
ABSTRACT

Precision Theory for LHC/FCC: New Results for the Five Point Function and
Interface between KKMC-hh and MG5 aMC@NLO

Yang Liu, Ph.D.

Advisor: B. F. L. Ward, Ph.D.

The development of large colliders provides us with the opportunity to discover

the fundamental particles in nature and explore the interactions among them. The

Standard Model (SM) of particle physics reflects our best knowledge of elementary

particles and their interactions at present, which is formulated by a gauge quantum

field theory with gauge symmetry SU(3)C ⊗ SU(2)L ⊗ U(1)Y . With the discovery

of the Higgs boson, the era of the sub-1% precision on processes such as Z and W

production is approaching us. In order to achieve the 1% theoretical precision tag,

we have to take radiative corrections into account and develop more precise Monte

Carlo generators.

In this dissertation, we first developed the computer realization of the magic

spinor product method in loop integrals proposed by B. F. L. Ward to evaluate the

general five-point function numerically. The result from magic spinor product method

agrees with that from LoopTools overall. Additionally, we also developed an approach

to achieve the next-to-the-leading order QCD and the electroweak (EW) exact O(αs⊗

α2L) corrections, interfacing MG5 aMC@NLO with KKMC-hh by merging their LHE



files. By comparing the results of the Drell-Yan process obtained by KKMC-hh,

MG5 aMC@NLO and KKMC-hh interfaced with MG5 aMC@NLO , at
√
s = 13 TeV

with the ATLAS cuts on the Z/γ∗ production and decay to lepton pairs, respectively,

we find that the results derived from KKMC-hh interfaced with MG5 aMC@NLO

would generate enhancements from those derived from MG5 aMC@NLO, which is

due to the EW corrections provided by KKMC-hh.
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CHAPTER ONE

Standard Model of Electroweak Interation

The standard model (SM) of particle physics represents our best understanding

of elementary particles and their interactions. It is one of the most successful theories,

because its predictions are confirmed with exceptional precision in many experiments.

The SM is a gauge quantum field theory with gauge symmetry SU(3)C ⊗ SU(2)L ⊗

U(1)Y [1–16]. SU(3)C is the gauge symmetry of quantum chromdynamics (QCD), the

theory describing strong interactions, and SU(2)L⊗U(1)Y is the gauge symmetry of

electroweak interactions. The SM is contructed by invariance under Poincare group

(translations, rotations and Lorentz boosts) and renormalizablity. The constituents

of matter are spin-1/2 particles (fermions), 6 leptons and 6 quarks that pair up to

transform under SU(2)L. The interactions of SM are mediated by spin-1 particles-

gauge bosons. The elementary particles of the SM are listed in Figure 1.1.

If an elementary particle carries the charge of a certain force, it is involved

with the corresponding interaction. Quarks carry color charge (red, green, blue) and

interact through the strong force mediated by massless gluons. The gluon has eight

different states, which carrys a combination of color and anti-color charge in each state

(color SU(3) octet). The up, charm and top quarks carry a fractional electric charge

of 2/3e, while down, strange and bottom quarks carry a fractional electric charge

of −1/3e. The charged leptons(electron, muon and tau) have an integer charge of

−e. All electrically charged particles participate in the electromagnectic interaction

mediated by the massless photon . Each charged lepton is paired with a neutral
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Figure 1.1: The elementary particles of the SM

lepton (electron-, muon-, and tau-neutrino) with extremly low mass. All the particles

participate in the weak interactions since they all carry an isospin, of which the

z-compenent is either +1/2 (u, c, t-quark and neutrinos) or −1/2 (d, s, b-quark

and charged leptons). The weak interactions are mediated by the neutral Z or the

electrically charged W± vector bosons. The masses of elementary particles in SM are

acquired thorough the interactions with Higgs fields.

In this chapter, we aim to give a brief introduction of the standard model

of electroweak interactions [17–19]. We will introduce gauge invariance first. The

spontaneous symmetry breaking and Higgs mechanism will be discussed next. Last

we will review the contruction for the Lagragnian of the electroweak interactions.
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1.1 Gauge Invariance

1.1.1 Abelian Gauge Invariance: Quantum Electrodynamics

Gauge theories are built with internal symmetries. For example, consider the

U(1) group of phase transformations of a free massive fermion field ψ(x):

ψ(x)→ e−iαψ(x), (1.1)

where α is an arbitrary phase parameter. The corresponding Lagranian density

L(x) = ψ̄(x)(i/∂ −m)ψ(x) (1.2)

is invariant under these transformations. According to the Nöther theorem, this

symmetry leads to a conserved current,

jµ(x) = ψ̄(x)γµψ(x), ∂µjµ = 0. (1.3)

The conserved charge,namely, generator of the U(1) symmetry group, can be

written as an integral over the charge density:

Q =

∫
d3xj0(x). (1.4)

The invariance of the Lagragnian (1.2) under phase rotation indicates that the

phase parameter α has no physical significance so that it could be chosen arbitrarily.

It is unnatural to select a uniquely fixed α over all of the space-time, and it would be

more natural to choose α locally,

ψ(x)→ e−iα(x)ψ(x), (1.5)

where α depends on space-time in an arbitrary way. However, this modification brings

a new problem. The Lagrangian (1.2) is no more invariant under the local phase

rotations (1.5), because the derivative ∂µψ(x) is transformed under phase rotation
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(1.5) by

∂µψ(x)→ e−iα(x)∂µψ(x)− ieiα(x)∂µα(x)ψ(x). (1.6)

To solve this problem, We need to introduce a covariant derivative Dµ, which has the

property that Dψ transforms under phase rotations like ψ:

Dµψ(x)→ e−iα(x)Dµψ(x). (1.7)

Such a covariant derivative can only be introduced if there exists another field,

a vector field Aµ which interacts with the spinor field ψ. The covariant derivative Dµ

is chosen as

Dµ = ∂µ + igAµ (1.8)

where g is an arbitrary coupling constant, and Aµ transforms under a local phase

transformation (gauge transformation) as follows:

Aµ(x)→ Aµ(x) +
1

g
∂µα(x). (1.9)

We could easily verify that covariant (1.8) satisfies the requirement (1.7). Thus

the invariance of the Lagrangian (1.2) under gauge transformations is recovered after

replacing ∂µ with Dµ. However, we must add the kinetic term of the Aµ field for

consistency, which must be gauge invariant in itself (only involving the gauge-invariant

field strength).

Fµν = ∂νAµ − ∂µAν . (1.10)

Therefore we obtain the Lagrangian which is invariant under gauge transfor-

mation

L = ψ̄(i /D −m)ψ − 1

4
FµνF

µν . (1.11)

4



If we identify the spinor field ψ with electron field, the vector field Aµ with photon

field and replace g by e (electric charge), we obtain the Lagrangian for quantum

electrodynamics (QED). Note that only the minimal coupling of the photon field to

the electron field of the type eψ̄γµψA
µ is allowed due to the requirement of local

gauge invariance. Furthermore a mass term for the photon filed of the type m2AµA
µ

is forbidden to arise in the Lagrangian.

1.1.2 Non-Abelian Gauge Invariance

The idea of non-Abelian gauge theories was formulated by Yang and Mills [20]

in 1954. We successfully constructed the QED Lagrangian by imposing the local

gauge invariance, U(1). This success encourages us to extend the gauge symmetry

from an Abelian gauge case to a non-Abelian case. We will take the isospin symmetry

as an example to formulate of the Non-Abelian gauge theories. The Lagrangian for

the free protons and neutrons is

L = N̄(i/∂ −m)N (1.12)

where N represents the isospinor (p, n)T . It is invariant under SU(2) transformations

N → e−iασ/2N (1.13)

where σ = (σ1, σ2, σ3) (σ ≡ Pauli matrices). and α is an arbitrary phase vector.

The isotropic spin currents N̄γµ
1
2
σiN are conserved. And the associated charges

Ti =
∫
d3xN̄γ 1

2
σiN generate the algebra of SU(2):

[Ti, Tj] = iεijkTk. (1.14)

Note that the gauge transformations involving nondiagonal Pauli matrices σ1, σ2

result in the mixing between p and n states. However, this would not be a problem,
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since there would be no physical difference between proton and neutron for the isospin

symmetry. Our selection for p or n totally depends on convention. Therefore it would

be natural to redefine p and n locally in an arbitrary way, namely, we require the

invariance under non-Abelian gauge transformations:(
p

n

)
→ e−iα(x)σ/2

(
p

n

)
(1.15)

where α(x) is an arbitrary spacetime dependent phase vector. We will encounter the

same problem as in the Abelian case discussed above: the derivative ∂µN which occurs

in the Lagrangian (1.12) will not transform under local gauge transformations as N

itself, and we have to define a proper covariant derivative. To achieve this goal, we

introduce a triplet of vector gauge fields W i
µ, which transforms under an infinitesimal

gauge transformation as follows:

W i
µ → W i

µ + εijkα
jW k

µ +
1

g
∂µα

i (1.16)

This transformation is analogous to eq. (1.9). The second term shows the local

rotation of the W i in the isotropic space. The covariant derivative is defined as

Dµ = ∂µ + igWµ (1.17)

where Wµ = 1
2
σWµ. The Lagrangian of the system is

L = N̄(i/∂ −m)N − 1

4
Gi
µνG

µν
i , (1.18)

where the Gi
µν are the field strength tensors of the vector fields:

Gi
µν = ∂νW

i
µ − ∂µW i

ν − gεijkWjνWkµ (1.19)

This approach can be generalized to the case where an arbitrary gauge group

and an arbitrary fermion representation are involved. The only changes are as follows:

6



(a) Replace the isospin matrices σ with the corresponding matrices describing

the transformation properties of the fermions under the gauge group.

(b) Replace εijk with the structure constants fijk of the gauge group.

Note that the fermions can transform as an arbitrary representation of the

gauge group, while the vector gauge fields must transform according to the adjoint

representation. In the non-Abelian gauge theory, the vector fields interact with each

other directly (”they are charged”). This is not the case in the Abelian theory where

the vector field is neutral. The Lagrangian of the non-Abelian gauge theory (1.18)

describes the interactions of massive fermions with massless gauge bosons.

1.2 Spontaneous Symmetry Breaking

It is known that the weak interactions are mediated by massive vector bosons

Z and W±. However, we have seen above that the non-Abelian gauge invariance

requires the gauge bosons to be massless. This means we must seek another possibility

to introduce masses for the gauge fields in a more subtle way, such that the local gauge

invariance is preserved. This can be realized by generating the gauge boson masses

via a spotaneous breaking of the gauge symmetry.

Usually the equations of motion for a physical system are symmetric under

some symmetry transformations, however, the ground state of the systems is not. For

example, the Hamiltonian for an infinitely extended ferromagnet is invariant under

rotations in space. However, the ground state breaks the rotational symmetry since

the individual spins are always aligned in an arbitrary direction. Similar situations

arise in the field theory often, and we will discuss several examples of spontaneous

breaking field theories.
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Figure 1.2: The potential V(φ) of the scalar field φ in the case µ2 > 0 (left) and
µ2 > 0 (right)

The simplest example to exhibit the phenomenon of spontaneous symmetry

breaking is the φ4 theory. Consider the Lagrangian

L =
1

2
(∂µφ∂µφ)− 1

2
µ2φ2 − 1

4
λφ4. (1.20)

The Lagrangian (1.20) is invariant under the parity transformation P , defined by

φ
P→ −φ. The ground state (vacuum state |0〉) of the theory is the one where φ

vanishes everywhere. It is invariant under the parity transformation: P |0〉 = |0〉.

If the parameter µ2 > 0, the potential V (φ) = 1
2
µ2φ2 + 1

4
λφ4 has a unique

minimum at φ = 0, as shown in Figure 1.2, which corresponds to the vacuum state.

If the parameter µ2 > 0, the situation is that of a spontaneously broken

symmetry. The potential

V (φ) = −1

2
|µ2|φ2 +

1

4
|λ|φ4, (1.21)

shown in Figure 1.2, has minima at

〈0|φ |0〉 = ±
√
−µ2/|λ| ≡ ±v, (1.22)

which corresponds to two possible ground states. These vacuums are not invariant un-

der parity transformation since v 6= −v. Thus the parity invariance is spontaneously

8



broken. It is useful to define a new field φ′, for which 〈0|φ′ |0〉=0, i.e. φ′ = φ− v. In

terms of φ we have

L =
1

2
(∂µφ′∂µφ

′)− µ2φ′2 − 1

4
λφ′4 − λvφ3 + const. (1.23)

We see that the Lagrangian (1.20) with µ2 < 0 describes self-interacting scalar

particles with mass
√

2|µ|.

Next, let us consider the theory of a complex scalar field φ =
√

2
2

(φ1 + iφ2).

Consider the Lagrangian

L =
1

2
(∂µφ∗∂µφ)− 1

2
µ2φ2 − 1

4
λφ4

=
1

2
∂µφ1∂µφ1 +

1

2
∂µφ2∂µφ2 −

1

2
µ2(φ2

1 + φ2
2)− 1

4
λ(φ2

1 + φ2
2)2. (1.24)

It is invariant under the phase transformation φ → e−iθφ. For µ2 > 0 this

Lagrangian describes a self-interacting scalar complex field of mass µ.

Assume we choose µ2 < 0 now, then the potential V (φ) has a minimum at

(φ2
1 + φ2

2) = 2|φ|2 = −µ2/λ. So the minimum of the potential occurs along a circle of

radius
√
−µ2/λ around the origin. Because we could pick any point on the circle as

the vacuum state, we are now dealing with an infinite number of possible vacua. Let

us take an arbitrary point on the circle as the vacuum, described by the coordinates

v = (v1, v2). Since the Lagrangian is invariant under phase transformations, we could

let this point lie on the positive real axis, namely, v = (
√
−µ2/λ), which implies

〈0|φ1 |0〉 =
√
−µ2/λ, 〈0|φ2 |0〉 = 0.

Now we define φ′1 = φ1 − 〈0|φ1 |0〉, then the Lagrangian (1.24) becomes

L =
1

2
∂µφ′1∂µφ

′
1 +

1

2
∂µφ2∂µφ2 + µ2φ′1

2 − 1

2
λvφ′1(φ′1

2
+ φ2

2)− λ

4
(φ′1

2
+ φ2

2)2, (1.25)

where v =
√
−µ2/λ. From the Lagrangian (1.25), we see that the field φ1 describes

a particle of mass
√

2|µ|, but φ2 is still massless.

9



The system described above gives an example of the Goldstone theorem [21–25]:

for every spontaneously broken continuous symmetry, the theory contains massless

Goldstone bosons (spin-0).

The example discussed above exhibits an invariance under the global gauge

group U(1) which is isomorphic to O(2). It could be generalized to involve the gauge

group O(n). Let us consider the Lagrangian

L =
1

2
(∂µφi∂µφi)−

1

2
µ2φiφi −

1

4
λ(φiφi)

2, i = 1, 2, · · · , n;

φi ≡ real scalar field; summation over i. (1.26)

This Lagrangian is invariant under the group O(n). For µ2 < 0 the minimum of

the potential is at v =
√
−µ2/λ. The potential V (φ) exhibits the minimum at

φiφi = −µ2/λ, i.e. it arises on the n-dimensional sphere of radius
√
−µ2/λ in the

n-dimensional space defined by the fields φi. Because of the O(n)-invariance of the

Lagrangian we could select the coordinates of fields so that the vacuum expectation

value of the field vector φi is defined as follows:

〈0|φ |0〉 =



0

0

0

...

0

v



. (1.27)

Note that the first (n−1) components of 〈0|φ |0〉 are zero, the vacuum remains

invariant under the subgroup O(n − 1). We see that the vacuum expectation value

〈0|φ |0〉 breaks the O(n)-invariance in a particular way. Let us see the point (1.27)

10



in the n-dimensional space of the fields φi. There are (n − 1) linearly independent

directions to leave this point, but to stay on the sphere which minimizes the potential.

Therefore there must exist (n−1) massless Goldstone bosons, according to the Gold-

stone theorem. So the Lagrangian (1.26) describes a massive field of mass
√
−2µ2

and (n− 1) massless Goldstone bosons.

The group O(n) has 1
2
n(n − 1) generators, while the subgroup O(n − 1) has

1
2
(n− 1)(n− 2) generators. This means (n− 1) generators of O(n) do not leave the

vacuum invariant. On the other hand, we have (n − 1) massless Goldstone bosons,

namely, the number of massless Goldstone bosons is equal to the number of genera-

tors which are broken spontaneously. This feature is a special property of the O(n)

model we have discussed above, but a general feature of spontaneously broken theo-

ries involving scalar fields. The number of Goldstone bosons corresponds always to

the number of the spontaneously broken generators as a consequence of the general

Goldstone theorem [26].

1.3 The Higgs Mechanism

As we discussed above, the local gauge invariance requires gauge bosons to be

massless only. However, in reality, the observed gauge bosons of weak interactions Z

and W± are massive. In order to reconcile this contradiction, we need to incorporate

Higgs mechanism [27–29] into the gauge theory, by which spontaneous symmetry

breaking generates a mass for a gauge boson.

1.3.1 The Higgs Mechanism in the Abelian Theory

Let us consider the Lagrangian

L = ∂µφ∗∂µφ− µ2φ∗φ− λ(φ∗φ)2, (1.28)
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which is invariant under the global gauge transformations φ → e−iαφ, i.e., U(1)

gauge group. However, we need invariance under the local gauge transformations

φ → e−iα(x)φ. In order to achieve this goal, we need to introduce a gauge field Aµ.

Repeating the procedure outlined in Subsection 1.1.1, we arrive at

L = (Dµφ)∗Dµφ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν , (1.29)

where Fµν = ∂νAµ − ∂µAν , and Dµ = ∂µ + igAµ.

We note that the various fields transform under local gauge transformations

as follows:

φ(x)→ e−iα(x)φ(x),

Aµ(x)→ Aν(x) +
1

g
∂µα(x). (1.30)

For µ2 > 0 the Lagrangian (1.29) describes the system of a massive scalar

field, coupled to a massless gauge field Aµ. If we let g = e(electric charge), then we

are dealing with the scalar electrodynamics.

For µ2 < 0 the gauge symmetry is spontaneously broken, as discussed in

Section 1.2. We have known that the Lagrangian (1.28) describes a massive scalar

field, accompanied by a massless Goldstone by following the approach outlined in

section 1.2. Next, we will investigate what will happen in case of the gauge invariant

Lagrangian (1.29). Let us make the substitution

φ1 = φ′1 + 〈0|φ1 |0〉 = φ1 + v, v =
√
−µ2/λ (1.31)

in eq. (1.29). We therefore expand the scalar field φ(x) around the vacuum expecta-

tion value 〈0|φ |0〉 and arrive at

L = −1

4
FµνF

µν +
1

2
∂µφ1∂µφ1 +

1

2
∂µφ2∂µφ2 +

1

2
g2v2AµA

µ − gvAµ∂µφ2. (1.32)
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We find that following new terms arise:

1

2
g2v2AµA

µ, (1.33)

− gvAµ∂µφ2. (1.34)

The term (1.33) could be interpreted as the gauge boson mass term where the mass

m2
A = g2v2 arises from the nonvanishing vacuum expectation value of φ. However,

the interpretation of the term (1.34) is sort of vague, since it mixes the gauge field

with the Goldstone boson φ. In order to clarify this condition, let us consider the

gauge transformation φ→ e−iαφ in terms of φ′1 and φ2.

For an infinitesimal parameter α we have

φ→ (1− iα)φ,

φ1 → φ1 − αφ2,

φ2 → φ2 + αφ1, (1.35)

and we find

φ′1 → φ′1 − αφ2,

φ2 → φ2 + αv + αφ′1, (1.36)

Thus φ2 undergoes an inhomogenous gauge transformation like the gauge field

Aµ. So we could use the freedom of gauge to set φ2 = 0, in which the mixing term

(1.34) and the Goldstone boson vanish.

As we see, the introduction of the gauge field Aµ and the requirement of

local gauge invariance fully change the physical condition: the Lagrangian (1.28)

describes a massive scalar field accompanied with a massless Goldstone boson, while

the Lagrangian (1.29) describes a massive gauge boson Aµ and a massive scalar boson
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φ. However, the total number of the particle states remains unchanged. Before

spontaneous symmetry breaking, the theory had four particle states: two spin-zero

particles φ and φ∗ plus two polarization states of the massless gauge boson Aµ, i.e.

four states in total. After spontaneous symmetry breaking, we have one scalar particle

plus three polarization states of the massive gauge boson Aµ, i.e. still four states.

Therefore, we could say that the massless gauge boson ”ate” the massless Goldstone

boson to become a massive gauge boson.

The Higgs mechanism introduced above is important for the following dis-

cussion. In general theories involving massive gauge bosons are non-renormalizable,

because of the kµkν/m
2-term in the gauge boson propagator. However, in the original

Lagrangian (1.29), the gauge field is formally massless, where no issues with renor-

malizability occurs. It turns out that spontaneous symmetry breaking would not

affect the renormalizibility of the theory [13–15]. Note that for the Abelian gauge

theory described by the Lagrangian (1.28), the spontaneous generation of the gauge

boson mass is not necessary to achieve renormalizability. We would not undermine

the renormalizablity if we introduce a mass term for the gauge boson, provided that

the gauge field Aµ is coupled with a conserved current. However, this is not valid for

a non-Abelian theory. The spontaneous generation of gauge boson masses is the only

way to ensure renormalizability.

In sum, Higgs meachanism is a remarkable result, suggesting the possibility

of establishing spontaneously broken gauge theories in which the interactions are

mediated by massive gauge bosons.
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1.3.2 The Higgs Mechanism in the Non-Abelian Theory

In order to explore additional complications from spontaneous symmetry break-

ing of a non-Abelian theory, we choose SU(2) gauge theory as a prototype.

At first, we choose a doublet representation of complex scalar fields, coupled

to the gauge fields in a gauge invariant way. Such a Lagrangian is defined by

L = −1

4
Gi
µνG

µν
i +

(
∂µφ+ i

g

2
σiBµiφ

)†(
∂µφ+ i

g

2
σiB

i
µφ
)
− µ2φ†φ− λ(φ†φ)2, (1.37)

where the scalar field φ represents the SU(2) doublet

φ =

(
φa
φb

)
, (1.38)

and the σi’s denote the Pauli matrices.

For µ2 > 0 the Lagrangian (1.37) describes a system of massless gauge fields

in interaction with massive scalars of mass µ. Now suppose we choose µ2 < 0, then

the potential V (φ) = µ2φ†φ+λ(φ†φ)2 exhibits its minimum at finite values of φ. The

manifold of points in the space of fields φa, φb for which the minimum of the potential

V (φ) occurs is invariant under SU(2)-transformations. Therefore, we could choose a

specific SU(2) frame for which we have 〈0|φ |0〉 = 1√
2

(
0
v

)
, where v =

√
−µ2/λ. Form

eq. (2.35) we obtain the mass term of the gauge field, which is

g2

4
[(σiBi

µ)]†[(σiBi
µ)] =

g2

4
(φ†τ jτ iφ)(Bi

µB
µi)

=
g2

8
· v2[(B1

µ)2 + (B2
µ)2 + (B3

µ)2]. (1.39)

Thus we could conclude: we obtain massive gauge fields after spontaneous

symmetry breaking. The gauge boson mass matrix is SU(2) symmetric, namely, the

three gauge bosons are degenerate in mass. This is a special feature of the spontaneous

symmetry breaking involving an SU(2) doublet.
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Note that the particle content of the theory includes three massive gauge fields

and one massive scalar field. Three of the scalar fields (four real fields originally) have

been eaten to provide the longitudinal components of the massive gauge fields.

Next, we choose an SU(2) triplet representation of real scalar fields

φ =


φ1

φ2

φ3

 . (1.40)

We require invariance under the gauge transformation

φ→ eiTiαiφ, (1.41)

where the exponential factor is a 3 × 3 matrix. The operator Ti generates isospin

rotations about the i-axis and satisfies the usual SU(2) algebra

[T j, T k] = iεjklT
l. (1.42)

The explicit matrix representation is

(T j)kl = −iεjkl. (1.43)

Following the procedure outline in Section 1.2, we have the covariant derivative

as follows

Dµ = ∂µ − igTiBµi, (1.44)

or, in the ajoint representation, the covariant derivative takes the form,

(Dµ)kl = δkl∂µ + gεjklBµj. (1.45)

Then the Lagrangian of the theory is

L = −1

4
Gi
µνG

µν
i +

1

2
(∂µφi − gεijkBµ

j φk)(∂µφi − gεilmB
µ
l φm)− 1

2
µ2φiφi −

1

4
λ(φiφi)

2.

(1.46)
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When φ is the unique minima of the potential V (φ) = 1
2
µ2φiφi + 1

4
λ(φiφi)

2,

the spectrum is that of an ordinary, isospin-conserving gauge filed theory: three

massive scalar fields, each with mass µ, and three massless gauge fields Bµ. Since

each massless gauge boson has two polarization states, then the number of particle

states is 3× 1 + 3× 2 = 9.

If we choose µ2 < 0, spontaneous symmetry breaking occurs. We could choose

a particular coordinate system of fields such that we have

〈0|φ |0〉 =


0

0

v

 . (1.47)

This vector remains invariant under rotation generated by T3, i.e. the subgroup

U(1) ⊂ SU(2), generated by the third generator T3 remains unbroken.

We shift the scalar fields and expand around the v, using

φ→ exp

[
i

v
(ζ1T1 + ζ2T2)

]


0

0

v + η

 . (1.48)

We could exploit the gauge invariance of the theory by letting

φ→ exp

[
− i
v

(ζ1T1 + ζ2T2)

]
φ =


0

0

v + η

 . (1.49)

With the help of the new gauge, we obtain the Lagrangian

L =
1

2
(∂µη∂

µη + 2µ2η2)− 1

4
Gi
µνG

µνi +
1

2
g2v2[B1

µB
1µ +B2

µB
2µ] + · · · (1.50)

From this Lagrangian, we conclude: η has become a massive Higgs scalar field,

with mass
√
−2µ2; the Goldstone bosons η1 and η2 have disappeared completely, i.e.,
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they have been eaten up by gauge fields; the gauge bosons Bµ
1 and Bµ

2 respective

coupled to the broken generators T1 and T2 have acquired a common mass gv; the

gauge boson Bµ
3 remains massless, reflecting the invariance of the vacuum under the

generator T3.

1.4 Standard Model of the Electroweak Interactions

1.4.1 The General Ideas for Building Spontaneous Broken Gauge Theories

After investigating the examples above, we are ready to discuss the general

features of spontaneous broken gauge theories. Let us consider a Lagrangian which

is invariant under local gauge transformations of a group G. The generatos Ti follow

the commutation relations

[Ti, Tj] = ifijkTk, (1.51)

where i, j, k = 1, · · · , N and fijk is the structure constant of G. An arbitrary in-

finitesimal transformation of the group G could be parametrized by 1− iεiTi, where

εi’s are infinitesimal parameters.

The scalar field φ is assumed to transform under a n-dimensional representa-

tion of G. We assume that the field φ are real, since a complex field φ can always be

decomposed into two real ones. For an infinitesimal transformation of G we have:

δφ = iεiSiφ. (1.52)

The Lagrangian is defined by

L = −1

4
Gi
µνG

µν
i +

1

2
[(∂µ + igSiA

µ
i )φ]†[(∂µ + igSjAjµ)φ]− V (φ), (1.53)

where V (φ) is a quartic potential in φ, invariant under G.
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We assume that spontaneous symmetry breaking occurs and the potential

exhibits its minimum at φ = v, where v is a n-dimensional vector. The gauge boson

mass matrix is then given by

(M2)ij = −g2(Siv) · (Sjv). (1.54)

In general, there will exist a M -dimensional subgroup G′ of G, which preserves

an invariance of the vacuum.

Let Ti(G
′) be the generators of G′, then Ti(G

′)v = Si(G
′)v = 0. There exist

(N −M) generators of G, for which Tiv 6= 0, i.e. one has (N −M) Goldstone bosons.

Therefore the N × N dimensional mass matrix denoted in eq.(1.54) is actually an

(N −M)× (N −M) dimensional matrix, if we leave out all terms for which Siv = 0

because of the S-invariance of the vacuum. The mass matrix (1.54) needs to be

diagonalized if we would like to find the massive vector bosons of definite mass.

There exist (N − M) massive gauge bosons. The (N − M) Goldstone bosons are

aborbed into the longitudinal components of the (N −M) massive gauge bosons.

Up to now, our discussion mainly focuses on scalar and vector fields. Next, we

need to incorporate fermion fields into the gauge theory, by adding to the Lagrangian

(1.53) the terms

Lfermion = ψ̄L(i/∂ − gfLi /Ai)ψL + ψ̄R(i/∂ − gfRi /Ai)ψR − (mψ̄RψL + h.c.) (1.55)

and

Lint = −Gψ̄R(Rφ)ψL + h.c. (1.56)

where ψL, ψR stand for the left-handed and right-handed fermion fields. The fields ψL

and ψR transform under G as certain irreducible representations. The matrices fL,

fR denote the transformation properties of the left-handed and right-handed fermion
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fields. In eq. (2.55), we include the Yukawa interaction term of the fermion fields

with the scalar fields. The matrices R are constructed so that ψ̄R(Rφ)ψ̄L is invariant

under the gauge group. We also include a bare mass term (mψ̄RψL + h.c.), which

must be G-invariant.

From the eqs. (1.55) and (1.56) we obtain the fermion mass matrix after the

spontaneous symmetry breaking,

Lfermion mass = −Gψ̄R(Rv)ψL −mψ̄RψL + h.c. (1.57)

After introducing the general properties of spontaneous broken gauge theories,

we are ready to give the general recipe for building renormalizable gauge theories. The

Lagrangian is constructed as follows:

1. Select the gauge group, the representations of left-handed and right-handed

fermions and the scalar fields.

2. Couple the gauge fields invariantly to the fermion and scalar fields.

3. Couple the gauge invariant quartic polynomial of the scalar fields so that

the potential reaches its minimum for nonvanishing vacuum expectation values v.

4. Construct the gauge invariant Yukawa couplings between the fermions and

scalars.

The gauge boson mass matrix has the structure:

1

2
g2v2W 2

µ ,

the fermion mass matrix is

G · vψ̄ψ.

20



1.4.2 The Glashow-Weinberg-Salam Theory

We are now ready to write down the spontaneously broken gauge theory that

gives experimentally confirmed description of weak and electromagnetic interactions,

a model introduced by Glashow, Weinberg, and Salam (GWS) [1–3]. We begin with

the doublet of the weak isospin consisting of left-handed electron and its neutrino,

ψeL ≡
(
νe
e

)
L

, (1.58)

where the left-handed states are

νL =
1

2
(1− γ5)νe

eL =
1

2
(1− γ5)e (1.59)

The electron neutrino is known to be nearly massless. It is convenient to idealize it

as exactly massless, in which case the right-handed state

νR =
1

2
(1 + γ5)νe (1.60)

does not exist. Thus we have only one right-handed fermion,

ψeR ≡ eR =
1

2
(1 + γ5)e, (1.61)

which is an SU(2)-singlet.

Note that we need to have the U(1)-factor in the gauge group SU(2) ⊗ U(1)

to represent the electric charge. This cannot be an SU(2) generator since the pho-

ton couples both to the left-handed and right-handed electron. To incorporate the

electromagnetic interaction, we denote the U(1) generator as “weak hypercharge”, Y .

Requiring that the Gell-Mann-Nishijima relation for electric charge,

Q = I3 +
1

2
Y (1.62)

21



be satisfied leads to the assignments

YL = −1, YR = −2. (1.63)

By construction, the weak-isopin projection I3 and the weak hypercharge Y commute:

[I3, Y ] = 0. (1.64)

Let us take the group of transformations generated by I and Y to be the gauge group

SU(2)L⊗U(1)Y for the gauge theory. In order to construct the theory, we introduce

the gauge bosons A1
µ, A2

µ, A3
µ for SU(2)L and Bµ for U(1)Y .

The Lagrangian for the theory might be written as

L = Lgauge + Lfermion + Lscalar, (1.65)

and the gauge boson part of the Lagrangian is

Lgauge = −1

4
F l
µνF

µν
l −

1

4
GµνG

µν (1.66)

where

F l
µν = ∂νA

l
µ − ∂µAlν + gεjklA

j
µA

k
ν (1.67)

for the SU(2)L gauge fields and

Gµν = ∂νBµ − ∂µBν (1.68)

for the U(1)Y gauge field.

We introduce a complex doublet of scalar fields

φ ≡
(
φ†

φ0

)
(1.69)

which transforms as an SU(2)L doublet and has the hypercharge

Yφ = 1

by virtue of the Gell-Mann-Nishijima relation.
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Now we are ready to write down the fermion and scalar parts of the Lagrangian:

Lfermion = ψ̄eR

(
/∂ +

ig′

2
/BY

)
ψeR + ψ̄eLi

(
/∂ +

ig′

2
/BY +

ig

2
σi /Ai

)
ψeL (1.70)

and

Lscalar = (Dµφ)†(Dµφ)− V (φ†φ), (1.71)

where the covariant derivative is

Dµ = ∂µ +
ig′

2
BµY +

ig

2
σiAiµ (1.72)

and the most general form of the potential is

V (φ†φ) = µ2(φ†φ) + |λ|(φ†φ). (1.73)

We also add an interaction term, which involves Yukawa couplings of the scalar to

the fermions,

LYukawa = −Ge[ψ̄
e
R(φ†ψeL) + (ψ̄eL)ψeR], (1.74)

which is symmetric under SU(2)L ⊗ U(1)Y transformations,

Now let us take µ2 < 0, then the SU(2)L ⊗U(1)Y symmetry is spontaneously

broken. We choose a SU(2) frame so that the vacuum expectation values of φ take

the form:

〈0|φ |0〉 =

(
0

v/
√

2

)
, (1.75)

where v =
√
−µ2/|λ|, which breaks both SU(2)L and U(1)Y symmetries. However,

the electric charge, which is a linear combination of T3 and Y remains unbroken.

The photon will therefore remain massless, while three other gauge bosons will aquire

mass.
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We next expand the Lagrangian about the minimum of the Higgs potential V

by letting

φ = exp

(
iζiσi
2v

)(
0

(v + η)/
√

2

)
(1.76)

and transforming to U-gauge:

φ→ exp

(
− iζiσi

2v

)
φ =

(
0

(v + η)/
√

2

)
, (1.77)

σiAiµ → σiA
′
iµ, (1.78)

Bµ → Bµ, (1.79)

ψeR → ψeR, (1.80)

ψL → exp

(
− iζiσi

2v

)
(1.81)

We now express the Lagrangian in terms of the U-gauge fields (1.77-1.81)

and explore the results of spontaneous symmetry breaking. The Yukawa part of

Lagrangian has become

LYukawa = −Ge
v + η√

2
(ēReL + ēLeR) = −Gev√

2
ēe− Geη√

2
ēe (1.82)

so the electron has aquired a mass

me = Gev/
√

2 (1.83)

The scalar part of the Lagrangian now becomes

Lscalar =
1

2
(∂µη)(∂µη)− µ2η2 +

v2

8
[g2|A1

µ − iA2
µ|2 + (g′Bµ − gA3

µ)2] + · · · (1.84)

We see immediately that the η field has acquired a mass mH =
√
−2µ2; it is the

physical Higgs boson. If we define the charged gauge fields

W±
µ ≡

A1
µ ∓ A2

µ√
2

, (1.85)
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the term proportional to g2v2 is identified as a mass term for the charge gauge bosons:

g2v2

8
(|W+

µ |2 + |W−
µ |2), (1.86)

corresponding to charged boson masses

MW± = gv/2. (1.87)

Then, defining the orthogonal combinations

Zµ =
−g′Bµ + gA3

µ√
g2 + g′2

(1.88)

and

Aµ =
gBµ + g′A3

µ√
g2 + g′2

(1.89)

we see that the netural boson has aquired a mass

MZ0 =
√
g2g′2v/2 = MW

√
1 + g′2/g2 (1.90)

and that the gauge field Aµ remains massless.

Next, let us investigate the interactions. We could read off the interations

among the gauge bosons and fermions from Lfermion. For the charged gauge bosons

we have

LW−f = − g√
2

(ν̄LγµeLW
+
µ ēLγ

µνLW
−
µ )

= − g

2
√

2
[n̄uγµ(1− γ5)eW+

µ ēγµ(1− γ5)νW−
µ ], (1.91)

where we identify the couling constant as

g2

8
=
GfM

2
W√

2
. (1.92)

25



with Gf is the Fermi constant. Similarly, the neutral gauge boson couplings to

fermions are given by

L0-f =
gg′√
g2 + g′2

ēγµeAµ −
√
g2 + g′2

2
ν̄LγµνLZµ +

Zµ√
g2 + g′2

+
Zµ√
g2 + g′2

[
−g′2ēRγµeR +

(g2 − g′2)

2
ēLγµeL

]
. (1.93)

Thus we can identify Aµ as the photon, setting

gg′√
g2 + g′2

= e. (1.94)

It is convenient to introduce a weak mixing angle θW to parametrize the mixing

of the neutral gauge bosons. Defining

g′ = g tan θW , sin θW =
g′

g2 + g′2
, (1.95)

we could rewrite eqs. (1.88) and (1.89) as

Zµ = −Bµ sin θW + A3
µ cos θW ,

Aµ = −Aµ cos θW + A3
µ sin θW . (1.96)

By the virtue of the relation (1.95), the coupling constants of the SU(2)L and

U(1)Y gauge groups might be written as

g =
e

sin θW
≥ e, g =

e

cos θW
≥ e (1.97)

And the masses of gauge bosons could be rewritten as

MW =

(
πα√
2GF

) 1
2 1

sin θW
, (1.98)

MZ =
MW

cos θW
. (1.99)

26



It is therefore convenient to express the interation terms of the Lagrangian

(1.93) in terms of the weak mixing angle as

L0-f = eēγµeAµ −
1√
2

(
GFM

2
Z√

2

) 1
2

ν̄γµ(1− γ5)νZµ

− 1√
2

(
GFM

2
Z√

2

) 1
2

[2 sin2 θW ēγ
µ(1 + γ5)eZµ

+(2 sin2 θW − 1)ēγµ(1− γ5)eZµ] (1.100)

and the interations terms of the Lagrangian (1.91) can be rewritten as

LW−f = −
(
GFM

2
W√

2

) 1
2

[ν̄eγµ(1− γ5)eW+
µ ēγµ(1− γ5)νeW

−
µ ], (1.101)

from which we could derive Feynman rules for the elementary vertices. These are

shown below.

ieēγµe

e

e

Aµ

−i
(GFM2

w√
2

) 1
2 ν̄eγµ(1− γ5)e

νe

e

W+
µ

−i
(
GFM

2
w√

2

) 1
2 ēγµ(1− γ5)νe

e

νe

W−
µ
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− i√
2

(GFM2
Z√

2

) 1
2 ν̄eγµ(1− γ5)νe

νe

νe

Z0
µ

− i√
2

(GFM2
Z√

2

) 1
2 ēγµ[Re(1 + γ5) + Le(1− γ5)]e,

Re ≡ 2 sin2 θW ,

Le ≡ 2 sin2 θW − 1.

e

e

Z0
µ
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CHAPTER TWO

Techniques for the Calculation of Electroweak Radiative Corrections at the
One-Loop Level

In the previous chapter, We have introduced the minimal theory of electroweak

interations, i.e. SU(2)L ⊗ U(1)Y theory of electron, proposed by S. L. Glashow [1],

S. Weinberg [2], and A. Salam [3], which exhibited the basic motivations and prin-

cipal features. This theory has been extented to the hardonic degrees of freedom by

S. L. Glashow, J. Iliopoulos and L. Maiani [4]. And the Weinberg-Salam-Glashow-

Iliopoulos-Maini model is the most comprehensive formulation of a theory of the

unified electroweak interaction at present. It is theoretically consistent and con-

firmed by all experimentally known phenomena of the electroweak orgin. After the

Weinberg-Salam-Glashow-Iliopoulos-Maini model was proposed, ’t Hooft and M. Velt-

man proved its renormalizability [13–16]. Therefore, the standard model of the elec-

troweak interaction is a calculable quantum field theory capable for precision cal-

culations in high energy physics. Theoretical predictions should have a precision

comparable to or even better than the experimental uncertainties. If the experimen-

tal precision of the order of 1% the classical level of the theory is no longer sufficient.

We have to take into account quantum corrections: the radiative corrections.

In this chapter, we will review the corresponding formulae and techniques for

the evaluation of the one loop radiatve corrections for the electroweak theory [30–37].

At first with the help of Faddeev-Popov gauge fixing technique, the complete renor-

malizable Lagrangian for the electroweak SM is given, Next, its renormalization will
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be discussed. Then we will introduce the classification and techniques for calculating

one loop integrals. At last, we will present some explicit calculations of one-loop

radiative correction as illustrations of the method described in this chapter.

2.1 The Model

The classical Lagrangian of the electroweak SM consists of a gauge boson

(Yang-Mills), a scalar(Higgs) and a fermion part

Lclassical = Lgauge + Lscalar + Lfermion + LYukawa, (2.1)

where each of them is seperately gauge invariant.

The gauge boson fields includes an isotriplet W a
µ and an isosinglet Bµ. The

isotriplet W a
µ , a = 1, 2, 3 is associated with the genretor σa (Pauli matrices) of the

group SU(2)L, and the isosinglet Bµ is associated with the weak hypercharge Y of

the group U(1)Y . The gauge field the Lagrangian is as usual,

Lgauge = −1

4
F l
µνF

µν
l −

1

4
GµνG

µν (2.2)

where

F l
µν = ∂νW

l
µ − ∂µW l

ν + g2εjklW
j
µW

k
ν (2.3)

for the SU(2)L gauge fields and

Gµν = ∂νBµ − ∂µBν (2.4)

for the U(1)Y gauge field. The covriant derivative here is given by

Dµ = ∂µ − ig2σaW
a
µ + ig1

Y

2
Bµ. (2.5)

where g1 is the U(1)Y gauge coupling and g2 is the SU(2)L gauge coupling. The

electric charge operator Q is composed of the weak isospin projection I3 and the
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weak hypercharge Y according to the Gell-Mann Nishijima relation.

Q = I3 +
1

2
Y. (2.6)

The scalar Lagrangian is as usual:

LScalar = (DµΦ)†(DµΦ)− V (Φ), (2.7)

where

Φ(x) =

(
φ†(x)

φ0(x)

)
with YΦ = 1. (2.8)

Here, we express the Higgs potential in another way

V (Φ) =
λ

4
(Φ†Φ)2 − µ2Φ†Φ (2.9)

where λ > 0, µ > 0 such that it gives rise to spontaneous symmetry breaking.

The fermion part is extended to the lepton families (ψl) and quark families

(ψq). The left-handed fermion of each lepton and quark generation are grouped into

SU(2)L doublets:

ψlL =
1

2
(1− γ5)ψl =

(
νl
l

)
L

ψqL =
1

2
(1− γ5)ψq =

(
ui
di

)
L

(2.10)

where l ≡ e, µ, τ , ui ≡ u, c, t and di ≡ d, s, b. And the right-handed fermion are

grouped into singlets:

ψlR =
1

2
(1 + γ5)ψl;

(uR)i =
1

2
(1 + γ5)ui, (dR)i =

1

2
(1 + γ5)di (2.11)
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Then the fermion Larangrian reads off

Lfermion =
∑
i

(ψ̄lLi /Dψ
l
L + ψ̄qLi /Dψ

q
L)

+
∑
i

(ψ̄lLi /Dψ
l
L + ūiRi /DuiR + d̄iRi /DdiR). (2.12)

And the Yukawa Lagrangian reads

LYukawa = −
∑
ij

[(ψ̄lL)iG
l
ij(ψ

l
R)jΦ + (ψ̄qL)iG

u
ij(uR)jΦ̃ + (ψ̄qL)iG

d
ij(dR)jΦ + h.c.] (2.13)

where Gl
ij, G

u
ij and Gd

ij are the Yukawa coupling matrices, Φ̃ =
(
φ0∗

−φ−
)

is the charge

conjugated Higgs field and φ− = (φ†)∗.

From the construction of Higgs part of Langragian, we have the vacuum ex-

pection value

| 〈0|Φ |0〉 |2 =
2µ2

λ
=
v2

2
6= 0 (2.14)

We expand the scalar field around the ground state so that the Higgs field can be

expressed as

Φ(x) =

(
φ†(x)

1√
2
(v(x) +H(x) + iχ(x))

)
, (2.15)

where the compoenents φ†, H and χ have zero vaccum expection values. φ†, φ− and

χ are unphysical states which can be eliminated by the unitary gauge. The field H

is the physical Higgs field with the mass

MH =
√

2µ. (2.16)

The physical gauge fields W±
µ , Z0 and Aµ are related to W a

µ and Bµ by

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ),

( Zµ

Aµ

)
=

( cw sw

−sw cw

)( W 3
µ

Bµ

)
. (2.17)
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where

cw ≡ cos θW =
g2√
g2

1 + g2
2

,

sw ≡ sin θW =
g1√
g2

1 + g2
2

. (2.18)

The physical fermion fields are obtained by diagonalizing the corresponding

mass matrices

(fL)i = (Uf,L)ik(f
′
L)k

(fR)i = (Uf,R)ik(f
′
R)k (2.19)

where f ≡ νl, l, ui and di.

The resulting masses are

MZ =
1

2

√
g2

1 + g2
2v,

MW = MZcW =
1

2
g2v,

Mγ = 0,

mf,i =
v√
2

(Uf,L)ikG
f
km(Uf,R)mi. (2.20)

By identifying the coupling of the photon field Aµ to the electron with the

electrical charge e =
√

4πα, we have

e =
g1g2√
g2

1 + g2
2

. (2.21)

The diagonalization of the fermion mass matrices introduces a unitary quark

mixing matrix into the quark-W-boson couplings

Vij = (Uu,L)ik(Ud,L)†kj. (2.22)

Thus, the relations (2.16), (2.20), (2.21) and (2.22) allow us to replace the set

of parameters {g1, g2, λ, µ
2, Gl, Gu, Gd} with the parameter {e,MW ,MZ ,Mh,mf,i, Vij}
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which are physical. Furthermore, we could express the Lagrangian (2.1) in terms of

physical parameters and fields.

Next, we need to apply Faddeev-Popov gauge fixing technique [38,39] to quan-

tize Lclassical, which requires the specification of a gauge. We choose a renormalizable

’t Hooft gauge with the following linear gauge fixings

F± = (ξW1 )−
1
2∂µW †

µ ∓ i(ξW2 )−
1
2φ±

FZ = (ξZ1 )−
1
2∂µZµ −MZ(ξZ2 )

1
2χ

F γ = (ξγ1 )−
1
2∂µAµ, (2.23)

which lead to the gauge fixing Lagrangian

Lgauge-fixing = −1

2
[(F γ)2 + (FZ)2 + 2F+F−]. (2.24)

Lfix includes the unphysical components of the gauge fields. To cancel the unphysical

effects, We need to introduce Faddeev Popov ghosts (scalar anti-commuting fields)

ūα(x), uα(x) (α = ±, γ, Z) with the Lagrangian

LFP = ūα(x)
δF α

δθβ(x)
uβ(x), (2.25)

where δFα

δθβ(x)
is the variation of the gauge fixing operators Fα under infinitesimal gauge

transformations characterized by θβ(x).

The ’t Hooft Feynman gauge ξα = 1 will simplify the problem. At lowest

order the poles of the ghost fields, unphysical Higgs fields and longitudinal gauge

fields coincide with the poles of the corresponding transverse gauge fields. Moreover,

thers is no mixing between gauge Higgs and gauge fields.
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With the help of Lgauge-fixing and LFP, we obtain the complete renormalizable

Lagrangian for the electroweak SM:

LSM = Lclassical + Lgauge-fixing + LFP. (2.26)

The corresponding Feynman rules are given in Appendix.A.

2.2 Renormalization in the Electroweak SM

The Lagrangian (2.1) of the miminal SU(2)L⊗U(1)Y model includes a certain

number of free parameters {e,MW ,MZ ,Mh,mf,i, Vij}, which have to be determined

experimentally. These parameters could be directly related to experimental quantities

(at the tree-level), but this direct relation is no more valid when it comes to higher

order corrections. We usually called the paramters of the original Lagrangian bare

parameters, which differ from corresponding physical quantities by ultra-violet (UV)-

divergent contributions. These divergences would cancel in relations between physical

quantities in renormalizable theories. The renormalizability of non-Abelian gauge

theories with spontaneous symmetry breaking as proven by ’t Hooft [13, 14], which

allows meaningful predictions in the electroweak SM.

We are using the counterterm approach to realize the renormalization. Here

the UV-divergent bare parameters are expressed by finite renormalized parameters

and divergent renormalization constants (counterterms). The bare fields may be re-

placed by renormalized fields. The counterterms are fixed through renormalization

condition. These determine the relation between renormalized and physical parame-

ters and can be chosen arbitrarily. The renormalization procedure could be summa-

rized as follows:

• Choose a set of independent parameters.
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• Separate the bare parameters and fields into renormalized parameters, fields

and renormalization constants.

• Choose renormalization conditions to fix the counterterms.

• Express physical quantities in terms of the renormalized parameters.

• Choose input data in order to fix the values of the renormalized parameters.

• Compute predictions for physical quantities as functions of the input data. The

first three steps in the list specify a renormalization scheme.

In this chapter, we are using on-shell renormalization scheme, in which one

chooses counterterms so that the finite renormalized parameters are equal to physical

parameters in all orders of perturbation thoery. The beauty of on shell renormal-

ization scheme is that all paramters (of the electroweak SM) have clear physical

significances and can be measured directly in experiments. In the electroweak SM,

we choose the masses of the physical particles MW , MZ , MH , mf , electric charge e,

and the quarking mixing matrix Vij as renormalizaed parameters.
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2.2.1 Renormalization Constants and Counterterms

We choose the physical paratmeters {e,MW ,MZ ,Mh,mf,i, Vij} as independent

parameters. The renormalized quantities and the renormalization constants are de-

fined as follows (bare quantities are denoted by an subscipt 0):

e0 = Zee = (1 + δZe)e,

M2
W,0 = M2

W + δM2
W ,

M2
Z,0 = M2

Z + δM2
Z ,

M2
H,0 = M2

H + δM2
H ,

mf,i,0 = mf,i + δmf,i

Vij,0 = (U1V U
†
2)ij = Vij + δVij. (2.27)

where U1 and U2 are unitary since Vij,0 and Vij are unitary.

The counterterms defined above are sufficient to guarantee all S-matrix ele-

ments finite, but it leaves Green function divergent. This is because of the fact that

radiative corrections change the normalization of the fields by an infinite amount. In

order to get finite Green functions we must renormalize the fields as well. Further-

more, radiative corrections yield nondiagonal corrections to the mass matrices such

that the bare fields are no more mass eigenstates. In order to re-diagonalized the mass

matrices one has to introduce matrix valued field renormalization constants, allowing

to define the renormalized fields in such a way that they are the correct physical mass

eigenstates in all orders of the perturbation theory. Therefore, we define renormalized
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fields as follows:

W±
0 = Z

1
2
WW

± = (1 +
1

2
δZW )W±,

(
Z0

A0

)
=

( Z
1
2
ZZ Z

1
2
ZA

Z
1
2
AZ Z

1
2
AA

)(
Z

A

)
=

( 1 + 1
2
ZZZ

1
2
ZZA

1
2
ZAZ 1 + 1

2
ZAA

)(
Z

A

)
,

H0 = Z
1
2
H = (1 +

1

2
δZH)H,

fLi,0 = Z ,f,L
ij fLj = (δij +

1

2
δZf,L

ij )fLj ,

fRi,0 = Z
1
2
,f,L

ij fRj = (δij +
1

2
δZf,R

ij )fRj . (2.28)

Here we do not discuss the renormalization constants of the unphysical ghost

and Higgs fields since they do not affect Green functions of physical particles and the

calculation of physical one-loop amplitudes.

In writing Z = 1 + δZ we could split the bare Lagrangian L0 into the basic

Lagrangian and the counterterm Lagrangian δL

L0 = L+ δL. (2.29)

L shares the same form as L0 but depends on renormalized parameters and fields. δL

stands for counterterms, which aborbs the divergernces and unobservable shifts. The

corresponding Feynman rules are list in Appendix.A.

2.2.2 Renormalization Conditions

The renormalization constants described above need to be fixed by imposing

renormalization conditions. These consist of two sets: the conditions defining the

renormalized parameters and the ones defining the renormalized fields.
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In the on-shell scheme all renormalization conditions are formulated for on-

mass-shell external fields. The field renormalization constants, the mass renormaliza-

tion constants and the renormalization constant of the quark mixing matrix are fixed

by the one particle irreducible (1PI) two-point functions. For charge renormalization

we use the three-point function (eeγ-vertex function).

The renormalized one-particle irreducible two-point functions are defined as

follows (in the ’t Hooft-Feynman gauge)

Wµ Wνk
= Γ̂Wµν(k)

= −gµν(k2 −M2
W )− i

(
gµν − kµk nu

k2

)
Σ̂W
T (k2)− ikµkν

k2 Σ̂W
L (k2),

a, µ b, νk
= Γ̂abµν(k)

= −gµν(k2 −M2
a )δab − i

(
gµν − kµk nu

k2

)
Σ̂ab
T (k2)− ikµkν

k2 Σ̂ab
L (k2),

where a, b = A,Z, ,M2
A = 0.

H Hk
= Γ̂H(k)

= i(k2 −M2
H) + iΣ̂H(k2),
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fj fip
= Γ̂ij(p)

= iδij(/p−mf,i) + i[/pω−Σ̂f,L
ij (p2) + /pω+Σ̂f,R

ij (p2) + (mf,iω− +mf,jω+)Σ̂f,S
i,j (p2)].

The propagators are obtained as the inverse of the corresponding two-point functions.

The renormalized mass parameters of the physical particles are fixed in such a

way that they are equal to the physical masses. For mass matrices, these conditions

must be realized by the corresponding eigenvalues, which might result in complicated

expressions. These expressions could be simplified by requiring simultaneously the

on-shell conditions for the field renormalization matrices. If the external lines are on

their mass shell, the renormalized 1PI two-point functions are diagonal. This deter-

mines the nondiagonal elements of field renormalization matrices. The renormalized

diagonal elements are fixed so that the residues of the renormalized propagators are

equal to one. By this choice of field renormalization, the renormalization conditions

for the mass parameter require only the corresponding self-energies. Therefore the

renormalization conditions for the two-point functions for on-shell external physical

fields are defined as follows:

<̃Γ̂Wµνε
ν(k)|k2=M2

W
= 0, <̃Γ̂ZZµν ε

ν(k)|k2=M2
Z

= 0, <̃Γ̂AZµν ε
ν(k)|k2=M2

Z
= 0

Γ̂AZµν ε
ν(k)|k2=0 = 0, Γ̂AAµν ε

ν(k)|k2=0 = 0,

lim
k2→M2

W

1

k2 −M2
W

<̃Γ̂Wµνε
ν(k) = −iεµ(k),

lim
k2→M2

Z

1

k2 −M2
Z

<Γ̂ZZµν ε
ν(k) = −iεµ(k), lim

k2→0

1

k2
<Γ̂AAµν ε

ν(k) = −iεµ(k),
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<Γ̂H(k)|k2=M2
h

= 0, lim
k2→M2

H

1

k2 −M2
H

<Γ̂H(k) = −i,

<̃Γ̂fij(p)uj(p)|p2=m2
f,j

= 0, <̃ūj(p′)Γ̂fij(p′)|p′2=m2
f,i

= 0,

lim
p2→m2

f,i

/p+mf,i

p2 −m2
f,i

<̃Γ̂fii(p)ui(p) = iui(p),

lim
p2→m2

f,i

ūi(p
′)<̃Γ̂fii(p

′)
/p′ +mf,i

p′2 −m2
f,i

= iui(p), (2.30)

where ε(k), u(p) and ū(p′) are the polarization vectors and spinors of the external

fields. <̃ only takes the real part of the loop integrals appearing in the self-energies.

From the equations above we get the conditions for the self-energy functions.

<̃Σ̂W
T (M2

W ) = 0, <Σ̂ZZ
T (M2

Z) = 0, <Σ̂AZ
T (M2

Z) = 0,

Σ̂AZ
T = 0, Σ̂AA

T = 0,

<̃∂Σ̂W
T (k2)

∂k2
|k2=M2

W
= 0,<∂Σ̂ZZ

T (k2)

∂k2
|k2=M2

Z
= 0,<∂Σ̂AA

T (k2)

∂k2
|k2=0 = 0,

(2.31)

<Σ̂H(M2
H) = 0, <∂Σ̂H

T (k2)

∂k2
|k2=M2

H
= 0, (2.32)

mf,j<̃Σ̂f,L
ij (m2

f,j) +mf,j<̃Σ̂f,L
ij (m2

f,j) = 0,

mf,j<̃Σ̂f,R
ij (m2

f,i) +mf,i<̃Σ̂f,S
ij (m2

f,j) = 0,

<̃Σ̂f,R
ii (m2

f,i) + <̃Σ̂f,R
ii (m2

f,i)

+2m2
f,i

∂

∂p2
[<̃Σ̂f,R

ii (p2) + <̃Σ̂f,L
ii (p2) + 2<̃Σ̂f,S

ii (p2)]|p2=m2
f,i=0. (2.33)

Note that the longitudinal (unphysical) components of the gauge boson self-energies

drops out for on-shell external gauge bosons.

For the quark mixing matrix Vij, to the lowest order we have

V0,ij = Uu,L
ik Ud,L,†

i,0 , (2.34)
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where the matrices U f,L transform the weak interation eigenstates f ′0 to the lowest

order mass eigenstates f0

U f,L,†
ij fLj,0 = f ′Li,0. (2.35)

In the on-shell scheme, the higher order mass eigenstates are related to the bare mass

eigenstates in the following way

fLi = Z
1
2
,f,L

ij fLj,0. (2.36)

The renormalized quark mixing matrix is defined through the rotation from the weak

interaction eigenstates to the renormalized mass eigenstates. In the one-loop level,

the rotation in the fermion wave function renormalization 1 + 1
2
δZL is given by the

anti-Hermitian part δZAH of δZL

δZf,AH
ij =

1

2
(δZf,L

ij − δZ
f,L,†
ij ) (2.37)

Therefore the renormalized quark mixing matrix is defined as

Vij =

(
δik +

1

2
δZu,AH,†

ik

)
V0,kn

(
δnj +

1

2
δZd,AH,†

nj

)
. (2.38)

At last, the electric charge is defined as the full eeγ-coupling for on-shell ex-

ternal particles in the Thomson limit in which all vertex corrctions vanish on shell

and for zero momentum transfer.

Aµ

e+, p′

e−, p
p = p′,

p2 = p′2 = m2
e

= ieūγµu(p)
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Because of our choice the field renormalization, the correction in the external

legs vanish and we have the condition

ū(p)Γ̂eeγµ u(p)|p2=m2
e

= ieū(p)γu(p), (2.39)

for the amputated vertex function

Aµ

e+, p′

e−, p′

Γeeγµ =

2.2.3 Explicit Form of Renormalization Constants

Next, we will give the explicit expressions of renormalization constants.

From eqs. (2.31) and (2.32), we get for the gauge boson sector

δM2
W = <̃ΣW

T (M2
W ), δZW = <̃∂ΣW

T (k2)

∂k2
|k2=M2

W
,

δM2
Z = <ΣZZ

T (M2
Z), δZZZ = <̃∂ΣZZ

T (k2)

∂k2
|k2=M2

Z
,

δZAZ = −2<ΣAZ
T (M2

Z)

M2
Z

, δZZA = −2<ΣAZ
T (0)

M2
Z

, δZAA = −ΣAZ
T (k2)

k2

δM2
H = <ΣH(M2

H), δZH = −<∂ΣH(k2)

∂k2
|k2=M2

H
. (2.40)

From eq. (2.33) we obtain for the fermion sector

δmf,i =
mf,i

2
<̃[Σf,L

ii (m2
f,i) + Σf,R

ii (m2
f,i) + Σf,S

ii (m2
f,i)],

δZf,L
ij =

2

m2
f,i −m2

f,j

<̃[m2
f,jΣ

f,L
ij (m2

f,j) +mf,imf,jΣ
f,R
ij (m2

f,j)

+ (m2
f,i +m2)f, jΣf,S

ij (m2
f,j)], i 6= j

δZf,R
ij =

2

m2
f,i −m2

f,j

<̃[m2
f,jΣ

f,R
ij (m2

f,j) +mf,imf,jΣ
f,L
ij (m2

f,j) + 2mf,imf,jΣ
f,S
ij (m2

f,j)],

i 6= j
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δZf,L
ii = −<̃Σf,L

ii (m2
f,i)−m2

f,i

∂

∂p2
<̃[Σf,L

ii (p2) + Σf,R
ii (p2) + Σf,S

ii (p2)]|p2=m2
f,i

δZf,R
ii = −<̃Σf,R

ii (m2
f,i)−m2

f,i

∂

∂p2
<̃[Σf,L

ii (p2) + Σf,R
ii (p2) + Σf,S

ii (p2)]|p2=m2
f,i
. (2.41)

The use of <̃ guarantees that the renormalized Lagrangian is real. Moreover we have

δZ†ij = δZij(m
2
i ↔ m2

j). (2.42)

The renormalization constant for the quark mixing matrix Vij can be derived

from eq. (2.38)

δVij =
1

4
[(δZu,L

ik − δZ
u,L,†
ik )− Vik(δZd,L

kj − δZ
d,L,†
kj )]. (2.43)

Inserting eq. (2.41) we obtain

δVij =
1

2
<̃
{

1

m2
u,i −m2

u,k

[m2
u,kΣ

u,L
ik (m2

u,k) +m2
u,iΣ

u,L
ik (m2

u,i)

+mu,imu,k(Σ
u,R
ik (m2

u,k) + Σu,R
ik (m2

u,i))

+ (m2
u,k +m2

u,i)(Σ
u,S
ik (m2

u,k) + Σu,S
ik (m2

u,i))]Vkj

− Vik
1

m2
d,k −m2

d,j

[m2
d,jΣ

d,L
kj (m2

d,j) +m2
d,kΣ

d,L
kj (m2

d,k)

+md,kmd,j(Σ
d,R
kj (m2

d,j) + Σd,R
kj (m2

d,k))

+ (m2
d,k +m2

d,j)(Σ
d,S
kj (m2

d,k) + Σd,S
kj (m2

d,j))]

}
. (2.44)

Next, we will determine the charge renormalization δZe from the eeγ-vertex.

For generalization, we explore the ffγ-vertex for arbitrary fermions f . The renor-

malized vertex function is

Γ̂γffij,µ (p, p′) = −ieδijQfγµ + ieΛ̂γff
ij,µ (p, p′). (2.45)
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For on-shell external fermions it can be decomposed as (k = p′ − p)

Λ̂γff
ij,µ (p, p′) = δij

(
γµΛ̂f

V (k2)− γµγ5Λ̂f
A(k2) +

(p+ p′)µ
2mf

Λ̂f
S(k2) +

(p′ − p)µ
2mf

γ5Λ̂f
S(k2)

)
.

(2.46)

According to eq. (2.39), we obtain

0 =ū(p)Λ̂γff
ii,µ (p, p)U(p)

=ū(p)γµu(p)[−Qf (δZe + δZf,V
ii +

1

2
δZAA) + Λf

V (0) + Λf
S(0) + vf

1

2
δZZA]

− ū(p)γµγ5u(p)[−QfδZ
f,A
ii + Λf

A(0) + af
1

2
δZZA], (2.47)

where

δZf,V
ii =

1

2
(δZf,L

ii + δZf,R
ii ), δZf,A

ii =
1

2
(δZf,L

ii − δZ
f,R
ii ), (2.48)

and vf , af are the vector and axialvector couplings of the Z-boson to the fermion f .

From eq. (2.47), we have two conditions

0 = −Qf

(
δZe + δZf,V

i i+
1

2
δZAA

)
+ Λf

V (0) + Λf
S(0) + vf

1

2
δZZA, (2.49)

0 = −QfδZ
f,A
ii + Λf

A(0) + af
1

2
δZZA. (2.50)

The eq. (2.49) for f = e fixes the charge renormalization constant. The eq. (2.50)

is fulfilled because of a Ward identity (derived from gauge invariance). Furthermore

the same Ward identity yields

Λf
V (0) + Λf

S(0)−QfδZ
f,V
ii + af

1

2
δZZA = 0. (2.51)

Inserting this equation we finally obtain (using vf − af = −Qf
sW
cW

)

δZe =
1

2
δZAA −

1

2

sW
cW

δZZA

=
1

2

∂ΛAA
T (k2)

∂k2
|k2=0 −

sw
cW

ΣAZ
T (0)

M2
Z

. (2.52)

This result is independent of the fermion species, reflecting electric charge universality.
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In the on-shell scheme the weak mixing angle is a derived quantity. It is defined

as [40–42]

sin2 θW = s2
W = 1− M2

W

M2
Z

, (2.53)

using the renormalized gauge boson masses. This definition is process-independent

and valid to all orders of perturbation theory. It is convenient to introduce the

corresponding counterterms

cW,0 = cW + δcW , sW,0 = sW + δsW , (2.54)

which are directly related to the counterterms to the gauge boson mass due to eq.

(2.53). To one-loop order we have

δcW
cW

=
1

2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
=

1

2
<̃
(

ΣW
T (M2

W )

M2
W

− ΣZZ
T (M2

Z)

M2
Z

)
δsW
sW

= −c
2
W

s2
W

δcW
cW

= −1

2

c2
W

s2
W

<̃
(

ΣW
T (M2

W )

M2
W

− ΣZZ
T (M2

Z)

M2
Z

)
. (2.55)

We have now got all renormalization constants in terms of unrenormalized self-

energies. In the next section, we will introduce the methods to calculate to one-loop

radiative corrections.

2.3 One-Loop Integrals

Perturbative calculations at one-loop level involve complicated integrals over

the loop momentum (scalar, vetor and tersor integrals). In this section, we will

introduce the basic modern tools for the calculation of loop diagrams [30–32, 43], in

which all one-loop intergals can be reduced to the scalar ones.

2.3.1 Scalar One-loop Integrals for N ≤ 4

We first introduce the basic scalar one-loop integrals A0, B0, C0 and D0, which

were derived in [43].
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We begin by introducing the scalar one-point function

A0(m) =
(2πµ)4−n

iπ2

∫
ddq

1

q2 −m2 + iε

= −m2

(
m2

4πµ2

) d−4
2

Γ

(
1− D

2

)
= m2

(
∆− log

m2

µ2
+ 1

)
, (2.56)

where the UV-divergence is contained in

∆ =
2

4− d
− γE + log 4π (2.57)

and γE is the Euler’s constant.

The scalar two-point function is given by

B0(p10,m0,m1) =
(2πµ)4−n

iπ2

∫
ddq

1

[q2 −m2
0 + iε][(q + p10)2 −m2

1 + iε]

= ∆ + 2− log
m0m1

µ
+
m2

0 −m2
1

p2
10

log
m1

m0

− m0m1

p2
10

(
1

r
− r
)

log r

(2.58)

where r and 1
r

are determined from

x2 +
m2

0 +m2
1 − p2

10 − iε
m0m1

x+ 1 = (x+ r)

(
x+

1

r

)
. (2.59)

For the field renormalization constants, the derivative of B0 with respect to

p2
10 is required. It is given by

∂

∂p2
10

B0(p10,m0,m1) = −m
2
0 −m2

1

p4
10

log
m1

m0

+
m0m1

p4
10

(
1

r
− r
)

log r

− 1

p2
10

(
1 +

r2 + 1

r2 − 1
log r

)
. (2.60)

The scalar three-point reads

C0(p10, p20,m0,m1,m2) =
(2πµ)4−n

iπ2

∫
ddq

1

D0D1D2

, (2.61)
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where

D0 = q2 −m2
0 + iε; D1 = (q + p1)2 −m2

1 + iε; D2(q + p2)2 −m2
2 + iε (2.62)

In order to compute three-point function, we need to introduce two Feynman param-

eters. The general result for scalar three-point funciton valid for all real momenta

and physical masses was calculated by [43]. It can be also expressed into symmetric

form

C0(p10, p20,m0,m1,m2) = −
∫ 1

0

dx

∫ x

0

dy[p2
21x

2 + p2
10y

2 + (p2
20 − p2

10 − p2
21)xy

+ (m2
1 −m2

2 − p2
21)x+ (m2

0 +m2
1 + p2

21 − p2
20)y +m2

2 − iε]−1

=
1

α

2∑
i=0

{∑
σ=±

[
Li2

(
y0i − 1

yiσ

)
− Li2

(
y0i

yiσ

)
+ η

(
1− xiσ,

1

yiσ

)
log

y0i − 1

yiσ

− η
(
−xiσ,

1

yiσ

)
log

y0i

yiσ

]
− [η(−xi+,−xi−)− η(yi+, yi−)− 2πiθ(−p2

jk)

θ(−=(yi+yi−))] log
1− yi0
yiσ

}
, (2.63)

where

pij = pi − pj, pi0 = pi,

y0i =
1

2αp2
jk

[p2
jk(p

2
jk − p2

ki − p2
ij + 2m2

i −m2
j −m2

k),

− (p2
ki − p2

ij)(m
2
k −m2

k) + α(p2
jk −m2

j +m2
k)],

xi± =
1

2p2
jk

[p2
jk −m2

j +m2
k ± αi], yi± = y0i − xi±,

α = κ(p2
10, p

2
21, p

2
20),

αi = κ(p2
ij,m

2
j ,m

2
k)(1 + iεp2

jk), (2.64)

and κ is the Kallen function

κ(x, y, z) =
√
x2 + y2 + z2 − 2(xy + yz + zx). (2.65)
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The Spence function Li2(x) is defined as

Li2(x) = −
∫ 1

0

dt

t
log(1− xt), |arg(1− x)| < π. (2.66)

The η-function is defined as

η(a, b) = 2iπ[θ(−=a)θ(−=b)θ(−=ab)− θ(=a)θ(−=b)θ(−=ab)] (2.67)

All η-functions in eq. (2.63) vanish if α and all the masses mi are real.

Next, let us investigate the scalar four-point function D0(p10, p20, p30,m0,m1

,m2,m3), which can be expressed in terms of 16 dilogarithms [44] instead of 24 dilog-

arithms of the result calculated by [43].

The scalar four-point integral can be expressed in the symmetric form

D0(p10, p20, p30,m0,m1,m2,m3) =
(2πµ)4−n

iπ2

∫
ddq

1

D0D1D2D3

, (2.68)

where

D0 = q2 −m2
0 + iε, D1 = (q + p1)2 −m2

1 + iε,

D2 = (q + p2)2 −m2
2 + iε, D3 = (q + p3)2 −m2

3 + iε (2.69)

We first give some variables and functions before we exhibit the result. We

define

kij =
m2
i +m2

j − p2
ij

mimj

, 1 ≤ i < j ≤ 4. (2.70)

The quantities rij and r̃ij are defined by
x2 + kijx+ 1 = (x+ rij)(x+ 1/rij),

x2 + (kij − iε)x+ 1 = (x+ r̃ij)(x+ 1/r̃ij).

(2.71)
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Note that for real kij the rij’s lie either on the real axis or on the complex unit circle.

In addition,

P (y0, y1, y2, y3) =
∑

0≤i<j≤3

kijyiyj +
3∑
j=0

y2
j ,

Q(y0, y1, 0, y3) = (1/r02 − r02)y0 + (k12 − r02k01)y1 + (k23 − r02k03)y3,

Q(y0, 0, y2, y3) = (1/r13 − r13)y3 + (k12 − r13k23)y2 + (k01 − r13k03)y0.

(2.72)

and x1,2 is determined by

ax2 + bx+ c+ iεd =
r02r13

x

{[
P

(
1,

x

r13

, 0, 0

)
− iε

][
P

(
0, 0,

x

r02

, x

)
− iε

]
−
[
P

(
0,

x

r13

,
1

r)02
, 0

)
− iε

][
P

(
1, 0, 0, x

)
− iε

]}
,

(2.73)

where 

a = k23/r13 + r02k01 − k03r02/r13 − k12,

b = (r13 − 1/r13)(r02 − 1/r02) + k01k23 − k03k12,

c = k01/r02 + r13k23 − k03r13/r02 − k12,

d = k12 − r02k01 − r13k23 + r02r13k03.

(2.74)

Furthermore, we introduce

γkl = sgn<[a(xk − xl)], k, l = 1, 2, (2.75)

xk0 = xk, s0 = r̃03

xk1 = xk/r13, s1 = r̃01

xk2 = xkr02/r13, s2 = r̃12

xk3 = xkr02, s3 = r̃23

(2.76)
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and

x
(0)
kj = lim

ε→0
xkj as rij = lim

ε→0
r̃ij (2.77)

At last, we introduce

η̃(a, b̃) =



η(a, b) for b not real,

2πi[θ(−Ima)θ(−Imb̃)− θ(Ima)θ(Imb̃)] for b < 0,

0 for b > 0,

(2.78)

with b = limε→0 b̃.

Then we have the result for real r02

D0(p10, p20, p30,m0,m1,m2,m3) =
1

m1m2m3m4a(x1 − x2)

×
{ 3∑
j=0

2∑
k=1

(−1)j+k
[
Li2(1 + sjxkj) + η(−xkj, sj) log(1 + sjxkj)

+Li2

(
1 +

xkj
sj

)
+ η

(
−xxj,

1

sj

)
log

(
1 +

xkj
sj

)]
+

2∑
k=1

(−1)k+1

[
η̃(−xkj,

1

sj
)

[
log(r02xk) + log

(
Q

(
1

x
(0)
k

, 0, 0, 1

)
− iε

)

+ log

(
Q̄(0, 0, 1, r02x

(0)
k )

d
+ iεγk,3−ksgn(r02Imr̃13)

)]
−η̃
(
−xk,

1

r̃13

)[
log

(
xk
r13

)
+ log

(
Q

(
r13

x
(0)
k

, 1, 0, 0

)
− iε

)
+ log

(
Q̄(1, 0, 0, x

(0)
k )

d
+ iεγk,3−ksgn(Imr̃13)

)]
−
[
η̃

(
−xk,

r̃02

r̃13

)
+ η̃

(
r̃02,

1

r̃13

)][
log

(
r02xk
r13

)
+ log

(
Q

(
r13

x
(0)
k

, 1, 0, 0

)
− iε

)
+ log

(
Q̄(1, 0, 0, r02x

(0)
k )

d
+ iεγk,3−ksgn(r02Imr̃13)

)]
+η

(
r̃02,

1

r̃13

)
η̃

(
− xk,−

r̃02

r̃13

)]}
. (2.79)
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In the case that |rij| = 1 for all rij, the result can be written as

D0(p10, p20, p30,m0,m1,m2,m3) =
1

m1m2m3m4a(x1 − x2){ 3∑
j=0

2∑
k=1

(−1)j+k
[
Li2(1 + sjxkj) + η(−xkj, sj) log(1 + sjxkj)

+Li2

(
1 +

xkj
sj

)
+ η

(
−xxj,

1

sj

)
log

(
1 +

xkj
sj

)]
+

2∑
k=1

(−1)k+1

[
η

(
−xk,

1

r13

)[
log

(
r13

x
(0)
k

P

(
1,
x

(0)
k

r[13]
, 0, 0

)
− x

(0)
k

r13

εbγk,3−k

)]
+η(−xk, r02)

[
log

(
1

r02x
(0)
k

P
(
0, 0, 1, r02x

(0)
k

)
− r02x

(0)
k εbγk,3−k

)
+ log

(
r02x

(0)
k

)]
−
[
η

(
−xk,

r02

r13

)
+ η

(
r02,

1

r13

)][
log

(
r[13]

r02x
(0)
k

P

(
0, 1,

r02x
(0)
k

r13

, 0

)
− r02x

(0)
k

r13

εbγk,3−k

)
+ log

(
r02x

(0)
k

r13

)]
+ (1− γk,3−ksgn(b))η

(
−xk.−

r02

r13

)
η

(
r02,

1

r13

)]}
.

(2.80)

2.3.2 Tensor Integral Reduction

We have introduced the four basic scalar integrals A0, B0, C0 and D0 for

calculations of the perturbative quantum field theory. Besides the scalar integrals we

also need tensor integrals in the perturbative calculations, of which the evaluations

could be very complicated in practice. In order to deal with these complications,

we follow one particular procedure [30, 31] in which these tensor structures could be

reduced to linear combinations of scalar integrals.

In general, the one-loop integrals in d-dimensions are classfied with the the

number N of propagators in the denominator and the number P of integration mo-

menta in the numerators. According to power counting, the integrals with P +

D − 2N ≥ 0 are UV-divergent. The divergencies can be regulated by evaluating

the integrals in general dimensions d 6= 4 (dimensional regularization [15]). The
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UV-divergences would be cancelled in the procedure of the renormalization. For

renormalizable theories we have P ≤ N and therefore a finite number of divergent

integrals.

We define the general one-loop tensor integral as

TNµ1···µP (p1, · · · , pN1 ,m0, · · · ,mN1) =
(2πµ)4−d

iπ2

∫
ddq

qµ1 · · · qµP
D0D1 · · ·DN−1

(2.81)

where the denominator factors

D0 = q2 −m2
0 + iε, Di = (q + pi)

2 −m2
i + iε, i = 1, . . . , N − 1, (2.82)

arising from the propagators in the Feynman diagram. Moreover we introduce

pi0 = pi and pij = pi − pj. (2.83)

pN−1N−2

pNN−1

p1

p21

q

q + pN−1

q + p1

q + pN−2

q + p2

Apparently the tensor integrals are invariant under permutations of the propa-

gators Di, i 6= 0 and totally symmetric in the Lorentz indices µk. iε is an infinitesimal

imaginary part which regulates singularities of the integrand. Its specific choice guar-

antees causality. The parameter µ has mass dimension and play a role to keep the

dimension of the integrals fixed for varying d. Conventionally TN is denoted by the
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Nth character of alphabet, i.e. T 1 ≡ A, T 2 ≡ B,· · · , and the scalar integrals carry a

subscript 0.

Lorentz covariance of the integrals allows to decompose tensor integrals into

tensors constructed from the external momenta pi, and the metric tensor gµν with

totally symmetric coefficient functions TNi1···iP . Formally we introduce an artificial

momentum p0 to write terms containg gµν in a compact way

TNµ1···µP (p1, · · · , pN1 ,m0, · · · ,mN1) =
N−1∑

i1,··· ,iP=0

TNi1···ippi1pi1µ1 · · · piPµP , (2.84)

the gµν terms are recovered by omitting terms containing an odd number of p0’s and

replacing the products of even numbers of p0’s by the corresponding totally symmetric

tensor constructed from the gµν , for example,

p0µ1p0µ2 → gµ1µ2

p0µ1p0µ2p0µ3p0µ4 → gµ1ν1gµ3ν4 + gµ1ν3gµ2ν4 = gµ1ν4gµ2ν3. (2.85)

The explicit Lorentz decompositions for the lowest order integral are easily

derived. The two various two point functions can be written as

Bµ = p1µB1,

Bµν = gµνB00 + p1µp1νB11, (2.86)

the three point functions reads

Cµ = p1µC1 + p2µC2 =
2∑
i=1

piµCi,

Cµν = gµνC00 +
2∑

i,j=1

piµpjνCij,

Cµνρ =
2∑
i=1

(gµνpiρ + gνρpiµ + gµρpiν)C00i +
2∑

i,j,k=1

piµpjνpkρCijk, (2.87)
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And the various D functions could be expressed as

Dµ =
3∑
i=1

piµDi, Dµν = gµνD00 +
3∑

i,j=1

piµpjνDij,

Dµνρ =
3∑
i=1

(gµνpiρ + gνρpiµ + gµρpiν)D00i +
3∑

i,j,k=1

piµpjνpkρDijk

Dµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ)D0000

+
3∑

i,j=1

(gµνpiρpjσ + gνρpiµpjσ + gµρpiνpjσ

+ gµσpiνpjρ + gνσpiµpjρ + gρσpiµpjν)D00ij

+
3∑

i,j,k=1

piµpjνpkρplσDijkl (2.88)

For a general tensor integral with N ≥ 5, the terms involving gµν should be

omitted since the four dimensional space is spanned by four Lorentz vectors. Fur-

thermore, the decomposition (2.84) should contain at most four Lorentz vectors.

Therefore, the decomposition (2.84) arrives at

TNµ1···µP (p1, · · · , pN1 ,m0, · · · ,mN1) =
4∑

i1,··· ,iP=0

TNi1···ippi1µ1 · · · pµP , (2.89)

where {p1, · · · , p4} is any set of four linear independent Lorentz vectors out of {p1, · · · , pN−1}.

The symmetry of the tensor integrals under exchange of the propagators gives rise

to relations between the scalar coefficient functions. Exchanging the arguments

(pi,mi) ↔ (pj,mj) together with the corresponding indices i ↔ j leaves the scalar

coefficient functions invariant, for example,

C1(p1, p2,m0,m1,m2) = C1(p2, p1,m0,m2,m1),

C00(p1, p2,m0,m1,m2) = C00(p2, p1,m0,m2,m1),

C12(p1, p2,m0,m1,m2) = C12(p2, p1,m0,m2,m1). (2.90)
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All one-loop tensor integrals could be expressed itereatively in terms of the

scalar ones TN0 (A0, B0, C0, D0. . . ), using the Lorentz decomposition of the tensor

integrals. We will derive the general procedure for the tensor integral.

The product of the integration momentum qµ with an external momentum

could be written in terms of the denominators

qpk =
1

2
[Dk −D0 − fk], fk = p2

k −m2
k +m2

0. (2.91)

Multiplying eq. (2.81) with pk and substituting eq. (2.91) yields

RN,k
µ1···µP−1

= TNµ1···µP p
µP
k

=
1

2

(2πµ)4−d

iπ2

∫
ddq

[
qµ1 · · · qµP−1

D0 · · ·Dk−1Dk+1 · · ·DN−1

−
qµ1 · · · qµP−1

D1 · · ·DN−1

− fk
qµ1 · · · qµP−1

D1 · · ·DN−1

]
=

1

2
[TN−1
µ1···µP−1

(k)− TN−1
µ1···µP−1

(0)− fkTNµ1···µP−1
], (2.92)

where the argument k in TN−1
µ1···µP−1

(k) implies that the propagator Dk was eliminated.

Note that TN−1
µ1···µP−1

(0) has an external momentum in its first propagator. So we need

to perform a shift of the integration momentum to recover it to the form (2.81). All

tensor integrals on the right-hand side of eq. (2.92) have one Lorentz index less than

the original tensor integral. In two of them one propagator is cancelled.

For P ≥ 2, contracting eq. (2.81) with gµν and using

gµνqµqν = q2 = D0 +m2
0, (2.93)
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yields

RN,00
µ1···µP−2

= TNµ1···µP g
µP−1µP

=
(2πµ)4d

iπ2

∫
ddq

[
qµ1 · · · qµP−2

D1 · · ·DN

+m2
0

qµ1 · · · qµP−2

D0 · · ·DN

]
= [TN−1

µ1···µP−2
(0) +m2

0T
N
µ1···µP−2

]. (2.94)

Plugging the Lorentz decomposition (2.84) for the tensor integrals in eqs. (2.92) and

(2.94) we obtain a set of linear equations for the corresponding coefficient functions.

This set decomposes into disjoint set of N − 1 equations for each tensor integral. If

the inverse of the matrix

XN−1 =



p2
1 p1p2 · · · p1pN−1

p2p1 p2
2 · · · p2pN−1

...
...

. . .
...

pN−1 pN−1p2 · · · p2
N−1


(2.95)

exists, these can be solved for the invariant functions TNi1···iP . In this way all tensor

integrals are reduced iteratively to scalar integrals TL0 with L ≤ N .

If the matrix XN−1 becomes singular, the reduction algorithm fails. If this is

due to the linear dependence of the momenta we can leave out the linear dependent

vectors of the set {p1, · · · , pN−1} in the Lorentz decomposition bringing in a smaller

matrix XM . If XM is nonsingular the reduction algorithm works again. This occurs

at the edge of phase space where some of the momenta pi become collinear.

Now we exhibit the results for reduction of arbitrary N -point integrals depend-

ing on M ≤ N−1 linear independent Lorentz vectors in d dimensions for nonsingular
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matrix XM . Inserting the Lorentz decomposition of TN , RN,K and RN,00

RN,K
µ1···µP−1

= TNµ1···µP p
µP
k =

M∑
i1,··· ,iP−1=0

RN,K
i1···iP−1

pi1µ1 · · · piP−1µP−1
,

R0,0
µ1···µP−1

= TNµ1···µP g
µP−1µP =

M∑
i1,··· ,iP−2=0

RN,00
i1···iP−2

pi1µ1 · · · piP−2µP−2
, (2.96)

into eqs. (2.92) and (2.94), these equations could be solved for TNi1···iP :

TN00i1···iP−2
=

1

D + P − 2−M

[
RN,00
i1···iP−2

−
M∑
k=1

RN,k
ki1···iP−2

]
,

TNki1···iP−1
= (X−1

M )kk′

[
RN,k′

i1···iP−1
−

P−1∑
r=1

δl
′

irT
N
00i1···ir−1ir+1···iP−1

]
. (2.97)

Using the eq. (2.92) and (2.94), the R’s can be expressed in terms of TNi1···iP−1
, and

TN−1
i1···iq , with q < P :

RN,00

i1···iqM · · ·M︸ ︷︷ ︸
P−2−q

= m2
0T

N

i1···iqM · · ·M︸ ︷︷ ︸
P−2−q

+ (−1)P−q
[
T̃N−1
i1···iq(0) +

(
P − 2− q

1

)M−1∑
k1=1

T̃N−1
i1···iqk1

(0)

+

(
P − 2− q

2

) M−1∑
k1,k2=1

T̃N−1
i1···iqk1k2

(0) + · · ·

+

(
P − 2− q
P − 2− q

) M−1∑
k1,··· ,kP−2−q=1

T̃N−1
i1···iqk1···kP−2−q

(0)

]
, (2.98)

RN,k

i1···iqM · · ·M︸ ︷︷ ︸
P−1−q

=
1

2

{
TN
ĩ1···ĩqM · · ·M︸ ︷︷ ︸

P−1−q

(k)θ(k|i1, · · · , iq,M, · · · ,M)

− fkTNi1···iqM · · ·M︸ ︷︷ ︸
P−1−q

− (−1)P−1−q
[
T̃N−1
i1···iq(0)

+

(
P − 1− q

1

)M−1∑
k1=1

T̃N−1
i1···iqk1

(0)

+

(
P − 1− q

2

) M−1∑
k1,k2=1

T̃N−1
i1···iqk1k2

(0) + · · ·

+

(
P − 1− q
P − 1− q

) M−1∑
k1,··· ,kP−1−q=1

T̃N−1
i1···iqk1···kP−1−q

(0)

]}
(2.99)
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where i1, · · · , iq 6= M and

θ(k|i1, · · · , iP−1) =


1 ir 6= k, r = 1, · · · , P − 1,

0 else.

(2.100)

The indices ĩ denotes the i-th momentum of the corresponding N -point function TN

but to the (i− 1)-th momentum of the (N − 1)-point function TN−1(K) if i > k. In

sum, with the reduction algorithm above all one-loop integrals can be reduced to the

scalar ones as long as the matrices XM are nonsingular.

Next we take the reduction of tensor two-point integrals as an example to

illustrate the reduction algorithm describe above.

We start with

B0(p10,m0,m1) =
(2πµ)4−n

iπ2

∫
ddq

1

D0D1

= p10µB1(P 2
10,m

2
0,m

2
1). (2.101)

Using the relation q2 = D0 −m2
0 with (for convenience, p10 → p)

qp =
1

2
(D1 −D0 − f), f = p2 −m2

1 +m2
2, (2.102)

we derive the following relations:

p2B1(p2,m2
0,m

2
1) =

1

2
[A0(m0)− A0(m1)− fB0(p,m2

0,m
2
1)]. (2.103)

Therefore we have

B1(p2,m1,m0) =
1

2p2
[A0(m0)− A0(m1)− (m2

0 −m2
1 − p2)B0(p,m2

0,m
2
1)]. (2.104)

The rank two tensor integral can be reduced as follows:

Bµν(p
2,m2

0,m
2
1) = gµνB00(p2,m2

0,m
2
1) + pµpνB11(p2,m2

0,m
2
1) (2.105)
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Multiplying eq.(2.105) by gµν and pν yields
p2B11(p2,m2

0,m
2
0) + dB00(p2,m0,m1) = A0(m1)−m2

0B0(p2,m2
0,m

2
1)

p2B11(p2,m2
0,m

2
0) +B00(p2,m0,m1) = 1

2
[A0(m1)− fB0(p2,m2

0,m
2
1)]

(2.106)

After a simple calculation, we have

B0(p2,m2
0,m

2
1) =

1

∆
−
∫ 1

0

dx log

(
χ

µ2

)
→ 1

∆
,

B1(p2,m2
0,m

2
1) = −1

2

1

∆
−
∫ 1

0

xdx log

(
χ

µ2

)
→ −1

2

1

∆
,

B11(p2,m2
0,m

2
1) =

1

3

1

∆
−
∫ 1

0

dxx2 log

(
χ

µ2

)
→ 1

3

1

∆
,

B22(p2,m2
0,m

2
1) = −1

2

(
1

∆
+ 1

)∫ 1

0

dxχ+
1

2

∫ 1

0

dxχ log

(
χ

µ2

)
→ −1

4

(
1

3
p2 −m2

0 −m2
1

)
1

∆
, (2.107)

where

χ(x) = −p2x2 + (p2 −m2
1 +m2

0)x−m2
0,

∆ =
2

4− d
− γE + log(4π). (2.108)

Using these relations, we get

dB22(p2,m0,m1) = 4B22(p2,m2
0,m

2
1) +

K2

6
, K2 = p2 − 3(m2

0 +m2
1). (2.109)

Furthermore we have
p2B11(p2,m2

0,m
2
0) + 4B00(p2,m0,m1) = A0(m1)−m2

0B0(p2,m2
0,m

2
1)− K2

6

p2B11(p2,m2
0,m

2
0) +B00(p2,m0,m1) = 1

2
[A0(m1)− fB0(p2,m2

0,m
2
1)].

(2.110)

At this moment we introduce a X1-matrix (nonsingular) p2 4

p2 1

 (2.111)
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and the vector b

b =

 b1

b2

 =

 A0(m2
1)−m2

0B0(p2,m2
0,m

2
1)− K2

6

1
2

[A0(m1) + fB1(p2,m0,m1)]

 (2.112)

Therefore, B00(p2,m2
0,m

2
1) and B11(p2,m2

0,m
2
1) can be obtained by using the inverse

of matrix X1  B11(p2,m2
0,m

2
1)

B00(p2,m2
0,m

2
1)

 = X−1
1

 b1

b2

 . (2.113)

Now the tensor two-point integrals have been reduced to the scalar integrals A0 and

B0 and their explicit expressions are listed as follows:

B1(p2,m2
0,m

2
1) =

1

2p2
[A0(m0)− A0(m2) + (m2

1 −m2
0 − p2)B0(p2,m2

0,m
2
1)],

B11(p2,m2
0,m

2
1) =

p2 − 3(m2
0 +m2

1)

18p2

+
∆m2 − p2

3p4
A0(m0)− ∆m2 − 2p2

3p4
A0(m1)

+
κ(−p2,−m2

0,−m2
1) + 3p2m2

0

3p4
B0(p2,m0,m1),

B22(p2,m2
0,m

2
1) = −p

2 − 3(m2
0 +m2

1)

18
− ∆m2 − p2

12p2
A0(m0) +

∆m2 + p2

12p2
A0(m2)

− κ(−p2,−m2
0,−m2

1)

12p2
B0(p2,m2

0,m
2
1), (2.114)

with ∆m2 = m2
1 −m2

0.
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2.4 Example for One-loop Radiative Correction Calculations

The discussion above gave us a reduction method to compute one-loop tensor

integrals, which is a powerful tool for perturbative calculations for the Standard

Model.

As illustrations of the reduction method we will present the detailed calculation

of the one-loop amplitude for the decay of the W -boson into massless fermions.

W+(k)→ fi(pi)f̄j(pj). (2.115)

W+

γ,Z

f̄j

fi

Figure 2.1. Born Diagram to W → fif̄j

At the tree level only one Feynman diagram contributes to the amplitude

M0 = − eVij√
2sw

ū(p1)ε(k)
1

2
(1− γ5)v(p2) =

eVij√
2sw
M−

1 , (2.116)

with M−
1 = ū(p1)ε(k)1

2
(1− γ5)v(p2), which leads to the lowest order decay width

Γ0 =
α

6

MW

2s2
W

|Vij|2 . (2.117)

There are six loop digrams and one counterterm diagram at one-loop order (see

Feynman diagrams below)
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W+

γ,Z

f̄j

fi

W+

γ,Z

W

fi

f̄j

fi

W+

fj

f̄j

fi
W

γ,Z

W+

γ,Z

f̄j

fi

Figure 2.2. One-loop diagrams to W → fif̄j

These six diagrams could be grouped into two generics, the first two loop dia-

grams correpsonding one generic diagram and the rest four corresponding to another

generic diagram. So we first compute the two generic diagrams. The amplitude for

the first one is written as follows

δM1 = iµ4−D
∫

ddq

2πd
1

(q2 −M2)(q + p1)2(q − p2)2

ū(p1)γν(g−1 ω− + g+
1 ω+)(/q + /p1)/ε(g−3 ω− + g+

3 ω+)

(/q − /p2)γµ(g−2 ω− + g+
2 ω+)v(p2), (2.118)
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where g± represent the generic left- and right-handed fermion-fermion-vector cou-

plings

g+
f = −sw

cw
Qf , g

− =
I3 −Q2

fs
2
w

sW cw
, (2.119)

and

ω± =
1

2
(1± γ5). (2.120)

Algebraic simplification and decomposition into tensor integral gives

δM1 = iµ4−D
∫

ddq

2πd
1

(q2 −M2)(q + p1)2(q − p2)2

ū(p1)[−2(/q − /p2)/ε(/q + /p1) + (4− d)/q/e/q](g
−
1 g
−
3 g
−
2 ω−g

+
1 g

+
2 g

+
3 ω+)v(p2)

= − 1

16π2
ū(p1)[(2− d)Cµνγ

µ/εγν + 2Cµ(/p2
/εγµ − γµ/ε/p1

) + 2C0/p2
/ε/p1

]

(g−1 g
−
2 g
−
3 ω− + g+

1 g
+
2 g

+
3 ω+)v(p2). (2.121)

Inserting the Lorentz decomposition (2.87) yields

δM1 = − 1

16π2
(g−1 g

−
3 g
−
2M−

1 + g+
1 g

+
3 g

+
2M+

1 )

[(2− d)2C00 − 2k2(C12 + C1 + C2 + C0)]. (2.122)

Finally the amplitude for the first generic diagram arrives at

δM1 = − 1

16π2

(
g−1 g

−
3 g
−
2M−

1 + g+
1 g

+
3 g

+
2M+

1

)
[
−2k2C0(0, k2, 0,M, 0, 0)

(
1 +

M2

k2

)2

−B0(k2, 0, 0)

(
3 + 2

M2

k2

)
+ 2B0(0,M, 0)

(
2 +

M2

k2

)
− 2

]
. (2.123)
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Similarly the amplitude for the second generic diagram is obtained

δM2 = −iµ4−d
∫

ddq

(2π)d
ū(p1)γν(g−1 ω− + g+

1 ω+)(−/q)γρ(g−2 ω− + g+
2 ω+)v(p2)

q2[(q + p1)2 −M2
1 ][(q − p2)2 −M2

2 ]

g3[gρµ(p1 + 2p2 − q)ν − gµν(2p1 + p2 + q)ρ + gνρ(2q + p1 − p2)µ]εµ

=
1

16π2
g3(g−1 g

−
2M−

1 + g+
1 g

+
2M+

1 )[4(d− 1)C00 − 2k2(C12 + C1 + C2)]

=
1

16π2
g3(g−1 g

−
2M−

1 + g+
1 g

+
2M+

1 )[
2

(
M2

1 +M2
2 +

M2
1M

2
2

k2

)
C0(0, k2, 0, 0,M1,M2)−

(
1 +

M2
1 +M2

2

k2

)
B0(K2,M1,M2) +

(
2 +

M2
1

k2

)
B0(0, 0,M1) +

(
2 +

M2
2

k2

)
B0(0, 0,M2)

]
(2.124)

For convenience we define the generic vertex function as follows:

Va(m2
1,m

2
0,m

2
2,M0,M1,M2) = B0(m2

0,M1,M2)− 2

− (M2
0 −m2

1 −M2
1 )C1 − (M2

0 −m2
2 −M2

2 )C2

− 2(m2
0 −m2

1 −m2
2)(C1 + C2 + C0),

V−b (m2
1,m

2
0,m

2
2,M0,M1,M2) = 3B0(m2

0,M1,M2) + 4M2
0C0

+ (4m2
1 + 2m2

2 − 2m2
0 +M2

0 −M2
1 )C1

+ (4m2
2 + 2m2

1 − 2m2
0 +M2

0 −M2
2 )C2.

(2.125)

so that amplitudes for two generic diagrams can be expressed as

δM1 = − 1

16π2
(g−1 g

−
3 g
−
2M−

1 + g+
1 g

+
3 g

+
2M+

1 )Va(0, k2, 0,M, 0, 0)

δM2 =
1

16π2
g3(g−1 g

−
2M−

1 + g+
1 g

+
2M+

1 )V−b (0, k2, 0, 0,M1,M2).

(2.126)
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Next, we only need to insert the actual couplings and masses of the six actual

diagrams into these two generic diagrams and add the counterterm diagram. Finally

we obtain the virtual one loop corrections to the invariant amplitude for W → fif̄j

δM =− e√
2sW

α

4π
VijM−

1{
QfiQfjVa(0,M2

W , 0, λ, 0, 0) + g−fig
−
fj
Va(0,M2

W , 0,MZ , 0, 0)

+QfiVb(0,M2
W , 0, 0, λ,MW )−QfjVb(0,M2

W , 0, 0,MW , λ)

+
cW
sW

g−fiVb(0,M
2
W , 0, 0,MZ ,MW )− cW

sW
g−fjVb(0,M

2
W , 0, 0,MW ,MZ)

+
1

2
δZfi,L†

ii +
1

2
δZ

fj ,L†
jj +

1

2
δZW + δZe −

δsW
sW

}
. (2.127)

δM contains infrared divergences and they are regulated with a photon mass λ.
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CHAPTER THREE

Spinor Techniques

3.1 Introdution

The cross sections of bremsstrahlung processes at high energies in gauge the-

ories are of interest for both theoretical and experimental physicists due to the de-

veolopment of experiments in colliders. In these processes, light leptons and quarks

could be viewed as massless as long as the electromagnetic and strong interactions

are concerned. When the Feynman rules of the theory are determined, the rest of

the work is reduced to the calculation of the amplitudes of Feynman diagrams. The

amplitudes can be computed with the standard manipulations for squaring matrix

elements and summing over the polarizations of the particles.

Although the standard approach is straightforward, it becomes impractical

when both the number of external lines and the number of diagrams involved become

large. To be specific, aftering writting down the amplitude M of the correspond-

ing Feynman diagrams, we usually have an analytic expression for the cross section∑
|M |2 with a spin and/or color sum or average. The result is usually a function of

Minkowski products of the particle four-momenta.

The calculation of the cross section is facilitated by two considerations. First,

the polarization vector εµ of external spin-1 particles could be summed covariantly.

For a massive vector boson with mass m and momentum qµ we have the spin sum∑
εµε∗ν = −gµν +

qµqν

m2
, (3.1)
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while for a massless vector boson with momentum kµ we have in the axial gauge:∑
εµε∗ν = −gµν +

pµkν + kµpν

p · k
, (3.2)

where pµ is a four-vector different from kµ. Second, a product of spinor sandwiches

can be expressed as a trace over a string of Dirac matrices, using spinor projection

operators. For a massive spin-1
2

particle with mass m and momentum pµ we have the

spin sum 
∑
ū(p)u(p) = /p+m,

∑
v̄(p)v(p) = /p−m.

(3.3)

For a massless fermion with moemntum pµ and helicity λ = ±1, we have

uλ(p)ūλ(p) = ωλ/p, ωλ =
1

2
(1 + λγ5). (3.4)

The above method has some appealing features. The unobserved spins and

polarizations do not arise in the final result; the arbitrary overall complex phases of

the spinors and polarization vectors cancel. The algebraic calculation of the trace

expressions is straightforward and can be performed for any amplitude. However, the

last condition limits the complexity of the problems that can be dealt with. Since we

have to square the amplitude before we can use eqs. (3.1)-(3.4), both the number of

traces and their length increases very fast with the order of perturbation theory. It

is very easy to make mistakes.

In order to handle this problem, spinor product methods were proposed by

three groups independently: the CALKUL approach [46–50], “Chinese magic” po-

larization scheme [51], and Kleiss and Stirling Spinor Technique [52]. The essential

idea is that the gauge invariance allows one to use a set of polarization vectors which

68



eliminate radiation from one entire side of a charged line and simplify considerably

the calculation. In this chapter, we will introduce these three approaches respectively.

3.2 The CALKUL Approach

First, we introduce the heliciy amplitude approach [46–49] proposed the CALKUL

collaboration (F. A. Berends, P. De Causmaecker, R. Gastmans, R. Kleiss, W. Troost

and T. T. Wu).

For a massless fermion of four-momentum q, there are two possible helicity

states u+(q) and u−(q) specified by

u±(q) =
1

2
(1± γ5)u±(q), (3.5)

ū±(q) = ū±(q)
1

2
(1∓ γ5). (3.6)

By the normalization

u+(q)ū+(q) + u−(q)ū−(q) = /q, (3.7)

it follows that

u±(q)ū±(q) =
1

2
(1± γ5)/q. (3.8)

For the anti-fermion of momentum q, the relations are similar:

v±(q) =
1

2
(1∓ γ5)v±(q), (3.9)

v̄±(q) = v̄±(q)
1

2
(1± γ5), (3.10)

v±(q)v̄±(q) =
1

2
(1∓ γ5)/q. (3.11)
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It is convenient to apply the Dirac bracket notation.

|q,+〉 ≡ u+(q), |q,+〉 ≡ v−(q),

|q,−〉 ≡ u(q, ), |q,−〉 ≡ v+(q),

〈q,+| ≡ ū+(q), 〈q,−| ≡ v̄−(q),

〈q,−| ≡ ū−(q), 〈q,−| ≡ v̄+(q). (3.12)

Then we have

|q,+〉 〈q,+| = 1

5
(1 + γ5)/q,

|q,−〉 〈q,−| = 1

5
(1− γ5)/q, (3.13)

and

〈q,+|q,+〉 = 〈q,−|q,−〉 = 0. (3.14)

More generally, for arbitrary q1 and q2 satisfying q2
1 = q2

2 = 0,

〈q1,±|q2,±〉 = 0. (3.15)

Products like 〈q1,+|q2,−〉 are not well defined since each state can carry an arbitrary

phase, but the norm is

| 〈q1,+|q2,−〉 |2 = tr

[
1

2
(1− γ5)/q2

1

2
(1 + γ5)/q1

]
= 2(q1q2). (3.16)

Next, let us discuss the polarization vectors of the gauge boson. Assume

a massless gauge boson with four-momentum k is radiated from a charged line for

which q+ and q− are the momenta of the outgoing antifermion and fermion. A massless

boson has two polarization states, and the polarizations can be contructed as follows:
ε
‖
µ = N [(q+k)q−µ − (q−k)q+µ],

ε⊥µ = Nεµαβγq
α
+q

β
−k

γ,

(3.17)
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where

N = [2(q+q−)(q+k)(q−k)]
1
2 . (3.18)

Alternatively, from eq. (3.17), we can introduce the circular polarization vec-

tors

ε±µ =

√
1

2
(ε‖µ ± ıε⊥µ ), (3.19)

with which we will work from now on.

Using the identity

iγµεµαβγ = (γαγβγγ − γαgβγ + γβgαγ − γγgαβ)γ5, (3.20)

we have

/ε± = − 1

2
√

2
N [/k/q−k/q+

(1± γ5)− /q−/q+
/k(1∓ γ5)]. (3.21)

which leads to great simplifications. There are several reasons for advantages result-

ing from eq. (3.21):

• If the gauge boson line is next to the the external fermion or antifermion line, only

one ot the terms on the right-hand side of eq. (3.21) gives a non-zero contribution

due to the Dirac equations for massless fermions.

• When there is a gauge boson line next to the external fermion or antifermion

line, either a factor 1 + γ5 or a factor 1 − γ5 occurs. This factor ensures for every

other real boson line attached to this fermion line, only one of the two terms on the

right-hand side of eq. (3.21) survives.

• When the gauge boson line is next to the external fermion line, there is a can-

cellation of the denominator. Assume we have an outgoing electron with momentum

q−, and the emission of a photon with momentum k. If the vertex for the photon
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emission is next to the outgoing electron line, then the amplitude contains a factor

ū(q−)/ε±
/q− + /k

2(q−k)
= − 1

2
√

2
Nū(q−)/k/q−/q+

(1± γ5)
q− + k

q−k

= − 1

2
√

2
Nū(q−)/q+

(/q− + /k)(1∓ γ5). (3.22)

Therefore the denominator 2(q−k) is cancelled. In the upcoming example, we will

see this denominator cancellation makes a large contribution for the simplicity of the

calculation.

In order to illustrate the nice features of the CALKUL helicity amplitude

method, we will exhibit the explicit computation the amplitude for the singe bremsstrahlung

process in QED.

For the reaction

e+(p+) + e−(p−)→ µ+(q+) + µ−(q−) + γ(k), (3.23)

for which the Feynman diagrams are shown below

γ(k)
e−(p−) µ−(q−)

(1)

e+(p+) µ+(q+)
γ(k)

e−(p−) µ−(q−)

(2)

e+(p+) µ+(q+)

γ(k)

e−(p−) µ−(q−)

(3)

e+(p+) µ+(q+)

γ(k)

e−(p−) µ−(q−)

(4)

e+(p+) µ+(q+)
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Applying the Feynman rules, we have

M1 =
ie2

2(q+q−)
v̄(p+)γµ

/p− − /k
2(p−k)

/εu(p−)ū(q−)γµv(q+),

M2 =
ie2

2(q+q−)
v̄(p+)γµ

−/p+
+ /k

−2(p+k)
/εu(p−)ū(q−)γµv(q+),

M3 =
ie2

2(p+p−)
v̄(p+)γµu(p−)ū(q−)/ε

/q− + /k

2(q−k)
γµv(q+),

M4 =
ie2

2(p+p−)
v̄(p+)γµu(p−)ū(q−)γµ

−/q+
− /k

2(q+k)
/εv(q+). (3.24)

When the photon is radiated from the electron line, it is convenient to choose

/ε±p = Np[/p+/p−/k(1∓ γ5)− /k/p+/p−(1± γ5)],

N−1
p = 4[(p+p−)(p+k)(p−k)]

1
2 . (3.25)

but for radiation from the muon line, it is advantageous to take

/ε±q = Nq[/q−/q+
/k(1∓ γ5)− /k/q−/q+

(1± γ5)],

N−1
q = 4[(q+q−)(q+k)(q−k)]

1
2 . (3.26)

The two choices are related by a simple phase factor. Let us consider the photon to

be moving along the z-axis. Because the diagrams M1 and M2 together form a gauge-

invariant set, and so do M3 and M4, we can make gauge transformations so that the

polarization vector ε±p and ε±q only have components in the xy-plane. Since the have

the same norm, they can differ at most by a phase factor and terms proportional k,

eq = e±iφε±p + β±k,

e±iφ = −(ε∓p ε
±
q ) = −NpNqtr[/p+/p−/k/q+/q+

/k(1∓ γ5)]. (3.27)

Now we are ready to calculate the helicity amplitudes which are denoted by

M(λ1(e+), λ2(e−), λ3(µ+), λ4(µ−), λ5(k)). Due to helicity conservation, electron and
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positron helicities must be opposite, as well as the muon helicities. For for all λ5,

M(+,+,+,+, λ5) = M(−,−,+,+, λ5)

= M(+,+,−,−, λ5) = M(−,−,−,−, λ5) = 0. (3.28)

Consider the non-vanishing helicity amplitudes next. Let us introduce the

notation

s = (p+ + p−)2, s = (q+ + q−)2,

t = (p+ − q+)2, t′ = (p− − q−)2,

u = (p+ − q−)2, u′ = (p− − q+)2, (3.29)

with

s+ s′ + t+ t′ + u+ u′ = 0. (3.30)

For the amplitude M(+,−,+,−,+), only the diagrams M1 and M4 contribute.

M(+,−,+,−,+)

=
ie3

s′
Npe

iφv̄(p+)γµ
/p− − /k
−2(p−k)

/p+/p−/k(1− γ5)u(p−)ū(q−)γµ
1− γ5

2
v(q+)

+
ie3

s
Npv̄(p+)γµ

1− γ5

2
u(p−)ū(q−)γµ

−/q+
− /k

2(q+k)
/q−/q+

/k(1− γ5)v(q+)

= − ie
3

2s′
Npe

iφv̄(p+)γµ(/q+
+ /q−)/p+

(1− γ5)u(p−)ū(q−)γµ(1− γ5)v(q+)

− ie3

2s′
Nqv̄(p+)γµ(1− γ5)u(p−)ū(q−)γµ(/p+

+ /p−)/q−(1− γ5)v(q+).

(3.31)
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To simplify this result further, we rewrite the first term for example

− ie3

2s
Npe

iφv̄(p+)γµ(/q+
+ /q−)/p+

(1− γ5)u(p−)ū(q−)γµ(1− γ5)v(q+)

= −ie
3

2s
Npe

iφ
v̄(p+)γµ(/q+

+ /q−)/p+
(1− γ5)u(p−)ū(q−)γµ(1− γ5)v(q+)

v̄(q+)/q−(1− γ5)v(p+)

× v̄(q+)/q−(1− γ5)v(p+)

=
4ie3

s
Npe

iφ
ū(q−)/p+/q−/q+

(/q+
+ /q−)/=+

(1− γ5)u(p−)

v̄(q+)/q−(1− γ5)v(p+)

=
16ie3

s
Np(p+q−)(q+q−)

ū(q−)/p+
(1− γ5)u(p−)v̄(p+)/q−(1− γ5)v(q+)

tr[/q+/q−(1− γ5)/p+/q−(1− γ5)]

=
ie3

s
Npū(q−)/p+

(1− γ5)u(p−)v̄(p+)/q−(1− γ5)v(q+). (3.32)

Performing similar manipulations with the last term in eq. (3.31) we have

− ie3

2s′
Nqv̄(p+)γµ(1− γ5)u(p−)ū(q−)γµ(/p+

+ /p−)/q−(1− γ5)v(q+)

=
ie3

s
Nqū(q−)/p+

(1− γ5)u(p−)v̄(p+)/q(1− γ5)v(q+). (3.33)

Therefore, we obtain

M(+,−,+,−,+)

= −ie3

[
Nq

s
(ε−q ε

+
q ) +

Np

s′
(ε−p ε

+
q )

]
ū(q−)/p+

(1− γ5)u(p−)v̄(p−)/q−(1− γ5)v(q+)

' 4e3 u

(ss′)
1
2

[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]. (3.34)

For the helicity amplitude M(+,−,−,+,+), only the diagrams M1 and M3

survive and we have, performing similar manipulations

M(+,−,−+,+)

= ie3

[
Nq

s
(ε−q ε

+
q ) +

Np

s′
(ε−p ε

+
q )

]
ū(q−)/q+/p+

(1− γ5)u(p−)v̄(p+)(1 + γ5)v(q+)

' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

t

(ss′)
1
2

. (3.35)
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In a completely analogous way, we have

M(−,+,+,−,+) ' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

t′

(ss′)
1
2

,

M(−,+,−,+,+) ' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

u′

(ss′)
1
2

. (3.36)

By parity conjugation, we have

M(+,−,+,−,−) ' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

u′

(ss′)
1
2

,

M(+,−,−,+,−) ' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

t′

(ss′)
1
2

,

M(−,+,+,−,−) ' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

t

(ss′)
1
2

,

M(−,+,−,+,−) ' 4e3[s′Nq(ε
−
q ε

+
q ) + sNp(ε

−
p ε

+
q )]

u

(ss′)
1
2

. (3.37)

From eqs. (3.34), (3.36) and (3.37), we obtain the unpolarized squared matrix

element

|M |2 = 8e6|s′Nq(ε
+
q ε
−
q ) + sNp(ε

+
p ε
−
q )|2 t

2 + t′2 + u2 + u′2

ss′
. (3.38)

Introducing the vectors

vq =
q+

(q+k)
− q−

(q−k)
, vq =

p+

(p+k)
− p−

(p−k)
, (3.39)

we have

|s′Nq(ε
+
q ε
−
q )|2 = −1

8
v2
q ,

|s′Np(ε
+
p ε
−
q )|2 = −1

8
v2
p,

<[ss′NqNp(ε
+
q ε
−
q )(ε+q ε

−
p )] =

1

8
vqvp. (3.40)

Furthermore we obtain the spin averaged matrix element

|M |2 = −e6(vq − vp)2 t
2 + t′2 + u2 + u′2

ss′
. (3.41)
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As it is shown, through the introduction of explicit polarization vectors for

the radiated gauge boson, it is feasible to compute the various helicity amplitudes

for single bremsstrahlung in massless QED in a simple and covariant way. For each

amplitude, only a few diagrams contribute, rendering the calculation very easy. Al-

though we discussed only the process e+e− → µ+µ−γ, the outline technique could

be applied to all bremsstrahlung process. The introduction of the polarization vec-

tors for the radiated photons bring in relatively simple expressions for the various

helicity amplitudes in all cases in which the fermions are massless. And the intro-

duction of analogous helicity vectors for the external gauge bosons result in similar

simplifications in SU(N) gauge theories.

3.3 The ”Chinese Magic” Polarization Scheme

The massless spinors with momentum p and helicty λ, u±(p), v±(p), ū±(p),

v̄±(p), satify the relations

/pu±(p) = /pv±(p) = /pū±(p) = /pv̄±(p) = 0, p2 = 0, (3.42)

(1∓ γ5)u± = (1± γ5)v± = ū±(1± γ5) = v̄±(1∓ γ5) = 0, (3.43)

with the normalization

ū±(p)γµu±(p) = v̄±(p)γµv±(p) = 2pµ. (3.44)

We use the Dirac convention

u±(p) = v∓ = |p±〉

ū±(p) = v̄∓ = 〈p±| , (3.45)

and

|p−〉 = |p+〉c , (3.46)
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where |ψ〉c denotes the charge conjugation of the spinor |ψ〉. The following relations

hold for massless momenta p and q,

|p±〉 〈p±| =
1

2
(1± γ5)/p, (3.47)

〈p+|q+〉 = 〈p−|q−〉 = 0, (3.48)

〈p−|q+〉 = −〈q−|p+〉 , (3.49)

〈p−|p+〉 = 〈p+|p1〉 = 0. (3.50)

For simplicity we let

〈p−|q+〉 = 〈pq〉 ; (3.51)

then

〈q−|p+〉 = −〈pq〉 ,

〈q+|p−〉 = 〈pq〉∗ ,

〈p+|q−〉 = −〈pq〉∗ . (3.52)

and

| 〈pq〉 |2 = 2(pq). (3.53)

The scalar 〈pq〉 is called the spinor inner-product [53] which play a vital role in the

”Chinese magic” polarization scheme. Next, we introduce properties of the spinor

inner-product for the following discussions.

In general, for any massless spinor 〈A±|, we have

〈A∓|B±〉 = −〈B∓|A±〉 ,

〈A+|γµ|B+〉 = 〈B−|γµ|A−〉 , (3.54)
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where 〈A±| = |A±〉, and if |A±〉 has the form

|A±〉 =


/k1 · · · /kn |q±〉 (n even)

/k1 · · · /kn |q∓〉 (n odd),

(3.55)

then

|A±〉c =


/k1 · · · /kn |q∓〉 (n even)

−/k1 · · · /kn |q±〉 (n odd),

(3.56)

where q is a momentum with q2 = 0 and ki (i = 1, · · · , n) is any momentum with or

without k2 = 0. Thus we have

〈p−|/k1 · · · /kn|q+〉 = −〈q−|/kn · · · /k1|p+〉 (n even),

〈p+|/k1 · · · /kn|q−〉 = −〈q+|/kn · · · /k1|p−〉 (n even),

〈p+|/k1 · · · /kn|q+〉 = −〈q−|/kn · · · /k1|p−〉 (n even). (3.57)

The matrix |B+〉 〈A+| can be expanded into a linear combination of 1, γµ, γ5, γµγ5

and γµγν(µ 6= ν):

2 |B+〉 〈A+| = 〈A+|γµ|B+〉 γµ
1

2
(1− γ5). (3.58)

Furthermore, we have

〈A+|γµ|B+〉 = 〈B−|γµ|A−〉

〈A+|γµ|B+〉 〈C−|γµ|D−〉 = 2 〈A+|D−〉 〈C−|B+〉 . (3.59)
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The circular polarization vectors ε± of a gauge boson with momentum k, in

which the sign ± represents the helicity, satisfying the relations below,

(ε+k) = (ε−k) = (ε+)2 = (ε−)2 = 0,

(ε+)∗ = ε−,

(ε+ε−) = −1. (3.60)

The polarization vectors are defined by referring to another momentum (q2 = 0) so

that [53]

ε+µ (k, q) =
〈q−|γµ|k−〉√

2 〈qk〉
, (3.61)

ε−µ (k, q) =
〈q+|γµ|k+〉√

2 〈qk〉∗
, (3.62)

and

/ε+(k, q) =

√
2

〈qk〉
[|k−〉 〈q−|+ |q+〉 〈k+|], (3.63)

/ε−(k, q) =

√
2

〈qk〉∗
[|k+〉 〈q+|+ |q−〉 〈k−|]. (3.64)

Furthermore we have

(ε+q) = (ε−q) = 0, (3.65)

and when the reference momentum q is transformed into p the polarization vectors

change only by an additional term proportional to k:

ε±(k, q) = ε±(k, p) + β±(p, q, k)k, (3.66)

where

β+(p, q, k) =

√
2 〈pq〉

〈pk〉 〈qk〉
, β−(p, q, k) = β+(p, q, k)∗. (3.67)
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Due to the gauge-invariance of the theories the amplitudes vanish when the polariza-

tion vector of an external gauge boson is set equal to its momentum,

[M ]ε=k = 0, (3.68)

so the reference momentum could be chosen in an arbitrary way without changing

the amplitude.

The polarization vector defined above differs from that of the CALKUL col-

laboration by a term proportional to k and a phase factor. Thus, all the attractive

features in the CALKUL approach [46, 48] are preserved in the ”Chinese magic” po-

larization scheme. Especially some of the helicity amplitudes vanish when an external

boson line is attached to an external fermion line. This can be achieved in the ”Chi-

nese magic” scheme by choosing the reference momentum in the following way: since

the helicity signs appearing in the bra and ket must be the same for the same fermion

line, and we let it be the helicity of the line. When the boson has the same (opposite)

helicity as that of the fermion line attached, the reference momentum is chosen to

be the incoming (outgoing) momentum of the line. Moreover, the polarization vector

is now expressed in terms of the spinors, therefore it gives the factorization of the

amplitude in a natural way.

As an illustration of the helicity amplitude method in ”Chinese magic” scheme

we will present the explicit calculation of helicity amplitudes for the single bremsstrahlung

process. Consider the process

e+(p′) + e−(p)→ µ+(q′) + µ−(q) + γ(k), (3.69)

for which the Feynman diagrams are shown below, and the helicity amplitude is writ-

ten asM(λ(e+), λ(e−), λ(µ+), λ(µ−), λ(γ)). For the helicity amplitudeM(−,+,+,−,+),
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the polarization vector of the photon should be chosen to be

/ε+
q = /ε+(k, q) =

√
2

〈qk〉
[|k−〉 〈q−|+ |q+〉 〈k+|] (3.70)

for the diagrams (1) and (2), and

/ε+
p = /ε+(k, p) =

√
2

〈pk〉
[|k−〉 〈p−|+ |p+〉 〈k+|] (3.71)

for the diagrams (3) and (4).

γ(k)
e−(p) µ−(q)

(1)

e+(p′) µ+(q′)
γ(k)

e−(p) µ−(q)

(2)

e+(p′) µ+(q′)

γ(k)

e−(p) µ−(q)

(3)

e+(p′) µ+(q′)

γ(k)

e−(p) µ−(q)

(4)

e+(p′) µ+(q′)

Note that [49, 53] the diagrams (1) + (2) and (3) + (4) form two indepen-

dent gauge invariant subsets of the Feynman diagrams, distinguished by the photon

attachment to different fermion lines, namely,

[M(1) +M(2)]ε=k = [M(3) +M(4)]ε=k = 0, (3.72)

Because of eqs. (3.29) and (3.35) we have

M(e+e− → µ−µ−γ) = [M(1) +M(2)]ε=εq = [M(3) +M(4)]ε=εp . (3.73)
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By eq. (3.22), the calculation is straightforward

M(1)(−,+,+,−,+) = 0,

M(2)(−,+,+,−,+) = 2ie3 〈pq〉2

〈p′p〉 〈q′q〉
β(p′, p, k),

M(3)(−,+,+,−,+) = 0,

M(4)(−,+,+,−,+) = −2ie3 〈pq〉2

〈p′p〉 〈q′q〉
β(q′, q, k), (3.74)

where

β(p, q, k) =

√
2 〈pq〉

〈pk〉 〈qk〉
. (3.75)

Therefore the calculation arrives at

M(−,+,+,−,+) = [M(1) +M(2) +M(3) +M(4)](−,+,+,−,+)

= 2ie3 〈pq〉2

〈p′p〉 〈q′q〉
[β(p′, p′k)− β(q′, q, k)]. (3.76)

As for the norm we have

|β(p, q, k)|2 = −1

2
v2(p, q, k),

|β(p′, p, k)− β(q′, q, k)|2 = −1

2
[v(p′, p, k)− v(q′, q, k)]2, (3.77)

where

v(p, q, k) =
p

(pk)
− q

(qk)
, (3.78)

and

|M(−,+,+,−,+)|2 = −2e6 t
′2

ss′
(vp − vq)2, (3.79)
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where

vp ≡ v(p′, pk), vq ≡ v(q′, q, k)

s = (p′ + p)2 = 2(p′p), s = (q′ + q)2 = 2(q′q),

t = (p′ − q′)2 = −2(p′q′), t′ = (p− q)2 = −2(pq),

u = (p′ − q)2 = −2(p′q), u′ = (p− q′)2 = −2(pq′). (3.80)

In a complete analogous way, we obtain

|M(−,+,−,+,+)|2 = −2e6u
′2

ss′
(vp − vq)2,

|M(+,−,−,+,+)|2 = −2e6 t
2

ss′
(vp − vq)2,

|M(+,−,+,−,+)|2 = −2e6 u
2

ss′
(vp − vq)2. (3.81)

By parity conjugation, we have

|M(+,−,−,+,−)|2 = −2e6 t
′2

ss′
(vp − vq)2,

|M(+,−,+,−,−)|2 = −2e6u
′2

ss′
(vp − vq)2,

|M(−,+,+,−,−)|2 = −2e6 t
2

ss′
(vp − vq)2,

|M(−,+,−,+,−)|2 = −2e6 u
2

ss′
(vp − vq)2. (3.82)

Therefore, the averaged norm for polarized scattering is finally

|M |2 = −2e6 t
2 + u2 + t′2 + u′2

ss′
(vp − vq)2. (3.83)

This result is identical with that obtained with CALKUL method [49], but the cal-

culation is simplified.

We have shown that we could simplify the calculation of the various helicity

amplitudes for the single bremsstrahlung process e+e− → µ+µ−γ in the massless
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QED by introduction the explicit helicity vectors in the ”Chinese magic” polariza-

tion scheme. This technique described here could be utilized for all bremsstrahlung

process. Furthermore the introduction of polarization vectors for the external gauge

boson leads to simplifications in massless gauge theories.

3.4 Kleiss and Stirling Spinor Technique

Besides the CALKUL approach and ”Chinese magic” polarization scheme, let

us introduce another spinor product method, Kleiss and Stirling spinor technique [52].

First we derive expressions for the spinor products. We begin the discussion

by establishing a convention for the overall complex phase of the spinors. Let us

choose two four-vectors kµ0 and kν1 with the following properties:

k0 · k0 = 0, k1 · k1 = −1, k0 · k1 = 0. (3.84)

Next we define the basic spinor u−(k0) as follows:

u−(k0)ū−(k0) = ω−/k0, (3.85)

where

ω± =
1

2
(1± γ5). (3.86)

The spinor u−(k0) is therefore the negative-helicity state of a massless fermion with

momentum k0. The corresponding positive-helicity state is chosen to be

u+(k0) = /k1u−(k0). (3.87)

From these two spinors we could construct spinors for any other lightlike momentum

p as follows:

uλ(p) =
/pu−λ(k0)
√

2p · k0

. (3.88)
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From eqs. (3.84)-(3.88) we can derive some useful relations for spinor sand-

wiches for the following discussion. Let Γ be an arbitrary string of γ matrices, and

let ΓR be the same string in the reversed order. Then we find, for arbitrary lightlike

momenta and helicities:

ūλ1(p1)Γuλ2(p2) = λ1λ2ū−λ2(p2)ΓRu−λ1(p1). (3.89)

The second useful identity (Chisholm identity) is

{ūλ1(p1)γµuλ2(p2)}γµ = 2uλ(p2)ūλ(p1) + 2u−λ(p1)ū−λ(p2). (3.90)

Next we discuss the spinor products themselves. For massless fermions with

momenta p1 and p2 there are two non-zero products:

s(p1, p2) ≡ ū+(p1)u−(p2) = −s(p2, p1),

t(p1, p2) ≡ ū−(p1)u+(p2) = [s(p2, p1)]∗. (3.91)

Using eqs. (3.85) and (3.88), we could evaluate s(p1, p2):

s(p1, p2) =
ū−(k0)/p1/p2

u+(k0)√
4(p1 · k0)(p2 · k0)

=
tr(ω−/k0/p1/p2

/k1)√
4(p1 · k0)(p2 · k0)

=
[(p1 · k0)(p2 · k1)− (p1 · k1)(p2 · k0)− iεµνρσkµ0kν0p

ρ
1p
σ
2 ]√

4(p1 · k0)(p2 · k0)
.

(3.92)

In a practical calculation we can specify kµ0 and kµ1 such that the form of s(p1, p2)

becomes compact. For instance, we take

pµi = (p0
i , p

x
i , p

y
i , p

z
i ),

kµ0 = (0, 0, 0, 0),

kµ1 = (0, 0, 1, 0). (3.93)
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This leads to

s(p1, p2) = (py1 + ipz1)

[
p0

2 − px2
p0

1 − px1

] 1
2

− (py2 + ipz2)

[
p0

2 − px1
p0

2 − px2

] 1
2

(3.94)

and t(p1, p2) is obtained by complex conjugation. Furthermore, if we have calculated

the spinor product, we immediately obtain the vector product as well:

d(p1, p2) ≡ 2p1 · p2 = |s(p1, p2)|2. (3.95)

Analogous to the CALKUL and ”Chinese magic” scheme, the spinor products

play a more fundamental role than vector products in practical calculations.

We now proceed to construct the polarization vectors of the external gauge

bosons. Let us consider polarization vectors with states of definite helicities, denoted

by εµ± ans satisfying

ελ · k = 0, ελ · ελ = 0,

εµ−λ = (εµλ)∗, ελ · ε−λ = −1, (3.96)

where kµ is the photon momentum, and λ = ±1. As long as the polarization vectors εµλ

obey the relations (3.96), it is an acceptable choice. We use the following convention:

εµλ = Nūλ(k)γµuλ(p), N = [4(p · k)]
1
2 , (3.97)

where pµ is an arbitrary vector not collinear to kµ or kµ0 .

Spinors for the massive particle with four momentum p (with p2 = m2) could

also be defined in an analogous way in which the spinor for massless particles [54]:

u(p, λ) =
1√

2p · k
(/p+m)u−λ(k),

v(p, λ) =
1√

2p · k
(/p−m)uλ(k). (3.98)

where kµ is an arbitrary lightlike vector.
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The definition (3.98) can be rewritten in terms of massless spinor as follows

u(p, λ) = uλ(pk) +
m√

2p · k
u−λ(k),

v(p, λ) = u−λ(pk)−
m√

2p · k
uλ(k), (3.99)

where

pk = p− k m2

2p · k
, p2

k = 0 (3.100)

is the light-cone projection of p obtained with the help of the auxiliary vector k.

Therefore we could obtain the explicit expressions of spinor products for the massive

spinors by eq. (3.98):

ū(p1, λ1)u(p2, λ2) = S(p1,m1, λ1, p2,m2, λ2),

ū(p1, λ1)v(p2, λ2) = S(p1,m1, λ1, p2,−m2,−λ2),

v̄(p1, λ1)u(p2, λ2) = S(p1,−m1,−λ1, p2,m2, λ2),

v̄(p1, λ1)v(p2, λ2) = S(p1,−m1,−λ1, p2,−m2,−λ2).

(3.101)

where

S(p1,m1, λ1, p2,m2, λ2) = δλ1,−λ2sλ1(p1k, p2k) + δλ1,λ2

(
m1

√
2p2k

2p1k
+m2

√
2p1k

2p2k

)
.

(3.102)

Up to now we have introduced a calculational tool for helicity amplitudes,

which brings out simplifications in gauge theories. And this approach shares many

essential features with CALKUL helicity amplitude method and ”Chinese magic”

polarization scheme. This formalism can be directly programmed into a computer

due to its symbolic properties, which plays important roles in pertubative calculations

in high energy physics.
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CHAPTER FOUR

Numerical Computations for the Five Point Function

The one loop integrals play an important role in calculating radiative cor-

rections in particle physics since they are manageable for fast MC event generator

execution for arbitrary masses and kinematics for high energy scattering process. It

has been demonstrated that n-point functions at one-loop level can be reduced to

scalar one loop functions [30,31]. Considering representations of the scalar four-point

function for arbitrary masses and momenta relevant to most high energy collider

applications have been given and they fit MC implementation well, it is natural to

attempt expressing higher point-function (n ≥ 5) in terms of the 1, 2, 3 and 4-point

functions. When the problem becomes reducing higher-point functions into expres-

sions in terms of the 1,2,3 and 4-point functions, we are most concerned about the

numerical stability. To solve this problem, B. F. L. Ward presented an approach to

evaluate higher point loop integrals using Chinese magic in the virtual loop integration

variable [55], which is called ”magic spinor product methods in loop integrals”. Based

on this method, we developed a program to compute the general five-point function

numerically. In this chapter, we first introduce the physics content of ”magic spinor

product methods in loop integrals” and then we compare our results with those from

LoopTools [56], which is a package for computation of one-loop integrals based on the

FF package by G. J. van. Oldenborgh [57]. By comparison, it shows the result from

our program is accurate and numerically stable.
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4.1 Magic Spinor Product Approach in Loop Integrals

Here we use the conventions of Refs. [54,58] which are derived from Refs. [51,52].

The five-point function which we analyze is shown in Feynman diagram (c) as fol-

lows. It has many applications in collider precision physics. For example, together

with Feynman diagrams (a) and (b) it generates a gauge invariant contribution to the

ISR for e+e− → ff̄ + γ, f 6= e. We focus on the application of Chinese magic in the

loop integral in Feynman diagram (c) to illustrate the possible simplifications here.

p1 p4

p2 p3

k

q

(a)

p2

p1 p4

p3k

q

(b)

k

p1 p4

p2 p3

q

(c)
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Applying the Feynman rules, we have

M
(1c)

λ1λ2λ′1λ
′
2λγ

= (2π)4δ(p1 + p2 − p′1 − p′2 − k)C

×
∫

d4q

(2π)4

v̄λ2γ
β(/q + /p1

− /k +m1)/ε∗λγ (/q + /p1
+m1)γαuλ1

[(q + p1 − k)2 −m2
1 + iε][(q + p1)2 −m2

1 + iε]

ū′λ′1
γα(/q + /p′1 +m2)γβv

′
λ′2

[(q + p1 + p2 − k)2 −M2
V2

+ iε][(q + p
′2
1 )2 −m2

2 + iε](q2 −M2
V1

+ iε)

+ · · · , (4.1)

where we define massless limit coupling factor

C = C(λi, λ′j)

= Q1eG
2G′2(v′1 + a′1λ2)(v1 − a1λ1)(v′2 + a′2λ2)(v2 + a2λ

′
1) (4.2)

with the couplings Q1e, G, and G′ for the γ, V1 and V2 respectively. In order to obtain

the loop integral in terms of Chinese magic, we take the following kinematics

p1 = (E, pẑ)

p2 = (E,−pẑ)

−p4 = (E ′, p′(cos θ′1ẑ + sin θ′1x̂)) ≡ p′1

k = (k0, k(cos θγ ẑ + sin θγ(cosφγx̂+ sinφγ ŷ)))

p1 + p2 = −p4 − p3 + k = (
√
s,~0)

−p3 ≡ p′2, (4.3)

with k0 = k,
√
s = 2E. Besides, we introduce the alternative notations p′1 = −p4,

p′2 = −p3. Now we introduce the two sets of magic polarization vectors asscociated

to the two incoming lines

(εµσ(β))∗ =
ūσ(k)γµuσ(β)√

2ū−σuσ(β)
,

(εµσ(ζ))∗ =
ūσ(k)γµuσ(ζ)√

2ū−σuσ(ζ)
, (4.4)
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with β2 = 0 and ζ2 = 0. We choose the basis of the four-dimensional momentum

space as follows:

`1 = (E,Eẑ)

`2 = (E,−Eẑ)

`3 = E
〈`2 + |γµ|`1+〉√

2 〈`2 − |`1+〉
= − E√

2
(x̂+ iŷ)

`4 = E
〈`2 − |γµ|`1−〉√

2 〈`2 + |`1−〉
=

E√
2

(x̂− iŷ) (4.5)

where we use the Dirac notations in Refs. [50, 52, 55]. Note that all four of the basis

four-vector are lightlike so that they can attend in Chinese magic.

We define the loop momentum as

q = αi`i (4.6)

with summation over repeated indices. The coefficient αi’s are dertermined as

α1 =
q`2

2E2
=

1

s
(D3 −D2 − s+ 2p2k +M2

V2
),

α2 =
q`1

2E2
=

1

s
(D1 −D0 −M2

V1
),

α3 =
q`4

E2
= −q`

∗
3

E2
= −α∗4,

α4 = − i√
2s

[cjDj + c5M
2
V1

+ c6(M2
V2

+ 2p2k − s) + c7(2kp1)], (4.7)

where we define the denominators as

D0 = q2 −M2
V1

+ iε

D1 = (q + p1)2 −m2
1 + iε

D2 = q + p1 − k2 −m2
1 + iε

D3 = q + p1 + p2 − k2 −M2
V2

+ iε

D4 = (q − p4)2 −m2
2 + iε (4.8)
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such that the expansion coefficents {cj} are

c0 = cscφγ

(
csc θ′1e

iφγ

β′1E
′
1

− csc θ′1e
iφγ

β′1
√
s

+
csc θγ√

s
− cot θ′1e

iφγ − cot θγ
β1

√
s

)
,

c1 = cscφγ

(
csc θ′1e

iφγ

β′1
√
s
− csc θ′1√

s
+

cot θ′1e
iφγ − cot θγ
β1

√
s

+
csc θγ
k0

)
,

c2 = cscφγ

(
− csc θ′1e

iφγ

β′1
√
s

+
csc θγ√

s
+

cot θ′1e
iφγ − cot θγ
β1

√
s

− csc θγ
k0

)
,

c3 = cscφγ

(
csc θ′1e

iφγ

β′1
√
s
− csc θγ√

s
− cot θ′1e

iφγ − cot θγ
β1

√
s

)
,

c4 = − cscφγ
csc θ′1e

iφγ

β′1E
′
1

,

c5 = cscφγ

(
csc θ′1e

iφγ

β′1E
′
1

− csc θ′1e
iφγ

β′1
√
s

+
csc θγ√

s
− cot θ′1e

iφγ − cot θγ
β1

√
s

)
,

c6 = cscφγ

(
csc θ′1e

iφγ

β′1
√
s
− csc θγ√

s
− cot θ′1e

iφγ − cot θγ
β1

√
s

)
,

c7 = − cscφγ
csc θγ
k0

, (4.9)

with β = p
E

and β′1 = p′

E′
. Therefore the {cj} are determined by the kinematics that

we choose. Note that the Chinese magic now carries over to the loop variable via the

identity

/q = αj /̀j

=
2∑
j=1

αj(|`j+〉 〈`j+|+ |`j−〉 〈`j−|) + α3

√
2E

〈p2 − |p1+〉
(|`2−〉 〈`1−|+ |`1−〉 〈`2+|)

+ α4

√
2E

〈p2 + |p1−〉
(|`2+〉 〈`1+|+ |`1−〉 〈`2−|)

≡
2∑
j=1

αj(|pj+〉 〈pj+|+ |pj−〉 〈pj−|) + α3

√
2E

〈p2 − |p1+〉
(|p2−〉 〈p1−|+ |p1−〉 〈p2+|)

+ α4

√
2E

〈p2 + |p1−〉
(|p2+〉 〈p1+|+ |p1−〉 〈p2−|)

≡
2∑
j=1

αj(|pj+〉 〈pj+|+ |pj−〉 〈pj−|) + α̃3(|p2−〉 〈p1−|+ |p1−〉 〈p2+|)

+ α̃4(|p2+〉 〈p1+|+ |p1−〉 〈p2−|), (4.10)
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where we let `1 ≡ p1, `2 ≡ p2 since for the numeratior algebra we work in the massless

limit. And we define as well

α̃3 ≡ α3

√
2E

〈p2 − |p1+〉
= − α3√

2
,

α̃4 ≡ α4

√
2E

〈p2 + |p1−〉
= − α4√

2
. (4.11)

Next, we introduce the representation (4.10) into the numerator, N , of the

integrand in eq (4.1). Then we have the reduction

N =
4
√

2

〈k − |p1+〉
{(A1 〈p2 + |p′1−〉 〈p′2 − |p2+〉

+ A2 〈p2 + |p′1−〉 〈p′2 − |p1+〉)× (A3 〈p2 + |p′1−〉 〈p′1 − |p1+〉

+ A4 〈p1 + |p′1−〉 〈p′1 − |p1+〉)

+ α̃4(A1 〈p2 + |p1−〉 〈p′2 − |p2+〉+ A2 〈p2 + |p1−〉 〈p′2 − |p1+〉)

× (A3 〈p2 + |p′1−〉 〈p2 − |p1+〉

+ A4 〈p1 + |p′1−〉 〈p2 − |p1+〉)} (4.12)

from the standard identities

/ε∗λγ =

√
2

〈k − λγ|`1λγ〉
[|`1λγ〉 〈kλγ|+ |k − λγ〉 〈`1 − λγ|],

γρ 〈`1λ|γρ|`2λ〉 = 2[|`1 − λ〉 〈`2 − λ|+ |`2λ〉 〈`1λ|],

/̀1 = |`1+〉 〈`1+|+ |`1−〉 〈`1−| , (4.13)

where we defined 

A1 = α̃4 〈p1 + |k−〉+ α2 〈p2 + |k−〉 ,

A2 = (1 + α1) 〈p1 + |k−〉+ α̃3 〈p2 + |k−〉 ,

A3 = α2 〈p1 − |p2+〉 ,

A4 = α̃4 〈p1 − |p2+〉 ,

(4.14)
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for the magic choice β = p1. Note that the Chinese magic trick has eliminated all but

one set of the terms with three factors of the virtual momentum expansion coefficients.

Moreover, in the numerator of the propagator before or after the real emission vertex,

this trick has annihilated the terms associated with /p1
/k as well as half of the terms

in the respective virtual momentum expansion in the former case. Compared to the

traditional approach of taking traces on the fermion lines, the Chinese magic trick

has a large fraction of the terms on the right-hand side of eq. (4.12). Specifically

speaking, We need to compute 2<M∗
BM(1c) in the usual method of taking traces of

fermion lines, where MB is the respective Born amplitude that would interfere with

the one-loop amplitude to generate the one-loop correction ot the respective cross

section. In the Chinese magic representation, we find that only radiation from the

antifermion (p2) incoming line contributes.

MB+−+−+ =(2π)4δ(p1 + p2 − p′1 − p′2 − k)

×
2
√

2ieQ1G
2
j(v
′
j − a′j)(vj − aj) 〈p′2 − |p1+〉

〈k − |p1+〉 〈k − |p2+〉 (s′ −M2
Vj

+ iε)

× [〈p1 − |p2+〉 〈p2 + |p′1−〉 − 〈p1 − |k+〉 〈k + |p′1−〉].

(4.15)

Therefore the calculation for 2<M∗
BM(1c) just involves multiplying N in eq. (4.12)

by the complex conjugate of the simple expression and taking twice the real part.

Assume that the traditional approach of taking traces of fermion lines is ap-

plied, we need the trace of two sets of terms with 10 Dirac gamma matrices mul-

tiplied by a factor with the trace of 6 Dirac gamma matrices. If so, we will have

2 ·9 ·7 ·5 ·4×5 ·4 = 2520×20 = 50400 terms. Each terms requires Passarino-Veltman

(PV) reduction of three, two, and one five-point tensor integrals. By comparison,

95



we can appreciate the great simplification that eq. (4.12) represents. We see that

this form of N in eq. (4.12) has efficiently reduced the problem of reduction of the

five-point function with three, two, one tensor indices in the PV scheme to the ques-

tion of a single scalar five-point and lower four, three, and two point functions with

the coefficients already explicitly written in terms of the center of mass (CMS) kine-

matic variables which are important to efficient MC generations. Furthermore, if we

introduce the result of N in eq. (4.12) into the integral in eq. (4.1), we have the

integrals ∫
d4q

(2π)4

DiDjDk;DiDj;Dj; 1

D0D1D2D3D4

, i, j, k = 0, · · · , 4 (4.16)

all of which are determined from the lower point functions when the results for the

representation of the scalar five-point function in terms of four-point functions used

in Refs. [43, 59–61]. Then we obtain an advantage: no calculation of wave functions

at complex momenta is required here. Our work results rigorously from Lagrangian

quantum field theory and thus it could be used as a cross check on other possible

approaches.

So far we have simplified considerably the computation and have removed the

Gram determinant-type factors in the tensor integral redcutions. But our calculation

sill depends on the Gram determinant-type denominator factors in the results in

Refs. [43, 59–61] for the representation of the five-point function in terms of scalar

four-point functions. In order to achieve a better numerical stability, we need to

replace the representation of the scalar five-point function.
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Let us begin with the identity

q2 = D0 +M2
V1
− iε = (αi`i)

2

= 2α1α2`1`2 + 2α3α4`3`4 = sα1α2 +
s

2
α3α4. (4.17)

Dividing by D0 · · ·D4 and integrating over d4q we have the following representation

of the required scalar five-point function

E0(p̄1, p̄2, p̄3, p̄4, m̄0, m̄1, m̄2, m̄3, m̄4)

=
1

CE0

{
−D0(0) +

1 + β2
1

2sβ2
1

[
C0(13)− C0(12)− C0(03) + C0(02)

+ (M2
V2
− s+ 2p2k)

(
D0(1)−D0(0)

)
−M2

V1

(
D0(3)−D0(2)

)]
− 1− β2

1

4sβ2
1

[
∆r1,0

(
D0(1)−D0(0)

)
+ 2∆p̄1,0

(
D11(1)¯̄p(1)1 −D11(0)¯̄p(0)1

+D12(1)¯̄p(1)2 −D12(0)¯̄p(0)2 +D13(1)¯̄p(1)3 −D13(2)¯̄p(2)3 −D0(3)¯̄p(3)4

+D0(2)¯̄p(2)4

)
+ 2(M2

V2
− s+ 2p2k)

(
D0(3)−D0(2)

)]
− 1

4

[ 4∑
j=0

|cj|2
(
C0(j, j + 1) + ∆rj,j+1D0(j) + 2∆p̄j,j+1(D11(j)¯̄p(j)1

+D12(j)¯̄p(j)2 +D13(j)¯̄p(j)3 −D0(j)¯̄p(j)4)

)
+ 2

( 4∑
i>j

<(cic
∗
j)C0(ij) +

4∑
j=0

<(cj(c
∗
5M

2
V1

+ c∗6(M2
V2
− s+ 2p2k) + c∗7(2kp1)))

D0(j)

)]}
(4.18)
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where p̄ = p1, p̄2 = p1 − k, p̄3 = p1 + p2 − k, p̄ = p′1, m̄0 −MV1 , m̄1 = m1, m̄ = m1,

m̄3 = MV2 , m̄4 = m2, where the coefficient CE0 is

CE0 =M2
V1
− iε+

1 + β2
1

2β2
1s

M2
V1

(M2
V2
− s+ 2p2k) +

1− β2
1

4β2
1s

(M4
V1

+ (M2
V2
− s+ 2p2k)2) +

1

2
<[c5c

∗
6M

2
V1

(M2
V2
− s+ 2p2k)

+ c5c
∗
7M

2
V1

(2kp1) + c6c
∗
7(M2

V2
− s+ 2p2k)(2kp1)]

+
1

4
[|c5|2M4

V1
+ |c6|2(M2

V2
− s+ 2p2k)2 + |c7|2(2kp1)2]. (4.19)

We have used a mixture of notations from [31,59–61] such that

Dj = (q − p̄j)2 − m̄2
j + iε = q2 + 2qp̄j + p̄2

j − m̄2
j + iε ≡ q2 + 2qp̄j + rj,

∆i,j ≡ ri − rj,

∆p̄i,j ≡ p̄i − p̄j

D0(j) ≡ four-point scalar function obtained from five-point scalar function

by omitting denominatrorDj,

C0(i, j) ≡ three-point scalar function obtained from five-point scalar function

by omitting denominatrorDi and Dj, i 6= j (4.20)

where we also use the Passarino-Veltman [31] notation of the four-point one-tensor

integral, Dµ(j), obtained from the five-point one tensor integral function by omitting

the denominator Dj, with

Dµ(j) ≡ D11(j)¯̄p(j)1 +D12(j)¯̄p(j)2 +D13(j)¯̄p(j)3 −D0(j)¯̄p(j)4,

where the four-vectors { ¯̄p(j)j} are determined according to Ref. [31]. Note that ¯̄p(j)4

is only nonzero if it is necessary to shift the q-integration variable by it to reach the

standard form of Passarino-Veltman representation. This expression for E0 have no
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problem with Gram determinant type denominators.

M(1a)+−+−+ = 0, by Chinese magic trick

M(1b)+−+−+ = (2π)4δ(p1 + p2 − p′1 − p′2 − k)

× 4
√

2C
〈k − |p1+〉 〈k − |p2+〉

∫
d4q

(2π)4

N ′

D0D1D3D4

, (4.21)

where the numerator N ′ is given by

N ′ =(〈p′2 − |p1+〉 a1 + 〈p′2 − |p2+〉 b1)

× (〈p1 − |p2+〉 〈p2 + |p′1−〉 − 〈p1 − |k+〉 〈k + |p′1−〉)

+ (〈p′2 − |p1+〉 ā1 + 〈p′2 − |p2+〉 b̄1)

× [−2p1(p2 − k)α̃4 + α2 〈p1 − |k+〉 〈k + |p2−〉] (4.22)

with

a1 = (1 + α1)(2p1p
′
1) + α3 〈p2 + |p′−〉 〈p′1 − |p1+〉 ,

b1 = α2 〈p2 + |p′1−〉 〈p′1 − |p1+〉+ α̃4(2p1p
′
1),

ā1 = 〈p1 − |p2+〉 [(1 + α1) 〈p1 + |p′1−〉+ α̃3 〈p2 + |p′1−〉],

b̄1 = 〈p1 − |p2+〉 [α2 〈p2 + |p′1−〉+ α̃4 〈p1 + |p′1−〉]. (4.23)

As we see this method gives a considerable reduction to the known scalar functions

while computing 2<M∗
BM1b compared to the traditional method of tracing over

fermion lines.

In sum, we have exhibited that the application of Chinese magic technique in

the virtual loop momentum could reduce significantly the volume of algebra required

for efficient and stable physical calculations of higher point virtual corrections with

the general mass scale. Furthermore, we could construct computer realizations of the
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method described above for evaluating the five-point function. In the next section,

we will exhibit our results and compare them with those from LoopTools.

4.2 Numerical Results for the Five-Point Function E0

Based on the magic spinor product method, we have developed a computer

program to calculate the five-point function E0. In our program, the LoopTools pack-

age is included. The five-point function E0 is calculated with the help of eqs. (4.9),

(4.18) and (4.19). Scalar three-point functions C0(i, j), scalar four-point functions

D0(j) and tensor four-point functions Dµν(j) are calculated by Looptools. To be

specific, we choose 

√
s = 500 GeV,

m1 = me = 0.510999× 10−3 GeV,

m2 = mµ = 0.1056583 GeV,

MV1 = MV2 = 91 GeV,

and the kinematics is determined by eq. (4.3).

p1 p2

p3p4

k

m1 m2

MV1 MV2

m5
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Figure 4.1: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 0◦
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Figure 4.2: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 15◦

then by eq. (4.8) and (4.20), we have the expressions of D0(j) and C0(i, j) which give

inputs of the corresponding three- and four-point functions in Looptools so that we

can compute D0(j), C0(i, j) and Dµν(i, j) via Looptools. Besides, we have computed

E0 via Looptools directly as a comparision. We choose (φγ, θγ, θ
′
1) as the variables.

The percent Differences of E0(φγ, θγ) and Elooptools
0 (φγ, θγ) are shown in Figure (4.1)-

(4.13).
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Figure 4.3: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 30◦
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Figure 4.4: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 45◦
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Figure 4.5: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 60◦
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Figure 4.6: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 75◦
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Figure 4.7: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 90◦
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Figure 4.8: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 105◦
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Figure 4.9: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 120◦
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Figure 4.10: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 135◦
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Figure 4.11: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 150◦

104



γ
φ 

0
20
40
60
80
100
120
140
160
180

γθ  0 20 40 60 80 100 120 140 160 180

 P
e

rc
e

n
ta

g
e

 D
if
fe

re
n

c
e

 %

20

40

60

80

100

120

140

160

180

200

 P
e

rc
e

n
ta

g
e

 D
if
fe

re
n

c
e

 %

20

40

60

80

100

120

140

160

180

)γθ, 
γ

φ(
LoopTools

0
) and Eγθ, 

γ
φ(

0
Percentage Difference of E

Figure 4.12: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 165◦
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Figure 4.13: Percentage difference of E0(φγ, θγ) and ELoopTools
0 (φγ, θγ) for

√
s =

500 GeV, MV1 = 91 GeV, MV1 = 91 GeV and θ′1 = 180◦
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As we see, the result from magic spinor product method agrees with that from

LoopTools in overall, except several regions. The percentage difference of E0(φγ, θγ)

and ELoopTools
0 (φγ, θγ) is insensitive with φγ, but sensitive with θ′1. When θ′1 > 90◦,

our result mainly fits to that from LoopTool in the region (0◦ < φγ < 180◦, 0◦ < θγ <

20◦). However, when θ′1 < 75◦, our result agrees greatly with that from Looptools.
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CHAPTER FIVE

Quantum Chromodynaics

5.1 Introduction to Quantum Chromodynamics

We now come to the other constituent of the standard model of particle physics,

Quantum Chromodynamics (QCD) [6–11]. Quantum Chromodynamics is a non-

Abelian gauge theory of strong interactions. The gauge symmetry of QCD is SU(3)

color. The choice of gauge group must rely on three facts: (a) the group must admit

complex representations in order to distinguish a quark from antiquark; (b) the group

must have completely antisymmtric color singlet to solve the statistical puzzle for the

lowest lying baryons of spin 1/2 and 3/2; (c) the number of colors for each kind of

quarks must agree with the data on the total hadronic e+e− annihilation cross section

and on the π0 → 2γ. These requirements make the SU(3)C be the unique choice.

The quanta of SU(3)C is called gluon. Since the SU(3)C symmetry is unbroken, the

gauge boson, gluon, must be massless. Therefore if Aµa denotes the gluon field (a is

the color index), ψαi the quark field with flavor index i and color index α, the QCD

Lagrangian is

Lclassical = −1

4
FµνaF

µν
a + ψ̄i(i /Dij −mδij)ψj (5.1)

where

F µν
a = ∂µAνa − ∂νAµa + gfabcA

µ
bA

ν
c , (5.2)

Dµ = ∂µ − igAµaTa. (5.3)
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Note that last term gfabcA
µ
bA

ν
c implies self-interactions of gluons, while there are no

such self-interactions in Abelian gauge theory. Ta is the generators of the triplet

representation of SU(3)C , following the commutation relations

[Ta, Tb] = ifabcTc, (5.4)

where fabc are completely antisymmetric structure constants.

In order to quantize the theory one needs a gauge fixing term to be added to

eq. (5.1). Usually, the gauge fixing term is chosen as follows:

Lgauge fixing = − 1

2α
(∂µAaµ)2. (5.5)

The introduction of such a term requires the addition of the Faddeev-Popov ghost

interactions in turn,

LFP = (∂µχa∗)Dab
µ χ

b, (5.6)

where Dab
µ refer to the adjoint representation of SU(3)C . Here we choose a pair of the

ghost fields χa and χa∗. It is also possible to choose two real fields χa1 and χa2 instead

of χa and χa∗. By setting

χa =
1√
2

(χa1 + iχa2) (5.7)

with the Grassmann property

(χa1)2 = (χa2)2 = 0, (no summation on a), (5.8)

we can rewrite the Faddeev-Popov ghost term as

LFP = i(∂µχa1)Dab
µ χ

b
2. (5.9)
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Therefore, we obtain the complete Lagrangian of the theory

L = −1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)− 1

2α
(∂µAaµ)2

+i(∂µχa1)(∂µχ
a
2) + ψ̄i(i/∂ −m)ψi − g

2
fabc(∂µA

a
ν − ∂νAaµ)AbµAcν

−g
2

4
fabecdeAaµA

b
νA

cµAdν − igfabc(∂µχa1)χb2A
c
µ + gψ̄iT aijγ

µψjAaµ.

(5.10)

Accordingly we obtain Feynman rules for the Lagrangian of quantum chromodynamics

(see Appendix B). This theory is renormalizable [26].

We are here using the couterterm approach to realize renormalization again

with similar procedure describle in the Section (2.2). We redefine the fields Aaµ, χa1,

χa2 and ψ by

Aaµ = Z
1
2
3 A

a
µR, χa1,2 = Z̃

1
2
3 χ

a
1,2R, ψ = Z

1
2
2 ψR, (5.11)

and the parameters g, α and m by

g = ZggR, α = Z3αR, m = ZmmR, (5.12)

where the constants Z3, Z̃3 and Z2 denote the gauge field, ghost field and quark field

renormalization constants, respectively, while the constants Zg and Zm car called the

coupling-constant and mass renormalization constants.

Inserting eqs. (5.11) and (5.12) into eq. (5.10), we have

L = LR + LC (5.13)
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where the renormalized Lagrangian LR is precisely equal to L if the quantities {Aaµ, χa1,2, ψ, g, α}

are replaced by the renormalized ones, {AaµR, χa1,2R, ψR, gR, αR}. The counterterm La-

grangian LC is given by

LC = (Z3 − 1)
1

2
AaµR δab(gµν∂

2 − ∂µ∂ν)AbνR + (Z̃3 − 1)χa1Rδab(−i∂2)χb2R

+(Z2 − 1)ψ̄iR(i/∂ −mR)ψiR − Z2(Zm − 1)mRψ̄
i
Rψ

i
R

−(Z1 − 1)
1

2
gRf

abc(∂µA
a
νR − ∂νAaµR)AµbR A

νc
R

−(Z4 − 1)
1

4
g2
Rf

abef cdeAaµRA
b
νRA

cµ
R A

dν
R

−(Z̃1 − 1)igRf
abc(∂µχa1R)χb2RA

c
µR

+(Z1F − 1)gRψ̄
iT aijγ

µψjRA
a
µR, (5.14)

where Z1, Z4, Z̃1 and Z1F are defined as follows:

Z1 ≡ ZgZ
3
2
3 , Z4 ≡ Z2

gZ
2
3 ,

Z̃1 ≡ ZgZ̃3Z
1
2
3 , Z1F ≡ ZgZ2Z

1
2
3 . (5.15)

From this counterterm term we obtain the corresponding Feynman rules (see Ap-

pendix B).

The gauge nature of the theory implies the Slavnov-Taylor identity [62,63],

Z1

Z3

=
Z̃1

Z̃3

=
Z1F

Z2

=
Z4

Z1

. (5.16)

The Slavnov-Taylor identity ensures the universality of the renormalized coupling

constant gR.

By the power counting analysis in the case of QCD, we have seven amplit-

dues which possess overall divergences. The Feynman diagrams with non-negative

superficial degree of divergence in QCD are outlined below:
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Note that the superficial degrees of divergence d for the self-energy part for

the gluon, Faddeev-Popov ghost and quark and three-gluon vertex are 2, 1, 1 and 1,

respectively, but the actual degrees of divergences of these amplitudes are all loga-

rithmic due to the gauge invariance. Next, we present one-loop contributions to the

seven superficially divergent amplitudes [64–66]:

(i) The gluon self-energy Πab
µν(k) is

Πab
µν(k) = δab(kµkν − k2gµν)Π(k2), (5.17)

Π(k2) =
g2
R

(4π)2

[
4

3
TRNf −

1

2
CG

(
13

3
− αR

)]
1

ε
+ Z3 − 1 + finite terms, (5.18)

= +

+ +

+

where ε = (4−D)/2. In Eq. (5.18) we have taken Nf flavors of quarks into account,

and TR and CG are the constants defined by

tr[TaTb] = δabTR,

facdfbcd = δabCG. (5.19)
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Here we have TR = 1
2

and CG = 3 for SU(3)C . Note that the one-loop contribution

to the gluon self-energy satisfies the Ward-Takahashi identities,

kµΠab
µν(k) = 0, (5.20)

which is a natural consequence of gauge invariance. Due to this constraint the ampli-

tude Πab
µν must have the factor kµkν − k2gµν and the degree of divergence for Πab

µν(k)

is lowered by 2 units. This structure of Πab
µν(k) forbids a mass terms and so there is

no mass renormalization. Therefore the gluon remains massless under the radiative

corrections. In th MS scheme [67] the gauge field renormalization constant Z3 is given

by

Z3 = 1− g2
R

(4π)2

[
4

3
TRNf −

1

2
CG

(
13

3
− αR

)]
1

ε
+O(g4

R). (5.21)

(ii) The Faddeev-Popov ghost self-energy Π̃ab(k) is

Π̃ab(k)δab

[
− g2

R

(4π)2
CG

3− αR
4

1

ε
+ Z̃3 − 1

]
+ finite terms. (5.22)

= +

Note that the divergent part above is proportional to k2 and thus there is no mass

renormalization. So the Faddeev-Popov ghost self-energy remain massless after radia-

tive corrections, too. The ghost field renormalization constant Z̃ in the MS scheme

is given by

Z̃3 = 1 +
g2
R

(4π)2
CG

3− αR
4

1

ε
+O(g4

R). (5.23)
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(iii) The quark self-energy Σij(p) is

Σij(p) = δij[(AmR −B/p)− (Z2Zm − 1)mR + (Z2 − 1)/p] + finite terms,

A = − g2
R

(4π)2
CF (3 + αR)

1

ε
+O(g4

R),

B = − g2
R

(4π)2
CFαR

1

ε
+O(g4

R). (5.24)

= +

As we see, the divergence in the quark self-energy consists of two kinds, the mass

type AmR and the kinetic energy type −B/p. Then the mass and quark-field renor-

malization constants in the MS scheme are determined by

Zm = 1 + A−B +O(g4
R)

= 1− g2
R

(4π)2
CF (3 + αR)

1

ε
+

g2
R

(4π)2
CFαR

1

ε
+O(g4

R),

Z2 = 1 +B +O(g4
R)

= 1− g2
R

(4π)2
CFαR

1

ε
+O(g4

R). (5.25)

113



(iv) The three-gluon vertex Λabc
µνλ(K1, k2, k3) is given by

Λabc
µνλ(K1, k2, k3) = −igRfabcVµνλ(k1, k2, k3)

{
g2
R

(4π)2

[
CG

(
−17

12
+

3αR
4

)
+

4

3
TRNf

]
1

ε
+ Z1 − 1

}
+ finite terms, (5.26)

= +

+ +

+ permutations +

where

Vµνλ(k1, k2, k3) = (k1 − k2)λgµν + (k2 − k3)µgνλ + (k3 − k1)νgµλ. (5.27)

The three-gluon vertex renormalization constant Z1 in the MS scheme is

Z1 = 1− g2
R

(4π)2

[
CG

(
−17

12
+

3αR
4

)
+

4

3
TRNf

]
1

ε
+O(g4

R). (5.28)
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(v) The ghost-gluon vertex Λ̃abc
µ (k, p, p′) has the express

Λ̃abc
µ (k, p, p′) = −igRfabcpµ

[
g2
R

(4π)2
CG

αR
2

1

ε
+ Z̃1 − 1

]
+ finite terms, (5.29)

= +

+

where the momentum pµ denotes the ghost-line which carries the ghost number flowing

out of the vertex. The ghost-gluon vertex renormalization constant Z̃1 reads in the

MS scheme

Z̃1 = 1− g2
R

(4π)2
CG

αR
2

1

ε
+O(g4

R). (5.30)

(vi) The quark-gluon vertex Λaij
Fµ(k, p, p′) is

Λaij
Fµ(k, p, p′) = gRγµT

a
ij

[
g2
R

(4π)2

(
3 + αR

4
CG + αRCF

)
1

ε
+ Z1F − 1

]
+ finite terms. (5.31)

= + +
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The quark-gluon vertex renormalization constant Z1F is given by

Z1F = 1− g2
R

(4π)2

(
3 + αR

4
CG + αRCF

)
1

ε
+O(g4

R). (5.32)

(vii) The four-gluon vertex Λa1···a4
µ1···µ4

(k1, k2, k3, k4) is

Λa1···a4
µ1···µ4

(k1, k2, k3, k4)

= −g2
RW

a1···a4
µ1···µ4

{
g2
R

(4π)2

[(
−2

3
+ αR

)
CG +

4

3
TRNf

]
1

ε
+ Z4 − 1

}
+ finite terms, (5.33)

= +

+ +

+ + permutations

+
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where

W a1···a4
µ1···µ4

= (f 13,24 − f 14,32)gµ1µ2gµ3µ4 + (f 12,34 − f 14,23)gµ1µ3gµ2µ4

+(f 13,42 − f 12,34)gµ1µ4gµ3µ2 ,

f ij,kl ≡ faiajafakala, i, j, k = 1, 2, 3, 4. (5.34)

The four-gluon vertex renormalization constant Z4 in the MS scheme reads

Z4 = 1− g2
R

(4π)2

[(
−2

3
+ αR

)
CG +

4

3
TRNf

]
1

ε
+O(g4

R). (5.35)

Now we find that all the one-loop divergences in the seven superficially diver-

gent amplitudes can be cancelled by the contributions of the counter terms derived

from LC . Therefore the renormalizability of QCD at the one-loop order is shown.

5.2 Renormalization Group Equation and Asymptotic Freedom

Among renormalizable theories in four spacetime dimensions, non-Abelian

gauge theories are unique because of the exclusive possession of asymptotic freedom.

It is the significant property that makes QCD such a prominent candidate for the

theory of strong interactions in which it gives a substantial basis for incorporating

and extending the successful parton model for describing deep inelastic phenomena.

In this section, we are dedicated to introduce the renormalization group equations,

the concept of running coupling constant, the definition and the physical significance

of asymptotic freedom [6–9,64,68,69].

5.2.1 Renormalization Group Equation

According to the renormalization procedure we subtract all the divergences

from the Green functions systematically order by order in the perturbative theory. In

the subtraction procedure there exists an arbitrariness of defining a divergence part
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in a Green function, i.e., how much of the finite part will be subtracted together with

the infinity. This arbitrariness is equivalent to that in splitting the Lagrangian into a

renormalized Lagrangian and the counterterms and leads to various renormalization

schemes.

The arbitrariness remains while defining the renormalized quantities. For ex-

ample, in QCD, the renormalized coupling constant gR may be defined in terms either

of the three-gluon vertex or of the four-gluon vertex. In general different coupling

constants gR are determined by these different definitions. For QCD, with the help

of Slavnov-Taylor identity, these two coupling constants coincide.

In subtracting the singularities we have to introduce an arbitrary mass scale

µ which is called the renormalization scale. For instance, in the on-shell scheme, the

renormalization scale µ is choosen as the physical mass of the relevent particle at

which the renormalization condition is established. In the MS scheme, at first glance,

the mass scale seems unnecessary bcause only the pole in the spacetime dimension is

subtracted. However, in fact, the mass dimension of the coupling constant in arbitrary

spacetime dimensions plays a role of the renormalization scale. The renormalization

scale µ is arbitrary and persists in the finite part of the Green functions. Therefore

the renormalized Green functions after subtracting divergences remains arbitrary.

In general, the renormalized coupling constant gR and mass mR depend on the

renormalization scale µ for which the subtraction procedure is determined, and the

explicit dependence can be expressed as

gR(µ) = Zg(µ)−1g,

mR(µ) = Zm(µ)−
1
2m. (5.36)
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The renormalized coupling constant gR(µ) and gR(µ′) which are defined via two dif-

ferent subtraction procedures characterized by the renormalization scales µ and µ′

resepectively. They are related to each other by a finite renormalization zg(µ
′, µ),

gR(µ′) = zg(µ
′, µ)gR(µ), (5.37)

where zg(µ
′, µ) is defined by

zg(µ
′, µ) =

Zg(µ)

Zg(µ′)
. (5.38)

Similarly, we have

mR(µ′) = zm(µ′, µ)mR(µ), (5.39)

where zm(µ′, µ) is defined by

zm(µ′, µ) =

(
Zm(µ)

Zm(µ′)

) 1
2

. (5.40)

Note that eq. (5.40) defines a set of finite renormalizations {zg(µ′, µ)} for varying

renormalization scales µ′ and µ. We treat the finite renormalization (5.40) as a trans-

formation. It can be shown that this set of transformations have group properties [70].

In fact we could define a product of two elements zg(µ
′′, µ′) and zg(µ

′, µ)

zg(µ
′′, µ′)zg(µ

′, µ), (5.41)

which stands for the change of gR(µ) through the successive changes of the scales

µ→ µ′ → µ′′. Since

zg(µ
′′, µ′)zg(µ

′, µ) =
Zg(µ)

Zg(µ′′)
= zg(µ

′′, µ), (5.42)

zg(µ
′′, µ) the finite renormalization of gR(µ) caused by the scale change µ → µ′′.

Therefore the product zg(µ
′′, µ′)zg(µ

′, µ) belongs to the set {zg(µ′, µ)}. Furthermore,
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the inverse of zg(µ
′, µ) can be defined by

z−1
g (µ′, µ) = zg(µ, µ

′), (5.43)

and the identity

zg(µ, µ) = 1 (5.44)

belongs to the set {zg(µ′, µ)}. Therefore the set of finite renormalizations {zg(µ′, µ)}

is a Abelian group, called the renormalization group.

Furthermore, we define the renormalized one-particle irreducible (1PI) ampli-

tudes by

ΓR(p, gR(µ′),mR(µ′), µ′) = ZΓΓ(p, gR(µ),mR(µ), µ) (5.45)

where ZΓ is the product of the necessary scaling factors for the set of operators,

depending the number and types of the external lines. For example, in quantum

electrodynamics, Γ might be an amputated Green function’s with ne external fermion

lines and nγ external photon lines, and then ZΓ is given by

ZΓ = Z
ne
2

2 Z
nγ
2

3 . (5.46)

The finite renormalization for ΓR is determined by

ΓR(p, gR(µ′),mR(µ′), µ′) = z(µ′, µ)ΓR(p, gR(µ),mR(µ), µ) (5.47)

where the renormalization factor z(µ′, µ) is defined by

z(µ′, µ) =
ZΓ(µ′)

ZΓ(µ)
. (5.48)

Due to the arbitrarinesses for choosing the renormalization condition and fixing

the renormalization scale µ, we may have many possible expressions for one physical

quantity which depends on the choice of the renormalization scheme and scale. These
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different expressions are connected by a finite renormalization described above. A

natural concern is whether these different expressions for one physical quantity are

equivalent or not. Since they represent one physical quantity and are derived from the

unique Lagranigan, they describe the same physical phenomenon and therefore must

be equivalent. In other words, phyical quantities such as renormalized 1PI amplitudes

are invariant under finite renormalization.

Given that the choice of renormaliazation scale is arbitrary, according to the

discussion above, we conclude that any change in the renormalization scale µ can

be compensated by all the renormalized quantities such that the renormalized 1PI

amplitudes remain unchanged. This fact is reflected by the renormalization group

equation [67,71–74].

We can derive the renormalization group equation for the renormalized Green;s

functions by differentiating eq. (5.45) with respect to µ. Considering gR and mR

depend on µ, while the unrenormalized amplitude Γ does not, we have immediately

that [
µ
∂

∂µ
+ β(gR)

∂

∂gR
− γm(gR)mR

∂

∂mR

− γΓ(gR)

]
ΓR = 0, (5.49)

where β, γm and γΓ are defined by

β = µ
∂gR
∂µ

∣∣∣∣
g,m

,

γm = −µ∂ logmR

∂µ

∣∣∣∣
g,m

,

γΓ =
1

2

∂ logZΓ

∂µ
. (5.50)

We wish to use the renormalization group equation to study the momentum

dependence of the Green function. Assume that all the momentum components vary
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together with the fixed ratio, p = λp0, where p0 is a set of fixed momenta and λ is a

momentum scale variable. If Γ has the dimensions of mass to the power DΓ, then[
µ
∂

∂µ
+mR

∂

∂mR

+ λ
∂

∂λ

]
ΓR = DΓΓR, (5.51)

so eq. (5.49) can be rewritten as{
λ
∂

∂λ
− β(gR)

∂

∂gR
− [1 + γm(gR)]mR

∂

∂mR

−DΓ + γΓ(gR)

}
ΓR(λp0, gR,mR, µ) = 0.

(5.52)

Let us define a λ-dependent effective coupling and mass through the differential equa-

tions

λ
d

dλ
g(λ) = β(g(λ)), (5.53)

λ
d

dλ
m(λ) = −[1 + γm(g(λ))]m(λ) (5.54)

and the initial conditions

g(1) = gR, m(1) = mR. (5.55)

Then the eq. (5.52) has the solution

ΓR(λp0, gR,mR, µ) = λDΓΓR(p0, g(λ),m(λ), µ) exp

[
−
∫ λ

1

γΓ(g(λ′))
dλ′

λ′

]
, (5.56)

where the exponential term is the ”anomalous dimension”. Thus, solution of the

renormalization group equation can be expressed in terms of the running coupling

constant g(λ) and the running mass m(λ). The asymptotic behavior of the Green’s

functions ΓR is governed the asymptotic behavior of the g(λ) and m(λ).

According to eq. (5.53), the running coupling constant g(λ) must tend to a

”fixed point” as k →∞, which may be either the point at infinity, or any zeros of the

β-function. Thus we need to distinguish three different cases qualitatively: (i) If β at

gR has the same sign as gR , and if there are no zeros of β between gR and ±∞ (for
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gR > 0 or gR < 0), then |g(λ)| must increase, approaching infinity for λ→∞. (ii) If

β has zeros, and if the first zero encountered as its argument increases for β(gR) > 0

or decreases for β(gR) < 0 from gR is as a finite point g∞ 6= 0, then g(λ) will increase

or decrease to g∞ as k →∞. (iii) If β at gR has the opposite sign to gR, and has no

zeros between gR and the origin, then |g(λ) must decrease from |gR| as λ increases,

|g(λ)| → 0 as λ → ∞ Such theories are called ”asymptotically free”. In the usual

case, the perturbation theory gives [6–9],

β(gR) = −β0g
3
R − β1g

5
R − β2g

7
R +O(g9

R). (5.57)

Asymptotically free field theories are of great theoretical interests. In such

theories, the asymptotic behavior of amplitudes is calculable by the perturbation

theory. In the next subsection, we will introduce the renormalization group equation

for QCD and asymptotic freedom in QCD.

5.2.2 Asymptotic Freedom in QCD

First, let us derive the renormalization group equation for QCD in the MS

scheme. Our basic Lagrangian is given by eq. (5.10) and we split it into two parts,

the renormalized part and the counter terms (5.14). We refined the gluon field Aaµ,

ghost field χa and quark field ψ through eq. (5.11) and the renormalized parameter

gR, mR and αR are defined by eq. (5.12) in terms of renormalization constants Zg,

Zm and Z3. Thus the renormalization group equation for QCD is straightforward and

reads off [
µ
∂

∂µ
+ β(gR, αR)

∂

∂gR
− γm(gR, αR)mR

∂

∂mR

+ δ(gR, αR)
∂

∂αR

− nGγG(gR, αR)− nFγF (gR, αR)

]
ΓnG,nF = 0, (5.58)
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where ΓnG,nF is the 1PI renormalized Green’s function with nG external gluon lines

and nF external fermion lines (we do not consider the Green functions with external

ghost lines), gr is the dimensionless renormalized gauge coupling constant defined by

gr =

(
µ0

µ

)ε
Z−1
g g0, (5.59)

with gr = gRµ
−ε, g0 = gµ−ε0 ,ε = 4−D

2
, mr = mR and αr = αR. Here the mass

scale µ0 for the bare coupling constant g is fixed scale while the mass scale µ for the

renormalized coupling constant gR is a variable. The renormalization group functions

β, γm, δ, γG and γF are defined by

β(gr, αr) = µ
∂gr
∂µ

∣∣∣∣
g,m,α

, (5.60)

γm(gr, αr) = −µ∂ logmr

∂µ

∣∣∣∣
g,m,α

, (5.61)

δ(gr, αr) = µ
∂αr
∂µ

∣∣∣∣
g,m,α

, (5.62)

γG(gr, αr) =
µ

2

∂ logZ3

∂µ

∣∣∣∣
g,m,α

, (5.63)

γF (gr, αr) =
µ

2

∂ logZ2

∂µ

∣∣∣∣
g,m,α

. (5.64)

Here γG and γF are the anomalous dimensions of the gluon and quark fields, respec-

tively. The bare parameters g and m are regarded as fixed constants and are free

from the renormalization scale µ. Then we have

dgR
dµ

= 0,
dm

dµ
= 0. (5.65)

According to eqs. (5.58), (5.59), and (5.64), we have

β = −εgR −
µ

Zg

dZg
dµ

gR. (5.66)
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Therefore, in order to compute the β-function to one-loop order, we need to

know the renormalized coupling constant gR in one-loop order with the renormaliza-

tion scale µ. There are four different ways of doing it because Zg can be evaluated

with four different definitions (5.15). These four approaches are equivalent due to the

Slavnov-Taylor identity (5.16). We here introduce an easy way of calculating Zg by

using the definition

Zg = Z̃1/(Z̃3Z
1
2
3 ). (5.67)

With the help of eqs. (5.21), (5.23) and (5.30), we obtain

Zg = 1− g2
R

(4π)2

1

6
(11CG − 4TRNf )

1

ε
+O(g4

R). (5.68)

Then, we have, according to eqs. (5.59), (5.66) and (5.68),

β(gR) = −εgR −
µ

Zg

dZg
dµ

gR

= −εgR +
11CG − 4TRNf

3

g2
R

(4π)2

1

ε
β(gR) +O(g5

R)

= − 1

(4π)2

11CG − 4TRNf

3
g3
R +O(g5

R, ε). (5.69)

Therefore we find that the coefficient β0 defined in eq. (5.57) is given by

β0 =
1

(4π)2

11CG − 4TRNf

3
. (5.70)

Asymptotic freedom occurs if β0 > 0, i.e., 11CG − 4TRNf > 0. For SU(3) CG = 3

and TR = 1
2
, the condition for the asymptotic freedom is

Nf <
33

2
. (5.71)

Thus QCD is asymptotically free as long as the number of quark flavors is less than

16. Note that for Nf = 0 the coefficient β0 is positive definite. It is the presence of
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quarks that can undermine asymptotic freedom. The fundamental origin of asymp-

totic freedom may be traced back to the existence of the three-gluon coupling terms in

the Lagrangian. Since this term is peculiar to the Yang-Mills theory, we can conclude

that the asymptotic freedom is an inherent nature of non-Abelian gauge theory.

So far we discussed the β-function up to one loop order. The β-function up to

two loops [75,76] is given by

β(g) = −β0g
3 − β1g

5 +O(g7), (5.72)

where β0 is given by eq. (5.70) and

β1 =
1

(4π)4

[
34

3
C2
G − 4

(
5

3
CG + CF

)
TRNf

]
. (5.73)

Next, let us turn to the running coupling constant. The running coupling

constat ḡ(t) at the momentum scale et is determined by eq. (5.53), where t = − log λ.

We choose the momentum scale to be

et =

√
−q2

µ
, (5.74)

where q is the space-like momentum and µ is the fixed momentum scale which is

chosen to be the renormalization scale for ḡ(0) = g. Integrating eq. (5.53), we have

t =

∫ ḡ(t)

g

dg′

β(g)
. (5.75)

Then,we obtain by inserting eq. (5.72) into eq. (5.75)

t = −1

2

∫ ḡ(t)

g

dλ

λ2

dg′

β0 + β1λ+O(λ2)
. (5.76)

If we choose g and λ sufficient small, then we might safely truncate the perturbative

series for the β-function to this approximation. Keeping only the one loop order we

have

t =
1

2β0

(
1

ḡ2
− 1

g2

)
. (5.77)
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Therefore the running coupling constant ḡ is given by

ḡ2 =
g2

1 + 2β0g2t
=

1

β0 log(−q2/Λ2)
, (5.78)

where the new momentum scale Λ is defined by

Λ = µ exp

[
− 1

2β0g2

]
. (5.79)

The momentum scale Λ is referred to as the QCD scale parameter and is the only

adjustable parameter in QCD besides the quark mass. The expression for the running

coupling constant can be improved by taking into account terms with the coefficient

β1 in eq. (5.76). Performing the integration we have

t =
1

2β0

[
1

ḡ2
− 1

g2
+
β1

β0

log
ḡ2(β0 + β1g

2)

g2(β0 + β1ḡ2)

]
. (5.80)

Definin the scale parameter Λ by

Λ = µ exp

[
− 1

2β0g2

](
1 + β1g

2/β0

β0g2

) β1
2β2

0
, (5.81)

we can rewrite eq. (5.80) as follows:

1

ḡ2
+
β1

β0

log
β0ḡ

2

1 + β1ḡ2/β0

= β0 log

(
−q2

Λ2

)
. (5.82)

Note that eq. (5.81) reduces to eq. (5.79) for β1 = 0. The eq. (5.82) can be

solved for ḡ2 iteratively if −q2 � Λ2,

ḡ2 =
1

β0 log(−q2/Λ2)

[
1− β1

β0

log log(−q2/Λ2)

log(−q/Λ2)
+ · · ·

]
. (5.83)

Note that the second term in the parentheses in the equation above represents the

next-to-leading order which corresponds to the two loop correction.

In quantum electrodynamics the coupling constant defined on the mass shell

is small enough to ensure the perturbative expansion. However, in quantum chro-

modynamics, there is no method independent of perturbation theory to determine

experimentally the magnitude of the coupling constant. We know nothing about
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the validity of perturbation theory in QCD untill we perform practical perturbative

calculations. Specifically, we first tentatively neglect the question of the validity of

perturbation theory and evaluate the β-function in the lowest order of perturbation

theory. Then we find that the renormalized coupling constant tends to be small as the

relevant momentum scale grows. According to the property of asymptotic freedom,

we realize that the perturbative calculation is legitimate for the large momentum

scale. Therefore, the perturbation theory in QCD is valid in the large momentum

region.
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CHAPTER SIX

Yennie-Frautschi-Suura Resummation

The essential idea for understanding the infrared divergences was first proposed

by Block and Nordsieck [77] before the invention of relativistic pertubration theory.

The idea is that the infrared divergence arises from some soft photons which will

escape detection. They showed that the probability that only a finite number of

photons will escape detection is precisely zero because of the infrared divergence

associated with the soft virtual photons. On the other hand a nonvanishing result

would be obtained when the cross section is summed over all possible final states

compatible with the detection arrangement. In fact, they proved the cancellation

between the real and virtual infrared divergences. As an extension of the idea above,

Yennie, Frauschi and Suura (YFS) [78] developed a modern field theoretical treatment

of the infrared divergence phenomena. The main feature of this approach is the

seperation of the infrared divergences as multiplicative factors, which are treated

to all orders of perturbation theory, and the conversion of the residual perturbation

expansion into one which has no infrared divergence, and hence no need for an infrared

cutoff. In the infrared factors, which are in exponential form, the infrared divergences

arising from the real and virtual photons cancel out. This procedure depends on

no specific details. The beauty of this formalism is that it could be systematically

improved order by order in the electromagnetic coupling constant α. In this chapter,

we will give a brief introduction to Yennie-Frautschi-Suura theory [78–80]
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6.1 Resummation of Virtual Photon Radiative Corrections

Consider a process in which a certain number of photons are generated in the

fermion scattering from an initial state of momentum ~p to a final state of momentum

~p′. Let Mn(~p, ~p′) be the contribution to the amplitude corresponding to all n virtual

photon loop diagrams. The complete amplitude is then

M(~p, ~p′) =
∞∑
n=0

Mn(~p, ~p′). (6.1)

Because there are n photons, it is clear that Mn have an infrared divergence of nth

order and will be a polynomial of degree of n in the logarithm of the infrared cutoff.

Thus, we could show that the Mn’s have the structure

M0 = m0,

M1 = m0αB +m1,

M2 = m0
(αB)2

2
+m1αB +m2,

· · ·

Mn =
n∑
r=0

mn−r
(αB)r

r!
, (6.2)

where mj’s are infrared divergenceless and of order αj relative to M0. Summing over

all numbers of virtual photon n, we formally arrive at

M(~p, ~p′) = exp(αB)
∞∑
n=0

mn. (6.3)

This is the YFS exponentiation of virtual infrared divergences.

To construct the YFS exponentiation of virtual infrared divergences, we begin

with defining that

Mn =
1

n!

∫
· · ·
∫ n∏

i=1

d4ki
k2
i −m2

γ

ρn(k1, · · · , kn), (6.4)
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where mγ is the cutoff of the infrared divergence. The factor 1
n!

arises from the sym-

metrization of the n virtual photons in ρn. Now consider ρn is a function of kn.

Figure 6.1. Basic digrams with any set of real photons and (n− 1) virtual photons

ρn−1 is represented by the set of basic diagrams associated with the first (n − 1)

photons and an arbitrary number of potential interactions(see Figure 6.1). ρn is

represented by the possible ways the nth photon can be inserted into various basic

diagrams.

From the Lamb shift analysis, we know that Figure 6.2.(a),(b) and (c)give IR

divergences in kn. The diagrams in Figure 6.2 (d), (e) and (f) are finite as kn → 0 if the

remaining photon momenta ki’s are nonzero. As kn → 0 and ki → 0 simultaneously,

overlapping divergences arise and they cancel in gauge invariant combination of terms.

Thus, the only remaining divergences corresponds to Figure 6.2 (a), (b) and (c) with

kn = 0 in the basic diagram.
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(a)

kn

p′ p

(b)

kn

p′ p

(c)

kn

p′ p

(d)

kn

p′ p

(e)

kn

p′ p

(f)

kn

p′ p

(g)

kn

p′ p

δm

Figure 6.2. Basic diagrams with an additional virtual photon.

Thus, we have

ρ(k1, · · · , kn) = S(kn)ρn−1(k1, · · · , kn−1) + β(1)
n (k1, · · · , kn−1; kn), (6.5)

where S(kn) contains the kn infrared contribution from Figure (6.2). The integral of

β is infrared divergenceless in kn.
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Iteration of eq. (6.5) gives us

ρn(k1, · · · , kn) = S(kn)S(kn−1)ρn−2(k1 · · · kn−2)

+S(kn)β
(1)
n−1(k1 · · · kn−2; kn−1)

+S(kn−1)β
(1)
n−1(k1 · · · kn−2; kn) (6.6)

+{−S(kn−1)β
(1)
n−1(k1 · · · kn−2; kn) + β1

n(k1 · · · kn−1; kn)}.

The symmetry of ρn in kn and kn−1 indicates the invariance of bracketed quantity at

the end of the above equation under the interchange of kn and kn−1. So we denote

this property by

{−S(kn−1)β
(1)
n−1(k1 · · · kn−2; kn) + β(1)

n (k1 · · · kn−1; kn−1, kn)}

≡ β(2)
n (k1 · · · kn−2; kn−1, kn) (6.7)

Repeated application of this IR seperation procedure and exploitation of the symme-

try of ρn yield

ρn(k1 · · · kn) = S(k1) · · ·S(kn)β0

+
n∑
i=1

S(k1) · · ·S(ki−1)S(ki+1) · · ·S(kn)β1(ki)

+ · · ·

+
n∑
i=1

S(ki)βn−1(k1, ki−1, ki+1 · · · kn)

+βn(k1 · · · kn). (6.8)

Rewriting eq. (6.8) in terms of all permutations of ki and kj yields

ρn(k1 · · · kn) =
∑
Perm

n∑
r=0

1

r!(n− r)!

r∏
i=1

S(ki)βn−r(kr+1 · · · kn). (6.9)

Thus, we have

Mn =
n∑
r=0

1

r!(n− r)!

(∫
d4kS(k)

k2 −m2
γ

)r ∫ n−r∏
i=1

βn−r(k1 · · · kn−r). (6.10)
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Finally, we define

αB(p, p′) ≡
∫
d4ki
k2
i

βr(k1 · · · kr), (6.11)

which yields the desired result, i.e., eq. (6.2).

6.2 Resummation of Real Photon Radiative Corrections

From eq (6.3), we see the cross section is proportional to exp(2α<B). Except

that, we need to compute the contribution from the emission of n undetect real

photons with total energy ε, symmetrized in real photons. The cross section should

have the form

dσ(mγ)

dε
=

n=0∑
∞

dσn(mγ)

dε
,

dσn(mγ)

dε
=exp(2α<B)

1

n!

∫ n∏
m=1

d3km√
k2
m +mγ2

× δ

(
ε−

n∑
i=1

ki

)
ρ̃n(p, p′, k1 · · · kn). (6.12)

so that ρ̃n plays a similar role to that of ρn for the treatment of virtual photons and

is given by the absolute square of
∑
mr, where

E ′ = E −
n′∑
i=1

k0
i = E − ε.

Thus, the sum over all possible undected photons provides the complete differential

cross section

dσ

dε
= lim

mγ→0

∞∑
n=0

dσn
dε

. (6.13)
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Since ρ̃n is symmetric in the real photons and overlapping infrared divergences

cancel in the same manner for both real and virtual photons, infrared terms could be

factored out of ρ̃n by the same treatments applied for ρn. Because of the cancellation

of overlapping divergences, only the photons which terminate exclusively on external

fermion lines (fig.6.3 (a) and (b)) contribute infrared divergence.

(a)

k

p′ p

(b)

k

p′ p

(c)

k

p′ p

Figure 6.3. Basic diagrams with an additional real photon.
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We obtain a similar relation to that obtained for the virtual photon case:

ρ̃n(k1 · · · kn) = S̃(k1) · · · S̃(kn)β̃0

+
n∑
i=1

S̃(k1) · · · S̃(ki−1)S̃(ki+1) · · · S̃(kn)β̃1(ki)

+ · · ·

+
n∑
i=1

S̃(ki)β̃n−1(k1, ki−1, ki+1 · · · kn)

+β̃n(k1 · · · kn). (6.14)

Similar to the virtual photon case, S̃ contains the infrared divergence and β̃ has no

none. S̃ must be evaluated at E ′ = E −
∑
k0
n, and β̃0 is defined only at E ′ = E.

The energy-conserving δ function eq. (6.12) is conveniently represented by [81,82]

δ

(
ε−

n∑
m=1

km

)
=

1

2π

∫ +∞

−∞
exp

[
iy

(
ε−

n∑
m=1

km

)]
. (6.15)

After some manipulations, we obtain

dσ

dε
= lim

mγ→0
exp(2<B)

1

2π

∫ +∞

−∞
dyeiyε

×exp

[∫ k≤ε d3k√
k2 +m2

γ

S̃(k, p, p′)e−iyk

]
{
β̃0 +

∞∑
n=1

1

n!

∫ n∏
m=1

d3km
km

e−iykβ̃n(p, p′, k1 · · · kn)

}
. (6.16)

From the third exponential of eq. (6.16), we see the real infrared photons are

still kinematically connected with other real photons by the factor e−iyk which guaran-

tees that
∑
k = ε. In order to make the infrared photons kinematically independent,

we define ∫ k≤ε d3k

(k2 +m2
γ)

1
2

S̃(k, p, p′)e−iyk ≡ 2αB̃ +D, (6.17)

where

2αB̃(p, p′) ≡
∫ k≤ε d3k

(k2 +m2
γ)

1
2

S̃ (6.18)
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and

D ≡
∫ k≤ε d3k

k
S̃(e−iyk − 1). (6.19)

With eq. (6.17) to eq. (6.19), we obtain the noninfrared part of eq. (6.17)

dσ̂

dε
≡ 1

2π

∫ +∞

−∞
dyeiyε+D

{
β̃0 +

∞∑
n=1

1

n!

∫ n∏
m=1

d3km
km

e−iykm β̃n

}
. (6.20)

Then, eq (6.17) becomes

dσ

dε
= exp

{
lim
mγ→0

2α(B + B̃)

}
dσ̂

dε
. (6.21)

So far, the problem is whether or not lim
mγ→0

2α(B + B̃) is finite or not. Next,

we will show the cancellation of infrared terms to all orders of the electromagnetic

coupling α by exploiting details of infrared factors.

6.3 Details of Infrared Factors

B and B̃ can be represented by the gauge invariant expressions [82]

B =
i

(2π)3

∫
d4k

k2 −m2
γ

(
2p′µ − kµ

2p′ · k − k2
− 2pµ − kµ

2p · k − k2

)2

(6.22)

and

B =
−1

8π2

∫ ε

0

d4k

(k2 +m2
γ)

1
2

(
p′µ
p′ · k

− pµ
p · k

)2

(6.23)

We can see that the infrared divergent part of <B arises from the pole

1

k2 −m2
γ + iε

= P.V.
1

k2 −m2
γ

− iπδ(k2 −m2
γ) (6.24)

These poles contribute the amount

B =
1

8π2

∫
d4k

(k2 +m2
γ)

1
2

(
2p′µ − kµ

2p′ · k − k2
− 2pµ − kµ

2p · k − k2

)2

+ finite terms. (6.25)

As k → 0, the diverging integrands of eq. (6.25) and B̃ cancel.

Thus, lim
mγ→0

(2α<B(mγ)+2αB̃(mγ)) is finite, i.e., we have cancelled the infrared

divergence in the theory to all order in α.
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After exact calculations, we have [79,80]

lim
mγ→0

(2α<B + 2αB̃) =
α

π

{(
log

pp′

m2
− 1

)
log

k2
m

EE ′
+

1

2
log

2pp′

m2
− 1

2
log2 p0

p′0

− 1

4
log2 (∆ + δ)2

4p0p′0
− 1

4
log2 (∆− δ)2

4p0p′0
−<Li2

(
∆ + ω

∆ + δ

)
−<Li2

(
∆ + ω

∆− δ

)
−<Li2

(
∆− ω
∆ + δ

)
−<Li2

(
∆− ω
∆− δ

)
+
π2

3
− 1

}
, (6.26)

where km = ε,

∆ =
√

2pp′ + (p0 − p′0),

ω = p0 + p′0,

δ = p0 − p′0,

and we have introduced the Spence function

Li2(x) = −
∫ x

0

log(1− t)dt.

At high energies and small ε, B and B̃ have the approximate forms

B = − 1

2π

[
log

2p · p′

m2

(
log

m2

m2
γ

+
1

2
log

2p · p′

m2
− 1

2

)
− log

m2

m2
γ

]
, (6.27)

B̃ =
1

2π

[
log

2p · p′

m2

(
log

m2

m2
γ

+
1

2
log

2p · p′

m2
− log

EE ′

ε2

)
− log

m2

m2
γ

+ log
EE ′

ε2

]
.

(6.28)

If we use a photon momentum kmin instead of the photon mass mγ, eqs. (6.27) and

(6.28) become

B = − 1

2π

[
log

2p · p′

m2

(
log

EE ′

k2
min

− 1

2

)
− log

EE ′

k2
min

]
(6.29)

and

B̃ =
1

2π

(
log

2p · p′

m2
− 1

)
log

ε2

k2
min

. (6.30)
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However, the sum <B(mγ) + B̃(mγ) is the same as <B(kmin) + B̃(kmin):

2α(<B + B̃) = −αA
2

log
EE ′

ε2
+

α

2π
log

2p · p′

m2
, (6.31)

where

αA ≡ −k
2α

4π2

∫
dΩ

(
p′µ
p′ · k

− pµ
p · k

)2

∼=
2α

π

(
log

2p · p′

m2
− 1

)
. (6.32)

It shows the physical consequence is independent of the selection of regularization

schemes.

6.4 Details of Noninfrared Virtual Photon Terms

We now discuss the virtual photon remainders (6.2)

m1 = M1 − αBM0,

m2 = M2 − αBM1 +
(αB)2

2!
M0

· · · · · · (6.33)

Note that since αB (and αB̃) are not unique, the separation of M1 into αBM0 and

m1 is not unique. Recoil terms such as k2 in (k2− 2kp)−1 does not affect the infrared

singularity, but are preserved in B to make the integral (6.22) converge naturally as

k → ∞. Recoil currents such as kµ in (2pµ − kµ) do not contribute to the infrared

divergence, but they are remained in the integral (6.22) to make B gauge invariant.

Thus, different representations of B with these terms having different coefficients

would yield the same infrared singularities. In general, m1 could be very complicated,

however, we could still obtain some good results through discussing the lowest order

for an fermion.
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Applying the Feynman rules for the amplitude above, we could represent the

incoming part as

· · · (p− ki +m)εi
k2
i − 2p · ki

u(p) = · · ·
(2p− ki) · εi − 1

2
[ki, εi]

k2
i − 2Ki · p

u(p) (6.34)

where the first term on the right is the current we have used in the factor B, and the

second term is the magnetic term.

kn

p′ p

e− e−

Figure 6.4. Vacuum polarization of the potential.

Applying the Feynman rules for the amplitude above, we could represent the incoming

part as

· · · (p− ki +m)εi
k2
i − 2p · ki

u(p) = · · ·
(2p− ki) · εi − 1

2
[ki, εi]

k2
i − 2Ki · p

u(p) (6.35)

where the first term on the right is the current we have used in the factor B, and the

second term is the magnetic term.

The calculation of the magnetic terms at the high energy limit gives the con-

tribution

αM0

2π
log

2p · p′

m2
+O(αM0) (6.36)

And the vacuum polarization contributes

αM0

3π
log

2p · p′

m2
+O(αM0). (6.37)
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6.5 Details of Noninfrared Real Photon Terms

We have discussed the infrared terms B and B̃ and the virtual corrections in

β̃n, we are focusing on the noninfrared real photon corrections in eq. (6.20). The

photons have a spectrum of dk rather than dk/k for k → 0, and the expansion of the

real photon correction in n is an expansion in the number of noninfrared real photons.

Thus, the nth order correction is from noninfrared photons. We assume the energy

loss for emitting one real photon is ε. The n = 0 term contains dk/k contribution

from the emitted photon. And the n = 1 term contains dk/k and dk contributions

from one photon. It means the n = 0 and n = 1 terms both start at the order of

O(α).

We start with the n = 0 case in eq. (6.20):

dσ̂0

dε
= β̃0I,

dσ0

dε
=
dσ̂0

dε
e2α(<B+B̃(ε)), (6.38)

where

I ≡ 1

2π

∫ +∞

−∞
dyeiyε+D,

D =

∫ k0≥ε dk

k
S̃(p, p′, k)(e−iyk

0−1),

S̃(p, p′, k) = −
αQ2

f

4π2

( pµ
k · p

−
p′µ
k · p′

)
. (6.39)

I could be computed in terms of tabulated functions [82]. The result is

I =
αA

ε
FY FS(αA), (6.40)
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where

FY FS(αA) =
e−αAC

Γ(1 + αA)

=1− π2(αA)2

12
+ · · · , (6.41)

Therefor we have

dσ0

dε
= e2α(<B+B̃(ε))αA

ε
FY FS(αA)β̃0, (6.42)

where

2α(<B + B̃(ε)) = αA log
ε

E
+
π

α

(1

2
log

pp′

m2
− 1− π2

6

)
. (6.43)

Next, for the n = 1 case, we have

dσ1

dε
= e2α(<B+B̃(ε))dσ̂1

dε
,

dσ̂1

dε
=

∫ k1≤ε d3k1

k1

β̃1(k1)
1

π

∫ +∞

−∞
dyeiy(ε−k1)+D, (6.44)

where the β̃1 contains dk and kdk terms form the emission of one real photon. And

β̃1(k1) is evaluated at E ′ = E − k1

After the similar calculation for the n = 0 case, we arrive at

dσ1

dε
=
αA

ε
F (αA)

∫ ε

0

dk1G1(k1)
( ε

ε− k1

)1−αA
. (6.45)

We can show that the above integral is convergent for αA ≥ 0. Because of the peaking

behavior at k1 = ε, we could expand G1(k1) about k1 = ε:

G1(k1) = G1(ε) + (k1 − ε)
dG1(k1)

dk1

∣∣∣∣
k1=ε

+ · · · , (6.46)

so that we have

dσ̂1

dε
= FY FS(αA)

{
G1(ε)− αAε

αA+ 1

dG1(k1 = ε)

dk1

}
. (6.47)

The G1(ε) term is of order α from a hard photon. And the other terms in {· · · } is

from the infrared photons in addition to the ”dk” photon in G1
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Therefore, we have [80]

dσ1

dε
= exp

[
αA log

ε

E
+
π

α

(1

2
log

pp′

m2
− 1− π2

6

)]
× FY FS

{
G1(ε)− αAε

1 + αA
G′1(ε) + · · ·

}
. (6.48)

In some literatures, we set ε = v
√
s

2
= vE so that

dσ1

dv
= vαAFY FS(αA)e

α
π

(
1
2

log pp′

m2−1−π
2

6

)
G1(v) +O(α2) (6.49)

which is useful for many applications in precision EW, QCD and quantum gravity [83].
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CHAPTER SEVEN

CEEX and KKMC-hh

In last chapter, we have given a brief introduction to Yenni-Frautschi-Suura(YFS)

theory. The YFS theory provides an elegant treatment for infrared singularities to all

orders of the electromagnetic coupling α. Rooted from YFS framework on QED ex-

ponetiation [78], many important Monte Carlo (MC) event generators were developed

in pursuit of ultimate precision in theoretical particle theory, such as KORALB [84],

KORALZ [85],BHLUMI [86,87], YFS2 [88], KKMC [89], KKMC-hh [90–92] and etc.

KKMC-hh is an extention of the generator KKMC for the process e+e− →

ff̄ + nγ in LEP energies, where ff̄ represents a final state fermion pair. The MC

structure is based on CEEX [89, 94–96], an amplitude based analog to the origi-

nal YFS exponentiation, and includes residuals through the order of α2L, where

L ≡ log( s
m2
f
).(big logarithm). Electroweak matrix element corrections are computed

by DIZET 6.21 from the program ZFITTER [97]. ZFITTER calculates vacuum polar-

ization for the photon and Z boson, and adds the form factor corrections to the vector

coupling and angle-dependent form factor to includes the box diagram corrections.

The decay is realized by TAUOLA [98–100].

The KKMC of version 4.22 supports quark initial states, and a modified version

4.22 is incorporated into KKMC-hh to select the quarks via PDF’s with the help of an

LHAPDF [101] interface. KKMC-hh utilizes an adaptive MC program FOAM [102]

to generate the quark momentum fractions xi, the total ISR energy, and the quark

flavor using a crude distribution which is constructed during an initialization phase.
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In this chapter, we will introduce the two types of QED matrix elements

and exponentiations: the coherent exclusive exponentiation(CEEX) and exclusive

exponentiation (EEX) at first. Then we would like to give a brief review the MC

algorithms for KKMC.

7.1 Amplitudes for Exclusive Exponentiation

In this context, exclusivity means that the procedure of exponentiation(summing

up the infrared ral and virtual contirbutionn within the scheme of perturbative quan-

tum field theory) is done at the level of fully differential (multiphoton) cross section

or at the level of the scattering matrix element (spin amplitudes) before integrating

over photon momenta in the phase space. As opposite to exclusivity, inclusivity rep-

resents executing the procedure of exponentiation after phase space integration over

photon momenta. EEX is formulated in terms of spin summed or averaged differen-

tial distributions, which results both advantages and disadvantages. The advantage of

EEX formulation is that the differential distributions are given analytically in terms

of Mandelstam variables and they are easily examined by checking certain important

limit, such as leading-logarithmic and soft limits. However, the disadvantage is that

the squaring of the sums of spin amplitudes from Feynman diagrams leads to many

interference terms, which in the exponentiation are calculated analytically and indi-

vidually. In spite of disadvantages, the EEX matrix element still play an important

role to provide a testing environment for the new , more complicated matrix element

of the CEEX class. In this section, we will give a concise introduction of amplitudes

for exclusive exponentiation. We use the process e−e+ → ff̄ + nγ to illustrate the

145



EEX, which could be extended to partonic process qq̄ → ff̄ + nγ in KKMC-hh

(q ≡ quark).

7.1.1 Master Formula

The kinematics of the process e−e+ → ff̄ + nγ is described in the figure

below. In this case, we neglect the initial-final state interference. Therefore, we are

allowed to distinguish between photons radiated from the initial-state fermions and

those radiated from the final-state fermions. The four-momentum

X = p1 + p2 −
n∑
j=1

kj = q1 + q2 +
n′∑
l=1

k′l (7.1)

of the s-channel virtual boson(Z/γ∗) is well defined. Let us denote the rest frame of

X as XMS (the X zero momentum system).

p2

e+

p1
e−

q2

f̄

q1

f

k1

k2

k3

kn−1

kn

. . . . . .

P = p1 + p2

k′1

k′2

k′n′−1

k′n′

Q = q1 + q2

The kinematics with multiple photon emissions in the process e+e− → ff̄ + nγ
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Denoting the Lorentz-invariant phase-space by

dnLips(P ; p1, p2, · · · , pn) =
n∏
j=1

d3pj
p0
j

δ(4)
(
P −

n∑
j=1

pj
)

(7.2)

for the process e−(p1) + e+(p2) → f(q1) + f̄(q2) + nγ(kj) + n′γ(k′l), the O(αr) total

cross section reads

σ
(r)
EEX =

∞∑
n=0

∞∑
n′=0

1

n!

1

n′!

∫∫
dn+n′+2Lips(p1 + p2; q1, q2, k1 · · · , kn, k′1 · · · , k′n′)

ρ
(r)
EEX , r = 0, 1, 2, 3, (7.3)

in terms of the fully differential multiphoton distribution

ρ
(r)
EEX(p1, p2; q1, q2, k1 · · · , kn, k′1 · · · , k′n′)

= exp [Ye(ΣI ; p1, p2) + Yf (ΣF ; q1, q2)]
n∏
j=1

S̃I(kj) ¯Θ(ΣI ; kj)S̃F (k′l)
¯Θ(ΣF ; k′l){

β̄
(r)
0 (X, p1, p2, q1, q2) +

n∑
j=1

β̄
(r)
1 I(X, p1, p2, q1, q2, kj)

S̃I(kj)
+

n′∑
l=1

β̄
(r)
1 F (X, p1, p2, q1, q2, k

′
l)

S̃F (k′l)
+

∑
n≥j>k≥1

β̄(r)2II(X, p1, p2, q1, q2, kj, kk)

S̃I(kj)S̃I(kk)

+
∑

n′≥l>m≥1

β̄(r)2FF (X, p1, p2, q1, q2, k
′
l, k
′
m)

S̃F (k′l)S̃f (k
′
m)

+
n∑
j=1

n′∑
l=1

β̄(r)2IF (X, p1, p2, q1, q2, kj, k
′
l)

S̃I(k′j)S̃f (k
′
l)

+
∑

n≥j>k>l≥1

β̄
(r)
3III(X, p1, p2, q1, q2, kj, kk, kl)

S̃I(kj)S̃I(kk)S̃I(kl)

}
. (7.4)

As we noted in last chapter, the YFS soft factors for real photons emitted from

the initial and final state fermions are

S̃I(kj) = −Q2
e

α

4π2

(
p1

kjp1

− p2

kjp2

)2

,

S̃F (k′l) = −Q2
f

α

4π2

(
q1

k′lq1

− q2

k′lq2

)2

, (7.5)
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where Qe and Qf are the electric charges of the electron e and fermion f . The Y

function in the exponential YFS from factor is defined as in last chapter:

Yf (Ω, p, p̄) ≡ 2Q2
fαB̃(Ω, p, p̄) + 2Q2

fα<B(Ω, p, p̄)

≡ −2Q2
f

α

8π2

∫
dk

k0
Θ(Ω; k)

(
p

kp
− p̄

kp̄

)2

+2Q2
fα<

∫
d4k

k2

i

2π3

(
2p− k
kp− k2

− 2p̄− k
2kp̄− k2

)2

. (7.6)

The form factor above is IR convergent and depends explicitly on the soft-

photon domains Ω = ΩI ,ΩF , which includes the IR divergence point k = 0. We define

Θ(Ω; k) = 1 for k ∈ Ω and Θ(Ω; k) = 0 for k ∈ Ω̄. The sum over contributions from

the real photons inside the domain Ω to infinite order, together with the analogous

contributions from virtual photons, forms the exponential YFS form factor. In the

Monte Carlo calculation we generate photons k ∈ Ω̄ via function ¯Θ(Ω, k) = 1−Θ(Ω, k)

. Usually it is required that ΩI and ΩF are small enough in the total cross section. And

physical observables are independent of the choice of ΩI and ΩF . so mathematically

speaking, ΩI/F is required to be dummy parameters in the calculation. If we neglect

the initial final state inference, we could choose ΩI and ΩF differently. For example,

let us define ΩI with k0 < Emin in the center of mass system of the incoming e+e−

beams and Ω with k′0 < E ′min in the center of mass system of the outgoing fermions

ff̄ . This is the easiest definition for the Monte Carlo Generation, but in the latter

discussion, we would should how we deal with the situation ΩI = ΩF . The YFS form

factor for the above choices of ΩI/F are

Ye(ΩI ; p1, p2) = γe log
2Emin√

2p1p2

+
1

4
γe +Q2

e

α

π

(
−1

2
+
π2

3

)
, (7.7)

Yf (ΩF ; p1, p2) = γf log
2Emin√

2p1p2

+
1

4
γf +Q2

e

α

π

(
−1

2
+
π2

3

)
, (7.8)
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where

γe = 2Q2
e

α

π

(
log

2p1p2

m2
e

− 1

)
, (7.9)

γf = 2Q2
f

α

π

(
log

2q1q2

m2
f

− 1

)
, (7.10)

7.1.2 Pure Virtual Corrections

As we discussed in the last chapter, the perturbative QED matrix element is

located in the β̄ functions. Theβ̄0 function is proprotional to the Born differential

cross section dσBorn(s, θ)/dΩ for the process e+e− → ff̄ and it contains calculable

infrared convergent corrections order by order. We shall calculate β̄0 and other β̄’s in

the O(αj)prag, i = 0, 1, 2.

The O(αj)prag expressions for β̄
(i)
0 ,i = 0, 1, 2 are

β̄
(r)
0 (X, p1, p2, q1, q2) =

1

4

∑
k,l=1,2

dσBorn

dΩ
(X2, θkl)(1 + δ

(r)
I )(1 + δ

(r)
F ), (7.11)

δ
(0)
I = 0, δ

(1)
I =

1

2
γ, δ

(2)
I = δ

(1)
I +

1

8
γ2, δ

(3)
I = δ

(2)
I +

1

48
γ3, (7.12)

δ
(0)
F = 0, δ

(1)
F =

1

2
γf , δ

(2)
F = δ

(1)
F +

1

8
γ2
f , δ

(3)
F = δ

(2)
F +

1

48
γ3
f , (7.13)

where

cos θ11 =
~p1 · ~q1

|~p1||~q1|
, cos θ12 =

−~p1 · ~q2

|~p1||~q2|
,

cos θ21 =
−~p2 · ~q1

|~p2||~q1|
, cos θ22 =

~p2 · ~q2

|~p2||~q2|
, (7.14)

with all three-vectors in the rest frame of the four momentum X, namely, in the frame

XMS.
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Notice that we take an average over four θkl instead of having a single dσBorn

dΩ(θ)
.

The reason for this more complex choice is due to the treatment of the first- and

higher-order real photon contributions in the next subsections. According to the

Refs. [103, 104], the exact single-photon ISR/FSR matrix element can be expressed

as a linear combination of the two dσBorn/dΩ(θk), k = 1, 2, distributions. Our im-

plementation of the LL matrix element of the two or three real photons could also

apply this kind of linear combinations. Thus, it is practical and reasonable to adopt

a similar approach alread for β̄0. Note that in the soft limit, all four angles θkl are

identical.

Some reader might question the authenticity of the freedom of defining θ in

dσBorn/dΩ(θ) in the first place. This question is answered in Ref. [87, 88]. Briefly

speaking, the differential cross section dσBorn/dΩ(θ) and β̄
(i)
0 are defined in the two-

body phase-space. However, they will be used all over the phase-space with additional

photons(either soft or hard). This needs some extrapolations of dσBorn/dΩ(θ) and β̄
(i)
0

beyond the two-body phase-space. The extrapolation is realized by manipulating the

four-momenta in Ref. [88] and it is done as an extrapolation for the Mandelstam

variables(s, t and u). However, we could solve this problem from another perspective.

The effect due to changing from one specific extropolation to another is a kind of

”higher order” effect for the entire calculation. For example, at O(α1), changing the

type of extrapolation brings in an O(α2) effect. Therefore, it is logical to use a certain

extropolation to minimize the higher-order effects.
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7.1.3 One Real Photon with Virtual Corrections

The contributions β̄
(2)
1 are built from the QED distributions wiht a single real-

photon emission and up to one virtual-photon contribution. They are defined as

follows:

β̄
(i)
1I (X, p1, p2, q1, q2, kj) = D

(i)
1I (X, p1, p2, q1, q2, kj)− S̃I(kj)β̄(i−1)

0 (X, p1, p2, q1, q2),

(7.15)

β̄
(i)
1F (X, p1, p2, q1, q2, k

′
l) = D

(i)
1F (X, p1, p2, q1, q2, k

′
l)− S̃F (k′l)β̄

(i−1)
0 (X, p1, p2, q1, q2),

(7.16)

where i = 1, 2. We define all the ingredients for the initial-state contribution. The

single initial-state photon emission differential distribution at the O(αr),r = 1, 2, 3

with up to two-loop virtual correction from the initial- and/or final-state photon is

D
(r)
1I (X, p1, p2, q1, q2, kj) = Q2

e

α

4π2

2p1p2

(kjp1)(kjp2)
We(α̂j, β̂j)

×

{
(1− α̂j)2

2

∑
r=1,2

dσBorn

dΩ
(X2, θ1r) +

(1− β̂j)2

2

∑
r=1,2

dσBorn

dΩ
(X2, θ2r)

}
×
[
1 + ∆

(r−1)
I (zj)

]
(1 + δ

(r−1)
F ), (7.17)

where

α̂j =
kjp2

p1p2

, β̂j =
kjp1

p1p2

, zj = (1− α̂j)(1− β̂j),

∆
(0)
I (z) ≡ 0, ∆

(1)
I (z) ≡ 1

2
γ − 1

4
γ log(z),

∆
(2)
I (z) ≡ ∆

(1)
I (z) +

1

8
γ2 − 1

8
γ2 log(z) +

1

24
γ2 log2(z),

We(a, b) ≡ 1− m2
e

2p1p2

(1− a)(1− b)
(1− a)2 + (1− b)2

(a
b

+
b

a

)
. (7.18)

Let us check the soft limit at first. In the case of more than one photon, if

we take the soft limit kj → 0, keeping the momenta of the other photons constant,

then θkr are generally all different. However, the sums over dσBorn/dΩ in eq. (7.17)
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combine into a simple average over all four angles, as in eq. (7.11). So the single

photon distribution reduces to

D
(2,1)
1I (X, p1, p2, q1, q2, kj) ∼ S̃I(kj)β̄

(1,0)
0 (X, p1, p2, q1, q2) (7.19)

and thus β̄
(2,1)
1I (X, p1, p2, q1, q2, kj) is IR finite. The above discussion implies that

extrapolations for β̄0 and β̄1 have to be of the same type.

The collinear limit is our another concern. If all of the photons are collinear

to the initial or final fermions, then all of the angles θij, i, j = 1, 2, are identical and

equal to the LL effective scattering angle for the hard process in the frame XMS. This

will facilitate the introduction of the higher order LL corrections in the following.

Note that there are many equivalent ways, modulo a term of O(m2/s), to

express the single-bremsstrahlung spin-summed differential distribution [105]. Our

choice results from minimizing the machine rounding errors which implementing

Monte Carlo programs [85, 88, 89]. And eq. (7.17) is explicitly expressed in terms

of the Born differential cross sections, which helps the introduction of electroweak

corrections.

The virtual correction term [1+∆
(1)
I (zj)] is taken in the LL approximation and

it agrees with the corresponding contribution in the Ref. [106]. In the limit kj → 0,

we have ∆
(1)
I (z)→ δ

(1)
I and β̄

(2)
1F is infrared finite. The factor (1 + δ

(1)
F ) represents the

contribution from the simultaneous emission of the real initial and the virtual final

photons.

The key ingredients for the O(αr) final state β̄
(r)
1F , r = 1, 2, is the single final

state photon emission matrix element with up to one-loop virtual initial-/final-state
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photon corrections:

D
(r)
1F (X, p1, p2, q1, q2, k

′
l) = Q2

f

α

4π2

2q1q2

(k′lq1)(k′lq2)
Wf (η̂l, ζ̂l)

×

{
(1− η̂l)2

2

∑
r=1,2

dσBorn

dΩ
(X2, θr1) +

(1− ζ̂l)2

2

∑
r=1,2

dσBorn

dΩ
(X2, θr2)

}
×
[
1 + ∆

(r−1)
F (zl)

]
(1 + δ

(r−1)
I ), (7.20)

where

ηl =
k′lq2

q1q2

, ζl =
k′lq1

q1q2

, η̂l =
ηl

1 + ηl + ζl
,

∆
(0)
F (z) ≡ 0,∆

(1)
F (z) ≡ 1

2
γf + log(z)

We(a, b) ≡ 1−
m2
f

2q1q2

(1− a)(1− b)
(1− a)2 + (1− b)2

(a
b

+
b

a

)
. (7.21)

The discussions on the ISR distribution of eq. (7.17) also works for the FSR

distribution above.

7.1.4 Two Real Photons with Virtul Corrections

The contributions β̄
(2)
2II , β̄

(2)
2FF , and β̄

(2)
2IF are related to the emission of two

real photons, two initial, two final and one initial and on final, respectively. The

contribution β̄
(2)
2II , related to the emission of two real photonsis, is defined formally:

β̄
(r)
2II(X, p1, p2, q1, q2, kj, kk)

=D
(r)
2II(X, p1, p2, q1, q2, kj, kk)− S̃I(kj)β̄(r−1)

1I (X, p1, p2, q1, q2, kk)

− S̃I(kk)β̄(r−1)
1I (X, p1, p2, q1, q2, kj)− S̃I(kj)S̃I(kk)β̄(r−2)

0 (X, p1, p2, q1, q2),

r = 2, 3, (7.22)
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And the contributions β̄
(2)
2FF and β̄

(2)
2IF , related to the emission of two final photons

and one initial photon and one final photon, are defined respectively:

β̄
(r)
2FF (X, p1, p2, q1, q2, k

′
l, k
′
m)

=D
(r)
2FF (X, p1, p2, q1, q2, k

′
l, k
′
m)− S̃F (k′l)β̄

(r−1)
1F (X, p1, p2, q1, q2, k

′
m)

− S̃F (k′m)β̄
(r−1)
1F (X, p1, p2, q1, q2, k

′
l)− S̃F (k′l)S̃F (k′m)β̄

(r−2)
0 (X, p1, p2, q1, q2),

r = 2, 3, (7.23)

β̄
(r)
2IF (X, p1, p2, q1, q2, kj, k

′
l)

=D
(r)
2IF (X, p1, p2, q1, q2, kj, k

′
l)− S̃I(kj)β̄

(r−1)
1F (X, p1, p2, q1, q2, k

′
l)

− S̃I(k′l)β̄
(r−1)
1I (X, p1, p2, q1, q2, kj)− S̃I(kj)S̃F (k′l)β̄

(r−2)
0 (X, p1, p2, q1, q2),

r = 2, 3. (7.24)

The new terms D
(2)
2II , D

(2)
2FF , and D

(2)
2IF in the above expressions are the differ-

ential distributions for the double bremsstrahlung. They are not calculated directly

from Feynman diagrams but they are set up in the following way: if one photon is

soft and the other is hard, then the single-bremsstrahlung expressions of (7.17) and

(7.20) are recovered; if both photons are hard and collinear, then the proper LL limit

is also recovered.
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The definition of the double real ISR distribution is

D
(2)
2II(X, p1, p2, q1, q2, k1, k2)

≡Q4
e

α

4π2

2p1p2

(k1p1)(k1P2)

α

4π2

2p1p2

(k2p1)(k2p2)
We(α̂1, β̂1)We(α̂2, β̂2){

Θ(v1 − v2)
[
1 + ∆

(r−1)
II (z1, z12)

]
(1 + δ

(r−1)
F )

[
χ2(α̂1; α̂′2, β̂

′
2)

∑
r=1,2

dσBorn

dΩ
(X2, θ1r) + χ2(α̂1; α̂′2, β̂

′
2)
∑
r=1,2

dσBorn

dΩ
(X2, θ1r) +

]
+{

Θ(v2 − v1)
[
1 + ∆

(r−1)
II (z2, z21)

]
(1 + δ

(r−1)
F )

[
χ2(β̂1; α̂′2, β̂

′
2)

∑
r=1,2

dσBorn

dΩ
(X2, θ2r) + χ2(β̂1; α̂′1, β̂

′
1)
∑
r=1,2

dσBorn

dΩ
(X2, θ1r) +

]}
,

(7.25)

where

α̂′1 =
α̂1

1− α̂2

, α̂′2 =
α̂2

1− α̂1

, β̂′1 =
β̂1

1− β̂2

, β̂′2 =
β̂2

1− β̂1

,

vi = α̂i + β̂i, zi = (1− α̂i)(1− β̂i), zij = (1− α̂i − α̂j)(1− β̂i − β̂j),

χ2(u; a, b) ≡ 1

4
(1− u)2[(1− a)2 + (1− b)2],

∆
(0)
II = 0, ∆

(1)
II (zi −

1

6
γ log(zi), zij) =

1

2
γ − 1

6
γ log(zij). (7.26)

The variables α̂i, β̂i for the ith photon are defined as in eq. (7.18).

In order to understand the construction, we examine the realization of the

LL collinear limit in the exact single-bremsstrahlung matrix element of eq. (7.17).

Suppose a photon carrying the fraction x1 of the beam energy is collinear with p1,

then α̂1 ∼ x, β̂1 ∼ 0, all four angles are the same θsr → θ∗ and we at once recover the
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correct LL formula

1

2
(1− α̂1)2

∑
r=1,2

dσBorn

dΩ
(θ1r) +

1

2
(1− β̂1)2

∑
r=1,2

dσBorn

dΩ
(θ2r)

→ 1

2
[1 + (1− x)2]

dσBorn

dΩ
(θ∗).

So it is natural to use the the angular-dependent Altarelli-Parisi (AP) factors of the

type

1

2
[(1− α̂2)2 + (1− β̂2)2]

1

2
[(1− α̂1)2 + (1− β̂1)2]

for the double emission. But the above expression is too simple to reproduce correctly

the result of the double convolution of the AP kernels in the case that both photons

are collinear with the same fermion

1

2
[1 + (1− x1)2]

1

2

[
1 +

(
1− x2

1− x1

)2]
dσBorn

dΩ
(θ∗),

where x2/(1 − x1) reflects the energy loss in the emission cascade because of the

emission of k1. In order to deal with the above situation, we need to reconstruct

angular dependent AP factor as

1

2
[(1− α̂1)2 + (1− β̂1)2]

1

2
[(1− α̂′2)2 + (1− β̂′2)2].

The above formula fits both kinds of the LL collinear limit, when two photons are

collinear with a single beam or each of them follows a different beam. Finally, we

reproduce the limit in which one photon is hard and the other is soft, v2 = α̂2+β̂2 → 0.

In this case, we split the above double-bremsstrahlung angular dependent AP factor

into two parts

χ2(α̂1; α̂′2, β̂′2) =
1

2
(1− α̂1)2 1

2
[(1− α̂′2)2 + (1− β̂′2)2],

χ2(β̂1; α̂′2, β̂′2) =
1

2
(1− β̂1)2 1

2
[(1− α̂′2)2 + (1− β̂′2)2], (7.27)
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and relate each one with the corresponding dσBorn

dΩ
as we did in eq. (7.17). The order

in the cascade does not affect the result. So we just symmetrize over the two orderings

in the cascade (Bose-Einstein symmetrization).

The construction above gives the correct limit D
(2)
2II(k1, k2) → S̃(k2)D

(1)
1I (k2)

for v1 = const and v2 → 0. Consequently, β̄
(2)
II (X, p1, p2, q1, q2, k1, k2) is finite in the

limit of one or both photon momenta approaching to zero.

The double final-state bremsstrahlung distribution is constructed in an anal-

ogous way:

D
(2)
2FF (X, p1, p2, q1, q2, k1, k2)

≡Q4
f

α

4π2

2q1p2

(k′1q1)(k′1p2)

α

4π2

2q1p2

(k′2q1)(k′2p2)
Wf (η̂1, ζ̂1)We(η̂2, ζ̂2){

Θ(v′1 − v′2)

[
χ2(η̂1; η̂′2, ζ̂

′
2)
∑
r=1,2

dσBorn

dΩ
(X2, θ1r)

+ χ2(η̂1; η̂′2, ζ̂
′
2)
∑
r=1,2

dσBorn

dΩ
(X2, θ1r)

]
+ Θ(v′2 − v′1)

[
χ2(ζ̂1; η̂′2, ζ̂

′
2)

∑
r=1,2

dσBorn

dΩ
(X2, θ2r) + χ2(ζ̂1; η̂′1, ζ̂

′
1)
∑
r=1,2

dσBorn

dΩ
(X2, θ1r) +

]}

× [1 + ∆
(r−1)
I (zj)], (7.28)

where

η′1 =
η1

1 + η2

, η′2 =
η2

1 + η1

, ζ ′1 =
ζ1

1 + ζ2

, ζ ′2 =
ζ2

1 + ζ1

. (7.29)

Note that the definition of the ”primed” Sudakov variables is different from that in

the ISR case, because the fermion momenta q1,2 are affected by photon emission. The

virtual corrections are absent because we restrict the FSR to O(α2)LL. The above

expression is tagged with r = 2, 3 for O(αr), but the FSR is implemented only in

O(α2) and the only correction in O(α3) is the ISR one loop correction.
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The distribution for one photon from the initial-state and the other from the

final-state at O(αr), r = 1, 2, is given by

D
(r)
2IF (X, p1, p2, q1, q2, kj, k

′
l)

=Q2
e

α

4π2

2p1p2

(kjp1)(kjp2)
We(α̂j, β̂j)Q

2
f

α

4π2

2q1q2

(k′lq1)(k′lq2)
Wf (η̂l, ζ̂l)×{

(1− α̂j)2

2

(1− η̂l)2

2

dσBorn

dΩ
(X2, θ11) +

(1− α̂j)2

2

(1− ζ̂l)2

2

dσBorn

dΩ
(X2, θ12)

+
(1− β̂j)2

2

(1− η̂l)2

2

dσBorn

dΩ
(X2, θ21) +

(1− β̂j)2

2

(1− ζ̂l)2

2

dσBorn

dΩ
(X2, θ22)

}
× [1 + ∆

(r−1)
I (z1)][1 + ∆

(r−1)
F (z′2)], (7.30)

where α̂j, β̂j, η̂l, ζ̂l and other componets are defined in eqs. (7.18) and (7.21).

7.1.5 Three Real Photons

The differential distribution for three real ISR photons is obtained by the triple

convolution of the AP kernel for each beam. In spite of the primary importance of

the collinear limit, preserving all soft limit is also our concern while constructing the

fully differential triple-photon distribution.

In these limit the triple-photon differential distribution must reproduce the

previously define Born, single-, and double-bremmsstrahlung distributions times the
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the appropriate soft factors. If not, we may encounter an issue of the IR finiteness of

β̄
(3)
3III(X, pi, qj, k1, k2, k3)

=D
(3)
3III(X, pi, qj, k1, k2, k3)− S̃I(k1)β̄

(2)
2II(X, pi, qj, k2, k3)

− S̃I(k2)β̄
(2)
2II(X, pi, qj, k1, k3)− S̃I(k3)β̄

(2)
2II(X, pi, qj, k1, k2)

− S̃I(k1)S̃I(k2)β̄
(1)
1I (X, pi, qj, k3)− S̃I(k3)S̃I(k1)β̄

(1)
1I (X, pi, qj, k2)

− S̃I(k2)S̃I(k3)β̄
(1)
1I (X, pi, qj, k1)− S̃I(k1)S̃I(k2)S̃I(k3)β̄

(0)
0 (X, pi, qj).

(7.31)

As in the case of the double real ISR photons, the guideline for constructing the

differential distributions includes (i) the hardest photon decides which of the angles

is used in dσBorn

dΩ
(X2, θ1r) and (ii) we have to sum over all orderings in a cascade

emission of several photons from one beam (Bose-Einstein Symmetrization). For the

case of three real photons there are no virtual corrections.

The construction for three real ISR is

D
(3)
3III(X, p1, p2, q1, q2, k1, k2, k3)

≡
∏
l=1,3

Q2
e

α

4π2

2p1p2

(klp1)(klp2)
We(α̂l, β̂l)

{
Θ(v1 − v2)Θ(v2 − v3)

[
χ3(α̂1; α̂′2, β̂

′
2, α̂

′′

3 , β̂
′′

3 )
∑
r=1,2

dσBorn

dΩ
(X2, θ1r) + χ3(β̂1; α̂′2, β̂

′
2, α̂

′′

3 , β̂
′′

3 )

∑
r=1,2

dσBorn

dΩ
(X2, θ2r)

]
+ remaining five permutations of (1,2,3)

}
(7.32)

where

χ3(u1; a2, b2, a3, b3) ≡ 1

8
(1− u1)2[(1− a2)2 + (1− b2)2][(1− a2)2 + (1− b2)2],

α̂
′′

3 =
ᾱ3

1− ᾱ1 − ᾱ2

, β̂
′′

3 =
β̄3

1− β̄1 − β̄2

. (7.33)
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7.2 Amplitudes for Coherent Exclusive Exponentiation

The coherent exclusive exponentiation was first introduce in Ref. [107], which

is rooted in the YFS exponentiation [78]. The exponentiation procedure which is

a reorganization of the QED perturbative series such that the IR divergences are

summed to up infinite order, is realized at the spin-amplitude level for both real and

virtual IR divergences. This is contrast with the EEX which is based on the traditional

YFS theory, in which the isolation for the real IR-singularities is achieved for the

squared spin-summed spin amplitudes. The computation of the spin amplitudes is

finished with the help of the Kleiss and Stirling Spinor technique [52] (please read

Chapter Three for details). It is very interesting that the IR cancellation of the CEEX

occur for the integrated cross sections as usual even though the CEEX is formulated

completely in terms of the spin amplitudes. In this section, we shall introduce the

construction of the CEEX matrix element, the IR cancellation in the CEEX scheme

and the virtual and photonic correction for CEEX.

7.2.1 Master Formula

Let us define the Lorentz-invariant phase-space as∫
dLipsn(P ; p1, p2, · · · , pn) =

∫
(2π)4δ

(
P −

n∑
i=1

pi

)
n∏
i=1

d3p

(2π)32p0
i

, (7.34)

then we write the CEEX total cross section for the process

e−(pa)+e+(pb)→ f(pc)+ f̄(pd)+γ(k1)+γ(k2)+ · · ·+γ(kn), n = 0, 1, 2, · · · (7.35)
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with polarized beams and decays of unstable final fermions which are sensitive to

fermion spin polarizations as follows:

σ(r) =
1

flux(s)

∞∑
n=0

∫
dLipsn+2(pa + pb; pc, pd, k1, · · · , kn)

× ρ(r)
CEEX(pa, pb, pc, pd, k1, · · · , kn), (7.36)

where, in the CMS (center of mass) flux(s) = 2s+O(m2
e),

ρ
(r)
CEEX(pa, pb, pc, pd, k1, · · · , kn)

=
1

n!
exp[Y (Ω; pa, · · · , pd)]Θ̄(Ω)

∑
σi=±1

∑
λi,λj=±1

3∑
i,j,l,m=0

ε̂iaε̂
j
bσ

i
λaλ̄a

σj
λbλ̄b

×M(r)
n

 pk1k2 . . . kn

λσ1σ2 . . . σn


M(r)

n

 pk1k2 . . . kn

λ̄σ1σ2 . . . σn



∗

σlλ̄cλcσ
j

λ̄dλd
ĥlcĥ

m
d .

(7.37)

Assume that the s-chanel exchanges dominate and resonances are included, then

we can define the complete set of spin amplitudes for the n photon emission, in

O(αr)CEEX, r = 0, 1, 2, as follows,

M(1)
n

 pk1k2 . . . kn

λσ1σ2 . . . σn



≡
∑

℘∈{I,F}n

n∏
i=1

s
{℘i}
[i]

{
β̂

(1)
0

 p

λ

;X℘

+
n∑
j=1

β̂
(1)
1{℘j}

 pkj

λσj

;X℘


s
{℘i}
[j]

}
,

(7.38)
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M(2)
n

 pk1k2 . . . kn

λσ1σ2 . . . σn



≡
∑

℘∈{I,F}n

n∏
i=1

s
{℘i}
[i]

{
β̂

(2)
0

 p

λ

;X℘

+
n∑
j=1

β̂
(2)
1{℘j}

 pkj

λσj

;X℘


s
{℘i}
[j]

+
n∑

1≤j<n≤n

β̂
(2)
2{℘j℘l}

 pkjkl

λσjσl

;X℘


s
{℘j}
[j] s

{℘l}
[l]

}
.

(7.39)

In order to simplify our expressions, we introduce a compact collective nota-

tion:  p

λ

 =

 papbpcpd

λaλbλcλd

 (7.40)

for the fermion four-momenta pA, A = a, b, c, d (i.e., p1 = pa, p2 = pb, q1 = pc,

q2 = pd) and helicities λA, A = a, b, c, d. For k = 1, 2, 3, σk are the Pauli matrices and

σ0
λ,µ = δλ,µ is the unit matrix. The components ε̂j1, ε̂k2, where j, k = 1, 2, 3, are the

components of the conventional spin-polarization vectors of the incoming fermions,

defined in the GPS fermion rest frames (Plase read Appendix D for details). We

define ε̂0A = 1 in a nonstandard way (i.e., pA · ε̂A = me, A = a, b). The polarimeter

vector ĥC are similarly defined in th proper GPS rest frames of the final unstable

fermions (pC · ĥC = mf , C = c, d).

Next, we introduce and explain the notation for the IR integration limits for

the real photons in eqs. (7.36) and (7.37). The factor Θ̄(Ω) in eq. (7.36) defines
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the IR integration limits for all real photons. For a single photon, Ω is the domain

surrounding the IR divergences point k = 0, which is excluded from the MC phase-

space. In CEEX, Ω is the same for all photons since there is no actual differnce

between ISR and FSR photons. We define a characteristic function Θ(Ω, k) of the IR

domain Ω as

Θ(Ω, k) =


1 for k ∈ Ω,

0 for k 6∈ Ω.

(7.41)

The characteristic functions for the part of the phase-space include in the MC inte-

gration for a single real photon is Θ̄(Ω, k) = 1−Θ(Ω, k). Similarly, the characteristic

function for all real photons is as follows:

Θ̄(Ω) =
n∏
i=1

Θ̄(Ω, k). (7.42)

In the computation corresponding to the KKMC program we define Ω in a traditional

way with the photon-energy cut condition k0 < Emin.

The YFS form factor [78] for Ω defined with the condition k0 < Emin is

Y (Ω; pa, . . . , pd) =Q2
eYΩ(pa, pb) +Q2

fYΩ(pc, pd) +QeQfYΩ(pa, pc)

+QeQfYΩ(pa, pc)−QeQfYΩ(pa, pc)−QeQfYΩ(pa, pc),

(7.43)

where

YΩ(p, q) ≡2αB̂(Ω, p, q) + 2α<B(Ω, p, q)

≡− 2α
1

8π2

∫
d3k

k0
Θ(Ω; k)

(
p

kp
− q

kq

)2

+ 2α<
∫
d4k

k2

i

(2π)3

(
2p− k

2kp− k2
− 2q − k

2kq − k2

)
(7.44)

is given analytically in terms of dilogarithm functions.
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The coherent sum is taken over the set {℘} = {I, F} for all 2n partitions,

the single partition ℘ is defined as a vector (℘1, ℘2, . . . , ℘n) where ℘i = 1 for an ISR

photon and ℘F = F for an FSR photon. The set of all partitions is explicitly written

as follows:

{℘} = {(I, I, I, . . . , I), (F, I, I, . . . , I), (I, F, I, . . . , I), . . . , (F, F, F, . . . , F )}.

The s-channel four-momentum in the resonant s-channel propagator is X℘ = pa +

pb −
∑

℘i=I
ki.

The soft amplitude factors s
{ω}
[i] , ω = I, F , are defined as follows:

s
{I}
[i] ≡s

{I}
[i] (k) = −eQe

bσ(k, pa)

2kipa
+ eQe

bσ(k, pb)

2kipb
,∣∣∣s{I}[i]

∣∣∣2 =− e2Q2
e

2

(
pa
kipa

− pb
kipb

)2

, (7.45)

s
{F}
[i] ≡ s

{I}
[i] (k) = +eQf

bσ(k, pc)

2kipc
+ eQe

bσ(k, pd)

2kipd
,∣∣∣s{F}[i]

∣∣∣2 = −
e2Q2

f

2

(
pc
kipc
− pd
kipd

)2

, (7.46)

bσ(k, p) =
√

2
ūσ(k)/puσ(ζ)

ū−σuσ(ζ)
. (7.47)

The simplest IR-finite β̂ function β̂
(0)
0 is the Born spin amplitudee times a

kinematical factor

β̂
(0)
0

 p

λ

;X

 = B

 p

λ

;X

 X2

(pc + pd)2
. (7.48)

Note that the Born spin amplitude B

 p

λ

;X

 is an essential block for building all

of the spin amplitudes. Applying the Feynman rules and the basic massive spinors

with the definite GPS helicities, the Born spin amplitudes for e−(pa) + e+(pb) →
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f(pc) + f(pd) are given by

B

 p

λ

;X

 =B

 papbpcpd

λaλbλcλd

;X

 = B

 pbpa

λbλa


 pcpd

λcλd

 (X)

=B[ba][cd](X) = ie2
∑
B=γ,Z

µν∏
B

(X)(GB
e,µ)[ba](G

B
f,µ)[cd]HB

=
∑
B=γ,Z

BB
[ba][cd](X),

(GB
eµ)[ba] ≡v̄(pbλb)G

B
e,µu(pa, λa)

(GB
fµ)[ba] ≡v̄(pcλc)G

B
f,µu(pd, λd)

GB
e,µ =γµ

∑
λ=±

ωλg
B,e
λ

GB
f,µ =γµ

∑
λ=±

ωλg
B,f
λ , ωλ =

1

2
(1 + λγ5),

Πµν
B (X) =

gµν

X2 −M2
B + iΓBX2/M2

B

, (7.49)

where gB,fλ are the chiral coupling constants (λ = ± = R,L) of the vector boson

B = γ, Z to the fermion f in units of the electric charge e. Usually, the ”hook

function” HB is trivial: Hγ = HZ = 1. And spinor products can be reorganized with

the help of Chisholm idenities:

BB
[ba][cd](X) = 2ie2

δλa,−λb[gB,eλa
gB,f−λaTλcλaT

′
λbλd

+gB,eλa
gB,f−λaU

′
λcλb

Uλaλd ]

X2 −M2
B + iΓBX2/MB

(7.50)

where

Tλcλa = ū(pc, λc)u(pa, λa) = S(pc,mc, λc, pa, 0, λa),

T ′λbλd = v̄(pb, λb)v(pd, λd) = S(pb, 0,−λb, pd,−md,−λd),

U ′λcλb = ū(pc, λc)v(pb,−λb) = S(pc,mc, λc, pb, 0, λb),

Uλaλd = ū(pa,−λa)v(pd, λd) = S(pb, 0,−λa, pd,−md,−λd). (7.51)
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7.2.2 IR Structure in CEEX

In this subsection, we discuss the mechanism of the IR-cancellation in the

CEEX scheme. Let us begin with the infinite-order perturbative expression for the

total cross section given by the standard quantum-mechanical expression of the type

“matrix element squared modulus times phase-space”:

σ(∞) =
∞∑
n=0

1

n!

∫
dτn(pa + pb; pc, pd, k1, . . . , kn)

× 1

4

∑
λ,σi,...,σn=±

∣∣∣∣∣∣∣Mn

 pk1k2 . . . kn

λσ1σ2 . . . σn


∣∣∣∣∣∣∣
2

, (7.52)

where dτn is the respective (nγ + 2f)-Lorentz-invariant phase-space, and Mn are

the corresponding spin amplitudes. In order to simplify the discussion, we take the

unpolarized case without narrow resonances here.

According to the YFS theory [78], all virtual IR corrections can be relocated

into an exponential form factor order by order and in infinite order

M(∞)
n = exp[αB4(pa, pb, pc, pd)]m

(∞)
n . (7.53)

Since the convergence of the perturbative series is questionable, the equation above is

practically treated as a symbolic representation of the order-by-order relation, which

reads at O(αr),

M(r)
n =

r−n∑
l=0

(αB4)r−l

(r − l)!
m[l+n]
n (n ≤ r), (7.54)

where the index l is the number of loops in M
[l+n]
n . The M

[l+n]
n ’s are not only free

of the virtual IR divergences, they are also universal: they are the same in every

perturbative order r. The formula above can be reformulated as follows:

m(r)
n =

r−n∑
l=0

m[l+n]
n = {exp[−αB4(pa, pb, pc, pd)]M(r)

n }|O(αr), (7.55)
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where M(r)
n has to be evaluated from the Feynman diagrams in at least O(αr). The

above treatments are exactly the same as in Chapter Six.

The YFS form factor B4 for e−(pa) + e+(pb)→ f(pc) + f̄(pd) + nγ is

αB4(pa, pb, pc, pd) =

∫
d4k

k2 −m2
γ + iε

i

(2π)3
|JI(k)− JF (k)|2 , (7.56)

where

JI = eQe[Ĵa(k)− Ĵb(k)],

JF = eQf [Ĵc(k)− Ĵd(k)],

Ĵµf (k) =
2pµf + kµ

k2 + 2k · pf + iε
. (7.57)

Using the identity (
∑

k ZkJk)
2 = −

∑
i>k ZiZk(Ji−J −k)2 for

∑
Zk = 0, where Zk is

the charge of the particle with minus charge in the initial or final state repsectively,

we can rewritten B4 as the sum of the simpler dipole components. Note that the IR

singularities are regularized with a fictitious photon mass mγ.

B4(pa, pb, pc, pd) =Q2
eB2(pa, pb) +Q2

fB2(pc, pb) +QeQfB2(pa, pc)

+QeQfB2(pb, pd)−QeQfB2(pa, pd)−QeQfB2(pb, pc),

(7.58)

B2(pi, pj) ≡
∫

d4k

k2 −m2
γ + iε

i

(2π)3
[Ĵ(pi, k)− Ĵ(pj, k)]. (7.59)

Next, we elaborate the isolation of the real IR divergences in the CEEX scheme,

which differs in essential details from the original YFS method [78] (please read Chap-

ter Six for details). The essential difference is that we do not square the amplitudes

immediately, and it is done numerically at a later stage. We use the results of the basic

analysis of the real IR divergences of Ref. [78]. The basic analysis of IR cancellations
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in Ref. [78] is done in terms of the currents

jµf (k) =
2pµf

2pf · k
, f = a, b, c, d. (7.60)

The above currents are simply related to the s factors:

sIσ(k) = const×Qe(ja − jb) · εσ(β)

sFσ (k) = const×Qf (jc − jd) · εσ(β). (7.61)

Note that the whole structure of the real IR singularities is completely controlled by

the squares of the currents |j(k)|2, for j = ja − jb or j = jc − jd because only the

squares |j(k)|2 are IR divergent and other contractions do not matter. Similarly, if we

express spin amplitudes in terms of s factors, only the squares |s|2 are IR divergent

and not the interference terms.

The IR-divergent part of M is proportional to the products of n s factors

Mn

 pk1k2 . . . kn

λσ1σ2 . . . σn

 ∼ β̂0

 p

λ

;X

 sσ1(k1)sσ2(k2) . . . sσn(kn), (7.62)

sσ(k) ≡ s{F}σ + s{I}σ . (7.63)

Considering there are also non-leading IR singularities, the whole real-IR structure is

revealed in the following decomposition:

M(∞)
n (k1, k2, k3, . . . , kn)

=β̂0

n∏
s=1

s(ks) +
n∑
j=1

β̂1(kj)
∏
s 6=q

s(ks) +
∑
j1>j2

β̂2(kj1 , kj2)
∏

s 6=j1,j2

s(ks)

+
∑

j1>j2>j3

β̂2(kj1 , kj2 , kj3)
∏

s 6=j1,j2,j3

s(ks) + · · ·

+
∑
j=1

β̂n−1(k1, . . . , kj−1, kj+1, . . . , kn)s(kj) + β̂n(k1, k2, k3, . . . , kn)

(7.64)
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where the functions β̂i are IR free and include finite loop corrections to infinite order.

The decomposition of eq. (7.64) also has the order-by-order representation and it is

written as follows:

M(n+l)
n (k1, k2, k3, . . . , kn)

=β̂
(l)
0

n∏
s=1

s(ks) +
n∑
j=1

β̂
(1+l)
1 (kj)

∏
s 6=q

s(ks) +
∑
j1>j2

β̂
(2+l)
2 (kj1 , kj2)

∏
s 6=j1,j2

s(ks)

+
∑

j1>j2>j3

β̂
(3+l)
2 (kj1 , kj2 , kj3)

∏
s 6=j1,j2,j3

s(ks) + · · ·

+
n∑
j=1

β̂
(n−1+l)
n−1 (k1, . . . , kj−1, kj+1, . . . , kn)s(kj) + β̂(n+l)

n (k1, k2, k3, . . . , kn)

=
n∏
s=1

s(ks)

{
β̂

(l)
0 +

n∑
j=1

β̂
(1+l)
1 (kj)

s(kj)
+

n∑
j1<j2

β̂
(2+l)
2 (kj1 , kj2)

s(kj1)s(kj2)

+
n∑

j1<j2<j3

β̂
(3+l)
3 (kj1 , kj2 , kj3)

s(kj1)s(kj2)s(kj3)
+

n∑
j=1

β̂
(n−1+l)
n−1 (k1, . . . , kj−1, kj+1, . . . , kn)∏

s 6=j s(ks)

+
β̂

(n+l)
n (k1, k2, k3, . . . , kn)∏

s s(ks)

}
(7.65)

at O(αr), r = n + l. The functions β̂
(n+l)
n (k1, k2, k3, . . . , kn) include up to l-loop

corrections. The β̂
(n+l)
n (k1, k2, k3, . . . , kn) functions are not only completely IR finite,

but are universal as well. This feature is essential for reversing the relations of eq.

(7.65). From this feature, we could calculate β̂
(n+l)
n from M

(r)
n directly from the
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Feynman rules order-by-order:

β̂
(l)
0 = M

(l)
0 ,

β̂
(l+1)
1 (k1) = M

(1+l)
1 (k1)− β̂(l)

0 s(k1),

β̂
(2+l)
2 (k1, k2) = M

(2+l)
2 (k1, k2)− β̂(l+1)

1 (k1)s(k2)− β̂(l+1)
1 (k2)s(k1)

− β̂(l)
0 s(k1)s(k2),

β̂
(3+l)
3 (k1, k2, k3) = M

(3+l)
2 (k1, k2, k3)− β̂(2+l)

2 (k1, k2)s(k3)− β̂(2+l)
2 (k1, k3)s(k2)

− β̂(2+l)
2 (k2, k3)s(k1)− β̂(1+l)

1 (k1)s(k2)s(k3)− β̂(1+l)
1 (k2)s(k1)s(k2)

− β̂(1+l)
1 (k3)s(k1)s(k2)− β̂(l)

0 s(k1)s(k2)s(k3), . . . ,

β̂(n+l)
n (k1, · · · , kn)

=M(n+l)
n (k1, . . . , kn)−

n∑
j=1

β̂
(n−1+l)
n−1 (k1, . . . kj−1, kj+1, . . . , kn)s(kj)

−
n−2∑
j1<j2

β̂
(n−2+l)
n−2 (k1, . . . kj1−1, kj1+1, . . . kj2−1, kj2+1, . . . , kn)s(kj1)s(kj2)− . . .

−
∑
j1<j2

β̂
(2+l)
2 (kj1 , kj2)

∏
s 6=j1,j2

s(ks)−
n∑
j=1

β̂
(1+l)
1 (kj)

∏
s 6=j

s(ks)− β̄(l)
0

n∏
s=1

s(ks).

(7.66)

The above set of equations is a recursive rule, i.e., the higher-order β̂’s are built in

terms of the lower-order ones. In practical calculations one does not go to the infinite

order but stops at some O(αr) and the above set of equations is truncated for β̂
(n+l)
n

by the requirement n + l ≤ r. The above truncation is valid since we omit higher

order β̂’s which are IR finite. As a result of the fixed-order truncation, eq. (7.64)
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reads as follows

M(r)
n (k1, k2, k3, . . . , kn)

=
n∏
s=1

s(ks)

{
β̄

(r)
0 +

n∑
j=1

β̄
(r)
1 (kj)

s(kj)
+
∑
j1<j2

β̄
(r)
2 (kj1 , kj2)

s(kj1)s(kj2)

+
∑

j1<j2<j3

β̄
(r)
3 (kj1 , kj2), kj3

s(kj1)s(kj2)s(kj3)
+

∑
j1<j2<...<jr

β̄
(r)
3 (kj1 , kj2), . . . , kjr

s(kj1)s(kj2) . . . s(kj3)

}
.

(7.67)

The formula above represents the general finite-order O(αr)exp case. For r = 0

case only the first term survives, and in the O(α2) case there are three terms. The

CEEX spin amplitudes in eq. (7.36) represent the case of r = 0, 1, 2.

Let us give an explicit example: in the recurisve calculations of β̂ in O(α3),

one needs to calculate β̂
(l)
0 , l = 0, 1, 2, 3; β̂

(1+l)
1 , l = 0, 1, 2,; β̂

(2+l)
2 , l = 0, 1; and β̂

(3)
3 .

Therefore, according to eq. (7.66), we have

β̂
(l)
0

 p

λ

 =M
(l)
0

 p

λ

 , l = 0, 1, 2,

β̂
(1+l)
1

 pk1

λσ1

 =M
(1+l)
1

 pk1

λσ1

− β̂(l)
0

 p

λ

 sσ1(k1), l = 0, 1,

β̂
(2)
2

 pk1k2

λσ1σ2

 =M
(2)
1

 pk1k2

λσ1σ2

− β̂(1)
1

 pk1

λσ1

 sσ2(k2)

− β̂(1)
1

 pk2

λσ2

 sσ1(k1)− β̂(0)
0

 p

λ

 sσ1(k1)sσ2(k2),

(7.68)

where the amplitude M is given by eq. (7.55).
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At fixed-order O(αr)CEEX, we have

σ(r) =
∞∑
n=0

1

n!

∫
dτn(p1 + p2; p3, p4, k1, · · · , kn)

× exp[2α<B4(pa, . . . , pd)]
1

4

∑
spin

∣∣M(r)
n (k1, k2, . . . kn)

∣∣2 , (7.69)

where M
(r)
n is given by eq. (7.67) and we factorize out the s factors

1

4

∑
spin

∣∣M(r)
n (k1, k2, k3, . . . kn)

∣∣2 = dn(k1, k2, k3, . . . kn)
n∏
s=1

|s(ks)|2 , (7.70)

where

dn(k1, k2, k3, . . . kn)

=

∣∣∣∣β̄(r)
0 +

n∑
j=1

β̂
(r)
1 (kj)

s(kj)
+

n∑
j1<j2

β̂
(r)
2 (kj1 , kj2)

s(kj1)s(kj2)
+

n∑
j1<j2<j3

β̂
(r)
3 (kj1 , kj2 , kj3)

s(kj1)s(kj2)s(kj3)

+ . . .+
n∑

j1<j2<...<jr

β̂
(r)
r (kj1 , kj2 , . . . , kjr)

s(kj1)s(kj2) . . . s(kj3)

∣∣∣∣2. (7.71)

Apparently the function dn(k1, k2, k3, . . . , kn) is IR finite and we can set mγ → 0 in

it. Besides 2<B4 the IR regulator mγ remainsin all s(ki) factors and in the lower

phase-space boundary of all real photons in
∫

d3k
2k0 .

The IF finiteness of above total cross section can be checked by partial differ-

entiation with respect to the photon mass

∂

∂mγ

σ(r) =
∞∑
n=0

∫
dτn(P ; p3, p4, k1, . . . , kn) exp(2α<B4)

∂

∂mγ

{2α<B4}

× 1

4

∑
spin

∣∣M(r)
n (k1, k2, k3, . . . kn)

∣∣2 +
∞∑
n=1

1

n!

n∑
s=1

×
∫
dτn−1(P ; p3, p4, k1, · · · , ks−1, ks+1, · · · , kn)

× exp(2α<B4)
∂

∂mγ

{∫
d3ks

(2π)32k0
s

|s(ks)|2
}∏

j 6=s

|s(kj)|2

× dn(k1, k2, . . . , ks, . . . , kn). (7.72)
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Note that

∂

∂mγ

{∫
d3ks
2k0

s

|s(ks)|2
}

is a δ-like measure concentrated at ks = 0 and therefore we may use the limit

dn(k1, . . . , ks, . . . , kn)→ dn(k1, k2, . . . , ks−1, 0, ks+1, . . . , kn)

≡ dn−1(k1, k2, . . . , ks−1, ks+1, . . . , kn).

With the help of the limit above, we notice that all of the terms in the
∑n

s=1 are

identical so that we could sum them up after formally renaming the photon integration

variables in the second in integral and rewrite eq. (7.72) in the following way:

∂

∂mγ

σ(r) =
∞∑
n=0

∫
dτn(P ; p3, p4, k1, . . . , kn)

× exp(2α<B4)
1

4

∑
spin

∣∣M(r)
n (k1, k2, k3, . . . kn)

∣∣2
× ∂

∂µ

{
2α<B4 +

∫
d3ks

(2π)32k0
s

|s(ks)|2
}

=0, (7.73)

where the indepence of mγ of the sum of the one-photon real and virtual integrals is

because of the cancellation of the IR singularities in the YFS theory.

We have introduced the general notation for the IR domain Ω in eq. (7.42).

Now it is time to exclude the Ω domain from the real photon phase space. Splitting

the real photon integration phase space, the total cross section (7.69) is rewritten as

σ(r) =
∞∑
n=0

1

n!

{∫
d3kj

(2π)32K0
j

|s(kj)|2Θ(Ω, kj) +

∫
d3kj

(2π)32k0
j

|s(kj)|2Θ(Ω, kj)

}

×
∫
dτ0

(
P −

n∑
j=1

kj; p3, p4

)
exp(2α<B4)dn(k1, k2, . . . , kn). (7.74)
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After expanding the binomial product into 2n terms we consider the sum of all
(
n
1

)
= n

terms in which one photon is in Ω and the other ones are not:

1

n!

n∑
s=1

∫
d3ks

(2π)32k0
s

|s(ks)|2Θ(Ω, ks)
n∏
j 6=s

∫
d3kj

(2π)32k0
j

|s(kj)|2Θ̄(Ω, kj)

×
∫
dτ0

(
P −

n∑
j=1

kj; p3, p4

)
exp(2α<B4)dn(k1, k2, · · · , ks−1, 0, ks+1, . . . , kn)

=
1

n!

(
n

1

)∫
d3

(2π)32k0
|s(k)|2Θ(Ω, k)

∫
dτn−1(P ; p3, p4, k1, k2, . . . , kn−1)

×
n=1∏
j=1

Θ̄(Ω, kj)|s(kj)|2dn−1(k1, k2, . . . , kn−1). (7.75)

A similar summation is taken for the
(
n
s

)
terms where s photons are in the IR domain

Ω, leading to

σ(r) =
∞∑
n=0

1

n!

n∑
s=0

(
n

s

)(∫
d3k

(2π)32k0
|s(k)|2Θ(Ω, k)

)s
×
∫
dτn−s(P ; p3, p4, k1, k2, . . . , kn−s)

n−s∏
j=1

{|s(kj)|2Θ̄(Ω)}

× exp(2α<B4)dn−s(k1, k2, . . . , kn−s)

=
∞∑
n=0

1

n!

∫
dτn(P ; p3, p4, k1, k2, . . . , kn) exp

(∫
d3kj

(2π)32k0
j

|s(kj)|2Θ(Ω, kj)

)
× exp[2α<B4(p1, . . . , p4)]

n∏
j=1

{|s(kj)|2 ¯Θ(Ω, kj)}dn(k1, k2, . . . , kn). (7.76)

The additional overall exponential factor contains

2αB̃4(p1, . . . , p4) =

∫
d3kj

(2π)32k0
j

|s(kj)|2Θ(Ω, kj)

=2α[Q2
eB̃2(p1, p2) +Q2

f B̃2(p3, p4) +QeQf B̃2(p1, p3)

+QeQf B̃2(p2, p4)−QeQf B̃2(p1, p4)−QeQf B̃2(p2, p3)],

(7.77)
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and

B̃2(p, q) ≡ −
∫

d3k

(2π)32k0
Θ(Ω, k)[jp(k)− jq(k)]2

≡
∫
d3k

k0
Θ(Ω, k)

−1

8π2

(
p

kp
− q

kq

)2

. (7.78)

Furthermore, the YFS form factor is

Y (Ω; p1, · · · , p4) = 2αB̃4(p1, . . . , p4) + 2α<B̃4(p1, . . . , p4). (7.79)

In pursue of the completeness of the discussion, let us check the IR cancella-

tions in the total cross section with Ω as the new regulator:

σ(r) =
∞∑
n=0

1

n!

∫
dτn(P ; p3, p4, k1, k2, . . . , kn)

n∏
j=1

{|s(kj)|2Θ̄(Ω, kj)}

× exp
[
2αB̃4(Ω; p1, . . . , p4) + 2α<B4(p1, . . . , p4)

]
dn(k1, k2, . . . , kn).

(7.80)

Now IR finiteness of the total cross section is converted into the independence of the

domain Ω

∂

∂Ω
σ(r) = 0. (7.81)

This can be proved by the same argument for the photon mass mγ. Considering

Ω→ Ω′ = Ω + δΩ, that is Ω̄′ = Ω̄− δΩ and Ω′ can be either larger or smaller than Ω,
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the only requirement is that both are very small. Consequently we have

σ(r) =
∞∑
n=0

1

n!

n∏
j=1

{∫
d3kj

(2π)32k0
j

|s(kj)|2Θ̄(Ω′, kj) +

∫
d3kj

(2π)32k0
j

|s(kj)|2Θ̄(δΩ′, kj)

}
×
∫
dτ0

(
P −

∑
kj; p3, p4

)
exp[2αB̃4(Ω; p1, . . . , p4) + 2α<B4(p1, . . . , p4)]

×dn(k1, k2, . . . , kn)

=
∞∑
n=0

1

n!

n∑
s=0

(
n

s

){∫
d3k

(2π)32k0

|s(k)|2Θ(δΩ, k)

}s ∫
dτn−s(P ; p3, p4, k1, . . . , kn−s)

×
n−s∏
j=1

|s(kj)|2Θ(Ω′, kj) exp[2αB̃4(Ω; p1, . . . , p4) + 2α<B4(p1, . . . , P4)]

×dn−s(k1, k2, . . . , kn−s)

=
∞∑
n=0

1

n!

∫
dτn(P ; p3, p4, k1, . . . , kn) exp

[∫
d3k

(2π)32k0
|s(k)|2Θ(δΩ, k)

+2αB̃4(Ω; p1 . . . , p4) + 2α<B4(p1, . . . , p4)

] n∏
j=1

{|s(kj)|2Ω̄(Ω′, kj)}

×dn(k1, k2, . . . , kn), (7.82)

7.2.3 Narrow Neutral Resonance in CEEX

We have introduced the general mechanism of the IR-cancellation in the CEEX

scheme in the last subsection. In this subsection, we will introduce the possible

formulation of CEEX. There are three possible versions of CEEX so far. We will

mainly describe the the version of the resonant Born. These three possible verions

are as follows.

(A) The version the non-resonant Born without partitions:

M(0)
n

 pk1k2 . . . kn

λσ1σ2 . . . σn

 =
n∏
i=1

[sIσi(ki) + sFσi(ki)]B[ba][cd]. (7.83)
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(B) The version for the non-resonant Born with partitions:

M(0)
n

 pk1k2 . . . kn

λσ1σ2 . . . σn

 =
∑

℘∈{I,F}n

n∏
i=1

s{℘i}σi
(ki)B[ba][cd](X℘). (7.84)

(C) The version for the resonant Born:

M(0)
n

 pk1k2 . . . kn

λσ1σ2 . . . σn

 =
∑

℘∈{I,F}n

n∏
i=1

s{℘i}σi
(ki)

X2
℘

(p3 + p4)2

∑
R=γ,Z

BB
[ba][cd](X℘) exp[α∆BR

4 (X℘)]. (7.85)

We define the additional form factor for the Z resonance for case (C):

α∆BZ
4 (X) =

∫
d4k

k2 −m2
γ + iε

i

(2π)3
JIµ(k)[JµF (k)]∗

(
X2 − M̄2

(X − k)2 − M̄2
− 1

)
, (7.86)

where M̄2 = M2
Z − iMZΓZ . The currents Jµ are given by eq. (7.57), while for the

nonresonat part ∆Bγ
4 (X) = 0.

Let us make a brief comparison among these three versions. The case (B) will

become case (A) if we neglect the partition dependence of the four momenetum in

the Born amplitude: B[ba][cd](X℘) → B[ba][cd](P ), where P = pa + pb or P = pc + pd

or any other which is independent of the momentum of the individual photon. This

feature is due to

n∏
i=1

[s{F}σi
(ki) + s{I}σi (ki)] ≡

∑
℘∈{I,F}

n∏
i=1

s{℘}σi
(ki). (7.87)

Obviously case (C) is efficient for the resonant process while cases (A) and (B) are only

suitable for nonresonant process. If (A) does not sum the higher orders, it has a clear

advantage over (B), which is simpler computer code and less consumption of CPU

time because of no summation over partition. However, (B) sums up the LL higher

orders more efficiently than (A). Considering our aim is to cover the resonant process,

it is natural to utilize (B) for the nonresonant background of the spin amplitudes.

177



Once the summation over partitions happens, it is also easy to apply the case (B) for

the nonresonant background. In other words, if (C) is carried out, then (B) comes

automatically.

After comparing these three versions, we focus on the case (C) now because

it becomes (B) for nonresonant background component. For the narrow neutral reso-

nance, the photons emitted during the productiona dn decay processes are separated

by a long time interval; they are therefore totally independent. In the perturbative

QED, this fact is reflected in a certain class of cancellations between ISR and FSR pho-

ton on the one hand and the virtual and real corrections on the other hand. Because

of the presence of narrow resonances, it is not sufficient to sum up the real emissions

coherently, taking the energy shift in the resonance propagator into account [108,109].

It is also necessary to sum the virtual emission up to infinite order—this is why the

resonance form factor exp(BZ
4 ) is include in eq. (7.85). Next we will derive eq. (7.86)

and show that the IFI cancellations do work to infinite order.

Let us rewrite the YFS function in a modified notation

αB4(pa, . . . , pd) =

∫
d4k

k2 −m2
γ + iε

i

(2π)3
S(k), (7.88)

where

SI(k) = |JI(k)|2, SF (k) = |JF (k)|2, SInt(k) = −2<[JI(k) · J∗F (k)] (7.89)

Due to the presence of the narrow resonance, the YFS factorization of the virtual

IR contribution must take into account the dependence of the scalar part of the

resonance propagator on photon energies of order Γ. The relevant integrals with n
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virtual photons is given by

I = (P 2 − M̄2)
∞∑
n=0

1

n!

∑
℘∈Pn

n∏
i=0

∫
i

(2π)3

d4ki
k2
i −m2

γ

S℘i(ki)
1

P 2
℘ − M̄2

, (7.90)

where M̄2 = M2 − iMΓ, and Pn is a set of all 3n partitions (℘1, ℘2, . . . , ℘n) with

℘i = I,F, Int, and P℘ ≡ P −
∑

℘i
ki includes only the momenta of the photons in SInt.

The (P 2 −M2) factor is conventional, making the integral dimensionless. We will

show that the integral above factorizes into the conventional YFS form factor and

the additional non-IR factor due to the resonance R = Z:

I = exp[αBR
4 (mγ, s, M̄)] = exp[αB4(mγ, s) + α∆BR

4 (s, M̄)]. (7.91)

We aim to find the analytical expression of the additional function ∆BR
4 . In the

present computation, we adopt the following approximate formula [108,109],

α∆BR
4 (s′) = −2QeQf

α

π
log

(
t

u

)
log

(
M̄2 − s
M̄2

)
= −1

2
γInt log

(
M̄2 − s
M̄2

)
. (7.92)

In the following, we will derive the equation above and show explicitly that the above

virtual interference part of the form factor cancels exactly with the corresponding

real interference contributions.

Becaue the soft virtual photons entering into SI and SF in eq. (7.90) do not

enter the resonance propagator, we factorize and sum up the contributions with SI

and SF :

I =
∞∑

n1=0

1

n1!

n1∏
i1=0

∫
i

(2π)3

d4ki1
k2
i1
−m2

γ

SI(ki1)
∞∑

n2=0

1

n2!

n2∏
i2=0

∫
i

(2π)3

d4ki2
k2
i2
−m2

γ

SF (ki2)

×
∞∑

n13=0

1

n3!

n3∏
i3=0

∫
i

(2π)3

d4ki3
k2
i3
−m2

γ

SInt(ki3)
1(

P −
∑n3

j=1 kj

)
− M̄2

≡ exp(αBi + αBF )
∞∑
n=0

1

n!

n∏
i=0

∫
i

(2π)3

d4ki
k2
i −m2

γ

SIin(ki)
1(

P −
∑n

j=1 kj

)
− M̄2

.

(7.93)
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Here we neglect the quadratic terms in the photon energies O(kikj)

1(
P −

∑n
j=1 kj

)
− M̄2

' 1

P 2 − 2P
∑n

j=1 kj − M̄2

=
1

P 2 − M̄2

1

1−
∑n

j=1
2Pkj

P 2−M̄2

' 1

P 2 − M̄2

n∏
j=1

1

1− 2Pkj
P 2−M̄2

' 1

P 2 − M̄2

n∏
j=1

P 2 − M̄2

(P − kj)2 − M̄2
, (7.94)

and this gives us

I = exp(αBI + αBF ) exp

(∫
i

(2π)3

d4k

k2 −m2
γ + iε

SIin(k)
P 2 − M̄2

(P − k)2 − M̄2

)
= exp[αB4(mγ) + α∆BR

4 (Γ)], (7.95)

where

α∆BR
4 (Γ) =

∫
i

(2π)3

d4k

k
SIin(k)

(
P 2 − M̄2

(P − k)2 − M̄2
− 1

)
. (7.96)

As k → 0 the emission amplitude can be expressed as

M→ 1

k

{
ε1 +O

(
k

M̄

)
+

k

ΓZ

[
ε2 +O

(
k

M̄

)]}
,

where ε1,2 are constants independent of k, so that∣∣∣∣ 2Pkj
P 2 − M̄2

∣∣∣∣� 1,

namely, photon energy is below the resonance width. This constraint is completely

analogous to the usual YFS expansion into an IR-singular part and the rest [78]. The

approach we choose here is based on the fact that the virtual and real contributions

from the IFI for photons with Eγ > Γ do cancel as a result of the time separation

between the production and decay. We shall show the cancellation mechanism is valid

next.
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Let us check analytically the real multiphoton emission contribtuion for the

IFI. We began with the integral in which the total photon energy K =
∑n

j=1 kj is

kept below Emax = vmax

√
s, where Γ < Emax �

√
s:

σ =
∞∑
n=0

1

n!

∫ n∏
i=1

d3ki
(2π)32k0

i

∑
σ1...σn

∣∣∣∣∣∣
∑

℘∈{I,F}n

n∏
j=1

s
{℘j}
[j]

1

X2
℘ − M̄2

exp[αBR
4 (X℘)]

∣∣∣∣∣∣
2

×Θ

(
Emax −

n∑
j=1

kj

)

=
∞∑
n=0

1

n!

∫
K0<v

√
s

n∏
i=1

d3ki
(2π)32k0

i

∑
σ1...σn

∑
℘,℘′∈{I,F}n

n∏
j=1

s
{℘j}
[j] s

∗{℘′j}
[j]

× exp[αBR
4 (X℘)]

X2
℘ − M̄2

(
exp[αBR

4 (X℘)]

X2
℘ − M̄2

)∗

=
∞∑
n=0

1

n!

∫
K0<v

√
s

n∏
i=1

d3ki
2k0

i

∑
℘,℘′∈{I2,F 2,IF,FI}n

∏
℘j=I2

2S̃I(kj)
∏

℘j=F 2

2S̃F (kj)

×
∏

℘j=IF

2S̃Int(kj)
∏

℘j=FI

2S̃Int(kj)
exp[αBR

4 (P −KI −KIF )]

(P −KI −KIF )2 − M̄2

×
(

exp[αBR
4 (P −KI −KFI)]

(P −KI −KFI)2 − M̄2

)∗
, (7.97)

where

2(2π)2S̃I(kj) =
∑
σj

∣∣∣s{I}[j]

∣∣∣2 , 2(2π)2S̃F (kj) =
∑
σj

∣∣∣s{F}[j]

∣∣∣2 ,
2(2π)2S̃Int(kj) =

∑
σj

s
|I
[j]

(
s
{F}
[j]

)∗
=
∑
σj

s
|F
[j]

(
s
{I}
[j]

)∗
,

KI2 =
∑
℘j=I2

kj, KF 2 =
∑
℘j=F 2

kj KIF =
∑
℘j=IF

kj KFI =
∑
℘j=FI

kj,

K = KI2 +KF 2 +KIF +KFI . (7.98)

The product of two sums, each over 2n partitions ℘, ℘′ ∈ {I, F}n, is now replaced by

the single sum over 4n partitions ℘ ∈ {I2, F 2, IF, FI}n, where the IF, FI represent

the interference terms. And the summation over the number of the photons can be
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reorganized as follows:

σ(vmax) =
∞∑

n1=0

1

n1!

∫ n1∏
i1=1

d3ki1
2k0

i1

2S̃I(ki1)

n2∏
i2=1

d3ki2
2k0

i2

2S̃F (ki2)

×
n3∏
i3=1

d3ki3
2k0

i3

2S̃Int(ki3)

n4∏
i4=1

d3ki4
2k0

i4

2S̃Int(ki4)

× exp[αBR
4 (P −KII −KIF )]

(P −KII −KIF )2 − M̄2

(
exp[αBR

4 (P −KII −KIF )]

(P −KII −KIF )2 − M̄2

)∗
×Θ(Emax −K0

II −K0
FF −K0

IF −K0
FI) (7.99)

where KI2 =
∑

i1
ki1 , KF 2 =

∑
i2
ki2 , KIF =

∑
i3
ki3 and KFI =

∑
i4
ki4 . The

sums over the pure initial- and final-state contributions, and over the interference

contributions are well factorized and ready to be performed analytically. First, we

integrate and sum up contributions from the very soft photons below ε
√
s,

σ(vmax) =

∫ Emax

0

dE ′
∫ Emax

0

δ(E ′ − EI − EF − EInt)dEIdEFdEIFdEFI

×
∞∑

n1=0

1

n1!

n1∏
i1=1

∫
k0
i1
>εE

d3ki1
2k0

i1

2S̃I(ki1) exp[2αB̃I(εE) + 2α<BI ]δ

(
EI −

∑
i1

k0
i1

)

×
∞∑

n2=0

1

n2!

n2∏
i2=1

∫
k0
i2
>εE

d3ki2
2k0

i2

2S̃F (ki2) exp[2αB̃F (εE) + 2α<BF ]δ

(
EF −

∑
i2

k0
i2

)

×
∞∑

n3=0

1

n3!

n3∏
i3=1

∫
k0
i3
>εE

d3ki3
2k0

i3

2S̃I(ki3)
exp[α∆BR

4 (P −KII −KIF )]

(P −KII −KIF )2 − M̄2

× exp[2αB̃Int(εE) + 2α<BInt]δ

(
EInt −

∑
i3

k0
i3

)

×
∞∑

n4=0

1

n4!

n4∏
i4=1

∫
k0
i4
>εE

d3ki4
2k0

i4

2S̃I(ki4)

(
exp[α∆BR

4 (P −KII −KIF )]

(P −KII −KIF )2 − M̄2

)∗
× exp[2αB̃Int(εE) + 2α<BInt] exp(2α<∆BR

4 )δ

(
EInt −

∑
i3

k0
i3

)
, (7.100)
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where E =
√
s

2
. The integration over photon momenta gives

σ(vmax) =

∫ vmax

0

dvδ(v − vI − vF − vIF − vFI)

×
∫
dvIF (γI)v

γI−1
I exp[2αB̃I(E) + 2α<BI ]

×
∫
dvFF (γF )vγF−1

F exp[2αB̃F (E) + 2α<BF ]

×
∫
dvIFF

(γInt
2

) 1

2
γIntv

1
2
γIF−1

IF

×
(

exp{α∆BR
4 [s(1− vI)(1− vFI)]}

s(1− vI)(1− vFI)− M̄2

)
exp[αB̃Int(E) + α<BInt]

×
∫
dvFIF

(γInt
2

) 1

2
γIntv

1
2
γFI−1

FI

(
exp{α∆BR

4 [s(1− vI)(1− vFI)]}
s(1− vI)(1− vFI)− M̄2

)∗
× exp[αB̃Int(E) + α<BInt], (7.101)

which is explicitly free of IR singularities.

The main problem is whether the log
(

Γ
MZ

)
terms in the interference subinte-

gral

IInt =<
∫ vmax−vI−vF−vFI

0

dvIFF
(γIF

2

) 1

2
γIFv

1
2
γInt−1

IF

× exp{α∆BR
4 [s′(1− vIF )]}

s′(1− vIF )− M̄2
. (7.102)

can be cancelled perfectly. We ignore the term exp[αB̃Int(E) + α<BInt], because

it does not depend on the resonance parameters. The bulk of the integral comes

from the neighborhood of vIF = 0 and the integrad is ∼ 1
v

at large v because of the

resonance. Thus we can extend the integration limit to
∫∞

0
dvInt. We could apply

the standard techniques of the complex functions to evaluate the integral. We first
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reformulate the integral as an integral over the discontinuity C1 along the real axis

IInt =F
(γIF

2

)
exp[α∆BR

4 (s′)]
1

i sin(π
2
γInt)

×
∫
C1

dz
1

2
γInt(−z)

1
2
γInt−1 1

s′ − M̄2 − s′z
. (7.103)

because the contour can be closed with big circle, the integral is given by the residue

at z = 1− M̄2

s′
:

IInt = F
(γIF

2

)
exp[α∆BR

4 (s′)]
π
2
γInt

sin(π
2
γInt)

(
M̄2 − s′

s′

)γInt−1
1

s′

=
1

M̄2 − s′
F
(γInt

2

) π
2
γInt

sin(π
2
γInt)

exp[α∆BR
4 (s′)]

(
M̄2 − s′

s′

) 1
2
γInt

=
1

M̄2 − s′
[1 +O(γInt)], (7.104)

where we use the result below

α∆BR
4 (s′) = −2QeQf

α

π
log

(
t

u

)
log

(
M̄2 − s′

M̄2

)
= −1

2
γInt log

(
M̄2 − s′

M̄2

)
. (7.105)

Therefore we have proved the full cancellation of the dependence on the resonance

parameters for the integrated cross section.

As we have shown before, the β̂-functions can be derived with the recursive

relation of eq. (7.66). The only additional work here is we must keep track of the

type of the external real photon (ISR or FSR) and of the total photon momentum
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after emission of the ISR photons:

β̂
(l)
0

 p

λ

;P

 =M
(l)
0

 p

λ

;P

 , l = 0, 1, 2,

β̂
(1+l)
1{I}

 pk1

λσ1

;P − k1

 =M
(1+l)
1{I}

 pk1

λσ1

;P − k1



− β̂(l)
0

 p

λ

;P − k1

 s{I}σ1
(k1), l = 0, 1

β̂
(1+l)
1{F}

 pk1

λσ1

;P

 =M
(1+l)
1{F}

 pk1

λσ1

;P



− β̂(l)
0

 p

λ

;P

 s{F}σ1
(k1), l = 0, 1

β̂
(2)
2{ω1,ω2}

 pk1k2

λσ1σ2

;Xω

 =M
(2)
2{ω1,ω2}

 pk1k2

λσ1σ2

;Xω



− β̂(1)
1{ω1}

 pk1

λσ1

;Xω

 s{ω2}
σ2

(k2)

− β̂(1)
1{ω2}

 pk1

λσ1

;Xω

 s{ω1}
σ1

(k1)

− β̂0
0

 pk1

λσ1

;Xω

 s{ω1}
σ1

(k1)s{ω2}
σ2

(k2), (7.106)

where Xω = P −
∑

ωi=I
ki, P = pa + pb.
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The amplitude M in eq. (7.106) is given actually by eq. (7.55) with the form

factor including the resonance part:

M
(r)R
n{ω}

 pk1 · · · kn

λσ1 · · · σn
;Xω



=

{
exp[−αB4 − α∆BR

4 (Xω)]M(r)R
n{ω}

 pk1 · · · kn

λσ1 · · ·σn
;Xω

}∣∣∣∣
O

(αr).

(7.107)

As we see the type R = γ, Z of the resonance form factor BR
4 must be adjusted to

the type of the component in M(r)R.

7.2.4 Virtual Corrections, No Photons

So far we have only obtained the formal expressions of β̂-functions by recursive

relations. We will accumulate the actual formulas for the β̂-functions contributing to

the CEEX amplitudes with the case of no real photons and up to two virtual photons.

Let us begin with the case of the O(α1) spin amplitudes with one virtual and

zero real photons coming from the Feynman diagrams, which contribute the first order

β̂
(1)
0 . The spin amplitudes are given by

M(1)
0

 p

λ

;X

 =B

 p

λ

;X

 [1 +Q2
eF1(s,me,mγ)][1 +Q2

fF1(s,mf ,mγ)]

+M(1)
Box

 p

λ

;X

 , (7.108)

where F1 is the standard electric form factor regularized with a photon mass. We

neglect the magnetic form factor F2 temporarily, It will be restored in the future. In

F1 we keep the exact final fermion mass.
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In the present work we adopt the spin amplitudes for γ-γ adn γ-Z boxes in

the small mass approximation m2
e

s
→ 0,

m2
f

s
→ 0, accodring to Refs. [110,111],

M(1)
Box =2ie2

∑
B=γ,Z

gB,eλa
gB,f−λaTλcλaT

′
λbλd

+ gB,eλa
gB,fλa

U ′λcλbUλaλd

X2 −M2
B + iΓ X2

MB

× δλa,−λbδλc,−λd
α

π
QeQf [δλa,λcfBDP (M̄2

B,mγ, s, t, u)

− δλa,−λcfBDP (M̄2
B,mγ, s, u, t)], (7.109)

where

fBDP (M̄,mγ, s, u, t) = log

(
t

u

)
log

(
m2
γ√
tu

)
− 2 log

(
t

u

)
log

(
M̄2

B − s
M̄2

B

)
+ Li2

(
M̄2 + u

M̄2
b

)
− Li2

(
M̄2 + t

M̄2
b

)
+

(M2
B − s)(u− t− M̄2

B)

u2

{
log

(
−t
s

)
log

(
M̄2

B − s
M̄2

B

)
+ Li2

(
M̄2

B + t

M̄2
B

)
− Li2

(
M̄2

B − s
M̄2

B

)}
+

(M̄2
B − s)2

us
log

(
M̄2

B − s
M̄2

B

)
+
M̄2 − s

u
log

(
−t
M̄2

B

)
,

(7.110)

M̄2
Z = M2

Z − iMZΓZ , M̄2
γ = m2

γ, and the function fBDP is from Ref. [111]. The

standard Mandelstam variables s, t and u are defined as usual: s = (pa + pb)
2,

t = (pa − pc)
2 and u = (pa − pd)

2. Since in the rest of the calculation we do not

use
m2
f

s
→ 0, we intend to replace the above box spin amplitudes with the finit mass

result according to Ref [112].

Using eq. (7.107) we have

β̂
(1)
0

 p

λ

;X

 = B

 p

λ

;X

 [1 + δ
(1)e
V irt(s)][1 + δ

(1)f
V irt(s)] +R(1)

Box

 p

λ

;X

 ,

(7.111)
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where

δ
(1)e
V irt(s) = Q2

eF1(s,me,mγ)−Q2
eαB2(pa, pb,mγ) = Q2

e

α

π

1

2
L̄e

δ
(1)f
V irt(s) = Q2

fF1(s,mf ,mγ)−Q2
eαB2(pc, pd,mγ) = Q2

f

α

π

1

2
L̄f

L̄e = log

(
s

m2
e

)
+ iπ − 1, L̄f = log

(
s

m2
f

)
+ iπ − 1. (7.112)

The IR substraction in M(1)
Box using eq. (7.107) results in the IR-finite RBox.

The above substraction is equivalent to the following substitution:

fBDP (M̄2
B,mγ, s, t, u)→ fBDP (M̄2,mγ, s, t, u)− fIR(mγ, t, u), (7.113)

where

fIR(mγ, t, u) =
2

π
B2(pa, pc,mγ)−

2

π
B2(pa, pd,mγ)

= log

(
t

u

)
log

(
m2
γ√
tu

)
+

1

2
log

(
t

u

)
, (7.114)

and the additional resonance factor exp[−α∆BZ
4 (s)] in eq. (7.107) includes the addi-

tional substraction in teh γ-Z box part:

fBDP(s, t, u)→ fBDP(s, t, u)− α∆BZ
4 (s). (7.115)

Our O(α2) expressions for β̂
(2)
0 are still incomplete because we neglected some

trivial transposition of the diagrams among the second-order vertex diagrams. By eq.

(7.107) we have

β̂
(2)
0

 p

λ

;X

 = B

 p

λ

;X

 [1 + δ
(2)e
V irt(s)][1 + δ

(2)f
V irt(s)] +R(2)

Box

 p

λ

;X

 ,

(7.116)

It the present calculation we omit the two-loop double box contribution in R(2)
Box. In

fact we keep only the first-order box contribution R(1)
Box in our incomplete O(α2)-type

matrix element. Note that the lack of the above contribution will not undermine the
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validity of our approach because what we omit is IR finite. And since the contribution

we neglect is expected to be numerically small, of O(α2L1), our overall physical

precision is still reliable.

Accoring to Refs. [106,113,114], we have the O(α2) corrections to the electric

form factor as follows:

δ
(2)e
V irt(s,me) =δ

(1)e
V irt(s) +

(α
π

)2
[
L̄2
e

8
+ L̄e

(
3

32
− 3

4
ζ2 +

3

2
ζ3

)]
,

δ
(2)f
V irt(s,mf ) =δ

(1)f
V irt(s) +

(α
π

)2
[
L̄2
f

8
+ L̄e

(
3

32
− 3

4
ζ2 +

3

2
ζ3

)]
.

(7.117)

Next, let us discuss the electroweak corrections in CEEX. In the absence of

Electroweak corrections, the coupling constants of two neutral boson γ and Z are

defined conventionally as

GZ,f
λ = gZ,fV − λgZ,fA , Gγ,f

λ = gZ,fV , λ = ± = R,L,

gγ,eV = Qe = −1, gγV,f = Qf , gγ,eA = 0, gγA,f = 0,

gZ,eV =
2T 3

e − 4Qe sin2 θW
16 sin2 θW cos2 θW

, gZ,fV =
2T 3

f − 4Qf sin2 θW

16 sin2 θW cos2 θW
,

gZ,eA =
2T 3

e

16 sin2 θW cos2 θW
, gZ,fV =

2T 3
f

16 sin2 θW cos2 θW
, (7.118)

where T 3
f is the isospin of the left-handed component of the fermion.

Electroweak corrections in CEEX are implemented using DIZET package,

which is a part of the ZFITTER semi-analytical program. The actual execution of

the electroweak corrections goes as follows: the γ and Z propagators are multiplied
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by the corresponding two scalar form factors due to vacuum polarizations:

Hγ → Hγ ×
1

2− Πγ

,

HZ → HZ × 16 sin2 θW cos2 θW
GµM

2
Z

αQED8
√

2π
ρEW . (7.119)

Additionally the vector coupling constants of Z boson are multiplied by extra form

factors

gZ,eV =
2T 3

e − 4Qe sin2 θW
16 sin2 θW cos2 θW

→ 2T 3
e − 4Qe sin2 θWF

e
EW (s)

16 sin2 θW cos2 θW
,

gZ,fV =
2T 3

f − 4Qf sin2 θW

16 sin2 θW cos2 θW
→

2T 3
f − 4Qf sin2 θWF

f
EW (s)

16 sin2 θW cos2 θW
, (7.120)

where the electroweak form factors F 3
EW (s) and F f

EW (s) are given by DIZET library

and they correspond to electroweak vertex corrections.

The electroweak box diagrams need a more complicated treatment. In the

Born spin amplitudes two products of the coupling constants are given by

gZ,eλ gZ,f−λ = (gZ,eV − λg
Z,e
A )(gZ,fV + λgZ,fA ),

gZ,eλ gZ,fλ = (gZ,eV − λg
Z,e
A )(gZ,fV − λgZ,fA ). (7.121)

Therefore the doubly-vector component arrives at

gZ,eV gZ,fV =
4T 3

e T
3
f − 8T 3

eQfF
f
EW (s)− 8T 3

fQeF
e
EW (s) + 16Q2

fF
ef
EW (s, t)

(16 sin2 θW cos2 θW )2
, (7.122)

where the new form factor F e,f
EW (s, t) corresponds to electroweak box diagrams and is

angle-dependent.

7.2.5 One Real Photon

Next let us discuss of the β̂1 tensors corresponding to the emission of a single

real photon with the tree-level case (zero virtual photons). We start with O(α1) split

amplitude fro the single bremsstrahlung (including ISR and FSR).
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The first-order, one-photon, ISR matrix element from the Feynman diagrams

is

M1{I}

 pk1

λσ1


=eQev̄(pb, λb)M{I}

/pa +m− /k1

−2k1pa
/ε∗σ1

(k1)u(pa, λa)

+ eQev̄(pb, λb)/ε
∗
σ1

(k1)
−/pb +m+ /k1

−2k1pa
M{I}u(pa, λa),

(7.123)

where

M{I} = ie2
∑
B=γ,Z

Πµν
B (X)GB

eµ(GB
f,ν)[cd] (7.124)

is the annihilation scattering spinor matrix, including the final-state spinors. We split

the above formula into the soft IR parts proportional to (/p±m) and the non-IR parts

proportional to /k1.

γ∗, Z

1
a c

b d

γ∗, Z

1

a c

b d

ISR diagrams.
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Then we have, using completeness relation (D.5) in the Appenix (D),

M1{I}

 pk1

λσ1

 =− eQe

2k1pa

∑
ρ

B

 pbpa

λbρa


[cd]

U

 pak1pa

ρaσ1λa



+
eQe

2k1pa

∑
ρ

V

 pbk1pb

λbσ1ρb

B

 pbpa

ρbλa


[cd]

+
eQe

2k1pb

∑
ρ

B

 pbk1

λbρ


[cd]

U

 k1k1pa

ρσ1λa



− eQe

2k1pb

∑
ρ

V

 pbk1k1

λbσ1ρ

B

 k1pa

ρλa


[cd]

. (7.125)

The summation in the first two terms gets canceled by the diagonality property of U

and V and leads to

M1{I}

 pk1

λσ1

 =s{I}σ1
(k1)B

 p

λ

+ r{I}

 pk1

λσ1

 ,

r{I}

 pk1

λσ1

 = +
eQe

2k1pb

∑
ρ

B

 pbk1

λbρ


[cd]

U

 k1k1pa

ρσ1λa



− eQe

2k1pb

∑
ρ

V

 pbk1k1

λbσ1ρ

B

 k1pa

ρλa


[cd]

,

s{I}σ1
(k1) =− eQe

bσ1(k1, pa)

2k1pa
+ eQe

bσ1(k1, pb)

2k1pb
. (7.126)

The soft part is now separated and the remaining non-IR part for CEEX is obtained.
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γ∗, Z

1

a c

b d

γ∗, Z 1

a c

b d

FSR diagrams.

The case of the final-state, one-real-photon emission can be analyzed in a

analogous way. The first-order FSR, one-photon, matrix element reads

M1{F}

 pk1

λσ1

 =eQf ū(pc, λc)/ε
∗
σ1

(k1)
/pc +m+ /k1

2k1pc
M{F}v(pd, λd)

+ eQf ū(pc, λc)M{F}
−/pd +m− /k1

2k1pd
/ε∗σ1

(k1)v(pd, λd), (7.127)

where

M{F} = ie2
∑
B=γ,Z

Πµν
B (X)(GB

e,µ)[ba]G
B
fν (7.128)

is the annihilation scattering spinor matrix, including the initial spinors. Analogously,

the expansion into soft and non-IR parts for the FSR spin amplitudes is obtained:

M1{F}

 pk1

λσ1

 =s{F}σ1
(k1)B

 p

λ

+ r{F}

 pk1

λσ1

 ,

r{F}

 pk1

λσ1

 = +
eQf

2k1pc

∑
ρ

U

 pck1k1

λcσ1ρ

B[ba]

 k1pd

ρλd



− eQf

2k1pd

∑
ρ

B[ba]

 pck1

λcρ

V
 k1k1pd

ρσ1λd

 ,
s{F}σ1

(k1) =− eQf
bσ1(k1, pc)

2k1pc
+ eQf

bσ1(k1, pd)

2k1pd
. (7.129)
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For the discussion of the remaining non-IR terms, it is useful to introduce a

compact tensor nontation:

U

 pfkikj

λfσiσf

 ≡ U[f,i,j], B

 pbpa

λaλb


 pcpd

λcλd

 , (7.130)

U[a,i,j′]V[j′,j,b] ≡
∑
σ′j=±

U

 pakikj

λaσiσ
′
j

V
 kjkjpb

σ′jσjλb

 . (7.131)

With the help of the above notation, the complete O(α1) spin amplitudes for

the one-photon ISR+FSR with explicit split into IR and non-IR parts, and ISR and

FSR parts reads

M
(1)
1

 pk1

λσ

 =M
(1)
1{I}

 pk1

λσ

 (P − k1) + M
(1)
1{F}

 pk1

λσ

 (P )

=s
{I}
[1] B

 p

λ

;P − k1

+ rI

 pk1

λσ1

;P − k1



+ s
{F}
[1] B

 p

λ

;P

+ rF

 pk1

λσ1

;P

 , (7.132)

where

rI

 pk1

λσ1

;X

 =
eQe

2kpa
B[b1′cd](X)U[1′1a] −

eQe

2kpb
V[b11′]B[1′acd](X)

rF

 pk1

λσ1

;X

 =
eQf

2kpc
U[c11′]B[ba1′d](X)− eQf

2kpd
B[bac1′](X)V[1′1d]. (7.133)

In the lowest order, the Born spin amplitudes B are defined in eq. (7.50).
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With the help of the O(α1) variant of eq. (7.106) we are now ready to obtain

β̂
(1)
1{I}

 pk1

λσ1

;P − k1

 ≡r{I}
 pk1

λσ1

;P − k1

 ,

β̂
(1)
1{F}

 pk1

λσ1

;P

 ≡r{F}
 pk1

λσ1

;P



+

(
(pc + pd + k1)2

(pc + pd)2
− 1

)
B

 p

λ

;X

 . (7.134)

The total four-momentum in the resonance propagator X is uniquely define as X =

P − k1 in the case of ISR and X = P in the case of FSR.

In order to obtain the β̂
(2)
1 , we have to deal with the non-trivial case of the

simultaneous emission of virtual and real photons. Therefore it is instructive to write

the formal definition of β̂
(2)
1 in a particular case:

M
(2)
1{ω}

 pk1

λσ1

;Xω

 =

{
exp[−αB4 − α∆BR

4 (Xω)]M(2)
1{ω}

} pk1

λσ1

;Xω

∣∣∣∣
O

(α2),

ω = I, F, R = γ, Z, (7.135)

β̂
(2)
1{I}

 pk1

λσ1

;P − k1

 =M
(2)
1{I}

 pk1

λσ1

;P − k1

− s{I}σ1
β̂

(1)
0

 p

λ

;P − k1

 ,

β̂
(2)
1{F}

 pk1

λσ1

;P − k1

 =M
(2)
1{F}

 pk1

λσ1

;P

− s{F}σ1
β̂

(1)
0

 p

λ

;P

 . (7.136)

For this moment, we have the amplitudes corresponding to vertexlike diagrams and

we miss the diagrams of the ”5-box” type. More precisely, after applying the IR
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virtual substraction in eq. (7.135) we expand in the number of loops,

M
(2)
1{ω}

 pk1

λσ1

;X

 =M
(1)
1{ω}

 pk1

λσ1

;X

+ αQ2
eM

[1]
1{ω},II

 pk1

λσ1

;X



+ αQ2
fM

[1]
1{ω},FF

 pk1

λσ1

;X

+ αQeQfM
[1]
1{ω},Box5

 pk1

λσ1

;X

 .

(7.137)

In the above formula the first term corresponds the tree-level single bremsstrahlung,

the next two terms correspond to the vertexlike diagrams, and the last one represents

the ”5-box”-type diagrams. The ”5-box” term is given by

β̂
(2)
1{ω},Box5

 pk1

λσ1

;X

 =αQeQfM
[1]
1{ω},Box5

 pk1

λσ1

;X



− s
{I}
[1] R

(1)
Box

 p

λ

;X

−−s{F}[1] R
(1)
Box

 p

λ

;X

 .

(7.138)

As we see, the trivial IR part is proportional to the ordinary box contribution men-

tioned before.

From the pure ”vertexlike” diagrams for one real ISR photon we have the

following O(Q2
eα

2) result:

β̂
(2)
1{I}

 pk1

λσ1

;X

 ≡r{I}
 pk1

λσ1

;X

 [1 + δ
(1)e
V irt(s) + ρ

(2)e
V irt(s, α̃1, β̃1)]

× [1 + δ
(1)f
V irt(s)] + B

 p

λ

;X

 s{I}σ1
(k1)ρ

(2)e
V irt(s, α̃, β̃) (7.139)
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where

ρ
(2)e
V irt(s, α̃, β̃) =

α

π
Q2
e

1

2
[V (s, α̃, β̃) + V (s, β̃), α̃],

V (s, α̃, β̃) = log(α̃) log(1− β̃) + Li2(α̃)− 1

2
log2(1− α̃)

+
3

2
log(1− α̃) +

1

2

α̃(1− α̃)

[1 + (1− α̃)2]
(7.140)

and we use the Sudakov varibles

α̃i =
2kipb
2papb

, β̃i =
2kipa
2papb

. (7.141)

From eq. (7.139) we have several remarks:

The terms of O(α4) like |s{I}σ ρ
(2)e
V irt|2 in the cross section are not rejected. They

are included in the process of numerical evaluation of the differential cross sections

out of spin amplitudes.

The term r{I}δ
(1)e
V irt contributes to O(α2L2) to the integrated cross section: one

logarithm is explicit from the virtual photon and another is from the integration over

the angle of the real photon.

The term ∼ log(α̃) log(1− β̂) contributes a correction of O(α2L2) to the inte-

grated cross section. The double logarthim comes directly from the integration over

the angle of the real photon:∫
d3k

k0
<[ρ

(2)e
V irt(k){β̂0s

{I}
σ (k)}∗] ∼ Q2

eα
2

∫
m2
e
s

dα̃

α̃
∼ Q2

eα
2 log2

(
s

m2
e

)
. (7.142)
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Similarly, the O(Q2
fα

2) contribution for one real FSR photon is

β̂
(2)
1{F}

 pk

λσ

;X

 ≡r{F}
 pk

λσ

;X

 [1 + δ
(1)f
V irt(s)][1 + δ

(1)f
V irt(s) + ρ

(2)f
V irt(s, α̃

′, β̃′)]

+ B

 p

λ

;X

 s{F}σ1
(k1)ρ

(2)f
V irt(s, α̃

′, β̃′)

+ B

 p

λ

;X

 s{F}σ (k)[1 + δ
(1)e
V irt(s)][1 + δ

(1)f
V irt(s)]

×
(

1− (pc + pd + k)2

(pc + pd)2

)
(7.143)

where

ρ
(2)f
V irt(s, α̃, β̃) =

α

π
Q2
f

1

4
L̄f [log(1− α̃′′) + log(1− β̃ ′′)],

α̃′ =
2kipb
2papb

, β̃′ =
2kipa
2papb

,

α̃
′′

=
α̃′

1 + α̃′ + β̃′
, α̃

′′
=

β̃′

1 + α̃′ + β̃′
. (7.144)

In the above FSR amplitudes averaged over the photon angles, only the double loga-

rithmic part is kept.

7.2.6 Two Real Photons

In the O(α2), the contributions from two real photons are completely at the

tree level without virtual corrections. There are three types of double bremsstrahlung:

two ISR photons, two FSR photons and one ISR photon plus one FSR photon. In the

following, the corresponding spin amplitudes will be given without any approximation,

in particular we will not use the small-mass approximation
m2
f

s
� 1.
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(i) Two real ISR photons: The second-order, two-photon, ISR matrix element

for the Feynman diagrams is given by

M(2)
2{II}

 papbk1k2

λaλbσ1σ2

;P − k1 − k2


=ie2

∑
B=γ,Z

Πµν
B (P − k1 − k2)(GB

f,ν)[c,d](eQe)
2v̄(pb, λb)

×
{
GB
e,µ

(/pa +m)− /k1 − /k2

−2k1pa − 2K2pa + 2k1k2
/ε∗σ1

(k1)
(/pa +m)− /k2

−2k2pa
/ε∗σ2

(k2)

+ /ε∗σ1
(k1)

(−/pb +m)− /k1

−2k1pb
/ε∗σ2

(k2)
(−/pb +m) + /k1 + /k2

−2k1pb − 2K2pb + 2k1k2

GB
e,µ

+ /ε∗σ1
(k1)

(−/pb +m)− /k1

−2k1pb
GB
e,µ

(/pa +m)− /k2

−2k2pa
/ε∗σ2

(k2)

+ (1↔ 2)

}
u(pa, λa). (7.145)

Using eq. (7.106), we have

β̂
(2)
2{II}

 pk1k2

λσ1σ2

;P − k1 − k2

 = M
(2)
2{II}

 pk1k2

λσ1σ2

;P − k1 − k2



− β̂(1)
1{I}

 pk1

λσ1

;P − k1 − k2

 s{I}σ2
(k2)− β̂(1)

1{I}

 pk2

λσ2

;P − k1 − k2

 s{I}σ2
(k1)

− β̂(0)
0

 p

λ

;P − k1 − k2

 s{I}σ1
(k1)s{I}σ2

(k2). (7.146)

We will repeat what we did in the one-photon case: we isolate the group of terms

containing two factors of (/p+m) from the above equation first, then isolate the group

containing a single factor of (/p+m), and isolate the rest at last. Such a treatment will

almost exactly split eq. (7.67) into a contribution with two s factors, a contribution

with one single s factor, and the IR-finite remnant β̂
(2)
2 . In other words, we decompose
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M2
2{II} into several terms as described above and then implement the IR subtraction

of eq. (7.146) term by term.

Let us first discuss the doubly IR-divergent part proportional to two factors

of (/p + m). In order to simplify the discussion, we omit the moment 2k1k2 in the

propagator. Using the completeness relations (D.5) and diagonality property (D.12)

in the Appendix (D), we can factorize the soft factors exactly and completely

(eQe)
2v̄(pb, λb)

{
GB
e,µ

(/pa +m)− /k1 − /k2

−2k1pa − 2K2pa + 2k1k2
/ε∗σ1

(k1)
(/pa +m)− /k2

−2k2pa
/ε∗σ2

(k2)

+ /ε∗σ1
(k1)

(−/pb +m)− /k1

−2k1pb
/ε∗σ2

(k2)
(−/pb +m) + /k1 + /k2

−2k1pb − 2K2pb + 2k1k2

GB
e,µ

+ /ε∗σ1
(k1)

(−/pb +m)− /k1

−2k1pb
GB
e,µ

(/pa +m)− /k2

−2k2pa
/ε∗σ2

(k2) + (1↔ 2)

}
u(pa, λa)

=(GB
e,µ)[ba](eQe)

2

{
bσ1(k1, pa)

2k1pa + 2k2pa

bσ2(k2, pa)

2k2pa
+
bσ1(k1, pb)

2k1pb

bσ2(k2, pb)

2k1pb + 2k2pb

− bσ1(k1, pb)

2k1pb

bσ2(k2, pa)

2k2pa
+ (1↔ 2)

}
=(GB

e,µ)[ba]s
[I]
σ1

(k1)s[I]
σ2

(k2), (7.147)

where the identity

1

2k1pa + 2K2pa

1

2k1pa
+

1

2k1pa + 2K2pa

1

2k1pa
=

1

2k1pa

1

2k2pa
(7.148)

is applied.
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If we restore the term 2k1k2 in the propagator, MDouble IR
2{II} leads to

β̂
(2)Double
2{II}

 pk1k2

λσ1σ2

 =M(2)Double
2{II}

 pk1k2

λσ1σ2

− s{I}σ1
(k1)s{I}σ2

(k2)B

 p

λ



=(s
(a)
[1] s)

(a)
[2] ∆a + s

(b)
[1] s)

(b)
[2] ∆b)B

 p

λ

 ,
s(a)
σi

(ki) ≡s(a)
σi

= −eQe
bσ1(k1, pa)

2kipa
,

s(b)
σi

(ki) ≡s(b)
σi

= −eQe
bσ1(k1, pb)

2kipb
,

s{I}σi (ki) ≡s(a)
[i] + s

(b)
[i] = s(a)

σi
(ki) + s(b)

σi
(ki),

∆f =
2k1pf + 2k2pf

2k1pf + 2k2pf ∓ 2k1k2

− 1

=
±2k1k2

2k1pf + 2k2pf ∓ 2k1k2

, f = a, b, c, d. (7.149)

Clearly, β̂(2)Double is IR finite due to the ∆f term. We introduced the compact notation

above. From now on, for simplicity, we use the notation below

rif = 2ki · pf , rij = 2ki · kj, f = a, b, c, d i, j = 1, 2, . . . , n. (7.150)

The next group of terms we are going to deal with is the one containing the

single factor (/p+m). To be more specific, we will include terms that may result in a

single IR divergence (if k1 � k2 or k2 � k1), namely, with (/p+m) next to a spinor,
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at the end of the fermion line:

MSingle IR
2{II}

 pk1k2

λσ1σ2

 =ie2
∑
B=γ,Z

Πµν
B (X)(GB

f,ν)[c,d](eQe)
2v̄(pb, λb)

×
{
GB
e,µ

−/k1 − /k2

−r1a − r2a + r12
/ε∗σ1

(k1)
/pa +m

−r2a
/ε∗σ2

(k2)

+ /ε∗σ1
(k1)
−/pb +m

−r1b
/ε∗σ2

/k1 + /k2

−r1b − r2b + r12

GB
e,µ

+ /ε∗σ1
(k1)
−/pb +m

−r1b

GB
e,µ

−/k2

−r2a
/ε∗σ2

+ /ε∗σ1
(k1)
−/k1

−r1b

GB
e,µ

−/pa +m

−r2a
/ε∗σ2

+ (1↔ 2)

}
u(pa, λa).

(7.151)

With the help of the compact notation, we can express MSingle IR
2{II} in a form which

leads to an easy numerical calculation:

MSingle IR
2{II}

 pk1k2

λσ1σ2

 =eQe

−B[b1′][cd]U[1′1a] −−B[b2′][cd]U[2′1a]

−r1a − r2a + r12

s
(a)
[2]

+ eQes
(b)
[1]

V[b22′]B[2′a][cd] + V[b21′]B[1′a][cd]

−r1a − r2a + r12

− eQes
(b)
[1]B[b2′][cd]

U[2′2a]

−r2a

+ eQe

V[b11′]

−r1b

B[1′a][cd]s
(a)
[2]

+ (1↔ 2). (7.152)

Moreover, the single-IR part to be eliminated is

β̂
(1)
1(1)[1]s

{I}
[2] + β̂

(1)
1(1)[2]s

{I}
[1] =r

{I}
[1] s

{I}
[2] + r

{I}
[2] s

{I}
[1]

=

(
eQeB[b1′][cd]

U[1′1a]

r1a

− eQe

V[b11′]

r1a

B[1′a][cd]

)
s
{I}
[2]

+ (1↔ 2). (7.153)
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To sum up, we have

β̂Single
2{II}

 pk1k2

λσ1σ2

 =MSingle IR
2{II}

 pk1k2

λσ1σ2

− β̂(1)
1(1)[1]s

{I}
[2] − β̂

(1)
1(1)[2]s

{I}
[1]

=− eQeB[b2′][cd]

U[2′1a]

−r1a − r2a + r12

s
(a)
[2]

+ eQes
(b)
[1]

U[2′1a]

−r1a − r2a + r12

B[1′a][cd]

− eQeB[b1′][cd]

(
U[1′1a]

−r1a − r2a + r12

−
U[1′1a]

−r1a

)
s

(a)
[2]

+ eQes
(a)
[2]

(
V[b22′]

−r1a − r2a + r12

−
V[b22′]

−r2b

)
B[2′a][cd]

+ (1↔ 2). (7.154)

It is straightforward to find that the expression above is IR-finite.

At last, we need to include all the remaining terms from eq. (7.147). They

are IR-finite and read

β̂Rest
2{II}

 pk1k2

λσ1σ2

 =ie2
∑
B=γ,Z

Πµν
B (X)(GB

f,ν)[cd](eQe)
2v̄(pb, λb)

×
{
GB
e,µ

(/pa +m)− /k1 − /k2

−r1a − r2a + r12
/ε∗σ1

(k1)
−/k2

−r2a
/ε∗σ2

(k2)

+ /ε∗σ1
(k1)
−/k2

−r1b
/ε∗σ2

(k2)
(/−pb +m) + /k1 + /k2

−r1b − r2b + r12

GB
e,µ

+ /ε∗σ1
(k1)
−/k2

−r1b

GB
e,µ

−/k2

−r2a
/ε∗σ2

(k2) + (1↔ 2)

}
u(pa, λa).

(7.155)
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With the help of tensor notation in the fermion helicity indices, we can expree the

above equation in terms of the U and V matrices in the following way:

β̂Rest
2{II}

 pk1k2

λσ1σ2


=(eQe)

2B[ba′][cd]U[a′12′′] −B[b1′][cd]U[1′12′′] −B[b2′][cd]U[2′12′′]

−r1a − r2a + r12

−U[2′′2a]

−r2a

+ (eQe)
2V[b11′′]

−r1b

−V[1′′2b′]B[b′a][cd]
+ V[1′′21′]B[1′a][cd]

+ V[1′′22′]B[2′a][cd]

−r1b − r2b + r12

+ (eQe)
2 Vb11′

−r[1b]
B[1′2′][cd]

−U[2′2a]

−r2a

+ (1↔ 2). (7.156)

Therefore the total ISR β̂2{II} reads

β̂2{II}

 pk1k2

λσ1σ2

 = β̂Double
2{II}

 pk1k2

λσ1σ2

+ β̂Single
2{II}

 pk1k2

λσ1σ2

+ β̂Rest
2{II}

 pk1k2

λσ1σ2

 .

(7.157)

(ii) Two real FSR photons: The case of double final-state real photon emission

can by treated in an analogous way. The second order two FSR photon matrix element

is

M(2)
2{FF}

 papbk1k2

λaλbσ1σ2

;P


=ie2

∑
B=γ,Z

Πµν
B (P )(GB

e,µ)[ba](eQe)
2ū(pc, λc)

×
{
/ε∗[1](k1)

(/pc +m) + /k1

−2k1pc
/ε∗[2](k2)

(/pc +m) + /k1 + /k2

2k1pc + 2K2pc + 2k1k2

GB
f,µ

+GB
f,µ

(−/pd +m)− /k1 − /k2

2k1pd + 2k2pd + 2k1k2
/ε∗σ1

(k1)
(−/pd +m)− /k2

−2k2pd
/ε∗σ2

(k2)

+ /ε∗[1](k1)
(/pc +m) + /k1

2k1pc
GB
f,µ

(−/pd +m)− /k2

2k2pd
/ε∗[2](k2)

+ (1↔ 2)

}
v(pd, λd). (7.158)
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Analogously, the expansion into soft and non-IR parts for the FSR spin amplitudes

is done in a completely similar way to the ISR case. The subtraction formula is

β̂
(2)
2{FF}

 pk1k2

λσ1σ2

;P

 =M
(2)
2{FF}

 pk1k2

λσ1σ2

;P

− β̂(1)
1{F}

 pk1

λσ1

;P

 s{F}σ2
(k2)

− β̂(1)
1{F}

 pk2

λσ2

;P

 s{F}σ2
(k1)

− β̂(0)
0

 p

λ

;P

 s{F}σ1
(k1)s{F}σ2

(k2). (7.159)

First we obtain the contribution from the group of terms containing two (/p−m)

factors:

β̂
(2)Double
2{FF}

 pk1k2

λσ1σ2



=M(2)Double
2{FF}

 pk1k2

λσ1σ2

− s
{F}
[1] s

{F}
[2] B[ba][cd]

(pc + pd + k1 + k2)2

(pc + pd)2

=(∆cs
(a)
[1] s)

(a)
[2] + ∆ds

(b)
[1] s)

(b)
[2] )B[ba][cd] − s

{F}
[1] s

{F}
[2] B

 pbpa

λbλa


×
(

(pc + pd + k1 + k2)2

(pc + pd)2
− 1

)
;

s(c)
σi

(ki) ≡ s
(a)
[i] = +eQf

bσ1(ki, pc)

ric
,

s(d)
σi

(ki) ≡ s
(d)
[i] = −eQf

bσ1(ki, pd)

2kipd
,

s{F}σi
(ki) ≡ s

(c)
[i] + s

(d)
[i] = s(c)

σi
(ki) + s(d)

σi
(ki),

(7.160)
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which is explicitly finite. The group of terms containing only one (/p −m) factor at

the end of the fermion line reads

MSingle IR
2{FF}

 pk1k2

λσ1σ2


=eQfs

(c)
[1]

U[c21′]

r1c + r2c + r12

B[ba][1′d] + eQfs
(c)
[1]

U[c22′]

r1c + r2c + r12

B[ba][2′d]

+ eQfB[ba][c1′]

−V[1′1d]

r1d + r2d + r12

s
(d)
[2] + eQfB[ba][c2′]

−V[2′1d]

r1d + r2d + r12

s
(d)
[2]

+ eQfs
(c)
[1]B[ba][c2′]

−V[2′2d]

r2d

+ eQf

U[c11′]

r1c

B[ba][1′d]s
(d)
[2] + (1↔ 2). (7.161)

Using the matrix notation (in the fermion spin indices), we have

MSingle IR
2{FF}

 pk1k2

λσ1σ2


=eQfs

(c)
[1]

U[c21′]

r1c + r2c + r12

B[ba][1′d] + eQfs
(c)
[1]

U[c22′]

r1c + r2c + r12

B[ba][2′d]

+ eQfB[ba][c1′]

−V[1′1d]

r1d + r2d + r12

s
(d)
[2] + eQfB[ba][c2′]

−V[2′1d]

r1d + r2d + r12

s
(d)
[2]

+ eQfs
(c)
[1]B[ba][c2′]

−V[2′2d]

r2d

+ eQf

U[c11′]

r1c

B[ba][1′d]s
(d)
[2] + (1↔ 2).

(7.162)

Moreover, the single-IR part to be eliminated is

β̂
(1)
1(0)[1]s

{F}
[2] + β̂

(1)
1(0)[1]s

{F}
[1]

=r
{F}
[1] r

{F}
[2] + r

{F}
[2] r

{F}
[1]

=

(
+eQeB[ba][1′d]

U[c11′]

r1C

− eQe

V[1′1d]

r1d

B[ba][c1′]

)
s
{F}
[2] + (1↔ 2)

−B[ba][cd]

(
(pc + pd + k1)2

(pc + pd)2
− 1

)
s
{F}
[1] s

{F}
[2] + (1↔ 2). (7.163)
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Then we obtain

β̂Single
2{FF}

 pk1k2

λσ1σ2



=MSingle IR
2{FF}

 pk1k2

λσ1σ2

− β̂(1)
1(0)

 pk1

λσ1

 s{F}

 k2

σ2

− β̂(1)
1(0)

 pk2

λσ2

 s{F}

 k1

σ1


=eQfs

(c)
[1]

{(
U[c22′]

r2c + r1c + r12

−
U[c22′]

r2c

)
B[ba][2′d] +

U[c21′]

r2c + r1c + r12

B[ba][1′d]

}
+ eQf

{
B[ba][c1′]

(
−V[1′1d]

r1d + r2d + r12

−
−V[1′1d]

r1d

)
+

−V2′1d

r1d + r2d + r12

B[ba][c2′]

}
s

(d)
[2]

+ B[ba][cd]

(
(pc + pd + k1)2

(pc + pd)2
− 1

)
s
{F}
[1] s

{F}
[2] + (1↔ 2). (7.164)

Finally the remaining term in eq. (7.158) reads

MRest
2{FF}

 pk1k2

λσ1σ2


=ie2

∑
B=γ,Z

Πµν
B (X)(GB

e,µ)[b,a](eQf )
2ū(pc, λc)

{
/ε∗[1]

/k1

r1c
/ε∗[2]

(/pc +m) + /k1 + /k2

r1c + r2c + r12

GB
f,ν

+GB
f,ν

(−/pd +m)− /k1 − /k2

r1d + r2d + r12
/ε∗[1]

−/k2

r2d
/ε∗[2] + /ε∗[1]

/k1

r1c

GB
f,ν

−/k2

r2d

ε∗[2] + (1↔ 2)

}
v(pd, λd).

(7.165)
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Thus, using the matrix notation, we obtain

β̂Rest
2{FF}

 pk1k2

λσ1σ2



=MRest
2{FF}

 pk1k2

λσ1σ2


=(eQf )

2U[c11′′]

r1c

U[1′′2c′]B[ba][c′d] + U[1′′21′]B[ba][1′d] + U[1′′22′]B[ba][2′d]

r1c + r2c + r12

+ (eQf )
2−B[ba][cd′]V[d′12′′] −B[ba][c1′]V[1′12′′] −B[ba][c2′]V[2′12′′]

r1d + r2d + r12

−V[2′′2d]

r2d

+ (eQf )
2U[c11′]

r1c

B[ba][1′2′]

−V[2′2d]

r2d

+ (1↔ 2). (7.166)

The total contribution from the double FSR real photon emission reads

β̂2{FF}

 pk1k2

λσ1σ2

 = β̂Double
2{FF}

 pk1k2

λσ1σ2

+ β̂Single
2{FF}

 pk1k2

λσ1σ2

+ β̂Rest
2{FF}

 pk1k2

λσ1σ2

 .

(7.167)

(iii) One real ISR photon and one real FSR photon: Compared with cases

described before, the case of one real ISR photon and one real FSR photon is easier

since there is at most one photon on one fermion line:

M(2)
2{IF}

 papbpcpdk1k2

λaλbλcλdσ1σ2

;P − k1


=ie2

∑
B=γ,Z

Πµν
B (P − k1)

× eQev̄(pb, λb)

(
GB
e,µ

/pa − /k1 +m

−2k1pa
/ε∗[1] + /ε∗[1]

−/pb + /k1 +m

−2k1pb
GB
e,µ

)
u(pa, λa)

× eQf ū(pc, λc)

(
GB
f,ν

−/pd − /k2 +m

2k2pd
/ε∗[2] + /ε∗[2]

/pc + /k2 +m

2k2pc
GB
f,ν

)
v(pd, λd)

(7.168)
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and the IR subtraction is

β̂
(2)
2{IF}

 pk1k2

λσ1σ2

;P − k1



=M
(2)
2{IF}

 pk1k2

λσ1σ2

;P − k1

− β̂(1)
1{I}

 pk1

λσ1

;P − k1

 sFσ2
(k2)

− β̂(1)
1{F}

 pk2

λσ2

;P − k1

 sIσ1
(k1)− β̂(0)

0

 p

λ

;P − k1

 sIσ1
(k1)sIσ2

(k2).

(7.169)

And β̂2{IF} can be obtained by a simple subtraction of all terms proportional to one

or two (/p−m) factors

β̂2{IF}

 pk1k2

λσ1σ2

;X


=ie2

∑
B=γ,Z

Πµν
B (X)eQev̄(pb, λb)

(
GB
e,µ

−/k1

−r1a
/ε∗[1] + /ε∗[1]

/k1

−r1b

GB
e,µ

)
u(pa, λa)

× eQf ū(pc, λc)

(
GB
f,ν

−/k2

r2d
/ε∗[2] + /ε∗[2]

/k2

r2c

GB
f,ν

)
v(pd, λd). (7.170)

In the programmable matrix notation it can be written as

β̂2{IF}

 pk1k2

λσ1σ2

;X


=ie2

∑
B=γ,Z

Πµν
B (X)e2QeQf

(
(GB

eµ)b1′
−U[1′1a]

−r1a

+
V[b11′]

−r1b

(GB
e,µ)[1′a]

)

×
(

(GB
f,ν)[c2′]

−V[2′2d]

r2d

+
U[c22′]

r2c

(GB
f,ν)[2′d]

)
=e2QeQf

(
B[b1′][c2′](X)

−U[1′1a]

−r1a

−V[2′2d]

r2d

+
U[c22′]

r2c

B[b1′][2′d](X)
−U[1′1a]

−r1a

+
V[b11′]

−r1b

B[1′a][c2′](X)
−V[2′2d]

r2d

+
V[b11′]

−r1b

U[c22′]

r2c

B[1′a][2′d](X)

)
. (7.171)
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7.3 Relations between CEEX and EEX

We have shown the EEX and CEEX schemes in details in the last two sections.

Next we shall compare certain important and interesting features of both schemes in

more detail.

Let us first investigate the limit of the CEEX in which we drop the dependence

on the partition index X℘ → P , where P = pa+pb. Note that there is no such analogy

in the EEX. In this limit, for the simplest case of the O(α) exponentiation, we find

∑
℘∈P

eαB4(X℘)
X2
℘

scd
B

 p

λ

;X℘

 n∏
−=1

s
{℘i}
[i] ⇒ eαB4(X℘)B

 p

λ

;X℘

 n∏
i=1

(s
{I}
[i] + s

{F}
[i] ),

(7.172)

because of the relation (7.87). Note that the ISR⊗FSR interference contribution is

preserved in the above transition.

Next we would like to discuss the case of the very narrow resonances, which

the ISR⊗FSR interference contribution to any physical observable is so small that it

can be neglected. This corresponds to a well-defined limit in the CEEX scheme. In

this limit, for the simplest case of the O(α0) exponentiation we have

|M(0)
n |2 =

∑
℘∈P

∑
℘′∈P

exp[αB4(X℘)] exp[αB4(X ′℘)]∗

×B

 p

λ

;X℘

B

 p

λ

;X℘


∗

n∏
i=1

s
{℘i}
[i] s

{℘′j}∗
[j]

⇒ exp[2α<B2(pa, pb)] exp[2α<B2(pc, pd)]

×
∑
℘∈P

∣∣∣∣∣∣∣B
 p

λ

;X℘


∣∣∣∣∣∣∣
2

n∏
i=1

∣∣∣s{℘i}[i]

∣∣∣2 . (7.173)
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In the above transition we omit the ISR⊗FSR interference entirely, by dropping the

nondiagonal terms ℘ 6= ℘′ in the double summation over partitions, and replace the

resonance form factor by the sum of the traditional YFS form factors for the ISR and

the FSR. In this way, we find O(α0)EEX is identical to O(α0)CEEX.

Last but not least, it is important to find out the relations between the CEEX

β̂’s defined at the amplitude level and the EEX β̄’s defined at the differential distri-

bution level. Let us suppress all spin indices, that is, for every term like | · · · |2 or

<[AB∗] the corresponding spin sum or average is taken. Then traditional β̄’s of the

EEX/YFS scheme at the O(α2) level are

β̄
(l)
0 =

∣∣∣M(l)
0

∣∣∣2
(αl)

, l = 0, 1, 2

β̄
(l)
1 (k) =

∣∣∣M(l)
1 (k)

∣∣∣2
(αl+1)

− β̄(l)
0 |s(k)|2 , l = 0, 1

β̄
(2)
2 (k1, k2) =

∣∣∣M(l)
1 (k1, k2)

∣∣∣2
(αl+1)

− β̄(l)
0 (k1) |s(k2)|2 − β̄(l)

0 (k2) |s(k1)|2

− β̄(0)
0 |s(k1)|2 |s(k2)|2 , (7.174)

where the subscript |(αr) means a truncation to O(αr). Now for each M
(n+l)
n , after

substituting its expansion in terms of β̂’s according to eq. (7.65), we have

β̄
(l)
0 =

∣∣∣β̂(l)
0

∣∣∣2
(αl)

, l = 0, 1, 2

β̄
(l)
1 (k) =

∣∣∣β̂(l)
1 (k)

∣∣∣2 + 2<[β̂
(l)
0 β̂

(l)∗
1 (k)](αl+1), l = 0, 1,

β̄
(2)
2 (k1, k2) =

∣∣∣β̂(2)
2 (k1, k2)

∣∣∣2 + 2<{[β̂(1)
1 (k1)s(k2)][β̂

(1)
1 (k2)s(k1)]}∗

+ 2<{[β̂(2)
2 (k1, k2)[β̂

(1)
1 (k1)s(k2) + β̂

(1)
1 (k2)s(k1)]

× β̂(0)
1 s(k1)s(k2)}∗. (7.175)

The relation is not completely trivial for O(α2), and there are some extra IR-finite

terms on the right hand side. From the above analysis it is clear that β̄’s are generally
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more complicated objects than the β̂’s. Moreover, in the β̄0 and β̄1 some higher-order

virtual terms are unnecessarily truncated, which probably undermines the perturba-

tive convergence of the EEX scheme in comparision with that of CEEX scheme. The

above relation clearly exhibits the difference between the EEX and CEEX schemes.

In the above discussion, we show how the two examples of the EEX scheme

can be obtained as a limit case of the CEEX, and show the exact relation between

the β̄’s of the EEX and the β̂’s of the CEEX. From these it is clear that the CEEX

scheme is more general than the EEX scheme.

7.4 Monte Carlo Algorithm

In this section we will introduce the Monte Carlo Algorithm for the KKMC,

which generates final-state four momenta, i.e, points within the Lorentz invariant

phase space according to eq. (7.2) for EEX and eq. (7.36) for CEEX. The MC

technique of the KKMC is generally an approach of integrating exactly over the phase

space without approximation. It is based on the rigorous perturbative quantum field

theory: the differential cross section is the phase-space times the scattering amplitude

for the corresponding Feynman diagrams. Furthermore, the KKMC is not only the

phase-space integration but aslo the simulation of the actual scattering process, since

it requires events (lists of four momenta) to be generated with weight equal to 1.

Generally speaking, the MC algorithm includes a handful for elementary techniques

such as weight-rejection, mapping and multibranching [115]. We will take the notation

and terminology in Ref. [115]. In the KKMC, the self-adapting MC FOAM [102] is

adpoted as a buidling block, which works for arbitrary integrand distributions. In

general, it is wise to minimize the use of the multibranching and utilize the method
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of reweighting, constructing several layers of weights and taking their product as the

total weight. In the KKMC, there are only three multibranchings, one for the types

of the final fermion type f = e, µ, τ, d, u, s, c, b, another one for the photon partitions

and the last one for helicities of the emitted photons.

In the following discussions, we will introduce the algorithm of the Monte

Carlo generation of the events according to CEEX and EEX differential distribu-

tions. The algorithm is constructed with elementary technique of MC simulation and

multibranching with casual use of mapping (change of integration variables). The

weights are products of several component weights ordered in a chain. Their job is

to simplify the very complicated differential distributions so that we could integrate

manually over certain integration variables. The remaining variables that we are not

able to integrate will be dealt with the self-adapting MC generator FOAM. The proce-

dure of simplifications mentioned above which involves with weights, multibranchings

and mappings wll be exhibited in the following subsections.

7.4.1 Weights and Distributions

First, let us describe the organization of the weights and distributions in

KKMC. There are four principal distributions: pure phase space, model, crude and

primary. Their ratios are the principal weight in KKMC.

The pure Lorentz-invariant phase space distribution given by eq. (7.2) is the

basic reference differential distribution, of which the four-momentum conversation δ

will be no generated directly in the MC, so that all other differential distributions of

interest can be expressed in its terms

dσ(r1, . . . , rn) = ρ(r1, . . . , rn)dτn(P ; r1, . . . , rn), (7.176)
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where the density distribution, defined as follows:

ρ(r1, . . . , rn) =
dσ(r1, . . . , rn)

dτn(P ; r1, . . . , rn)
, (7.177)

is analytical with no δ’s.

The model distribution is the density distribution corresponding to a physical

model

ρMod(r1, . . . , rn) =
dσMod(r1, . . . , rn)

dτn+2(P ; r1, . . . , rn)
, (7.178)

with which MC events will be generated.

The crude distribution is a density distribution

ρCru(r1, r2 . . . , kn) =
dσCru(r1, r2, k1, . . . , kn)

dτn+2(P ; r1, r2, k1, . . . , kn)
. (7.179)

It is close to all model distributions of a certain class and it should be maximally

simple. And it should be Lorentz-invariant and be a maximally simple function of

dot-products of the four-momentum. Here and later r1, r2 will denote the four-

momenta of the outgoing fermions while ki will denote the momenta of photons. In

such cases the dimension of the phase-space will be explicitly n+ 2.

The primary distribution

dρPri(ξ1, ξ2, . . . , ξn) (7.180)

is defined primarily in the space Σ of variables ξi with the following properties: (a) the

integral
∫
dρPri(ξ1, ξ2, . . . , ξn) is known independently from analytical integration or

an independent numerical integration of the Gauss type; (b) a well-defined mapping

r → ξ exists. Therefore one can define

ρPri(r1, r2 . . . , kn) =
dσPri(ξ1, ξ2, . . . , ξn)

dτn+2(P ; r1, r2, k1, . . . , kn)
, (7.181)
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which is restricted to ξ ∈ ΣLIPS and is the distribution generated at the lowest level of

the Monte Carlo. A zero weight will be assigned to the MC points (events) ξ 6∈ ΣLIPS.

The ρPri relates to events generated according to dρPri with all weights equal to 1.

The choice of the intermediate crude distribution, which stands between the

primary and model distribution, depends on the practical need of modularity of the

MC. For example we would like to use the same low-level MC event generator for both

EEX and CEEX models. Undoubtedly we would like the MC event generator to have

a well-defined low-level MC module. The weighted events are generated according to

the crude distribution and the weight is

WCru(r1, r2, . . . , rn) =


dσCru(ri(ξj))

dσPri(ri)
= ρCru(ri)

ρPri(ri)
, ξ ∈ ΣLIPS,

0, ξ 6∈ ΣLIPS.

(7.182)

The above weight is determined by the low-level MC numerically without any further

information on how the event (r1, r2, . . . , rn) was actually generated.

The model weight for the m-th model is given by the ratio

WMod(r1, r2, . . . , rn) =
dσMod

m (r1, r2, . . . , rn)

dσCru(r1, r2, . . . , rn)
=
ρMod(ri)

ρCru(ri)
, (7.183)

which is evaluated in a separate module. And the crude distribution ρCru is calculated

locally in the corresponding module, using an analytical expression in terms of four-

momenta of the event, and without any access to information from the lower-level

MC. The total weight obviously reads

WTot
m = WCruWMod

m , (7.184)

and the total cross section is given by

σTot
m = 〈WTot

m 〉σPri. (7.185)
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After giving the formal expressions for weights and distributions, we need

to define the crude differential distribution explicitly for both EEX and CEEX. We

first define the crude differential distribution with respect to the standard Lorentz

invariant phase space as follows:

ρCru
ṅ,n′(q1, q2; k̇1, . . . , k̇n; k′1, . . . , l

′
n′)

≡ dσCru

dτn+n′+2(P ; q1, q2, k̇1, . . . , k̇ṅ, k′1, . . . , k
′
n)

=
1

ṅ!

1

n′!

σBorn(sX)

4π

sX
sQ

2

βf

ṅ∏
j=1

2S̃e(k̇j)Θ̄e(k̇j)e
γe log εe

n′∏
l=1

S̃f (k̇
′
l)Θ̄f (k̇

′
l)e

γf log εf ,

(7.186)

where

εe =
2Emin√
2p1p2

, εf =
2E ′min√

2q1q2

, βf =

√
1−

4m2
f

sq
, sQ = 2q1q2 + 2m2

f .

and γe and γf are given by eqs. (7.9) and (7.10) respectively. The infrared and

collinear singularities are in the soft factos S̃. The σBorn(sX) has a resonance peak

at sX . The flux factor
sQ
sX

is from the O(α1) QED matrix element, and it can also

be obtained form the leading-log approximation at any order. Note that the above

crude distribution is only for EEX. It would only fit one single partition in CEEX.
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Thus, according to the discussions above, we could express the differential

distribution as follows:

ρ(pc, pd, k1, . . . , kn)

=
dσ(0)

dLIPSn+2(P ; pc, pd, k1, . . . , kn)

=
1

n!

eY (Ω;pa,...,pd)Θ̄(Ω)

flux(s)

1

4

∑
σi 6=∓1

∑
λi=∓1

M(0)
n

 pk1k2k . . . kn

λσ1σ2 . . . σn



×

M(0)
n

 pk1k2k . . . kn

λσ1σ2 . . . σn



∗

=
eY

4s
Θ

1

n!

∑
σi,λi

∑
{℘}

∑
{℘′}

[ n∏
i=1

s℘i[i]B

 p

λ

;X℘i

 X2
℘i

s′′

][ n∏
j=1

s
℘′j
[j]B

 p

λ

;X℘j

 X2
℘j

s′′

]∗

(7.187)

where s
′′

= (pc + pd)
2. In the crude distribution we would like to neglect IFI. That

means we need to drop non-diagonal terms ℘′ 6= ℘. Additionally, the YFS form factor

needs to be simplified to preserve IR cancellation

Y (Ω; pa, . . . , pd)→ γe log εe + γf log εf .

Therefore we have

ρ(pc, pd, k1, . . . , kn)

=
1

n!

1

4s
exp(γe log εe + γf log εf )

∑
℘

n∏
i=1

Θ̄(ki)
∑
σi

∣∣∣s℘i[i]

∣∣∣2∑
λi

∣∣∣∣∣∣∣B
 p

λ

;X℘j


∣∣∣∣∣∣∣
2

X4
℘i

(s′′)2
.

(7.188)
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We can identify∑
σi

∣∣∣sωi[i]

∣∣∣2 = −8π3S̃ω(ki), S̃1(ki) ≡ S̃I(ki), S̃0(ki) ≡ S̃F (ki),

and the Born-like differential cross section

∑
λi

∣∣∣∣∣∣∣B
 p

λ

;X℘j


∣∣∣∣∣∣∣
2

X2
℘i

s′′
∼ dσBorn

dΩ
(s, s

′′
, t, u, t′, u′, X2

℘i
),

which is dependent on s = 2papb, s
′′

= 2pcpd, t = −2papc, t
′ = −2pbpd, u = −2papd,

u′ = −2pbpc and X2
℘i

in the Z resonance propagator. Let us convert it into an ”angular

average” expression

∑
λi

∣∣∣∣∣∣∣B
 p

λ

;X℘j


∣∣∣∣∣∣∣
2

X2
℘i

s′′
→

σBorn(X2
℘i

)

4π
,

Finally, the crude distribution for CEEX is defined as follows:

ρCru
[n] (pc, pd, k1, . . . , kn)

=
dσCru

CEEX

dτn+2(P ; pc, pd, k1, . . . , kn)

=
1

n!

∑
{℘}

1

s
exp(γe log εe + γf log εf )

σBorn(X2
℘i

)

4π

X2
℘i

s′′
2

βf

n∏
i=1

Θ̄(ki)S̃℘i(ki).

(7.189)

For arbitrary photon multiplicity we have the following relations between crude dis-

tributions for CEEX and EEX

ρCru
[n] (k1, . . . , kn) =

∑
ṅ+n′=n

ρCru
[ṅ,n′](k1, . . . , kṅ, k1, . . . , kn′). (7.190)

The model weight for the O(α(r)) EEX reads

W
(r)
EEX(q1, q2; k̇1, . . . , k̇ṅ; k′1, . . . , k

′
n′) =

ρ
(r)
EEX(p1, p2, q1, q2; k̇1, . . . , k̇ṅ; k′1, . . . , k

′
n′)

ρCru
[ṅ,n′](q1, q2; k̇1, . . . , k̇ṅ; k′1, . . . , k

′
n′)

,

(7.191)
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where the model distribution in the numerator is given by eq. (7.4) and the crude

distrubtion in the denominator is given by eq. (7.186). And the model weight for the

O(α(r)) CEEX reads

W
(r)
CEEX(pa, pb, pc, pd; k1, . . . , kn) =

ρ
(r)
CEEX(pa, pb, pc, pd; k1, . . . , kn)

ρCru
[ṅ,n′](pc, pd; k1, . . . , kn)(2π)3(n+2)−4

, (7.192)

where the model distribution in the numerator is given by eq. (7.37) and the crude dis-

trubtion in the denominator is given by eq. (7.189). Note that the factor (2π)3(n+2)−4

is derived from the difference in the normalization of dLIPSn and dτn.

Therefore, according to the previous subsection the corresponding total weight

is

W
(r)Tot
CEEX (pa, pb, pc, pd; k1, . . . , kn)

=W
(r)
CEEX(pa, pb, pc, pd; k1, . . . , kn)WCru(pa, pb, pc, pd; k1, . . . , kn) (7.193)

and

W
(r)Tot
EEX (q1, q2; k̇1, . . . , k̇ṅ; k′1, . . . , k

′
n′)

=W
(r)
EEX(q1, q2; k̇1, . . . , k̇ṅ; k′1, . . . , k

′
n′)W

Cru(q1, q2; k̇1, . . . , k̇ṅ; k′1, . . . , k
′
n′) (7.194)

where WCru is exactly the same since we did the proper Bosen-Einstein symmetriza-

tion for CEEX. Among these model weights, only one can be used as the principal

weight for a rejection of the events. Obviously we choose the best one, O(α(2)) CEEX-

type.
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7.4.2 Phase-space Reorganization

Let us start with rewriting the phase space integral of eq. (7.186) for the crude

total cross section as follows

σCru =

∫
dsx

∞∑
n=0

∞∑
n′=0

∫
dτn+1(P ; k1, . . . , kn, X)

1

n!

n∏
j=1

S̃e(kj)Θ̄e(kj)

×
∫
dτn′+2(X; k′1, . . . , k

′
n, q1, q2)

1

n!

n∏
j=1

S̃f (k
′
l)Θ̄f (k

′
l)

× σBorn(sX)

4π

sX
sQ

2

βf
exp(γe log εe + γf log εf ) (7.195)

where P = p1 + p2. The integral above is Lorentz-invariant and can be computed

in any reference frame. So we can take advantage of the Lorentz invariance of

dτn′+2(X; k′1, . . . , k
′
n, q1, q2) and we transform all its variables to the reference frame

where X = X̂ = (
√
sX , 0, 0, 0), the XMS frame, and rewrite eq. (7.195) as follows,

σCru =

∫
dsx

∞∑
n=0

∞∑
n′=0

∫
dτn+1(P ; k1, . . . , kn, X)

1

n!

n∏
j=1

S̃e(kj)Θ̄e(kj)

×
∫
dτn′+2(X̄; k̄′1, . . . , k̄

′
n, q̄1, q̄2)

1

n!

n∏
j=1

S̃f (k̄
′
l)Θ̄f (k̄

′
l)

× σBorn(sX)

4π

sX
sQ

2

βf
exp(γe log εe + γf log εf ), (7.196)

where those variables with a bar are defined in XMS. So far this operation is still

ambiguous. We have to write down explicitly the Lorentz transformation LX from

XMS to CMS and back. Here we apply a so-called parallel boost BX along the

direction of the ~X in PMS (a laboratory frame where ~P = 0 and p1 = (p0, 0, 0, p3).

The corresponding transformation matrix is

BX =

 X0

MX
,

~XT

MX

~X
MX

, I +
~X⊗ ~X

MX(MX+X0)

 , X2 = M2
X , (7.197)
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where T denotes the matrix transposition and ⊗ denotes the tensor product. The

transformation from the XMS to CMS is

k′i|CMS = LX k̄
′
i, qi|CMS = LX q̄i, LX = BX . (7.198)

The emission of the FSR photons is done in the comoving frame attached to

the momenta qi of outgoing fermions, namely, in the frame where ~Q = ~q1 + ~q2 = 0

and q1 = (q0
1, 0, 0, |q3

1|), which is called QMS. In order to get from XMS to QMS we

must know k′i. This problem can be solved by reparametrization the FSR integral

with the help of the integration over the Lorentz group [116]. Applying the result of

Ref. [116], we have

σCru =

∫
dsX

∞∑
n=0

1

n!

n∏
j=1

d3kj
2k0

j

2S̃e(kj)Θ̄e(kj)δ

(
sX −

(
P −

n∑
j=0

kj

)2)
eγe log εe

×
∫
dψd cosω

σBorn(sX)

4π

∞∑
n′=0

1

n′!

∫
dsQ

n′∏
l=1

d3k̃′l
2k̃
′0
l

S̃f (k̃
′
l)Θ̄f (k̃

′
l)

× δ
(
sX −

(
Q̂−

n′∑
j=0

k̃′j

)2)
eγf log εf , (7.199)

where those variables with a tilde are defined in QMS. Note that the Jacobian from the

reparametrization of the FSR integral cancels exactly the factor sX
sQ

2
βf

. The explicit

transformation from QMS to XMS defines the new integration varibales ψ and ω:

k̄i = LAki, q̄i = LAq̂i, LA = R3(ψ)R2(ω)B−1

X̂
, X̂ = Q̂−

∑
k̃′j. (7.200)

Notice that the explicit integration over q1 and q2 has disappeared completely after

the operation above, which leads a great simplification of the crude integral. Note

that ψ and ω are not polar angles of a certain momentum in a certain frame but

parameters in the Lorentz transformation.
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Therefore the crude integral can be rewritten in the following way:

σCru =
∑

f=µ,τ,u,s,c,b

∞∑
n=0

∞∑
n′=0

∫
dτn+n′+2(P ; qq, q2, k1, . . . , kn, k

′
1, . . . , k

′
n′)

× ρCru
[n,n′](q1, q2; k1, . . . , kn; k′1, . . . , k

′
n′)

=
∑

f=µ,τ,u,s,c,b

∫
dsXσ

f
Born(sX)

∫
dψ

d cosω

4π

×
∞∑
n=0

1

n!

n∏
j=1

d3kj
2k0

j

2S̃e(kj)Θ̄e(kj)δ

(
sX −

(
P −

n∑
j=0

kj

)2)
eγe log εe

×
∞∑
n′=0

1

n′!

∫
dsQ

n′∏
l=1

d3k̃′l
2k̃
′0
l

S̃f (k̃
′
l)Θ̄f (k̃

′
l)δ

(
sX −

(
Q̂−

n′∑
j=0

k̃′j

)2)
eγf log εf ,

(7.201)

Obviously this factorizes into independent ISR and FSR parts. The above integral is

ready for the MC generation.

7.4.3 MC generation of the FSR photon momenta

Next we will describe the MC algorithm for the generation of the FSR photon

momenta. Let us consider FSR part of the crude integral of eq. (7.201)

Fn′ =
1

n′!

∫ sX

4m2
f

dsQ

n′∏
j=1

∫
d3k̃′j

k̃
′0
j

Θ(k̃′j − E ′min)δ

(
sX −

(
Q̂+

n′∑
l=0

k̃′l

)2)
eγf log εf , (7.202)

where

γf = Q2
f

α

π

1 + β2
f

βf

(
log

1 + βf
1− βf

− 1

)
= Q2

f

α

π

1 + β2
f

βf

(
log

(1 + βf )
2

µ2
f

− 1

)
,

βf =
√

1− µ2
f , µ2

f =
4m2

f

sQ
, εf =

2E ′min√
sQ

, Q̂ = (
√
s, 0, 0, 0) (7.203)

where we restored finite fermion mass mf , photon momenta k̃′l in the QMS rest frame

of the outgoing fermions and E ′min is the minimum energy of the real photon in this

frame. Let us express the photon momenta in units of 1
2

√
sQ and introduce polar
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parametrization and other auxiliary notation:

k̃′j ≡
√
sQ

2
k̄j ≡

√
sQ

2
xj(1, sin θj cosφj, sin θj sinφj, cos θj),

K̃ ′ =
n′∑
l=0

k̃′l ≡
√
sQ

2
K̄. (7.204)

Then the δ-function can be eliminated:∫ sX

4m2
f

dsQδ

(
sX −

(
Q̂+

n′∑
l=0

k̃′l

)2)
=

∫ sX

4m2
f

dsQδ

(
sX − sQ

(
1 + K̄0 +

1

4
K̄2

))
=

Θ(sQ(k̄1, . . . , k̄n′ − 4m2
f )

1 + K̄0 + 1
4
K̄2

, (7.205)

and from now on

sQ = sQ(k̄1, . . . , k̄′n) =
sX

1 + K̄ + 1
4
K̄2

. (7.206)

And the single-photon distribution is transformed as follows:

d3k̃′j

k̃′
0

j

S̃f (k̃
′
j) =

dxj
xj

dφj
2π

d cos θj
α

π
f

(
θj,

m2
f

sQ

)
,

f

(
θj,

m2
f

sQ

)
=

1 + β2
f

δ1jδ2j

−
µ2
f

2

1

δ2
1j

−
µ2
f

2

1

δ2
2j

,

δ1j = 1− βf cos θj, δ2j = 1 + βf cos θj. (7.207)

and the whole FSR integral is transformed into the semi-factorized expression:

Fn′ =
1

n′!

n′∏
j=1

∫ ∞
εf

dxj
xj

∫ 2π

0

dφj
2π

∫ +1

−1

d cos θj
α

π
f

(
θj,

m2
f

sQ

)

×
Θ(sQ − 4m2

f )

1 + K̄ + 1
4
K̄2

eγf log εf . (7.208)

Note that the integral above is not factorized into a product of independent integrals

since the dependence on all photon momenta k̄j is entering everywhere through the

variable sQ. So we call it semi-factorized.

Moreover, the introduction of the factor 1
2

√
sQ leads another problem: the

upper bound of xj extends to a large values but not really to infinity due to the
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Θ(sQ − 4m2
f ). And this problem can be solved by the following change of variables:

yi =
xi

1 +
∑
xj
, xi =

yi
1−

∑
yj
,

1 +
∑
j

xj =
1

1−
∑
yj

= 1 + K̄0 = 1 +
2K ′ ·Q
sQ

=
sX
sQ

(
1− K ′2

sX

)
,

(7.209)

which leads to

Fn′ =
1

n′!

n′∏
j=1

∫ 1

εf

1+K̄0

dyj
yj

∫ 2π

0

dφj
2π

∫ +1

−1

d cos θj
α

π
f

(
θj,

m2
f

sQ

)

× 1 + K̄0

1 + K̄0 + 1
4
K̄2

Θ(sQ − 4m2
f )e

γf log εf . (7.210)

With the help of new variables the condition sQ > 4m2
f (easily executable in the MC)

translates approximately into
∑

j yj < 1. Then we have

1 + K̄0

1 + K̄0 + 1
4
K̄2
≤ 1,

which is perfect for the MC. However, the new IR limit yj > εf/(1 + K̄0) is inconve-

nient for the MC. This issue can be solved by substituting

εf = δf (1 + K̄0). (7.211)

where δf � 1 is the new IR regulator for the FSR real photon. Note that this gives

a new lower bound for the photon energy in the QMS:

E
′′

min = δf
1

2

√
sQ(1 + K̄0) = δf

1

2

√
sQ

(
1 +

2K ′ · Q̂
sQ

)
, (7.212)

which is higher that the previous E ′min = 1
2

√
sQδf . Therefore, we must keep the value

of δf very low.
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So far the FSR integral (7.202) has been transformed without any approxima-

tions and the integrals were conveniently parametrized for the MC generation:

Fn′ =
1

n′!

n′∏
j=1

∫ 1

δf

dyj
yj

∫ 2π

0

dφj
2π

∫ +1

−1

d cos θj
α

π
f

(
θj,

m2
f

sQ

)

× 1 + K̄0

1 + K̄0 + 1
4
K̄2

Θ(sQ − 4m2
f )e

γf log(δf (1+K̄0)). (7.213)

There is a one-to-one correspondence between the points in the Lorentz-invariant

phase space and the points in space of the new variables:

{n′, (k̃′1, . . . , k̃′n′)} ↔ {n′, (yj, θj, φj), j = 1, . . . , n′}. (7.214)

Besides, we can write explicitly the differential distributions in the two equivalent

parametrizations

dFn′

dsQδ(sX − (Q̂+
∑n′

l=0 k̃
′
l)

2)
∏n′

j=1

d3k̃′j

2k̃′
0
j

=
Θ(sQ − 4m2

f )

n′!
exp

[
γf log

(
2E

′′
min√
sX

)] n′∏
j=1

2S̃f (k̃
′
j)Θ(k̂′j − E

′′

min)

(7.215)

dFn′∏n′

j=1 dyjd cos θjdφj

=
Θ(sQ − 4m2

f )

n′!
eγf log(δf (1+K̄0))

(
α

2π2

)n′ n′∏
j=1

Θ(yj − δf )
yj

f

(
θj,

m2
f

sQ

)
.

(7.216)

Now it is time to introduce the simplifications that lead to a primary distri-

bution. And the primary distribution can be integrated analytically and generated
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using standard uniform random numbers. The simplifications are given as

f

(
θj,

m2
f

sQ

)
→ f̄

(
θj,

m2
f

sX

)
=

1 + β̄2
f

β̄f

1

1− β̄2
f cos2 θj

,

1 + K̄0

1 + K̄0 + 1
4
K̄2

Θ(sQ − 4m2
f )→ 1,

eγf log(δf (1+K̄0)) → eγ̄f log δf , (7.217)

where

β̄f =

[
1−

(
m2
f

sX

)2] 1
2

, γ̄f = Q2
f

α

π

1 + β̄2
f

β̄f
log

1 + β̄f
1− β̄f

. (7.218)

With the help of the simplifications above we could remove any complicated depen-

dence on the momenta of all photons through sQ, replacing sQ with sX . Then hard

FSR photons get stronger collinear peaks at cos θj = ±1 in the primary differential

distribution. Thus the FSR primary differential distribution is:

dFPri
n′∏n′

j=1 dyjd cos θjdφj
= eγ̄f log(δf )

(
α

2π2

)n′ n′∏
j=1

Θ(yj − δf )
yj

f̄

(
θj,

m2
f

sX

)
, (7.219)

and the compensating weight which transforms the primary distribution into the

crude distribution is

wCru
FSR =

dFn′

dFPri
n′

=
1 + K̄0

1 + K̄0 + 1
4
K̄2

eγf log(δf (1+K̄0))−γ̄f log(δf )

n′∏
j=1

f

(
θj,

m2
f

sQ

)
f̄

(
θj,

m2
f

sX

) .
(7.220)

Events {n′, (yj, cos θj, φj), j = 1, . . . , n′} generated according to dFPri
n′ , defined in eq.

(7.221) with weight wCru
FSR, will be distributed according to the differential distribution

(7.216).
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Finally we conclude that the integral over the FSR primary distribution can

be evaluated analytically:

∞∑
n′=0

FPri
n′ =

∞∑
n′=0

1

n′!

n′∏
j=1

∫ 1

δf

dyj
yj

∫ 2π

0

dφj
2π

∫ +1

−1

d cos θj
α

π
f̄

(
θj,

m2
f

sX

)
eγ̄f log(δf )

=
∞∑
n′=0

e−γ̄f log(1/δf ) 1

n′!

(
γ̄f log

1

δf

)n′

=
∞∑
n′=0

e−〈n
′〉 〈n′〉

n′

n′!
= 1. (7.221)

The photon multiplicity for the primary distribution is the standard Poisson distri-

bution, with the average

〈n′〉 = γ̄f log
1

δf
, (7.222)

and the overall normalization is equal to 1.

The MC generation of the distribution (7.219) is fully factorized, and the

variables cos θj, φj and yj can be generated independently. The distribution of φj is

flat and the distribution of yj is trivial to generate

φj = 2πr1j, yj = δ
r2j
f , (7.223)

where rij are the standard uniform random numbers 0 < rij < 1. The distribution of

cos θj needs using the branching approach: it is split into two components

2

1− β̄f cos2 θj
=

1

1− β̄f cos θj
+

1

1 + β̄f cos θj
, (7.224)

and cos θj is generated according to one component, chosen with the equal odd be-

tween these two. For instance, if we choose the first component as 1/(1− β̄f cos θj),

then

cos θj =
1

β̄j

{
1− (1 + β̄f )

(
1− β̄f
1 + β̄f

)r3j}
, (7.225)

where r3j is another uniform random number.
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Next we introduce the MC algorithm of the generation of the ISR photon

momenta. Let us begin with the ISR part of the crude integral (7.201) for one final

fermion type f

In =
1

n!

∫
dsXσ

f
Born(sX)

n∏
j=1

∫
d3kj
k0
j

S̃e(kj)Θ(k0
j − Emin)

× δ
(
sX −

(
P −

n∑
j=0

kj

)2)
eγe log εe , (7.226)

where Emin = εe
1
2

√
s is the minimum energy of the real ISR photon in the laboratory

CMS. We first introduce the variable v = 1− sX
s

and order energies of the photons

In =

∫ vmax

0

dvσfBorn(s(1− v))
n∏
j=1

∫
d3kj
k0
j

S̃e(kj)

×Θ(k0
1 − k0

2)Θ(k0
2 − k0

3) . . .Θ(k0
n − Emin)δ

(
v − 2KP −K2

s

)
eγe log εe ,

(7.227)

where K =
∑n

j=0 kj and vmax = 1− 4m2
f

s
. Then we rescale all momenta and introduce

a polar parametrization

ki = ηk̄i = ηxi(1, sin θi sinφi, sin θi cosφi, cos θi); (7.228)

We fix the scaling factor η so that k̄0
1 = x1 = v:

In =

∫
dηδ

(
η − k0

1

v

)∫ vmax

0

dvσfBorn(s(1− v))
n∏
j=1

d3kj
k0
j

S̃e(kj)

×Θ(k0
1 − k0

2)Θ(k0
2 − k0

3) . . .Θ(k0
n − Emin)δ

(
v − 2KP −K2

s

)
eγe log εe

=

∫ vmax

0

dvσfBorn(s(1− v))
n∏
j=1

∫ 1

0

dxj
xj

∫ 2π

0

dφj
2π

∫ +1

−1

d cos θj
α

π
f(cos θj)

× δ(v − x1)Θ(x1 − x2)Θ(x2 − x3) . . .Θ(λ0xn − ε)eγe log εeJ (K̄, v),

(7.229)
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where η0 is the root of the equation v − 2K̄P
s
η + K̄2

s
η = 0 and J (K̄, v) is an overall

Jacobian factor:

J (K̄, v) =
v

η0

1
2K̄P
s
− 2η0

K̄2

s

=
1

2

(
1 +

1√
1− Av

)
,

η0 =

√
s

2

v

K̄0

2

1 +
√

1− Av
≡
√
s

2
λ0,

A =
K̄2P 2

(K̄P )2
=

K̄2

(K̄0)2
≤ 1, 0 ≤ λ0 ≤ 1, (7.230)

and the photon angular distribution is determined by

f(cos θj) =
2

(1− β cos θj)(1 + β cos θj)
− 2m2

e

s

1

(1− β cos θj)2
− 2m2

e

s

1

(1 + β cos θj)2
.

(7.231)

Up till now, the ISR integral (7.226) has been transformed without any ap-

proxiamation and there is a one-to-one correspondence of the points in the Lorentz-

invariant phase space and the points in the space of new variables:

{n, (k̃1, . . . , k̃n)} ↔ {n, (yj, θj, φj), j = 1, . . . , n}. (7.232)

Analogouly, we can write the differential distrbutions in two equivalent parametriza-

tions of the IRS crude differential distribution:

dIn

dsX
∏n

j=1
d3kj
2k0
j

=
1

n!
σfBorn(sX)

n∏
j=1

2S̃e(kj)Θ(k0
j − Emin)eγe log εe n > 0

dIn
dv
∏n

j=1 dxjd cos θjdφj
= σfBorn(s(1− v))

(
α

2π2

)n
δ(v − x1)

Θ(λ0xn − ε)
xn

×
n−1∏
j=1

Θ(xj − xj−1)

xj

n∏
j=1

f(cos θj)e
γe log εeJ (K̄, v), n > 0,

dJ0

dsX
= σfBorn(s)δ(sX),

dJ0

dv
= σfBorn(s)δ(sX), n = 0. (7.233)
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Now we are ready to introduce the simplification leading to the ISR primary differ-

ential distribution:

f(cos θj)→ f̄(cos θj) =
2

(1− cos θj(1 + cos θj)
,

J (K̄, v)→ J0(v) =
1

2

(
1 +

1√
1− v

)
,

Θ(λ0xn − ε)→ Θ(xn − ε), (7.234)

where

γ̄e = 2
α

π
log

(
s

m2
e

)
. (7.235)

Thus, the ISR primary differential distribution reads

dIn
dv
∏n

j=1 dxjd cos θjdφj
= σfBorn(s(1− v))

(
α

2π2

)n
δ(v − x1)

Θ(λ0xn − ε)
xn

×
n−1∏
j=1

Θ(xj − xj−1)

xj

n∏
j=1

f(cos θj)e
γe log εeJ0(v), n > 0,

dJ Pri
0

dv
= σfBornδ(v), n = 0, (7.236)

and the corresponding weight is

wCru
ISR =

dIn
dIPri

n

= Θ(λ0xn − ε)
J (K̄, v)

J0(v)

n∏
j=1

f(cos θj)

f̄(cos θj)
. (7.237)

Note that the Θ(λ0xn− ε) contribution to the weight leads directly to a characteristic

factor F (γe) = e−Cγe/Γ(1 + γe) [88, 117]

f(cos θj) =
2 sin2 θj

[(1− β cos θj)(1 + β cos θj)]2
, (7.238)
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Finally, we can integrate analytically the ISR primary differential distribution

IPri =
∞∑
n=0

IPri
n

=
∞∑
n=0

∫ vmax

0

dvσfBorn(s(1− v))
n∏
j=1

∫ 1

0

dxj
xj

∫ 2π

0

dφj
2π

∫ +1

−1

d cos θj

×α
π
f̄(cos θj)δ(v − x1)Θ(x1 − x2)Θ(x2 − x3) . . .Θ(λ0xn − ε)eγe log εeJ0(v),

=

∫ vmax

0

dvσfBorn(s(1− v))J0(v)eγe log εe

×
(
δ(v) + Θ(v − ε)1

v

∞∑
n=1

1

(n− 1)!

(
γ̄e log

v

ε

)n−1)
=

∫ ε

0

dvγev
γe−1σfBorn(s) +

∫ vmax

ε

dvσfBorn(s(1− v))J0(v)γ̄ev
γ̄e−1εγe−γ̄e .

(7.239)

For the generation of the primary differential distribution dIPri, we start with

the generation of v according to

dIPri

dv
= σfBorn(s(1− v))J0(v)γ̄ev

γ̄e−1εγe−γ̄e , (7.240)

which is done by using FOAM. Photon multiplicity n is generated in the next step.

For v < ε we have simply

IPri
n = const× 1

(n− 1)!

(
γ̄e log

v

ε

)n−1

, (7.241)

which is just the shifted-by-one Poisson distribution Pn−1, with the average 〈n− 1〉 =

γ̄e log v
ε
. The angles cos θj and φj are generated in the same way as in the case of

FSR.

7.4.4 Common IR Boundary For ISR and FSR

As discussed above, IRS photons are generated in CMS, while the FSR ones

are generated in QMS. It is therefore the easiest to introduce the IR cut for the

real photons in terms of minimum energy in these two frames. This defines the IR
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boundary, and IR domains inside them, which are differential for ISR and FSR real

photons. As long as the ISR-FSR interference (IFI) is omitted, this will not be an

issue. However, the IFI is present and the IR boundary has to be common for the

CEEX. For the case of events with weight 1, this can be solved by taking the common

IR domain which contains both ISR and FSR domains. For each event, we ”remove

from the record” all photons that are inside the new common IR domain. However,

for the case of weighted events, the above approach has to be modified and it needs

to be accompanied by the additional weight that is analytically calculable. We shall

introduce this approach in the following.

Let us consider the case of EEX

σ
(r)
EEX =

∫
W

(r)
EEXdσ

Cru, (7.242)

,where the model weight W
(r)
EEX is defined in eq. (7.191) in terms of the O(αr) EEX

differential distributions (7.4). We arrive at

σ
(r)
EEX{A} =

∞∑
n=0

∞∑
n′=0

∫
dσCru

[n,n′](ΩI ,ΩF )

× A(n, k1, . . . , kn;n′, k′1, . . . , k
′
n′ ; pi, qi)

×W (r)
EEX(n, k1, . . . , kn;n′, k′1, . . . , k

′
n′ ; pi, qi),

dσCru
[n,n′](ΩI ,ΩF ) ≡dsX

σBorn(sX)

4π
dτn+1(P ; k1, . . . , kn, X)

× eγe log ε 1

n!

n∏
j=1

2S̃e(kj)Θ̄(ΩI , kj)dτn′+2(X; k′1, . . . , k
′
n′ , q1, q2)

× sX
sQ

2

βf
e
γf log

(
δf
sQ+2K′Q

sQ

)
1

n!

n′∏
l=1

2S̃f (k
′
l)Θ̄(ΩF , k

′ + l),

(7.243)
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with the help of eq. (7.195) and

εf = δf

(
1 +

2QK ′

sQ

)
, K ′ =

n′∑
i=0

k′i. (7.244)

Here we have introduced a general acceptance function A to discuss the IR cancella-

tions. Each IR-safe observable corresponds uniquely to one or more such acceptance

functions. The acceptance function corresponding to a physically meaningful, IR-safe,

observable must follow the important rule

lim
ki→0

A(n, k1, . . . , ki−1, ki, ki+1, . . . , kn) = A(n− 1, k1, . . . , ki−1, ki+1, . . . , kn), (7.245)

and there should be a similar rule for FSR photons.

So far we have kept the IR domains different for ISR and FSR. For ISR, ΩI

was defined by: k0
j < εe

1
2

√
s in the laboratory CMS system where ~p1 + ~p2 = 0. For

FSR, ΩF was defined by k
′0
j < δf ((sQ + 2K ′Q)/sQ)1

2

√
sQ in the QMS system where

~q1 + ~q2 = 0. Next, we are about to bring the two IR domains together

dσCru∗
[n,n′](ΩI ,ΩF ). (7.246)

It is known that the total cross section and any IR-safe observable should

be independent of ΩI and ΩF . The inituitive solution is to set δf so small that

ΩF ⊂ ΩI always holds, and to neglect all FSR photons k′i ∈ δΩ = ΩI\ΩF , i.e.,

removing them from the list of the generated momenta in the MC. Note that since

(sQ + 2K ′Q)/SQ ∼ sX/sQ � sX/(4m
2
f ). Next we will prove the validity of the

approach described above. Let us consider the internal FSR subintegral in eq. (7.244),
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fixing all ISR photon momenta

I =
∞∑
n′=0

∫
dτn′+2(X; k′1, . . . , k

′
n, q1, q2)

× 1

n′!

n′∏
l=1

2S̃f (k
′
l)

¯Θ(ΩF , k′l)b(k
′
1, . . . , k

′
n′ ; pi, qi), (7.247)

where

b(k′1, . . . , k
′
n′ ; pi, qi) ≡e

γf log

(
δf
sQ+2K′Q

sQ

)
sX
sQ

2

βf

×W (r)
EEX(n, k1, . . . , kn;n′, k′1, . . . , k

′
n′ ; pi, qi)

× A(n, k1, . . . , kn;n′, k′1, . . . , k
′
n′ ; pi, qi).

Given that ΩI = ΩF ∪ δΩ we can split every photon integral into two parts and

reorganize the sum factorizing out the integral over δΩ

I{A} =
∞∑
n′=0

1

n′!

n′∏
l=1

{∫
d3k′l
k
′0
l

Θ(δΩ, k′l)S̃f (l
′
l) +

∫
d3k′l
k
′0
l

Θ(ΩI , k
′
l)S̃f (l

′
l)

}
×
∫
dτn′+2(X, k′i; q1, q2)b(k′1, . . . , k

′
n′ ; pi, qi)

=
∞∑
n′=0

1

n′!

n′∑
s=0

(
n′

s

){∫
d3k

2k0
Θ(δΩ, k′)S̃f (k

′)

}s
× dτn′+2−s

(
X −

s∑
1

; k′1, . . . , k
′
n′−s, q1, q2

)

×
n′−s∏
l=1

Θ̄(ΩI , k
′
l)S̃f (k

′
l)b(k

′
1, . . . , k

′
n′−s; pi, qi), (7.248)

where

Θ(δΩ, k′) =


= 1 for k′ ∈ δΩ,

= 0 otherwise.

Note that because of the specific expansion (7.4) of ρ
(r)
EEX into β̄-components the model

weight W
(r)
EEX is the most important ingredient in the above algebraic transformation.
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The model weight W
(r)
EEX satisfies the IR-safeness condition

lim
k′i→0

W
(r)
EEX(n′, k′1, . . . , k

′
i−1, k

′
i, k
′
i+1, . . . , k

′
n′)

=W
(r)
EEX(n′ − 1, k′1, . . . , k

′
i−1, k

′
i+1, . . . , k

′
n′), (7.249)

and so does the function b(k′1, . . . , k
′
n′ ; pi, qi). Thus the integral becomes

I{A} =
∞∑
n′=0

∫
dτn′+2(X; k′1, . . . , k

′
n′ , q1, q2)

1

n!

n′∏
l=1

2S̃f (k
′
l)

¯Θ(ΩI , k′l)

× exp

(∫
d3k

2k0
Θ(δΩ, k)2S̃f (k)

)
b(k′1, . . . , k n

′; pi, qi), (7.250)

getting an additional exponential factor.

Therefore, by the explicit calculation, it is valid to skip photons that fall into

δΩ = ΩI\ΩF

dσCru∗
[n,n′](ΩI ,ΩI)

=dsX
σBorn(sX)

4π
dτn+1(P ; k1, . . . , kn, X)

× eγe log ε 1

n!

n∏
j=1

2S̃e(kj)Θ̄(ΩI , kj)dτn′+2(X; k′1, . . . , k
′
n; q1, q2)

sX
sQ

2

βf

× eRF (ΩI) 1

n′!

n′∏
l=1

2S̃f (k
′
l)

¯Θ(ΩI , k′l), (7.251)

where

RF = γf log

(
δf
sQ + 2K ′Q

sQ

)
+ 2Q2

fαB̃(ΩI , q1, q2)− 2Q2
fαB̃(ΩF , q1, q2). (7.252)

Note that the integral is preserved by construction∑
n,n′

∫
dσBorn∗

[n,n′] (ΩI ,ΩF ) =
∑
n,n′

∫
dσBorn

[n,n′](ΩI ,ΩF ).

Now, we can not keep using ρ
(r)
EEX of eq. (7.4) since the IR boundary in the new above

distribution has changed for FSR photons. We have to use another distribution ρ
∗(r)
EEX
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in which B̂(ΩF ) is replaced by B̂(ΩI) in the YFS form factor,

ρ
∗(r)
EEX = ρ

(r)
EEXe

2Q2
f (B̃(ΩI ,q1,q2)−B̃(ΩF ,q1,q2)).

And since the model weight is the ratio of the model distribution and the crude one,

the new exponential factor cancel out. Thus the new model weight is functionally

exactly the same

W
∗(r)
EEX = W

(r)
EEX.

In the new MC calculation, we have

σ
(r)
EEX =

∫
W
∗(r)
EEXdσ

Cru∗ =

∫
W

(r)
EEXdσ

Cru∗. (7.253)

This result is trivial since in the MC program for the EEX model we change almost

nothing, only neglecting hidden photons in the evaluation of the model weight. This

feature implies that very soft photons are not important for all IR-safe integrand

functions.

The term γf log(. . .) in RF is canceled by B̃(ΩF ) and there is actually no

dependence on ΩF or δf in dσCru∗
[n,n′] any more. The IR cancellation is now ensured by

the term below

2
α

π

(
log

2q1q2

m2
f

− 1

)
log ε.

However, the situation is still not as good as expected. We have to deal with

the complication due to the use of the weighted events at the level of the crude

distribution. Let us return to the EEX case

σ
(r)
EEX =

∫
W

(r)
EEXW

Cru
FSRW

Cru
ISR dσ

Pri. (7.254)
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Now the issue is that photons in δΩ cannot be hidden, because WCru
FSR does not follow

the IR-saftness condition

lim
k′i→0

WCru
FSR(n′, k′1, . . . , k

′
i, . . . , k

′
n′)

=WCru
FSR(n′ − 1, k′1, . . . , k

′
i−1, k

′
i+1, . . . , k

′
n′)
f
(
θi,

m2
f

sQ

)
f̄
(
θi,

m2
f

s

) .
Soft photons contribute the finite ratio (f/f̄), and this condition is essential for the

IR-cancellations and for the overall normalization.

In order to save the validity of the approach of replacing ΩF with ΩI , we

repeat the calculation of eq. (7.248) and assume that photons hidden inside δΩ do

not constribute the factor (f/f̄) to the overall weight. Then we obtan an expression

with the modified exponential factor

I′{A} =
∞∑
n′=0

∫
dτn′+2(X ′; k′1, . . . , k

′
n′ , q1, q2)

1

n′!

n′∏
l=1

2S̃f (k
′
l)Θ̄(ΩI , k

′
l)

× exp

(∫
δΩ

d3k

k0
S̃f (k)

f̄
(
θi,

m2
f

s

)
f
(
θi,

m2
f

sQ

))b(k′1, . . . , k′n′ ; pi, qi). (7.255)

It is important that the effect from neglecting (f/f̄) in the overall weight can be

calculated analytically. If so, we can compensate analytically for the missing average

contribution to WCru
FSR from the hidden photons. The evaluation of the integral over

δΩ is based on the relation

S̃∗f (k) = S̃f (k)
f̄
(
θi,

m2
f

s

)
f
(
θi,

m2
f

sQ

) = −Q2
f

α

4π

(
q∗1
kq∗1
− q∗2
kq∗2

)
.

where q∗i , i = 1, 2, are defined so that (q∗i )
2 = m2

f (sQ/s). Moreover, they have the

same directions as the original ~qi and the same total energy, q∗01 + q∗02 =
√
sQ in the
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QMS. Thus we have

IδΩ =

∫
δΩ

d3k

k0
S̃f (k)

f̄
(
θi,

m2
f

s

)
f
(
θi,

m2
f

sQ

) = 2αQf [B̃(ΩI , q
∗
1, q
∗
2)− B̃(ΩF , q

∗
1, q
∗
2)]. (7.256)

To sum up, for the case of the weighted events, the method of hiding photons

in δΩ = ΩI\ΩF leads to a new crude distribtuion similar to that in eq. (7.251) with

the new

Rf = γf log

(
δf
sQ + 2K ′Q

sQ

)
+ 2Q2

fαB̃(ΩI , q
∗
1, q
∗
2)− 2Q2

fαB̃(ΩF , q
∗
1, q
∗
2). (7.257)

Consequently the above exponential factor does not cancel not exactly in the model

weight with the corrctions to the YFS form factor as before. And we have the cor-

recting factor in the model weight:

Whide = exp{−2αQf [B̃(ΩI , q
∗
1, q
∗
2)− B̃(ΩF , q

∗
1, q
∗
2)]

+ 2αQf [B̃(ΩI , q1, q2)− B̃(ΩF , q1, q2)]}. (7.258)

The important asset from the approach of hiding photons in δΩ = ΩI\ΩF is

that with the above correcting factor we could do calculation for the CEEX model

with the ISR-FSR interference switched on.

7.4.5 Entire MC Algorithm Top-to-Bottom

For the CEEX model, according to the results of the previous subsections, we

obtain

σ
(r)
CEEX{A} =

∑
f=µ,τ,d,u,s,c,b

∞∑
n=0

∞∑
n′=0

∫
AW

(r)
CEEXW

Cru
FSRW

Cru
ISRWhidedσ

Pri∗
[n,n′](ΩI). (7.259)

And dσPri
[n,n′](ΩI) is derived from the product of the ISR and FSR primary differential

distributions

dσPri
[n,n′](ΩI ,ΩF ) = dIPri

n (ΩI)dI
Pri
n′ (ΩF ) (7.260)
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by means of hiding FSR photons in δΩ. Therefore, only momenta outside the common

IR-domain enter into the evaluation of W
(r)
CEEX and of all other weights.

The integrated cross section with the acceptance function A is obtained in the

MC run in a standard way

σ
(r)
CEEX{A} = 〈AW (r)

CEEXW
Cru
FSRW

Cru
ISRWhide〉σPri∗. (7.261)

The overall normalization is based on

σPri∗ =
∑

f=µ,...,b

∞∑
n=0

∞∑
n′=0

∫
dσPri∗

[n,n′](ΩI) =
∞∑
n=0

∫
dIPri

n (ΩI)
∞∑
n′=0

∫
dFPri

n′ (ΩF )

=
∑

f=µ,...,b

∞∑
n=0

∫
dIPri

n (ΩI)

=
∑

f=µ,...,b

∫ 1

0

dvσfBorn(s(1− v))J0(v)γ̄ev
γ̄e−1εγe−γ̄e , (7.262)

where we have used the property
∫ ∑

dFPri(ΩF ) ≡ 1 of eq. (7.221), and the ISR part

is taken from eq. (7.239).

Now we have the entire MC algorithm from the top to the bottom. It starts

from the generation of v describing the total energy loss due to the IRS, the type

of final fermion f and the photon multiplicities n and n′, and then generate photon

energies and angles using the method described in the previous subsections.

239



CHAPTER EIGHT

Interface between KKMC-hh and MG5 aMC@NLO

With the help of KKMC-hh [90–92], the coherent exclusive exponentiation

(CEEX) electroweak (EW) exact O(α2L) correction for the Drell-Yan process (please

read Appendix E) has been achieved. In order to realize the EW+the next-to-leading

order (NLO) QCD correction for the Drell-Yan process, we will first apply the Mad-

graph5 aMC@NLO (MG5 aMC@NLO) [118] to obtain the next-to-leading order QCD

correction, and then we will interface KKMC-hh with MG5 aMC@NLO via merging

their LHE files to achieve the EW and NLO QCD corrections. In this chapter, we will

first introduce the overview of MG5 aMC@NLO. Next we will describe the approach

to interface KKMC-hh with MG5 aMC@NLO. Finally we will exhibit and discuss our

results.

8.1 Overview of Madgraph aMC@NLO

MADGRAPH [119] is a powerful tool for automatically generating matrix el-

ements for high energy physics process, such as 2 → n scatterings and decays. First

the user inputs a specific process in terms of initial and final particles, allowing some

refined criteria. As a result, MADGRAPH generates all Feynman diagrams for the

process, and yields the computer code to compute the matrix element at a given phase

space point. The matrix element calculation is done using the helicity amplitudes

technique which was first implemented in the package HELAS [120]. The applica-

tion of the helicity amplitudes is efficient because it allows the helicity amplitudes

corresponding to identical subdiagrams to be reused between the diagrams, leading
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a considerable optimization. The computer code generate by MADGRAPH can then

be used for the cross section and decay width evaluation and event generation.

The essential idea of MADGRAPH5 aMC@NLO is the same as the MAD-

GRAPH family. The structure of a cross section is essentially independent of the

process regardless of the theory and of the perturbative order, and thus it can be

written as a computer code once and for all. For example, phase phases can be de-

fined in full generality, leaving only particle masses and number as free parameters.

Conversely, matrix elements which are obviously dependent on the theory and pro-

cess can be calculated starting from a limited number of formal instructions, such

as Feynman rules and recursion relations. MADGRAPH5 aMC@NLO is written in

a meta-code, in which a Python code writes a Python, C++ or Fortan code. The

latter code is specific to the desired process. MADGRAPH5 aMC@NLO includes

two ingredients. The first one is a theory model, which is equivalent to the La-

grangian of the theory and its parameters, such as masses and coupling constant.

The second one is a set of process-indepedent building blocks for automation of cal-

culations. The automation of NLO computation involves the FKS subtraction block,

which carrys out the generation of the real corrections with the proper subtractions

automatically [121–126], by interfacing MadFKS [126]. Besides the module for real

corrections, the automation of NLO computation requires a specific module for virtual

corrections. In MG5 aMC@NLO, the virtual contribution to an NLO cross section is

achieved through the module MADLOOP [127], which is based on the OPP integrand

reduction technique [128]. These two module above together allow a fully automatic

computation of infrared-safe observables at NLO in QCD. After the integration of
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the matrix element hard process, the full parton shower and hadronization infras-

tructures, such as Herwig and Pythia, etc., are also critical for an accurate simulation

of a hadronic process. In this thesis, we have applied MG5 aMC@NLO + Herwig

to obtain the simulation of the Drell-Yan process pp → Z/γ → µ+µ− + X at the

nex-to-leading order in QCD.

8.2 Interfacing KKMC-hh with MG5 aMC@NLO

We will now introduce our approach to interface KKMC-hh and MG5 aMC@NLO.

Our essential idea is merging their LHE [129] files to achieve the EW and NLO QCD

corrections. Namely, given that LHE file from the MG5 aMC@NLO contains all the

information of the events at the partonic level, we extract the next-to-leading order

contribution in QCD for Drell-Yan process from the LHE file and combine it with the

weight of KKMC-hh to achieve the EW and NLO QCD corrections of the Drell-Yan

process. We are exhibiting our method in details in the following.

In the KKMC-hh, the basic event (x1, x2, v,WBasic) is generated by the distri-

bution

ρ =2Nq[
Q2
s

z2s
(

1

Qsmin

− 1

Qsamx

)]log(
s

Qs

)fq1(
√
Qs, x1)fq̄2(

√
Qs, x2)

× 1

2
(
γ̄

γ
)(

v

vmin
)γ̄−γ(1 +

1√
1− v

)vγmax

× σBorn((1− v)Qs)

3(1− v)
. (8.1)

which includes three components:

ρ(x1, x2) = 2Nq[
Q2
s

z2s
(

1

Qsmin

− 1

Qsamx

)]log(
s

Qs

)fq1(
√
Qs, x1)fq̄2(

√
Qs, x2),

ρ(v) =
1

2
(
γ̄

γ
)(

v

vmin
)γ̄−γ(1 +

1√
1− v

)vγmax, and
σBorn((1− v)Qs)

3(1− v)
,
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where x1 and x2 describe beamstrahlung, v describes the total energy loss due to ISR,

and WBasic is the weight corresponding to the basic event.

The weight XWGTUP derived from the LHE file of MG5 aMC@NLO repe-

sents the cross section of the process in units of pb, which includes the partonic cross

section, contributions from parton distribution functions (PDF) and the perturba-

tive QCD corrections. To be more specific, for the Drell-Yan process pp → Z/γ∗ →

l+l− +X, the differential cross section is

dσ

dydM
=
∑
i,j

σ̂Born

∫ 1

x1

dxi

∫ 1

x2

dxjfi(xi, Q
2)fj(xj, Q

2)∆(x1, x2, xi, xj, Q
2) (8.2)

where σ̂Born is s the partonic cross section of the Drell-Yan process, ∆ij is the per-

turbative QCD coefficient function for the Drell-Yan process. And the partonic cross

section of the Drell-Yan process can be written as

σ̂Born =
1

3
· 4πα2

3Q2

∑
q2
f . (8.3)

In order to interface MG5 aMC@NLO with KKMC-hh, we need to replace the

basic weight WBasic with the weight from XWGTUP after removing the intersections

between WBasic and XWGTUP, and use momentums of intial quark paris derived

from LHE file of MG5 aMC@NLO to generate a new pair of parton momentum

fractions x1 and x2.

We see XWGTUP has three components: partonic cross section σ̂Born, the

function of xi and xj and QCD corrections. So the intersections between WBasic and

XWGTUP are σ̂Born and the function of x1 and x2. Therefore, we need to remove

ρ(x1, x2) from ρ. Since KKMC-hh would calculate the crude Born cross section after

ISR generation, we remove σ̂Born from XWGTUP . Then, we could have the ρ′

ρ′ =
XWGTUP

σ̂Born
× 1

2
(
γ̄

γ
)(

v

vmin
)γ̄−γ(1 +

1√
1− v

)vγmax
σBorn((1− v)Qs)

3(1− v)
(8.4)
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In ρ(x1, x2), the factor 2Nq comes from summation over quarks, where Nq is

determined by the subroutine hh Quarks. Since we need to replace ρ(x1, x2) with

the LHE weight removing the Born cross section calculated by MG5 aMC@NLO,

XWGTUP/σ̂Born, we would replace this factor together with ρ(x1, x2) in the pro-

gram.

In order to realize our approach in the computer programming, we first coded

a new subroutine UPYVNT, which read event information from the LHE file of

MG5 aMC@NLO. Then we coded another new subroutine hh MakeLHE (called

before the subroutine hhFoam Make) to use momentums p̂1 and p̂2 of initial quark

pairs from LHE file to compute the pair of x1 and x2 as follows:

Qs = Q2 = (p̂1 + p̂2)2,

z =
Qs

s
, (8.5)

where s = E2
CMS. Then we have

x1 = zr2 , x2 = z1−r2 ,

where r2 is a random number. And the corresponding weight is

WLHE =
XWGTUP

σ̂Born

.

Ater generating x1 and x2, we modified the subroutine hhBornV RhoFoam so that

it would only calculate γ̄ and γ with the help of new Qs and generate a new v. In

sum, the new WBasic is calculated according to eq. (8.4).

With the help of the new basic weight of eq. (8.4), the cross section for

interfacing KKMC-hh with MG5 aMC@NLO can be evaluated by

σ = ρ′ <
∏
k

wk > . (8.6)
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In the program, this cross section is calculated by the average of main weight WMain.

The main weight has two components WCrud and WBest:

WMain = WCrud ×WBest.

The crude weight WCrud is calculated in subroutine KK2f Make. The crude weight

has two components, the ISR components WISR and the FSR components WFSR.

WCrud = WISR ×WFSR,

where the ISR components WISR is calculated by subroutine KarLud Make and the

FSR components WFSR is calculated by subroutine KarFin Make

WISR = WBasic ×WMass ×WDil ×WCut ×WKF,

WFSR = W1 ×W2 ×W3, (8.7)

The brief explanations for components are as follows:

(i) WBasic: the basic weight WBasic is calculated by eq. (8.4), which generates

v, x1 and x2. It includes not only the electroweak contribution but the NLO QCD

corrections as well.

(ii)WMass: the weightWMass corresponds the simplification made on the photon

angular distribution by dropping mass terms. If there is no photon above detectablity

threshold, then

WMass = 1.

If not,

WMass =
n∏
i=1

f(θi)

f̄(θi)
. (8.8)
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where

f(θi) =
α

π2

[
1

(1− βcosθi)(1 + βcosθi)
− m2

e

s

1

(1− βcosθi)2
− m2

e

s

1

(1 + βcosθi)2

]
,

f̄(θi) =
α

π2

1

(1− βcosθi)(1 + βcosθi)
. (8.9)

(iii) WDil: this weight corresponds to the simplification made on the dilatation

Jacobian.

J(k̄, v) =
1

2

(
1 +

1√
1− Av

)
−→ J0(v) =

1

2

(
1 +

1√
1− v

)
. (8.10)

We therefore have

WDil =
J(k̄, v)

J0(v)
=

1 +
√

1− Av
1 +
√

1− v
. (8.11)

(iv) WCut: this weight corresponds to the lower photon energy boundary:

WCut = θ
(
λ0(k̄, v)xn − ε

)
= θ

(
2kn0√
s
− ε
)
. (8.12)

(v) WKF: this weight corresponds the generation of KF codes, generated by

subroutine MBrA GenKF.

(vi) W1: it is the weight corresponding to phase space limits for very hard

photon, generated by subroutine KarFin YFSfin,

W1 = 1. (8.13)

(vii) W2: it corresponds to the weight for translation Jacobian, generated by

subroutine KarFin YFSfin,

W2 =
1 + K̄0

1 + K̄0 + 1
4
K̄2

. (8.14)

(vii) W3: it is the weight that corresponds to the following simplifiications:

f

(
θj,

m2
f

sQ

)
−→ f̄

(
θj,

m2
f

sX

)
, eγf log(δf ((1+K̄0))) −→ eγf log(δf ) (8.15)

246



where

f(θj,
m2
f

sQ
) =

1 + β2
f

δ1jδ2j

−
µ2
f

2

1

δ2
1j

−
µ2
f

2

1

δ2
2j

,

δ1j = 1− βfcosθj,

δ2j = 1 + βfcosθj,

f̄(θj,
m2
f

sX
) =

1 + β̄2
f

β̄2
f

1

1− β̄2
fcos

2θj
.

β̄f =

√
1−

(
m2
f

sX

)2

,

γ̄f = Q2
f

α

π

1 + β̄f
2

β̄f
log

1 + β̄f
1− β̄f

. (8.16)

Therefore, we have

W3 = eγf log(δf ((1+K̄0)))−γf log(δf )

n′∏
j=1

f
(
θj,

m2
f

sQ

)
f̄
(
θj,

m2
f

sX

) (8.17)

And the model weight weight WBest is of the O(α(2)), calculated by the sub-

routine GPS Make,

W
(2)
CEEX(pa, pb, pc, pd; k1, . . . , kn) =

ρ
(2)
CEEX(pa, pb, pc, pd; k1, . . . , kn)

ρCru
[ṅ,n′](pc, pd; k1, . . . , kn)(2π)3(n+2)−4

. (8.18)

Please read Section (7.2) and Subsection (7.4.1) for details.

Therefore, with the help of the WMain, the cross section which includes elec-

troweak and NLO QCD corrections will be evaluated. Our results will be exhibited

in the next section.

8.3 Results for Interfacing KKMC-hh with MG5 aMC@NLO

We will now discuss the results of interfacing KKMC-hh with MG5 aMC@NLO.

Specifically, we compared the results of the Drell-Yan process pp→ Z/γ∗ → µ+µ− +

X obtained by KKMC-hh, MG5 aMC@NLO and MG5 aMC@NLO interfaced with
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KKMC-hh respectively. We made these comparisons at
√
s = 13 TeV with the AT-

LAS cuts on the Z/γ∗ production and decay to lepton pairs [130]:

80 GeV < M`` < 100 GeV, P ``
T < 30 GeV

where both memebers of the decay lepton pair satisfy

P `
T > 25 GeV, |η`| < 2.4.

We here defined M`` as the lepton pair invariant mass, P ``
T as the transverse momen-

tum of the lepton pair, P `
T as the transverse momentum of the lepton or antilepton

`, and η` as the pseudorapidity of the lepton or antilepton `. We take the quark

masses as mu = 6.0 MeV, md = 10.0 MeV, ms = 0.15 GeV, mc = 1.67 GeV and

mb = 4.78 GeV [131].

The results calculated by three methods based on 1 million events are listed

as follows:

Table 8.1: Cross Sections obtained by MG5 aMC@NLO⊗KKMC-hh, KKMC-hh,
MG5 aMC@NLO, respectively

Generator Cross Section (pb)

MG5 aMC@NLO⊗KKMC-hh 2144.72 ± 7.46

KKMC-hh 1707.68 ± 2.44
MG5 aMC@NLO 1816.00 ± 2.20

The first quantity that we compared were the transverse momentum distri-

butions of muon. As we see, in Figure 8.1, the result obtained by KKMC-hh is

larger than that obtained by MG5 aMC@NLO for PT < 35 GeV and PT > 52 GeV

but smaller for 35 GeV < PT < 46 GeV. In the range 46 GeV < PT < 52 GeV,
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Figure 8.1: Muon transverse momentum distributions for KKMC-hh (blue),
MG5 aMC@NLO (violet) and MG5 aMC@NLO interfaced with KKMC-hh (red) with
the cuts specified in the text.

the results derived from KKMC-hh and MG5 aMC@NLO overlap. However, the re-

sult derived from MG5 aMC@NLO interfaced with KKMC-hh did not exhibit the

enhancement for the muon transverse momentum distributions.

The next quantity we compared is the muon pseudorapidity distribution. The

pseudorapidity η is a spatial coordinate describing the angle of a particle relative to

the beam axis, commonly used in the experimental particle physics. It is defined as

η = log

(
tan

θ

2

)
, (8.19)

where the angle θ is angle between the particle three-momentum ~p and the positive

direction of the beam axis. The pseudorapidity can also be expressed in terms of

three-momentum:

η ≡ 1

2
log

(
|p|+ pL
|p| − pL

)
, (8.20)
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Figure 8.2: Muon pseudorapidity distributions for KKMC-hh (blue), MG5 aMC@
NLO (violet) and MG5 aMC@NLO interfaced with KKMC-hh (red) with the cuts
specified in the text.

where pL is the component of the momentum along the beam axis, namely, the

longitudinal momentum. From Figure 8.2, we find that interfacing MG5 aMC@

NLO with KKMC-hh results an apparent enhancement on the muon pseudorapidity

distribution compared with that derived from MG5 aMC@NLO.

We compared not only quantities of the single lepton but those of lepton

pairs as well. The dimuon transverse momentum distributions obtained by these

three approaches are given in the Figure 8.3. As we can see, the differential cross

section calculated by MG5 aMC@NLO interfaced with KKMC-hh is larger than that

obtained by MG5 aMC@NLO only, and the enhancement is from the EW corrections

calculated by KKMC-hh.

And the Figure 8.4 described the dimuon invariant mass distributions. By

comparing the dimuon invariant mass distribution derived from MG5 aMC@NLO

interfaced with KKMC-hh with that from MG5 aMC@NLO only, we find there is also
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Figure 8.3: Dimuon transverse momentum distributions for KKMC-hh (blue),
MG5 aMC@NLO (violet) and MG5 aMC@NLO interfaced with KKMC-hh (red) with
the cuts specified in the text.

an enhancement that is due to the EW corrections provided by KKMC-hh. Besides,

we see the resonance peaks near 91 GeV derived from these three generators.

Finally, let us see the dimuon rapidity distributions in the Figure 8.5. The

rapidity is defined as

y ≡ 1

2
log

(
E + pL
E − pL

)
. (8.21)

We see that MG5 aMC@NLO interfaced with KKMC-hh amplified the dimuon rapid-

ity distribution obtained by MG5 aMC@NLO only. The amplification can be viewed

as a consequence of the EW corrections.

In sum, we exhibited the comparisons of the results obtained by MG5 aMC@

NLO⊗KKMC-hh, MG5 aMC@NLO and KKMC-hh. We find that MG5 aMC@NLO

interfaced with KKMC-hh would enhance the results obtained by MG5 aMC@NLO

only and the enhancement is due to the EW corrections derived from KKMC-hh.
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specified in the text.
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Figure 8.5: Dimuon radipity distributions for KKMC-hh (blue), MG5 aMC@NLO
(violet) and MG5 aMC@NLO interfaced with KKMC-hh (red) with the cuts specified
in the text.
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CHAPTER NINE

Overall Summary

In this dissertation, we have developed a new numerical method to calculate

the general five-point function, which is important for evaluating one-loop radiative

corrections. Our method is developed from the magic spinor product approach in loop

integrals proposed by B. F. L. Ward originally, which applied the ”Chinese magic”

spinor technique to simplify the loop integral so that the E0 could be expressed in

terms of n-point one-loop integrals (n ≤ 4). And the n-point one-loop integrals

(n ≤ 4) can be calculated numerically by the package LoopTools. Theoretically, the

magic spinor product method should provide more efficiency and numerical stability

for the evaluation of the general five point function. By comparing the results obtained

by our method with those directly obtained from LoopTools, we find that they agreed

with each other overall. Such agreements are encouraging.

Additionally, we also developed an approach to achieve the next-to-leading or-

der and the electroweak (EW) exact O(αs⊗α2L) corrections, interfacing MG5 aMC@

NLO with KKMC-hh by merging their LHE files. We first coded a program to read

the event information from the LHE file of MG5 aMC@NLO, and then extracted the

next-to-leading QCD O(αs) correction. Combining the NLO QCD corrections com-

puted by MG5 aMC@NLO with the basic weight for generating events in the KKMC-

hh, we obtained a new basic weight including both the NLO QCD O(αs) corrections

and the EW O(α2L) corrections. With the help of new basic weight, the new events
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with O(αs⊗α2L) were generated. We compared the muon transverse momentum dis-

tributions, muon pseudorapidity distributions, dimuon invariant mass distributions,

dimuon rapidity distributions obtained by KKMC-hh, MG5 aMC@NLO and KKMC-

hh interfaced with MG5 aMC@NLO , at
√
s = 13 TeV with the ATLAS cuts on the

Z/γ∗ production and decay to lepton pairs, respectively. By comparing the results

of the Drell-Yan process obtained by these three generators, we find that the results

derived from KKMC-hh interfaced with MG5 aMC@NLO bring enhancements from

those derived from MG5 aMC@NLO, which are due to the EW corrections provided

by KKMC-hh. We conclude that interfacing MG5 aMC@NLO with KKMC-hh would

provide a way to achieve the exact O(αs ⊗ α2L) corrections.
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APPENDIX A

Feynman Rules of the Electroweak SM

In this appendix we outline the Feynman rules of electroweak SM in the ’t

Hooft-Feynman gauge including the counterterms. In the verticles all momenta are

set up as incoming.

Propagators:

for gauge bosons V = γ, Z,W in the ’t Hooft-Feynamn gauge(ξi = 1)

Vµ Vν
k

= −igµν
k2−M2

V
,

for Faddeev-Popov ghosts G = uγ, uZ , uW

G Ḡ
k

= i
k2−M2

G
,

for scalar fields S = H,χ, φ

S S
k

= i
k2−M2

S
,

and for fermion fields F = fi

F F̄
p

= i
/p−mf

.

In the ’t Hooft-Feynman gauge we have the following relations:

Muγ = 0, MuZ = Mχ = MZ , Mu± = Mφ = MW . (A.1)
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Tadpole:

S
= iδt.

V V -counterterm:

Vµ Vν
k

= −igµν [C1k
2 − C2]

with the actual values of V1, V2 and C1, C2

W+W− : C1 = δZW , C2 = M2
W δZW + δM2

W

ZZ : C1 = δZZZ , C2 = M2
ZδZZZ + δM2

Z

AZ : C1 =
1

2
δZAZ +

1

2
δZZA, C2 = M2

Z

1

2
δZZA

AA : C1 = δZAA, C2 = 0. (A.2)

SS-counterterm:

S1 S2

k
= i[C1k

2 − C2],

with the actual values of S1, S2 and C1, C2

HH : C1 = δZH , C2 = M2
HδZH + δM2

H . (A.3)

FF -counterterm:
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F1 F̄2

p

= i[CL/p
1
2
(1− γ5) + CR/p

1
2
(1 + γ5)]− C−S /p1

2
(1− γ5 − C+

S /p
1
2
(1 + γ5)],

with the actual values of F1, F̄2 and CL, CR, C
−
S , C

+
S

fif̄i :



CL = 1
2
(δZf,L

ij + δZf,L,†
ij ),

CR = 1
2
(δZf,R

ij + δZf,R,†
ij )

C−S = mf,i
1
2
δZf,L

ij +mf,i
1
2
δZf,R,†

ij + δijδmf,i,

C+
S = mf,i

1
2
δZf,R

ij +mf,i
1
2
δZf,L,†

ij + δijδmf,i.

(A.4)

V V V V -couping:

V1,µ

V2,ν V4,σ

V3,ρ

= ie2C[2gµνgσρ − gνρgµσ − gρµgνσ]

with the actual values of V1,V2,V3,V4 and C

W+W+W−W− : C =
1

s2
W

[
1 + 2δZe − 2

δsW
sW

+ 2δZW

]
W+W−ZZ : C = −c

2
W

s2
W

[
1 + 2δZe − 2

1

c2

δsW
sW

+ 2δZW +
1

2
δZZZ

]
+

1

2

cW
sW

W+W−AZ : C =
cW
sW

[
1 + 2δZe −

1

c2

δsW
sW

+ δZW +
1

2
δZZZ +

1

2
δZAA

]
−1

2
δZAZ −

1

2

c2
W

s2
W

δZZA

W+W−AA : C = − [1 + 2δZe + δZW + δZAA] +
1

2

cW
sW

δZZA. (A.5)

V V V -couping:
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V1,µ, k1

V3,ρ, k3

V2,ν , k2

= −ieC[gµν(k2 − k1)ρ − gνρ(k3 − k2)µ
−gρµ(k1 − k3)ν

with the actual values of V1,V2,V3 and C

AW+W− : C = 1 + δZe + δZW +
1

2
δZAA −

1

2

cW
sW

δZZA,

ZW+W− : C = −cW
sW

[
1 + δZe −

1

c2

δsW
sW

+ δZW +
1

2
δZZZ

]
+

1

2
δZAZ .

(A.6)

SSSS-couping:
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S1

S2 S4,

S3

= ie2C

with the actual values of S1,S2,S3,S4 and C

HHHH : C = − 3

4s2
W

M2
H

M2
W

[
1 + 2δZe − 2

δsW
sW

+
δM2

H

M2
H

− δM2
H

M2
H

+ 2δZH

]
,

HHχχ : C = − 1

4s2
W

M2
H

M2
W

[
1 + 2δZe − 2

δsW
sW

+
δM2

H

M2
H

− δM2
H

M2
H

+ δZH

]
,

HHφφ : C = − 1

4s2
W

M2
H

M2
W

[
1 + 2δZe − 2

δsW
sW

+
δM2

H

M2
H

− δM2
H

M2
H

+ δZH

]
,

χχχχ : C = − 3

4s2
W

M2
H

M2
W

[
1 + 2δZe − 2

δsW
sW

+
δM2

H

M2
H

− δM2
H

M2
H

]
,

χχφφ : C = − 1

4s2
W

M2
H

M2
W

[
1 + 2δZe − 2

δsW
sW

+
δM2

H

M2
H

− δM2
H

M2
H

]
,

φφφφ : C = − 1

2s2
W

M2
H

M2
W

[
1 + 2δZe − 2

δsW
sW

+
δM2

H

M2
H

− δM2
H

M2
H

]
.

(A.7)

SSS-couping:
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S1

S3

S2

= ieC

with the actual values of S1,S2,S3 and C

HHH : C = − 3

2s

M2
H

mW

[
1 + δZe −

δsW
sW

+
δM2

H

M2
H

− 1

2

δM2
W

M2
W

+
3

2
δZH

]
,

Hχχ : C = − 1

2s

M2
H

mW

[
1 + δZe −

δsW
sW

+
δM2

H

M2
H

− 1

2

δM2
W

M2
W

+
1

2
δZH

]
,

Hχχ : C = − 1

2s

M2
H

mW

[
1 + δZe −

δsW
sW

+
δM2

H

M2
H

− 1

2

δM2
W

M2
W

+
1

2
δZH

]
.

(A.8)

V V V V -couping:
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V1,µ

V2,ν S2

S1

= ie2gµνC

with the actual values of V1,V2,S1,S2 and C

W+W−HH : C =
1

2s2

[
1 + 2δZe − 2

δsW
sW

+ δZW + δZH

]
,

W+W−χχ : C =
1

2s2

[
1 + 2δZe − 2

δsW
sW

+ δZW

]
,

W+W−φφ : C =
1

2s2

[
1 + 2δZe − 2

δsW
sW

+ δZW

]
,

ZZφ+φ− : C =
s2
W − c2

W

2s2
W c

2
W

[
1 + 2δZe +

2

(s2
W − c2

W )c2
W

δsW
sW

+ δZZZ

]
+
s2
W − c2

W

sW cW

1

2
δZAZ ,

ZAφ+φ− : C =
s2
W − c2

W

2s2
W c

2
W

[
1 + 2δZe +

1

(s2
W − c2

W )c2
W

δsW
sW

+
1

2
δZZZ

+
1

2
ZAA

]
+

1

2

(s2
W − c2

W )2

2s2
W c

2
W

δZZA + δZAZ ,

AAφ+φ− : C = 2[1 + 2δZe + δZAA] +
1

2

s2
W − c2

W

sW cW
δZZA,

ZZHH : C =
1

2s2
W c

2
W

[
1 + 2δZe + 2

s2
W − c2

W

c2
W

δsW
sW

+ δZZ + δZH

]
,

ZZχχ : =
1

2s2
W c

2
W

[
1 + 2δZe + 2

s2
W − c2

W

c2
W

δsW
sW

+ δZZ

]
,

ZAHH : C =
1

2s2
W c

2
W

1

2
δZZA,

ZAχχ : C =
1

2s2
W c

2
W

1

2
δZZA,
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W±Zφ∓H : C = − 1

2cw

[
1 + δZe −

δcW
cW

+
1

2
δZW +

1

2
δZH +

1

2
δZZZ

]
−1

2

1

sW
δZAZ ,

W±Aφ∓H : C = − 1

2sw

[
1 + δZe −

δsW
sW

+
1

2
δZW +

1

2
δZH +

1

2
δZAA

]
−1

2

1

cW
δZZA,

W±Zφ∓χ : C = ∓ i

2cw

[
1 + δZe −

δcW
cW

+
1

2
δZW +

1

2
δZZZ

]
∓ 1

2

i

2sW
δZAZ ,

W±Zφ∓χ : C = ∓ i

2sw

[
1 + δZe −

δsW
sW

+
1

2
δZW +

1

2
δZAA

]
∓ 1

2

i

2cW
δZZA.

(A.9)

V SS-couping:

Vµ

S2, k2

S1, k1

= ieC(k1 − k2)µ

with the actual values of V , S1,S2 and C

AχH : C = −1

2

i

2cW sW
δZZA,

ZχH : C = − i

2cwsW

[
1 + δZe +

s2
W − c2

W

c2
W

δsW
sW

+
1

2
δZH +

1

2
δZZZ

]
,

Aφ+φ− : C = −
[
1 + δZe +

1

2
δZAA +

1

2

s2
W − c2

W

2sW cW
δZZA

]
,

Zφ+φ− : C = −s
2
w − c2

W

2sW cW

[
1 + δZe +

1

(s2
W − c2

W )c2
W

δsw
sW

+
1

2
δZZZ

]
− 1

2
δZAZ ,

W±φ±H : C = ∓ 1

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZW +

1

2
δZH

]
,

W±φ±χ : C = − i

2sW

[
1 + δZe −

δsW
sW

+
1

2
δZW

]
.

(A.10)
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SV V -couping:

S

V2,ρ

V1,ν

= iegµνC

with the actual values of S, V1,V2 and C

HW+W− : C = MW
1

sW

[
1 + δZe −

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZH + δZW

]
HZZ : C = MW

1

sW c2
W

[
1 + δZe +

2s2
W − c2

W

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZH + δZZZ

]
,

HZA : C = MW
1

sW c2
W

1

2
δZZA,

φ±W∓Z : C = −MW
sW
cW

[
1 + δZe +

1

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZW +

1

2
δZZZ

]
,

φ±W∓A : C = −MW

[
1 + δZe +

1

2

δM2
W

M2
W

+
1

2
δZW +

1

2
δZAA

]
−MW

sW
cW

1

2
δZZA.

(A.11)

V FF -couping:
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Vµ

F2

F̄1

= ieγµ(C−ω− + C+ω+)

with the actual values of V , F̄1,F2 and C+ and C−

γf̄ifj :


C+ = −Qf [δij(1 + δZe + 1

2
δZAA) + 1

2
(δZf,R

ij + δZf,R†
ij )] + δijg

+
f

1
2
δZZA,

C− = −Qf [δij(1 + δZe + 1
2
δZAA) + 1

2
(δZf,L

ij + δZf,L†
ij )] + δijg

−
f

1
2
δZZA,

Zf̄ifj :


C+ = g+

f [δij(1 +
δg+
f

g+
f

+ 1
2
δZZZ) + 1

2
(δZf,R

ij + δZf,R†
ij )]− δijQf

1
2
δZAZ ,

C− = g+
f [δij(1 +

δg−f
g−f

+ 1
2
δZZZ) + 1

2
(δZf,L

ij + δZf,L†
ij )]− δijQf

1
2
δZAZ ,

W+ūidj :



C+ = 0,

C− = 1√
2sW

[
Vij

(
1 + δZe − δSW

sW
+ 1

2
δZW

)
+ δVij + 1

2

∑
k(δZ

u,L†
jk Vkj

+VikδZ
d,L
kj )

]
,

W−d̄jui :



C+ = 0,

C− = 1√
2sW

[
V †ji

(
1 + δZe − δSW

sW
+ 1

2
δZW

)
+ δV †ji + 1

2

∑
k(δZ

d,L†
jk V †ki

+V †jkδZ
u,L
ki )

]
,

W+ν̄ilj :


C+ = 0,

C− = 1√
2sW

δij

[
1 + δZe − δsW

sW
+ 1

2
δZW + 1

2
(δZν,L†)ii + δZ l,L

ii

]
,

W−l̄jνi :


C+ = 0,

C− = 1√
2sW

δij

[
1 + δZe − δsW

sW
+ 1

2
δZW + 1

2
(δZ l,L†)ii + δZν,L

ii

]
,

(A.12)
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where

g+
f = − sW 0

cW
Qf , δg+

f = −sW
cW

Qf

[
δZe +

1

c2
W

δsW
sW

]
,

g−f =
I3
W,f−s

2
WQf

sW cW
, δg+

f =
I2
W,f

sW cW
Qf

[
δZe +

s2
W − c2

W

c2
W

δsW
sW

]
+ δg+

f . (A.13)

The vector and axial vector couplings fo the Z-boson are given by

vf =
1

2
(g− + g+) =

I3
W,f − 2s2

WQf

2sW cW
, af =

1

2
(g−f − g

+
f ) =

I3
W,f

2sW cW
. (A.14)

SFF -couping:
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Vµ

F2

F̄1

= ie(C−ω− + C+ω+)

with the actual values of S, F̄1,F2 and C+ and C−

Hf̄ifj :



C+ = − 1
2sW

mf,i
MW

[
δij

(
1 + δZe − δsw

sW
+

δmf,i
mf,i
− δMW

MW
+ 1

2
δZH

)
+1

2
(δZf,R

ij + δZf,R†
ij )

]
,

C− = − 1
2sW

mf,i
MW

[
δij

(
1 + δZe − δsw

sW
+

δmf,i
mf,i
− δMW

MW
+ 1

2
δZH

)
+1

2
(δZf,L

ij + δZf,L†
ij )

]
,

χf̄ifj :



C+ = i 1
2sW

2I3
W,f

mf,i
MW

[
δij

(
1 + δZe − δsw

sW
+

δmf,i
mf,i
− δMW

MW

)
+1

2
(δZf,R

ij + δZf,R†
ij )

]
,

C− = −i 1
2sW

2I3
W,f

mf,i
MW

[
δij

(
1 + δZe − δsw

sW
+

δmf,i
mf,i
− δMW

MW

)
+1

2
(δZf,L

ij + δZf,L†
ij )

]
,

φ+ūidj :



C+ = − 1√
2sW

md,j
MW

[
Vij

(
1 + δZe − δsW

sW
+

δmd,j
md,j
− δMW

MW
+ δVij

+1
2

∑
k(δZ

u,R†
ik Vkj + VikδZ

d,R
kj )

)]
,

C− = 1√
2sW

mu,j
MW

[
Vij

(
1 + δZe − δsW

sW
+

δmu,j
mu,j

− δMW

MW
+ δVij

+1
2

∑
k(δZ

u,L†
ik Vkj + VikδZ

d,L
kj )

)]
,
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φ−d̄jui :



C+ = 1√
2sW

mu,i
MW

[
V †ji

(
1 + δZe − δsW

sW
+

δmu,j
mu,j

− δMW

MW
+ δV †ji

+1
2

∑
k(δZ

d,R†
jk V †ki + V †jkδZ

u,R
ki )

)]
,

C− = − 1√
2sW

md,i
MW

[
V †ji

(
1 + δZe − δsW

sW
+

δmd,j
md,j
− δMW

MW
+ δV †ji

+1
2

∑
k(δZ

d,L†
jk V †ki + V †jkδZ

u,L
ki )

)]
,

φ+ν̄ilj :


C+ = − 1√

2sW

mi,j
MW

δij

[
1 + δZe − δsW

sW
+

δmi,j
mi,j
− δMW

MW
+ 1

2

(
δZν,R†

ii + δZ l,R
ii

)]
,

C− = 0,

φ−l̄jνi :


C+ = 0,

C− = − 1√
2sW

mi,j
MW

δij

[
1 + δZe − δsW

sW
+

δmi,j
mi,j
− δMW

MW
+ 1

2

(
δZ l,L†

ii + δZν,L
ii

)]
.

(A.15)

V GG-couping:
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Vµ

G2, k2

Ḡ1, k1

= iek1,µC

with the actual values of V , Ḡ1,G2 and C

Aū±u± : C = ±
[
1 + δZe +

1

2
δZAA

]
∓ cW
sW

1

2
δZAA,

Zū±u± : C = ∓
[
1 + δZe −

1

c2
W

δsW
sW

+
1

2
δZZZ

]
± 1

2
δZAZ ,

W±ū±uZ : C = ±
[
1 + δZe −

1

c2
W

δsW
sW

+
1

2
δZW

]
,

W±ūZu∓ : C = ∓
[
1 + δZe −

1

c2
W

δsW
sW

+
1

2
δZW

]
,

W±ū±uγ : C = ∓
[
1 + δZe +

1

2
δZW

]
,

W±ūγu± : C = ±
[
1 + δZe +

1

2
δZW

]
. (A.16)

SGG-couping:
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Vµ

G2

Ḡ1

= ieC

with the actual values of S, Ḡ1,G2 and C

HūZuZ : C = − 1

2sW c2
W

MW

[
1 + δZe +

2s2
W − c2

W

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZH

]
,

Hū±u± : C = − 1

2sW
MW

[
1 + δZe −

δsW
sW

+
1

2

δM2
W

M2
W

+
1

2
δZH

]
,

χū±u± : C = ∓i 1

2sW
MW

[
1 + δZe −

δsW
sW

+
1

2

δM2
W

M2
W

]
,

φ±ūZu∓ : C =
1

2sW cW
MW

[
1 + δZe +

s2
W − c2

W

c2
W

δsW
sW

+
1

2

δM2
W

M2
W

]
,

φ±ū±uZ : C =
s2
W − c2

W

2sW cW
MW

[
1 + δZe +

1

(s2
W − c2

W )c2
W

δsW
sW

+
1

2

δM2
W

M2
W

]
,

φ±ū±uγ : C = MW

[
1 + δZe +

1

2

δM2
W

M2
W

]
.

(A.17)
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APPENDIX B

Feynman Rules of Quantum Chromodynamics

In this appendix we outline the Feynman rules of quantum chromodynamics

including counterterms.

Vµ1µ2µ3(k1, k2, k3) = (k1 − k2)µ3gµ1µ2 + (k2 − k3)µ1gµ2µ3 + (k3 − k1)µ2gµ3µ1 (B.1)

W a1···a4
µ1···µ4

=(f 13,24 − f 14,32)gµ1µ2gµ3µ4 + (f 12,34 − f 14,23)gµ1µ3gµ2µ4

+ (f 13,42 − f 12,34)gµ1µ4gµ3µ2 (B.2)

f ij,kl =faiajafakala (B.3)

Gluons A

aµ bν
k

= δab
1
k2

(
gµν − (1− α)kµkν

k2

)
,

Faddeev-Popov ghosts χ

a b̄
k

= δab
−1
k2 ,

Quark fields ψ

a b
p

= δij
1

mf−/p
.

Gluon-counterterm

aµ bν

k

= (Z3 − 1)δab(kµkν − k2gµν)
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Faddeev-Popov ghost counterterm

a b

k

= (Z̃3 − 1)δabk
2,

Fermion counterterm

i j
p

= [(Z2 − 1)/p− (Z2Zm − 1)mR]δij,

Three-gluon vertex

a1, µ1

a3, µ3

a2, µ2

= −igfa1a2a3Vµ1µ2µ3(k1, k2, k3)

Gluon-ghost-ghost vertex

a, µ

c

b

= −igfa1a2a3kµ

Gluon-quark-quark vertex

a, µ

j

i

= gγµT
a
ij
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Four-gluon vertex
a1, µ1

a2, µ2 a3, µ3

a4, µ4

= −g2W a1···a4
µ1···µ4

Three-gluon vertex counterterm

a1, µ1

a3, µ3

a2, µ2

= (Z1 − 1)(−i)gRfa1a2a3Vµ1µ2µ3(k1, k2, k3)

Gluon-ghost-ghost vertex counterterm

a, µ

c

b

= (Z̃1 − 1)(−i)gRfabckµ

Gluon-quark-quark vertex

a, µ

j

i

= (Z̃1F − 1)gRT
a
ijγµ
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Four-gluon vertex
a1, µ1

a2, µ2 a3, µ3

a4, µ4

= (Z4 − 1)(−1)g2
RW

a1···a4
µ1···µ4

.

The gluon loop

a, µ

b, ν
k

∫
d4k

(2π)4i
δabgµν .

The ghost loop

a

b
k −

∫
d4k

(2π)4i
δab.

274



The quark loop

a

b
k −

∫
d4k

(2π)4i
δijδαβ.

The gluon-quark loop

k

∫
d4k

(2π)4i
.

The gluon-ghost loop

k

∫
d4k

(2π)4i
.

Symmetry factors

∼ 1
2!
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∼ 1
2!

∼ 1
3!
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APPENDIX C

The SU(3) Group

The SU(3) generators Ta are hermitian, traceless matrices which generate the

closed SU(3) algebra

[Ta, Tb] = ifabcTc, (C.1)

where fabc are the antisymmetric SU(3) structure constants with non-zero values

given by

a b c fabc
1 2 3 1
1 4 7 1

2
1 5 6 −1

2
2 4 6 1

2
2 5 7 1

2
3 4 5 1

2
3 6 7 −1

2

4 5 8
√

3
2

6 7 8
√

3
2

277



A convenient representation of the Ta matrices is the one introduced by Gell-

Mann [132] in which

T1 =
1

2


0 1 0

1 0 0

0 0 0

 , T2 =
1

2


0 −i 0

i 0 0

0 0 0

 ,

T3 =
1

2


1 0 0

0 −1 0

0 0 0

 , T4 =
1

2


0 0 1

0 0 0

1 0 0

 ,

T5 =
1

2


0 0 −i

0 0 0

i 0 0

 , T6 =
1

2


0 0 0

0 0 1

0 1 0

 ,

T7 =
1

2


0 0 0

0 0 −i

0 i 0

 , T8 =
1

2
√

3


1 0 0

0 1 0

0 0 −2

 . (C.2)

The fundamental representation is 3-dimensional where Ta satisfy the relation,

{Ta, Tb} =
1

3
δab + dabcTc, (C.3)

which is consistent with the normalization

Tr[TaTb] =
1

2
δab. (C.4)

Here dabc is totally symmetric in a, b and c and is given by

dabc = 2Tr[{Ta, Tb}Tc]. (C.5)

According to eqs. (C.1) and (C.3), we find that

TaTb =
1

2

[
1

3
δab + (dabc + ifabc)Tc

]
. (C.6)
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The traces of the products of generators Ta in the fundamental representation are

given by

Tr[TaTbTc] =
1

4
(dabc + ifabc), (C.7)

Tr[TaTbTcTd] =
1

12
δabδcd +

1

8
(dabe + ifabe)(dcde + ifcde) (C.8)

In the adjoint representation the generator Ta is a 8× 8 matrix and its matrix

element reads

(Ta)bc = −ifabc. (C.9)

The traces of products of generators T a yield

Tr[TaTbTc] =
3

2
ifabc, (C.10)

Tr[TaTbTcTd] = δabδcd + δadδbc +
3

4
(dabedcde − dacedbde + dadedbce). (C.11)

The eq. (C.10) reduces to

fadefbeffcfd =
3

2
fabc. (C.12)

The Jacob identities

[Ta, [Tb, TC ]] + cyclic permutations = 0, (C.13)

[Ta, {Tb, TC}] + cyclic permutations = 0, (C.14)

leads to the following relations:

fabefcde + fcbefdae + fdbeface = 0, (C.15)

fabefcde + fcbefdae + fdbeface = 0. (C.16)
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APPENDIX D

The Global Positioning of Spin GPS Scheme

In Chapter Three, we introduced the Kleiss and Stirling spinor method. In the

KS scheme, the massless spinors and massive spinors are defined [52]. The definitions

in the KS scheme will be supplemented in Ref. [54] with the precise prescription of

the spin quantization axes, the translation from spin amplitudes to density matrices,

and the methodology of connecting production and decay for unstable fermions.

The GPS rules determining the spin quantization frame for the u(p,±) and

v(p,±) of eq. (3.99) are summarized as follows:

(i) In the rest frame of the fermion, take the z-axis along −~k.

(ii) Place the x axis in the plane define by the z-axis from the previous point

and the vector ~η, in the same half-plane as ~η.

(iii) With the y-axis, complete the right-handed system of coordinates. The

rest frame defined in this way we call the GPS frame of the particular fermion.

Next we will assume that polarization vectors of beams and of outgoing fermions

are defined in their corresponding GPS frames.

For the definitions of inner product of the spinors are the same as those de-

scribed in Chapter Three.

For a circularly polarization vector with four-momentum k and helicity σ = ±1

we take the following convention [51]:

[εµσ(β)]∗ =
ūσ(k)γµuσ(β)√
2u−σ(k)uσ(β)
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[εµσ(ζ)]∗ =
ūσ(k)γµuσ(ζ)√
2u−σ(k)uσ(ζ)

(D.1)

where β is an arbitrary light-like four-vector β2 = 0. The second choice with uσ(ζ)

(constant basic spinors) often simplifies the resulting photon emission amplitudes.

With the help of the Chisholm identity

ūσ(k)γµuσ(β)γµ = 2uσ(β)ū−σ(k) + 2uσ(k)ū−σ(β), (D.2)

ūσ(k)γµuσ(ζ)γµ = 2uσ(ζ)ū−σ(k) + 2uσ(k)ū−σ(ζ), (D.3)

we obtain two useful formula, equivalent to eq. (D.1)

/ε∗σ(k, β) =

√
2

ū−σ(k)uσ(β)
[uσ(β)ū−σ(k) + uσ(k)ū−σ(β)],

/ε∗σ(k, ζ) =

√
2√

2ζk
[uσ(ζ)ū−σ(k)− uσ(k)ū−σ(ζ)]. (D.4)

While calculating photon emission spin amplitudes, we will use the following

important building blocks, i.e., the elements of the “transition matrices” U and V

defined as

ū(p1, λ1)/ε∗σ(k, β)u(p2, λ2) = U

(
k

σ

) p1p2

λ1λ2

 = Uσ
λ1,λ2

(k, p1,m1, p2,m2),

v̄(p1, λ1)/ε∗σ(k, ζ)v(p2, λ2) = V

(
k

σ

) p1p2

λ1λ2

 = V σ
λ1,λ2

(k, p1,m1, p2,m2). (D.5)

In the case of uσ(ζ) the above transition matrices reads

U+(k, p1,m1, p2,m2) =
√

2


√

2ζp2

2ζk
s+(k, p̂1), 0

m2

√
2ζp1

2ζp2
−m1

√
2ζp1

2ζp2
,
√

2ζp1

2ζk
s+(k, p̂2)

 , (D.6)

U−λ1,λ2
(k, p1,m1, p2,m2) = [−U+

λ2,λ1
(k, p2,m2, p1,m1)]∗, (D.7)

V σ
λ1,λ2

(k, p1,m1, p2,m2) = −Uσ
−λ1,−λ2

(k, p1,−m1, p2,−m2). (D.8)
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Compared with the case of uσ(ζ), the more general case u(β) is a little bit

more complicated

U+(k, p1,m1, p2,m2)

=

√
2

s−(k, β)
× s+(p̂1, k)s−(β, p̂2) +m1m2

√
2ζβ
2ζp1

2ζk
2ζp2

,m1

√
2ζβ
2ζp1

s+(k, p̂2) +m2

√
2ζβ
2ζp2

s+(p̂1, k)

m1

√
2ζk
2ζp1

s−(β, p̂2) +m2

√
2ζk
2ζp2

s−(p̂1, β), s−(p̂1, β)s+(k, p̂2) +m1m2

√
2ζβ
2ζp1

2ζk
2ζp2

 .
(D.9)

The numbering of elements in matrices U and V is

{(λ1, λ2)} =

 (++) (+−)

(−+) (−−)

 . (D.10)

When computing bremsstrahlung amplitudes we will adopt the following com-

pact notation:

U

 pkp

λ1σλ2

 ≡ Uσ
λ1,λ2

(k, p1,m1, p2,m2)

V

 pkp

λ1σλ2

 ≡ V σ
λ1,λ2

(k, p1,m1, p2,m2). (D.11)

When dealing with the soft real photon limit we will implement the following

important diagonality property:

U

 pkp

λ1σλ2

 = V

 pkp

λ1σλ2

 = bσ(k, p)δλ1,λ2 , (D.12)

bσ(k, p) =
√

2
ū(k)/puσ(ζ)

ū(k)uσ(ζ)
=
√

2

√
2ζp

2ζk
sσ(k, p̂), (D.13)
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which also holds in the general case of uσ(β), where

bσ(k, p) =

√
2

s−σ(k, β)

(
s−σ(β, β̂)sσ(p̂, k) +

m2

2ζp̂

√
(2βζ)(2ζk)

)
. (D.14)
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APPENDIX E

The Drell-Yan Process

The Drell-Yan process is a model for the production of massive lepton pair

in hadron-hadron collision developed by Drell and Yan in 1970 [93]. In the model a

quark from one incident hardon annihilates with an antiquark from the other hadron

incident hadron producing a virtual gauge boson which in turn decays into a massive

lepton pair. It provides many interesting tests of perturbative QCD. We will make a

brief introduction of Drell-Yan process here [133].

First, let us begin with the parton model, in which large mass muon pairs are

created in the proton-proton collison via the subprocess q+ q̄ → γ∗ → µ+ + µ−. The

experimental cross section reads as follows

dσ = Gp→q(xa)dxaGp→q̄(xb)dxbσ̂(q + q̄ → γ∗ → µ+ + µ−), (E.1)

where Gp→q(xa)dxa is the probability of finding a quark with momentum

pq = xaPA, (E.2)

and Gp→q̄(xb)dxb is the probability of finding a quark with momentum

pq̄ = xbPB, (E.3)

where PA and PB are the momentum of the intial two protons. It is convenient to

define the dimensionless variables

τ =
M2

s
, τ̂ =

M2

ŝ
, (E.4)
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where M is the mass of the muon pair and where s is the external proton-proton

CMS energy squared

s = (PA + PB)2 = 2P 2
CM, (E.5)

and ŝ is the internal parton parton CMS energy squared

ŝ = (pq + pq̂)
2 = 2pq · pq̂. (E.6)

PA
q q̄

PB

µ+

µ−

p+ p→ µ+µ− +X

PB

PA

xaPA

xbPB

γ∗

Figure. E.1. The proton-proton collisions (Drell Yan process), p+ p→ γ∗ +X
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Then we have

ŝ = xaxbs, τ = xaxbτ̂ . (E.7)

The Longitudinal momentum of the muon pair are

PL = pq − pq̄, (E.8)

and if we assume that the incoming partons are parallel to the incident protons then

the total energy is

E2 = P 2
L +M2. (E.9)

eq. (E.8) leads to

xL = xa − xb (E.10)

where

xL ≡
2PL√
s
, (E.11)

and eq. (E.9) implies

x2
E = x2

L + 4τ (E.12)

where

xE ≡
2E√
s
. (E.13)

The total cross section for a quark and anti-quark to annihilate into a muon pair,

qq̄ → µ+µ− reads

σ̂(qq̄ → µ+µ−) ≡ σ0 =
1

3

4παe2
q

3M2
, (E.14)

where M is the virtual photon invariant mass with

ŝ = M2. (E.15)
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According to eq. (E.7) and (E.10) we find that xa and xb can be specified in terms

of τ and xL,

xaxb = τ, (E.16)

xa − xb = xL, (E.17)

and the experimental cross section can be rewritten as

dσDY

dτdxL
(s,M2, xL) =

4πα2

9M2

1

(xa + xb)
Pqq̄(xa, xb), (E.18)

with the joint qq̄ probability function

Pqq̄(xa, xb) =

nf∑
i=1

e2
qi

[Gp→qi(xa)Gp→q̄i(xb) +Gp→q̄i(xa)Gp→qi(xb)], (E.19)

where the subscript DY denotes the ”Drell-Yan” process pp→ µ+µ− +X. And eqs.

(E.16) and (E.17) lead to

xa =
1

2
(xE + xL) =

√
τey, (E.20)

xb =
1

2
(xE − xL) =

√
τe−y, (E.21)

where y is the rapidity of the muon pair defined by

y ≡ 1

2
log

(
E + pL
E − PL

)
. (E.22)

Next, we consider the possibility that the initial quark or antiquark can radiate

a gluon before annihilating into a virtual photon. The differential cross section for

the subprocess q + q̄ → γ∗ + g is

dσ̂qDY

dt̂
(ŝ, t̂) =

1

64πŝp̂2
CM

∣∣M̄(q + q̄ → γ∗ + g)
∣∣2

=
1

16πŝ2

∣∣M̄(q + q̄ → γ∗ + g)
∣∣2 . (E.23)

and the amplitude squared is

∣∣M̄(q + q̄ → γ∗ + g)
∣∣2 = e2e2

qg
2 4

9

1

4
8

[
û

t̂
+
t̂

û
+

2M2(M2 − t̂− û)

t̂û

]
, (E.24)
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where the subperscript q denotes the process q + q̄ → γ∗ + g the invariant mass of

the virtual is timelike,

M2 = q2
γ, (E.25)

q, pq

γ∗, qγ gluon, qg

q̄, pq̄ q, pq

gluon, qgγ∗, qγ

q̄, pq̄

Figure E.2. Leading order diagrams for the subprocess q + q̄ → γ∗ + g.

The invariants are given by

ŝ = (pq + pq̂)
2,

t̂ = (qγ − pq)2,

û = (qg + pq)
2, (E.26)

with

ŝ+ t̂+ û = M2. (E.27)

Therefore we have

dσ̂qDY

dt̂
(ŝ, t̂) =

πααse
2
q

ŝ2

[
û

t̂
+
t̂

û
+

2M2(M2 − t̂− û)

t̂û

]
. (E.28)

The integral over t̂ is given by

σ̂qDY(ŝ) =

∫ t̂max

t̂min

dσ̂qDY

dt̂
(ŝ, t̂)dt̂, (E.29)
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where

t̂min = 0, t̂max = M2 − ŝ = −(1− τ̂)ŝ. (E.30)

Besides we have to include the ”Compton” subprocess q + g → γ∗ + q for correcting

the parton model. The corresponding differential cross section

dσ̂gDY

dt̂
(ŝ, t̂) =

1

16πŝ2

∣∣M̄(q + g → γ∗ + q)
∣∣2 , (E.31)

where

∣∣M̄(q + g → γ∗ + q)
∣∣2 = e2e2

qg
2
s

4

24

1

4
8

[
− t̂
ŝ
− ŝ

t̂
+

2M2(M2 + ŝ+ t̂)

ŝt̂

]
. (E.32)

q, pq

γ∗, qγ q, p′q

gluon, qg q, pq gluon, qg

γ∗, qγ q, p′g

Figure E.3. Leading order diagrams for the “Compton” subprocess q + g → γ∗ + g.

The invariants here are defined by

ŝ = (pq + qg)
2,

t̂ = (qγ − pq)2,

û = (qγ − qg)2. (E.33)

Inserting eq. (E.32) into eq. (E.31) yields

dσ̂gDY

dt̂
(ŝ, t̂) =

πααse
2
q

ŝ2

1

3

[
− t̂
ŝ
− ŝ

t̂
+

2M2(M2 + ŝ+ t̂)

ŝt̂

]
, (E.34)
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and the integral over t̂ is

σ̂gDY(ŝ) =

∫ t̂max

t̂min

dσ̂gDY

dt̂
(ŝ, t̂)dt̂. (E.35)

Note that eqs. (E.29) and (E.35) are divergent with t̂min = 0 and we must regulate the

divergences. The divergences can be regulated either by giving the gluon a fictitious

mass q2
g = m2

g or by using the dimensional regularization. In the following we apply

the dimensional regularization.

Let us consider the 2-to-2 scattering subprocesses γ∗ + q → q + g and γ∗ +

g → q + q̄ occur in the N rather than 4 spacetime dimension. In the N spacetime

dimensions the 2-to-2 cross section is given by

dσ̂ =
1

4(p1 · p2)

∣∣M̄∣∣2 d2N−2R2, (E.36)

where

d2N−2R2 =
dN−1p3

(2π)N−1(2E3)

dN−1p4

(2π)N−1(2E4)
(2π)NδN(p3 + p4 − p1 − p2). (E.37)

Integrating over p4 gives∫
dN−1p4δ

N(p3 + p4 − p1 − p2) = δ(E3 + E4 − E1 − E2). (E.38)

Now let y ≡ cos θ13, where θ13 is the scattering angle between particles 1 and 3 then

dN−1p3 =
2π

N−2
2

Γ
(
N
2
− 1
)pN−2

3 dp3(1− y2)
N−4

2 dy. (E.39)

Integrating over p3 yields∫
dp3

1

4E3E4

pN−2
3 δ(E3 + E4 − ECM) =

(p′CM)N−3

4
√
ŝ

, (E.40)

where

(p̂′CM)2 =
1

4ŝ
[ŝ− (m3 +m4)2][ŝ− (m3 −m4)2], (E.41)
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and

p1 · p2 =
√
sp̂CM, (E.42)

with

(p̂CM)2 =
1

4ŝ
[ŝ− (m1 +m2)2][ŝ− (m1 −m2)2], (E.43)

Thus we have

dσ̂

dy
(ŝ, t̂) =

1

32πŝ

(p̂′CM)N−3

p̂CM

∣∣M̄∣∣2 (1− y2)
N−4

2

2N−4π
N−4

2 Γ
(
N
2
− 1
) . (E.44)

For the case,

p̂CM =
1

2

√
ŝ, (E.45)

p̂′CM =
1

2
(1− τ̂)

√
ŝ, (E.46)

we have

σ̂DY(τ̂) =
1− τ̂
32πŝ

(
M2(1− τ̂ 2)2

4πτ̂

) ε
2 I

2εΓ
(
1 + ε

2

) , (E.47)

where

I =

∫ 1

−1

dy(1− y2)
ε
2

∣∣M̄∣∣2 , (E.48)

with N = 4 + ε and

t̂ = −1

2
(ŝ−M2)(1− y) = − ŝ

2
(1− τ̂)(1− y), (E.49)

û = −1

2
(ŝ−M2)(1 + y) = − ŝ

2
(1− τ̂)(1 + y), (E.50)

In N = 4 + ε dimensions the matrix element squared for the subprocesses

q + q̄ → γ∗ + g reads

∣∣M̄(q + q̄ → γ∗ + g)
∣∣2 = 16π2αQED

N αQCD
N e2

q

8

9

(
1 +

ε

2

)
×
{

2(τ̂ 2y2 − 2τ̂ y2 + y2 + τ̂ 2 + 2τ̂ + 1)

(1− τ̂)2(1− y2)
+

2

1− y2
ε

}
, (E.51)
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where

αQED
N =

α

(m2
D)ε/2

, αQCD
N =

αs
(m2

D)ε/2
, (E.52)

and mD is the ”dimensional regularization mass”. Thus we arrive at

σqDY(τ̂) =
παQEDN αse

2
q

ŝ

16

9

(
M2(1− τ̂)2

τ̂4πm2
D

) ε
2 Γ
(
1 + ε

2

)
Γ(1 + ε)

(
1 +

ε

2

)
×
{

1 + τ̂ 2

1− τ̂
2

ε
+
ε(1− τ̂)

1 + ε

}
(E.53)

Since (
1

σ0

dσ̂q

dτ̂

)
=

3

4π2αe2
q(1 + ε

2
)
ŝσ̂qDY, (E.54)

then we have(
1

σ0

dσ̂q

dτ̂

)
DY

= 2
2αs
3π

(
(1− τ̂)2M2

τ̂4πm2
D

) ε
2 Γ(1 + ε

2
)

Γ(1 + ε)

{
1 + τ̂ 2

1− τ̂
2

ε
+
ε(1− τ̂)

1 + ε

}
, (E.55)

where σ0 is N -dimensional Born cross section. Integrating over τ̂ yields

(σ̂(real))DY =
2αs
3π

σ0

(
M2

4πm2
D

) ε
2

Γ
(

1− ε

2

){ 8

ε2
− 6

ε
+

9

2
+ . . .

}
. (E.56)

γ∗, qγ

q, pq q̄, qq̄
g

γ∗, qγ

q, pq q̄, qq̄

g

γ∗, qγ

q, pq

g

q̄, qq̄

Figure E.4. Virtual gluon corrections to the quark-antiquark ahhihilation q+ q̄ → γ∗.
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The virtual corrections are given by

(σ̂(virtual))DY =
2αs
3π

σ0

(
M2

4πm2
D

) ε
2 Γ(1− ε

2
)Γ2(1 + ε

2
)

Γ(1 + ε)

×
{
− 8

ε2
+

6

ε
− 8 + π2 + . . .

}
. (E.57)

From the expansions

Γ(1− ε
2
)Γ2(1 + ε

2
)

Γ(1 + ε)
= 1 +

1

2
γEε+

1

48
(6γ2

E − π2)ε2 + . . . ,

Γ
(

1− ε

2

)
= 1 +

1

2
γEε+

1

8

(
π2

6
+ γ2

E

)
ε2 + . . . , (E.58)

where γE is the Euler constant, we find that

(σ̂(real) + σ̂(virtual)) = σ0αs

(
8π

9
− 7

3π

)
. (E.59)

For the Drell-Yan case, the perturbation series behaves like

σDY
tot = σ0(1 + αsI

DY
q + . . .) (E.60)

with

αsI
DY
q = αs

(
8π

9
− 7

3π

)
. (E.61)

We now define ”+ functions” and have

1

σ0

(
dσ̂qDY

dτ̂

)
+

= 2
αs
2π
Pq→qg(τ̂) log

(
M2

m2
D

)
+ 2αsf

q,DY(τ̂), (E.62)

where the splitting function

Pq→qg(τ̂) =
4

3

(
1 + τ̂ 2

1− τ̂

)
, (E.63)

and

αsf
q,DY(τ̂) =

2αs
3π

{
2(1 + τ̂ 2)

(
log(1− τ̂)

1− τ̂

)
+

− 1 + τ̂ 2

1− τ̂
log(τ̂)

−
(
π2

3
+

9

4

)
δ(1− τ̂)

}
+
αs
2π
Pq→qg(τ̂)

(
2

ε
+ γE − log(4π)

)
. (E.64)
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Note that the ”little f” functions is regularization scheme dependent and the integral

of f q,DY over τ̂ vanishes, ∫ 1

0

αsf
q,DY(τ̂)dτ̂ = 0 (E.65)

For the ”Compton” subprocess q + g → γ∗ + q, we take the similar treatment

and then have

1

σ0

(
dσ̂gDY

dτ̂

)
+

= 2
αs
2π
Pg→qq̄(τ̂) log

(
M2

m2
D

)
+ 2αsf

g,DY(τ̂), (E.66)

where the splitting function

Pq→qg(τ̂) =
1

2
[τ̂ 2 + (1− τ̂)2], (E.67)

and

αsf
g,DY(τ̂) =

αs
2π

1

2

{
[τ̂ 2 + (1− τ̂)2] log

(
(1− τ̂)2

τ̂

)
− 3

2
τ̂ 2 + τ̂ +

3

2

}
+
αs
2π
Pg→qq̄(τ̂)

(
2

ε
+ γE − log(4π)

)
. (E.68)

Combining the ”annihilation” term with the ”Compton” term and including

terms with the initial two partons interchanged, then the ”Drell-Yan” cross section

becomes (for one quark flavor)

s
dσDY

dM2
(s,M2) =

4π

9

α2e2
q

M2

∫ 1

τ

dxa
xa

∫ 1

τ/xa

dxb
xb

{(
Ḡ(0)
p→q(xa)Ḡ

(0)
p→q̄(xb)

+ Ḡ
(0)
p→q̄(xa)Ḡ

(0)
p→q(xb)

)[
σDY

tot

σ0

δ(1− τ̂) +
αs
2π

2Pq→qg(τ̂) log

(
M2

Λ2

)
+ 2αsf

q,DY(τ̂)

]
+

(
Ḡ(0)
p→q(xa)Ḡ

(0)
p→g(xb) + Ḡ(0)

p→g(xa)Ḡ
(0)
p→q(xb)

)[
αs
2π
Pg→qq̄ log

(
M2

Λ2

)
+ 2αsf

g,DY(τ̂)

]
+

(
Ḡ(0)
p→q(xa)Ḡ

(0)
p→g(xb) + Ḡ(0)

p→g(xa)Ḡ
(0)
p→q(xb)

)
×
[
αs
2π
Pg→qq̄(τ̂) log

(
M2

Λ2

)
+ 2αsf

g,DY(τ̂)

]}
, (E.69)
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where τ̂ = τ/(xaxb) and

σDY
tot

σ0

= 1 + αsI
DY
q + . . . , (E.70)

with IDY
q is given by eq. (E.61). The ”little f” functions in the dimensional regu-

larization scheme is given by eq. (E.64). The log(m2
D) divergence has been absorbed

into the G
(0)
p→q and G

(0)
p→g structure functios.
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