
ABSTRACT

A Parallel Implementation of the Galerkin Method for Solving Partial Differential

Equations on a Triangular Mesh

Rachel N. Hess

Director: Robert C. Kirby, Ph.D.

Finite Element Methods are techniques for estimating solutions to boundary value
problems for partial differential equations from an approximating subspace. These
methods are based on weak or variational forms of the BVP that require less of the
problem functions than what the original PDE would suggest in terms of order of
differentiability and continuity. In the scope of this project, we focused on imple-
menting the Galerkin Finite Element Method, which provides a best approximation
to the true solution from a finite-dimensional subspace of piecewise polynomial func-
tions defined on a triangular mesh. For this thesis, we developed a shared memory
parallel implementation of the Galerkin Method that can be executed on a GPU to
minimize runtime by means of multiple processors working simultaneously in unison
on each calculation. For this purpose, we used the open-source libraries PyOpenCL
and Loo.py. Thus we are able to explore how essential tasks in the solution pro-
cess map onto shared memory platforms, such as the construction of the stiffness
matrix from the connectivity data of the triangular mesh that may then be used to
approximate the true solution with numerical methods.

APPROVED BY DIRECTOR OF HONORS THESIS:

Dr. Robert C. Kirby, Department of Mathematics

APPROVED BY THE HONORS PROGRAM:

Dr. Andrew Wisely, Director

DATE:

A PARALLEL IMPLEMENTATION OF THE GALERKIN METHOD FOR

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON A TRIANGULAR

MESH

A Thesis Submitted to the Faculty of

Baylor University

In Partial Fulfillment of the Requirements for the

Honors Program

By

Rachel N. Hess

Waco, Texas

May 2015

TABLE OF CONTENTS

Table of Figures...iii

Chapter One: An Introduction to Parallel Shared Memory Organization..............1

Chapter Two: The Galerkin Method...10

Chapter Three: The Triangular Mesh..16

Chapter Four: Constructing the Stiffness Matrix...30

Appendices...38

Appendix A: Example .ele and .node Files Code...39

Appendix B: Implementation Source Code...40

Bibliography...47

ii

TABLE OF FIGURES

Figure 1: ElementwiseKernel Signature...5

Figure 2: ElementwiseKernel Example...5

Figure 3: ReductionKernel Signature..6

Figure 4: GenericScanKernel Signature..7

Figure 5: RadixSort Signature...8

Figure 6: Triangular Mesh Example Matrix..17

Figure 7: Assembling the Cell Matrix..19

Figure 8: Enumerating the Edges..20

Figure 9: Edge Ordering...21

Figure 10: Sorting the Edge List..22

Figure 11: The Unique Edge List..24

Figure 12: Shared Edge Triangle Connectivity List...26

Figure 13: Node to Node Connectivity List..27

Figure 14: Node to Triangle Connectivity List..29

Figure 15: Reference Triangle..32

Figure 16: Element Stiffness Matrix Implementation...34

iii

CHAPTER ONE

An Introduction to Parallel Shared Memory Organization

In this chapter, I will discuss the basic principles of parallel programming on a

shared memory machine. To perform computations in a parallel structure requires

specific hardware and interfaces that will support parallel algorithms within a multi-

processor system or across multiple systems. As I will be using the PyOpenCL in-

terface for a GPU environment in my implementation of the Finite Element Method,

I will thus explain the structure of the OpenCL interface from which PyOpenCL

was derived and generally introduce the GPU as one of the environments on which

OpenCL may be run. Upon introducing the PyOpenCL structure, I will then explore

some of the parallel algorithms that will be used in my later implementation.

What is Parallel Programming?

To execute something in parallel means to divide a larger problem into smaller

computations that can be performed simultaneously by multiple system components

used to compute the final solution. There are two main memory organizations for

parallel computing: through a distributed memory machine or through a shared

memory machine. In the context of shared memory organization, the parallelism

of the computation necessitates the use of synchronization between threads. Data of

the application is stored as global memory that can be accessed by all of the processors

1

or cores of the system hardware. This way, multiple processors may access the global

memory simultaneously, or in parallel, to increase overall performance by reducing

runtime. The threads share memory by writing variables that can then be subse-

quently read by another thread, thus making the synchronization of threads necessary

to ensure that no shared data variables can be accessed by one thread while another

is still writing to said variables. In my later implementation, I will be using program-

ming models that will support this type of hardware. In comparison, a distributed

memory machine is a computer system consisting of multiple processing units, or

nodes, and a network with which data can be passed. With this type of hardware

system, data and calculations are partitioned among the nodes, but in this case, each

node contains its own private memory and information exchange is performed by

passing data to and from the nodes via the interconnected network. [9]

Hardware and Interfaces

The utilization of parallelism requires implementation on hardware with parallel

computing capabilities and the use of specialized programming interfaces. One such

hardware example mentioned earlier is a multicore system. Other possible examples

of hardware capable of parallel computation include the Intel Xeon Phi coprocessors

or the Graphics Processing Unit. The GPU was created to handle the type of data

typical of graphics applications. Such high-performance data handling capabilities can

thus be adapted for shared memory computing to efficiently execute algorithms in

2

parallel so as to reduce the runtime. Furthermore, the GPU is becoming an incredible

resource for parallel computing as a fairly cheap and easily accessible piece of hardware

available in multiple platforms across a wide community. [9]

Using the proper hardware, a computing language with parallel programming ca-

pabilities across multiple processors is required. OpenCL was the first cross-platform

open standard for this type of computing. [5] Through this interface, the program-

mer uses a host application to communicate to the device, dictated by five basic

structures with which an algorithm may run in parallel. These structures include a

device, kernel, program, command queue, and context. Looking at each individual

data structure, the overall format of OpenCL and its parallel nature can thus be

observed. First, the host is the user’s computer from which kernels are dispatched

to connected devices. [10] The context is defined as a container that organizes the

interaction between the host and the device, manages the available memory objects,

and keeps track of all created kernels and projects. [2] In other words, the context is

the means through which data and kernels are transferred with each command being

sent to and stored into a command queue. For this queue, each command is thus

stored in the order with which the host will use to request an action of a device.

Further, a program is then a collection of kernels to be distributed. [2]

From here, we may then look into an additional computing interface that sits on

top of OpenCL, known as PyOpenCL. PyOpenCL is an open-source package that

enables access to OpenCL with Python, thus granting users the tools with which to

more easily implement complex algorithms through the use of additional aids and

templates that the interface provides. With this, PyOpenCL has certain advantages,

3

including an easier object cleanup, all-accessibility, automatic error checking, speed,

and open-source licensing. [4] I will be using PyOpenCL in the later chapters as I

implement the Finite Element Method in parallel.

Basic Parallel Algorithms

Prefix sums are an important building block in shared memory algorithms. A

prefix sum takes a binary associative operator ⊕ and an ordered set of n elements

[a0, a1, ..., an−1], before returning the ordered set [a0, (a0⊕a1), ..., (a0⊕a1⊕ ...⊕an−1)].

[1] A binary associative operator is defined as an operator under associativity that

takes two data members of a set and combines them to produce a new data member.

This operation need not simply be addition or multiplication, though these meet

the specifications. For example, prefix sums can be used to calculate a cumulative

sum of integers. As the operation takes in two integers and combines them into

one by summing them, this operation shows itself to be a binary operator. What is

left to show is whether the operation in associative, which follows from properties of

addition of integers. Recognizing certain common algorithms, PyOpenCL has created

templates for the frequent use of such kernels in the implementation of an algorithm.

Some of the kernel templates include Elementwise, Scan, Reduce, and RadixSort, all

of which use prefix sums except for the Elementwise kernel. [4]

Elementwise Expression Evaluation

According to the PyOpenCL documentation, the kernel builder for an element-

wise operation will evaluate expressions through one or more operations across each

element in a single pass. By passing in the arguments on which the computation will

4

be performed and the operation to be performed on each element of an argument,

the kernel will perform the specified task in parallel across each element. This form

of calculation is also known as a mapping from the arguments. Through the way

the kernel is defined with its specified parameters, multiple processors are able to

perform the computational operation on different elements simultaneously to enable

the desired parallel structure.

c l a s s pyopencl . e lementwise . ElementwiseKernel (context , arguments ,
operat ion , name=”ke rne l ” , preamble=””, opt ions = [])

Figure 1: ElementwiseKernel Signature

Such a kernel will have the signature shown in Figure 1. For the first three param-

eters, “context” is the context within which the code will be generated, “arguments”

is the list of arguments on which to operate, and “operation” defines the operation

to be performed. Then, “name” specifies the function name, “preamble” is a section

of the kernel’s source code outside the function’s context, and “options” is passed

directly to the build program.

krn l = ElementwiseKernel (ctx , ” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,
<> temp” ,
opera t i on=””” i f (x [i]>y [i]) {

temp = x [i] ;
x [i] = y [i] ;
y [i] = temp ;}”””)

Figure 2: ElementwiseKernel Example

One example of an ElementwiseKernel that I will be using in my later implemen-

tation is shown in Figure 2. Under this kernel, we see the parameters ctx as the

5

context, global variables of integer array x, integer array y, and integer temp, and

then the operation to be performed over the variables. In this example, the operation

is checking to see whether the elements of each corresponding index of array x are

greater than the elements of array y and if so, swaps them. This operation necessarily

falls under an ElementwiseKernel because this operation must be performed for every

index i across the two variable arguments assumed to be of equal size.

Reductions

The reduce operation is based on a prefix sum by taking a binary operator ⊕ with

identity i, and an ordered set [a0, a1, ..., an−1] of n elements to return a0⊕a1⊕...⊕an−1.

[1] Because the binary operator is associative, the operand can be applied to any

subset of the data set, allowing for the usage of parallelism to partition the data

into tasks sent to multiple processors. Likewise, this reduction is clearly seen to be

a binary associative operator applied across an entire data set, making it a type of

prefix sum. In this case, a reduction will return the final entry of a cumulative sum.

krn l = ReductionKernel (ctx , numpy . f l oa t32 , neu t ra l =”0” ,
reduce expr=”a+b” , map expr=”x [i]∗ y [i] ” ,
arguments=” g l o b a l f l o a t ∗x , g l o b a l f l o a t ∗y”)

Figure 3: ReductionKernel Signature

A common reduction kernel is to perform a dot product of two vectors, shown in

Figure 3. A dot product takes the product of corresponding elements in two vectors

of equal size across each element, as defined in the map expr, and then returns a sum-

mation of each of these element-wise computations, as defined in the reduce expr. In

this way, a dot product is a reduction by multiplying corresponding elements between

6

two vectors of equal size and summing the products. This is thus implemented in

PyOpenCL through the usage of the ReductionKernel template by first mapping the

vectors x and y with a multiplication operation then reducing this mapping by taking

the sum across all of the elements. [7]

Scans

As defined by Blelloch, the scan operation is a vector all-prefix-sums operation. [1]

Therefore, a scan is a cumulative sum, or a running operation in which the final result

of performing the algorithm has taken account of all elements in the array in the

solution. Thus, a scan is much like the simpler reduction operation in that it also

performs summations across an array, except that it also stores the running result

with each element whereas the reduction kernel only stores the last element of the scan

operation. In PyOpenCL, this calculation can be performed with the Generic Scan

Kernel, for which the operation can be specified as any binary associative operator.

One such example of another type of scan is a prescan, which is the running sum of

the elements of an array, not including the current element.

c l a s s pyopencl . scan . GenericScanKernel (context , dtype , arguments ,
input expr , scan expr , neutra l , output statement ,
i s s e gmen t s t a r t e xp r=None , i npu t f e t c h e xp r s =[] ,
index dtype=<‘numpy . int32 ’> , name = ‘ scan ’ , opt ions =[] ,
preamble = ‘ ‘ ’ ’ , d ev i c e s=None)

Figure 4: GenericScanKernel Signature

This Generic Scan Kernel will have the signature shown in Figure 4 as defined

in its documentation. In this case, the parameters for context, arguments, name,

options, and preamble are the same as the corresponding parameters defined above

7

in the Elementwise Kernel. “dtype” will specify the data type with which to perform

the scan. “input expr” defines an expression of the values on which the scan is

applied with “scan expr” defining the operation to carry out on the values. Then,

“output statement” writes the output of the scan. Finally, “is segment start expr”

determines whether a new scan segment starts at index i with each segment a set of

values on which the scan is executed, and “input fetch exprs” is a list of tuples.

Radix Sort

A radix sort is a type of sort that looks at the binary representation of all of

the elements in a vector or list to reorder them sequentially. This sorting algorithm

thus flags indices of the data according to each individual specific element. To put it

technically, a radix sort is a sorting algorithm in which the elements are looped over

sequentially while the algorithm checks over each of the elements’ bits, starting with

the lowest. All elements with a zero as the bit in the current iteration are packed to

the bottom, leaving the elements with a one as that bit packed at the top of the list.

This operation is known as a split operation, using the keys of zero or one in each

iteration over the bits. This algorithm can thus be seen as a prefix sum by defining

the split operation using scans. This Reduction Kernel is defined in PyOpenCL by

the signature in Figure 5.

c l a s s pyopencl . a lgor i thm . RadixSort (context , arguments , key expr ,
sort arg names , b i t s a t a t im e =2, index dtype=<‘numpy . int32 ’> ,
key dtype=<‘numpy . uint32 ’> , opt ions = [])

Figure 5: RadixSort Signature

8

Within this signature, “key expr” is an expression to return the key on which

the sort is performed and “sort arg names” is a list of argument names whose array

arguments will be sorted according to the key. For the remaining parameters, their

content is evident or has already been defined above.

9

CHAPTER TWO

The Galerkin Method

This chapter will provide a basic understanding of the Galerkin method by solving

partial differential equations. The Galerkin method is a best approximation to the

true solution from a finite-dimensional subspace, under the proper conditions derived

from a projection theorem that I will outline later in this chapter. In order to set

up the method, the partial differential equation must first be relaxed into its weak

form so that the function requirements are eased, allowing for a broader range of

computations to be performed, such as the Galerkin method. In this chapter, I will

discuss the setup and use of the Galerkin method through calculations performed on

a boundary value problem that transform it into its weak, variational form, allowing

for the method’s use. I will then begin to discuss the triangular mesh on which the

boundary value problem will be solved. In the next chapter, I will then discuss the

parallel implementation of connectivity on the triangular mesh in preparation for

finite element methods.

Relaxing the PDE

In order to implement the Galerkin method to solve a partial differential equation,

that boundary problem must first be changed into its weak form, or variational form,

to loosen the restraints required. Some typical examples of problems in variational

forms include:

10

Example 1:

u ∈ H1
0 (Ω),

∫
Ω
K 5 u · 5v =

∫
Ω
fv for all v ∈ H1

0 (Ω)

is the variational form of the Dirichlet BVP:

−5 ·(κ5 u) = f in Ω, u = 0 on ∂Ω

Example 2:

u ∈ H1(Ω),
∫

Ω
K 5 u · 5v =

∫
Ω
fv +

∫
dΩ
vh for all v ∈ H1(Ω)

is the variational form of the BVP with inhomogeneous Neumann conditions:

−5 ·(κ5 u) = f in Ω, κ∂u
∂n

= h on ∂Ω, where h is a function defined on ∂Ω

In comparison to the variational equations, the original boundary value problems

included the use of the divergence operator, which signifies the calculation of the

partial second derivatives of the variables. In order to perform this calculation, the

variables within the equation must then be twice differentiable. Additionally, the

right-hand side of the equation requires continuity. Although, when we take the

variational form of the boundary value problem, we are integrating the functions on

each side of the equality over their common domain. Therefore, the functions now

only require differentiability instead of twice differentiability, and the right-hand side

only requires integrability instead of the stricter condition of continuity. By loosening

these constraints, the variational forms of boundary values problems allow for more

various calculations and analysis to be performed on the equations that would have

not been possible if not for the transformation between forms. [3]

In general, to transform the PDE into the variational form, the following steps

must be taken. First, multiply both sides of the PDE by a function defined in the

domain. Then, since the two sides of the PDE are equal, integrate both sides by

11

parts. Finally, Green’s Theorem can be applied to arrive at the variational form of

the PDE.

All of the example variational problems listed above can be rewritten in the general

form u ∈ V, a(u, v) = l(v) for all v ∈ V . l(v) is a linear functional that can be simply

defined as a linear function from V to R. Now because of its linearity, this linear

functional has two implications on continuity. The first is that if l is continuous at

any u ∈ V , it must be continuous at every u ∈ V . Secondly, l is continuous at u if and

only if it is bounded. For l to be bounded, there must exist a nonnegative constant

M such that |l(u)| ≤M ||u|| for all u ∈ V . a(·, ·) is then the symmetric bilinear form

that satisfies the three properties:

1.a(u, v) = a(v, u) for all u, v ∈ V

2.a(αu+ βv, w) = αa(u,w) + βa(v, w) for all u, v, w ∈ V and all α, β ∈ R

3.a(u, u) ≥ 0, and u = 0 implies that a(u, u) = 0

In addition, if a(·, ·) has the property that there exists α > 0 such that

a(u, u) ≥ α||u||2 for all u ∈ V , a(·, ·) is elliptic over V . Also, if a(·, ·) has the

property that there exists β > 0 such that a(u, u) ≤ β||u||||v|| for all u, v ∈ V , then

a(·, ·) is bounded. [3]

Using the Galerkin Method

Projection Theorem

Providing the framework for the Galerkin method and other methods of best

approximation is the theorem that given a finite-dimensional subspace W of inner

product space V and vector u ∈ V , there exists a unique best approximation w ∈ W

12

that satisfies ||u−w|| < ||u−z|| for all z ∈ W not equal to w, where w is the projection

of u onto W . This best approximation also satisfies the orthogonality condition that

w ∈ W is this best approximation if and only if the inner product of u− w with z is

equal to zero for all z ∈ W . In this theorem, we thus denote the inner product of two

vectors in the inner product space by (·, ·). Now, orthogonality can be defined as a

property associated to two vectors within a vector space whose inner product is equal

to zero. In summary, based upon conditions of orthogonality, the projection theorem

defines what the best approximation would be of a vector in an inner product space

from a finite-dimensional space. [3]

Because W is finite-dimensional, it has a basis {w1, ..., wn} that can be represented

as w =
∑n

j=1 αjwj. From the orthogonality condition, it is clear that using this basis

definition of w that we may derive
∑n

j=1(wj, wi)αj = (u,wi),where i = 1, 2, ..., n.

Thus, from this conclusion, we may define (wj, wi), i, j = 1, 2, . . . , n as the Gram

matrix Gij and (u,wi), i = 1, 2, . . . , n as vector bi such that we have the system of

linear equations Gα = b. Now, if it turns out that w defines an orthogonal basis,

Gα = b can be solved simply with αi = (u,wi)
wi,wi

, i = 1, 2, ..., n. Otherwise, Gα = b can

still be solved efficiently so long as G is nearly diagonal, or sparse, even when n is

fairly large. [3]

Galerkin with Variational Problems

Since the true solution u is unknown, it cannot be computed directly from the

finite-dimensional approximating subspace W of V . However, from here the Galerkin

method can be used through the usage of the alternate inner product defined by the

13

bilinear form a(u, v) to compute the best approximation w of u on W . To use the

Galerkin Method, the system of equations must be first redefined in terms of the bilin-

ear form. So now we may define our system as KU = F with

stiffness matrix Kij = a(wj, wi), i, j,= 1, 2, ..., n and load vector

Fi = a(u,wi) = l(wi), i = 1, 2, ..., n. Consequently, the load vector is thus calcu-

lable and known such that the only remaining unknown in our system of equations is

the vector U , which defines our solution w as w =
∑n

i=1 Uiwi. [3]

Therefore, the Galerkin method will produce a best approximation w ∈ W to u

from W that satisfies ||u−w||E = minv∈W ||u− v||E. Using Céa′s Theorem, we know

that ||u − w|| ≤ β
α
||u − v|| for all v ∈ W . From this theorem arises a central fact of

the finite element method that ||u−w|| cannot be too much larger than ||w− v|| for

all v in W . This is due to the condition that the Galerkin approximations wh ∈ Wh

must improve at the same rate as the best approximations from Wh as h→ 0. [3]

The Galerkin Approximating Subspace

Mark S. Gockenbach, in his book Understanding and Implementing the Finite

Element Method, defines the finite element method as Galerkin’s method with a

subspace of piecewise polynomial functions. When selecting an approximating a sub-

space, the method must be efficient in the computing of K and F and the solving

of the system and also must approximate the true solution well by an element of

the subspace. By selecting piecewise polynomials for our approximating subspace,

we are able to meet the criteria effectively with the given properties of guaranteed

differentiable and integrable functions due to the properties of polynomials. [3]

14

In order to construct such a subspace of polynomials, we must partition the do-

main into subdomains. Polynomials are then defined on each subdomain to create

a subspace. Most commonly, the domain will be partitioned into triangular or rect-

angular subdomains on which the polynomials are defined, of which, we will use a

triangular subdomain. Then, this collection of triangular subdomains is known as a

triangular mesh, and must be constructed in such a way that any intersection of two

triangles is either node to node or edge to edge. On this mesh, a piecewise polyno-

mial must then be defined over all of the individual triangular subdomains with the

piecewise polynomial reducing to a polynomial of desired order over each subdomain.

For example, if linear polynomials were used, the piecewise polynomial over the entire

mesh must reduce to a linear polynomial over each triangle. In this construction, the

piecewise polynomial must maintain continuity. Therefore, the polynomials over each

specific triangle must satisfy the conditions that whenever any two triangles meet at

a node, their respective polynomials must be equal at that node, and whenever two

triangles share an edge in the mesh, their respective polynomials must be equal at

every point along that edge. In the next chapter, I will discuss the triangular mesh in

more detail as well as begin my implementation of Galerkin’s method, starting with

the construction of the mesh and enumeration of mesh data. [3]

15

CHAPTER THREE

The Triangular Mesh

In this chapter, I will discuss the triangular mesh on which we will implement

the Galerkin Method and how to set up all of the necessary data that will be needed

for the calculations. In order to solve the problem, we will first need to generate the

triangular mesh then organize the data from the mesh by assembling connectivity

matrices to describe mesh entity interaction. These connectivity relations within the

mesh serve as an effective representation of the triangular mesh as data structures

most convenient to access when such data is needed for our main calculations, which

I will describe in the next chapter.

Generating the Mesh

As described in the previous chapter, a triangular mesh is needed as the Galerkin

Approximating Subspace to solve the given partial differential equation. This mesh

can be obtained through mesh generating software that will create the mesh and pro-

vide files describing the details of the mesh. For this project, I used Triangle: A Two-

Dimensional Quality Mesh Generator and Delaunay Triangulator created by Jonathan

Richard Shewchuk to generate a two-dimensional triangular mesh with accompanying

files. For connectivity purposes, I will be using the .ele and .node files to execute

connectivity implementations. An example of a simple two-triangle mesh is shown in

Figure 6.

16

Figure 6: Triangular Mesh Example

The .ele file has the format of storing the number of triangles, number of nodes

per triangle, and number of attributes on the first line. Each of the remaining lines

then store a triangle number followed by list of nodes on that triangle with their

attributes. The triangle attributes are typically floating-point values to represent

specific qualities of the triangle such as color, mass, or conductivity. This file will

be used as input while computing connectivity information. Following in the next

chapter, I will be using the .node file to compute the basis functions in constructing

the stiffness matrix and load vector. This file is formatted to store the number of

vertices, dimension, number of attributes, and number of boundary markers for the

mesh on the first line. The remaining lines each store a vertex number with the

coordinates, attributes, and boundary marker of that vertex. Here, the boundary

markers are a binary tag for whether each specific vertex is on the boundary of the

mesh, with the tag set to 1 to signify that the vertex is on the boundary, 0 otherwise.

From this file, I will be able to create a matrix to store the coordinates of each vertex

for easy access throughout my calculations. [11] Example .ele and .node files for the

mesh in Figure 6 can be referenced in Appendix A.

17

Connectivity

In computing the mesh connectivity before beginning any Finite Element Method

computations towards solving partial differential equations, this will effectively in-

crease efficiency and reduce runtime by allowing easy access to mesh data. [8] Through

my implementation, I will compute this information into array-based data structures

that will serve to provide instant access to mesh and connectivity information by

simply calling the desired data structure at the proper index. Therefore, I will be

using Loo.py in my implementation as it is a code generator for array-based data in

PyOpenCL and will thus be able to generate the proper data structures for my rep-

resentation. In this way, the connectivity of the mesh serves as a mesh representation

more suited for a programming implementation of Finite Element Methods. [6]

In addition to serving as an alternative to a graphical representation of the tri-

angular mesh, the connectivity information calculated in this chapter can be applied

to various situations. For example, not all of the connectivity information from this

chapter will be directly used in the scope of this project but can be applied elsewhere,

such as in other Finite Element Methods extending into higher dimensions. There-

fore, in computing the mesh connectivity, we will explore how such an exercise can

be executed in parallel and expressed as prefix sums.

Enumerating Edges

In order to obtain edge information, the edges must first be constructed from

the mesh data. This can be accomplished by reading in the data from the .ele file

and characterizing each edge as the connection between two nodes. The file must

18

be opened and the lists of triangle nodes read into a 3 × N matrix with N being

the number of triangles in the mesh as stated on the first line of the file. This way,

each row of the matrix, corresponding to its respective triangle, will contain the three

nodes on that triangle, with implementation shown in Figure 7. Using this data, the

task of enumerating the edges falls to the use of a Loo.py kernel that will construct

two corresponding arrays by looping through the matrix such that the first array will

contain the first node to each edge and the second array will contain the second, with

implementation shown in Figure 8. It is through this kernel that the edge location

data is also obtained. By storing the edges in this manner, it is important to keep in

mind that any alteration performed on one array must extend to the other as well or

otherwise fail to accurately represent the edges.

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y

f = open (’ l i t t l e b o x . e l e ’ , ’ r ’)
n e l s = f . r e ad l i n e ()
n e l s = ne l s . s p l i t ()
c e l l s = np . z e ro s ((i n t (n e l s [0]) , 3) , dtype=np . in t32)

f o r x in range (0 , i n t (n e l s [0])) :
l i n e = f . r e ad l i n e ()
l i n e = l i n e . s p l i t ()
c e l l s [x , :] = map(int , l i n e [1 :])

Figure 7: Assembling the Cell Matrix

19

import loopy as lp
import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y

ctx = c l . c r ea t e some contex t ()
queue = c l .CommandQueue(ctx ,

p r op e r t i e s=
c l . command queue propert ies .PROFILING ENABLE)

loop bounds = ”{ [c , i , j] : 0 <= c < ne l s and 0 <= i < 3 and i < j < 3}”

ke rne l c ode = ”””
<> ed = 0 { inames=c , id=i n i t e d }
edges0 [c , ed] = c e l l s [c , i] { id=wri te v0 , dep=in i t e d , inames=c : i : j }
edges1 [c , ed] = c e l l s [c , j] { id=wri te v1 , dep=in i t e d , inames=c : i : j }
t r iang le num [c , ed] = c { id=write v2 , dep=in i t e d , inames=c : i : j }
edge num [c , ed] = j+i−1 { id=write v3 , dep=in i t e d , inames=c : i : j }
ed = ed + 1 {dep=wr i t e v0 : wr i t e v1 : wr i t e v2 : wr i te v3 , inames=c : i : j }
”””

args = [lp . ValueArg (” n e l s ” , np . in t32) ,
lp . GlobalArg (” c e l l s ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” edges0 ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” edges1 ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” tr iang le num ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” edge num” , np . int32 , shape=(” ne l s ” , 3))]

knl = lp . make kernel (loop bounds ,
ke rne l code ,
args ,
assumptions=”ne l s >=1”)

cknl = lp . CompiledKernel (ctx , knl)

Figure 8: Enumerating the Edges

Now with the edge list, it is beneficial to organize the list so that the data may be

accessed quickly and efficiently without requiring searching through the entire edge

list for a single data point. This will be accomplished by implementing sorting kernels

to order the list. First, an ElementwiseKernel must be used to perform a check on

each edge by index in the list and ensure that the lesser enumerated node is listed in

the first array with the greater at the corresponding index of the second array. This

20

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
from pyopencl . e lementwise import ElementwiseKernel

s o r t 1 = ElementwiseKernel (ctx , ” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,
g l o b a l i n t temp” ,

opera t i on=””” i f (x [i]>y [i]) {
temp = x [i] ;
x [i] = y [i] ;
y [i] = temp ;}”””)

temp = 0
so r t1 (edges0 . r av e l () , edges1 . r av e l () , temp)

p r in t ”Edge L i s t : ”
p r i n t edges0 . r av e l ()
p r i n t edges1 . r av e l ()
p r i n t t r iang le num . r av e l ()
p r i n t edge num . r av e l ()
p r i n t

Figure 9: Edge Ordering

algorithm, shown in Figure 9, safeguards the integrity of the following calculations

by representing all edges the same way. Otherwise, the edge say from node 1 to node

5 could be represented as [1
5
] or [5

1
]. Now, a RadixSort kernel can be used to sort the

edges in increasing order by their nodes, using a radix sort algorithm implemented in

parallel through the kernel. By first ordering the edges by greater enumerated node

and then the lesser, the edges will thus be sorted in ascending order primarily by the

first node and then by the second node when multiple edges share the common lesser

enumerated node. Additionally, this kernel will serve as a segmented scan that will

21

append additional edge connectivity data to the index of each edge and maintain the

edge information as the kernel is executed, as shown in Figure 10.

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
from pyopencl . a lgor i thm import RadixSort

s o r t e dg e s = RadixSort (ctx ,
””” g l o b a l i n t ∗edge1 , g l o b a l i n t ∗edge2 ,

g l o b a l i n t ∗ t r i , g l o b a l i n t ∗ s i d e ””” ,
key expr=”edge1 [i] ” ,
so r t arg names=[” edge1 ” ,” edge2 ” ,” t r i ” ,” s i d e ”])

(e1 , e0 , t , s) , evt = so r t e dg e s (edges1 . r av e l () , edges0 . r av e l () ,
t r iang le num . r av e l () , edge num . r av e l ())

(e0 s r t ed , e1 s r t ed , t r i , s i d e) , evt = so r t e dg e s (e0 , e1 , t , s)

p r i n t ” Sorted Edge L i s t : ”
p r i n t e 0 s r t e d
p r in t e 1 s r t e d
p r in t t r i
p r i n t s i d e
p r i n t

Figure 10: Sorting the Edge List

Edge Connectivity Data

Within the algorithms described above, connectivity of the edges to the triangles

is obtained and carried through the sorting algorithms through the use of segmented

scans. Further, the connectivity obtained is that from the edge to the triangle on

which it lies and the enumeration of the edge on the triangle. While looping over

22

the node information of each triangle in the Loo.py kernel, the scan simultaneously

created arrays to record the triangle number to which each edge is associated and

the local edge number of the edge on the triangle: either side 0, 1, or 2. In other

words, the connectivity obtained here represents where the edge is located globally

in the mesh by which triangle it lies on as well as where the edge is located locally

on its triangle by enumerating the three sides of the triangle and recording which of

the three sides of the triangle is represented by the edge.

Unique Edges

Once the edges have been sorted, it follows that to remove any duplicate edges in

the list, one need only to check each edge against the edges listed immediately before

and after it to ensure it is unique. These duplicate edges arise in the list because

of the method in which the edges were enumerated; the Loo.py kernel traversed

over each triangle for its edges, so if two triangles shared an edge, that edge will

be duplicated in the list. With the implementation of a ReductionKernel, shown in

Figure 11, this operation may thus be performed to create a unique edge list separate

from the original enumerated list. Because of this, the kernel only uses the two arrays

composing the edge list as its arguments to create the unique list, keeping in mind

that the edge connectivity information would not apply in this context as many of

the edges are not unique to a single triangle.

23

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
from pyopencl . r educt i on import ReductionKernel
from pyopencl . scan import GenericScanKernel

unique = ReductionKernel (ctx , np . int32 , neu t ra l =”0” ,
reduce expr=”a+b” ,
map expr=”((i==0) | | (x [i] !=x [i −1]) | | (y [i] !=y [i −1])) ? 1 : 0” ,
arguments=””” g l o b a l i n t ∗x , g l o b a l i n t ∗y”””)

remove dup l i ca te s = GenericScanKernel (ctx , np . int32 ,
””” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,

g l o b a l i n t ∗ f i n a l 0 , g l o b a l i n t ∗ f i n a l 1 ,
g l o b a l i n t ∗ index ””” ,

input expr=”””
((i==0) | | (x [i] !=x [i −1]) | | (y [i] !=y [i −1])) ? 1 : 0””” ,
scan expr=”a+b” , neu t ra l =”0” ,
output statement=”””

i f ((prev i tem != item))
{ f i n a l 0 [item−1] = x [i] ;
f i n a l 1 [item−1] = y [i] ;
index [item−1] = i ;}”””)

keys = unique (e 0 s r t e d . r av e l () , e 1 s r t e d . r av e l ())

num edges = keys . get ()
f i n a l 0 = np . z e r o s (num edges , dtype=np . in t32)
f i n a l 1 = np . z e r o s (num edges , dtype=np . in t32)
ind = np . z e r o s (num edges , dtype=np . in t32)
f i n a l 0 = c l a r r a y . t o d ev i c e (queue , f i n a l 0)
f i n a l 1 = c l a r r a y . t o d ev i c e (queue , f i n a l 1)
index = c l a r r a y . t o d ev i c e (queue , ind)

remove dup l i ca te s (e 0 s r t e d . r av e l () , e 1 s r t e d . r av e l () , f i n a l 0 ,
f i n a l 1 , index) ;

p r i n t ”Unique Edge L i s t : ”
p r i n t f i n a l 0
p r i n t f i n a l 1
p r i n t index
pr in t

Figure 11: The Unique Edge List

24

Shared Edges

From the data of the enumerated edge list and edge connectivity data, a Gener-

icScanKernel may then be performed with said data as its arguments to detail the

connectivity between triangles that share an edge. This kernel will thus be able to

scan over the enumerated edge list for the duplicate edges that indicate a shared

edge between triangles as the edge is listed for each triangle it lies on. This infor-

mation is then recorded into a matrix with each row representing the corresponding

enumerated triangle, and each of the three columns representing the three edges of

that triangle. If a triangle edge is not shared with another triangle, a −1 is stored

for that edge in the matrix. Then, if the edge is a shared edge, the number of the

triangle of which that edge is shared is stored at the corresponding matrix location.

The implementation of this kernel is shown in Figure 12.

25

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
from pyopencl . scan import GenericScanKernel

t r i a n g l e e d g e s = GenericScanKernel (ctx , np . int32 ,
””” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,

g l o b a l i n t ∗ t r i , g l o b a l i n t ∗ s ide ,
g l o b a l i n t ∗ t e s t ””” ,

input expr=”””
((i==0) | | (x [i] !=x [i −1]) | | (y [i] !=y [i −1])) ? 1 : 0””” ,
scan expr=”a+b” , neu t ra l =”0” ,
output statement=”””

i f ((prev i tem==item))
{ t e s t [(3∗ t r i [i −1])+s i d e [i −1]] = t r i [i] ;
t e s t [(3∗ t r i [i])+s i d e [i]] = t r i [i −1] ;}”””)

t e s t = np . ones ([i n t (n e l s [0]) , 3] , dtype=np . in t32)
t e s t = t e s t ∗ (−1)
t e s t 1 = c l a r r a y . t o d ev i c e (queue , t e s t)

t r i a n g l e e d g e s (e 0 s r t e d . r av e l () , e 1 s r t e d . r av e l () , t r i , s ide ,
t e s t 1 . r av e l ()) ;

np . reshape (te s t1 , (i n t (n e l s [0]) , 3))

p r i n t ”Shared Edges Among Tr iang l e s : ”
p r i n t t e s t 1
p r i n t

Figure 12: Shared Edge Triangle Connectivity List

Node-to-Node Connectivity

The node-to-node connectivity can then be represented similar to the enumerated

edge list by constructing two arrays with the nodes of the first array associated to the

corresponding nodes of the second array as being connected by an edge. The unique

26

edge list can therefore be seen as half of this connectivity by representing one node

connectivity for each edge going from lower to higher enumerated node. Thus, the

full connectivity list can be created by appending an inverted edge list from higher to

lower node connectivity to the original edge list using an ElementwiseKernel shown in

Figure 13. The final step would then be to sort the new list using the same RadixSort

kernel used to originally sort the edge list.

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
from pyopencl . e lementwise import ElementwiseKernel
from pyopencl . a lgor i thm import RadixSort

doub le edges = ElementwiseKernel (ctx , ””” g l o b a l i n t ∗ed0 ,
g l o b a l i n t ∗ed1 , g l o b a l i n t ∗x ,
g l o b a l i n t ∗y , g l o b a l i n t s i z e ””” ,

opera t i on=””” i f (i<s i z e) {
ed0 [i]=x [i] ;
ed1 [i]=y [i] ; }

e l s e { ed0 [i]=y [i−s i z e] ;
ed1 [i]=x [i−s i z e] ; } ” ” ”)

double0 = np . z e ro s (num edges ∗2 , dtype=np . in t32)
double1 = np . z e ro s (num edges ∗2 , dtype=np . in t32)
double 0 = c l a r r a y . t o d ev i c e (queue , double0)
double 1 = c l a r r a y . t o d ev i c e (queue , double1)
doub le edges (double 0 , double 1 , f i n a l 0 , f i n a l 1 , num edges)

(d1 , d0 , x , y) , evt = so r t e dg e s (double 1 . r av e l () , double 0 . r av e l () ,
double 0 . r av e l () , double 0 . r av e l ())

(d0 sr ted , d1 sr ted , t rash x , t r a sh y) , evt = so r t e dg e s (d0 , d1 , x , y)

p r i n t ”Nodes : ” , d0 s r t ed
p r in t ”Neighbors : ” , d1 s r t ed
p r in t

Figure 13: Node to Node Connectivity List

27

Node-to-Triangle Connectivity

In this last implementation, the node to triangle connectivity shall be constructed

in the form of two arrays with the first containing the nodes and the second containing

the corresponding triangle numbers on which the nodes lie. For nodes connected to

multiple triangles, they shall appear in the list for every time they are found on a

unique triangle. This implementation shown in Figure 14 is achieved by means of

an ElementwiseKernel that will traverse the enumerated edge list to create an array

displaying the three nodes of each triangle in order by triangle number. To this may

then be associated the triangle number array from the edge location data as it will

correctly associate each node to its corresponding triangle. From here the last step

is then to sort the connectivity list first in order by node and then by triangle so

that the final connectivity list will display the nodes in enumerated order with all the

triangles they lie on.

28

import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
from pyopencl . e lementwise import ElementwiseKernel
from pyopencl . a lgor i thm import RadixSort

surround = ElementwiseKernel (ctx , ” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,
g l o b a l i n t ∗nhbr ” ,

opera t i on=””” i f (i%3==1){
nhbr [i]=y [i] ; }
e l s e {nhbr [i]=x [i] ; } ” ” ”)

nhbr = np . z e r o s (i n t (n e l s [0]) ∗3 , dtype=np . in t32)
ne ighbor = c l a r r a y . t o d ev i c e (queue , nhbr)

surround (edges0 . r av e l () , edges1 . r av e l () , ne ighbor)

(tnum , n , x , y) , evt = so r t e dg e s (t r iang le num . r av e l () , neighbor ,
neighbor , ne ighbor)

(e nhbr , t nhbr , t rash x , t r a sh y) , evt = so r t e dg e s (n , tnum , x , y)

p r i n t ”Surrounding Tr i ang l e s : ” , t nhbr
p r i n t ”Nodes : ” , e nhbr
p r i n t

Figure 14: Node to Triangle Connectivity List

29

CHAPTER FOUR

Constructing the Stiffness Matrix

In this final chapter I shall explore constructing elementwise stiffness matrices for

the Galerkin Method based upon the triangular mesh connectivity implemented in

the previous chapter. This construction can be implemented efficiently by means of a

Loo.py kernel that will traverse the mesh over each triangle so that the basis functions

need only be calculated once on a reference triangle then transformed by a change

of variables for each subsequent triangle. In this way, each triangle’s contribution to

the matrix may be calculated by transforming the reference data. This chapter will

outline such implementation for the element stiffness matrix and discuss its applica-

tion to shared memory platforms in which it may be used to numerically solve partial

differential equations.

Element Stiffness Matrix

The construction of the stiffness matrix is invaluable to the Galerkin Method in

solving partial differential equations, but there is more than one way in which this

can be implemented. For example, the stiffness matrix can be constructed by looping

over each element of the matrix to be calculated by Kij =
∑t

k=1

∫
Tk
κ 5 φj · 5φi,

where each i, j pair represents an element of the matrix, φi and φj are basis functions

for the mesh approximating subspace, and Tk is the triangle in the mesh to which the

basis functions correspond in reference to the current element of stiffness matrix

30

K is being calculated. The downside to this method of calculation is that the basis

functions for each triangle in the mesh must be calculated multiple times as they

contribute to many elements of the stiffness matrix.

Instead of looping over the i, j pairs of the matrix for calculation, we thus chose

to loop over each triangle in the mesh to compute the element stiffness matrices

for each triangle in the mesh so that each triangle’s basis functions need only to be

calculated once without needing to store them. With each triangle having a basis

function corresponding to each of its three vertices, each element stiffness matrix will

thus be a 3 × 3 matrix to account for all combinations of the basis functions. Each

element of the element stiffness matrix can then be calculated as
∫
Tk
κ5φj ·5φi with

basis functions {φ1, φ2, φ3} over each triangle Tk in the mesh. [3]

Reference Triangle

The use of a reference triangle, shown in Figure 15, in the matrix calculations

will greatly improve the efficiency of our implementation by only having to directly

compute basis functions φ1, φ2, and φ3 once for the reference triangle and then used

on the triangles in the mesh by means of transformation. Each basis function can be

represented in the form φi(x, y) = ai+bix+ciy for (x, y) coordinates in the respective

triangle of the mesh. The three basis functions for the reference triangle can then be

calculated by solving the matrix equation:1 x0 y0

1 x1 y1

1 x2 y2

 a0 a1 a2

b0 b1 b2

c0 c1 c2

 =

1 0 0
0 1 0
0 0 1


where (x0, y0) = (0, 0), (x1, y1) = (1, 0), and (x2, y2) = (0, 1). By solving the matrix

equation, the three basis functions are solved to be:

31

Figure 15: Reference Triangle

φ0(x, y) = 1− x− y

φ1(x, y) = x

φ2(x, y) = y

After which, the gradients of the basis functions can be calculated to be the following:

5φ0 =

[
−1
−1

]
5φ1 =

[
1
0

]
5φ2 =

[
0
1

]
Now that we have the basis functions for the reference triangle calculated, we may

begin our computations for the element stiffness matrices over the mesh triangles. [3]

Matrix Computation

Now each element stiffness matrix can be computed through the transformation of

elements from the reference triangle to each triangle in the mesh. Therefore, instead

of calculating
∫
Tk
κ5φj ·5φi, a change of variables must be performed on the integral,

giving us
∫
TR
|det(J)|κ(J−T 5 γj) · (J−T 5 γi), where γ is the transformation of basis

φ and J is the Jacobian of the triangle. The formula for the change of variables of

the basis functions defined in the previous section on the reference triangle is thus:

γi(s, t) = (a+ bx0 + cy0) + (b(x1 − x0) + c(y1 − y0))s+ (b(x2 − x0) + c(y2 − y0))t

Thus, the gradient of the transformed basis function can easily be defined by:

32

5γi =

[
(b(x1 − x0) + c(y1 − y0))
(b(x2 − x0) + c(y2 − y0))

]
Then, from Jacobian

J =

[
x1 − x0 x2 − x0

y1 − y0 y2 − y0

]
,

we can calculate the following:

|det(J)| = |(x1 − x0)(y2 − y0)− (y1 − y0)(x2 − x0)|

J−T =

[
y2 − y0 y0 − y1

x0 − x2 x1 − x0

]
For this project, we have chosen to implement the simple case of linear polyno-

mials on a triangular matrix as our approximating subspace. This means that the

basis functions must also be linear so that the gradients of the basis functions are

constants and can be pulled out from the integral so that we now have the equation

|det(J)|(J−T 5 γj) · (J−T 5 γi)
∫
TR
κ to calculate matrix elements. In the scope of

this project under our current construction, κ = 1 so that each element of element

stiffness matrix K can be calculated by Kji = |det(J)|(J−T 5 γj) · (J−T 5 γi) with

j, i = 0, 1, 2. [3]

Implementation

In order to traverse over each triangle in the mesh, generating a matrix for each

triangle, I will thus be using a Loo.py kernel to perform these calculations given the

proper bounds to loop over each triangle. Thus, the kernel will have three tiers in the

loop structure with the outermost loop traversing over the triangles in the mesh and

the two inner loops traversing through all possible i, j pairs to calculate the elements

for each element stiffness matrix. First, in order to execute these calculations, I need

access to the coordinates to the nodes in the mesh. As mentioned in Chapter Three,

33

these coordinates are stored in the .node file and must be inputted into an accessible

list that can then be sent as an argument to the Loo.py kernel. This implementation

is shown in Figure 16.

import loopy as lp
import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
import types as ty

loop b = ”{ [c , i , j] : 0 <= c < t r i and 0 <= i < 3 and 0 <= j < 3}”

k e r n e l c = ”””
<> d = fabs ((inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) ∗ (inc [c e l l s [c , 2] , 1]

− i n c [c e l l s [c , 0] , 1]) − (inc [c e l l s [c , 1] , 1] − i n c [c e l l s [c , 0] , 1]) ∗
(inc [c e l l s [c , 2] , 0] − i n c [c e l l s [c , 0] , 0])) { id=det , inames=c : i : j }

<> J 0 = (inc [c e l l s [c , 2] , 1] − i n c [c e l l s [c , 0] , 1]) / d { id=ja , dep=det ,
inames=c : i : j }

<> J 1 = (inc [c e l l s [c , 0] , 1] − i n c [c e l l s [c , 1] , 1]) / d { id=jb , dep=det ,
inames=c : i : j }

<> J 2 = (inc [c e l l s [c , 0] , 0] − i n c [c e l l s [c , 2] , 0]) / d { id=jc , dep=det ,
inames=c : i : j }

<> J 3 = (inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) / d { id=jd , dep=det ,
inames=c : i : j }

<> dqidx = b [i , 0] ∗ (inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) + b [i , 1] ∗
(inc [c e l l s [c , 1] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qix , inames=c : i : j }

<> dqidy = b [i , 0] ∗ (inc [c e l l s [c , 2] , 0] − i n c [c e l l s [c , 0] , 0]) + b [i , 1] ∗
(inc [c e l l s [c , 2] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qiy , inames=c : i : j }

<> dqjdx = b [j , 0] ∗ (inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) + b [j , 1] ∗
(inc [c e l l s [c , 1] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qjx , inames=c : i : j }

<> dqjdy = b [j , 0] ∗ (inc [c e l l s [c , 2] , 0] − i n c [c e l l s [c , 0] , 0]) + b [j , 1] ∗
(inc [c e l l s [c , 2] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qjy , inames=c : i : j }

K[c , i , j] = d ∗ ((J 0 ∗dqidx + J 1 ∗dqidy) ∗(J 0 ∗dqjdx + J 1 ∗dqjdy) +
(J 2 ∗dqidx + J 3 ∗dqidy) ∗(J 2 ∗dqjdx + J 3 ∗dqjdy))
{ id=mat , dep=det : j a : jb : j c : jd : q ix : q iy : qjx : qjy , inames=c : i : j }

”””

argmt = [lp . ValueArg (” t r i ” , np . in t32) ,
lp . ValueArg (” coord ” , np . in t32) ,
lp . GlobalArg (” c e l l s ” , np . int32 , shape=(” t r i ” , 3)) ,
lp . GlobalArg (”b” , np . f l oa t32 , shape=(3 , 2)) ,
lp . GlobalArg (” inc ” , np . f l oa t32 , shape=(”coord ” , 2)) ,
lp . GlobalArg (”K” , np . f l oa t32 , shape=(” t r i ” , 3 , 3))]

kn = lp . make kernel (loop b , ke rne l c , argmt ,
assumptions=”t r i >=1”)

34

cons t ruc t = lp . CompiledKernel (ctx , kn)

g = open (’ l i t t l e b o x . node ’ , ’ r ’)
ind = g . r e ad l i n e ()
ind = ind . s p l i t ()
i n d i c e s = np . z e ro s ((i n t (ind [0]) , 2) , dtype=np . f l o a t 3 2)

f o r y in range (0 , i n t (ind [0])) :
l i n e = g . r e ad l i n e ()
l i n e = l i n e . s p l i t ()
i n d i c e s [y , 0 : 2] = map(ty . FloatType , l i n e [1 : 3])

K = np . z e ro s ((i n t (n e l s [0]) , 3) , dtype=np . f l o a t 3 2)
u = np . ones ((3 , 1) , dtype=np . f l o a t 3 2)
b = np . z e r o s ((3 , 2) , dtype=np . f l o a t 3 2)
b [0] [0]= −1 ;
b [0] [1]= −1 ;
b [1] [0] = 1 ;
b [2] [1] = 1 ;
q = np . z e ro s ((3 , 2) , dtype=np . f l o a t 3 2)
J = np . z e ro s ((2 , 2) , dtype=np . f l o a t 3 2)

evt , (s t i f f n e s s m a t r i x) = cons t ruc t (queue ,
b=b ,
c e l l s=c e l l s ,
i nc=ind i c e s ,
t r i=in t (n e l s [0]) ,
coord=in t (ind [0]) ,
out hos t=False)

35

Figure 16: Element Stiffness Matrix Implmentation

Application and Conclusion

In our implementation, we now have element stiffness matrices for solving partial

differential equations with the Galerkin Finite Element Method over the approxi-

mating subspace of linear piecewise polynomials defined on a triangular mesh. This

implementation was executed under shared memory parallel computing within the

PyOpenCL package to reduce the runtime of execution and explore such computa-

tion applied to devices with parallel computing capabilities. With the final result of

this project being element stiffness matrices, we have thus established the beginning

framework for solving a finite element method in parallel.

From here, the stiffness matrix and load vector can be computed to solve for a

best approximation to the true solution as one possible application. Alternatively,

36

the stiffness matrix can be computed iteratively with approximations of the gradient

of solution u to converge to the best approximation. From these results and the

principles used to arrive at this implementation, parallelism can be similarly applied

to various other finite element methods, including methods in higher dimensions.

Therefore, with the foundational implementation complete, we are able to observe the

principles of parallel computing in actions through our implementation and discover

the application of this foundation that can be built upon and applied to various finite

element methods.

37

APPENDICES

38

APPENDIX A

Example .ele and .node Files

Example .ele File

2 3 0

0 0 1 2

1 1 2 3

Example .node File

4 2 0 1

0 0 0 1

1 1 0 1

2 0 1 1

3 1 1 1

39

APPENDIX B

Implementation Source Code

import loopy as lp
import numpy as np
import pyopencl as c l
import pyopencl . array as c l a r r a y
import types as ty
import cmath as mth
from pyopencl . a lgor i thm import RadixSort
from pyopencl . scan import GenericScanKernel
from pyopencl . a lgor i thm import c opy i f
from pyopencl . r educt i on import ReductionKernel
from pyopencl . e lementwise import ElementwiseKernel

ctx = c l . c r ea t e some contex t ()
queue = c l .CommandQueue(ctx ,

p r op e r t i e s=
c l . command queue propert ies .PROFILING ENABLE)

loop bounds = ”{ [c , i , j] : 0 <= c < ne l s and 0 <= i < 3 and i < j < 3}”

ke rne l c ode = ”””
<> ed = 0 { inames=c , id=i n i t e d }
edges0 [c , ed] = c e l l s [c , i] { id=wri te v0 , dep=in i t e d , inames=c : i : j }
edges1 [c , ed] = c e l l s [c , j] { id=wri te v1 , dep=in i t e d , inames=c : i : j }
t r iang le num [c , ed] = c { id=write v2 , dep=in i t e d , inames=c : i : j }
edge num [c , ed] = j+i−1 { id=write v3 , dep=in i t e d , inames=c : i : j }
ed = ed + 1 {dep=wr i t e v0 : wr i t e v1 : wr i t e v2 : wr i te v3 , inames=c : i : j }
”””

args = [lp . ValueArg (” n e l s ” , np . in t32) ,
lp . GlobalArg (” c e l l s ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” edges0 ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” edges1 ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” tr iang le num ” , np . int32 , shape=(” ne l s ” , 3)) ,
lp . GlobalArg (” edge num” , np . int32 , shape=(” ne l s ” , 3))]

knl = lp . make kernel (loop bounds ,
ke rne l code ,
args ,
assumptions=”ne l s >=1”)

cknl = lp . CompiledKernel (ctx , knl)

40

l oop b = ”{ [c , i , j] : 0 <= c < t r i and 0 <= i < 3 and 0 <= j < 3}”

k e r n e l c = ”””
<> d = fabs ((inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) ∗ (inc [c e l l s [c , 2] , 1]

− i n c [c e l l s [c , 0] , 1]) − (inc [c e l l s [c , 1] , 1] − i n c [c e l l s [c , 0] , 1]) ∗
(inc [c e l l s [c , 2] , 0] − i n c [c e l l s [c , 0] , 0])) { id=det , inames=c : i : j }

<> J 0 = (inc [c e l l s [c , 2] , 1] − i n c [c e l l s [c , 0] , 1]) / d { id=ja , dep=det ,
inames=c : i : j }

<> J 1 = (inc [c e l l s [c , 0] , 1] − i n c [c e l l s [c , 1] , 1]) / d { id=jb , dep=det ,
inames=c : i : j }

<> J 2 = (inc [c e l l s [c , 0] , 0] − i n c [c e l l s [c , 2] , 0]) / d { id=jc , dep=det ,
inames=c : i : j }

<> J 3 = (inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) / d { id=jd , dep=det ,
inames=c : i : j }

<> dqidx = b [i , 0] ∗ (inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) + b [i , 1] ∗
(inc [c e l l s [c , 1] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qix , inames=c : i : j }

<> dqidy = b [i , 0] ∗ (inc [c e l l s [c , 2] , 0] − i n c [c e l l s [c , 0] , 0]) + b [i , 1] ∗
(inc [c e l l s [c , 2] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qiy , inames=c : i : j }

<> dqjdx = b [j , 0] ∗ (inc [c e l l s [c , 1] , 0] − i n c [c e l l s [c , 0] , 0]) + b [j , 1] ∗
(inc [c e l l s [c , 1] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qjx , inames=c : i : j }

<> dqjdy = b [j , 0] ∗ (inc [c e l l s [c , 2] , 0] − i n c [c e l l s [c , 0] , 0]) + b [j , 1] ∗
(inc [c e l l s [c , 2] , 1] − i n c [c e l l s [c , 0] , 1]) { id=qjy , inames=c : i : j }

K[c , i , j] = d ∗ ((J 0 ∗dqidx + J 1 ∗dqidy) ∗(J 0 ∗dqjdx + J 1 ∗dqjdy) +
(J 2 ∗dqidx + J 3 ∗dqidy) ∗(J 2 ∗dqjdx + J 3 ∗dqjdy))
{ id=mat , dep=det : j a : jb : j c : jd : q ix : q iy : qjx : qjy , inames=c : i : j }

”””

argmt = [lp . ValueArg (” t r i ” , np . in t32) ,
lp . ValueArg (” coord ” , np . in t32) ,
lp . GlobalArg (” c e l l s ” , np . int32 , shape=(” t r i ” , 3)) ,
lp . GlobalArg (”b” , np . f l oa t32 , shape=(3 , 2)) ,
lp . GlobalArg (” inc ” , np . f l oa t32 , shape=(”coord ” , 2)) ,
lp . GlobalArg (”K” , np . f l oa t32 , shape=(” t r i ” , 3 , 3))]

kn = lp . make kernel (loop b ,
ke rne l c ,
argmt ,
assumptions=”t r i >=1”)

cons t ruc t = lp . CompiledKernel (ctx , kn)

so r t 1 = ElementwiseKernel (ctx , ” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,
g l o b a l i n t temp” ,

opera t i on=””” i f (x [i]>y [i]) {
temp = x [i] ;
x [i] = y [i] ;
y [i] = temp ;}”””)

doub le edges = ElementwiseKernel (ctx ,
””” g l o b a l i n t ∗ed0 , g l o b a l i n t ∗ed1 ,

g l o b a l i n t ∗x , g l o b a l i n t ∗y ,
g l o b a l i n t s i z e ””” ,

41

opera t ion=””” i f (i<s i z e) {
ed0 [i]=x [i] ;
ed1 [i]=y [i] ; }
e l s e { ed0 [i]=y [i−s i z e] ;
ed1 [i]=x [i−s i z e] ; } ” ” ”)

s o r t e dg e s = RadixSort (ctx ,
””” g l o b a l i n t ∗edge1 , g l o b a l i n t ∗edge2 ,

g l o b a l i n t ∗ t r i , g l o b a l i n t ∗ s i d e ””” ,
key expr=”edge1 [i] ” ,
so r t arg names=[” edge1 ” , ” edge2 ” , ” t r i ” , ” s i d e ”])

unique = ReductionKernel (ctx , np . int32 , neu t ra l =”0” , reduce expr=”a+b” ,
map expr=”((i==0) | | (x [i] !=x [i −1]) | | (y [i] !=y [i −1])) ? 1 : 0” ,
arguments=””” g l o b a l i n t ∗x , g l o b a l i n t ∗y”””)

remove dup l i ca te s = GenericScanKernel (ctx , np . int32 ,
””” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,

g l o b a l i n t ∗ f i n a l 0 ,
g l o b a l i n t ∗ f i n a l 1 ,
g l o b a l i n t ∗ index ””” ,

input expr=”””
((i==0) | | (x [i] !=x [i −1]) | |
(y [i] !=y [i −1])) ? 1 : 0””” ,

scan expr=”a+b” ,
neu t ra l =”0” ,
output statement=”””

i f ((prev i tem != item))
{ f i n a l 0 [item−1] = x [i] ;
f i n a l 1 [item−1] = y [i] ;
index [item−1] = i ;}”””)

t r i a n g l e e d g e s = GenericScanKernel (ctx , np . int32 ,
””” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,

g l o b a l i n t ∗ t r i , g l o b a l i n t ∗ s ide ,
g l o b a l i n t ∗ t e s t ””” ,

input expr=”””
((i==0) | | (x [i] !=x [i −1]) | |
(y [i] !=y [i −1])) ? 1 : 0””” ,

scan expr=”a+b” ,
neu t ra l =”0” ,
output statement=”””

i f ((prev i tem==item))
{ t e s t [(3∗ t r i [i −1])+s i d e [i −1]] = t r i [i] ;
t e s t [(3∗ t r i [i])+s i d e [i]] = t r i [i −1] ;}”””)

surround = ElementwiseKernel (ctx , ” g l o b a l i n t ∗x , g l o b a l i n t ∗y ,
g l o b a l i n t ∗nhbr ” ,

opera t i on=””” i f (i%3==1){
nhbr [i]=y [i] ; }
e l s e {nhbr [i]=x [i] ; } ” ” ”)

42

f = open (’ l i t t l e b o x . e l e ’ , ’ r ’)
n e l s = f . r e ad l i n e ()
n e l s = ne l s . s p l i t ()
c e l l s = np . z e ro s ((i n t (n e l s [0]) , 3) , dtype=np . in t32)

f o r x in range (0 , i n t (n e l s [0])) :
l i n e = f . r e ad l i n e ()
l i n e = l i n e . s p l i t ()
c e l l s [x , :] = map(int , l i n e [1 :])

g = open (’ l i t t l e b o x . node ’ , ’ r ’)
ind = g . r e ad l i n e ()
ind = ind . s p l i t ()
i n d i c e s = np . z e ro s ((i n t (ind [0]) , 2) , dtype=np . f l o a t 3 2)

f o r y in range (0 , i n t (ind [0])) :
l i n e = g . r e ad l i n e ()
l i n e = l i n e . s p l i t ()
i n d i c e s [y , 0 : 2] = map(ty . FloatType , l i n e [1 : 3])

evt , (edges0 , edges1 , tr iangle num , edge num) = cknl (queue ,
n e l s=l en (c e l l s) ,
c e l l s=c e l l s ,
out hos t=False)

temp = 0
so r t1 (edges0 . r av e l () , edges1 . r av e l () , temp)

(e1 , e0 , t , s) , evt = so r t e dg e s (edges1 . r av e l () , edges0 . r av e l () ,
t r iang le num . r av e l () , edge num . r av e l ())

(e0 s r t ed , e1 s r t ed , t r i , s i d e) , evt = so r t e dg e s (e0 , e1 , t , s)

keys = unique (e 0 s r t e d . r av e l () , e 1 s r t e d . r av e l ())

num edges = keys . get ()
f i n a l 0 = np . z e r o s (num edges , dtype=np . in t32)
f i n a l 1 = np . z e r o s (num edges , dtype=np . in t32)
inc = np . z e r o s (num edges , dtype=np . in t32)
f i n a l 0 = c l a r r a y . t o d ev i c e (queue , f i n a l 0)
f i n a l 1 = c l a r r a y . t o d ev i c e (queue , f i n a l 1)
index = c l a r r a y . t o d ev i c e (queue , inc)

r emove dup l i ca te s (e 0 s r t e d . r av e l () , e 1 s r t e d . r av e l () , f i n a l 0 , f i n a l 1 ,
index) ;

p r i n t ”Edge L i s t : ”
p r i n t edges0 . r av e l ()
p r i n t edges1 . r av e l ()
p r i n t t r iang le num . r av e l ()
p r i n t edge num . r av e l ()
p r i n t

43

pr in t ” Sorted Edge L i s t : ”
p r i n t e 0 s r t e d
p r in t e 1 s r t e d
p r in t t r i
p r i n t s i d e
p r i n t

p r i n t ”Unique Edge L i s t : ”
p r i n t f i n a l 0
p r i n t f i n a l 1
p r i n t index
pr in t

#Tr iang le Shared Edges
t e s t = np . ones ([i n t (n e l s [0]) , 3] , dtype=np . in t32)
t e s t = t e s t ∗ (−1)
t e s t 1 = c l a r r a y . t o d ev i c e (queue , t e s t)

t r i a n g l e e d g e s (e 0 s r t e d . r av e l () , e 1 s r t e d . r av e l () , t r i , s ide ,
t e s t 1 . r av e l ()) ;

np . reshape (te s t1 , (i n t (n e l s [0]) , 3))
p r i n t ”Shared Edges Among Tr iang l e s : ”
p r i n t t e s t 1
p r i n t

double0 = np . z e ro s (num edges ∗2 , dtype=np . in t32)
double1 = np . z e ro s (num edges ∗2 , dtype=np . in t32)
double 0 = c l a r r a y . t o d ev i c e (queue , double0)
double 1 = c l a r r a y . t o d ev i c e (queue , double1)
doub le edges (double 0 , double 1 , f i n a l 0 , f i n a l 1 , num edges)

(d1 , d0 , x , y) , evt = so r t e dg e s (double 1 . r av e l () , double 0 . r av e l () ,
double 0 . r av e l () , double 0 . r av e l ())

(d0 sr ted , d1 sr ted , t rash x , t r a sh y) , evt = so r t e dg e s (d0 , d1 , x , y)

p r i n t ”Nodes : ” , d0 s r t ed
p r in t ”Neighbors : ” , d1 s r t ed
p r in t

nhbr = np . z e r o s (i n t (n e l s [0]) ∗3 , dtype=np . in t32)
ne ighbor = c l a r r a y . t o d ev i c e (queue , nhbr)

surround (edges0 . r av e l () , edges1 . r av e l () , ne ighbor)

(n , tnum , x , y) , evt = so r t e dg e s (neighbor , t r iang le num . r av e l () ,
neighbor , ne ighbor)

(t nhbr , e nhbr , t rash x , t r a sh y) , evt = so r t e dg e s (tnum , n , x , y)

p r i n t ”Surrounding Tr i ang l e s : ” , t nhbr
p r i n t ”Nodes : ” , e nhbr
p r i n t

44

K = np . z e ro s ((i n t (n e l s [0]) , 3) , dtype=np . f l o a t 3 2)
u = np . ones ((3 , 1) , dtype=np . f l o a t 3 2)
b = np . z e r o s ((3 , 2) , dtype=np . f l o a t 3 2)
b [0] [0]= −1 ;
b [0] [1]= −1 ;
b [1] [0] = 1 ;
b [2] [1] = 1 ;
q = np . z e ro s ((3 , 2) , dtype=np . f l o a t 3 2)
J = np . z e ro s ((2 , 2) , dtype=np . f l o a t 3 2)

evt , (s t i f f n e s s m a t r i x) = cons t ruc t (queue ,
b=b ,
c e l l s=c e l l s ,
i nc=ind i c e s ,
t r i=in t (n e l s [0]) ,
coord=in t (ind [0]) ,
out hos t=False)

p r i n t ”Element s t i f f n e s s matr i ce s : ”
p r i n t s t i f f n e s s m a t r i x

45

46

BIBLIOGRAPHY

[1] G. E. Blelloch. Prefix sums and their applications.

[2] L. Howes Gaster, B. and D. R. Kaeli. Heterogeneous Computing with OpenCL.
 Morgan Kaufmann, 2012.

[3] M. S. Gockenbach. Understanding and Implementing the Finite Element Method.
 Society for Industrial and Applied Mathematics, 2006.

[4] G. Hillar. Easy OpenCL with Python. Dr. Dobb’s, UBM Tech, October 2013.

[5] Khronos Group. OpenCL Documentation, 2.0 edition, 2014.

[6] A. Klöckner. Loo.py: transformation-based code generation for GPUs and CPUs.
 In Proceedings of ARRAY ‘14: ACM SIGPLAN Workshop on Libraries, Lan
 guages, and Compilers for Array Programming, Edinburgh, Scotland., 2014. As
 sociation for Computing Machinery.

[7] A. Klöckner. PyOpenCL Documentation, 2013.2 edition, 2009.

[8] A. Logg. Efficient Representation of Computational Meshes, volume 4, pages
 283–295. 4 edition, 2001.

[9] T. Rauber and G. Rünger. Parallel Programming for Multicore and Cluster
 Systems. Springer-Verlag, Berlin, 2 edition, 2010.

[10] M. Scarpino. A Gentle Introduction to OpenCL. Dr. Dobb’s, UBM Tech, August
 2011.

[11] J. R. Shewchuk. Triangle: A Two-Dimensional Quality Mesh Generator and
 Delaunay Triangulator, 1.6 edition, July 2005.

47

	Thesis
	BIBLIOGRAPHY

