant momentum scale grows. According to the property of asymptotic freedom,
we realize that the perturbative calculation is legitimate for the large momentum
scale. Therefore, the perturbation theory in QCD is valid in the large momentum

region.
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CHAPTER SIX

Yennie-Frautschi-Suura Resummation

The essential idea for understanding the infrared divergences was first proposed
by Block and Nordsieck [77] before the invention of relativistic pertubration theory.
The idea is that the infrared divergence arises from some soft photons which will
escape detection. They showed that the probability that only a finite number of
photons will escape detection is precisely zero because of the infrared divergence
associated with the soft virtual photons. On the other hand a nonvanishing result
would be obtained when the cross section is summed over all possible final states
compatible with the detection arrangement. In fact, they proved the cancellation
between the real and virtual infrared divergences. As an extension of the idea above,
Yennie, Frauschi and Suura (YFS) [78] developed a modern field theoretical treatment
of the infrared divergence phenomena. The main feature of this approach is the
seperation of the infrared divergences as multiplicative factors, which are treated
to all orders of perturbation theory, and the conversion of the residual perturbation
expansion into one which has no infrared divergence, and hence no need for an infrared
cutoff. In the infrared factors, which are in exponential form, the infrared divergences
arising from the real and virtual photons cancel out. This procedure depends on
no specific details. The beauty of this formalism is that it could be systematically
improved order by order in the electromagnetic coupling constant a. In this chapter,

we will give a brief introduction to Yennie-Frautschi-Suura theory [78-80]
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6.1 Resummation of Virtual Photon Radiative Corrections
Consider a process in which a certain number of photons are generated in the
fermion scattering from an initial state of momentum p'to a final state of momentum
p7 . Let M, (p, p7 ) be the contribution to the amplitude corresponding to all n virtual

photon loop diagrams. The complete amplitude is then

—

M(p,pl) = fj M,(5,p)). (6.1)
n=0
Because there are n photons, it is clear that M, have an infrared divergence of nth
order and will be a polynomial of degree of n in the logarithm of the infrared cutoff.
Thus, we could show that the M,,’s have the structure
My = my,

M1 == moCl/B + mq,

B 2
My = my (o + miaB + ms,
- (aB)"
M, = Zmn_rT, (6.2)
r=0 ’

where m;’s are infrared divergenceless and of order o/ relative to M,. Summing over

all numbers of virtual photon n, we formally arrive at

oo

M(p,p') = ea:p(aB)Zmn. (6.3)

n=0

This is the YFS exponentiation of virtual infrared divergences.
To construct the YFS exponentiation of virtual infrared divergences, we begin

with defining that

1 ndAk;
M,== [ ke, k), 6.4
n!/ /gk’?—m?yp(l ) (6.4)
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where m., is the cutoff of the infrared divergence. The factor %arises from the sym-

metrization of the n virtual photons in p,. Now consider p, is a function of k,.

Figure 6.1. Basic digrams with any set of real photons and (n — 1) virtual photons

pn_1 is represented by the set of basic diagrams associated with the first (n — 1)
photons and an arbitrary number of potential interactions(see Figure 6.1). p, is
represented by the possible ways the nth photon can be inserted into various basic
diagrams.

From the Lamb shift analysis, we know that Figure 6.2.(a),(b) and (c)give IR
divergences in k,. The diagrams in Figure 6.2 (d), (e) and (f) are finite as k,, — 0 if the
remaining photon momenta k;’s are nonzero. As k, — 0 and k; — 0 simultaneously,
overlapping divergences arise and they cancel in gauge invariant combination of terms.
Thus, the only remaining divergences corresponds to Figure 6.2 (a), (b) and (c) with

k, = 0 in the basic diagram.
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Figure 6.2. Basic diagrams with an additional virtual photon.

Thus, we have
p(kla Tty kn) = S(kn)pn—l(kla e 7kn—1) + 57(}) (kl, Tty kn—l; kn), (65)

where S(k,,) contains the k, infrared contribution from Figure (6.2). The integral of

[ is infrared divergenceless in k,,.
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[teration of eq. (6.5) gives us

pn(kh ) kn) = S(kn)s<kn*1)pn72(l€1 T knf2>

+S(kn)ﬁr(bl—)1(k1 e kn72; knfl)

+8 (k1) B (hy -+ Ko i) (6.6)
=S (k1) B (k- - Ko ) + BL (k1 - ks ) )

The symmetry of p, in k, and k,_; indicates the invariance of bracketed quantity at
the end of the above equation under the interchange of k, and k,_;. So we denote
this property by
{=S (k1) B (k- bomai b) + B0 (kb i Fi))
= BB (ky - kn_g; kn_1, kn) (6.7)
Repeated application of this IR seperation procedure and exploitation of the symme-
try of p, yield
plky---kn) = S(ki)---S(kn)bBo
F3800) - S )S (ki) - S
i=1
4.
+ZS ) B (ke Kioa, ki - k)

+Bn(k1 s k). (6.8)

Rewriting eq. (6.8) in terms of all permutations of k; and k; yields

ol ZZT. ,HS Voorlbrer k). (69)

Perm r=0

Thus, we have

angr!(nl_m (/d4k5m2) /Hﬁn Akok).(6.10)
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Finally, we define

41
aB(p,p) E/%ﬂr(lﬁ'”k}?«), (6.11)

which yields the desired result, i.e., eq. (6.2).

6.2 Resummation of Real Photon Radiative Corrections
From eq (6.3), we see the cross section is proportional to exp(2aRB). Except
that, we need to compute the contribution from the emission of n undetect real
photons with total energy €, symmetrized in real photons. The cross section should

have the form

n=0
do(m.) _ Z doy(m)
de — de '
do,(m.) - d*k,,

1

L3S T
X 0 (6 — Z k:l> PP, D' k1 -+ k). (6.12)
i=1

so that p, plays a similar role to that of p,, for the treatment of virtual photons and

is given by the absolute square of > m,, where
E=E-) K=E-«
i=1

Thus, the sum over all possible undected photons provides the complete differential

cross section

— = lim Y —=Z. (6.13)
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Since p,, is symmetric in the real photons and overlapping infrared divergences
cancel in the same manner for both real and virtual photons, infrared terms could be
factored out of p, by the same treatments applied for p,,. Because of the cancellation
of overlapping divergences, only the photons which terminate exclusively on external

fermion lines (fig.6.3 (a) and (b)) contribute infrared divergence.

S

}B\
3

()

Figure 6.3. Basic diagrams with an additional real photon.
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We obtain a similar relation to that obtained for the virtual photon case:

+ZS ﬁn 1k, kica, kign - k)
+ﬁn(/€1 k). (6.14)

Similar to the virtual photon case, S contains the infrared divergence and B has no
none. S must be evaluated at E' = E — 3" k%, and 3, is defined only at E' = E.

The energy-conserving ¢ function eq. (6.12) is conveniently represented by [81,82]

5(6—%]{@) :%/:Oexp [@y (e—;km)] . (6.15)

After some manipulations, we obtain
+00

1 )
_ : 1ye
= ngmo exp(2RB) o / dye

— 00
k<e 3

X exp [ WS(k,p,p)e
{BoJrZ /H e B (0,0 Ky k )}- (6.16)

From the third exponential of eq. (6.16), we see the real infrared photons are

d_a
de

—iyk

still kinematically connected with other real photons by the factor e which guaran-

tees that Y k = €. In order to make the infrared photons kinematically independent,

we define
ke Br : .
/ ———S(k,p,p)e™¥" = 2aB + D, (6.17)
(k2 +m2)>
where
k<e 3
5 < BE -
2aB(p,p) = / —S (6.18)
(k2 +m2)2
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and
k<e dskf )
D= / (e7Wk —1). (6.19)

With eq. (6.17) to eq. (6.19), we obtain the noninfrared part of eq. (6.17)

do 1 e iye+D m —zyk
e = gy dye 5 + Z H mﬁn (6.20)

Then, eq (6.17) becomes

do do
- = exp{ lim 2a(B + B)} o (6.21)

So far, the problem is whether or not lim0 2a(B + B) is finite or not. Next,
M~y —>

we will show the cancellation of infrared terms to all orders of the electromagnetic

coupling «a by exploiting details of infrared factors.

6.3 Details of Infrared Factors

B and B can be represented by the gauge invariant expressions [82]

: 2
gt / d*k 2p,, — ky _ 2pu—ky (6.22)
(2m)3 ) k2 —m2 \2p' -k —k*> 2p-k—k?
and
€ 2
_ _1/ @k ( Do Pu ) (6.23)
8w Jo (k2+m2): \P'-k p-k

We can see that the infrared divergent part of RB arises from the pole
! P ! o (k* —m?) (6.24)
- =PV.——— —in —m .
k2 —m?2 + ie k2 —m? K

These poles contribute the amount

1 d*k < 2p), — ky 2pp — ky )2
= - — + finite terms. 6.25
8W2/(k2+m3)2 2p' -k —k* 2p-k—k? (6:25)

As k — 0, the diverging integrands of eq. (6.25) and B cancel.
Thus, lim0(2a§RB (m.,)+2aB(m.)) is finite, i.e., we have cancelled the infrared
M~y —>

divergence in the theory to all order in a.

137



After exact calculations, we have [79,80)]

~ / k2 1 2pp. 1
lim (2aRB + 2aB) :g{ <log bp_ 1) log =~ + = log L log? Po
s m

me—0 EE" 2 m? 2 2
1 (A+0)* 1 (A —0)? C(A+w
R P SR PV Sl AN o -~
108 4pOp/0 48 4pOp/0 RLi, A+
(A4 w (A —w [ A—w
2
+%—1 , (6.26)

where k,, = ¢,

A =/2pp’ + (p° — p?),
w=7p"+p",
§ = pO o pIO
and we have introduced the Spence function
Liy(x) = —/ log(1 — t)dt.
0

At high energies and small ¢, B and B have the approximate forms

1 2p - p 2 1 20-p 1 2
B=——|log b D logm—+—log by - —logm— , (6.27)
m m2 2 m2 2 m%

~ 1 2p - p' 21 2p - p' EFE 2 EFE
B =— |log PP logm—+—log L — log —logﬂ—i—log .
2 m? m m m2

€2 2 €2
(6.28)

If we use a photon momentum k,,;, instead of the photon mass m.,, eqs. (6.27) and

(6.28) become

1 2p-p/ EE 1 EF’
B = —5- {log 5 (log e log e (6.29)
and
- 1 2p-p €2
B = Dy <log e 1) log 2 (6.30)
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However, the sum RB(m.,) + B(m,) is the same as RB (kmin) + B(Kmin):

aA. FEE  « 2p - p'

2a0(RB + B) = 5 log =+ %log s (6.31)
where
ko P, .\’
A=-D0 ao( Pe - Pe
) Am? (p’ kop- k)
2 2p-p/
o~ 2 (log Ly 1). (6.32)
m m

It shows the physical consequence is independent of the selection of regularization

schemes.

6.4 Details of Noninfrared Virtual Photon Terms

We now discuss the virtual photon remainders (6.2)

my = Ml — OéBMo,

(aB)?
2l

...... (6.33)

mo = MQ —OéBMl -+

M

Note that since aB (and aB) are not unique, the separation of M; into aBM, and
my is not unique. Recoil terms such as k? in (k* — 2kp)~! does not affect the infrared
singularity, but are preserved in B to make the integral (6.22) converge naturally as
k — oo0. Recoil currents such as k, in (2p, — k,) do not contribute to the infrared
divergence, but they are remained in the integral (6.22) to make B gauge invariant.
Thus, different representations of B with these terms having different coefficients
would yield the same infrared singularities. In general, m; could be very complicated,
however, we could still obtain some good results through discussing the lowest order

for an fermion.
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Applying the Feynman rules for the amplitude above, we could represent the

incoming part as

' (p — ki +m)e (2p — k) 'ei_%[kiaei]

- ... .34

where the first term on the right is the current we have used in the factor B, and the

second term is the magnetic term.

Figure 6.4. Vacuum polarization of the potential.

Applying the Feynman rules for the amplitude above, we could represent the incoming

part as

_ (p — ki +m)e (2p — k) 'ei_%[kiaei]

ki —2p- ks ulp) = k} —2K;-p u(p) (6.35)

where the first term on the right is the current we have used in the factor B, and the
second term is the magnetic term.
The calculation of the magnetic terms at the high energy limit gives the con-

tribution

/

alMy 2p - p
log
27

+ O(aMy) (6.36)

m2

And the vacuum polarization contributes

aM, | 2p - p'
0
3 & m2

+ O(aMy). (6.37)
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6.5 Details of Noninfrared Real Photon Terms

We have discussed the infrared terms B and B and the virtual corrections in
Bn, we are focusing on the noninfrared real photon corrections in eq. (6.20). The
photons have a spectrum of dk rather than dk/k for k — 0, and the expansion of the
real photon correction in n is an expansion in the number of noninfrared real photons.
Thus, the nth order correction is from noninfrared photons. We assume the energy
loss for emitting one real photon is e. The n = 0 term contains dk/k contribution
from the emitted photon. And the n = 1 term contains dk/k and dk contributions
from one photon. It means the n = 0 and n = 1 terms both start at the order of
O(a).

We start with the n = 0 case in eq. (6.20):

doyg ~
=0 3]
d€ 50 )
d do 5
;60 _ Cfifgoeza(s%Bw(e))’ (6.38)
where
1 [t
I = _/ dy61y6+D,
2r J_o
kO>¢
= dk: - i
D:/ ?S@,p’,k)(e‘zyko‘l),
. aQi , p y,
Sl k) = g (P~ ), (639

I could be computed in terms of tabulated functions [82]. The result is

1= g, (6.40)
€
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where

efaAC
F A)=————
vesled) =ra o
2 A 2
:1_”(f‘2) . (6.41)
Therefor we have
do Aoy A ~
d_o = 2RBB) [y, g (aA) fo, (6.42)
€ €
where
- e w1, pp 2
20(RB + B(€)) = adlog - + (5 log 2 — 1 %), 4
a(RB + B(e)) = « ogE+a 5108 5 5 (6.43)
Next, for the n = 1 case, we have
doy _ sa(rB+B() 901
de de’
do MECPRy 5 1 [T
T [ s [ agenet, (6.44)

where the 3, contains dk and kdk terms form the emission of one real photon. And

B1(ky) is evaluated at E' = E — k;

After the similar calculation for the n = 0 case, we arrive at

do; oA € € 1—aA

€

We can show that the above integral is convergent for «A > 0. Because of the peaking

behavior at k; = €, we could expand G (k) about k = e:

dG(k
G1(ky) = Gy(e) + (ky — @M 4+ (6.46)
dk; ky—c
so that we have
d(}l B aAe dGl(kl = E)
E = FYFS(O‘A){G1<E) aA+1 dk, : (647)

The G4(€) term is of order o from a hard photon. And the other terms in {---} is

from the infrared photons in addition to the ”dk” photon in G
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Therefore, we have [80]

d 1 / 2
291 :exp{aAlogijLz(—log@—l—W—)]
de E  «

2 m? 6
ale
X FYFS G1<€> — mG1<€> + - 0. (648)
In some literatures, we set € = v‘/Tg = vF so that
d a(l pp’ =2
% = UaAFYFs(@A)e;(EIOgmili?) G1 (U) + O(CYZ) (649)

which is useful for many applications in precision EW, QCD and quantum gravity [83].
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CHAPTER SEVEN

CEEX and KKMC-hh

In last chapter, we have given a brief introduction to Yenni-Frautschi-Suura(YFS)
theory. The YFS theory provides an elegant treatment for infrared singularities to all
orders of the electromagnetic coupling o. Rooted from YFS framework on QED ex-
ponetiation [78], many important Monte Carlo (MC) event generators were developed
in pursuit of ultimate precision in theoretical particle theory, such as KORALB [84],
KORALZ [85],BHLUMI [86,87], YFS2 [88], KKMC [89], KKMC-hh [90-92] and etc.

KKMC-hh is an extention of the generator KKMC for the process ee™ —
ff 4 ny in LEP energies, where ff represents a final state fermion pair. The MC
structure is based on CEEX [89,94-96], an amplitude based analog to the origi-
nal YFS exponentiation, and includes residuals through the order of o?L, where

L = log(-*).(big logarithm). Electroweak matrix element corrections are computed
7

by DIZET 6.21 from the program ZFITTER [97]. ZFITTER calculates vacuum polar-
ization for the photon and Z boson, and adds the form factor corrections to the vector
coupling and angle-dependent form factor to includes the box diagram corrections.
The decay is realized by TAUOLA [98-100].

The KKMC of version 4.22 supports quark initial states, and a modified version
4.22 is incorporated into KKMC-hh to select the quarks via PDF’s with the help of an
LHAPDF [101] interface. KKMC-hh utilizes an adaptive MC program FOAM [102]
to generate the quark momentum fractions z;, the total ISR energy, and the quark

flavor using a crude distribution which is constructed during an initialization phase.
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In this chapter, we will introduce the two types of QED matrix elements
and exponentiations: the coherent exclusive exponentiation(CEEX) and exclusive
exponentiation (EEX) at first. Then we would like to give a brief review the MC

algorithms for KKMC.

7.1 Amplitudes for Exclusive Exponentiation
In this context, exclusivity means that the procedure of exponentiation(summing
up the infrared ral and virtual contirbutionn within the scheme of perturbative quan-
tum field theory) is done at the level of fully differential (multiphoton) cross section
or at the level of the scattering matrix element (spin amplitudes) before integrating
over photon momenta in the phase space. As opposite to exclusivity, inclusivity rep-
resents executing the procedure of exponentiation after phase space integration over
photon momenta. EEX is formulated in terms of spin summed or averaged differen-
tial distributions, which results both advantages and disadvantages. The advantage of
EEX formulation is that the differential distributions are given analytically in terms
of Mandelstam variables and they are easily examined by checking certain important
limit, such as leading-logarithmic and soft limits. However, the disadvantage is that
the squaring of the sums of spin amplitudes from Feynman diagrams leads to many
interference terms, which in the exponentiation are calculated analytically and indi-
vidually. In spite of disadvantages, the EEX matrix element still play an important
role to provide a testing environment for the new , more complicated matrix element
of the CEEX class. In this section, we will give a concise introduction of amplitudes

for exclusive exponentiation. We use the process e"et — ff + n~y to illustrate the
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EEX, which could be extended to partonic process q@ — ff 4+ ny in KKMC-hh

(¢ = quark).

7.1.1 Master Formula

The kinematics of the process e”et — ff + nvy is described in the figure
below. In this case, we neglect the initial-final state interference. Therefore, we are
allowed to distinguish between photons radiated from the initial-state fermions and

those radiated from the final-state fermions. The four-momentum

n

X:P1+p2—zkj:%+(h+zkz/ (7.1)
I=1

j=1

of the s-channel virtual boson(Z/~v*) is well defined. Let us denote the rest frame of

X as XMS (the X zero momentum system).

e /
Pl —— —— (1
aVaVaVaVaVaVal
NN K]
NAANNNNN kg
YAVAVAVaVaVal > aYAYaVaVaVaValy 5
P =pi+ po @ ° Q=q+q
NANNNNN Ky g CVAVaVaVaVaVaYy -
GVAVaAVAVAVAVA i NN K,
P2 —— < 2
et /

The kinematics with multiple photon emissions in the process e*e™ — ff 4+ ny
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Denoting the Lorentz-invariant phase-space by

. d? “
d"Lips(P;p1,pa, -+ ,pn) = H pp‘75 4) — ij) (7.2)
j=1 = j=1

for the process e~ (p1) + e (p2) = f(q1) + f(g2) + ny(k;) + n'y(k}), the O(a”) total

cross section reads

Z Z // A" T2 LipS(py + pos 1, Qoo Ky K Ky KL

n=0 n'=

pggx,r =0,1,2,3, (7.3)

in terms of the fully differential multiphoton distribution

pg)EX(plﬂpQ;QDQQ?kl“' knykl"' k,/)

= oxp [Ye(Er;p1,p2) + Y5 (Sk; 1, 02) H O(X1; k) Sk (k)O(Z ks k)
a(r y P15 P25 Y1, 7]{:‘
5(() )(X,p1,p2,Q1,qQ) +251 P~1 P2, 41, @2, kj) +
j=1 Sf(kj>

n/

Zﬁf )F(X D1,D2,q1, G2, k + Z Br=11 X . D1, D2, Q15 @2, Ky, ki)
=1 S (K7) n>j>k>1 (kj)sf(k’f)

n Z Bt 2FFXp1,p2,q1,q2,kl,k:’)
Sp(k)) Sy (kL)

n/>l>m>1

—|—Z ﬁ(r)ﬂF(X D1, D2, Q15 @2, K5, K7)

=1 1=1 Sf(k;)sfuf;)
n Z Bé?)II(Xaplap27Q17Qkajakkvkl)} (7.4)
> okl St(k;)S1(kx)S1(kr)

As we noted in last chapter, the YFS soft factors for real photons emitted from

the initial and final state fermions are

6471'2 k]pl k?jpg
) = —O2 o @ @
Se(h) = Qs (1 -2 (7.5)
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where Q. and @y are the electric charges of the electron e and fermion f. The Y

function in the exponential YFS from factor is defined as in last chapter:
Yi(Qp.p) = 2Q3aB(Qp.p) + 2Q70RB(Qp, p)

« dF P D 2
= 22— [ —0:k) [ = - =&
Ak i (2p—k 22—k \°
20> - — .
+ Qfo‘%/ K2 278 (kp—kQ 2k:p—k2>

The form factor above is IR convergent and depends explicitly on the soft-

(7.6)

photon domains €2 = Qy, Qp, which includes the IR divergence point & = 0. We define
O(Q; k) =1 for k € Q and ©(Q; k) = 0 for k € Q. The sum over contributions from
the real photons inside the domain €2 to infinite order, together with the analogous
contributions from virtual photons, forms the exponential YFS form factor. In the
Monte Carlo calculation we generate photons k € Q via function ©(Q, k) = 1-0(€, k)
. Usually it is required that 2; and Q2 are small enough in the total cross section. And
physical observables are independent of the choice of €2; and 2r. so mathematically
speaking, €7/ is required to be dummy parameters in the calculation. If we neglect
the initial final state inference, we could choose €); and Qg differently. For example,
let us define Q; with k° < E,,;,, in the center of mass system of the incoming ete~

beams and Q with £ < E/ . in the center of mass system of the outgoing fermions
ff. This is the easiest definition for the Monte Carlo Generation, but in the latter
discussion, we would should how we deal with the situation 2; = Qp. The YFS form

factor for the above choices of €7/ are

2F. . 1 « 1 7
Yo(Q = Yelog B 4~y + Q2= (o + ), [
( I7p17p2> e 108 2p1p2+47 +Q€7T( 2+ 3 ( )
2F . 1 a R
Y (Qp; = qlog L 4 _yp 4 Q2= [ —- + [
f( Faplvp?) Vf Og\/m_{_élf}/f_l_Qeﬂ_( 2+ 3>7 ( )
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where

2
Yo = 2Q2 <1og nl 1) , (7.9)
U me
2
vr =232 (log - 1) , (7.10)

7.1.2  Pure Virtual Corrections

As we discussed in the last chapter, the perturbative QED matrix element is
located in the § functions. Thef, function is proprotional to the Born differential
cross section doBo(s,0)/dQ) for the process ee™ — ff and it contains calculable
infrared convergent corrections order by order. We shall calculate 3, and other 3’s in
the O(a?)prag,i = 0,1,2.

The O(a?)rqy expressions for B(()i),i =0,1,2 are

1 dO.Born

B piprane) =7 Y~ (XRe)A+07)(1+6)), (7.1
k,i=1,2
1 1 1
=0 =y ol ol g
2 8 48
1 1 1
=0 o=, oty ol g
2 8 48
where
cos b, = Pi - di cos by = ﬂ
pillgil’ pillga|
cos Oy = w7 cos tyy = %7 (7.14)
p2lq1] P2||¢3]

with all three-vectors in the rest frame of the four momentum X, namely, in the frame

XMS.
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Born

Notice that we take an average over four 6, instead of having a single %.
The reason for this more complex choice is due to the treatment of the first- and
higher-order real photon contributions in the next subsections. According to the
Refs. [103,104], the exact single-photon ISR/FSR matrix element can be expressed
as a linear combination of the two do®™/dQ(6),k = 1,2, distributions. Our im-
plementation of the LI matrix element of the two or three real photons could also
apply this kind of linear combinations. Thus, it is practical and reasonable to adopt
a similar approach alread for 3y. Note that in the soft limit, all four angles ), are
identical.

Some reader might question the authenticity of the freedom of defining 6 in
doBom /dQ(0) in the first place. This question is answered in Ref. [87,88]. Briefly
speaking, the differential cross section doB™/dQ(6) and B(()i) are defined in the two-
body phase-space. However, they will be used all over the phase-space with additional
photons(either soft or hard). This needs some extrapolations of do®°™ /dQ(6) and Béi)
beyond the two-body phase-space. The extrapolation is realized by manipulating the
four-momenta in Ref. [88] and it is done as an extrapolation for the Mandelstam
variables(s, t and u). However, we could solve this problem from another perspective.
The effect due to changing from one specific extropolation to another is a kind of
"higher order” effect for the entire calculation. For example, at O(a!), changing the
type of extrapolation brings in an O(a?) effect. Therefore, it is logical to use a certain

extropolation to minimize the higher-order effects.

150



7.1.3 One Real Photon with Virtual Corrections

The contributions Bf) are built from the QED distributions wiht a single real-

photon emission and up to one virtual-photon contribution.

They are defined as
follows:

Bﬁr)(X:PlaPzaCh,Q% kj) = DE?(Xaplap27Q17Q2a kj) - gl(kj)B(()iil)(Xaplap%Q17QZ):

(7.15)
Bi?‘(Xaphp%qlvq% kl,) = DgiF)'(X’plvp27q17q27 k:Z) - S’F(kz) _((]i_l)(X7p17p27q17q2)a

(7.16)
where ¢ = 1,2. We define all the ingredients for the initial-state contribution. The
single initial-state photon emission differential distribution at the O(a”),r = 1,2,3
with up to two-loop virtual correction from the initial- and/or final-state photon is

() N2 ¥ 2pps )
DlI (X,pl,pQ,Q1,Q2, k]) - Qe47‘r2 (/fﬂh)(kjpz) e(a]7/3])

1—a.)? dBorn 1_A,2 dBorn
X{( 2aj) Z O;jQ <X2701r)+( QBJ) Z g (XQ,QQT)}

r=1,2 r=1,2 df2
x 14+ A7 (z)] @+ o), (7.17)
where
~ kij kjpl ~
a; = , = ; =(1—a;)(1-=25)),
p= = B = (- a1 - )
1 1
AP(2) =0, AP(2) = 57— ;7log(2),
1 1
AP(2) = AP(2) + 577 — 577 log(2) + 5777 1og*(2),
m?  (1—a)(1—=0b) /sa b
(a,b)=1——=° —+-). 1
W(CL ) 2]71]?2 (1—a)2+(1—b)2(b+a> (7 8)

Let us check the soft limit at first. In the case of more than one photon, if
we take the soft limit k; — 0, keeping the momenta of the other photons constant,

then 6y, are generally all different. However, the sums over do®°™/dQ) in eq. (7.17)
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combine into a simple average over all four angles, as in eq. (7.11). So the single

photon distribution reduces to

DS’U(X, P1s D2, Q1 G2, Kj) ~ SI(%‘)B(SLO)(X, D1, D2, 1, G2) (7.19)

and thus Bg’l)(X, P1,D2,q1, G2, k;) is IR finite. The above discussion implies that
extrapolations for 3, and 3, have to be of the same type.

The collinear limit is our another concern. If all of the photons are collinear
to the initial or final fermions, then all of the angles 0;;,7,5 = 1,2, are identical and
equal to the LL effective scattering angle for the hard process in the frame XMS. This
will facilitate the introduction of the higher order LL corrections in the following.

Note that there are many equivalent ways, modulo a term of O(m?/s), to
express the single-bremsstrahlung spin-summed differential distribution [105]. Our
choice results from minimizing the machine rounding errors which implementing
Monte Carlo programs [85,88,89]. And eq. (7.17) is explicitly expressed in terms
of the Born differential cross sections, which helps the introduction of electroweak
corrections.

The virtual correction term [1 —f-Agl)(zj)] is taken in the LL approximation and
it agrees with the corresponding contribution in the Ref. [106]. In the limit k; — 0,
we have Aﬁl)(z) — 5§1) and BFF) is infrared finite. The factor (1 + (51(;)) represents the
contribution from the simultaneous emission of the real initial and the virtual final
photons.

The key ingredients for the O(a") final state Bi?, r = 1,2, is the single final

state photon emission matrix element with up to one-loop virtual initial-/final-state
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photon corrections:

NG
Tar? (k1) (kjg2)

« 2q1q2 A
1F (X, p1,p2, 1, 612,/@) QQ——Wf(Uz,Cz)

Born

(1—1np)? doBern 9 (1-— 51)2 do
X~ 0, E
{ = dQ ( 9 1) + 2

r=1,2

x [1+ A5 ()] (1467 Y),
where

kg2 kg N Ui
m=-——, (=-= =

Qg : g’ nl_1+771+Q’
1
AP =0,a0() = 57 1log(2)

o om -a0-b)
Wela,0) =1 - 2%](;2 (1—a)?+(1-0b)? <

b

(XQ, 97«2)}

(7.20)

+ 9). (7.21)

a

The discussions on the ISR distribution of eq. (7.17) also works for the FSR

distribution above.

7.1.4 Two Real Photons with Virtul Corrections

3(2)

The contributions 52117 spps and BQF are related to the emission of two

real photons, two initial, two final and one initial and on final, respectively. The

contribution 52 1, related to the emission of two real photonsis, is defined formally:

_é’;)[(X,plpr q1, 492, kj? kk)

:Dé;)I<X’pl7p27QI7QQ7kj)kk) Sf<k) 3= 1)(X p17p27QI7QQ7kk)

- gf<k5k) _§;_1)(X7p17p27QI7QQa k’j) - gf(k )Sf(k’ )5 )(X plaPQan’QQ)

r=2,3,
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And the contributions Bg?F and Bg)F, related to the emission of two final photons
and one initial photon and one final photon, are defined respectively:

757}‘7)'F(X’ P1,P2, 41,492, kf;, k:n)

:D;;)'F(X’ P1,P2, 41,42, k;a k»:n) - SF(k;)BYJ‘J‘_l) (X7p17p27 q1, 492, k;n)
- SF(k»:n)Bg«"_l) (Xa P1,P2, 41,42, kZ) - SF(kl,)gF(k:n)Bér_m (Xa P1,P2,4q1, q2)7

r=2,3, (7.23)

BYpe (X, p1. 2. a1, g2, Ky, )
:Dg)F(Xa P1, P2, G152, ki k) — g[(kj)Bg«“_l)(Xaplap% a1, g2, k)

- gz(kf)ﬁ_f?_l)(X,pl,pz, a1, q2; /fj) - g}(k’g)gF(kf) _(()r_2)(X7p1,p2, Q15 G2),

r=2,3. (7.24)

The new terms Dg)l, Dé? 7, and Dg)F in the above expressions are the differ-
ential distributions for the double bremsstrahlung. They are not calculated directly
from Feynman diagrams but they are set up in the following way: if one photon is
soft and the other is hard, then the single-bremsstrahlung expressions of (7.17) and

(7.20) are recovered; if both photons are hard and collinear, then the proper LL limit

is also recovered.
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The definition of the double real ISR distribution is

Dg)l(XJ)hPm q1, G2, k1, kz)

0 o 2p1p2 «a 2p1p2
A2 (kypr ) (k1 Po) A2 (Kop ) (Kape)

{@(v1 — 9) [1 + AN 212)] (14607) [Xz(dl; ab, B5)

We(ci1, B1)We(dia, B)

dO.Born 5 . N
70 (X=,01,) + x2(ay; o, By)

r=1,2 r=1,2

{@(Ug — Ul) |:1 + Ag”}_l)(ZQ, 221)] (1 + 5;—7:_1))

Xa2(f; o, B5)

do.Born R R R do.Born
<X27(92r)+x2(ﬁ1;0/1761) <X27917‘)+ 3
ds? ds?
r=1,2 r=1,2
(7.25)
where

Pol-ay l-an ' 1—32’ ’ 1—31’

vi=G;+ B, 2= (1—a&) (1 -5, zij=(1—0d& —a;)(1— B — Bj),
1

x2(u;a,b) = Z(l — u)z[(l — a)2 +(1- b)2],

0) 6 1 11
Arr =0, Apy(z = gylogla), zi5) = 57 — c7log(z)- (7.26)

The variables d;, 3; for the ith photon are defined as in eq. (7.18).

In order to understand the construction, we examine the realization of the
LL collinear limit in the exact single-bremsstrahlung matrix element of eq. (7.17).
Suppose a photon carrying the fraction z; of the beam energy is collinear with py,

then éq ~ z, By ~ 0, all four angles are the same 6. — 0* and we at once recover the
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correct LL formula

dO.Born

ds?

(627')

r:172 7‘2172

So it is natural to use the the angular-dependent Altarelli-Parisi (AP) factors of the

type

%[(1 — )+ (1— @)2]%[(1 — &)+ (1- B

for the double emission. But the above expression is too simple to reproduce correctly

the result of the double convolution of the AP kernels in the case that both photons

are collinear with the same fermion

1 51 zy \’]doPo

where z5/(1 — 1) reflects the energy loss in the emission cascade because of the
emission of k;. In order to deal with the above situation, we need to reconstruct

angular dependent AP factor as

%[(1 —a)’+ (1 - 31)2]%[(1 —aly)® + (1= )7,

The above formula fits both kinds of the LL collinear limit, when two photons are
collinear with a single beam or each of them follows a different beam. Finally, we
reproduce the limit in which one photon is hard and the other is soft, vy = a4+ 62 — 0.
In this case, we split the above double-bremsstrahlung angular dependent AP factor

into two parts
~ v A1 ]' ~ 21 "7 \2 A1 \2
Xa(d1; 'z, ) = (1 = 61)"5[(1 = a'2)” + (1 = B'9)7,

XalBrs @, ) = 51— B3 [0 — @) + (1= B1y)), (7.27)
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TN

and relate each one with the corresponding d";;; as we did in eq. (7.17). The order
in the cascade does not affect the result. So we just symmetrize over the two orderings
in the cascade (Bose-Einstein symmetrization).

The construction above gives the correct limit Dg)l(kl, ky) — S (k:g)DS)(k:z)
for v; = const and v, — 0. Consequently, Bﬁ) (X, p1,p2, @1, @2, k1, k2) is finite in the
limit of one or both photon momenta approaching to zero.

The double final-state bremsstrahlung distribution is constructed in an anal-

ogous way:

Dg«zﬂX’Pl,Pza q1, G2, k1, kQ)

PR 2q1p2 o 2q1p2 2 2
= W ) We )
U i) () 172 kg o Ve 2

. ) R do.Born
{G(Ul - UQ) [XQ(”I; Mo, CZ) e

r=1,2

<X27 917‘)

A oa dO.Born A
+X2(771;77§,C§) a0 (X2791r) +@(U§ —Ui) [X2(C1377§,C§)
r=1,2
do.Born A dO.Born
dQ (X27927') +X2(Clan,17<.i) dQ (X27017’) + }
r=1,2 r=1,2
x L+ A77V(z)], (7.28)
where
/ T / 2 / Cl / <2
— s = y = P = . 729
UAt 1+ 1, Ub) 1+ G 1+ G o 1+ G ( )

Note that the definition of the ”primed” Sudakov variables is different from that in
the ISR case, because the fermion momenta ¢, » are affected by photon emission. The
virtual corrections are absent because we restrict the FSR to O(a?)r. The above
expression is tagged with » = 2,3 for O(a"), but the FSR is implemented only in

O(a?) and the only correction in O(a?) is the ISR one loop correction.
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The distribution for one photon from the initial-state and the other from the

final-state at O(a"), r = 1,2, is given by

DS})F(XaplapZa q1, 42, kj, k;)

2 @ 2p1p2 . A2 O 2q1q2 .
= V[/v6 04-’ . ; - W ’ %

Q847T2 (k;p1) (;p2) (& ﬁj)Qfélﬂ.Q (k1) (Klga) £ (7 G)

(1—&;)2 (1 —n)2 doBom (1—a;)2(1—&)2doBon
X-,0 X2 0
{ 2 2 dS ( ’ 11) + 2 2 dO ( ) 12)
(1—B;)2 (1 — @)% doBorn (1—B;)% (1= &) doBorn
" 2 2 dQ (X, 01) + 2 9 10 (X7, 0)
(r=1) (r=1)/ 1

where @;, /3’]-, m, él and other componets are defined in egs. (7.18) and (7.21).

7.1.5 'Three Real Photons

The differential distribution for three real ISR photons is obtained by the triple
convolution of the AP kernel for each beam. In spite of the primary importance of
the collinear limit, preserving all soft limit is also our concern while constructing the
fully differential triple-photon distribution.

In these limit the triple-photon differential distribution must reproduce the

previously define Born, single-, and double-bremmsstrahlung distributions times the
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the appropriate soft factors. If not, we may encounter an issue of the IR finiteness of

By (X, piy 0. K, Koy k)
:DE(S?})II(Xa bi; 4qj, k1, ko, ks) - §,(k1)B§§}(X, Di; 45, ka, k3)
— Sy(ka) B (X, piv 4y krs k) — Sp(ks) Bsar (X, iy 45, K, ko)
— Si(k1)S1(k2) B (X, i, a5, ks) — Sp(ks) Sr(kn)BS) (X, pi, g, Ko)
— S1(k2)Sy (ks) B (X, pis a5, kr) — Sy (k) Sy (k) Sy (k) B (X, pi ).
(7.31)

As in the case of the double real ISR photons, the guideline for constructing the

differential distributions includes (i) the hardest photon decides which of the angles

do Born

+—(X?,6,) and (ii) we have to sum over all orderings in a cascade

is used in

emission of several photons from one beam (Bose-Einstein Symmetrization). For the
case of three real photons there are no virtual corrections.

The construction for three real ISR is

Dé?}}I(Xapbp% q1, 2, k1, ka, k3)

= H Q? 2p1p2 ] e(@z,Bl){@(Ul — 02)0(vy — v3)

647T 2 (kipr) (kip2

1=1,3
"ooan dO.BOTTL 2 5 a1 A1 Al AN
X3(0417 0427 52; O‘gaﬁs) a0 (X ) er) + X3(61§ Ay, 52; O‘gaﬁg)
r=1,2
doBorm 9 .. .
Z 70 (X*,05,.)| + remaining five permutations of (1,2,3) (7.32)
r=1,2
where
1
Xg(ul; as, bg, as, bg) = g(l — Ul)Q[(l — &2)2 + (1 — bg)z][(l — a2)2 -+ (1 — b2)2],
N « N7 B
by=—"—\ fj=—= (7.33)

1= B =B

1—ay —ay’
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7.2 Amplitudes for Coherent Exclusive Exponentiation

The coherent exclusive exponentiation was first introduce in Ref. [107], which
is rooted in the YFS exponentiation [78]. The exponentiation procedure which is
a reorganization of the QED perturbative series such that the IR divergences are
summed to up infinite order, is realized at the spin-amplitude level for both real and
virtual IR divergences. This is contrast with the EEX which is based on the traditional
YFS theory, in which the isolation for the real IR-singularities is achieved for the
squared spin-summed spin amplitudes. The computation of the spin amplitudes is
finished with the help of the Kleiss and Stirling Spinor technique [52] (please read
Chapter Three for details). It is very interesting that the IR cancellation of the CEEX
occur for the integrated cross sections as usual even though the CEEX is formulated
completely in terms of the spin amplitudes. In this section, we shall introduce the
construction of the CEEX matrix element, the IR cancellation in the CEEX scheme

and the virtual and photonic correction for CEEX.

7.2.1 Master Formula

Let us define the Lorentz-invariant phase-space as

n

/dLipSn(P;plaPQ,-.- ,Dn) = / (27) 45( Zp,) 1+ 27T 32p (7.34)
=1

i=1

then we write the CEEX total cross section for the process

6_(pa) +6+(pb) — f(pc) +f(pd) +7(k31) +’7(k2) +e +’7(kn)7 n=20,1,2--- (735)
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with polarized beams and decays of unstable final fermions which are sensitive to

fermion spin polarizations as follows:

5 —

ﬂux Z / dL1p5n+2(pa + Db Pe; D, kla T kn)

X pglziEX(paapmpc,pda kla ) kn)a (736)

where, in the CMS (center of mass) flux(s) = 2s + O(m?),

p(CrlszX(paapbvpcapd; kl: Tty kn)

1 ~ )
:g eXp[Y(Q;pa, v 7pd @ Z Z Z é 6b0_>\ ara f\b>\b
: oi=%1 X\j,\j==%11,5,l,m=0

*

pk’lk'gk'n pk1k2kn I 13
x M) m) O Th

n

AO109 . ..0p, \o10y...0p
(7.37)
Assume that the s-chanel exchanges dominate and resonances are included, then

we can define the complete set of spin amplitudes for the n photon emission, in

O(a")cgex, r = 0,1,2; as follows,

9)?7(11) PR1R2
)\0'10'2...0'n
. pk;
(1) J
Piion ;X
n O
P J
{@z .
= > Hsm { 0 Ko [ +2 o }
pe{I,F}n i=1 A j=1 Sl

(7.38)
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) pk;
@
P X
T o) 5@ - 07
£
= 1= { 0 X |+ o
pell.Fyr i=1 A\ j=1 il
5@ phshi
2{pjo1} U
n Ao oy
+ Z eI }
1<j<nsn b 50

(7.39)

In order to simplify our expressions, we introduce a compact collective nota-
tion:
p PaPvPcPd

= (7.40)
A Aa A AcAd

for the fermion four-momenta ps, A = a,b,c,d (i.e., p1 = Pa, P2 = Dby @1 = Pe,
¢2 = pg) and helicities Ay, A = a,b,¢,d. For k =1,2,3, o are the Pauli matrices and
ag’“ = 0y, is the unit matrix. The components 6{, é5, where j,k = 1,2,3, are the
components of the conventional spin-polarization vectors of the incoming fermions,
defined in the GPS fermion rest frames (Plase read Appendix D for details). We
define ¢% = 1 in a nonstandard way (i.e., pa - €é4 = m., A = a,b). The polarimeter
vector he are similarly defined in th proper GPS rest frames of the final unstable
fermions (pc - he = my, C = ¢, d).

Next, we introduce and explain the notation for the IR integration limits for

the real photons in eqs. (7.36) and (7.37). The factor ©(Q) in eq. (7.36) defines
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the IR integration limits for all real photons. For a single photon, §2 is the domain
surrounding the IR divergences point k£ = 0, which is excluded from the MC phase-
space. In CEEX, €) is the same for all photons since there is no actual differnce
between ISR and FSR photons. We define a characteristic function O(£2, k) of the IR

domain 2 as

1 for k €€,
(0, k) = (7.41)

0 for k & .

The characteristic functions for the part of the phase-space include in the MC inte-
gration for a single real photon is ©(Q, k) = 1 — ©(£, k). Similarly, the characteristic
function for all real photons is as follows:

Hé Q, k). (7.42)
In the computation corresponding to the KKMC program we define €2 in a traditional
way with the photon-energy cut condition k® < Epin.
The YFS form factor [78] for © defined with the condition k° < Fp, is
Y (3 Das - - -, pa) =Q2Ya(Pas b) + QFYa(Pe, pa) + QeQsYa(pa, pe)

+ QleYQ(paapc) - QleYQ(pmpc) - QleYQ(pmpc)a

(7.43)
where

Yo(p, q) =2aB(Q, p, q) + 2aRB(Q, p, q)

__za_/d‘“”f ?_ayY
kp  kq

d*k i 2p — k 2q — k
2 _ 744
+2ai / (ka 2 g — k2) (7.44)

is given analytically in terms of dilogarithm functions.
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The coherent sum is taken over the set {p} = {I, F'} for all 2" partitions,
the single partition p is defined as a vector (g1, o, . .., ) Where p; = 1 for an ISR
photon and pr = F' for an FSR photon. The set of all partitions is explicitly written

as follows:
{p}y={,1,1,...,1),(F,1,1,....1),(I,FI,....I),....,(F,F,F,...,F)}.

The s-channel four-momentum in the resonant s-channel propagator is X, = p, +

Py — Zpi:[ kz

The soft amplitude factors 5[{;]"} ,w=1I,F, are defined as follows:

{1}y _ {I}(k’) _ _eerU<k7pa) + er0<k7pb)

=0 2kipa ‘ 2kipy
2,2 2
n|? e*Q: [ Pa )
; =— - 7.45
5[11 2 ( kipa Kipy ) ’ ( )
(F} _ A}y _ bo (K, pe) bo (K, pa)
AP QF ((pe pa ’ (7.46)
[l 2 kipc  kipa) ' '

by (k,p) = ﬁ% (7.47)

The simplest IR-finite B function Béo) is the Born spin amplitudee times a

kinematical factor

~ P P X?
(0) X | =» X | = (7.48)

p
Note that the Born spin amplitude ‘B ; X | is an essential block for building all
A

of the spin amplitudes. Applying the Feynman rules and the basic massive spinors

with the definite GPS helicities, the Born spin amplitudes for e™(p,) + e (py) —
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f(pe) + f(pa) are given by

p PaPvPcPd PbPa PePd
Bl x| =2 X | =3 (X)

I

A AaNpAcAg Y. AeAd
=B pa)ca) ( Z H Dial(GF ) caHp

B=~,Z B
= Y Bl (X

B=~,7Z
(Gi)[ba} E@(pbAb)Gguu<paa )\a)

(G?M) [ba] E@(pcAc)Gﬁuu(pda )\d)

B _ § B.e
Ge,u _’yﬂ WAy
A=+

1
Gl = Zwkgf’fa Wi = 5(1 + X5),
A==%

v 9"
Iy (X) = 7.49
5 () =% M2 +ilpX2 /M2’ (7.49)

where gf’f are the chiral coupling constants (A = + = R, L) of the vector boson
B = v,Z to the fermion f in units of the electric charge e. Usually, the "hook
function” Hp is trivial: H, = Hz = 1. And spinor products can be reorganized with
the help of Chisholm idenities:

T B.,e B,f

) B,e B.f
2 )\m*)\b[gxa g,,\aTAcAa ,\b,\dJﬂb\a g_ )\GUACAbUAaAd]

%[ba ea) (X)) = 2ie X2 — M2 + il X2/ My (7.50)
where

Trera = U(pe; Ac)t(pa, Aa) = S(Pe, My Acs Pas 0, Aa),

Ty, 5, = U(Dp, Ao)v(Pas Aa) = S (e, 0, = Ao, Pa, =M, —Aa),

Ulon, = @Pes A)v (o, =Xp) = S(pe, M, Acy 2o, 0, Ny,

Unirg = (o, —Aa)V(Das Ad) = S(P, 0, —Aa, Pas — Mg, —Aa). (7.51)
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7.2.2 IR Structure in CEEX

In this subsection, we discuss the mechanism of the IR-cancellation in the
CEEX scheme. Let us begin with the infinite-order perturbative expression for the
total cross section given by the standard quantum-mechanical expression of the type
“matrix element squared modulus times phase-space”:

1
() N~ 1 '
o _Z%n!/dm(pmtpmpc,pd,kl,...,kn)

2

pklkg Ce kn

> M, : (7.52)

AGise,0n =1k )\0'10'2 ...0p

A~ =

where dr, is the respective (nvy + 2f)-Lorentz-invariant phase-space, and M, are
the corresponding spin amplitudes. In order to simplify the discussion, we take the
unpolarized case without narrow resonances here.

According to the YFS theory [78], all virtual IR corrections can be relocated

into an exponential form factor order by order and in infinite order
M = explaBi(pa, Pos Des pa) 0. (7.53)

Since the convergence of the perturbative series is questionable, the equation above is
practically treated as a symbolic representation of the order-by-order relation, which

reads at O(a"),

r—n B r—l
1=0 ’

where the index [ is the number of loops in ML The M5 are not only free
of the virtual IR divergences, they are also universal: they are the same in every

perturbative order r. The formula above can be reformulated as follows:

r—n

mg) - Zm[é—Hﬂ - {exp[_aB4<pa7pbapcapd)]Mg)}|O(ar)7 (755)
=0
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where M/ has to be evaluated from the Feynman diagrams in at least O(a"). The

above treatments are exactly the same as in Chapter Six.

The YFS form factor By for e (p,) + e (py) = f(pe) + f(pa) + ny is

d*k 7
k2 —m2 +ie (27)

0 Bi(Pas Py pes 1) — / k) — e (7.56)

where

Jr = eQc[Jalk) — Jy(k)],

Jr = eQslJe(k) — Ju(k)],

. 2pl + k*
Bk = /
T5 (k) k2 + 2k - py + i€’ (7.57)

Using the identity (3, ZxJi)? = — > o) ZiZi(J; — J — k)? for 3 Z), = 0, where Zj, is
the charge of the particle with minus charge in the initial or final state repsectively,
we can rewritten B4 as the sum of the simpler dipole components. Note that the IR

singularities are regularized with a fictitious photon mass m.,.

B4(paapb7pcapd) :QEBZ(paapb) + Q?‘BZ(pcapb) + QleBQ<paapc)
+ QleBZ(pbapd) - QleB2<paapd) - QleBZ(pbapc)a
(7.58)

d*k i
k? —m?2 + ie (2m)3

Bps,p;) = / (oo k) — J(py, )] (7.59)

Next, we elaborate the isolation of the real IR divergences in the CEEX scheme,
which differs in essential details from the original YFS method [78] (please read Chap-
ter Six for details). The essential difference is that we do not square the amplitudes
immediately, and it is done numerically at a later stage. We use the results of the basic

analysis of the real IR divergences of Ref. [78]. The basic analysis of IR cancellations
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in Ref. [78] is done in terms of the currents

. 2p's
k) = —1L

= =a,b,c,d. 7.60
2pf . ]{?’ f a, v, ¢, ( )

The above currents are simply related to the s factors:

sl(k) = const X Qc(ju — ) - €-(B)

st (k) = const X Q;(je — ja) - € (B). (7.61)
Note that the whole structure of the real IR singularities is completely controlled by
the squares of the currents |j(k)|?, for j = j, — J» or j = j. — jq because only the
squares |j(k)[* are IR divergent and other contractions do not matter. Similarly, if we
express spin amplitudes in terms of s factors, only the squares |s]? are IR divergent
and not the interference terms.

The IR-divergent part of M is proportional to the products of n s factors

pl{fll{fg Ce kn “ P

mn ~ 60 7X S50, (k’l)ﬁUQ (kg) . 50n<kn>7 (762)
AO109 . ..0p, A

5, (1) = (7 4 6l1) (7.63)

Considering there are also non-leading IR singularities, the whole real-IR structure is

revealed in the following decomposition:

M) (ky, ko, ks, .. k)

=00 [ [ s(ks) +Z@(’%)H5(/€s) + D Balky k) T (ko)

s#£q J1>j2 s#J1,J2
+ Z BQ(kjukjmkas) H S(ks)—l—"'
J1>j2>73 57J1,J2,J3
+ Zanl(kla R kjfl, kj+1, P kn),‘S(k]) + Bn(kla k2, kg, R kn)
j=1

(7.64)
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where the functions BZ are IR free and include finite loop corrections to infinite order.
The decomposition of eq. (7.64) also has the order-by-order representation and it is

written as follows:

M) (ky kg, ks, ooy k)

=B [ stks) + DB ) [ shs) + D B sy ki) [ s(ks)

s=1 j=1 s7£q J1>72 771,52
3+l
+ E 52 k.h’kJZ?k ) H 5(k8)+"'
J1>j42>33 57J1,J2,J3

+Zﬁ(n ) k‘1,...,kij—1,/€j+17~-akn)5(kj>‘f’Bq(@nH)(klvk?vki%a'”?kn)
1+l Z ﬂQQ—H) kh?k )

~11=0 {%+z@ SR

N z”: B (k. Ky, K, )+2":5n”11“ (k;l,...,kj_l,kj+1,...,kn)

J1<j2

J1<j2<73 5<kj1 )5<kj2)5<k33) =1 Hsyéj 5(]{55)
AY(LTZ—I—Z)(]{U k?g, kg, e ]{Zn) } (7 65>
Hss(ks)

at O(a”), r = n + [. The functions B,(L”H)(kl,kg,kg, ..., k) include up to I-loop
corrections. The 3 nH)(k‘l, ko, ks, ..., ky,) functions are not only completely IR finite,
but are universal as well. This feature is essential for reversing the relations of eq.

(7.65). From this feature, we could calculate B from M) directly from the
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Feynman rules order-by-order:
Bé” _ E)ﬁél)
3 (k) = M (k) — Vs (),
38 (ky, k) = M (ky, ko) — B0 (ky)s(ka) — BTV (Ra)s (k)
A(1)
— B (k)5 (k2),
B (ky, ko, kg) = M (ky, ko, ks) — BT (ky, ko )s (k) — B (v, s )5 (ko)
— B8 (Ko, kg)s (k) — B (ka)s(ka)s(ks) — B (ka)s(kr)s(ks)

30 (ks)s (K )s(ka) — B s(k1)s(ka)s(ks), . ..,

37(1”+l)<k17 e 7kn)

—gﬁ(n—’_l Zﬁ(n 1+l) (k1. ki1, kjia, .o kn)s(k;)
n—2 .
_ Z nn__22+l)(k1, vk Ry kg1 Ky, - )8 (R )s(Kg,) —
J1<j2
B ks ki) [T sk =3B k) [T s(k) = 557 T (ko).
Jj1<j2 s#£J1.52 J=1 7] s=1

(7.66)

The above set of equations is a recursive rule, i.e., the higher-order B 's are built in
terms of the lower-order ones. In practical calculations one does not go to the infinite
order but stops at some O(a”) and the above set of equations is truncated for 3} (ntl)

by the requirement n 4+ [ < r. The above truncation is valid since we omit higher

order B ’s which are IR finite. As a result of the fixed-order truncation, eq. (7.64)
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reads as follows

M) (y, ke, ks,

~[Jst

s=1

)

ki), k
32 )5<k33)

Z 53 J1=

J1<j2 <Js

The formula above represents the general finite-order O(

case only the first term survives, and in the O(a?

N1<ge<..<jr

{@Jr Zﬁl i) Zﬁg gl, )

ki) Ky,

‘s(kJ's)

BB ( J1o
5(k11)5(k12) o

D

}.
(7.67)

Q") eyp case. Forr =0

) case there are three terms. The

CEEX spin amplitudes in eq. (7.36) represent the case of r = 0,1, 2.

Let us give an explicit example: in the recurisve calculations of B in O(a?),

one needs to calculate 50 , 1 =0,1,2,3; 511+l) [=0,1,2; 5(2+l [ =0,1; and ng).

Therefore, according to eq. (7.66), we have

o p p
0 I Y e IR
Y A
pk‘l pkl ~
§1+l) :mgl-&-l) . B(()l) S5, (k;l), [ = 0,1,
Aoy Aoy A
. pkiko pk1ks A pki
o o S|t
o109 AO109 Aoy
. Pk . p
- Y 50, (1) — 55 So1 (K1), (2),
)\02 )‘

(7.68)

where the amplitude 9 is given by eq. (7.55).
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At fixed-order O(a")cggx, we have

= 1
IZa/dTn(pl + p2i 3 pas ko k)
n=0

x exp[2aRB4(pa. - - -, pa)] Z\zmr ki, ko, .. kn )} , (7.69)

spm

where MY is given by eq. (7.67) and we factorize out the s factors

n

1 2
1 > M (ko ks, k)| = daer Ko, ks, k) [ sk (7.70)

spin s=1

where

do (ki ko, ks, . Ky)
(7")
r) 6 ] BQ ]17 63 kjukaak )
Z Z Z )5(kjy )5 (k)

J1<j2<Js3
BT (117 327"'7kjr>

5<kJ1)5<kJ2) - 's(kj3>

Apparently the function d,,(ki, ko, ks, ..., ky) is IR finite and we can set m, — 0 in

n

+...4+
N1<jge<..<jr

(7.71)

it. Besides 2R By the IR regulator m, remainsin all s(k;) factors and in the lower

3k

phase-space boundary of all real photons in | &;5.

The IF finiteness of above total cross section can be checked by partial differ-

entiation with respect to the photon mass

0
8m7 {20[%34}

xS O (K znlz

spin

Z / dTn P; y P35 P4, klv R kn) exp(2a%B4)

am7

X /dTn—l(P;p3ap4ak17"' 7ks—1ak5+17"' 7kn)

X exp(20RB;) a;’; { / (2;?)% }H (k

X dn(kiy Koy Ky o). (7.72)
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Note that

37?%{/ 6;3128 ls(ksﬂz}
is a d-like measure concentrated at ks = 0 and therefore we may use the limit
dp(kyy oo ks ooy ky) = do(kyy ko, o k1,0, kin, oy Ky)
=dy1(k1, ko, ks 1, ks, k).
With the help of the limit above, we notice that all of the terms in the )., are

identical so that we could sum them up after formally renaming the photon integration

variables in the second in integral and rewrite eq. (7.72) in the following way:

a (o)
o =3 [ dr(Pipsputic. )
n=>0

om,

X exp(2a?RB4)% Z ]imﬁf)(kl, ko, k3, . .. kn)‘z

spin
8 d3ks 2

0, (7.73)

where the indepence of m, of the sum of the one-photon real and virtual integrals is
because of the cancellation of the IR singularities in the YFS theory.

We have introduced the general notation for the IR domain  in eq. (7.42).
Now it is time to exclude the €2 domain from the real photon phase space. Splitting

the real photon integration phase space, the total cross section (7.69) is rewritten as

5 :Z%{/%M@)F@(Q, kj)+/#%ls(kj)!29(97kj)}

n=0

x /dm (P > k‘j;pg,p4> exp(2aRBy)dy (k1, ko, - - -, k). (7.74)

Jj=1
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After expanding the binomial product into 2" terms we consider the sum of all (711) =n

terms in which one photon is in €2 and the other ones are not:

d°k;
|Z/ 3%0 ko)|*O(9, k) H/ 32k0|5 )20, k;)

dT() ( — Z k’j,p3,p4> exp(2a%B4)dn(k1, k’Q, Ty ks—l, 0, k:s—&—lv ey kn)

\

=1
1 (n d? )
:a<1) /W|5(k)| G(Qak)/dTn—l(P;p3ap4aklak27"-akn—l)
n=1
x | 1 O k)|s(kj)|Pdn1 (k1 kay ..o kna). (7.75)
7j=1

A similar summation is taken for the ( ) terms where s photons are in the IR domain

), leading to

e :i% Sno (Z) (/%Is(@l@(ﬂ, k:))s

n=0

< [ dn(Pimspe b ) [TUs() ()
j=1
X exp(20RBy)dy_s(k1, ko, .o kn_s)
1 d3k; )
:nzzoa dTn<P7p37p47klak277kn)eXp ()W| ( J)| G(ka])

x exp[20RBy(p1, . .., pa) H{|5 N2O(Q, k) Ydn (K, ko, k). (7.76)

The additional overall exponential factor contains
d*k;

20Bilprm1) = [ 5yls() PO, k)

=2a[Q*Ba(p1, p2) + Q?éz(p:a,m) +Q.QsBa(p1,p3)
+ Qe@f§2(p27p4) - Qleéz(Pbm) - Qle§2(p2,p3)]7

(7.77)
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and

Balpna) =~ [ s @B — 50

A3k -1 /p q 2
—OVk)—|———] . )
/ 10 O( ’k)87r2 (kp kq) (7.78)

Furthermore, the YFS form factor is

Y(Q7p1> T 7p4> = 2@&4(]71, v 7p4) =+ 2Q§R§4<pl> v 7p4)' (779)

In pursue of the completeness of the discussion, let us check the IR cancella-

tions in the total cross section with {2 as the new regulator:

o0 1 n )
M _ N L . . |
o0 = ;n!/dm(P,pg,m,kl,kg,...,kn)jl:[lﬂs(w (0, )}
X exp [2@54(9;]917 ooy D4) + 2aRBy(py, - . ,p4)] dy(ky, ks ..o k).
(7.80)

Now IR finiteness of the total cross section is converted into the independence of the

domain §2

0

() R 1
507 0. (7.81)

This can be proved by the same argument for the photon mass m,. Considering

O — QO =Q+6Q, that is ' = Q —6Q and ' can be either larger or smaller than (2,
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the only requirement is that both are very small. Consequently we have

d*k;

o = Zn.H{ | o 32k0|5< BIPO. k) + [ PRET j>|2@<m',kj>}
< [ dn (P =3 kv ) expl2aBalSipr... pi) + 20RBu(pi, .. )

Xdp(k1, ko, ... ky)
_ Z _Z( ){/%| (k:)|2@(5Q,/f)}s/dTn_s(P;pg,p4,k1,...,kn—s)

X H ‘5 )exp[QaB4(Q P >p4) + 2058%34(1917 ce 7P4)]

an,SUﬁ, kQ, P knfs)

foj ! /d (P k k) e /—dgk |5(k)|?0(5Q, k)
- — n yP3, P4, K1y - -5 R ) €X )

ard n| T D3, P4, K1 p (27T)32k0

+20B4(p1 -, pa) + 20RBu(py, ..., pa) } H k) PQUSY k;) )

an(kl, ]{32, c ,k’n), (782)

7.2.3 Narrow Neutral Resonance in CEEX

We have introduced the general mechanism of the IR-cancellation in the CEEX
scheme in the last subsection. In this subsection, we will introduce the possible
formulation of CEEX. There are three possible versions of CEEX so far. We will
mainly describe the the version of the resonant Born. These three possible verions
are as follows.

(A) The version the non-resonant Born without partitions:

pkiks ... ky, n

m = [ lsZ. (ki) + sk (k:)]B pajjear (7.83)

AO10y ... 0y i=1
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(B) The version for the non-resonant Born with partitions:

pklkg e kn
Y = > Hﬁ{“ B paljed) (Xp)- (7.84)

AO109 ...0p pe{l,F}n i=1

(C) The version for the resonant Born:

kiks ... k n 2
e PR1R2 n _ Z {“}(k ) X
" \ W %o (p3 + p4)
0109 ...0y, pe{l,F}ni=1
Z sBba][cd] exp[aAB4 (Xp)]- (7.85)
_'y 7

We define the additional form factor for the Z resonance for case (C):

TR TAR))" ( (X)i;ff 2M2 - 1> . (7.86)

where M? = M2 — iMzT'z. The currents J* are given by eq. (7.57), while for the

d*k l
k? —m2 +ie (2m)

aABZ(X) = /

nonresonat part AB/(X) = 0.

Let us make a brief comparison among these three versions. The case (B) will
become case (A) if we neglect the partition dependence of the four momenetum in
the Born amplitude: Bpq)icq (Xp) = Bipajeq)(P), where P = p, + pp or P = p. + pg
or any other which is independent of the momentum of the individual photon. This

feature is due to

n

[T (k) + s (k) = > Hs{@} (7.87)

i=1 pe{I,F} i=1

Obviously case (C) is efficient for the resonant process while cases (A) and (B) are only
suitable for nonresonant process. If (A) does not sum the higher orders, it has a clear
advantage over (B), which is simpler computer code and less consumption of CPU
time because of no summation over partition. However, (B) sums up the LL higher
orders more efficiently than (A). Considering our aim is to cover the resonant process,

it is natural to utilize (B) for the nonresonant background of the spin amplitudes.
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Once the summation over partitions happens, it is also easy to apply the case (B) for
the nonresonant background. In other words, if (C) is carried out, then (B) comes
automatically.

After comparing these three versions, we focus on the case (C) now because
it becomes (B) for nonresonant background component. For the narrow neutral reso-
nance, the photons emitted during the productiona dn decay processes are separated
by a long time interval; they are therefore totally independent. In the perturbative
QED, this fact is reflected in a certain class of cancellations between ISR and FSR pho-
ton on the one hand and the virtual and real corrections on the other hand. Because
of the presence of narrow resonances, it is not sufficient to sum up the real emissions
coherently, taking the energy shift in the resonance propagator into account [108,109].
It is also necessary to sum the virtual emission up to infinite order—this is why the
resonance form factor exp(B7) is include in eq. (7.85). Next we will derive eq. (7.86)
and show that the IFI cancellations do work to infinite order.

Let us rewrite the YFS function in a modified notation

d*k i
By(Pas - pa) = _ S(k), 7.88
07 4(p pd) / k2 — m?Y + e (271')3 ( ) ( )

where
Si(k) = [Ji(k)*, Sp(k) = [Tr(k)[*,  Siu(k) = —2R[Jr(k) - Jp (k)] (7.89)

Due to the presence of the narrow resonance, the YFS factorization of the virtual
IR contribution must take into account the dependence of the scalar part of the

resonance propagator on photon energies of order I'. The relevant integrals with n
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virtual photons is given by

]_(PQ—MQ)EO%ZH/ %%2 25 (k)P2 1M2, (7.90)

©EP, 1=0

where M? = M? —iMT, and P, is a set of all 3" partitions (p1, po,..., pn) With
©;=1F, Int,and P, = P—) o k; includes only the momenta of the photons in Sry.
The (P? — M?) factor is conventional, making the integral dimensionless. We will
show that the integral above factorizes into the conventional YFS form factor and

the additional non-IR factor due to the resonance R = Z:
I = explaB{(m,,s, M)] = explaBy(m,, s) + aAB (s, M)]. (7.91)

We aim to find the analytical expression of the additional function ABE. In the

present computation, we adopt the following approximate formula [108,109],

MQ—S)_ 1 M?—s

JVE —éfy]ntlog< JVE ) (7.92)

aABR(s") = —2Q. Qf—log ( ) log <
In the following, we will derive the equation above and show explicitly that the above
virtual interference part of the form factor cancels exactly with the corresponding
real interference contributions.
Becaue the soft virtual photons entering into S; and Sr in eq. (7.90) do not

enter the resonance propagator, we factorize and sum up the contributions with S

and Sy
xn;(] _ZH/ 2W3k2 g Sk )(P z%lk) o
Eexp(aBi—i—ozBF)i%g / (2%3%511-”(@) (P—Z?_ll BT
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Here we neglect the quadratic terms in the photon energies O(k;k;)

1 1
(P_ > kj) a2 PEP=2PY0 k- M?
1 1
o | n 2Pk]
P2 —M?1 — Sty i

n

1 1
:pz_Mznl 2Pk;

j=1 P2 2 M2
M? H — (7.94)
]21
and this gives us
7 d*k P? — M2
= By +aB | i
exp(aBy + aB) exp (/ (2m)3 k2 —m2 + i) o M2)
= exp[aBy(m,) + aAB(T)], (7.95)
where
d'k P2 — i
ABE(T L Sk 1), 7.96
a8(0) = [ G T (ogrmgm 1) 0

As k — 0 the emission amplitude can be expressed as

oo (A) o (5)])

where €; o are constants independent of k, so that

<1,

2Pk;
P2 _ Mz

namely, photon energy is below the resonance width. This constraint is completely
analogous to the usual YFS expansion into an IR-singular part and the rest [78]. The
approach we choose here is based on the fact that the virtual and real contributions
from the IFI for photons with E, > I' do cancel as a result of the time separation
between the production and decay. We shall show the cancellation mechanism is valid

next.
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Let us check analytically the real multiphoton emission contribtuion for the
IFI. We began with the integral in which the total photon energy K = 2?21 k; is
kept below Epax = Umaxy/s, where I' < . < 4/s:

"—Zn'/ Mg | & I1: i sz Pl Bl ()

o1...0n |pe{l,F}" j=1

(=5)

- g o0}
DI |t D VR I | C iy

o1..0n p,p €{I,F}" j=1

. explaBE(X,)] (exp[anf(X@)])*

X2 - M? X2 — M?
KO<wv/s oy 2N o re(12 F2 IR FIYn ;=12 j=F2

~ exp[aBR(P K[ — K1F>]
251 251
x H i H e (P —K; — Kip)? — M?

pj=IF pj=FI
exp[ozBf(P — K[ — KF[)] ) (7 97)
(P—K;—Kp))2— M2 )’ '
where

~ I 2 ~

mm%m:ZEf,wW&W:Z%},
{F} {1}
2(2m)° S (k Zsm (%1 ) Zsm ( ) )

K]Q = Z kj, KF2 = Z kf KIF_ Z k KFI Z kj’

p;=I? p;=IF o, =FI
K=Kp+Kp+ Kip+ Kpr. (7.98)

The product of two sums, each over 2" partitions p, ¢’ € {I, F'}", is now replaced by
the single sum over 4™ partitions o € {I% F? IF, FI}", where the IF, FI represent

the interference terms. And the summation over the number of the photons can be
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reorganized as follows:

1 ki,
Umam Z nl /H 2]430 25] H 2]{30 2SF< )

n1=0 =1

rr ki, > 1 ki, =~
X H 32SInt(ki3) H —42SInt(ki4)

exp[aB4 (P — K[[ — K[F)] exp[ozBf(P — K][ — K1F>] -
(P_KII_KIF)2_M2 (P_KII_KIF)2_M2

X O(Epmaz — K?I - K%F - K?F - K%I) (7.99)

where K]2 = Zil kilv KF2 = Zi2 ]{?Z’2, K[F = Zi?) ki3 and KF[ = ZM k’u. The
sums over the pure initial- and final-state contributions, and over the interference
contributions are well factorized and ready to be performed analytically. First, we

integrate and sum up contributions from the very soft photons below €y/s,

Emg,z Emaz
U(Umam) = /0 dE//O 5<El — E[ — EF — E[nt)dE[dEFdE[FdEF[

1 ” ki, o~ ~ 0
X nzo - 1":[1 /k T L2951 (ki, ) exp[2aB; (¢E) + 2aRB;)6 (E, — Z k;)
=1 B Pl ~ ~ 0
x> —11 72255 (ki,) exp[2aBr(eE) + 20RByld | Er — > K,
na—0 2" 5,24 k), >cE 2ki2 ia

1 15 ki, -~ exp[aABE(P — K1 — Krr))
x> — 295 (ki -
Z H/ko E 1(kis) (P— K — Kip)? — M?

X exp[2a§1m(eE) + 2aR By (E[nt — Z k:%)

exp[@ABF(P — K1 — Kip)]\~
LT[ s *
[ KO e 2k (P— K — Kip)? — M?

n40

x exp[20: B (€E) + 2aR By exp(2aRABF)6 (Elm — Z k%) ) (7.100)
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where F = */75 The integration over photon momenta gives

0 (Vmaz) :/ dvd(v — vy — vp — Vrp — Upr)
0
X /dv;F(’yI)v}”_l exp[20B;(E) + 20R B;]

X /dUFF(yp)v'}F_l exp[2aBp(E) + 2aR By

Vin 1 % -1
X /dUIFF< 2t) Q’anw[;m
exp{&ABf[s(l — U[)(l — ’UFI)]}
8(1 — U[)(l — UF[> — M2

Vine\ 1 Lye—1 ((exp{aABR[s(1 —v)(1 —vp)]})
8 /d”“F< 2 )27’”t”F1 ( s(1—v7)(1 — vpy) — M2

) expla B (E) + aR B

X exp[aélnt(E) + aR B, (7.101)

which is explicitly free of IR singularities.
The main problem is whether the log (MLZ> terms in the interference subinte-

gral

2
" exp{aABE[s' (1 —vip)]}
Sl(l—U[F) _MZ .

VUmax —V] —VF —VFJI
]’ _% d F fyIF 1 %'YIni*l
Int = VIF - §’YIFUI 7
0

(7.102)

can be cancelled perfectly. We ignore the term exp[aé;nt(E) + aRBnu), because
it does not depend on the resonance parameters. The bulk of the integral comes
from the neighborhood of v;r = 0 and the integrad is ~ % at large v because of the
resonance. Thus we can extend the integration limit to fooo dvy,:. We could apply

the standard techniques of the complex functions to evaluate the integral. We first
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reformulate the integral as an integral over the discontinuity C; along the real axis

1

i 80 (5Vrnt)

I =F (5 ) explaa B (s)
1 1 1
X dz=yp(—2)2"me ™ — 7.103
/01 s (=2)? s —=M? —s'z ( )
because the contour can be closed with big circle, the integral is given by the residue

72
atzzl—]\f—,:

s - MQ o ’Ylnt_l 1
I = F (%) exp[ozABf(s')] 2 Vnt ( i )

Sin(5Yne) s s
1 VInt 5V Int N
= F () =2 ABJ (s
M2 — s 2 Sin(%fﬂnt) exp[a 4 (8 )] s
1
= g7z 11 T O0me)], (7.104)

where we use the result below

aABR(s) = —ZQle% log (t) log (M2 _ Sl)

u M?

1 M? —§

Therefore we have proved the full cancellation of the dependence on the resonance
parameters for the integrated cross section.

As we have shown before, the B—functions can be derived with the recursive
relation of eq. (7.66). The only additional work here is we must keep track of the

type of the external real photon (ISR or FSR) and of the total photon momentum
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after emission of the ISR photons:

(1)
Py

A(1+1)

A pkiky
(2) .
BQ{wth} )
)\0'10'2

€

ol ?
=M, P, 1=01,2,
A
pky
)\0'1
A p {1}
_50 ,P—kl 50.1 (kl), l:O,l
A
pky
(1+17) X
—i)ﬁl{F} P
/\0'1
A p
e P siHk),  1=0,1
A
pkiks
_an(2) .
_m2{w1,w2} ) w
)\0'10'2
A k1
- By X | s (k)
)\0'1
. pky
- B X | sb (k)
/\0'1
2 [ PR ford (1. yalen}
—60 ,Xw 5011 (l{?1>5022 (k?g), (7106)
)\0'1

where X, = P — Zwi:l ki, P = pq + pe.
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The amplitude 9 in eq. (7.106) is given actually by eq. (7.55) with the form

factor including the resonance part:

m(r{)R} Pl kn - X,
)\0‘1 cee O,
pky - ky,
:{exp[—aB4 - aABf(Xw)]MT(l?ﬁ s X } (a”).
o

Ao'l O,
(7.107)

As we see the type R = =, Z of the resonance form factor BE must be adjusted to

the type of the component in ME.

7.2.4  Virtual Corrections, No Photons
So far we have only obtained the formal expressions of B—functions by recursive
relations. We will accumulate the actual formulas for the S-functions contributing to
the CEEX amplitudes with the case of no real photons and up to two virtual photons.
Let us begin with the case of the O(a!) spin amplitudes with one virtual and
zero real photons coming from the Feynman diagrams, which contribute the first order
Bél). The spin amplitudes are given by

p p
MP LT X =B X | 1+ QPR (s, me, my)][1 + Q3Fi(s,my, my)]
A A

p
+MU T x|, (7.108)
A

where F) is the standard electric form factor regularized with a photon mass. We
neglect the magnetic form factor Fy temporarily, It will be restored in the future. In

I} we keep the exact final fermion mass.
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In the present work we adopt the spin amplitudes for y-y adn 7-Z boxes in
m2
the small mass approximation m; — 0, =L — 0, accodring to Refs. [110,111],
B,e B, B,e B,
(1) . 2 Ira g*)\]:‘TAc)\aT//\b)\d + 9, gAan,/\C,\bU/\a/\d
Mpox =2ic Z X2
X2 — M% + ZFM_B

B=~,Z
(0 _
X 5Aa,—xb5xc7—xd;Qle[%,AchDP(M%, My, s,t,u)
- 6>\a7—>\chDP<Mévm’yaSvu)t)]) (7109)

where

_ t m2 t MQ_S
M t) =1 — 1 —2L ) —21 — 11 B
Fomn (0158 =t (3 o () - 21w (3 s (1)
M?+u M? +¢
M} M}

N (ME —s)(u—t— M) {log (—?t) log (Mg— 5>

u2
M3+t M3 —
—|—Li2( 5T )-Lz'Q(B__zS)}
MB MB

M2 — 5)? M — M? - —t
L (Mg —s) log< 5 s>+ Slog(—),

us M3 u M3
(7.110)
M2 = M2 — iMyTy, ]\_43 = m?,, and the function fgpp is from Ref. [111]. The
standard Mandelstam variables s, ¢ and u are defined as usual: s = (p, + pp)?,
t = (po — pe)? and u = (p, — pg)?. Since in the rest of the calculation we do not

2
use % — 0, we intend to replace the above box spin amplitudes with the finit mass
result according to Ref [112].

Using eq. (7.107) we have

~ P D
B X =B X B S )]+ R, | X

ox

A A A
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where

5‘(/13:15(8) - Q§F1<Svm€7m’7) - anB2<pa7pb7m’Y) - Qi;ﬁfje
al-
5837£(S> - Q?F&(S’mf? m’)’) - QzaBQ(pcvpda m’V) - Q?;iLf
_ s . 3 s .
Le:log <—2> —|—Z7T—1, Lf:log <_2> +Z7T—1 (7112>
me mf

The IR substraction in ./\/11(313X using eq. (7.107) results in the IR-finite Rpoy.

The above substraction is equivalent to the following substitution:
fBDP(Méa My, S, ta U) — fBDP(M27 my, S, t? U) - f[R(m’yy ta U), (7113)

where

2 2
fIR(m'yatau) :;BQ(pmpcam'y) - ;BQ(paapdam’y)

“log (%) log ( Z%) + %log (%) , (7.114)

and the additional resonance factor exp[—aABZ(s)] in eq. (7.107) includes the addi-

tional substraction in teh v-7Z box part:
fBDp(S, t, U) — fB]:)p(S7 t, u) — O[ABZLZ(S) (7115)
Our O(a?) expressions for B((]?) are still incomplete because we neglected some
trivial transposition of the diagrams among the second-order vertex diagrams. By eq.
(7.107) we have

R p p p
GOl T sx =8| X |L+eineLl e+ R, | x|,
A A A

(7.116)

It the present calculation we omit the two-loop double box contribution in Rggx. In
fact we keep only the first-order box contribution Rggw in our incomplete O(a?)-type

matrix element. Note that the lack of the above contribution will not undermine the
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validity of our approach because what we omit is IR finite. And since the contribution
we neglect is expected to be numerically small, of O(a?L'), our overall physical

precision is still reliable.

Accoring to Refs. [106,113,114], we have the O(a?) corrections to the electric

form factor as follows:

2)e l)e a\? I_Jg - 3 3 3
onsom) =)+ (2) [ v k(5 - G 56
T2
2)f f ) 2 Lf — 3 3 3
o somp) =0+ (2) | L4 L (5 - G 5 ) |

(7.117)

Next, let us discuss the electroweak corrections in CEEX. In the absence of

Electroweak corrections, the coupling constants of two neutral boson v and Z are

defined conventionally as

GfJ = g\%f - )\g,%fa G’)ch = g\%ﬁ A==+ = R7 L7

W =Qe=-1, gv;=Q; ¢gy*=0, g),;=0,
ze 23 —AQcsin?6y 5, 2T} —A4Q;sin® by
v 16sin? Oy cos? By~ 7V 16 sin? Oy cos? Oy

2773 Zf 2T}
16 sin? Oy cos? Oy’ I

Z7e —
ga =

~ 16sin? Oy cos? Oy (7.118)
where T’ ;? is the isospin of the left-handed component of the fermion.

Electroweak corrections in CEEX are implemented using DIZET package,
which is a part of the ZFITTER semi-analytical program. The actual execution of

the electroweak corrections goes as follows: the v and Z propagators are multiplied
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by the corresponding two scalar form factors due to vacuum polarizations:

1
2 —1L,°

Y

H,— H, X

G, M2
OéQEDS\/ﬁW

Additionally the vector coupling constants of Z boson are multiplied by extra form

H; — Hy x 16sin® Oy cos® Oy PEW. (7.119)

factors

Ze 2T63 — 4Q. sin” Oy N 2T§’ — 4Q, sin” Ow Frw (s)

Vo 16sin? Oy cos? Oy 16 sin? Oy cos? Oy ’
T 2T — 4Q; sin® Oy . 2T% — 4Q sin® Oy Fiyy (s) (7120)
v 16 sin? Oy cos? Oy 16 sin? Oy cos? Oy ’

where the electroweak form factors Fiy,(s) and FL, (s) are given by DIZET library
and they correspond to electroweak vertex corrections.

The electroweak box diagrams need a more complicated treatment. In the
Born spin amplitudes two products of the coupling constants are given by

Ze Z, Z.e Z.e Z, Z,
9 9_,\f = (9v"° — \ga )(gvf +)‘9Af>7

9 a0T = (90 = N7 (g — NgTT). (7.121)

Therefore the doubly-vector component arrives at

gZegtd = ATPT? — 8T63QfF£W(S) — 8TFQcF iy (s) + 16Q?F§€V(57 t)
VIV (16 sin? Oy cos? Oy )2 ’

(7.122)

where the new form factor F' E’{V(s, t) corresponds to electroweak box diagrams and is

angle-dependent.

7.2.5 One Real Photon
Next let us discuss of the ,5’1 tensors corresponding to the emission of a single
real photon with the tree-level case (zero virtual photons). We start with O(a') split

amplitude fro the single bremsstrahlung (including ISR and FSR).
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The first-order, one-photon, ISR matrix element from the Feynman diagrams

18

pky
M
/\0'1
:eQeﬁ(pb /\b)M{I}wﬁé* (kl)u<pa >\a)
’ —Qk?lpa g1 ’
e P Tm Ak
+ eQJ)(pb, Ab)%al (kl)%M{I}u(]oa, >\a>7
- 1Pa
(7.123)
where
My =ie* Y I(X)GE(GF)ea (7.124)

B=~,7Z

is the annihilation scattering spinor matrix, including the final-state spinors. We split
the above formula into the soft IR parts proportional to (p+m) and the non-IR parts

proportional to ;.

a C a C

ISR diagrams.
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Then we have, using completeness relation (D.5) in the Appenix (D),

pk1 eQ. PbPa
MI{I} o 2k1pa
01 P /\bpa
eQ DPok1Ps
e 2
1Pa i AbO10b
lepb Ao
- [cd]
2k1py . Ao

paklpa

Pa01 /\a

PovPa

,Ob)\a
- [cd]

klklpa

pal)\a

klpa
(7.125)

PAa
led]

The summation in the first two terms gets canceled by the diagonality property of U

and V and leads to

k1
Min =5§f}(k1)% + 7
)\0'1 A
pky GQe ok
" lepb Z ®
Aoy Abp
eQe Z pukiky
- — %4
2k1py . Norp
boy, (K1, Pa
st (k) = — eQe—( 1. Po) + eQ.

2k1pa

ba1 (khpb)

pky

k1kip,

po—l)\a

klpa

PAa
[ed]

7.126
2k1py ( )

The soft part is now separated and the remaining non-IR part for CEEX is obtained.
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b d b d
1
vz vz 1
a c a c
FSR diagrams.

The case of the final-state, one-real-photon emission can be analyzed in a

analogous way. The first-order FSR, one-photon, matrix element reads

Pk , +m+§
Migry =eQ ;U (pe, Ac)ﬁlgl(kfl);’%M{F}U(pd, Ad)
/\0-1 1Pe
_ +m — k .
+ eQ ru(pe, )\C)M{F}—pd o - fo, (k1 )v(pa; Aa),  (7.127)
1Pd
where
Mpy =ie* Y T (X)(GP)paGY, (7.128)

B=~,7Z

is the annihilation scattering spinor matrix, including the initial spinors. Analogously,

the expansion into soft and non-IR parts for the FSR spin amplitudes is obtained:

pk1 p ki
Mimy =" (k))B +r{r ,
. pk1 . Qs . pekiky . kipq
2k1pe “
)\0'1 1P P )\co.lp P)\d
peka kikipa
2€/<;Qf Z pa] v )
1Pd Aep po1 A
bo, (K1, pe) bo, (K1, pa)
{F} _ 1\, 1 ’
s (k) =—e + —_— 7.129
1 ( 1) Qf le c Q lepd ( )
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For the discussion of the remaining non-IR terms, it is useful to introduce a

compact tensor nontation:

prkik; DbPa DePd

! = U[fﬂ"j], EB y (7130)
Afoioy AaAb AeAd
Pakik; kikipo

a1 Vir i) = ) v : (7.131)
oi=% Aa0i0; TNy

With the help of the above notation, the complete O(a!) spin amplitudes for
the one-photon ISR+FSR with explicit split into IR and non-IR parts, and ISR and
FSR parts reads

pkl pkl (1) pkl

oy :gﬁgl{)l} (P — k1) + 9 ey (P)
Ao Ao Ao
_.n ph
A Aoy
p pky
+50'B P | +7p P, (7.132)
A )\0'1
where
P ] Qe (X)U e B rae (X)
T N = /e Nal — =5 / 'ae
I ; Sp. b1/ cd] [1'1d] ST 611D (17 acd]
)\0'1
Pk e e
T ; X :&U[cll’}%[bal’d] (X) - &%[bacl’] (X)Vira- (7.133)
01

In the lowest order, the Born spin amplitudes B are defined in eq. (7.50).
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With the help of the O(a!) variant of eq. (7.106) we are now ready to obtain

N pky
Bl{[} ;P — Kk =r{n ;P —k ’
Aoy Aoy
-y [ PR B pka
ﬂl{p} ; P =T{F} ; P
)\0’1 )\01
c ki)? p
+<<p +pd+;> —1)% x| (7.134)
(pc + pd)

A

The total four-momentum in the resonance propagator X is uniquely define as X =
P — kq in the case of ISR and X = P in the case of FSR.

In order to obtain the 5’9), we have to deal with the non-trivial case of the
simultaneous emission of virtual and real photons. Therefore it is instructive to write

the formal definition of BF) in a particular case:

pk1 Pk
m? X, | = {exp[—aB4 - aABf(Xw)WﬁL}} X || (@),
)\Ul )\01 0
w=IF, R=n~,2, (7.135)
- pk1 pk1 o p
By | Pk | =y | Pk | sV | TPk
Aoy Aoy A
R pka pka N p
5@} P =k :sz{)F} P | = st 2| (7.136)
Ao Aoy A

For this moment, we have the amplitudes corresponding to vertexlike diagrams and

we miss the diagrams of the ”5-box” type. More precisely, after applying the IR
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virtual substraction in eq. (7.135) we expand in the number of loops,

(2) pkl pkl 9 (1] pkl
My ; X ml{w} X |+ QI ; X
Aoq o1 Aoy
+ anml{w} FF s X |+ Q@M Ly poxs ; X
)\0'1 )\0'1
(7.137)

In the above formula the first term corresponds the tree-level single bremsstrahlung,
the next two terms correspond to the vertexlike diagrams, and the last one represents

the 75-box”-type diagrams. The ”5-box” term is given by

) pky pky
61{w},Box5 ;X | =aQe Qfml{w} Box5 ; X
)\0'1 )\0’1
- 5{I}’R’Box g ; X - _5[1] }RBOX g ) X
A A

(7.138)

As we see, the trivial IR part is proportional to the ordinary box contribution men-

tioned before.

From the pure "vertexlike” diagrams for one real ISR photon we have the

following O(Q*a?) result:

. k1 pk1 2
9 1e 2)e ~
55{)1} X | = X |1+ 5‘(/2”(3) + pwﬁ(sa ay, B1)]
Aoy Aoy

p
X [L4+0ph +B | X | s kel (s,6,8)  (7.139)
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where

21 o

P, B) == Q25 [V (5.8, 8) + V (s, B). al,

Vs, ) —log(@)log(1 — B) + Lis(d) — %logQ(l _ &)

3 - 1 a(l-a)
—log(1 — A 14
—|—20g( a>+2[1+(1—&)2] (7.140)
and we use the Sudakov varibles
2k, ~ 2k

20a0p” ' 2papy

From eq. (7.139) we have several remarks:

The terms of O(a?) like |t szrtP in the cross section are not rejected. They
are included in the process of numerical evaluation of the differential cross sections
out of spin amplitudes.

The term ry [}5 ', contributes to O(a?L?) to the integrated cross section: one
logarithm is explicit from the virtual photon and another is from the integration over
the angle of the real photon.

The term ~ log(@)log(1 — B) contributes a correction of O(a?L?) to the inte-
grated cross section. The double logarthim comes directly from the integration over

the angle of the real photon:

A3k do
[ R0 et )]~ e [T~ qetio (). )

s
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Similarly, the O(Q%a?) contribution for one real FSR photon is

) pk pk o
B X | =rry X | [+ UYL ()[4 00 (s) + pP (s, at, 7))
O O
p -
+B | X | s k) B (s, a0, 5
A
p
+B | X | s R+ 0 ()L + U (s)]
A
% (1 _ w) (7.143)
(pc+pd)2

where

~ « 1- 1 ~
(.8 8) = —Qf Lyllog(1—a") +log(1~ 5",

5 2kipp 5 2kipa

C 20ape’ T 2pape’
~ ar
62// - %, &// - % (7144)
1+Oé/+ﬁ/ 1+a/+6/

In the above FSR amplitudes averaged over the photon angles, only the double loga-

rithmic part is kept.

7.2.6  Two Real Photons

In the O(a?), the contributions from two real photons are completely at the
tree level without virtual corrections. There are three types of double bremsstrahlung:
two ISR photons, two FSR photons and one ISR photon plus one FSR photon. In the
following, the corresponding spin amplitudes will be given without any approximation,

. . . . . m2.
in particular we will not use the small-mass approximation —+ < 1.
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(i) Two real ISR photons: The second-order, two-photon, ISR matrix element

for the Feynman diagrams is given by

(2) papbk1k2
2{I1} ,P—kl—k‘g
AaAp0102

—ie? Z 5 (P — ki — k2)(G7) ey (€Qe) 0 (s, M)

_;9 P, +m) =k —k (P, tm)— ks,
) {Ge’# —2k1pa — 2Kopa + 2k1ky 2 I)T%¢UQ( 2)
<_pb+m)_k1 *( ) (_pb+m>+kl+%2 B
—2k1py foulh2 —2kipy — 2Kopy + 2k ke O
(_Pb +m) — leB (}’}a +m) — ky

+ ¢, (k1)

* k *
+ ¢0'1< 1) _lepb e, _2k2pa ¢o’2( 2)
+ (1« 2)}u(pa, Aa)- (7.145)
Using eq. (7.106), we have
~(2) pkiks ) pkik;
52{11} ,P—kl—kg IS.RQ{I]} ,P—kl—kg
AO109 Ao109
R pka R Pk
— Bl P~k —ky | s (ka) = By (P =k — ky | s (k)
Aoy Aoy
00 | P (1} (1 )60}
— /BO 7.P — kl — kQ 501 (k1)5g2 (k’g) (7146)
A

We will repeat what we did in the one-photon case: we isolate the group of terms
containing two factors of (p+m) from the above equation first, then isolate the group
containing a single factor of (p+m), and isolate the rest at last. Such a treatment will
almost exactly split eq. (7.67) into a contribution with two s factors, a contribution

with one single s factor, and the IR-finite remnant 352). In other words, we decompose
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om? (n into several terms as described above and then implement the IR subtraction
of eq. (7.146) term by term.

Let us first discuss the doubly IR-divergent part proportional to two factors
of (p +m). In order to simplify the discussion, we omit the moment 2k;k, in the
propagator. Using the completeness relations (D.5) and diagonality property (D.12)

in the Appendix (D), we can factorize the soft factors exactly and completely

9_ B (Pa+m)_k1_%2 ¥ (pa"‘m)_'% X
(eQe) v(py, )\b){Ge’“—%ma 2 Kop t 2k1k2¢"1(k1)T2pa¢"2< 2)

o\ —2k1py 2\ ok — 2Kopy + 2kiky O
(_Pb"‘m)_kl B(p +m)—}é2
; a * 1452
o, ) R =R BT R ()4 (1602 butpa )
ey a) botsn) o) bt
’ 2k1pa + 2kopa  2kop, 2kipy  2k1py + 2kapy
bUl (kbpb) bo‘z (kQa pa)
— 1 2
2k1py 2kop, tlel)
=(GZ)pasy) (k1)s) (ko) (7.147)
where the identity
1 1 1 1 1 1

(7.148)

+ —
2k1pg + 2Kop, 2kipa  2kipa + 2Ka9pg 2k1pe 2k1pg 2kop,

is applied.
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If we restore the term 2k;k, in the propagator, M%‘}‘}?e R Jeads to

ouble pkl kQ ouble pkl k? p
Ber =Myl — 500 (ks (1) 3
)\0’10’2 )\0'10'2 A
(a) p
(5[1 ) A, +5[1 ) Ab)% ;
A
k1, pa)
(a) k) = (a _ 01( 1, Pa
k) =) = e, ),
k1, py)
(b) L) = (b — . 01( 15 Pb
( ) 5 Qe 2klpb 9
s (k) _sﬁ) + 5%) =5\ (k;) + s (ky),
2kipy + 2kapy F 2k Ky
+2
ks f=a,b,cd. (7.149)

_2k1pf + 2kopy F 2k ks’

Clearly, f(®Pouble i IR finite due to the A s term. We introduced the compact notation

above. From now on, for simplicity, we use the notation below
Tlf:2]€1pf, TijZQki'kj, f:a,b,c,d i,j:1,2,...,n. (7150)

The next group of terms we are going to deal with is the one containing the
single factor (p +m). To be more specific, we will include terms that may result in a

single IR divergence (if ky < kg or ky < k1), namely, with (p + m) next to a spinor,
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at the end of the fermion line:

inele pkiks ,
My ¢ > T (X)(GE,)ea (€Qe)0(py. M)

)\0'10'2 B=~v,Z

ettt P

— Toq + 712 —T2q
_ﬁb—i_m * kl‘i‘%z aB

+ ¢, (k !
Fon (B1) —rw P2 —ryp—rep iz M
* _ﬁb_‘_m B _kQ *
k
Tt (k) —T1p Ge’”—ﬁf‘”
—p +m
F e =es, By e b )

(7.151)

With the help of the compact notation, we can express Mg’f{r}gll}e ™ in a form which

leads to an easy numerical calculation:

Single IR pkiks =B 1 Upria) — _%[b2’][cd]U[2’1a]§(a)

=¢
211 e 2
{21} —T1a — T2a + T12 12
/\0'10'2

[b22q%[2fa][cd] + Vip21)B 1/ d]jed)

+ el)es
Q —Ta — T2q + 12
U2 '2a b11’ a
— eQesﬁ)]) B (b2]fed) — 2] + Qe_[ lb}%[l’a][cd]sfg])
+ (14 2). (7.152)
Moreover, the single-IR part to be eliminated is
(1) {1} {1} {f} {1} {f} {1}
Bl + Bihzshy =ri' s + 7 S
Ul’la Vbll’
= (eQe‘B[bl/][cd] e, ]%[m} [ed] [{2?
Tla Ta
4 (14 2). (7.153)
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To sum up, we have

g phiks phiks
Singl Single IR A(1) {I} A(1) {I}
Patrry =My — Biwse — Pt
/\0'10'2 )\0'10'2
Ugra) (a)
= - e e 5
€Q:B bz[d_rla_r2a+T12 2
Up1a)
65 B "al[e
+ eQusy e——————( L0 T
Unna) Unnal\ _(a)
QB (_Tla —Tet+T2 T e
Vigoo Vipaor
(a) [b22'] [b227]
eS - B "allc
F Qe <—7“1a—7“2a+7“12 —T2b> Zalled
+ (14 2). (7.154)

It is straightforward to find that the expression above is IR-finite.
At last, we need to include all the remaining terms from eq. (7.147). They

are IR-finite and read

A phkiks .
Bg{elslt} =ie’ Z I ( ny)[cd](eQ) V(P Ap)
0109 B=v,Z

fon e R e

ks

() EPo )+ Ey s

) =2 () T TR R
T1b Ty — T2p T T12
F 268 2 )+ (16D butpa ).

(7.155)
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With the help of tensor notation in the fermion helicity indices, we can expree the

above equation in terms of the U and V' matrices in the following way:

A pkiks
Byeth
)\0’10’2
Q) BpartjcdUlar127] — Bpijeaq)Unnz — B eq Upprizr) —Upraa)
‘ —T1a — 720 + 712 —T2q
4 (eQ )2 Vibrir = V1072618 1 eay + V[l"?l/]%[ﬂa][cd] + W1II22/]%[2’a][cd]
= —T1p — Top + T12
Vi Uiraq
+ (eQ.)? blllb]%u e+ (1 4 2). (7.156)
2a

Therefore the total ISR 52{ 1y reads

N pkiky _ ADouble pkiky ASingle pkiky ~Rest pkiky
Bagrry = Pof11} 2{I1} 2{11}
)\0'10'2 /\0'10'2 )\0'10'2 )\0'10'2
(7.157)

(ii) Two real FSR photons: The case of double final-state real photon emission
can by treated in an analogous way. The second order two FSR photon matrix element
is

PaPok1kz

(2) .
MZ{FF} ; P
AaAb0 102

=ie? Z Iy (P) (G5 )ba](eQe) U(pe, Ac)

_* (p, +m)+k, (p,+m) +k +Fy
y {m () P g (e G,

B (— ]ﬁdWLm) ki — Ky 1 (—¢d+m)—%2 X

G *
* f”2/€1pd + 2]€2pd + 2k1ks ¢Ul( 1) _2k2pd ¢02( 2)
e Porm) k(P tm) =Ky,
- ¢[1}(k1) lepc Gfu d2k2pd ¢[2}(k2)
+ (14 2)}@(1% Ad)- (7.158)
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Analogously, the expansion into soft and non-IR parts for the FSR spin amplitudes

is done in a completely similar way to the ISR case. The subtraction formula is

A pkiks pkiky A pky
(2) ) _om(2) ) (1) .
BZ{FF} P =y , P _51{1?} ; P 5({75}(@)
)\010'2 )\0'10'2 )\01
N pko
1
—Bi{}v} ; P 55—5}(]‘51)
)\0'2
n p
=6 | P | st (k)st (k). (7.159)
A

First we obtain the contribution from the group of terms containing two (p—m)

factors:

5(2)Double pkl k2

2{FF}
)\0'10'2
Pkiks (Pe + pa+ k1 + ks)?
1 4(2)Double {F} {F} Pe T Pa 1 2
=My rry — 50152 Bivalled] (e + pa)?
)\0’10’2

(@), (@) ®) ) (7} 1
=(Acs(y 8) 5 + Aas(y8) ) Bivaliea) — 5y 5p)” B
M,

» ((Pc+pd+k’1+k2)2 _ 1> :
(pc +pd)2 ’

c a bal kiapc
£0h) = ff) = +e, P,

’c

(7.160)
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which is explicitly finite. The group of terms containing only one (p —m) factor at

the end of the fermion line reads

: pkiky
Single IR
M2{}§F}

)\0'10'2
U[c21’
Mo + 7o 4 710
—Viir1g

Ule221

=eQys(;] B + Qs Blazd

T1e + T2e + T12
Ve @
T1a + Toq + 119 2

@
S + e %ac/
ey I

+€Qf

+ QB pa][c1]

Ule11]

_V2’2d
22d %[ba][ﬂoﬁg]) + (1 — 2) (7161)

+ €Qr5 (3] Bipafee

Using the matrix notation (in the fermion spin indices), we have

: pkiko
Single IR
Mz{ng}
AO109
00 Y g @ U2y g0
leg[l] T1e 4 T2e + T12 pelld) lesm T1e + T2e + 712 el ]
—V[1'14d) (d) —Vi2'1d] (d)
+ eQ Barer S5+ eQ ¢ Balicor 5
1Bl 1]7‘1d+7“2d+7“12 2 @sBp }[2]T1d+7‘2d+7‘12 2
c —Vi2r2d Uler1]
+ eQrs(;] Bajjer) — 2 + €Q %[ba s + (L ¢ 2).
(7.162)
Moreover, the single-IR part to be eliminated is
A(1) {ry | 5 {F}
Biowse * Aiowsh)
{7}, {F} {73, {1}
=y T ) T
U Vi
=<+€Qe [ba][1'd] [ & —eQe E; ]%[ba][w]) ﬁ]} + (1 2)
1
(Pe + pa + k1)? (F} {F)
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Then we obtain

A phiks
Single
ﬁ2{I§F}
)\0’10’2
phiks . pk1 ka o Pk k1
o Single IR (1) F (1) F
Mz{fg;} — B st — By st
AO'10'2 )\0'1 092 )\0'2 01

Ulea2 Ulea2 Ulea11 }
6(;) S - B ali2/d) + — 3 a1’
f[l]{(r20+rlc+T12 T2¢ el ] Toc + T1e + 712 el ]

—Viia —Viia —Var1a (@)
Bipalicl! - -+ Bipalic2] 05
+6Qf{ [b][1}<7”1d+7"2d+7’12 T1d ) T1d + T24 + T'12 [b”ﬂ} 2]

(pe + pa+ k1)? F} {F
+%[ba”cd}< PETS 1)si s + (14 2). (7.164)

Finally the remaining term in eq. (7.158) reads
phiks
M7
/\0'10'2

=it 3 WG @ u( 2 iy B gy P R B

I
Tie + Toc+ 7
Bz le T T2+ 712

(_¢d+m) _kl _%2 kg

T1g + T2qg + T12 ¢[1

+ GBJ/ %[2 + ¢[1 %1 GBV %2 6?2} + (1 <~ 2)}U(pd7 /\d)

Ta2q

(7.165)
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Thus, using the matrix notation, we obtain

ﬁRest pkl k’z
2{FF}
)\0'1 02
Rest pkl k2
- 2{FF}
)\0'1 g2

B 5 U117 Upnraen B pa) e d) + Unr211Bpayira) + Uz Bipa)(2/d)
=(eQy)

"e T1e + Toc + 712
+ (eQy)? —Bpajlca) Via12) = Bipalier)Vivizr) — Bieajiez Viznzr) —Vizrag
T1d + Toq + 712 Tod
UC ’ _V ,
+ <€Qf)2 Llll ] B paj172] T[22d2d] + (1 4 2). (7.166)

The total contribution from the double FSR real photon emission reads

R pk’lk’g . pk?lk‘g ~Single pk’lk’g . pk?lk’g
Batrry = Oy(Fr} + Bygrr + Oy
)\0'10'2 )\0'10'2 )\0'10'2 )\0'10'2
(7.167)

(iii) One real ISR photon and one real FSR photon: Compared with cases
described before, the case of one real ISR photon and one real FSR photon is easier

since there is at most one photon on one fermion line:

@) PaPoPePakiks

)\a>\b)\c)\d0102

=i’ Y (P — k)
B

=74

- B}])a_kl"i_m* *_f)b"’_kl—i_m B

X eQev(py; Av) (Ge,u—_%lpa it g, Cen )ulPaAe)
B _p _kQ_'_m* *ﬁc_’_kg‘i‘m

X eQu(pe; Ac) (GB,ud%T¢ 2+ ffngpCGﬁu v(pa, Aa)

(7.168)
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and the IR subtraction is

62{1F} P —ky
)\0'10'2
pkiky R pk1
=)y P =k | = By P —ky | st (ko)
)\0'10'2 )\0'1
N pko A p

- 5&%} (P —ky | sl (k) — By S P —ky | 55, (k)s), (Ka).

)\0'2 A

(7.169)

And Bg{ rr} can be obtained by a simple subtraction of all terms proportional to one

or two (p —m) factors

R pkiky
52{11?} ;
)\0'1 09

=ie? Z I (X)eQ0(py, Av) (ny fl ¢[1 +}5[1] by GB) (Pas Aa)

B=~,7
—k,

T2d

X eQrt(pe, Ac) <GB — i+ ¢[2] by GB ) (Pd; Aa)- (7.170)

In the programmable matrix notation it can be written as

A pkiks
62{IF} ; X
)\0'10'2
1/ —Uw a Vi ]
—T1a —T1
B=~,Z
—Vadg) | Uleaz
x [ (G%)e G
(( f’y)[Q] T'24d * T2¢ (G
_Ul’la _V2’2d U022’ _Ul’la
:eQQle (%[bl’][c?] (X) [ ] [ ] "’ [ ]%[bll]p/d} (X) [ ]
—T1a T2d T2¢ —TMa
V / —V/ V ! Uc !
+ [bll %[y e (X) [22d] | Vibr] [22]%[1, [Q,d](X)). (7.171)
T2d Ty T
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7.3 Relations between CEEX and EEX
We have shown the EEX and CEEX schemes in details in the last two sections.
Next we shall compare certain important and interesting features of both schemes in
more detail.
Let us first investigate the limit of the CEEX in which we drop the dependence
on the partition index X, — P, where P = p,+p,. Note that there is no such analogy

in the EEX. In this limit, for the simplest case of the O(«a) exponentiation, we find

n

X2 p - _ p
Yo | x| [T el = e 00 | x| TT6 + i
pEP «d A —=1 A i=1
(7.172)
because of the relation (7.87). Note that the ISR®FSR interference contribution is
preserved in the above transition.
Next we would like to discuss the case of the very narrow resonances, which
the ISR®FSR interference contribution to any physical observable is so small that it
can be neglected. This corresponds to a well-defined limit in the CEEX scheme. In

this limit, for the simplest case of the O(a) exponentiation we have

IMPP =3 > explaBi(X,)] explaBa(X,)]"

pEP o'EP

p p o (el
x| x| x| Js s
=1

A A

= exp[2aR By (pa, po)] exp[2aR Ba(pe, pa)]
2

x> |B - X, ﬁ

pEP by =1

2
{m}
S[i)

(7.173)
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In the above transition we omit the ISR®FSR interference entirely, by dropping the
nondiagonal terms p # ¢’ in the double summation over partitions, and replace the
resonance form factor by the sum of the traditional YFS form factors for the ISR and
the FSR. In this way, we find O(a®)ggx is identical to O(a®)cgex.

Last but not least, it is important to find out the relations between the CEEX
B s defined at the amplitude level and the EEX 3’s defined at the differential distri-
bution level. Let us suppress all spin indices, that is, for every term like |---|? or

R[AB*] the corresponding spin sum or average is taken. Then traditional 3’s of the

EEX/YFS scheme at the O(a?) level are

_ 2
B = g

()

, 1=0,1,2

_ 2 _
B =) = AV ls, =01

(att1)

B (ky, k) = |0 (ky, ky)

oy = 0 () ls(ka)l” = B (k) s )

2
(af

= 50 (k) s (ha) (7.174)
where the subscript |,r) means a truncation to O(a"). Now for each M after

substituting its expansion in terms of B ’s according to eq. (7.65), we have

_ 2
By = |y’

(at)’

[=0,1,2

_ ~ 2 N\ A
D) = [80®)| "+ 2RI B (B oy, 1=0,1,

B2 (1, ko) = B2 (k)| 2RYB ks o)A (ko) B
+ 2R{[357 O, Ro) 1B ()5 k) + B (k) ()]
x 075 (k1)s(ka) }*. (7.175)
The relation is not completely trivial for O(a?), and there are some extra IR-finite

terms on the right hand side. From the above analysis it is clear that 3’s are generally
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more complicated objects than the B ’s. Moreover, in the f; and f; some higher-order
virtual terms are unnecessarily truncated, which probably undermines the perturba-
tive convergence of the EEX scheme in comparision with that of CEEX scheme. The
above relation clearly exhibits the difference between the EEX and CEEX schemes.
In the above discussion, we show how the two examples of the EEX scheme
can be obtained as a limit case of the CEEX, and show the exact relation between
the B’s of the EEX and the B’s of the CEEX. From these it is clear that the CEEX

scheme is more general than the EEX scheme.

7.4 Monte Carlo Algorithm

In this section we will introduce the Monte Carlo Algorithm for the KKMC,
which generates final-state four momenta, i.e, points within the Lorentz invariant
phase space according to eq. (7.2) for EEX and eq. (7.36) for CEEX. The MC
technique of the KKMC is generally an approach of integrating exactly over the phase
space without approximation. It is based on the rigorous perturbative quantum field
theory: the differential cross section is the phase-space times the scattering amplitude
for the corresponding Feynman diagrams. Furthermore, the KKMC is not only the
phase-space integration but aslo the simulation of the actual scattering process, since
it requires events (lists of four momenta) to be generated with weight equal to 1.
Generally speaking, the MC algorithm includes a handful for elementary techniques
such as weight-rejection, mapping and multibranching [115]. We will take the notation
and terminology in Ref. [115]. In the KKMC, the self-adapting MC FOAM [102] is
adpoted as a buidling block, which works for arbitrary integrand distributions. In

general, it is wise to minimize the use of the multibranching and utilize the method
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of reweighting, constructing several layers of weights and taking their product as the
total weight. In the KKMC, there are only three multibranchings, one for the types
of the final fermion type f = e, u, 7,d, u, s, c, b, another one for the photon partitions
and the last one for helicities of the emitted photons.

In the following discussions, we will introduce the algorithm of the Monte
Carlo generation of the events according to CEEX and EEX differential distribu-
tions. The algorithm is constructed with elementary technique of MC simulation and
multibranching with casual use of mapping (change of integration variables). The
weights are products of several component weights ordered in a chain. Their job is
to simplify the very complicated differential distributions so that we could integrate
manually over certain integration variables. The remaining variables that we are not
able to integrate will be dealt with the self-adapting MC generator FOAM. The proce-
dure of simplifications mentioned above which involves with weights, multibranchings

and mappings wll be exhibited in the following subsections.

7.4.1 Weights and Distributions

First, let us describe the organization of the weights and distributions in
KKMC. There are four principal distributions: pure phase space, model, crude and
primary. Their ratios are the principal weight in KKMC.

The pure Lorentz-invariant phase space distribution given by eq. (7.2) is the
basic reference differential distribution, of which the four-momentum conversation o
will be no generated directly in the MC, so that all other differential distributions of

interest can be expressed in its terms

do(ry,...,rn) = p(ri, ..., ) dTn(Piry, .o ), (7.176)
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where the density distribution, defined as follows:

o do(ry,..., )
Cdr(Piry, ..,

p(re, .o ) (7.177)

is analytical with no ¢§’s.

The model distribution is the density distribution corresponding to a physical

model
do™Mod(ry )
Mod 1.3 Tn
IS , 7.178
P (rh B ) dTn—l—Q(P;rly---arn) ( )
with which MC events will be generated.
The crude distribution is a density distribution
do©r ki,... ky
pCru(rb 7,,2 o kn) _ o (TIJ T27 1 ? ) (7179)

B dTn+2(P;7‘177’2, ki, ... an)'

It is close to all model distributions of a certain class and it should be maximally
simple. And it should be Lorentz-invariant and be a maximally simple function of
dot-products of the four-momentum. Here and later r;, ro will denote the four-
momenta of the outgoing fermions while k; will denote the momenta of photons. In
such cases the dimension of the phase-space will be explicitly n + 2.

The primary distribution

dpt (€1, 6, ..., 60) (7.180)

is defined primarily in the space ¥ of variables &; with the following properties: (a) the
integral [ dp™ (&, &, ..., &) is known independently from analytical integration or
an independent numerical integration of the Gauss type; (b) a well-defined mapping

r — & exists. Therefore one can define

Pri
7/‘177"2--.71671)— dU (617627-..,571)

Pri( _
dTn+2(P; 1,729, kﬁl, ey kn)’

p (7.181)
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which is restricted to & € Yy1ps and is the distribution generated at the lowest level of
the Monte Carlo. A zero weight will be assigned to the MC points (events) & & Yy ps.

Pri with all weights equal to 1.

The p™ relates to events generated according to dp

The choice of the intermediate crude distribution, which stands between the
primary and model distribution, depends on the practical need of modularity of the
MC. For example we would like to use the same low-level MC event generator for both
EEX and CEEX models. Undoubtedly we would like the MC event generator to have
a well-defined low-level MC module. The weighted events are generated according to

the crude distribution and the weight is

do.Cru ri (&5 Cru r;
dUPSi(,(,f)])) - Zpri((”))a f € ELIPS?

WOy 7y, . ) = (7.182)
0, § & YLips.

The above weight is determined by the low-level MC numerically without any further

information on how the event (rq,7s,...,7,) was actually generated.

The model weight for the m-th model is given by the ratio

Mod(TA)

da%o‘i(rl,m,...,rn) P i
per(ri)’

WMed () o ) =
(ri, 7m0 ma) doCri(ry,roy .. 1)

(7.183)

Cru ig calculated

which is evaluated in a separate module. And the crude distribution p
locally in the corresponding module, using an analytical expression in terms of four-

momenta of the event, and without any access to information from the lower-level

MC. The total weight obviously reads
W Tet — yCrupyMed (7.184)
and the total cross section is given by

ot = (W, o™, (7.185)

m
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After giving the formal expressions for weights and distributions, we need
to define the crude differential distribution explicitly for both EEX and CEEX. We
first define the crude differential distribution with respect to the standard Lorentz
invariant phase space as follows:

phc,r#’(%a q2; kl, cees ifn; ks ly)

_ dUCru
dTn—‘rn’—‘rQ(P; q1, 492, klv S 7kha k/lv cee ,k’%)

11 2 LU
:'__UBL(SX)S_X_ HQSe(kj)@e(kj)e%logee l_ISf(k;)@f(k,l/)evflogef7

j=1 =1

(7.186)

where

2F in 2F" . 4Am>
€e = €= ——2 [Br=4/1—

) ) ) SQ = 2(]1(]2 + 2m2-
V/2p1p2 d V24192 d Sq 9 !

and 7. and s are given by egs. (7.9) and (7.10) respectively. The infrared and

collinear singularities are in the soft factos S. The OBorn(Sx) has a resonance peak
at sy. The flux factor z—i is from the O(a') QED matrix element, and it can also
be obtained form the leading-log approximation at any order. Note that the above

crude distribution is only for EEX. It would only fit one single partition in CEEX.
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Thus, according to the discussions above, we could express the differential
distribution as follows:

p(pmpdvkla <. 7kn)

do(©
_dL[PSnJrZ(P;pcapda kla ER kn)

1 ¥ (tpar @(9)1 phikok .. Ky,

Tl flux(s Z > M
aﬁé:Fl)‘ =¥l )\0’10’2...0n
y zmg)) PR1R2
)\0'102...0'n
1 p X;i n o D X;j *
“pon SIS [Tt | "ox )
Ai {p} {0} by =1 \
(7.187)

where s” = (pe + pa)*. In the crude distribution we would like to neglect IFT. That
means we need to drop non-diagonal terms @' # p. Additionally, the YFS form factor

needs to be simplified to preserve IR cancellation
Y(Qipa, .-, pa) = Yelogee + vy logey.
Therefore we have
P(Pe; Pas k1, - -5 k)

:i% exp(7e log €. + vy logey) Z H O (k) Z
P 1 ‘

n!
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We can identify

2.

(o5

2 —~ —~ ~ ~ ~
sl = —=8m°S,(ki),  Si(ki) = Si(ki),  So(ks) = Se(k:),

and the Born-like differential cross section
2

p 1<2 dO'B 7
. 2 ~ Oorn / / 2
% B . ; X, et ou (5,5 ,t,ut',u', XT),

which is dependent on s = 2p.py, S = 2pPa, t = —2PaPe, ' = —2pPa, U = —2PaPd,

u = —2pyp. and X ;i in the Z resonance propagator. Let us convert it into an ”angular

average’ expression

Finally, the crude distribution for CEEX is defined as follows:

o (pes Pas ot - - K

_ dagllg]uEX
dTn+2(P;pC7pd;k1a"'7kn)
11 oBom(X2) X2 9
= ; B exp(7. log €. + 7y logey) e < B 11 O(k;)S,, (k).
o i

(7.189)

For arbitrary photon multiplicity we have the following relations between crude dis-

tributions for CEEX and EEX

POk, kn) = > pra (ke Kk ). (7.190)

n+n'=n
The model weight for the O(a() EEX reads

() ] ] / /
T ] ; p7p7Q7Q;k7"->kh;k7"'7l€n’
WéE)X(ql,QQ;kl,...,k;h;k;;,...,k;,):pEEXC(ml SR L )

p[h’n/}(qDQQ; i{;l? R knv kllv cry k;/)

)

(7.191)
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where the model distribution in the numerator is given by eq. (7.4) and the crude
distrubtion in the denominator is given by eq. (7.186). And the model weight for the

O(a'") CEEX reads
(r) ]
pCEEX(pavplnpcapd; kl, ey kn)
hn) = , 7.192

where the model distribution in the numerator is given by eq. (7.37) and the crude dis-

W((J?JEX(paapbapcapd; ki, ...

trubtion in the denominator is given by eq. (7.189). Note that the factor (27)3+2)~4
is derived from the difference in the normalization of dLIPS,, and dr,.

Therefore, according to the previous subsection the corresponding total weight

1s
Wit (Pas Pos Do Pai K- )
= gE)EX(pavpbapcypd§ iy k)W ™ (Day Doy Des Pas Koty - - -5 o) (7.193)
and
W&)?t(qh q2; iﬁ, e ,km ks ki)

- égX(ql’qQ;kl""7]%7.1;]{;3""7k;’)Wcru(q17QQ;k17-"7k’fl;kj/17"'7k:u) (7194)

where W™ is exactly the same since we did the proper Bosen-Einstein symmetriza-
tion for CEEX. Among these model weights, only one can be used as the principal

weight for a rejection of the events. Obviously we choose the best one, O(a(?) CEEX-

type.
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7.4.2 Phase-space Reorganization
Let us start with rewriting the phase space integral of eq. (7.186) for the crude

total cross section as follows

O_Cru:/dsxii/dTn+1(P;k1,...,kn,X)%H

n=0 n'=0 T

1 ~
X/dTn’+2(X7k/177k;7q1aq2)ﬁj];[18f(kl/)@f(kl,)
orn 2
X UB—(SX)S—X—eXp(% loge. + vrlogey) (7.195)

47 SQ ﬁf

where P = p; + ps. The integral above is Lorentz-invariant and can be computed
in any reference frame. So we can take advantage of the Lorentz invariance of
AT 2( X5 kY, ... kL, q1,q2) and we transform all its variables to the reference frame

where X = X = (v/5x,0,0,0), the XMS frame, and rewrite eq. (7.195) as follows,

oo o0 1 ~ _
O_Cru _/deZZ/dTTH—l(P’ khakn;X)ﬁHSB(k])@e(kJ)

n=0 n/=0 =1
_ _ 1~
X/dTn’—‘rQ(X;k:/l:"'ak:zvq1aq2>_'H

orn 2
X 0134—758)()2—267 exp(ve loge. +vrlogey), (7.196)

where those variables with a bar are defined in XMS. So far this operation is still
ambiguous. We have to write down explicitly the Lorentz transformation Ly from
XMS to CMS and back. Here we apply a so-called parallel boost By along the
direction of the X in PMS (a laboratory frame where P = 0 and p; = (p°,0,0, p?).

The corresponding transformation matrix is

X0 X

By=| "™ M . X% =DM, (7.197)
X XoX
Mx > I+ Mx (Mx+X0)
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where T' denotes the matrix transposition and ® denotes the tensor product. The

transformation from the XMS to CMS is
kiloms = Lxki,  a@iloms = Lx@, Lx = Bx. (7.198)
The emission of the FSR photons is done in the comoving frame attached to
the momenta ¢; of outgoing fermions, namely, in the frame where Cj =@ +¢=0
and q; = (¢,0,0, |¢}|), which is called QMS. In order to get from XMS to QMS we
must know k.. This problem can be solved by reparametrization the FSR integral

with the help of the integration over the Lorentz group [116]. Applying the result of

Ref. [116], we have
/dsxz H ng 25, (kj)cs(sx - (P— io k;j>2)e%1°g€e
/dz/zdcos JBom 5x) Z ”/ QHd3 l/Sf (kO (k)
X 5(3X - (Q - Z 12;;) )e”/f loges (7.199)
=0

where those variables with a tilde are defined in QMS. Note that the Jacobian from the

reparametrization of the FSR integral cancels exactly the factor —Xﬁl The explicit

transformation from QMS to XMS defines the new integration varibales ¢ and w:

ki =Laki, @ =Lad, La=Rs(Y)Ra(w)By', X=0Q—) k) (7.200)
Notice that the explicit integration over ¢; and ¢o has disappeared completely after
the operation above, which leads a great simplification of the crude integral. Note
that ¢ and w are not polar angles of a certain momentum in a certain frame but

parameters in the Lorentz transformation.
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Therefore the crude integral can be rewritten in the following way:

O_Cru: Z ZZ/dTn+n+2 P Qq;q27k17" kn,ki,...,k;J

f=wp,mu,s,c,b n=0 n’=0

X P%Z/](Qlaqm ki, .. ks ky, .o KL)

d
= Z /dSXUBom Sx /dw cose

f= u’ruscb

EZMIIQJQS @maGX_<p_ -

Jj=

2
k‘) )e%’ log €e
Jj

’

o

oo

1 Bk ~ LN
X Z TL"/ SQH le kl @f(kl>5(SX — <Q — ;> )e'yflogef7
0

n/= J=
(7.201)

Obviously this factorizes into independent ISR and FSR parts. The above integral is

ready for the MC generation.

7.4.3 MC generation of the FSR photon momenta
Next we will describe the MC algorithm for the generation of the FSR photon

momenta. Let us consider FSR part of the crude integral of eq. (7.201)

Eyin)0 (3X - (Q + Z k) >ve lger - (7.202)

d3k’

m

1+ 75 1+ 1+ 1+ 6/)?
=i (e 1) =0t @fO%L?fL_Q’

4m? 2F" . .
Br=11—p2 pi=—L ¢ ="2m0 0= (4/5,0,0,0) (7.203)
f = 50 ’_SQ

where we restored finite fermion mass m ¢, photon momenta E{ in the QMS rest frame
of the outgoing fermions and E’ . is the minimum energy of the real photon in this

min

frame. Let us express the photon momenta in units of % 5o and introduce polar
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parametrization and other auxiliary notation:

_\/_ _ Vs

= T = —xj(l,sin@- cos ¢;,sin 6 sin ¢;, cos 6;),

~ S _
= Z k) = TQK. (7.204)
1=0
Then the d-function can be eliminated:

Sx Sx B 1 _
[y ERY) - o 15)

_ @(SQ(]E@, cey ];,‘n/ — 4m?c)

_ _ 7.205
14+ K%+ 1K? ’ ( )
and from now on
_ _ Sx
=so(ky,... k) = —————. 7.206
sa = salky - ) = T (7.206)
And the single-photon distribution is transformed as follows:
dSE/-A/ . ) ) m2
— L5k = 45 995§ cos eﬂf(ej, —f),
k/j X ™ ™ SQ
fg‘m_fczl—i_ﬁf ’ufl_ﬂl
77 SQ 51]'523 2 52 (53]’
51]’ =1- 6]0 COS Oj, 52]' =1+ ﬁf COs 0]'. (7207)

and the whole FSR integral is transformed into the semi-factorized expression:

dl'J /27r d¢] /+1 < 2)
Snr — dcos 0; f , —=
n'l Hl/e " sq

- e”f logey. (7.208)

Note that the integral above is not factorized into a product of independent integrals
since the dependence on all photon momenta k; is entering everywhere through the
variable sg. So we call it semi-factorized.

Moreover, the introduction of the factor %\/% leads another problem: the

upper bound of z; extends to a large values but not really to infinity due to the
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O(sg — 4m?). And this problem can be solved by the following change of variables:

U B I
Lol Ye T 1=y
_ QK/ K/2
1+ij_ =1+K’=1+ Q:S—X<1— ),
1—2% S0 S0 Sx
(7.209)
which leads to
1 n' 1 dy 27Td¢ +1 3(
S"':mn/ef y—]/ j/ dcos b, f i
j=1" 17g0 <
1+ K°
i O(sq — 4m7)er 8. (7.210)

X — _
14+ K%+ 1K?
With the help of new variables the condition sg > 4mfc (easily executable in the MC)

translates approximately into » ;¥j < 1. Then we have

1+ K°
_ __ <1,
14+ K0+ 1K? —

which is perfect for the MC. However, the new IR limit y; > €;/(1 + K?) is inconve-

nient for the MC. This issue can be solved by substituting
ep = 0p(1+ K"). (7.211)

where 67 < 1 is the new IR regulator for the FSR real photon. Note that this gives

a new lower bound for the photon energy in the QMS:

217 Q) (7.212)

SQ

" 1 —

which is higher that the previous E’ . = % /5q0¢. Therefore, we must keep the value

min

of 6y very low.
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So far the FSR integral (7.202) has been transformed without any approxima-

tions and the integrals were conveniently parametrized for the MC generation:
1 n’ 1 du. 2w do. +1 a m2
Sn’ :_,|H/ ﬁ ﬁ/ dCOS@j—f(ej,—f>
ot Js ¥ Jo 2 ) 4 T 50

y 1+ K°
14+ K%+ 1K?

O(sq — 4m?)ers 1esCs (1+KD), (7.213)

There is a one-to-one correspondence between the points in the Lorentz-invariant

phase space and the points in space of the new variables:

', (K, K)o (y,0,,6,), G=1,...,n'}. (7.214)
Besides, we can write explicitly the differential distributions in the two equivalent

parametrizations

d%n’
~ n 72 n' d3E§'
dsd(sx — (Q + X_1=o k))?) HJ=1 2h7

11

2) QEN- n' o R
=< 7 1 —= 25 (K)OK, — E_.
0 exp 10 FX)]H S (FO, ~ E)

(7.215)
d‘Sn’
[T, dy;d cos 0;dg;
:—@(SQ _ 4m?) o Vf 1og(3(1+K7)) (i)n - —@<yj — 6f)f<«9j, m_%)
n'l 272 e Yj 50
(7.216)

Now it is time to introduce the simplifications that lead to a primary distri-

bution. And the primary distribution can be integrated analytically and generated
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using standard uniform random numbers. The simplifications are given as

m> _ m> 1+ B2 1
9, —I 9. L) =" _
f(]7 8Q>_>f(j75X) ﬁf 1_5%(30829]"

1+ K° 5
T R0+ 1Rz O e —Amy) = L
71086 (1HKD) _y o7rlogdy (7.217)
where
_ m2\ 2] 2 al+fB7 148
f
5 :{1_<_f> ] = g (7.218)
! SX o By L= Bf

With the help of the simplifications above we could remove any complicated depen-
dence on the momenta of all photons through sq, replacing sg with sx. Then hard
F'SR photons get stronger collinear peaks at cosf; = £1 in the primary differential

distribution. Thus the FSR primary differential distribution is:
dghy . "0y — o) o, ™
- Sn — flos(dy) <%> H Mf <9j’ _f> 7 (7.219)
Hj:l dyjd COS de¢j 27 j=1 Yj Sx

and the compensating weight which transforms the primary distribution into the

crude distribution is

WggRr = dgglri - 1+ KO 4 411[(2

=0 n’ f( Jr s
Cru _ @w LA KT 10806, (14+R%) 3 log() [1-—%

=1 f

(7.220)

Events {n’, (y;,cos0;,¢;), j=1,...,n'} generated according to dg'+, defined in eq.
(7.221) with weight w5, will be distributed according to the differential distribution

(7.216).
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Finally we conclude that the integral over the FSR primary distribution can

be evaluated analytically:

d +1 m2
ZSPH Z /|H/ yj/ 2&/ dcosb; f( ], )ewlog(éf)
n/=0 of Sx
—7 log( 1/6f 1 "
_Z 7y log =
f

’

=1. (7.221)

I\
_ €7<n’> ()
n'!
0

n/

The photon multiplicity for the primary distribution is the standard Poisson distri-

bution, with the average
P 1
(n) =7y log —, (7.222)
O
and the overall normalization is equal to 1.
The MC generation of the distribution (7.219) is fully factorized, and the

variables cos 0, ¢; and y; can be generated independently. The distribution of ¢; is

flat and the distribution of y; is trivial to generate
¢; =21y, Yy =07, (7.223)

where r;; are the standard uniform random numbers 0 < 7;; < 1. The distribution of

cos 0; needs using the branching approach: it is split into two components

2 1 1
_ = _ + _ 7
1—pfrcos?0; 1—[rcosb; 1+ [Bfcosb;

(7.224)

and cosf; is generated according to one component, chosen with the equal odd be-
tween these two. For instance, if we choose the first component as 1/(1 — 3; cos6;),

then

cosej:%{1—(1+Bf)(1_5f>r3j}, (7.225)

1—|—ﬁf

where r3; is another uniform random number.
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Next we introduce the MC algorithm of the generation of the ISR photon
momenta. Let us begin with the ISR part of the crude integral (7.201) for one final

fermion type f

[ Bk
:—/dsXUBom Sy H W e(k;)O(k] — Emin)

Jj=1

n 2
X 5(5X — (P - kj) )e% log ee (7.226)

J=0

where Fyi, = ee%\/g is the minimum energy of the real ISR photon in the laboratory

CMS. We first introduce the variable v = 1 — ** and order energies of the photons

. Vi n Bk~
3= [ dvoh s = o) [T [ Gt Stk

=1 i
< O — K)O(K) — 12) ... Ok — Emm)é(v - QKPS— KQ) g,
(7.227)
where K = Z?:o kj and vpa = 1 — —%. Then we rescale all momenta and introduce
a polar parametrization
ki = nk; = nx;(1,sin 6; sin ¢, sin 6; cos ¢, cos 6;); (7.228)

We fix the scaling factor n so that k9 = 2, = v:
ko VUmax n d3k'~
:/dné (n _ _1> / A0 (51— ) T a6tk
v ) Jo K
2KP — K?
X O(K — K)O(K — 9. (K — Emm>5<v - —)e% toge.

VUmax 27 +1
:/ dvol, (s(1—v)) H/ dx]/ d¢]/ dcos b, f(cos@)

0
X 8(v — 21)0 (21 — 22)O(z9 — 13) ... O(Ng,, — €)e7 8% T (K, v),

(7.229)
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where 7 is the root of the equation v — 2KP =9 + K 7} = 0 and J(K,v) is an overall

Jacobian factor:

(”ﬁ)v

I
m ol
>

Vs v 2
o RO+ 1o Av
K2p? K2
A== = __ <1, 0< )<l 7.230

(KP)Z (KO)Z_ ) >~ N0 = 1, ( )

and the photon angular distribution is determined by
2 2m? 1 2m? 1
(1 —Bcosb;)(1+ Scosb;) s (1 —pBcosb,;)? s (1+ pcosb;)?
(7.231)

f(cosb;) =

Up till now, the ISR integral (7.226) has been transformed without any ap-
proxiamation and there is a one-to-one correspondence of the points in the Lorentz-

invariant phase space and the points in the space of new variables:

{TL, (k/‘l,,k’n)} <—>{n, (yj,(‘)j,gbj), 7= ]_,...,TL}. (7232)
Analogouly, we can write the differential distrbutions in two equivalent parametriza-

tions of the IRS crude differential distribution:

dj ! T3 oge
d—dBk = maéorn(SX) H 2Se(kj>@(k§) — Emin)evel g 1> ()
Sx HJ 1 2k0 ! ]

dJ . S
dUH deJdCOSQ ido, B Uéom( (1—-w)) (i) o(v — xl)M

272 Ty
X H x] ) Hf (cosB;)er 5 T (K v), n >0,
Jj=1
d d
% _ o]éom<s>6<sx>, W b ()0(sx), n=0. (7.233)
dsx dv
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Now we are ready to introduce the simplification leading to the ISR primary differ-

ential distribution:
2
(1 —cosb;(1+ cosb;)’

T (K, v) = Jolv) = ;(1 + \/11_—1))

O(Nozy, —€) — Oz, — €), (7.234)

f(cos®;) — f(cos;) =

where
« s
Yo = 2—1 — ). 7.235
e =2 og(mg) ( )

Thus, the ISR primary differential distribution reads

dJ, f a\" O(Xoz,, — €)
— 1 _ - _ N - 7
dv H dxjdcos 6,do; = tom (5(1 =) (2#2) o =) Ty,

X H xj ) Hf (cos ;) 8% To(v), n >0,

derl o

Born

d(v), n=0, (7.236)

dv

and the corresponding weight is

wigh = djn. = 0O\, — e)j(K’U) H J(cos ej).

e (7.237)

Note that the ©(A\gx,, —€) contribution to the weight leads directly to a characteristic

factor F(v.) = e~ /T(1 + v.) [88,117]

2Si112 9]‘
(1 — Bcost;)(1+ Beosb;)]?’

f(cosb;) = (7.238)
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Finally, we can integrate analytically the ISR primary differential distribution

;~Pr1 o jPI‘l
2k
i VUmax 2m 1
Z/ dvo, (s(1 —v)) H/ dxj/ 9, /+ dcosb;

flcos8;)5(v — 21)O (1 — 22)O (2 — m3) ... O( Aoy — €)€7 2 Ty (v),

Umax

dUJBorn 1 - U))jo (U)e’ye g ce

1 00 v n—1
. Z (% 0g ) )
n=1

Umax
o) + / 00 (5(1 = 0)) To (0) o0 7

e

X

X
N%Nﬁ

(7.239)

For the generation of the primary differential distribution dJ**!, we start with

the generation of v according to

deri
dv

= Thora(8(1 = 1)) To(v)Fer 7, (7.240)

which is done by using FOAM. Photon multiplicity n is generated in the next step.

For v < € we have simply

' 1 v n—1
~Pri __ N -
3, = const X O (% log e) , (7.241)
which is just the shifted-by-one Poisson distribution P,_;, with the average (n — 1) =

Yelog 2. The angles cos; and ¢; are generated in the same way as in the case of

FSR.

7.4.4 Common IR Boundary For ISR and FSR
As discussed above, IRS photons are generated in CMS, while the FSR ones
are generated in QMS. It is therefore the easiest to introduce the IR cut for the

real photons in terms of minimum energy in these two frames. This defines the IR
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boundary, and IR domains inside them, which are differential for ISR and FSR real
photons. As long as the ISR-FSR interference (IFI) is omitted, this will not be an
issue. However, the IFT is present and the IR boundary has to be common for the
CEEX. For the case of events with weight 1, this can be solved by taking the common
IR domain which contains both ISR and FSR domains. For each event, we "remove
from the record” all photons that are inside the new common IR domain. However,
for the case of weighted events, the above approach has to be modified and it needs
to be accompanied by the additional weight that is analytically calculable. We shall
introduce this approach in the following.

Let us consider the case of EEX
o = [ Widot™ (7.242)

,where the model weight WE(TE)X is defined in eq. (7.191) in terms of the O(a") EEX

differential distributions (7.4). We arrive at

UEEX{A} ZZ/dOnn/] Q],QF)

n=0 n/=0

X Anykyy oo kayn' Ky, KL D 4)
X W]i()gx(nv kl: ) kn; n/7 ki? RS k;/;pi, Qi)a
Aoy (1, ) zdsx%f”dmmp; ik X)

1 ~
xe%bgen_H k)OO (Qr, kj)dr2( X5 Ky, - Ky, a1, G2)

=1
s 2 ~p1og(s SQ-:zK’Q 1 n _ . /
L sx 2 s, "9 )HHQSf(kl)@(QF,k + 1),

(7.243)
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with the help of eq. (7.195) and

2QK’ "
€ =0df (1 L2 ) K =Yk (7.244)
=0

SQ

Here we have introduced a general acceptance function A to discuss the IR cancella-
tions. Each IR-safe observable corresponds uniquely to one or more such acceptance
functions. The acceptance function corresponding to a physically meaningful, IR-safe,

observable must follow the important rule

lim A(n, kfl, .. '7ki—1aki7ki+la . 7kn) = A(n - 1,]{,’1, .. '7ki—1;ki+17 .. .,k’n), (7245)

f—
and there should be a similar rule for FSR photons.
So far we have kept the IR domains different for ISR and FSR. For ISR, ;
was defined by: k;? < €.34/5 in the laboratory CMS system where p} + p> = 0. For
FSR, Qp was defined by k‘;o < 05((sq + 2K'Q)/s0)%+/5q in the QMS system where

71 + @ = 0. Next, we are about to bring the two IR domains together

dot™ s (Qr, Qr). (7.246)

[n.n]

It is known that the total cross section and any IR-safe observable should
be independent of €2; and Qp. The inituitive solution is to set d; so small that
Qp C Q; always holds, and to neglect all FSR photons k! € 00 = Q;\Qp, ie.,
removing them from the list of the generated momenta in the MC. Note that since

(sq + 2K'Q)/Sq ~ sx/sq < sx/(4m7). Next we will prove the validity of the

approach described above. Let us consider the internal FSR subintegral in eq. (7.244),
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fixing all ISR photon momenta

- Z /dTn'-‘rQ(X; klla s 7]9;7(]17(12)
n'/=0

1~ }
x i [ 28100, Kbk, - ki pin ), (7.247)

where

so+2K'Q
'yflog(ﬁng )SX 2

b(k/77k;l’aplaQZ) =€ °Q
' sqQ Py

X Wé’gx(n, ki, .o knyn K o KD D @)
X A(nykyy oo kasn' K K D 46).

Given that Q; = Qp U 092 we can split every photon integral into two parts and

reorganize the sum factorizing out the integral over §€2
ki dBki
J{Ay = Z i H 7O k)S (1) + [ —5- O, k) Sy (1)
n'=0
X /dTn’+2<X7 km qi1, q2)b<k17 BRI k‘;’vpz: qz)
<1 & :
£ RSt

s=0

XdTn’+2—s< Z k ceey n saqqu)

H (0, kS (kDK . K i q0), (7.248)

where

=1 for k' €09,
O, k) =

=0 otherwise.
Note that because of the specific expansion (7.4) of pEEX into -components the model

weight Wégx is the most important ingredient in the above algebraic transformation.
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The model weight Wégx satisfies the IR-safeness condition

lim WEEX(n Ky, oo ki kL R, Ky)

k;—0

W (0 = LK,k K K, (7.249)

and so does the function b(k1, ..., k.,;pi,q;). Thus the integral becomes

J{A} = Z/de Kook a1, q2) — H2ka, (Q, k)

d3k ~
X exp (/ ﬁ@(éQ k)QSf(k)> b(ky, ... knspi, i), (7.250)
getting an additional exponential factor.
Therefore, by the explicit calculation, it is valid to skip photons that fall into

50 = Q\Qp

do_Cru* (QI7 QI)

[n,n]

UBorn(SX)

=dsx ATni1(Piky, .. ky, X))

_ 2
x e toge L H 25, ( k)OS, ky)dry2(Xiky, - ks any QQ)z_Zﬁ_f

efir (i) stf (kNO(Q, k), (7.251)

where

SQ + 2K/Q

S ) + 2Q3”O[§(QI7 qi, 92) - ZQ?(-OZE(QF, q1, QQ) (7252)
Q

Rp = vylog <5f

Note that the integral is preserved by construction

Z / dopom (Qy, QOF) = Z / dobom (Qr, Qp).

Now, we can not keep using ngX of eq. (7.4) since the IR boundary in the new above

distribution has changed for FSR photons. We have to use another distribution pg%"%(
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in which B(Qp) is replaced by B(€;) in the YFS form factor,

*(r r 2(B(Q —B(Q
/)E(E%( _ (E%XeQQf(B( 1,41,42)=B(Qr,q1,42))

And since the model weight is the ratio of the model distribution and the crude one,

the new exponential factor cancel out. Thus the new model weight is functionally

exactly the same
*(7) ()
WE(EX = Wgex-
In the new MC calculation, we have

ol = / Wtk dore = / WedoCr (7.253)
This result is trivial since in the MC program for the EEX model we change almost
nothing, only neglecting hidden photons in the evaluation of the model weight. This
feature implies that very soft photons are not important for all IR-safe integrand
functions.

The term vflog(...) in Rp is canceled by B(Qp) and there is actually no

Crus

(/] A1y MOre. The IR cancellation is now ensured by

dependence on Q or 65 in do

the term below

2
2g (log QI;E — 1) loge.

However, the situation is still not as good as expected. We have to deal with

the complication due to the use of the weighted events at the level of the crude

distribution. Let us return to the EEX case

o = [WEWEEW S0 (7.254)
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Now the issue is that photons in §©2 cannot be hidden, because W4 does not follow

the IR-saftness condition

: Cru/, ./ 1./ / /
kl,anO Wean(n' Ky, oo kL k)

=WEeh(n' = LK, Ky Ky, K — ot

Soft photons contribute the finite ratio (f/f), and this condition is essential for the
IR~cancellations and for the overall normalization.
In order to save the validity of the approach of replacing Qp with €, we

repeat the calculation of eq. (7.248) and assume that photons hidden inside 0£2 do

not constribute the factor (f/f) to the overall weight. Then we obtan an expression

with the modified exponential factor

0o 1 n’ B
T{A}::E:u/dﬂﬂH(XﬁkL.“,qubqﬂﬁﬁIIQSﬂkD@ﬂhgﬁ)
T=1

n/=0

_ m2
e () NN
X exp —5 S (k) ——— JO(KY, - KL pis ). (7.255)
5Q
It is important that the effect from neglecting (f/f) in the overall weight can be
calculated analytically. If so, we can compensate analytically for the missing average

contribution to Ws from the hidden photons. The evaluation of the integral over

0€) is based on the relation

N o J(en I 2
Si(k) = sﬂ’“ﬁ T <kq$1‘ - kqéé‘)'

where ¢f, i = 1,2, are defined so that (¢f)* = m7(sq/s). Moreover, they have the

same directions as the original ¢; and the same total energy, ¢;° + ¢;° = /3¢ in the
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QMS. Thus we have

Isq = S (k)m =2aQ¢[B(Qr, q1,43) — B(Qr.q7,¢3)]-  (7.256)
2 5

~ Jsa KO
To sum up, for the case of the weighted events, the method of hiding photons
in 6Q = Q;\Qp leads to a new crude distribtuion similar to that in eq. (7.251) with

the new

5Q —|—2K’Q

Ry = vylog (5f
Consequently the above exponential factor does not cancel not exactly in the model

weight with the corrctions to the YFS form factor as before. And we have the cor-

recting factor in the model weight:

Whide - eXp{_Q&Qf[B(QD qr: q;) - B(QF7 qT7 q;)]

+ 2an[B(QDQ17q2) - B(QFanQQ)]}' (7258)

The important asset from the approach of hiding photons in Q2 = Q;\Qp is
that with the above correcting factor we could do calculation for the CEEX model

with the ISR-FSR interference switched on.

7.4.5 Entire MC Algorithm Top-to-Bottom
For the CEEX model, according to the results of the previous subsections, we

obtain

O-gE):EX{A} - Z Z Z /AWg;E)EEXngﬁwlgﬁlwhidedgglizﬂ/](Q]). (7.259)
f=u,7,du,s,c,b n=0 n’=0

And daﬁiin,}(ﬁ 7) is derived from the product of the ISR and FSR primary differential

distributions

dof,l (2, Qp) = dT,7(Q;)d3,) (Qp) (7.260)

[n,n
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by means of hiding FSR photons in 2. Therefore, only momenta outside the common
IR-domain enter into the evaluation of W((JQEX and of all other weights.
The integrated cross section with the acceptance function A is obtained in the

MC run in a standard way
oimex{A} = (AW R W WG Whiae) 0. (7.261)

The overall normalization is based on

o= S S [t =Y [arieny [t
n=>0 n’=0

f=u,....b n=0 n/=0

> i / dIPT(Qy)

F=p,.. b n=0

1
-y / dvoot. (s(1 = v)) Jo(v)Fer7 e (7.262)
=05 0

where we have used the property [ > dgF ™ (Qr) =1 of eq. (7.221), and the ISR part
is taken from eq. (7.239).

Now we have the entire MC algorithm from the top to the bottom. It starts
from the generation of v describing the total energy loss due to the IRS, the type
of final fermion f and the photon multiplicities n and n’, and then generate photon

energies and angles using the method described in the previous subsections.
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CHAPTER EIGHT

Interface between KKMC-hh and MG5_aMCQ@QNLO

With the help of KKMC-hh [90-92], the coherent exclusive exponentiation
(CEEX) electroweak (EW) exact O(a?L) correction for the Drell-Yan process (please
read Appendix E) has been achieved. In order to realize the EW+the next-to-leading
order (NLO) QCD correction for the Drell-Yan process, we will first apply the Mad-
graph5_aMCQ@QNLO (MG5_.aMCQ@QNLO) [118] to obtain the next-to-leading order QCD
correction, and then we will interface KKMC-hh with MG5_aMC@NLO via merging
their LHE files to achieve the EW and NLO QCD corrections. In this chapter, we will
first introduce the overview of MG5_aMC@QNLOQO. Next we will describe the approach
to interface KKMC-hh with MG5_aMCQ@QNLO. Finally we will exhibit and discuss our

results.

8.1 Overview of Madgraph_aMCQ@QNLQO

MADGRAPH [119] is a powerful tool for automatically generating matrix el-
ements for high energy physics process, such as 2 — n scatterings and decays. First
the user inputs a specific process in terms of initial and final particles, allowing some
refined criteria. As a result, MADGRAPH generates all Feynman diagrams for the
process, and yields the computer code to compute the matrix element at a given phase
space point. The matrix element calculation is done using the helicity amplitudes
technique which was first implemented in the package HELAS [120]. The applica-
tion of the helicity amplitudes is efficient because it allows the helicity amplitudes

corresponding to identical subdiagrams to be reused between the diagrams, leading
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a considerable optimization. The computer code generate by MADGRAPH can then
be used for the cross section and decay width evaluation and event generation.

The essential idea of MADGRAPH5_ aMC@NLO is the same as the MAD-
GRAPH family. The structure of a cross section is essentially independent of the
process regardless of the theory and of the perturbative order, and thus it can be
written as a computer code once and for all. For example, phase phases can be de-
fined in full generality, leaving only particle masses and number as free parameters.
Conversely, matrix elements which are obviously dependent on the theory and pro-
cess can be calculated starting from a limited number of formal instructions, such
as Feynman rules and recursion relations. MADGRAPH5_aMC@QNLO is written in
a meta-code, in which a Python code writes a Python, C++ or Fortan code. The
latter code is specific to the desired process. MADGRAPH5 aMC@QNLO includes
two ingredients. The first one is a theory model, which is equivalent to the La-
grangian of the theory and its parameters, such as masses and coupling constant.
The second one is a set of process-indepedent building blocks for automation of cal-
culations. The automation of NLO computation involves the FKS subtraction block,
which carrys out the generation of the real corrections with the proper subtractions
automatically [121-126], by interfacing MadFKS [126]. Besides the module for real
corrections, the automation of NLO computation requires a specific module for virtual
corrections. In MG5_aMC@NLO, the virtual contribution to an NLO cross section is
achieved through the module MADLOOP [127], which is based on the OPP integrand
reduction technique [128]. These two module above together allow a fully automatic

computation of infrared-safe observables at NLO in QCD. After the integration of
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the matrix element hard process, the full parton shower and hadronization infras-
tructures, such as Herwig and Pythia, etc., are also critical for an accurate simulation
of a hadronic process. In this thesis, we have applied MG5_aMCQNLO + Herwig
to obtain the simulation of the Drell-Yan process pp — Z/v — ptpu~ + X at the

nex-to-leading order in QCD.

8.2 Interfacing KKMC-hh with MG5_aMC@NLO

We will now introduce our approach to interface KKMC-hh and MG5_aMC@QNLO.
Our essential idea is merging their LHE [129] files to achieve the EW and NLO QCD
corrections. Namely, given that LHE file from the MG5_aMC@NLO contains all the
information of the events at the partonic level, we extract the next-to-leading order
contribution in QCD for Drell-Yan process from the LHE file and combine it with the
weight of KKMC-hh to achieve the EW and NLO QCD corrections of the Drell-Yan
process. We are exhibiting our method in details in the following.

In the KKMC-hh, the basic event (x1, x5, v, Whasic) is generated by the distri-

bution

o @1 1 s
p _2Nq[%(Qsmin - Qsam)]ZOQ(@)fql(\/@,ﬂil)fqg(\/@, T2)
1.y, v

= ! v

X 5(;)(,07”2”) (]' + m)vmaz
x UBorn((l - U)Qs)
3(1—w) '

which includes three components:

2 1 1
p(xlal?) = 2NQ[Z2;(Q - Q )]log(Qi>fQ1(\/@7 xl)flb(\/@a x2)7

15, v - 1 oporn((1 — 0)Qs)
p(U) (5)(@) (1 + m)vmaaﬁ and 3(1 — U) ’

242



where x; and z5 describe beamstrahlung, v describes the total energy loss due to ISR,
and Whgaeic 18 the weight corresponding to the basic event.

The weight XWGTUP derived from the LHE file of MG5_aMCQNLO repe-
sents the cross section of the process in units of pb, which includes the partonic cross
section, contributions from parton distribution functions (PDF) and the perturba-
tive QCD corrections. To be more specific, for the Drell-Yan process pp — Z/v* —

[T~ + X, the differential cross section is

do X 1 1
dyddl = ZZ]:UBOM /ml dx; /12 d; fi(wi, Q°) fi(z5, Q) Ay, 29, 74, 25, Q%) (8.2)

where G4, is s the partonic cross section of the Drell-Yan process, A;; is the per-
turbative QCD coefficient function for the Drell-Yan process. And the partonic cross

section of the Drell-Yan process can be written as

. 1 4ma? 5
O Born = § : 3@2 qu (83)

In order to interface MG5_aMCQNLO with KKMC-hh, we need to replace the
basic weight Wgagie with the weight from XWGTURP after removing the intersections
between Wg,g. and XWGTUP, and use momentums of intial quark paris derived
from LHE file of MG5_.aMCQ@NLO to generate a new pair of parton momentum
fractions z; and 5.

We see XWGTUP has three components: partonic cross section gy, the
function of x; and x; and QCD corrections. So the intersections between Wgagie and
XWGTUP are 6p,, and the function of x; and x5. Therefore, we need to remove
p(xy, x9) from p. Since KKMC-hh would calculate the crude Born cross section after

ISR generation, we remove 0o, from XWGTUP. Then, we could have the p/
,  XWGTUP "

1
O Born 2

A R e e )
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In p(z1,z2), the factor 2N, comes from summation over quarks, where N, is
determined by the subroutine hh_Quarks. Since we need to replace p(x,xs) with
the LHE weight removing the Born cross section calculated by MG5_aMC@QNLO,
XWGTUP /65,1, we would replace this factor together with p(z, x2) in the pro-
gram.

In order to realize our approach in the computer programming, we first coded
a new subroutine UPYVNT, which read event information from the LHE file of
MG5_.aMC@NLO. Then we coded another new subroutine hh_MakeLHE (called
before the subroutine hhFoam _Make) to use momentums p; and ps of initial quark

pairs from LHE file to compute the pair of x; and x5 as follows:

Qs = Q% = (p1 + p2)°,

z ==, (8.5)

S

_ 2
where s = E¢, . Then we have

T = 272,39 = 21772,

where 75 is a random number. And the corresponding weight is

XWGTUP

~

WLHE =

OBorn

Ater generating x; and x9, we modified the subroutine hhBornV_RhoFoam so that
it would only calculate ¥ and v with the help of new () and generate a new v. In
sum, the new Wg,g is calculated according to eq. (8.4).

With the help of the new basic weight of eq. (8.4), the cross section for

interfacing KKMC-hh with MG5_aMC@NLO can be evaluated by

a:p’<Hwk>. (8.6)
k
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In the program, this cross section is calculated by the average of main weight Wypaiy.

The main weight has two components Wepg and Wieg:

WMain - WCrud X WBest-
The crude weight Wq is calculated in subroutine KK2f_Make. The crude weight
has two components, the ISR components Wisg and the FSR components Weggg.

Werwa = Wisr X Wrsr,

where the ISR components Wigr is calculated by subroutine KarLud_Make and the

FSR components Wggr is calculated by subroutine KarFin_Make

Wisk = Whasic X Whatass X Wpit X Wews X Wikr,

WFSR = W1 X W2 X Wg, (87)

The brief explanations for components are as follows:

(1) Whasic: the basic weight Wg,g. is calculated by eq. (8.4), which generates
v, 1 and . It includes not only the electroweak contribution but the NLO QCD
corrections as well.

(i) Witass: the weight Wiass corresponds the simplification made on the photon
angular distribution by dropping mass terms. If there is no photon above detectablity

threshold, then

If not,

Witass = ﬁ ! (922)' (8.8)
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0,) = o 1 mﬁ 1 mz 1
1) = 72 [ (1 — Beost)(1+ Beost;) s (1— Beost;)> s (1+ Beosty)? |’
_ 1
f(0;) = . (89)

o2 (1 — Bcosh;) (1 + Beosb;)

(iii) Whpy: this weight corresponds to the simplification made on the dilatation

Jacobian.

J(kv) = % <1 + ;) s Jo(v) = % (1 I ) o (8.10)

We therefore have

J(k,v)  1+V1—Av
J()(U) N 1+\/m '

(iv) Wey: this weight corresponds to the lower photon energy boundary:

Wi = (8.11)

Wew =0 (Xo(k,v)z, —€) =0 (% - 5> : (8.12)

(v) Wxkp: this weight corresponds the generation of KF codes, generated by
subroutine MBrA_GenKF.
(vi) Wi: it is the weight corresponding to phase space limits for very hard

photon, generated by subroutine KarFin_YFSfin,
Wy = 1. (8.13)

(vii) Way: it corresponds to the weight for translation Jacobian, generated by

subroutine KarFin_YFSfin,

1+ KY

Wy = — =
2T+ K0+ IR

(8.14)

(vii) W3t it is the weight that corresponds to the following simplifiications:

mj (™7 log (37 ((1+K° log(8
flo,—L)—r(o,—L), ev 0g(d7(1+K"))) __y o5 log(dy) (8.15)
SX
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where

myp o 1+B87 1 gl

9. —1y— B A N
1 SQ) 010y 203 203
01; = 1 — Bycosb;,
d2j = 1+ Brcosb,
_ m> 14 ﬁ 1
f(Hj,S—f) 32 ! 32,0620 .
X 8% 11— Bcos®t;
m2\ >
=1L
= ()
al+ B 145
=Q5——+Llog 8.16
=g B C1-pf 510
Therefore, we have
, <1 (05)
Wy = 7 1080 (1K) =y log(6p) TT -2 =22/ (8.17)

7 (0,0)

/
And the model weight weight Wge is of the O(a(?), calculated by the sub-

routine GPS_Make,
k ) — IO(Cz})EEX<pCHpb7pmpd;k1,...,kn)
O (e pai Fr - o) (272D

Please read Section (7.2) and Subsection (7.4.1) for details.

WC(%EX(paapbapcapd; /{1, s (818)

Therefore, with the help of the Wiiain, the cross section which includes elec-
troweak and NLO QCD corrections will be evaluated. Our results will be exhibited

in the next section.

8.3 Results for Interfacing KKMC-hh with MG5_aMC@NLO
We will now discuss the results of interfacing KKMC-hh with MG5_aMC@QNLO.

Specifically, we compared the results of the Drell-Yan process pp — Z/v* — utu~ +

X obtained by KKMC-hh, MG5_aMC@NLO and MG5_aMC@QNLO interfaced with
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KKMC-hh respectively. We made these comparisons at /s = 13 TeV with the AT-

LAS cuts on the Z/v* production and decay to lepton pairs [130]:
80 GeV < My < 100 GeV, P <30 GeV
where both memebers of the decay lepton pair satisfy
Pt > 25 GeV, Ine| < 2.4.

We here defined My, as the lepton pair invariant mass, P& as the transverse momen-
tum of the lepton pair, P4 as the transverse momentum of the lepton or antilepton
¢, and 7, as the pseudorapidity of the lepton or antilepton ¢. We take the quark
masses as m, = 6.0 MeV, myg = 10.0 MeV, m, = 0.15 GeV, m, = 1.67 GeV and
my = 4.78 GeV [131].

The results calculated by three methods based on 1 million events are listed

as follows:

Table 8.1: Cross Sections obtained by MG5_aMCQNLO®KKMC-hh, KKMC-hh,
MG5_aMC@NLO, respectively

Generator Cross Section (pb)
MG5_.aMCAQNLO®KKMC-hh  2144.72 4+ 7.46
KKMC-hh 1707.68 + 2.44
MG5_.aMC@NLO 1816.00 £ 2.20

The first quantity that we compared were the transverse momentum distri-
butions of muon. As we see, in Figure 8.1, the result obtained by KKMC-hh is
larger than that obtained by MG5H_aMC@NLO for Pr < 35 GeV and Pr > 52 GeV

but smaller for 35 GeV < Pr < 46 GeV. In the range 46 GeV < Pr < 52 GeV,
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Muon P Distributions

0.022
Vs = 13000 GeV

Red: MG5_aMC@NLO ® KKMC-hh
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Figure 8.1: Muon transverse momentum distributions for KKMC-hh (blue),
MG5_aMC@NLO (violet) and MG5_.aMC@NLO interfaced with KKMC-hh (red) with
the cuts specified in the text.

the results derived from KKMC-hh and MG5_aMC@NLO overlap. However, the re-
sult derived from MG5_.aMCQ@NLO interfaced with KKMC-hh did not exhibit the
enhancement for the muon transverse momentum distributions.

The next quantity we compared is the muon pseudorapidity distribution. The
pseudorapidity 7 is a spatial coordinate describing the angle of a particle relative to

the beam axis, commonly used in the experimental particle physics. It is defined as

n = log (tan g) , (8.19)

where the angle @ is angle between the particle three-momentum p and the positive
direction of the beam axis. The pseudorapidity can also be expressed in terms of

three-momentum:

1
n §log (M) , (8.20)

lp| — pL
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Muon Pseudorapidity Distributions

1000000 events Vs = 13000 GeV

0.12
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|
!‘.\np\\\‘\\\‘

Figure 8.2: Muon pseudorapidity distributions for KKMC-hh (blue), MG5_aMC@
NLO (violet) and MG5_.aMC@NLO interfaced with KKMC-hh (red) with the cuts
specified in the text.

where py is the component of the momentum along the beam axis, namely, the
longitudinal momentum. From Figure 8.2, we find that interfacing MG5_aMC@
NLO with KKMC-hh results an apparent enhancement on the muon pseudorapidity
distribution compared with that derived from MG5_aMC@QNLO.

We compared not only quantities of the single lepton but those of lepton
pairs as well. The dimuon transverse momentum distributions obtained by these
three approaches are given in the Figure 8.3. As we can see, the differential cross
section calculated by MG5_aMC@NLO interfaced with KKMC-hh is larger than that
obtained by MG5_.aMC@NLO only, and the enhancement is from the EW corrections
calculated by KKMC-hh.

And the Figure 8.4 described the dimuon invariant mass distributions. By
comparing the dimuon invariant mass distribution derived from MG5_aMCQNLO

interfaced with KKMC-hh with that from MG5_aMCQNLO only, we find there is also
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Muon P} Distributions
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Figure 8.3: Dimuon transverse momentum distributions for KKMC-hh (blue),
MG5_aMC@NLO (violet) and MG5_.aMC@NLO interfaced with KKMC-hh (red) with
the cuts specified in the text.

an enhancement that is due to the EW corrections provided by KKMC-hh. Besides,
we see the resonance peaks near 91 GeV derived from these three generators.

Finally, let us see the dimuon rapidity distributions in the Figure 8.5. The

rapidity is defined as

1 E+pr
=-1 : 21
v=glos (5 0) (5.21)

We see that MG5_aMCQNLO interfaced with KKMC-hh amplified the dimuon rapid-
ity distribution obtained by MG5_aMC@QNLO only. The amplification can be viewed
as a consequence of the EW corrections.

In sum, we exhibited the comparisons of the results obtained by MG5_aMC@
NLO®KKMC-hh, MG5_aMC@NLO and KKMC-hh. We find that MG5_aMC@QNLO
interfaced with KKMC-hh would enhance the results obtained by MG5_aMCQNLO

only and the enhancement is due to the EW corrections derived from KKMC-hh.
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Dimuon Invariant Mass Distributions

C 1000000 events Vs = 13000 GeV
014
- Red: MG5_aMC@NLO ® KKMC-hh
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0.06|—
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Figure 8.4: Dimuon invariant mass distributions for KKMC-hh (blue), MG5_aMC@
NLO (violet) and MG5_aMC@NLO interfaced with KKMC-hh (red) with the cuts
specified in the text.

Dimuon Rapidity Distributions

100000 events Vs = 13000 GeV

Red: MG5_aMC@NLO ® KKMC-hh
Violet: MG5_aMC@NLO
Blue: KKMC-hh

|
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Figure 8.5: Dimuon radipity distributions for KKMC-hh (blue), MG5_.aMC@QNLO
(violet) and MG5_aMC@NLO interfaced with KKMC-hh (red) with the cuts specified
in the text.
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CHAPTER NINE

Overall Summary

In this dissertation, we have developed a new numerical method to calculate
the general five-point function, which is important for evaluating one-loop radiative
corrections. Our method is developed from the magic spinor product approach in loop
integrals proposed by B. F. L. Ward originally, which applied the ”Chinese magic”
spinor technique to simplify the loop integral so that the Ey could be expressed in
terms of n-point one-loop integrals (n < 4). And the n-point one-loop integrals
(n < 4) can be calculated numerically by the package LoopTools. Theoretically, the
magic spinor product method should provide more efficiency and numerical stability
for the evaluation of the general five point function. By comparing the results obtained
by our method with those directly obtained from LoopTools, we find that they agreed
with each other overall. Such agreements are encouraging.

Additionally, we also developed an approach to achieve the next-to-leading or-
der and the electroweak (EW) exact O(a,®a?L) corrections, interfacing MG5_aMC@
NLO with KKMC-hh by merging their LHE files. We first coded a program to read
the event information from the LHE file of MG5_aMCQNLO, and then extracted the
next-to-leading QCD O(qy) correction. Combining the NLO QCD corrections com-
puted by MG5_aMC@QNLO with the basic weight for generating events in the KKMC-
hh, we obtained a new basic weight including both the NLO QCD O(ay) corrections

and the EW O(a?L) corrections. With the help of new basic weight, the new events
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with O(a, ® a?L) were generated. We compared the muon transverse momentum dis-
tributions, muon pseudorapidity distributions, dimuon invariant mass distributions,
dimuon rapidity distributions obtained by KKMC-hh, MG5_aMC@NLO and KKMC-
hh interfaced with MG5_aMC@NLO , at /s = 13 TeV with the ATLAS cuts on the
Z/~v* production and decay to lepton pairs, respectively. By comparing the results
of the Drell-Yan process obtained by these three generators, we find that the results
derived from KKMC-hh interfaced with MG5_aMC@NLO bring enhancements from
those derived from MG5_aMCQNLO, which are due to the EW corrections provided
by KKMC-hh. We conclude that interfacing MG5_aMC@QNLO with KKMC-hh would

provide a way to achieve the exact O(as ® o?L) corrections.
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APPENDIX A

Feynman Rules of the Electroweak SM

In this appendix we outline the Feynman rules of electroweak SM in the 't
Hooft-Feynman gauge including the counterterms. In the verticles all momenta are
set up as incoming.

Propagators:

for gauge bosons V' =, Z, W in the 't Hooft-Feynamn gauge(¢; = 1)

for Faddeev-Popov ghosts G = u?, v?,u"

for scalar fields S = H, x, ¢

_ )
Se=—==>»—-=-5 T e

and for fermion fields F' = f;

p
F >

F = 7mf‘

=

In the 't Hooft-Feynman gauge we have the following relations:

Muw - 0, Muz == MX = Mz, Mu:l: == M¢ == MW (A].)
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Tadpole:

& — 6.

V'V -counterterm:

k
Vi NANANRNANAN Vi —ig,,, [C1k? — Cs

with the actual values of Vi, V5 and (4, Cs
W+W_ . Cl = 5ZW, CQ = M‘%V(SZW + 5M5V
27 Cl = 5ZZZ, Cg = M%(SZZZ + 5M§
1 1 ,1
AZZ Cl == §6ZAZ+§6ZZAa CQZMZ§5ZZA
AA - Cl = 5ZAA; CQ = 0. (AQ)

S S-counterterm:

k
Sy~ — _®_ — =59 :i[01k2_02]7

with the actual values of Sy, S, and C7, (s

HH:C, =62y, Cy=MpéZy+ Mp,. (A.3)

F F-counterterm:
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p _
F X E

= i[Crp3(1 —75) + Crp5(1 +75)] = Csp3(1 — 75 — Cgp5(1 +75)],

with the actual values of Fy, Fy and O}, Ck, Cg,C¥

Cg = myp 30 25" +myp 3625 4 550my,,

Cf = my 30257 + my 26 255t + 6,50my,.
\
VVVV-couping:

‘/].,},L V3’7p

= 1'620[29;“/9(;;) — GvpGue — gp,ugl/(f]

Vau Vie

with the actual values of V;,V5, V5,V and C

1 OSsw
WIWTW-Ww~ . C= {1 + 207, — 2— + 25ZW1
R i 1 dsy 1w
5%, c2 sy 2 sw

1 dsw
WJrWiAZ : C= E—W |: 252 - C_SS_ +(SZW + 5ZZZ + 5ZAA:|
w W

1 1c?
—=0Zaz — =502 24
2 2 S%V
1
WHIW-AA:  C=—[1420Z. 462w + 6Zaa] + §C—W(sZZA. (A.5)
Sw

V'V V-couping:
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‘/2,1/, k2

‘/1, Jkl .
g = —1eClgu (ko — k1), — Gup(kz — ka),
_gpu(kl - kS)l/

%,py k3

with the actual values of V;,V5,V3 and C

1 1
AWAYW™: C=146Z. +6Zw + ~6Zan — ~ X574,
2 25W
+ _ Cw 1 (5SW 1 1
ZWTW™ C=— 1+6Ze___+6ZW+_5ZZZ —|——5ZA2.
Sw 2 sy 2 2

(A.6)

SSSS-couping:
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Sy -

So

S,

= ie2C

with the actual values of 51,55,53,9, and C'

HHHH :

HHyy :

HHéo :

XXXX -

XX :

PPoo

C:

3 M2
4s%, ME,
1 M3
453, M2,
1 M3

452, M2,
3 M2

o 4s?, ME,

C =

SSS-couping:

1 M3
4s%, M2,
1 M3
2312,‘, M‘%V

14262, —2
ﬁ+2&z—2
4 +26Z, —2
B +20Z, — 2
4 +26Z, —2
ﬁ+2&z—2
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Ssw  OM%E  OME
sw | ML M
dsw  OM%  SME
S VRS VE)
dsw  OM%  SME
ow MZ M
dsw N OMp oM
swo Mg M |
dsw  OM%Z  SME]
ow MZ  MZ
Ssw OM%E  SME
sw | ML M% |




“““““ o = ieC

with the actual values of 57,553,535 and C'

3 Mp [ 5 SM% 1 6M?2

I el LAt v A V7
wl w H W

1 M3 [ Ssw OMZ  16M3

Mo C= g 02— o M%?—éM%VVV
LM | dsw  OMp  10M§

Hyy: C=-———|1+62. — g 10My
X 5w | o ML 2

VVVV-couping:
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3

2
1

+ =02y

2
1

2

07y

07| -

(A.8)



Vau

/( Sl

= ie%g,,,C

‘52

with the actual values of V,15,51,55 and C'

W W~ HH :
WHW~xy :
WTW~¢g :

ZZ¢ o™ -

ZA¢T o -

AAPT o
ZZHH :
Z7XX
ZAHH :

ZAXX :

1T 5
C=— 1+2526—2ﬂ+5zw+521{ ,
252 L SW

| 142527, —25—+6ZW1,

282 Sw
1 )
=Y 11052 — 2% 4 sz
252 | Sw
2 2 2 5
O:w{wzwﬁ —— 5W+5ZZZ]
2 W Cw (st — aw ey sw
siv — l52,427
SwCw 2
St — C 1 OSsw
C:u[1+252+ ey
25}y Cy (sfy — clv)cly sw 2 v
1 1 2 2 )\2
F=Zaa| + —“%—CWUZZA + 6747,
2 2 252,02,
1 SW cW
C=2[1420Z.+ 0Zaa) + =———8Z 24,
2 SwCw
1 )
C= 55 [1+25Z +28W—ﬂ+522+524,
2.6
ST { + 267, +25W G 22w +5ZZ],
Cw CW Sw
1 1
=07
2512,‘,0%[/ 9 EA
1 1
=07
2s%,¢%, 2 24
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1 )
WEZ¢TH: C=-——|1 +6Z _fw (SZW + (5ZH + 5224
2cy | cw
11
———07
9 . AZ,
1] ) 1 1 1
WEAGTH : C=—— (1402 — W & 67w + ~0Zu + ~0Zan
28w L Sw 2 2 2
11
———07Z
26W ZA,
' ) 1 1 1 2
WEZoTy: O =F— (14062, — "X 4 252w + ~0Z24| F =024y,
2cw cw 2 2 22s
. Jsw 1 1 1 i
W*Z¢FTx: C= q:— 1402 — — + 202w + Z0Z4a| F s—0Z24
25w Sw 2 2 2 2c
(A.9)
V'S S-couping:
Sl) k,l
v,
AN = ieC (k1 — k»)
S, ks
with the actual values of V', 57,55 and C
1
AxH: (C=-—= : Zza,
2 QCWsW
' )
ZxH : C=- ! {lJr(SZ +8W ﬂ+ 5ZH+ 5222}7
CowSTW CW Sw
. 1s% —ck
ApT o - C=—-|14+6Z.+ = (SZAA—F ZW(SZZA
wCw

2 _
Zete: O =_lw Ciy [1+5Z +

QSWcW

0Sw
(S —CQ )02 P + 5ZZZ:| - _5ZAZ7
w wI)=w

1 1
WEetH: C = $—{1+5Z—58—W—|— 5w + 524

2SW SW 2
j ) 1

WEpry: OC=—— {1 oz, - W —5ZW].
SWw SWwW 2

(A.10)
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SV'V-couping:

i,

————————— =19, C

“/v27p

with the actual values of S, V1,V and C

1 Sswo 10MZ, 1
HWIW™:  C=My— 1467 — X 4 _20W o 257, + 62w
SW SWwW 2 MW 2
1 282, — 2, dsyw  10MZ, 1
HZZ: C=My—s; [1+5Z8+ w S 2OW | 2 2W+—5ZH+5ZZZ}
Sw ey Cyy Sw 2 My, 2
1

1
HZA: C:MW ) EéZZA,

SW ey

1 1
(biW$Z . C - —MWS—W |:1 + (SZe + + ééZW + §5ZZZ:| 5

Cw 012/1/ SWwW 5 MI%V
16M32 1 1 syl
+ W w
WTA : C=-Myl|l+dZ.+ — —07 —07 — My —=0Z44.
¢ W|: + +2Mv2v +2 W+2 AA:| WCW2 ZA

(A.11)

V F' F-couping;:
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=iev,(Cw_ + CTw,)

Fy

with the actual values of V, Fy,F, and C* and C~

(

. CF = —Ql05j(1 + 6Zc + 36 Zaa) + 20 ZLT + 621N + 61397 26 Z 24,
vfifi
| O™ = —Qsl(1+0Z. + 30Z.44) + 5(0ZL" + 025" + 897 56224,
(
+
- Ct = g}'[&j(l —+ (Sgg—_ff + %5222) + %(6Z£’R + 5Zifj’RT>] - 5iij%5ZA27
Zfif;: !
— 6 f
(O = g16,(1 + ;—ff +30Z57) + 3625 + 621 - 6,;Q446 247,
)
ct =0,
Wtad; - C = A [Vij (1 +0Z, — 2w 4 éazw) +0Vi; + 130,025 Wy
+wk62,ff)} ,
\
(
Cct =0,
Wodu: {om = 1 [vj:.(l t oz, — By gazw) T S SR
u,L
\ +Vj];96Zkz‘ )}7
(
ct =0,
WJFEZZJ :
C™ = 4, {1 + 07 = 2 4 302w + (027" )u + 5Z§%L] )
\
(
. ct =0,
W_ljl/i : (A12)
C™ = 4, {1 +0Z. = 2+ 502w + 5(025M)ii + 5ZZ’L] )
\
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where

s Sw 1 dsw
g}r:_cV;,OQﬁ 59?__CWQJC|:5Z€+CQ 3W:|,
w
2 2 2
- _ I‘%V,f_S%/VQf + IW,f Sw — Cw §SW +
9 = " swew (ng = SWCW-Qf 07 + TW + (ng. (A.13)

The vector and axial vector couplings fo the Z-boson are given by

1 Ly y — 253 Qy 1 I3,

Al4
2swew 2 ( )

ZSWcW

SF F-couping:
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- =ie(Cw_+ Ctwy)

Fy

with the actual values of S, F},F, and C* and C~

Hfif;:

xfifj:

¢+I_Lidj .

;

_ 1 my 55w dmy SM 1
Cct = — 5 MJ;V [5@(1 +0Z. — 2+ # — S+ §6ZH>
+3(6zZ" + 525‘]:3*)],
_ 1 myg; 5w om K oM 1
C = _2SWM_J:/V|:5U(1 +5Ze - g + m_fjtz - M_MV/V + 552}[)

ct = iﬁQI‘i’V my {51,], <1 67, — is_ww + omypi W_W)

o My, my My
+3(6ZL" + 5Z£’RT)],
O~ = —ight-2l}, [@j (1 + 07, — o 4 TRL %VVV)
+3(6Z5F + 5233”)],
ot = _ﬁiw%{%(waze — w4 Smes Sy 4 5V
025 + Vo Z8 )|
C™ = 45—t {sz <1 +0Z, — 2 ‘Zj:j — S 40V

LS, (6ZEH Y, mzz;ﬂ)} ,
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)
_ 1 May,q S 6mu
CF = T 1 [Vfi(l”Ze By Tt — S+ OV
od 3 Ln (025 Vi + ijaZZ:;RM |
5 Wi
- _ 1 Mmd, 1 ds dmg, SM 1
¢ C Vasw M {V <1 ode = ‘:’V + mdd,jj ~ Mw +oVy
d,L u7
| ARz viszh)
(
+_ 1 Mg Js dmi; M 1 v, Rt LR
o, C T L0y [1 +0Ze — T+ Fr et (6Z“. +07Z; )],
C~ =0,
\
(
- Cct =0,
(biljyi
- m; om; ; v
| O™ =~y Tt {1 R e (525;” + 52“.@)] .

(A.15)

V GG-couping:
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o
Vu -7 .
ANNNNO. = iek; ,C
.
G27 kQ

with the actual values of V', G1,G5 and C

1
Autu® C =4 1—|—5Z + 5ZAA:| F C—W—(SZAA,
19
Zitut: C=F|14+672 — W 4 —5222} + —5ZAZ,
CW Sw 2 2
19 1
Wratu? . O =41 +5Z —ﬁ + 6ZW}
i k& oswo 2
19 1
WEaZu¥ . C=F|1+62, — — W 4 —5ZW} ,
CW Sw 2

WEatu? C=F|1+62.+ §5ZWi| )

W*aut: C=+|14+06Z.+ %524 .

SGG-couping:
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= e

with the actual values of S, G1,G» and C

1 252, — %, 0 16M2 1
Hi?u?: C=-— 3 MW|:1+6Z6+ SW2 G 2W 2 QVV‘F—(SZH],
2sw ey Ciy Sw 2 My, 2
1 dsy  10M?2 1
Hutu® : = —— My |l1+6Z. — —— W 57,
uu C S Wl—i— SW+2M5V+2 H}
1 0s 16M?2
it = Fi—My |1+62, — XL 4 =W
XU u C $22$W W{ + 8W+2M5V ,
2, —c2 s 16M32
a2uT - _ My |14+67, Sw — Cwosw L w
o ¢ 2swew W{ - * iy oswo 2 My |
2 — 2 o 1 6M?2
grutu? . C=WWhp o ysz, 4 TW o 0w
2sw Cw (siy — ey sw o 2 Mg,
16M2
tgtyy =My |14+6Z. +-—2|.
oTuTu C W[ + —1—2 M2,
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APPENDIX B

Feynman Rules of Quantum Chromodynamics

In this appendix we outline the Feynman rules of quantum chromodynamics

including counterterms.

Vuluzus(kla ko, ks) = (k1 — k2)u39u1u2 + (ko — k3)u19u2u3 + (k3 — kl)uzgusm (B.1)

13,24 14,32 12,34 14,23
W;;/ﬁ :(f —f )gmuzgugm + (f —f )gu1u3gu2u4

F(fB_ psy, o (B.2)
FiiH _ posaja parara (B.3)
Gluons A
awm“d@m\ b = 0wz (g;w —(1- Oé)k‘;;];"),

Faddeev-Popov ghosts x

Quark fields v

p
a < b = 0;j L

Gluon-counterterm
k
aﬂmm by - (ZS - 1)5ab(kykl/ - k2gu1/)
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Faddeev-Popov ghost counterterm

k
a o---- (—---®"" """ b = (23 - 1)5abk2’

Fermion counterterm

7 -—i@—(— j: [(ZQ — 1)p — (ZQZm — 1)mR]5i]‘,

Three-gluon vertex

a2, [l

Qy, f

= —igf 2BV s (K1, k2, k)
as, p3

Gluon-ghost-ghost vertex
b

a,
000000 = —igf" "k,

Gluon-quark-quark vertex

?

a, p
= g”YuTi(}
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Four-gluon vertex

ar, [by Qq, flq

2 ai---a4
= "W

a2, L2 as, ft3

Three-gluon vertex counterterm

a2, |2

Qay,

= (Zl - 1)(_i)ngalawSVmuzm(klv k27 k3)
as, (3

Gluon-ghost-ghost vertex counterterm

b

a, i

mmm — (Zy — 1)(=i)grf°k,

Gluon-quark-quark vertex

i

a, | ~
= (Zir — 1) grT 0

273



Four-gluon vertex

ar, [by Qq, flq

a2, L2 as, ft3

The gluon loop

a, 1t

b,l/° +k

The ghost loop

= (Zy — 1)(—1)gaWa s,

p

/ (zdj)kﬁlz‘ a* g,

—f d4k'5ab'

(2m)%i
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The quark loop

a +]€ _f d*k 5 goB.

(2m)%i

The gluon-quark loop

PT‘E
—
¥lx
e

The gluon-ghost loop

Symmetry factors
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APPENDIX C

The SU(3) Group

The SU(3) generators T, are hermitian, traceless matrices which generate the

closed SU(3) algebra
To, Ty = ifape T, (C.1)

where fu. are the antisymmetric SU(3) structure constants with non-zero values

given by

a b ¢ fae
I 2 3 1
1 4 7 3
1 56 —;3
2 4 6 1
25 7 |
345%
367 -1
4 5 8 ¥
6 78 ¥
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A convenient representation of the T, matrices is the one introduced by Gell-

Mann [132] in which

0

1
T1:§ 1
0
1

1
T3:§ 0
0
0

1
T5:§ O
1
0

1
T7:§ 0
0

Ty

I
N | —
e ~ o

1
T6:§
1
Ty = ——
8 2\/3

e}
e}

(@]
—

0 1

0 0

=}

0o |- (C.2)

—2

The fundamental representation is 3-dimensional where 7}, satisfy the relation,

1
{Tm Tb} - géab + dabcTca

which is consistent with the normalization

1
Tr [TaTb] = 5 (Sab.

Here dg. is totally symmetric in a, b and ¢ and is given by

According to egs. (C.1) and (C.3

17,1, =

dabc = QTI[{TG, Tb}TC]

~—

DN | —

, we find that
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1
_5ab + (dabc + ifabc)Tc

(C.3)

(C.5)



The traces of the products of generators T, in the fundamental representation are

given by
1
Tr[TaTbTC] = Z(dabc + Z‘fabc)a (C?)
1 1 . .
Tr[TaTchTd] - Eéab(scd + g(dabe + lfabe)(dcde + chde) (CS)

In the adjoint representation the generator 7, is a 8 X 8 matrix and its matrix

element reads

(Ta)bc = _ifabc- (Cg)

The traces of products of generators T yield

3
Tr[TaTch] - éz‘fabca (ClO)
3
Tr[TaTchTd] - 5ab6cd + 5ad6bc + Z(dabedcde - dacedbde + dadedbce)- (C]-l)
The eq. (C.10) reduces to
3
fadefbeffcfd - éfabc' (Cl?)
The Jacob identities
[Tw, [Ty, Tc]] + cyclic permutations = 0, (C.13)
1o, {Tp, Tc}] + cyclic permutations = 0, (C.14)
leads to the following relations:
fabefcde + fcbefdae + fdbeface = O; (C15)
fabefcde + fcbefdae + fdbeface = 0. (C16)
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APPENDIX D

The Global Positioning of Spin GPS Scheme

In Chapter Three, we introduced the Kleiss and Stirling spinor method. In the
KS scheme, the massless spinors and massive spinors are defined [52]. The definitions
in the KS scheme will be supplemented in Ref. [54] with the precise prescription of
the spin quantization axes, the translation from spin amplitudes to density matrices,
and the methodology of connecting production and decay for unstable fermions.

The GPS rules determining the spin quantization frame for the u(p, =) and
v(p, £) of eq. (3.99) are summarized as follows:

(i) In the rest frame of the fermion, take the z-axis along —F.

(ii) Place the z axis in the plane define by the z-axis from the previous point
and the vector 77, in the same half-plane as 7.

(iii) With the y-axis, complete the right-handed system of coordinates. The
rest frame defined in this way we call the GPS frame of the particular fermion.

Next we will assume that polarization vectors of beams and of outgoing fermions
are defined in their corresponding GPS frames.

For the definitions of inner product of the spinors are the same as those de-
scribed in Chapter Three.

For a circularly polarization vector with four-momentum k& and helicity o = +1

we take the following convention [51]:

_ _to(k)y*us(B)
V2u_g (k)uq(5)

[e5(8)]"
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aa(k)’yuu0<<‘)
V3o (b)) (B-1)

where 3 is an arbitrary light-like four-vector 5% = 0. The second choice with u,(¢)

€5 ()] =

(constant basic spinors) often simplifies the resulting photon emission amplitudes.

With the help of the Chisholm identity

U (k)yutie (B)7" = 2uq(B)t—o (k) + 2uq(k)u—o(5), (D.2)

U (k) Yo (O = 2uq(C)i—g(K) + 2us(k)u—o(C), (D.3)

we obtain two useful formula, equivalent to eq. (D.1)

* V2 ()
¢a(/€’6> - @_g(k)ug(ﬂ)[ U(ﬁ) (k) + U(k> —0(6)]7
¢g(k7 C) = m[ua(g)u—aaf) - ua<k)u—a(C)]' (D4)

While calculating photon emission spin amplitudes, we will use the following
important building blocks, i.e., the elements of the “transition matrices” U and V

defined as

B . k P1p2 "
U(ph Al)fg(k’;ﬁ)u(pm )\2) =U = U)\l,)\2<k7plvm17p27m2)7

77 A
B . k P1p2 "
U(pla)\l)¢a(kac>v<p27)\2) =V o = V,\l,,\Q(k,pl,mljpz,mz)- (D-5)
A1 \g

In the case of u,(() the above transition matrices reads

\/ 2(172 (kaﬁl)a 0
V2 e , (D6)
2 2 ~
ma\[5s — mu/ 5 o S s (ko p2)

Uy, (ks p1yma, pa,ma) = [=UY (K, pa, ma, pr,yma )], (D.7)

U+(k7p17m17p27m2> =

V)\O;,)\Q(k7p17mlap27 mz) = _Ui‘)\l,_)\Q(kupla —ma, P2, —mz)' (D.8)
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Compared with the case of u,((), the more general case u(f) is a little bit

more complicated

k y P1, M1, P2, m?)

F

ﬁ 5 p2 + mime \/;épﬂl QZCijkyml \/ngpﬂ 8+(k p2) +ma QCCpiS (ﬁlv k)
\/ ﬁap? +m2\/ Qsz (p1,ﬁ),3_<]§1,6)3+(k,]52)+m1m2 22551225_;2
(D.9)

The numbering of elements in matrices U and V is

(O, o)} = () (=) (D.10)

(=) (==)

When computing bremsstrahlung amplitudes we will adopt the following com-

pact notation:

pkp i
U = UAl,/\Q(k7p17m17p27m2)
)\10)\2
pkp 3
4 = V)q,)xg(ki?pl)mlvp?amQ)' (Dll)
)\10’)\2

When dealing with the soft real photon limit we will implement the following

important diagonality property:

U pkp =V pkp == ba(kap>6)\1,/\2> (D12)
)\10’)\2 )\10')\2

by (k p):ﬁM—ﬁ 26p so (k. P), (D.13)

o u(k)uq(C) 2k '
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which also holds in the general case of u,(f3), where

bohop) = Y (a3 B)salp ) + 1 JERIEER). (D
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APPENDIX E

The Drell-Yan Process

The Drell-Yan process is a model for the production of massive lepton pair
in hadron-hadron collision developed by Drell and Yan in 1970 [93]. In the model a
quark from one incident hardon annihilates with an antiquark from the other hadron
incident hadron producing a virtual gauge boson which in turn decays into a massive
lepton pair. It provides many interesting tests of perturbative QCD. We will make a
brief introduction of Drell-Yan process here [133].

First, let us begin with the parton model, in which large mass muon pairs are
created in the proton-proton collison via the subprocess ¢ +q — v* — u™ + p~. The

experimental cross section reads as follows
do = Gy y(w,)dr,G ) q(zp)dryo (g +q — 7 — pt +p), (E.1)
where G,(x,)dz, is the probability of finding a quark with momentum
Dg = TalPa, (E.2)
and G,_,z(xp)dzy is the probability of finding a quark with momentum
pg = T Pg, (E.3)

where P4 and Pp are the momentum of the intial two protons. It is convenient to

define the dimensionless variables

(E4)
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where M is the mass of the muon pair and where s is the external proton-proton

CMS energy squared

s = (Py + Pp)* = 2P%,,, (E.5)
and § is the internal parton parton CMS energy squared
5= (pg+Pa)* = 2py - Pz (E.6)
u
Py $©<3 3>®:<: Py

prp—ptp +X

\|V

Py

-
\|V

Figure. E.1. The proton-proton collisions (Drell Yan process), p+p — v+ X
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Then we have
§ = TqmpS, T = TqTpT. (E.7)
The Longitudinal momentum of the muon pair are
Pr, = py — pg, (E.8)

and if we assume that the incoming partons are parallel to the incident protons then

the total energy is

E? = P} + M*. (E.9)
eq. (E.8) leads to
X[ = Ty — Tp (E.10)
where
2 = 2L (B.11)

%7

and eq. (E.9) implies
Ty =27 + 47 (E.12)

where

2K

The total cross section for a quark and anti-quark to annihilate into a muon pair,

(E.13)

qq — 't~ reads

5(qf — p ) = _ Ldmacg (E.14)
olqqg = 1) =00 =35 .
where M is the virtual photon invariant mass with

5= M. (E.15)
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According to eq. (E.7) and (E.10) we find that x, and x, can be specified in terms

of 7 and x,
Tolp = T, (E.16)
Ty — Ty = T, (E.17)
and the experimental cross section can be rewritten as
4 1

M? P (x4, xp), E.18
(Sv $L) OM?2 <$a+$b> qq(aj "L‘b) ( )

dopy
dexL

with the joint ¢g probability function

Pog(@a, T) Ze p=a;(Ta) Gpog, (%) + Gposg (Ta) Gposg, (T0)], (E.19)

where the subscript DY denotes the ”Drell-Yan” process pp — p*p~ + X. And egs.

(E.16) and (E.17) lead to

T, = =(zvp + 1) = V1€, (E.20)

1y = ~(vp —x1) = /T Y, (E.21)

N[ — N~

where y is the rapidity of the muon pair defined by

1 E+p;
=—1 . E.22
v=gios (5 ) (522

Next, we consider the possibility that the initial quark or antiquark can radiate
a gluon before annihilating into a virtual photon. The differential cross section for

the subprocess ¢ +q — 7" + g is

d&%Y(AE ! IM(g+q— 7" +9)|
~ S
di ) 647T§%M q+—q—=7 g
1 - _ . 2
:W |M(q +q—7 + g)‘ . (E23)

and the amplitude squared is

) 4
(Mg +q =~ +9)|" = e2elg®~~



where the subperscript g denotes the process ¢ + § — 7* + ¢ the invariant mass of

the virtual is timelike,

M? = ¢, (E.25)

Vs Gy gluon, g, “

Y
Y

4;Pq 4,pg  9,Pq 4, Pg

Figure E.2. Leading order diagrams for the subprocess ¢ +q — v* + g.

The invariants are given by

§= (pg +pa)*,
t= (g, —py)*,
U= (qy +1y)°, (E.26)
with
§+14+1a= M (E.27)
Therefore we have
by g gy 2o [, £ BPOP 0] g
dt 52 t ti
The integral over ¢ is given by
51 (3) = / o d‘;%Y(g, D\di. (E.29)
tmin



where
tnax = M? —§ = —(1 — 7) (E.30)

W>

fmin - 07
Besides we have to include the ”Compton” subprocess ¢ + g — v* + ¢ for correcting

the parton model. The corresponding differential cross section

Doy 5.ty = —L | M(g+ 9= + g, (B.31)
di 16752
where
- . 41 t 5 2MA(M*45+1
M(g+g -7 +q) =518 |33t ( = )| (E.32)
qpq X
gluon, g,

gluon, g,

Figure E.3. Leading order diagrams for the “Compton” subprocess ¢+ g — v*+ g

The invariants here are defined by

§= (pg +45)%,
t= (q’Y - p!I)27
i = (g, — q,)* (E.33)
Inserting eq. (E.32) into eq. (E.31) yields
Aol .~ moasel1 [t & 2MP*(M? + 54 1)
—(5t)=—F—=z|—=—=+ ~ , E.34
dt (5,9 2 31 5 st (E:34)
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and the integral over ¢ is

59 (5) = / ATy i (E.35)
DY - ; th ) . .

min

Note that eqs. (E.29) and (E.35) are divergent with #,,;, = 0 and we must regulate the
divergences. The divergences can be regulated either by giving the gluon a fictitious
mass qg = m§ or by using the dimensional regularization. In the following we apply
the dimensional regularization.

Let us consider the 2-to-2 scattering subprocesses v* + ¢ — ¢ + g and v* +
g — q + q occur in the N rather than 4 spacetime dimension. In the N spacetime

dimensions the 2-to-2 cross section is given by

1 ~ 12
do = —— | M| " d*¥2R,, E.36
4(]91 ‘Pz) | ’ ’ ( )

where

dN—l dN—l

P3 P4
(2m)N=1(2E3) (2m)N—1(2Ey)

PPN2R, — (2m)N 6N (p3 + ps — p1 — p2). (E.37)

Integrating over p, gives
/lep45N(p3 +p1s—p1—p2) =0(E3+ Ey — By — Ey). (E.38)

Now let y = cos 613, where 0,3 is the scattering angle between particles 1 and 3 then

N—-2

_ 212 _ N4
d~ 1P3 = Wpév de:%(l - yz) > dy. (E.39)
(3 -1)
Integrating over p3 yields
/dp ! pY 25(Bs + Ey — Ecy) = —<p,CM)N_3 (E.40)
34E3E4 3 3 4 CM 4\/§ ) .
where
NERVIEE 2112 2
(Bem)”™ = 518 = (ma +ma)7][8 — (ms —ma)7], (E.41)
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and
P1-P2 = \/EﬁCM,
with
~ 2 1 ~ 2174 2
(Pom)” = E[S — (m1 +m2)7|[3 — (m1 —ma)7],

Thus we have

4oy = L We)™™ ) e (-4
dy " 32m5 Pom oN—17 %5 (N 1)
For the case,
. I~
PCMZ—\/E,
ﬁ/CM - _<]‘ - ’TA')\/E,
we have
e (7) 1—7 ([ M?*(1—72)? 1
opy(T) =
o 3275 dnt 2T (1+5)
where
1 ) )
I=/ dy(1 —y*)2 (M|,
-1
with N =4+ ¢ and
A §
P= (6= M1 —y) =~ (1= )1~ y),
. . s .
i=—s(E-M)1+y)=—-(1-7)(1+y),

(E.42)

(E.43)

(E.44)

(E.45)

(E.46)

(E.47)

(E.48)

(E.49)

(E.50)

In N = 4 + € dimensions the matrix element squared for the subprocesses

q+q— "+ g reads

_ 8 €
|M(q +q— v+ g)‘2 = 167r2a%EDa]%CDef]§ (1 + 5)

27y =27y + P + 77+ 27 + 1)
(1 =71 =y
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where

QED __ « QCD __ O
W T e N T )

and mp is the "dimensional regularization mass”. Thus we arrive at
: ) rayPase 16 [ M2(1—#)2\* T (1+ %) (1 e>
Ohy(T) = ————— —
bY s 9 74mrm?, I'(1+e)

2

{1+%22 6(1—%)}

X —— +
1—7c¢€ 1+e¢

Since

1 do? 3 o
— = SOy,
oo d7 Arlae2(1+5)" P

<
2
then we have

(i@) _ 20 ((1—%)21\42)5F(1+§){1+%22+e(1—%)}
DY

oo dT 3 Tdrm?, F'l+e) | 1—7c¢€ 1+e€

where oy is N-dimensional Born cross section. Integrating over 7 yields

R 200, M2\ 2 € 8 6 9
(U(real)>DY— 37]'0—0 (47rm2D) F<1—§> {6—2—E+§+}

Q7pq Q7q(7 Qapq Q7q(7 qqu q, 4

(E.52)

(E.53)

(E.54)

(E.55)

(E.56)

Figure E.4. Virtual gluon corrections to the quark-antiquark ahhihilation q+q — v*.
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The virtual corrections are given by

20 M? \ET(1—$T2(1+%)
5(virtual _ s 2 2
(o (virtual) oy 31 ° (47Tm%) I'(1+e)
8 6
x{-5 -8+ ™+
€
From the expansions
P(1—§r*(1+5) 1 Lo a2
=1 67 —
T1T o +5met g6 — e+,

€ 1 1 [(n? 2\ o
F(1—§>—1+§’YE€+§<E+’}/E)€ +...,

where vg is the Euler constant, we find that

8T 7
5(real) + 6 (virtual)) = opas | — — — | .
(6 (real) + o (virtual)) = oo <9 37r>

For the Drell-Yan case, the perturbation series behaves like

ot = 0o(1+allY +..)

with

We now define ”+ functions” and have

1 /dot ol M?
() =g Pmton (i ) + 20,700,

00

where the splitting function

and
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(E.57)

(E.58)

(E.59)

(E.60)

(E.61)

(E.62)

(E.63)

(E.64)



Note that the ”little f” functions is regularization scheme dependent and the integral

of f#PY over 7 vanishes,

1
/ a, fPPY(#)d7 =0 (E.65)
0
For the "Compton” subprocess ¢ + g — v* + ¢, we take the similar treatment

and then have

1 (dody Qs M? by
— | —=) =2=—P 1 200 f7 E.66
() —ogertoyion (B ) 200 (0
where the splitting function
N e L2
Pyorgg(7) = 5[7_ +(1—=7)7, (E.67)

and

1 1—7)?
s fIPY(7) = ;‘;2{[%2+(1—%)2]10g(( ;)>—gf2+%+;}

R (2
+ %Pg_,qq(T) (Z + v — log(47r)) . (E.68)
Combining the ”annihilation” term with the ”Compton” term and including

terms with the initial two partons interchanged, then the ”Drell-Yan” cross section

becomes (for one quark flavor)

dO’DY( _471'(16
anez CNVE

~(0) (0) Jtot ~ Os M? q¢DY [~

+ Gp%q( G)Gp—ﬂ](xb) o o(1—17)+ %2Pq—>qg< 7)log A2 + 20, fP7H(7)
_ _ _ P M?

(GG, ) + G2, )G o)) | 52 Pt (7

N 2ocsfg’DY(%)1 n (@< ()G9 () + Gpﬁgm)é;%q(mb))

Qo R M? R
X {%Pgﬁqq(ﬂ log F) + 20, fgvDY(T)} } (E.69)

294



where 7 = 7/(z,x,) and

DY

Tt — 14 0PV +. ., (E.70)
0o

with [ (]IDY is given by eq. (E.61). The "little f” functions in the dimensional regu-
larization scheme is given by eq. (E.64). The log(m?,) divergence has been absorbed

into the Gz(,%q and GZ(,O_),Q structure functios.
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