
ABSTRACT

Asymptotics for mean field games of market competition

Marcus A. Laurel

Director: P. Jameson Graber, Ph.D.

The goal of this thesis is to analyze the limiting behavior of solutions to a
system of mean field games developed by Chan and Sircar to model Bertrand and
Cournot competition. We first provide a basic introduction to control theory, game
theory, and ultimately mean field game theory. With these preliminaries out of the
way, we then introduce the model first proposed by Chan and Sircar, namely a cou-
pled system of two nonlinear partial differential equations. This model contains a
parameter ε that measures the degree of interaction between players; we are inter-
ested in the regime ε goes to 0. We then prove a collection of theorems which give
estimates on the limiting behavior of solutions as ε goes to 0 and ultimately obtain
recursive growth bounds of polynomial approximations to solutions. Finally, we state
some open questions for further research.
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CHAPTER ONE

Introductions of Pertinent Concepts

The goal of this chapter is to build the necessary framework required to un-

derstand mean field games mathematically and inuitively. It is broken up into three

sections: optimal control theory, game theory, and mean field games. Each section

will build on concepts explained in the previous sections.

Optimal Control Theory

The theory of optimal control is a product of the natural desire to achieve a

goal in the most effective and efficient way possible; we want the most, while using

the least. From a thermodynamic perspective, it would seem that the universe is

programmed toward optimization, always minimizing energy use in any given pro-

cess. The mathematical theory of optimal control does not seek to wrestle with the

philosophical implications of this, but rather seeks to define optimization problems

in a mathematically cogent way, and to eventually find solutions to these often-

complicated problems. The basic ideas and intuitions behind pertinent results from

optimal control theory will be presented here, but for a more detailed exposition of

optimal control theory, see Liberzon (2011).

To begin to define an optimal control problem, we first must define the control

system, given by

ẋ = f(t, x(t), α(t)), x(t0) = x0 (1)

Here, t is time; x is called the state and is a function of t with values in Rn; and

α is the control input and is likewise a function of t with its values in some control

space Ω ⊆ Rm. t0 is the starting or initial time, making x0 the initial state. Thus,

this equation explains that the way a state changes over time is a function of time,
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the state itself at a given time, and some control input. The control input is the

mathematical representation of how we can influence and change the state of a sys-

tem. It is not enough to simply be able to define a dynamic system, but also explain

how we can alter it toward a certain end. For instance, we could model the state

of a rocket as it journies into orbit, however, this does not help us understand how

we could change its flight path to potentially minimize fuel costs. Thus, we need a

control input within the dynamic system that we are observing and want to optimize.

We have now defined a control system, but we need a mathematical represen-

tation of something to optimize. This leads to the cost functional J , given by:

J(α) =

∫ tf

t0

L(t, x(t), α(t)) dt+K(tf , xf ). (2)

Here we have tf , the final time, and xf , the final state (given by xf = x(tf )). L is the

running cost, also known as the Lagrangian. We can sete that for any t ∈ [t0, tf ], L

is the associated cost that depends on both the state and the control at time t, so as

time passes, our control system accrues a certain cost given by L. K is the terminal

cost and is a function that depends on only the final conditions. It is apparent that

the cost functional is dependent on t0, x0, tf , and α. However, depicting α as the

argument of J not only simplifies the notation, but also reinforces the fact that we

wish to minimize J over all α ∈ Ω. We now have the neccesary framework to mathe-

matically define the control problem: find some control, α∗ that minimizes (at least

locally) the cost functional J(α). From this understanding of a control problem, we

now seek to define the principle of optimality.

To understand where the principle of optimality comes from, we must slightly

shift our initial understanding of the problem at hand. Up to this point we have dis-

cussed the optimization problem as a forward-in-time process. However, it turns out

that approaching this problem from a backwards-in-time perspective simplifies the

process of checking for optimality. This can be intuitively understood by examining
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the discrete case, where the trajectory is now given by a path, {xk}Tk=0 ⊂ X, T ∈ N,

where k ∈ {0, 1, . . . T} represents a discrete time step. We also have decisions αk ∈ A,

where X and A are finite sets with N and M elements respectively. Going forward,

to find an optimal solution we would have to tediously examine and compare every

single possible path as k moves step-by-step from 0 to 1, from 1 to 2, eventually up

to T . Note that there are MTT additions required to evaluate a cost, since there are

MT possible paths and T time steps.

Starting at T and moving to T − 1, we still need to find the path and control

within this time step with the least cost (if two or more paths have the same least

cost, choose one at random). However, by the construction of this process, if a point

xk for some decision αk lies on an optimal path, then that path from k onwards must

be an optimal path with respect to k acting as the initial condition. This is the prin-

ciple of optimality for the discrete case, which ensures that there does not exist some

other trajectory made up of pieces of non-optimal paths that is more optimal than the

path found through this process. Note that there are now NMT additions required

to calculate cost, since there are T time steps and M possible decisions for N possible

path points to choose going from k+ 1 to k. Thus, computationally, approaching the

problem this way reduces the amount of work required to solve the problem.

To derive an infinitesimal version of the principle of optimality, we now re-

frame the cost functional given by (2) into this backwards-in-time approach:

J(t, x, α) =

∫ t1

t

L(s, x(s), α(s)) ds+K(t1, x(t1)). (3)

The cost functional is still dependent on α, but is now also dependent on t and x,

where x in the argument of J is fixed. From here, we define the value function:

u(t, x) := inf
α|[t,t1]

J(t, x, α). (4)
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The existence of a minimizer α∗ is not assumed, indicated by the use of an infimum,

taken over all controls α restricted to the interval [t, t1]. From this definition we can

see that u(t1, x) = K(x) ∀x ∈ Rn. Our optimization problem is now concerned with

minimizing cost functionals of the form (3). The principle of optimality is as follows:

∀(t, x) ∈ [t0, t1)× Rn and every ∆t ∈ (0, t1 − t],

u(t, x) = inf
α|[t,t+∆t]

{∫ t+∆t

t

L(s, x(s), α(s)) ds+ u(t+ ∆t, x(t+ ∆t))

}
, (5)

with x(·) corresponding to α|[t,t+∆t] and x(t) = x.

We are now ready to derive the Hamilton-Jacobi-Bellman (HJB) equation,

which is the differential form of the principle of optimality expressed in (5). Using

the chain rule and the relation in (1), we can write u
(
t+ ∆t, x(t+ ∆t)

)
as a first

order Taylor expansion centered at ∆t = 0,

u
(
t+ ∆t, x(t+ ∆t)

)
= u(t, x) + ut(t, x)∆t+Dxu(x, t) · f(t, x, α(t))∆t+ o(∆t) (6)

Assuming that L and α are continuous, we can see that

∫ t+∆t

t

L(s, x(s), α(s)) ds = L(t, x, α(t))∆t+ o(∆t). (7)

With the equalities given in (6) and (7), (5) can be written as

u(t, x) = inf
α|[t,t+∆t]

{
L(t, x, α(t))∆t+ u(t, x) + ut(t, x)∆t+

Dxu(t, x) · f(t, x, α(t))∆t+ o(∆t)
}
. (8)

Since u(t, x) and ut(t, x) are not dependent on α, they can be pulled out of the

infimum.
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We now divide through by ∆t, taking the limit as ∆t→ 0 to get

ut(t, x) + inf
α∈Ω

{
L(t, x, α(t)) +Dxu(t, x) · f(t, x, α(t))

}
= 0. (9)

Defining the Hamiltonian (a term that comes out of the calculus of variation)

H
(
t, x,−Dxu(t, x)

)
:= sup

α∈Ω

{
−Dxu · f(t, x, α)− L(t, x, α(t))

}
, (10)

we finally arrive at the HJB equation in its simplest form:

ut(t, x)−H
(
t, x,−Dxu(t, x)

)
= 0. (11)

The HJB equation can also be derived for a stochastic process, where the trajectory

is subject to random motion (Brownian motion). The control system is now given by

dx = f(t, x(t), α(t)) dt+ σ dW (t), (12)

which is the equation for Brownian motion. Here σ is a positive constant and dW (t)

is the Brownian motion. The second order HJB is subsequently given by

ut +
σ2

2
∆u−H

(
t, x,−Dxu(t, x)

)
= 0, (13)

where ∆ =
∑n

i=0
∂2

∂xi∂xi
is the Laplace operator, indicating a diffusion term. The

derivation for (13) is similar to that of (11), with the essential difference that we use

the Ito formula from stochastic calculus. See for example Øksendal (2003).

To summarize, starting with a dynamical system, one can frame it into the

context of a control system. The goal is then to find a certain control that minimizes

a cost functional. The solution is then embedded in the HJB equation, which is a
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PDE expressing the principle of optimality. These are the basic ideas of control theory

necessary to progress to the idea of a mathematical game.

Game Theory

Games have long been a part of the human tradition as a means of entertain-

ment, their history extending as far into the past as ancient Egypt. However, game

theory is a relatively modern mathematical discipline, with much of its formalism

coming out of the early and mid twentieth century (Myerson, 2013). The general

idea of a game is an activity where players operate under set rules to achieve a cer-

tain goal, either individually or cooperatively. Since the goal of any game is to “win,”

a natural question is how to find the best strategy that either guarantees, or statis-

tically improves chances of winning. More generally, a mathematical game is defined

as a social situation involving two or more players (Myerson, 2013). This could refer

to a game that is simply used as entertainment, but this definiton also allows for

applications in economics, where there exist multiple players competing to maximize

profit. It follows that game theory is the study of mathematical models of conflict

and cooperation between rational decision makers (Myerson, 2013). It is important

to consider only rational players, because the premise of a game is built on the fact

that those playing would not do something to hurt their own chances of winning.

With these ideas in mind, we can express a game in terms of the language of control

theory developed earlier. The concepts explained here only scratch the surface of the

vast and growing field of game theory. For a more detailed exposition on the subject,

see Myerson (2013) or Gibbons (1997).

In any game, there exist N players denoted by i ∈ {1, 2, . . . , N}. There is then

a control system for each player:

ẋi = fi(t, xi(t), αi(t)), xi(t0) = xi0 . (14)
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In this expression, each player’s trajectory, xi ∈ Rn, changes over time as a function of

time, the trajectory itself, and any decision at a given time, αi(t) ∈ Ωi ⊆ Rm, where

Ωi is the set of permissible decisions for player i. The associated cost functional for

a particular player is then given by:

Ji(α1, . . . , αN) =

∫ tf

t0

Li(t, x1(t), . . . , xN(t), α1(t), . . . , αN(t)) dt+Ki(tf , x1f , . . . , xfN ),

(15)

where xi(tf ) = xif . This expression can be thought of as an indication of a player’s

success. This is visibly more involved than the cost functional in (2), since, even if we

are examining one particular individual, we must still take into account every other

player’s trajectory as they make their own decisions. This is a result of the fact that

every player is rational; in an attempt to maximize their own success, each player is

playing in a way that considers how other players are playing. The cost functional in

(15) can be thought of as what players need to minimize in order to win, or at least

be the most successful. We now have an associated value function for a particular

player:

ui(t, x) = inf
αi∈Ωi

{
J(α1, . . . , αN)

}
=

inf
αi∈Ωi

{∫ tf

t0

Li(t, x1(t), . . . , xN(t), α1(t), . . . , αN(t)) dt+Ki(tf , x1f , . . . , xNf
)

}
, (16)

where x = (x1, . . . , xN). Notice that the infimum is taken over all possible decisions

that player i can make, which makes sense as player i cannot directly make decisions

for the other players; they can only react to the choices other players are making.

To undestand what a solution to a game might be, we must discuss the con-

cept of Nash equilibrium. Nash equilibrium refers to a state in which no one player

can unilaterally improve their situation (Gibbons, 1997). That is to say, a Nash
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equilibrium strategy is a collection of controls
{
α∗1(t), . . . , α∗N(t)

}
such that

Ji(α
∗
1, . . . , α

∗
N) = minαi∈Ωi

Ji

(
αi, (α

∗
j )j 6=i

)
, ∀i ∈ {1, . . . , N}, (17)

with
(
αi, (α

∗
j )j 6=i

)
=
(
α∗1, . . . , α

∗
i−1, αi, α

∗
i+1, . . . , α

∗
N

)
. The control α∗ =

(
α∗1, . . . , α

∗
N

)
is called a Nash point. It is important to note that a Nash equilibrium does not nec-

essarily exist. Similarly, this definition neither implies uniqueness of a Nash equlib-

rium, nor that this state is what is best for everyone. Nash equilibrium, if it exists

at all, is simply a state in which no one can singlehandedly improve their situation

by making any of their permissible decisions. That is, it could be the case that

Ji(α
∗
1, . . . , α

∗
N) 6= ui(t, xi) for some, or for all i ∈ {1, . . . , N}. Nash equilibrium is

a solution that takes into account every player. Since games are competitive, not

everyone can be a winner, however, we can look for the state in which no one can do

any better given their decisions able to be made. So, we can still have players who

are worse off than others, but there exists at least a stability associated with this

particular state; none of the players can gain more than they already have. This is

not a typical notion of “winning,” but it is the best way in which everyone can “win”

to some degree. Perhaps more pessimistically, there is solace in the fact that a player

is not losing as badly as they could be.

Recall that the HJB equation is a differential equation that describes the

principle of optimality, which loosely says that travelling backwards-in-time along

infintesimal paths that are optimal ensures that the entire path travelled is optimal

upon arriving at t0. To define a HJB equation for each player, we must define the

Hamiltonians. We say the set of Lagrangians, {Li}Ni=1, has a Nash point α∗ at x if

−∇ui · fi (x, α∗)− Li (x, α∗)

= min
αi∈Ωi

{
−∇ui · fi

(
x, αi, (α

∗
j )j 6=i

)
− Li

(
x, αi, (α

∗
j )j 6=i

)}
, ∀i ∈ {1, . . . , N}. (18)
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Note that ∇ui =
(
∂ui
∂x1
, . . . , ∂ui

∂xN

)
is the spatial gradient of ui. If such a point exists,

the Hamiltonian, Hi (x,−∇u1, . . . ,−∇uN), is defined as the system (18). We can

now express the HJB equation for each player:

∂tui(t, x) +
σ2

2
∆ui −Hi (x,−∇u1, . . . ,−∇uN) = 0 (19)

Here, ∆ui =
∑N

j=1
∂2ui
∂xj∂xj

=
∑N

j=1

∑n
k=1

∂2ui
∂xjk∂xjk

. It is important to mention that all

of the HJB equations are coupled together through nonlinearities in ∇ui, found in

the Hamiltonians, Hi. Since the equations in system (19) are all coupled together

through the spatial gradients of each player’s value function, it is apparent that as

each player’s trajectory changes, not only is their own value function affected, but

also the value functions of the other players. This reflects the idea that we are dealing

with rational players who will make logical decisions based off of the trajectories and

successes of the others in the game.

While it may be the case that each player’s trajectory affects the other players’

value functions, if we take the number of players N to infinity, the impact of any

one player on anyone else, and thus the entire system, becomes negligible. This is

analogous to many processes in physics where the microscopic view of any one particle

does little to inform about the macroscopic view of the entire system. For instance,

electrical current is made up of an astronomically large number of electrons moving

across a wire, yet any particular electron, because it is constantly colliding with

atoms in the wire, in sum is moving glacially slow across the length of the wire. It

turns out that this general physical concept of the microscipic trivially informing the

macroscopic applies to games, in particular in economic systems with large numbers

of players.

As one can see, the mathematical description of a game is much more complex

than that of a single control system. Subsequently, solutions are that much harder

to come by. Even in the case of a single player, it can be difficult to solve the
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HJB equation with an explicit solution rare. Solving such a PDE often requires

numerical methods and approximations to obtain a value function, but even then,

the computation can quickly get out of hand. However, despite the hopelessness of

finding a general solution to any and every game, there are constraints we can put on

the games and the players that can abate some of the complexites of the problem.

Mean Field Games

In our attempt to simplify the problem at hand, it is important to consider

constraints that are reasonable; these constraints should still allow the game to resem-

ble real-world systems. One specific type of game that has received much attention in

the study of game theory is a mean field game. A mean field game is a type of game

with a very large number of rational players, whose individual impact is negligible on

the entire system. In addition, these players are identical in their goals and pursuits

and anonymous to one another, so their information is limited to what they are able

to obseve. This ensures that no player has an unfair advantage over another, for

example, some sort of outside information on other players’ strategies. The goal of

this section is to develop a mathematical framework for describing mean field games.

For a more rigorous treatment of mean field games and strategies on analyzing them,

see Lasry and Lions (2007).

We are dealing with a large number of players, but the players are identical, so

there is no need to index the control system of each player as done in (14). Instead,

more simply, a player’s dynamics is given by (1). However, the cost functional does

not remain the same as in (2). Instead, a player’s cost functional is also dependent

on the probability density of a trajectory, x(t), or a mean field. This is due to the

fact that we are dealing with an infinite number of players who negligibly impact the

system individually. We let m(x, t) = m
(
x(t)

)
represent the probability density for
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x at time t. Our cost functional J is now

J(α,m) =

∫ tf

t0

L
(
t, x(t), α(t),m(x, t)

)
dt+K(t0, x0). (20)

It follows that the value function is given by

u(t, x) = inf
α|[t,T ]

{∫ T

t

L
(
s, x(s), α(s),m(x, s)

)
ds+ u

(
T, x(T )

)}
. (21)

Notice that since the Lagrangian is dependent on m, the Hamiltonian is also depen-

dent on m. This means that our HJB equation looks like this:

ut +
σ2

2
∆u−H(t, x,−Dxu,m) = 0. (22)

Since we are examining the limiting case as N goes to infinity, we see that a player’s

value function is no longer dependent on the dynamics of another player as in (16).

Rather, a player’s value function is now dependent on the average density of the other

players’ trajectories. While there is no explicit expression for m, m can be implicitly

described by a PDE known as the Fokker-Planck equation.

Since m is a probability density for x(t), the probability that the trajectory x

at time t is in a given set Ω is given by

P
[
x(t) ∈ Ω

]
=

∫
Ω

m(x, t) dx. (23)

Using a conservation of mass argument, we can view (23) as an amount of mass in

the set Ω. Hence, the change in the amount of mass in Ω is equal to the negative flux

of mass along ∂Ω, the boundary of Ω:

d

dt

∫
Ω

m(x, t) dx = −
∫
∂Ω

m(x, t)v(x, t) · n dS, (24)
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where v : Rn
x × Rt → Rn, given by v(t, x) = ẋ = dx

dt
, is a vector field that acts on the

mass. Thus, by the divergence theorem

d

dt

∫
Ω

m(x, t) dx = −
∫

Ω

∇x · (m(x, t)v(x, t)) dx, (25)

which implies

∂tm = −∇x · (mv). (26)

This is the most basic form of the Fokker-Planck equation.

Alternatively, we can take some smooth test function, ϕ, and the expected

value, E
[
ϕ(t, x)

]
=
∫
Rn ϕ(t, x)m(t, x) dx, and take the derivative in time on each

side. Recalling that dx
dt

= v, we see on one hand,

d

dt
E
[
ϕ(t, x)

]
= E

[
∂tϕ(t, x) +∇xϕ(t, x)

dx

dt

]
=

∫
Rn

∂tϕ(t, x)m(t, x) dx+

∫
Rn

∇xϕ(t, x)v(t, x)m(t, x) dx,

(27)

and on the other hand,

d

dt

∫
Rn

ϕ(t, x)m(t, x) dx =

∫
Rn

∂tϕ(t, x)m(t, x) dx+

∫
Rn

ϕ(t, x)∂tm(t, x) dx. (28)

Setting the results of (27) and (28) equal to each other yields

∫
Rn

ϕ(t, x)∂tm(t, x) dx =

∫
Rn

∇xϕ(t, x)v(t, x)m(t, x) dx. (29)

Integrating by parts, we get

∫
Rn

ϕ(t, x)∂tm(t, x) dx = −
∫
Rn

ϕ(t, x)∇x ·
(
v(t, x)m(t, x)

)
dx. (30)
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But ϕ is arbitrary, so we obtain (26), the same result described by following the

physical intuition. We can also consider a stochastic case and obtain by Ito’s formula

∂tm−
σ2

2
∆m+∇x · (mv) = 0 (31)

Recall from the discussion of games that Nash equilibrium is a particular state

in which no one player can unilaterally improve their situation. Since we are looking

at the case as N goes to infinity, a Nash equilibrium strategy is a control α∗ and the

distribution m∗ (obtained from plugging in α∗ as a control into the control system)

such that

J(α∗,m∗) = min
α∈Ω

J(α,m∗) (32)

This seems like it might be impossible to find a solution, since m∗ is defined by α∗, yet

to find α∗, we seem to need to know m∗. However, the differential equations for u and

m are actually coupled, so in general there is a dependence of u (and subsequently

α∗) on m and vice versa.

To see how the equations are coupled, we can write v in terms of H, because

at Nash equilibrium each player will be operating under optimal conditions, that is

v = v∗. By the definition of v and the Hamiltonian given in (10), if p = −Dxu, then

v∗ = DpH, so that we have

∂tm−
σ2

2
∆m+∇ ·

(
mDpH(t, x,−Dxu,m)

)
= 0, (33)

which is now a Kolmogorov equation. We now have the system of coupled, second-

order mean field equations:

∂tu+
σ2

2
∆u−H(t, x,−Dxu,m) = 0

∂tm−
σ2

2
∆m+∇ ·

(
mDpH(t, x,−Dxu,m)

)
= 0.

(34)
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On one hand, the HJB equation is coupled with the Kolmogorov equation

through m itself, whereas the Kolmogorov equation is coupled to the HJB equation

through the Hamiltonian, and hence the spacial gradient of u. We can also see that

the HJB equation is a backwards in time equation, while the Kolmogorov equation is

defined forwards in time. Thus, while the constraints of a mean field game simplify the

general construction of a game, there are other complexities within their mathematical

representation which are not a consequence of the number of unique players present.

Because the equations in (34) are coupled and non-linear, the task to solve

them is difficult, but many techniques for their analysis have been developed over the

past couple of decades. Mean field games have recieved much attention in the topic

of game theory, and much has been discovered about their solutions. For a more

in-depth treatment of the analysis of these equations, see Cardaliaguet (2010).
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CHAPTER TWO

Bertrand and Cournot Mean Field Games

The purpose of this chapter is to explain the motivation behind the system

of mean field game equations developed by Patrick Chan and Ronnie Sircar in their

paper Bertrand and Cournot Mean Field Games (Chan and Sircar, 2015). These

equations, while constructed via idealized situations and assumptions, have applica-

tions to real-world economics as demonstrated by Chan and Sircar in their paper

Fracking, Renewables, and Mean Field Games, which analyzes the rapid decline of

oil prices from June 2014 to January 2015 (Chan and Sircar, 2017). It is imperative

that these equations are understood, as the equations, and more specifically their

solutions, are the focus of the analysis given in Chapter 3. For other applications of

mean field games to idealized situations see Guéant et al. (2011).

A major application of mean field games is in economics. We can look at an

oligopoly of agents, each trying to compete with each other to maximize their profits.

The basic assumptions of a mean field game hold with the agents being anonymous,

uncooperative, and rational. In addition, they are selling identical products, so no

one agent has an unfair advantage over another. There are two basic models of com-

petition, Bertrand and Cournot competition. In Bertrand competition the control

available to agents is price. Agents directly control the price at which to sell their

product, which by the law of supply and demand affects the quantity of product

produced. In Cournot competition, the control given to the agents is the quantity of

product. Agents are free to control how much of their product is being produced,

which similarly by the law of supply and demand affects the price at which the prod-

uct is sold. For a finite number of players, Bertrand competition leads to a Nash

equilibrium in which the agents make no profit. This is a consequence of the fact

that to be competitive, an agent must sell their product at or less than the price
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of any other agent. In Cournot competition, a profit can still be made as agents

are not required to directly lower prices to remain competitive. This may seem like

Cournot competition is superior, however, as the number of agents tends toward in-

finity, Bertrand and Cournot competions are actually equivalent; the optimal price

in Bertrand competition implies the optimal quantity in Cournot competition (Chan

and Sircar, 2015).

In Bertrand and Cournot Mean Field Games, Chan and Sircar develop a mean

field game for Bertrand/Cournot competition with exhaustible resources. Since re-

sources are exhaustible, if an agent uses all of their resources, then they are no longer

a part of the competition. In this setting m(x, t) is the density of agents with a

positive amount of resources at time t > 0. At t = 0, we let M(x) denote the density

of players with a positive initial amount of resources. Since M(x) is a probability

measure,

∫
(0,∞)

M(x) dx = 1. As some agents will start with more resources than

others, this initial condition allows us to distinguish which agents have more or fewer

initial reserves. As time progresses, agents will naturally exhaust their resources; η(t)

is the fraction of active firms for a given time t with

η(t) =

∫
(0,∞)

m(t, x) dx. (35)

The first time η = 0 is the exhaustion time or the final time T .

The price set by the agents is given by p(t, x) and the quantity q(t, x) can be

expressed as a linear demand function of p:

q(t, x) = a(η(t))− p(t, x) + c(η(t))p̄(t), (36)

where p̄(t) =
1

η(t)

∫
(0,∞)

p∗(t, x)m(t, x) dx is the average price, and p∗ is the optimal

price. Also, a(η) =
1

1 + εη
and c(η) = 1 − a(η), where ε ≥ 0 is a parameter that

measures the degree of interaction between players. A small value of ε indicates a
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low amount of competition between agents. If ε = 0, then there is no competition,

and each agent is a monopolist. Conversely, as epsilon goes to infinity, the system

tends toward perfect competition. It is also the case that the amount of demand can

fluctuate randomly, therefore some Brownian motion is introduced into the remaining

resources:

dXt = −q(t, x) dt+ σ1(Xt>0) dWt, (37)

where 1(Xt>0) is the characteristic function for the set of all resources greater than 0.

We also have that σ ≥ 0 and x = Xt.

Before introducing the value function, we also consider that agents are trying

to maximize lifetime profit, discounted at a rate r > 0. The value function is then

u(t, x) = sup
p

E

[∫ T

t

e−r(s−t)p(s, x)q(s, x) ds

]
. (38)

The corresponding Hamiltonian is

H = sup
p
{pq − ∂xu · q} = sup

p

{(
a(η(t))− p(t, x) + c(η(t))p̄(t)

)
(p(t, x)− ∂xu(t, x))

}
.

(39)

Thus, the HJB equation is

∂tu+
σ2

2
∂2
xxu− ru+ sup

p

{(
a(η(t))− p(t, x) + c(η(t))p̄(t)

)
(p(t, x)− ∂xu(t, x))

}
= 0.

(40)

We can solve for the optimal price p∗ by differentiating the expression being maxi-

mized in (39) with respect to p, setting the derivative equal to 0 (first order condition)

and solving for p to get

p∗(t, x) =
1

2

(
a(η(t)) + ∂xu(t, x) + c(η(t))p̄(t)

)
. (41)
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We can now solve for q∗ by substituting (41) into (36) to obtain

q∗(t, x) =
1

2

(
a(η(t))− ∂xu(t, x) + c(η(t))p̄(t)

)
. (42)

It follows that

H = q∗ (p∗ − ∂xu) = (q∗)2 . (43)

Our HJB equation is now

∂tu+
σ2

2
∂2
xxu− ru+

1

4

(
a(η(t))− ∂xu(t, x) + c(η(t))p̄(t)

)2

= 0. (44)

Note that we have left Dirichlet boundary conditions, since when an agent runs out

of resources x, there is no longer a way to generate profit, so u(t, 0) = 0. As T is the

time at which all agents have exhausted their resources, we can see that u(T, x) = 0.

Notice that the differential equation for u is dependent on m through p̄. From

Chapter 1 we can see that m satisfies the equation

∂tm−
σ2

2
∂2
xxm+ ∂x

[
DρH ·m

]
= 0, (45)

with ρ = ∂xu. However,

DρH =
d

dρ

[
(q∗)2

]
= 2q∗

d

dρ
[q∗] = 2q∗

(
−1

2

)
= −q∗, (46)

so that the equation for m is now

∂tm−
σ2

2
∂2
xxm+ ∂x

[
−1

2

(
a(η(t))− ∂xu(t, x) + c(η(t))p̄(t)

)
m

]
= 0. (47)

Recall that m has the initial condition m(0, x) = M(x). We also have left Dirichlet

boundary conditions for m, since for small values of x, the local dynamics are dom-

inated by the Brownian motion, but Chan and Sircar assert that Brownian motion
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is not significant enough to save an agent from exhausting their resources (Chan and

Sircar, 2015). Thus, as a player’s resources approach 0, they soon run out of resources

altogether and drop out of the competition, hence m(t, 0) = 0. We have now fully

defined the system of mean field equations:



(i) ∂tu+
σ2

2
∂2
xxu− ru+

1

4

(
a(η(t))− ∂xu(t, x) + c(η(t))p̄(t)

)2

= 0

(ii) ∂tm−
σ2

2
∂2
xxm+ ∂x

[
−1

2

(
a(η(t))− ∂xu(t, x) + c(η(t))p̄(t)

)
m

]
= 0

(iii) m(t, 0) = 0,m(0, x) = M(x), u(t, 0) = 0, u(T, x) = 0

(48)

While a solution to a mean field game requires solving this system of only

two coupled differential equations (as opposed to solving the more complex system

of N coupled differential equations each with different Hamiltonians that describes a

general game of N players) an explicit solution does not exist. However, assuming

a solution exists for any value of ε, we can approximate numerical solutions of (48)

using nth order Taylor series expansions. Recall that a(η) and c(η) are functions

of the parameter ε, so solutions to (48) will depend on ε. Thus, we will formally

differentiate u and m with respect to ε to produce a Taylor expansion centered at

ε = 0:

u(t, x) = u0(t, x) + εu1(t, x) +
ε2

2
u2(t, x) + · · ·+ εn

n!
un(t, x) + o(εn)

m(t, x) = m0(t, x) + εm1(t, x) +
ε2

2
m2(t, x) + · · ·+ εn

n!
mn(t, x) + o(εn)

(49)

Here, ui(t, x) =
∂i

∂εi
u(t, x) |ε=0 and mi(t, x) =

∂i

∂εi
m(t, x) |ε=0. Notice that when ε = 0,

c(η(t)) = 0, so that the equations in (48) decouple. Thus, the functions un and mn in

the asymptotic expansion can be solved more or less explicitly, because the equations

they solve are likewise decoupled.
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With this approximation set up, it is of interest to know if these series con-

verge, and if so, what are their radii of convergence? These questions concerning

the asymptotics of solutions to (48) are central to the analysis given in Chapter 3

and while we do not prove analyticity, we obtain error estimates on the numerical

solutions and provide a useful linear approximation to solutions of the system.
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CHAPTER THREE

Proof of Error Estimates

The system of PDE that this chapter is concerned with comes from the ideas

developed by Chan and Sircar (Chan and Sircar, 2015), discussed in Chapter 2 and

is given by



(i) ut +
σ2

2
uxx − ru+ F (ε)2 = 0, 0 ≤ x ≤ L, 0 ≤ t ≤ T

(ii) mt −
σ2

2
mxx −

[
F (ε)m

]
x

= 0, 0 ≤ x ≤ L, 0 ≤ t ≤ T

(iii) m(x, 0) = M(x), u(x, T ) = uT (x), 0 ≤ x ≤ L

(iv) u(0, t) = m(0, t) = 0, ux(t, L) = 0, 0 ≤ t ≤ T

(v)
σ2

2
mx(t, L) + F (ε)m(t, L) = 0, 0 ≤ t ≤ T

(50)

where M(x) and uT (x) are known, smooth functions and F is given by

F (ε) =
1

2

(
2

2 + ε
+

ε

2 + ε

∫ L

0

uxm dx− ux

)
, (51)

for some parameter ε ≥ 0. We will use the notation uε = u(x, t; ε), mε = m(x, t; ε) to

indicate respective solutions to (i) and (ii) in (50) when the parameter ε is nonzero.

Similarly, u0 = u(x, t; 0) and m0 = m(x, t; 0) will indicate respective solutions to (i)

and (ii) in (50) when ε = 0, the case in which the two equations are decoupled.

In order to state our results, let us introduce the following notation:

• For 0 < α ≤ 1, Cα([0, L]) is the space of all α-Hölder continuous functions on

[0, L]; its norm given by

|φ|α =‖φ‖∞ + [φ]α, [φ]α := sup
x6=y

|φ(x)− φ(y)|
|x− y|α

.
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• For 0 < α ≤ 1, n a positive integer, Cn+α([0, L]) is the space of all α-Hölder

continuous functions φ on [0, L] such that the jth derivative φ(j) for 1 ≤ j ≤ n

is also α-Hölder continuous; its norm is given by

|φ|n+α =
n∑
i=0

∥∥∥φ(i)
∥∥∥
∞

+ [φ(n)]α.

• Cα,α/2([0, L] × [0, T ]) is the space of all functions φ = φ(x, t) on [0, L] × [0, T ]

such that φ is Cα in the x-variable, Cα/2 in the t-variable; its norm is given by

|φ|α,α/2 =‖φ‖∞ + [φ]x,α + [φ]t,α/2

where

[φ]x,α := sup
x6=y,t

|φ(x, t)− φ(y, t)|
|x− y|α

, [φ]t,α/2 := sup
x,t 6=s

|φ(x, t)− φ(x, s)|
|t− s|α/2

.

• C2+α,1+α/2([0, L]× [0, T ]) is the space of all functions φ = φ(x, t) on [0, L]× [0, T ]

such that φ is C2+α in the x-variable, C1+α/2 in the t-variable; its norm is given

by

|φ|2+α,1+α/2 =‖φ‖∞ +‖φt‖∞ +‖φx‖∞ +‖φxx‖∞ + [φxx]x,α + [φt]t,α/2.

The following theorem is a result from Graber and Bensoussan (2018).

Theorem 1. Let uT ,M ∈ C2+γ([0, L]), for some 0 < γ ≤ 1. There exists a

unique pair of solutions (uε,mε) to (50) and a constants C and α ∈ (0, 1] such that

|uε|2+α,1+α/2, |mε|2+α,1+α/2 ≤ C, for any ε ∈ [0, ε0] and C depending only on ε0 and

the data.
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Preliminaries

The following three lemmas will establish useful bounds for solutions to the

types of PDE we will encounter in latter theorems of this chapter.

Lemma 2. Let ϕ be a smooth function such that ϕ(0) = 0. Suppose u is the solution

to the following PDE

ut +
σ2

2
uxx + a(x, t)u+ b(x, t)ϕ(ux) = c(x, t), (52)

with boundary conditions satisfying
∣∣u(0, t)

∣∣ ,∣∣u(L, t)
∣∣ ,∣∣uT (x)

∣∣ ≤ C1. For min(x,t){a(x, t)} =

a0 and
∣∣c(x, t)∣∣ ≤ C2, |u| ≤ e−a0T

(
C1e

−a0T + C2T
)
.

Proof. Let a0 = min(x,t){a(x, t)}. We can add and subtract a0u on the left hand side

of (52) to get

ut +
σ2

2
uxx + a0u+ (a− a0)u+ b(x, t)ϕ(ux) = c(x, t) (53)

Let ũ = uea0(t−T ). Multiplying through (52) by ea0(t−T ), we obtain

ũt +
σ2

2
ũxx + (a− a0)ũ+ ea0(t−T )b(x, t)ϕ(ũxe

−a0(t−T )) = c(x, t)ea0(t−T ) (54)

Since
∣∣c(x, t)∣∣ ≤ C2,

∣∣∣∣∣ũt +
σ2

2
ũxx + (a− a0)ũ+ ea0(t−T )b(x, t)ϕ(ũxe

−a0(t−T ))

∣∣∣∣∣ ≤ C2e
−a0T . (55)

Case 1: Let û = ũ− C2e
−a0T t. It follows that û satisfies the PDE

ût +
σ2

2
ûxx + (a− a0)û+ ea0(t−T )b(x, t)ϕ(ûxe

−a0(t−T )) ≤ 0. (56)

Using the maximum principle on û (see Evans (2010), Chapter 7.1, Theorem 9) and
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the estimates on the boundary conditions for u, we have that

max û ≤ max
{
u(0, t)ea0(t−T ) − C2e

−a0T t,

u(L, t)ea0(t−T ) − C2e
−a0T t, uT (x)− C2e

−a0TT
}
, (57)

so that û ≤ C1e
−a0T , which implies that

u ≤ e−a0T
(
C1e

−a0T + C2T
)
.

Case 2: Let û = ũ+ C2e
−a0T t. It follows that û satisfies the PDE

ût +
σ2

2
ûxx + (a− a0)û+ ea0(t−T )b(x, t)ϕ(ûxe

−a0(t−T )) ≥ 0. (58)

Using the minimum principle on û and the estimates on the boundary conditions for

u, we have that

min ũ ≥ min
{
u(0, t)ea0(t−T ) + C2e

−a0T t,

u(L, t)ea0(t−T )t+ C2e
−a0T t, uT (x) + C2e

−a0TT
}
, (59)

so that û ≥ −C1e
−a0T , which implies that

u ≥ −e−a0T
(
C1e

−a0T + C2T
)
.

We now have

|u| ≤ e−a0T
(
C1e

−a0T + C2T
)

as desired.
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Lemma 3. Suppose u is the solution to the following PDE

ut +
σ2

2
uxx + a(x, t)u+ b(x, t)ux = c(x, t) (60)

with boundary conditions satisfying u(0, t) = 0, ux(L, t) = 0, and
∣∣u′T (x)

∣∣ ≤ C1,

a, b, c ∈ L∞, then ∣∣ux(0, t)∣∣ ≤ kM,

where k = max
{∥∥u(x, t)

∥∥
∞ , 1

}
,

M = max

{
CeL, k−1C1 exp

[
k−1
∥∥uT (x)

∥∥
∞ + L

]}
,

and C is given by

C = e

(
1

4

∥∥b(x, t)∥∥2

∞ +
∥∥a(x, t)

∥∥
∞ +

∥∥c(x, t)∥∥∞) .
Proof. Let u = ϕ(w), then ut = ϕ′(w)wt, ux = ϕ′(w)wx, and uxx = ϕ′′(w)w2

x +

ϕ′(w)wxx so that (60) becomes

ϕ′(w)wt + ϕ′′(w)w2
x + ϕ′(w)wxx + a(x, t)ϕ(w) + b(x, t)ϕ′(w)ux = c(x, t). (61)

Dividing through by ϕ′(w) and rearranging terms, we obtain

wt + wxx = −ϕ
′′(w)

ϕ′(w)
w2
x − b(x, t)wx − a(x, t)

ϕ(w)

ϕ′(w)
+
c(x, t)

ϕ′(w)
. (62)

Let ϕ(w) = k log(1 + w) for k ≥ 1, so that ϕ′(w) = k
1+w

and ϕ′′(w) = −k
(1+w)2 . Notice

that w has the same boundary conditions as u. We now have

wt + wxx =
w2
x

1 + w
− b(x, t)wx −

1

k
a(x, t)u(x, t)(1 + w)− 1

k
c(x, t)(1 + w). (63)
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By Young’s inequality,
∣∣b(x, t)wx∣∣ ≤ w2

x

1+w
+ |b|2

4(1+w)
, so that

wt + wxx ≥ −
(

1

4

∣∣b(x, t)∣∣2 +
1

k

∣∣a(x, t)
∣∣∣∣u(x, t)

∣∣+
1

k

∣∣c(x, t)∣∣) (1 + w)

≥ −
(

1

4

∥∥b(x, t)∥∥2

∞ +
1

k

∥∥a(x, t)
∥∥
∞

∥∥u(x, t)
∥∥
∞ +

1

k

∥∥c(x, t)∥∥∞) e 1
k‖u(x,t)‖∞ .

(64)

Choosing k = max
{∥∥u(x, t)

∥∥
∞ , 1

}
, we now have

wt + wxx ≥ −e
(

1

4

∥∥b(x, t)∥∥2

∞ +
∥∥a(x, t)

∥∥
∞ +

∥∥c(x, t)∥∥∞) . (65)

Hence,

wt + wxx ≥ −C. (66)

Now, let w̃ = w +Me−x so that our PDE for w̃ is now

w̃t + w̃xx ≥ −C +Me−x. (67)

We need to choose M such that Me−L ≥ C and w̃x(x, T ) ≤ 0, so choose

M = max

{
CeL, k−1C1 exp

{
k−1
∥∥uT (x)

∥∥
∞ + L

}}
.

By the maximum principle,

max w̃ = max
{
w̃(0, t), w̃(x, T )

}
, (68)

but as w̃x(x, T ) ≤ 0 and w̃(0, t) = w̃(0, T ) = M , we have w̃(x, T ) ≤ M and it must

be the case that max w̃ = w̃(0, t) = M . And as w̃(x, t) ≤ w̃(0, t), we have that

w̃x(0, t) ≤ 0. Finally, as w = ek
−1u − 1, it follows that

ux(0, t) ≤ kM.
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For the other direction, the proof that

ux(0, t) ≥ kM

is similar, so is omitted.

Lemma 4. Let m be the solution to the following PDE

mt −
σ2

2
mxx − (bm)x − wx = 0, (69)

with m(0, t) = w(0, t) = 0, σ2

2
mx(L, t)+bm(L, t)+w(L, t) = 0, |b| ≤ C1, and |w| ≤ C2,

then |m| ≤ C and C = 64L
σ6

(
‖bε‖2

∞ + TL+ 2
)2

.

Proof. Begin by multiplying each term in (69) by some Φ′(m) with Φ′′(m) ≥ 0 and

Φ(0) = 0, then integrate in space:

∫ L

0

Φ′(m)mt dy =
d

dt

∫ L

0

Φ(m) dy

σ2

2

∫ L

0

Φ′(m)mxx dy =
σ2

2
Φ′(m)mx

∣∣∣L
0
− σ2

2

∫ L

0

Φ′′(m)m2
x dy∫ L

0

Φ′(m) (bεm)x dy = Φ′(m) (bεm)
∣∣∣L
0
−
∫ L

0

Φ′′(m)mx (bεm) dy∫ L

0

Φ′(m)wx dy = Φ′(m)w
∣∣∣L
0
−
∫ L

0

Φ′′(m)mxw dy.

(70)

Note that upon adding the boundary terms, we are left with 0 becasue of the boundary

conditions on the PDE for m. Our equation is now

d

dt

∫ L

0

Φ(m) dy+
σ2

2

∫ L

0

Φ′′(m)m2
x dy = −

∫ L

0

Φ′′(m)mx (bεm) dy−
∫ L

0

Φ′′(m)mxw dy.

(71)

By Young’s inequality,

mx (bεm) ≤ σ2

8
m2
x +

2

σ2
(bεm)2 and mxw ≤

σ2

8
m2
x +

2

σ2
w2,

27



and our expression is now

d

dt

∫ L

0

Φ(m) dy +
σ2

2

∫ L

0

Φ′′(m)m2
x dy

≤
∫ L

0

Φ′′(m)

(
σ2

8
m2
x +

2

σ2
(bεm)2

)
dy +

∫ L

0

Φ′′(m)

(
σ2

8
m2
x +

2

σ2
w2

)
dy. (72)

After combining like terms,

d

dt

∫ L

0

Φ(m) dy+
σ2

4

∫ L

0

Φ′′(m)m2
x dy ≤ 2

σ2

∫ L

0

Φ′′(m) (bεm)2 dy+
2

σ2

∫ L

0

Φ′′(m)w2 dy.

(73)

Integrating in time we get

∫ L

0

Φ(m(y, t)) dy −
∫ L

0

Φ(m(y, 0)) dy +
σ2

4

∫ t

0

∫ L

0

Φ′′(m)m2
x dy ds

≤ 2

σ2

∫ t

0

∫ L

0

Φ′′(m) (bεm)2 dy ds+
2

σ2

∫ t

0

∫ L

0

Φ′′(m)w2 dy ds, (74)

and rearranging terms we have

∫ L

0

Φ(m(y, t)) dy +
σ2

4

∫ t

0

∫ L

0

Φ′′(m)m2
x dy ds

≤
∫ L

0

Φ(m(y, 0)) dy+
2

σ2
‖bε‖2

∞

∫ t

0

∫ L

0

Φ′′(m)m2 dy ds+
2

σ2

∫ t

0

∫ L

0

Φ′′(m)w2 dy ds.

(75)

Let Φ(m) = mp for p ≥ 2. It follows that Φ′′(m) = p(p − 1)mp−2, and our equation

is now

∫ L

0

mp dy +
σ2p(p− 1)

4

∫ t

0

∫ L

0

mp−2m2
x dy ds ≤

∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2
‖bε‖2

∞

∫ t

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ t

0

∫ L

0

mp−2w2 dy ds. (76)
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By Young’s inequality,

mp−2w ≤ p− 2

p
mp +

2

p
wp ≤ mp + wp,

so that

∫ L

0

mp dy +
σ2p(p− 1)

4

∫ t

0

∫ L

0

mp−2m2
x dy ds ≤

∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2
‖bε‖2

∞

∫ t

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ t

0

∫ L

0

(mp + wp) dy ds, (77)

and after combining like terms,

∫ L

0

mp dy +
σ2p(p− 1)

4

∫ t

0

∫ L

0

mp−2m2
x dy ds ≤

∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2

(
‖bε‖2

∞ + 1
)∫ t

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ t

0

∫ L

0

wp dy ds. (78)

For q > p,

∫ T

0

∫ L

0

mq dx dt ≤
∫ T

0

∫ L

0

sup
y∈[0,L]

mp(y, t)mq−p(x, t) dx dt

≤
∫ T

0

sup
y∈[0,L]

mp(y, t)

∫ L

0

mq−p(x, t) dx dt

≤
∫ T

0

sup
y∈[0,L]

mp(y, t) dt sup
s∈[0,T ]

∫ L

0

mq−p(x, s) dx

(79)

Choose q = 2p, then (79) yields

∫ T

0

∫ L

0

m2p dx dt ≤
∫ T

0

sup
y∈[0,L]

mp(y, t) dt sup
s∈[0,T ]

∫ L

0

mp(x, s) dx. (80)

Note that

mp−2m2
x =

(
m

p
2
−1mx

)2

=

(
2

p

(
∂

∂x
m

p
2

))2

=
4

p2

(
m

p
2

)2

x
, (81)
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so that

m
p
2 (x, t) = m

p
2 (0, t) +

∫ x

0

∂

∂y

(
m

p
2 (y, t)

)
dy

≤
∫ L

0

∣∣∣∣(m p
2 (y, t)

)
x

∣∣∣∣ dy

≤

(∫ L

0

∣∣∣∣(m p
2 (y, t)

)
x

∣∣∣∣2 dy

) 1
2
(∫ L

0

dy

) 1
2

.

(82)

Squaring both sides, we have

mp(x, t) ≤ L

∫ L

0

(
m

p
2 (y, t)

)2

x
dy

sup
y∈[0,L]

mp(y, t) ≤ L

∫ L

0

(
m

p
2 (y, t)

)2

x
dy.

(83)

Integrating in time we see that

∫ T

0

sup
y∈[0,L]

mp(y, t) dt ≤ L

∫ T

0

∫ L

0

(
m

p
2 (y, t)

)2

x
dy dt

= L
p2

4

∫ T

0

∫ L

0

mp−2(y, t)m2
x(y, t) dy dt

σ2(p− 1)

Lp

∫ T

0

sup
y∈[0,L]

mp(y, t) dt ≤ σ2p(p− 1)

4

∫ T

0

∫ L

0

mp−2(y, t)m2
x(y, t) dy dt.

(84)

It follows that

σ2(p− 1)

Lp

∫ T

0

sup
y∈[0,L]

mp(y, t) dt ≤
∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2

(
‖bε‖2

∞ + 1
)∫ t

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ t

0

∫ L

0

wp dy ds, (85)

and

sup
s∈[0,T ]

∫ L

0

mp(x, s) dx ≤
∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2

(
‖bε‖2

∞ + 1
)∫ t

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ t

0

∫ L

0

wp dy ds, (86)
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so that

∫ T

0

∫ L

0

m2p dx dt ≤ Lp

σ2(p− 1)

(∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2

(
‖bε‖2

∞ + 1
)∫ t

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ t

0

∫ L

0

wp dy ds

)2

. (87)

As p
2(p−1)

≤ 1,

∫ T

0

∫ L

0

m2p dx dt ≤ L

σ2

(∫ L

0

mp(y, 0) dy

+
2p(p− 1)

σ2

(
‖bε‖2

∞ + 1
)∫ T

0

∫ L

0

mp dy ds+
2p(p− 1)

σ2

∫ T

0

∫ L

0

wp dy ds

)2

. (88)

Let Mp = max
{∥∥m(0, t)

∥∥
p
,
∥∥m(x, t)

∥∥
p
,‖w‖∞ , 1

}
. Then

M2p
2p ≤

L

σ2

(
Mp

p +
2p(p− 1)

σ2

(
‖bε‖2

∞ + 1
)
Mp

p +
2p(p− 1)

σ2
TLMp

p

)2

≤ L

σ2

(
2p2

σ2
Mp

p +
2p2

σ2

(
‖bε‖2

∞ + 1
)
Mp

p +
2p2

σ2
TLMp

p

)2

≤ 4Lp4

σ6

(
‖bε‖2

∞ + TL+ 2
)2

M2p
p

M2p ≤
(
L

1
2p2C ′

) 1
p
Mp

(89)

Where C ′ = 2
σ3

(
‖bε‖2

∞ + TL+ 2
)

.

Now, let ak = M2k . It follows that

ak+1 ≤
(
L

1
2 22kC ′

) 1

2k

M2k

≤
(
L

1
2 22kC ′

) 1

2k
(
L

1
2 22(k−1)C ′

) 1

2k−1

M2k−1

...

≤
k∏

n=0

(
L

1
2 22nC ′

) 1
2n

.

(90)
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We can see that

log

(
∞∏
n=0

(
L

1
2 22nC ′

) 1
2n

)
=
∞∑
n=0

1

2n

(
1

2
logL+ log

(
22n
)

+ logC ′
)

=
∞∑
n=0

log
(
22n
)

2n
+
∞∑
n=0

1
2

logL+ logC ′

2n

=
∞∑
n=0

log
(
22n
)

2n
+ logL+ 2 logC ′.

(91)

Note that

lim
n→∞

∣∣∣∣∣∣∣
log
(

22(n+1)
)

2n+1
· 2n

log (22n)

∣∣∣∣∣∣∣ =
1

2
< 1, (92)

so that by the ratio test,
∑∞

n=0

log(22n)
2n

converges absolutely. Furthermore, for |x| < 1,∑∞
n=0 x

n = 1
1−x , so that

x
d

dx

[
∞∑
n=0

xn

]
=
∞∑
n=0

nxn = x
d

dx

[
1

1− x

]
=

x

(1− x)2
. (93)

With x = 1
2
, it follows that

∑∞
n=0

n
2n

= 2, showing that

∞∑
n=0

log
(
22n
)

2n
= log

(
22
) ∞∑
n=0

n

2n
= log 16. (94)

We now have

log

(
∞∏
n=0

(
L

1
2 22nC ′

) 1
2n

)
≤ log 16 + logL+ 2 logC ′, (95)

and
∞∏
n=0

(
L

1
2 22nC ′

) 1
2n ≤ 16LC ′2, (96)
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which, in particular, means

‖m‖∞ ≤M∞ ≤ 16LC ′2. (97)

This shows that |m| ≤ C, with C = 16LC ′2.

The following result comes from Ladyžhenskaja et al. (1968), Theorem IV.9.1.

Theorem 5. Let φT = φT (x) ∈ C2([0, L]) and f = f(x, t) ∈ L∞([0, L]× [0, T ]). Then

there exists a unique (weak) solution φ to the following boundary value problem:

φt +
σ2

2
φxx = f(x, t),

φ(0, t) = 0, φx(L, t) = 0, φ(x, T ) = φT (x).

(98)

Moreover, for any 0 < α < 1 there exists a constant κα depending on σ, T, L such

that

|φ|α,α/2 ,|φx|α,α/2 ≤ κ
(
|φT |2 +‖f‖∞

)
. (99)

Corollary 6. There exists a constant such that
∣∣u(x, t; ε)− u(x, t; 0)

∣∣ ≤ Cε.

Proof. Define v = 1
ε

(
uε − u0

)
. We now plug uε and u0 respectively into (i) of (50)

and subtract the two equations to get

vt +
σ2

2
vxx − rv +

1

ε

(
F (ε)2 − F (0)2

)
= 0. (100)

Note that

F (ε)2 − F (0)2 = (F (ε)− F (0))2 + 2F (0)(F (ε)− F (0)), (101)
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so that we have

vt +
σ2

2
vxx − rv +

ε

4

(
−1

2 + ε
+

1

2 + ε

∫ L

0

uεxm
ε dx− vx

)2

+
1

2

(
1− u0

x

)( −1

2 + ε
+

1

2 + ε

∫ L

0

uεxm
ε dx− vx

)
= 0. (102)

With

b(x, t) = − ε
2

(
−1

2 + ε
+

1

2 + ε

∫ L

0

uεxm
ε dx

)
− 1

2

(
1− u0

x

)
and

c(x, t) = − ε
4

(
−1

2 + ε
+

1

2 + ε

∫ L

0

uεxm
ε dx

)2

− 1

2

(
1− u0

x

)( −1

2 + ε
+

1

2 + ε

∫ L

0

uεxm
ε dx

)
,

we have

vt +
σ2

2
vxx − rv + b(x, t)vx + εv2

x = c(x, t). (103)

As b and c are bounded, it follows from Theorem 1 and Lemma 2 that |v| ≤ C.

Corollary 7. There exists a constant such that
∣∣ux(x, t; ε)− ux(x, t; 0)

∣∣ ≤ Cε.

Proof. Let v = 1
ε

(
uε − u0

)
and let w = vx. Differentiate through (100) to obtain

wt +
σ2

2
wxx − rw −

2

ε

(
F (ε)uεxx − F (0)u0

xx

)
= 0

wt +
σ2

2
wxx − rw − 2

(
1

ε
uεxx
(
F (ε)− F (0)

)
− F (0)wx

)
= 0.

(104)
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After expanding F (ε) and F (0) and combining like terms, we obtain

wt +
σ2

2
wxx + (uεxx − r)w +

(
1− u0

x

)
wx − uεxx

(
−1

2 + ε
+

1

2 + ε

∫ L

0

uεxm
ε dx

)
= 0

wt +
σ2

2
wxx − a(x, t)w + b(x, t)wx = c(x, t).

(105)

It follows from Theorem 1, Lemma 2, Lemma 3 and Theorem 5 that |w| ≤ C.

Corollary 8. For v = 1
ε

(
uε − u0

)
, there exists a constant such that |v|α,α/2 ≤ C.

Proof. Let v = 1
ε

(
uε − u0

)
, then by Corollary 6 and rearranging (103),

vt +
σ2

2
= rv − b(x, t)vx − εv2

x + c(x, t)

= f(x, t).

(106)

Notice that v satisfies the following boundary conditions:

v(0, t) = 1
ε

(
u(0, t; ε)− u(0, t; 0)

)
= 0, as u(0, t) = 0

vx(L, t) = 1
ε

(
ux(L, t; ε)− ux(L, t; 0)

)
= 0, as ux(L, t) = 0

v(x, T ) = vT (x) = 1
ε

(
uT (x; ε)− uT (x; 0)

)
∈ C2([0, L]), as uT (x) ∈ C2+α.

(107)

We also have that b and c are bounded. As |v| ≤ C by Corollary 6, and |vx| ≤ C ′

by Corollary 7, it follows that f(x, t) ∈ L∞([0, L]× [0, T ]). Thus, by Theorem 5, the

result follows.

Corollary 9. There exists a constant such that
∣∣m(x, t; ε)−m(x, t; 0)

∣∣ ≤ Cε.

Proof. Define ρ = 1
ε

(
mε −m0

)
. Substituting mε and m0 into (69), subtracting the

two PDE and dividing by ε, we get

ρt − ρxx −
1

ε

(
F (ε)mε − F (0)m0

)
x

= 0. (108)
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Note that

F (ε)mε − F (0)m0 = mε
(
F (ε)− F (0)

)
+ F (0)

(
mε −m0

)
, (109)

so that we have

ρt − ρxx −
(
F (0)ρ

)
x
− 1

ε

[
mε
(
F (ε)− F (0)

)]
x

= 0. (110)

With w = 1
ε

(
F (ε)− F (0)

)
mε and b = F (0), it is clear from Theorem 1 that

‖w‖∞ <∞ and ‖b‖∞ <∞, so that by Lemma 4, |ρ| ≤ C.

Error Terms: Definitions and Useful Formulas

To make future theorems and expressions more compact, we introduce the

following notation. Let Eε
n(f) = f(ε) −

∑n
i=0

εif (i)(0)
i!

, the error of the nth order

Maclaurin expansion in ε. Also, let Êε
n(f) = 1

εn+1E
ε
n(f), the normalized error of f .

The following two lemmas provide useful expressions for the error of products of

functions.

Lemma 10.

Eε
n(fg) = gEε

n(f) +
n∑
i=0

εif (i)(0)

i!
Eε
n−i(g) (111)

Proof. Note that

di

dεi
(fg) |ε=0 =

i∑
j=0

(
i

j

)
f (i−j)(0)g(j)(0), (112)
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so that by the definition of Eε
n,

Eε
n(fg) = fg −

n∑
i=0

i∑
j=0

(
i

j

)
εif (i−j)(0)g(j)(0)

i!

= fg −
n∑
i=0

i∑
j=0

εif (i−j)(0)g(j)(0)

(i− j)j!

= fg −
n∑
i=0

n−i∑
j=0

εi+jf (i)(0)g(j)(0)

i!j!

= fg −
n∑
i=0

εif (i)(0)

i!

n−i∑
j=0

εjg(j)(0)

j!
.

(113)

We then add and subtract g
∑n

i=0
εif (i)(0)

i!
and combine like terms to get the result:

= g

f − n∑
i=0

εif (i)(0)

i!

+
n∑
i=0

εif (i)(0)

i!

g − n−i∑
j=0

εjg(j)(0)

j!


= gEε

n(f) +
n∑
i=0

εif (i)(0)

i!
Eε
n−i(g).

(114)

Lemma 11. For all n ∈ N and k =
⌊
n
2

⌋
,

Eε
n

(
f 2
)

=
[
Eε
k(f)

]2
+ 2

k∑
i=0

εif (i)(0)

i!
Eε
n−i(f). (115)

Proof. Let k =
⌊
n
2

⌋
. We have that

f 2 =

Eε
k(f) +

k∑
i=0

εif (i)(0)

i!

2

=
[
Eε
k(f)

]2
+ 2Eε

k(f)
k∑
j=0

εjf (j)(0)

j!
+

 k∑
i=0

εif (i)(0)

i!

2

.

(116)
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Note that

 k∑
i=0

εif (i)(0)

i!

2

=
n∑
i=0

i∑
j=0

(
i

j

)
εif (i−j)(0)f (j)(0)

i!
− 2

n∑
i=k+1

n−i∑
j=0

εi+jf (i)(0)f (j)(0)

i!j!
.

(117)

It follows that

Eε
n(f 2) = f 2 −

n∑
i=0

i∑
j=0

(
i

j

)
εif (i−j)(0)f (j)(0)

i!

=
[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
k(f)− 2

n∑
i=k+1

n−i∑
j=0

εi+jf (i)(0)f (j)(0)

i!j!

=
[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
k(f)− 2

n−k−1∑
j=0

n−j∑
i=k+1

εi+jf (i)(0)f (j)(0)

i!j!
.

(118)

If n is even, n = 2k, so that n− k − 1 = k − 1, hence,

Eε
n(f 2) =

[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
k(f)− 2

k−1∑
j=0

εjf (j)(0)

j!

n−j∑
i=k+1

εif (i)(0)

i!

=
[
Eε
k(f)

]2
+ 2

εkf (k)(0)

k!
Eε
k(f) + 2

k−1∑
j=0

εjf (j)(0)

j!

Eε
k(f)−

n−j∑
k+1

εif (i)(0)

i!


=
[
Eε
k(f)

]2
+ 2

εkf (k)(0)

k!
Eε
k(f) + 2

k−1∑
j=0

εjf (j)(0)

j!
Eε
n−j(f)

=
[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
n−j(f).

(119)
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If n is odd, n = 2k + 1, so that n− k − 1 = k, hence,

Eε
n(f 2) =

[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
k(f)− 2

k∑
j=0

εjf (j)(0)

j!

n−j∑
i=k+1

εif (i)(0)

i!

=
[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!

Eε
k(f)−

n−j∑
i=k+1

εif (i)(0)

i!


=
[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
n−j(f).

(120)

Thus, for any n ∈ N with k =
⌊
n
2

⌋
, we see that

Eε
n(f 2) =

[
Eε
k(f)

]2
+ 2

k∑
j=0

εjf (j)(0)

j!
Eε
n−j(f). (121)

Main Result

Recall our derivation for un and mn at the end of Chapter two. Our main

result suggests that this formal identification can be made rigorous. In what follows

we will identify the symbol Eε
n(u) with uε −

∑n
i=0

εi

i!
ui and likewise Eε

n(m) = mε −∑n
i=0

εi

i!
mi. Formally, Eε

n(u) and Eε
n(m) have the same meaning as in the previous

section; however, it is only by proving that u and m are n times differentiable in ε that

we can rigorously make this identification. We also define Eε
n(ux) to mean ∂xE

ε
n(u) =

∂xu
ε−
∑n

i=0
εi

i!
∂xui. Once again we define Êε

n(u) = ε−n−1Eε
n(u), Êε

n(ux) = 1
εn+1E

ε
n(ux),

and Êε
n(m) = 1

εn+1E
ε
n(m). Finally, we define

Cu,n = sup
ε∈[0,1]

∣∣∣Êε
n(u)

∣∣∣
2+α,1+α/2

, Cm,n = sup
ε∈[0,1]

∣∣∣Êε
n(m)

∣∣∣
2+α,1+α/2

.

We may now state our main result.
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Theorem 12. The constants Cu,n and Cm,n satisfy the following recursive relation:

max{Cu,n, Cm,n} ≤M(n+ 2)3 max{Cu,n−1, Cm,n−1}4, (122)

where M is a constant depending only on the data. Thus we have the following growth

bounds:

max{Cu,n, Cm,n} ≤M
7n−1

6 max{Cu,0, Cm,0}7n . (123)

As a result, we obtain these error estimates:

∣∣∣∣∣∣uε −
n∑
i=0

εi

i!
ui

∣∣∣∣∣∣
2+α,1+α/2

≤M
7n−1

6 max{Cu,0, Cm,0}7nεn+1, (124)

and ∣∣∣∣∣∣mε −
n∑
i=0

εi

i!
mi

∣∣∣∣∣∣
2+α,1+α/2

≤M
7n−1

6 max{Cu,0, Cm,0}7nεn+1. (125)

Remark 1. The error estimates are very crude and are far from giving convergence

of the power series. However, they nevertheless provide a rigorous sense in which the

solution (uε,mε) can be approximated polynomially by explicitly known functions.

It is easy to see that (122) implies (123) via induction:

Proof of Growth Bounds from Recursion. Let Cn = max{Cu,n, Cm,n}, and let

C̃n = max{Cn, n+ 3}. Then for n = 1, C1 ≤M(3)3C4
0 , so that

C̃1 ≤MC̃7
0 , (126)

and (123) holds for n = 1. Now, suppose C̃n−1 ≤M
7n−1−1

6 C̃7n−1

0 . Then as

Cn ≤M(n+ 2)3Cn−1,
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C̃n ≤MC̃7
n−1 ≤M

(
M

7n−1−1
6 C̃7n−1

0

)7

≤M
7n−1

6 C̃7n

0 , (127)

which is the desired inequality.

In the proof of the main theorem, we will use a classical result in the theory

of parabolic PDE. The following result can be deduced from the proof of Theorems

IV.5.2 and IV.5.3 in Ladyžhenskaja et al. (1968).

Theorem 13. Let φT = φT (x) ∈ C2+α([0, L]), a = a(x, t) ∈ Cα,α/2([0, L] × [0, T ]),

b = b(x, t) ∈ Cα,α/2([0, L] × [0, T ]), and c = c(x, t) ∈ Cα,α/2([0, L] × [0, T ]). Then

there exists a unique solution φ ∈ C2+α,1+α/2([0, L]× [0, T ]) to the following boundary

value problem:

φt +
σ2

2
φxx + a(x, t)φ+ b(x, t)φx = c(x, t),

φ(0, t) = 0, φx(L, t) = 0, φ(x, T ) = φT (x).

(128)

Moreover, there exists a constant κ depending on σ, r, T, |a|α,α/2, and |b|α,α/2 such that

|φ|2+α,1+α/2 ≤ κ(|φT |2+α +|c|α,α/2). (129)

We only need to apply Theorem 13 with φT = 0, since un(x, T ) = 0 = mn(x, 0) for

all n = 1, 2, 3, 4, . . ..

Lemma 14. The function 2Êε
n

(
F (ε)

)
+ Êε

n(uεx) depends only on t. Moreover,

∣∣∣2Êε
n(F (ε)) + Êε

n(uεx)
∣∣∣
α/2
≤ K

 1

2n
+

n−1∑
i=0

Cm,i +
n−1∑
i=0

Cu,i

n−i−1∑
j=0

(Cm,j + Cm,j−1)

 .

(130)

whenever K is a constant such that

K ≥ max

{
1 + L|uεx|α,α/2|mε|α,α/2

2
, L|uεx|α,α/2 , L

}
. (131)
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(Here Cm,−1 := 0.) As a corollary,

2
∣∣∣Êε

n(F (ε))
∣∣∣
α,α/2

≤ Cu,n +K

 1

2n
+

n−1∑
i=0

Cm,i +
n−1∑
i=0

Cu,i

n−i−1∑
j=0

(Cm,j + Cm,j−1)

 .

(132)

Proof. Note that Êε
n

(
2

2+ε

)
= (−1)n+1

2n(2+ε)
and Êε

n

(
ε

2+ε

)
= −Êε

n

(
2

2+ε

)
, so by the linearity

of Eε
n(·) and a successive application of (111),

Êε
n(F (ε)) =

1

2

[
(−1)n+1

2n(2 + ε)
− (−1)n+1

2n(2 + ε)

∫ L

0

uεxm
ε dx

+ (−1)n
∫ L

0

uεx

n−1∑
i=0

(
−1

2

)n−(i+1)

Êε
i (m

ε) dx

−
∫ L

0

n−1∑
i=0

(
−1

2

)n−(i+1)

Êε
i (u

ε
x)

n−i−1∑
j=0

(−1)n−j+1mj

j!
dx− Êε

n(uεx)

]
. (133)

Observe that

mj

j!
= ε−j(Eε

j(m)− Eε
j−1(m)) = εÊε

j(m)− Êε
j−1(m) ⇒

∣∣∣∣mj

j!

∣∣∣∣
α,α/2

≤ Cm,j + Cm,j−1.

(134)

Thus, (130) follows from (133) and the triangle inequality.

To simplify our recursive formulas, define Ci := max{1, Cu,j, Cm,j : 1 ≤ j ≤ i}.

Corollary 15. Assume K satisfies (131). Then (130) becomes

∣∣∣2Êε
n(F (ε)) + Êε

n(uεx)
∣∣∣
α/2
≤ K(n+ 1)C2

n−1 (135)

and (132) becomes

∣∣∣2Êε
n(F (ε))

∣∣∣
α,α/2

≤ Cn +K(n+ 1)C2
n−1. (136)
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Lemma 16. Assume K ≥ 1 satisfies (131). Let c(x, t) = Êε
n

(
F (ε)2

)
+ F (0)Êε

n(uεx).

Then

|c|α,α/2 ≤ K̃(n+ 2)3C4
n−1 (137)

as long as

K̃ ≥ max{K2, K
∣∣F (0)

∣∣
α,α/2
}. (138)

Proof. By Lemma 115, with k =
⌊
n
2

⌋
,

Êε
n

(
F (ε)2

)
=

1

εn+1

[
Eε
k

(
F (ε)

)]2

+ 2
k∑
j=0

F (j)(0)

j!
Êε
n−j
(
F (ε)

)
=

1

εn+1

[
Eε
k

(
F (ε)

)]2

+ 2
k∑
j=1

F (j)(0)

j!
Êε
n−j
(
F (ε)

)
+ 2F (0)Êε

n

(
F (ε)

)
,

(139)

so that

c(x, t) = ε2k+1−n
[
Êε
k

(
F (ε)

)]2

+2
k∑
j=1

F (j)(0)

j!
Êε
n−j
(
F (ε)

)
+F (0)(2Êε

n

(
F (ε)

)
+Êε

n(uεx)).

(140)

Now we use Corollary 15 to get

|c|α,α/2 ≤
1

4

[
Ck +K(n+ 1)C2

k−1

]2
+ 2

k∑
j=1

(Cj +K(n+ 1)C2
j−1)(Cn−j +K(n+ 1)C2

n−j−1) +
∣∣F (0)

∣∣
α,α/2

K(n+ 1)C2
n−1

≤ 1

4
K2(n+ 2)2C4

k + 2kK2(n+ 2)2C4
n−1 +

∣∣F (0)
∣∣
α,α/2

K(n+ 1)C2
n−1. (141)

The claim follows.

We now prove our main result.

Proof of Theorem 12. The case that n = 0 is the content of Corollary 6 and Corollary

9. Now, we prove the recursive relation. Let ψn = Êε
n(u). By the linearity of Eε

n(·),
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we have that

Êε
n

(
ut +

σ2

2
uxx − ru+ F (ε)2

)
= ψnt +

σ2

2
ψnxx − rψn + Êε

n

(
F (ε)2

)
= 0. (142)

By Lemma 16 and Theorem 13, we obtain

|ψn|2+α,1+α/2 ≤ κK̃(n+ 2)3C4
n−1, (143)

where κ, K̃ depend only on the data. Now let ϕn = Êε
n(m). By the linearity of Eε

n(·),

we have that

Êε
n

(
mt −

σ2

2
mxx −

[
F (ε)m

]
x

)
= ϕnt −

σ2

2
ϕnxx −

[
Êε
n

(
F (ε)m

)]
x

= 0. (144)

By Lemma 111, we have that

Êε
n

(
F (ε)m

)
= mεÊε

n

(
F (ε)

)
+

1

εn+1

n∑
i=0

εiF (i)(0)

i!
En−i(m)

= mεÊε
n

(
F (ε)

)
+

n−1∑
i=1

F (n−i)(0)

(n− i)!
Êi(m) + F (0)ϕn.

(145)

Now, let b = F (0) and w = mεÊε
n

(
F (ε)

)
+
∑n−1

i=0
F (n−i)(0)

(n−i)! Êi(m). Our PDE is now

ϕnt −
σ2

2
ϕnxx − (bϕn)x − wx = 0. (146)

Again, applying Lemma 16 and Theorem 13, we obtain

|ϕn|2+α,1+α/2 ≤ κ̃K̃(n+ 2)3C4
n−1, (147)

the constant κ̃ being possibly different from κ.
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Combining (147) and (143), we obtain the recursive relation

Cn ≤M(n+ 2)3C4
n−1, (148)

which, in particular, implies (122).
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CHAPTER FOUR

Conclusions and Open Questions

It is apparent that the growth bounds are very crude and do not demonstrate

analyticity. Therefore, it is still of interest to know whether or not we can obtain

tighter estimates that give analyticity, or even some type of Gevrey class regularity

if analyticity is too stringent a goal. As the growth bounds tend to grow to astro-

nomically large numbers even after just the first few iterations, it follows that the

first order estimates are of the most use. The first order estimates prove rigorously

that ∂
∂ε
u |ε=0 and ∂

∂ε
m |ε=0 are equal to u1 and m1, respectively. That is, the notation

acually represents derivatives in ε evaluated at 0 for u and m as we would expect.

There are still some open questions regarding this system of mean field equa-

tions. Recall in Chapter 2 that we defined T to be the exhaustion time, the first

instance at which all players have dropped out of the competition. It can be treated

as a variable and Graber and Bensoussan proved existence and uniqueness of solutions

for an arbitrary final time (Graber and Bensoussan, 2018). However, the exit time

is not something known a priori and must be determined from the system endoge-

nously. Without coupling of the equations, the exhaustion time can be computed,

but when we do have a coupled system, is there a way to determine how long before

players run out of resources? And is it even the case that the expected value is finite?

Furthermore, Chan and Sircar present the system of mean field games as an infinite

time horizon problem, so is the problem still well-posed?

The calculations done in Chapter 3 to obtain error estimates consider the sec-

ond order case of the mean field game. However, for the first order case, when σ = 0,

is the problem still well posed? Graber and Mouzouni partially addressed this case,

but for Neumann boundary conditions (Graber and Mouzouni, 2018). Furthermore,
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if the problem is indeed well-posed, are there also error estimates for solutions as

shown in Chapter 3 for the second order case?

While much of the theory of mean field games has been developed over the

past couple of decades, it is clear that there is still much to learn about solutions

to these types of equations. This system of PDE, while a simplification of a general

system of N coupled differential equations, is still very deep in its implications and

has its own unique complexities leaving much to explore about its solutions.
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