
  

 
 
 
 
 

 
 
 

ABSTRACT 
 

Validity, Reliability, and Gender Invariance of the Abbreviated Math Anxiety Scale 
(AMAS) in Middle School Students 

 
Lauren Adelyn Cohen, Psy.D. 

Mentor: Christine A. Limbers, Ph.D. 
 
 

Math anxiety is a common form of state anxiety that is associated with poorer 

math performance and achievement in children, adolescents, and young adults. It is also 

associated with avoidance of advanced education and career paths in STEM-related fields 

and is disproportionately higher in females than males across the lifespan. The 

Abbreviated Math Anxiety Scale (AMAS) is a brief self-report measure of math anxiety 

comprised of two subscales that has been shown to be a reliable and valid measure of 

math anxiety for elementary, high school, and college-aged students. The AMAS also 

demonstrates factorial invariance across gender in these populations, indicating that it can 

be used to compare mean score differences in males and females. Despite the importance 

of the middle school years on the trajectory of math anxiety, the psychometric properties 

of the AMAS have not yet been examined in a middle school population. The purpose of 

the current study was to address gaps in the literature by examining the reliability, 

validity, and gender invariance of the AMAS in middle school students.  



 

 

A group of 604 students from two middle schools in the Southern United States 

completed the AMAS in person or online, as well as measures of math anxiety, test 

anxiety, worry, attitudes towards math, positive affect and career interest in STEM fields. 

Confirmatory factor analyses and multigroup confirmatory factor analyses were 

conducted to assess the factor structure of the AMAS and test for factorial invariance 

across gender. Internal consistency reliability was assessed and correlations between the 

AMAS and other measures were examined to assess for convergent, and divergent 

validity. 

The AMAS demonstrated good internal consistency reliability, convergent and 

divergent validity, and factorial invariance across boys and girls in the middle school 

sample. A bifactor model provided a good fit for the data and an improved fit over 

unidimensional and bidimensional models. Results from the current study suggest that the 

AMAS is a valid and reliable measures of math anxiety for middle school students and 

can be used to measure differences in math anxiety between boys and girls in this 

population. 
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CHAPTER ONE 
 

Introduction 
 
 

Definitions of Math Anxiety 
 

In the 1950’s, researchers began investigating the existence of a form of anxiety 

that was specific to the field of mathematics (Ashcraft & Ridley, 2005). The earliest 

published research on this topic includes Gough’s (1954) study on “mathemaphobia” in 

female pre-term teachers and Dreger and Aiken’s (1957) examination of “numerical 

anxiety” in undergraduate students. Academic interest in anxiety related to mathematics 

surged in the 1970’s with the publication of Richardson and Suinn’s (1972) seminal 

article on the measurement of math anxiety, “The Mathematics Anxiety Rating Scale: 

Psychometric Data” (Ashcraft & Ridley, 2005). In what has now become the most 

commonly cited definition, Richardson and Suinn defined the construct of math anxiety 

as “anxiety associated with the single area of the manipulation of numbers and the use of 

mathematical concepts,” which, “involves feelings of tension of anxiety that interfere 

with the manipulation of numbers and the solving of mathematical problems in a wide 

variety of ordinary life and academic situations.” Richardson and Suinn further suggest 

that math anxiety may “be a contributor to tensions during routine or everyday activities, 

such as handling money, balancing bank accounts, evaluating sales prices, or dividing 

workloads.”  

After the publication of Richardson and Suinn’s article, several other authors 

attempted to further define the construct known as “math anxiety”. Fennema and 
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Sherman (1976) defined math anxiety as “feelings of anxiety, dread, nervousness, and 

associated bodily symptoms related to doing mathematics”, while D’Ailly and Bergering 

(1992) similarly defined it as a “fear and apprehension to specific math-related 

situations”. Hart and colleagues (2016) also conceptualized math anxiety as an emotional 

response to mathematics, suggesting that it is a “negative emotional reaction to situations 

involving math performance or the thought of math performance”. In a more informal 

and succinct definition, Ashcraft and Ridley (2005) wrote that math anxiety is a “negative 

reaction to math and to mathematical situations” in both academic and everyday settings. 
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CHAPTER TWO 

 
Literature Review 

 
 

The Relationship Among Math Anxiety, General Anxiety, and Test Anxiety 
 

The literature overwhelmingly supports the differentiation of math anxiety, test 

anxiety, and general anxiety into separate, yet highly related constructs (Dew et al., 1983; 

Hill et al., 2016; Suárez-Pellicioni et al., 2016). In support of this differentiation of 

constructs, measures of math anxiety correlate more strongly with one another than with 

measures of general anxiety or test anxiety (Ashcraft & Ridley, 2005; Dowker et al., 

2016; Suárez-Pellicioni et al., 2016), with studies reporting large correlations ranging 

from .50 to .85 among different measures of math anxiety (Ashcraft & Ridley, 2005; 

Cohen, 1988; Dew et al., 1983; Hopko et al., 2003). Measures of math anxiety 

demonstrate smaller correlations ranging from .30 to .69 with measures of test anxiety 

(Cohen, 1988; Devine et al., 2012; Dowker et al., 2016; Hembree, 1990; Hopko et al., 

2003; Kazelskis et al., 2000; McAuliffe & Trueblood, 1986; O’Leary et al., 2017), and 

.26 to .57 with measures of general anxiety (Cohen, 1988; Hembree, 1990; Hopko et al., 

2003; McAuliffe & Trueblood, 1986; O’Leary et al., 2017; Wang et al., 2014), 

suggesting that math anxiety is a separate construct from test and general anxiety. 

In an attempt to investigate the relationship between math anxiety, test anxiety, 

and general anxiety, McAuliffe and Trueblood (1986) conducted a factor analysis using 

principal components analysis on measures of the three constructs to investigate overlap 

of factor structure. The authors found that the three scales loaded onto separate factors, 
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and that scores on the measures of general anxiety and test anxiety only predicted 

approximately 18% and 16% of variance on the math anxiety measure, respectively. In a 

meta-analysis, Hembree (1990) found that measures of test anxiety predicted 37% of the 

variance in measures of math anxiety, whereas alternate measures of math anxiety and 

test anxiety have demonstrated up to 72% of shared variance (Ashcraft & Ridley, 2005).  

Math anxiety is often viewed as a form of ‘state’ anxiety, in which an individual 

experiences anxiety during specific situations, rather than ‘trait’ anxiety, which refers to 

overall feelings regarding math (Ashcraft & Ridley, 2005; Bieg et al., 2015). Although 

studies suggest that math anxiety is significantly related to both state and trait anxiety 

(e.g., McAuliffe & Trueblood, 1986), measures of math anxiety tend to correlate more 

highly with measures of state anxiety (r = .26 - .52) than with measures of trait anxiety (r 

= .28 - .51; Hembree, 1990; Hopko et al., 2003; Plake & Parker, 1982).  

Results from studies using fMRI data suggest that math anxiety activates many of 

the same brain regions as fear, general anxiety, and specific anxiety disorders 

(Artemenko et al., 2015; Suárez-Pellicioni et al., 2016). In their meta-analysis of 

neuroimaging research of math anxiety, Artemenko and colleagues (2015) found that 

adults with high levels of math anxiety demonstrate increased activation of the pain 

network of the insula prior to completing math tasks. Further, relative to children with 

low levels of math anxiety, children with high levels of math anxiety show a) greater 

activation of the amygdala during math tasks, suggesting a fear response to math, b) 

greater connectivity from the amygdala to the ventromedial prefrontal cortex, suggesting 

activation of compensatory mechanisms, and c) reduced connectivity to the bilateral 

superior parietal lobule, suggesting a performance deficit (Artemenko et al., 2015). 
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Findings also suggest that math anxiety is associated with less activation of the 

dorsolateral prefrontal cortex independent of math performance, with studies 

demonstrating improvements in math performance following increased emotional 

processing in this region (Artemenko et al., 2015). This research suggests that math 

anxiety reduces processing efficiency during math tasks by increasing the amount of 

mental effort required for emotional regulation (Artemenko et al., 2015).  

 
The Association Between Math Anxiety and Performance 

 
Math anxiety appears to be relatively common, as estimates suggest that 15-20% 

of the population may experience high levels of math anxiety (Ashcraft & Ridley, 2005). 

Children report experiencing math anxiety and demonstrate related performance 

impairments in math as early as elementary school (Maloney & Beilock, 2012; Ramirez 

et al., 2013, 2016). Studies suggest that levels of math anxiety increase during middle 

school, peak in early high school, and remain stable through college (Ahmed, 2018; 

Hembree, 1990; Luo et al., 2009). These findings are concerning given that higher levels 

of math anxiety are associated with a number of negative outcomes for students ranging 

from elementary school to college age (e.g., Hembree, 1990; Luttenberger et al., 2018; 

Núñez-Peña et al., 2013). Specifically, higher levels of math anxiety are significantly 

associated with poorer math performance, calculation ability, math grades, and math-

related achievement (Brush, 1978; Hart et al., 2016; Hembree, 1990; Ma, 1999; Núñez-

Peña et al., 2013; Passolunghi et al., 2016; Suárez-Pellicioni et al., 2016). Studies suggest 

small to moderate negative correlations between math anxiety and performance for 

elementary and secondary school students (r = -.27 to -.36; Devine et al., 2012; Hembree, 
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1990; Ma, 1999; Ramirez et al., 2016) and moderate correlations for college students (r = 

-.31; Hembree, 1990).  

Regarding specific areas of math performance, math anxiety demonstrates small 

to moderate negative correlations with computation ability (r = -.25), knowledge of math 

concepts (r = -.27), math problem solving [r = (-.27) - (-.32)], spatial ability (r = -.29), 

and abstract reasoning ability (r = -.40; Hembree, 1990; Wang et al., 2014). However, it 

is important to note that math anxiety does not appear to be strongly associated with IQ 

or impairments in reading and writing performance (Hembree, 1990; Hill et al., 2016; 

Passolunghi et al., 2016; Wang et al., 2014).  

Research suggests that math anxiety is also associated with increased avoidance 

of math-related situations, reduced intent to continue with math courses, reduced 

enrollment in math courses, enrollment in lower-level math courses, poorer attitudes 

toward math, and overall increased avoidance of educational tracks and career paths 

involving mathematics, including jobs in the science, technology, engineering, and math 

(STEM) sectors (Ahmed, 2018; Ashcraft & Ridley, 2005; Brush, 1978; D’Ailly & 

Bergering, 1992; Hembree, 1990; Núñez-Peña et al., 2013; Suárez-Pellicioni et al., 2016). 

Given that a) employment growth in STEM-related jobs is substantially higher than in 

other fields, and b) salaries for jobs in STEM are higher than the national average (Fayer 

et al., 2017; National Science Board, 2018), math anxiety puts students at a disadvantage 

for future career paths (Suárez-Pellicioni et al., 2016).  

 
The Reciprocal Relationship Between Math Anxiety and Performance 

 
The effects of math anxiety and math performance appear to be bidirectional 

(Ashcraft & Ridley, 2005; Carey et al., 2016; Devine et al., 2012; Dowker et al., 2016; 
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Maloney et al., 2015). In their review, Carey and colleagues (2016) highlight the deficit 

theory and the debilitating anxiety model as causal models in the reciprocal relationship 

between math anxiety and performance.  

The deficit theory hypothesizes that poor math performance in early childhood 

contributes to the development of math anxiety during the school years (Carey et al., 

2016). Evidence for the deficit theory derives from two sources. First, longitudinal 

studies of neurotypically developing children indicate that low math achievement predicts 

future increases in math anxiety (Carey et al., 2016; Ma & Xu, 2004), suggesting that 

deficits in math performance lead to increased anxiety surrounding math. Second, 

children with math learning disabilities report higher levels of math anxiety than their 

neurotypical peers (Carey et al., 2016; Passolunghi et al., 2016; Rubinsten & Tannock, 

2010), suggesting that math anxiety stems from pre-existing difficulties with math.  

Conversely, the debilitating anxiety model hypothesizes that intrusive thoughts 

and worries associated with math anxiety lead to impairments in cognitive processing, 

which subsequently lead to reduced math performance (Carey et al., 2016). Support for 

this model comes from studies on stereotype threat, temporary working memory deficits, 

and attentional biases in individuals with high levels of math anxiety (Ashcraft & Ridley, 

2005; Carey et al., 2016; Spencer et al., 1999; J. Steele, 2003).  

Ambady and colleagues (2001) used the American societal stereotypes that a) 

women are inferior to men in mathematic ability, and b) individuals from Asian ethnic 

backgrounds are superior in mathematic ability, to investigate the effect of stereotype 

threat on math performance in elementary and middle school girls. The authors found that 

the Asian-American girls in their sample performed significantly worse on a math test 



 

 8 

relative to controls when they were explicitly made aware of their gender identity. 

Conversely, girls who were made aware of their Asian-American ethnic identity 

performed significantly better on the math test relative to girls in the control and gender 

stereotype groups (Ambady et al., 2001). In accordance with studies suggesting that 

anxiety mediates the negative effects of stereotype threat on performance (e.g., Spencer 

et al., 1999; C. M. Steele, 1997) and the debilitating anxiety model, the results suggest 

that the condition-associated change in math anxiety mediated the effect of stereotype 

activation on change in math performance for participants in this study. 

In further support of the debilitating anxiety model, a number of studies suggest 

that math anxiety is associated with temporary deficits in working memory. Ashcraft and 

Faust (1994) reported that undergraduate students with high and low levels of math 

anxiety did not demonstrate differences in accuracy or speed when completing simple 

arithmetic problems. However, when computational problems involving more advanced 

mathematical concepts were introduced, students in the high math anxiety group 

demonstrated a significantly higher error rate than those in the low math anxiety group. 

As solving the more advanced math problems required greater working memory capacity 

than solving the simple problems, the authors hypothesized that the intrusive thoughts 

associated with math anxiety occupied a greater proportion of the high math anxiety 

group’s working memory capacities, leading to reduced processing efficiency, and, 

subsequently, poorer performance (Ashcraft & Faust, 1994).  

Ashcraft and Kirk (2001) reported similar findings, demonstrating that math 

anxiety was negatively associated with computation-based working memory span 

independent of language-based working memory span. Specifically, participants in the 
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high math anxiety group demonstrated higher error rates on math problems when 

working memory load was high and lower error rates when working memory load was 

low (similar to those in the low math anxiety group). These findings further suggest that 

math anxiety is associated with poorer math performance independent of overall working 

memory capacity. 

Ramirez and colleagues (2016) found a similar pattern of results for first and 

second grade students. Specifically, higher working memory capacity was associated 

with higher math achievement and the use of more complex problem-solving strategies 

dependent on working memory in this sample. Children with higher working memory 

capacity also showed a stronger negative relationship between math anxiety and math 

achievement than children with lower math anxiety. This finding suggests that the use of 

more complex working-memory based problem-solving strategies mediates the negative 

relationship between math anxiety and achievement for children with higher working 

memory ability. The authors thus concluded that math anxiety interferes with working 

memory capacity, most adversely affecting children with larger working memory 

capacities. 

In addition to temporary deficits in working memory processing, the relationship 

between math anxiety and poorer math achievement appears to be partially mediated by 

attentional biases. Rubinsten and colleagues (2015) used an implicit test of math anxiety 

in undergraduates to investigate whether attentional biases associated with math anxiety 

contribute to deficits in cognitive processing. Participants engaged in a visual probe task, 

during which stimuli differing in emotional valence were flashed across a screen before 

being replaced by probes. The rate at which participants responded to the probes was then 
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measured and compared across stimulus conditions. Although the two groups did not 

differ in accuracy rates, Rubinsten and colleagues found that participants with high math 

anxiety responded more quickly to probes when they were preceded by math-related 

primes relative to neutral primes, whereas participants with low math anxiety did not 

differ in their reaction times between probes. The authors argued that the discrepancy in 

results provides evidence for selective attention bias for math-related information in the 

high math anxiety group. They further hypothesized that the attentional bias for math-

related stimuli in the high math anxiety group leads to difficulty disengaging from 

negative thoughts about math in order to engage in problem solving.  

Suárez-Pellicioni (2015) also demonstrated an attentional bias for math-related 

stimuli among undergraduate students with high levels of math anxiety using an 

emotional Stroop task. The authors found that math anxiety levels were significantly 

positively associated with response times, ratings, and self-reported difference scores for 

math-related words in the Stroop task. Specifically, participants with high math anxiety 

took longer to respond to math-related words than neutral words, while participants with 

low math anxiety did not demonstrate a difference in reaction times between word types. 

The authors concluded that individuals with high levels of math anxiety demonstrated an 

attentional bias toward math content, which participants with high math anxiety 

interpreted as emotionally threatening. Given that increased attentional bias to 

threatening stimuli is associated with poorer disengagement from stimuli (e.g., Cisler & 

Koster, 2010), Rubinsten and colleagues’ (2015) and Suárez-Pellicioni’s (2015) findings 

suggest that individuals with high levels of math anxiety likely have increased difficulty 

disengaging from intrusive negative math-related thoughts, which negatively impacts 
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their ability to engage in problem-solving skills, and subsequently leads to poorer math 

performance.  

 
Math Anxiety, Race, and Ethnicity 

 
To date, few studies have investigated the relationship between math anxiety and 

race and ethnicity. Obsborne (2001) investigated whether anxiety mediated racial 

differences in academic achievement. He found that anxiety partially mediated the 

relationship between race and achievement between White and African American 

participants and White and Latino participants in a sample of high school students, 

explaining 38.8% and 41.4% of the effect of race, respectively. In a meta-analysis of the 

relationship between math anxiety and performance, Hembree (1990) did not find any 

significant differences in math anxiety between racial groups in a sample of college 

students.  Hart and Ganley (2019) investigated differences in math anxiety between 

several racial and ethnic groups in a sample of adults. They did not find any significant 

differences in math anxiety among Asian, Black or African American, White, American 

Indian or Alaskan Native, Native Hawaiian or Pacific Islander, or multiracial participants. 

The authors also did not find any differences in Hispanic/Latino and non-Hispanic/Latino 

participants.  

Casanova and colleagues (2021) conducted a longitudinal study of the 

relationship between math anxiety and math attitudes in first grade and math achievement 

in fourth grade among a sample of Black and Latinx elementary school students. The 

authors found that math anxiety in first grade significantly negatively predicted math 

achievement in fourth grade for girls only. The authors suggested that girls from minority 

racial and ethnic populations are particularly susceptible to the negative relationship 
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between math anxiety and math performance. Within a sample of Latinx college students, 

Fernández and colleagues (2021) found that female Latinx students reported more math 

anxiety than male Latinx students. Among students, having strong math skills predicted 

lower math anxiety, while strong commitment and class participation in math courses 

predicted high levels of math anxiety. The authors concluded that interventions targeting 

improvement in study skills for Latinx participants may be helpful in reducing math 

anxiety. 

 
Math Anxiety and Psychopathology 

 
Few studies have examined the relationship between math anxiety and clinically 

significant levels of psychopathology in children and adults. Canu and colleagues (2017) 

found that college students with ADHD reported significantly more math anxiety than 

their peers without ADHD, representing a medium effect, (d = .63). Students with ADHD 

also experienced a significant increase in negative affect following a math test, 

representing a small effect (d = .38). Conversely, Georgiou and colleagues (2018) found 

that adolescents with High-Functioning Autism Spectrum Disorder reported lower levels 

of math anxiety than their neurotypical peers.  

Several studies have suggested a positive relationship between math anxiety and 

learning disorders in math (Carey et al., 2016; Passolunghi et al., 2016; Rubinsten & 

Tannock, 2010; Wu et al., 2014). For example, Wu and colleagues (2014) found that 

children with a learning disability in math reported significantly more math anxiety and 

performed significantly worse on a measure of math achievement than typically 

developing children and children who were low achieving in math without a learning 

disorder.  
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To our knowledge, only one study to date has examined the relationship between 

math anxiety and internalizing and externalizing symptoms in children (Wu et al., 2014). 

In a sample of children ages seven- to nine-years-old, Wu and colleagues (2014) found 

significant positive correlations between scores on a measure of math anxiety and various 

subscales of the parent-reported Child Behavior Checklist (CBCL), a survey of clinically 

significant emotional and behavioral problems in children. Specifically, the researchers 

found positive, statistically significant correlations between math anxiety and the 

Anxiety/Depression subscale (r = .12), Withdraw/Depression subscale (r = .23), Social 

Problems subscale (r = .23), Attention Problems subscale (r = .19), Aggression subscale 

(r = .16), and Other Problems subscale (r = .13) of the CBCL. There were no significant 

associations between math anxiety and the Somatic Problems, Thought Problems, or Rule 

Breaking subscales. 

Although research examining the relationships between math anxiety and various 

mental disorders is limited, the studies highlighted above suggest that there appears to be 

a relationship between math anxiety and some forms of psychopathology. Additional 

research is needed to clarify the relationships between math anxiety and mental disorders.  

 
Math Anxiety and Gender Differences 

 
Girls tend to report significantly higher levels of math anxiety than boys across 

school years (Alexander & Martray, 1989; Bieg et al., 2015; Devine et al., 2012; Dowker 

et al., 2016; Goetz et al., 2013; Hill et al., 2016; Meece et al., 1990; Wang et al., 2014; 

Wigfield & Meece, 1988). However, gender differences in math performance appear to 

be very small to negligible (Ashcraft & Ridley, 2005; Devine et al., 2012; Hill et al., 

2016; Ma, 1999), with meta-analyses reporting trivial effect sizes of d = 0.05 - 0.07 
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(Lindberg et al., 2010; Reilly et al., 2015).  As the ratio of women to men in STEM 

careers remains low (Blackburn, 2017), these results suggest that math anxiety, rather 

than ability, may mediate the relationship between gender and the pursuit of higher 

education in STEM-related fields. 

 
Measures of Math Anxiety and their Psychometric Properties 

 
 

The Mathematics Anxiety Scale (MARS) 
 

The Mathematics Anxiety Rating Scale (MARS; Richardson & Suinn, 1972) has 

been the most commonly used scale for measuring math anxiety since its publication 

(Alexander & Martray, 1989; Ashcraft & Ridley, 2005; Capraro et al., 2001; Wigfield & 

Meece, 1988). Several other scales for measuring math anxiety have been developed over 

the years, but psychometric data regarding these measures is scant. Other than modified 

versions of the MARS, the most commonly cited early measures of math anxiety include 

Dreger and Aiken’s (1957) Number Anxiety Scale, Fennema and Sherman’s (1976) 

Mathematics Attitude Scales, and Wigfield and Meece’s (1988) Math Anxiety 

Questionnaire (Capraro et al., 2001). 

The psychometrics of Richardson and Suinn’s (1972) Math Anxiety Rating Scale 

(MARS) have been extensively studied in several different populations. The MARS is a 

98-item scale composed of descriptions of situations involving mathematics, such as 

“adding two three-digit numbers while someone looks over your shoulder”. Respondents 

rate their level of anxiety elicited by each situation on Likert-type scale ranging from 1 to 

5, with 1 indicating “not at all” anxious and 5 indicating “very much” anxious. A total 

math anxiety score ranging from 98 to 490 is calculated by summing the individual item 
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scores, with higher scores corresponding to higher levels of math anxiety. Subsequent 

studies have suggested that the MARS can be split into two subscales, which have been 

labeled the Math Test Anxiety subscale and the Numerical Test Anxiety subscale 

(Alexander & Cobb, 1987; Brush, 1978; Rounds & Hendel, 1980).  

 
Internal consistency.  The MARS demonstrates excellent internal consistency in 

undergraduate samples, with studies reporting coefficient alphas ranging from .92 to .97 

for the total scale (Capraro et al., 2001; Dew et al., 1983; Richardson & Suinn, 1972). 

Rounds and Hendel reported coefficient alphas of .93 for the Math Test Anxiety subscale 

and .87 for the Numerical Test Anxiety subscale of the MARS. Overall, the findings 

suggest that the MARS demonstrates excellent internal consistency.   

 
Test-rest reliability.  Richardson and Suinn (1972) reported a seven-week test-

retest Pearson product moment correlation coefficient of .85 for the MARS in an 

undergraduate sample. While Dew, Galassi, and Galassi (1983) found that the measure 

demonstrated good two-week test-retest reliability in a sample of undergraduate students 

overall (r = .87), it demonstrated a significantly higher reliability coefficient for men (r = 

.95) than women (r = .86), suggesting greater stability of scores for men than women. 

Capraro, Capraro, and Hensen (2001) reported an average test-retest reliability coefficient 

of .84 across 28 studies. Overall, these findings suggest that the MARS demonstrates 

good test-retest reliability in adult samples.  

 
Construct validity.  As an assessment of construct validity, Richardson and Suinn 

(1972) collected participant responses to the MARS prior to and following three math 

anxiety reduction groups at two universities. Mean score reductions were significant for 
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all three groups compared to a control group that did not demonstrate significant change 

from pre- to post-treatment, suggesting that the MARS demonstrates good construct 

validity.  

The MARS has demonstrated good convergent validity in relation to its 

correlations with interest in math (r = -.35), math attitudes (r = -.65), highest level of 

math achieved (r = .44), dislike of mathematics (r = .39), and a test of math ability  

(r = -.64; Brush, 1978; Resnick et al., 1982; Richardson & Suinn, 1972; Rounds & 

Hendel, 1980). However, Resnick et al. (1982) found that the MARS had no incremental 

predictive value for math performance after controlling for course grades, SAT scores, 

and high school rankings.  

The MARS demonstrated stronger correlations with a (reverse-scored) measure of 

math anxiety (r = -.68) than with a measure of test anxiety (r= .57), suggesting good 

discriminant validity (Dew et al., 1983). However, the MARS has demonstrated large 

correlations with the Suinn Test Anxiety Behaviors Scale (r = .65 -75; Suinn, 1969), a 

measure of test anxiety, calling into question whether the scales measure two separate 

constructs (Brush, 1978; Rounds & Hendel, 1980). Rounds and Hendel (1980) also 

implied that the MARS may not measure a construct separate from test anxiety, after 

finding that the subscales of the MARS did not demonstrate sufficient discriminant 

validity from the Test Anxiety Inventory (Spielberger et al., 1980). 

 
Factor validity.  In an early validation study of a 94-item version of the MARS, 

Brush (1978) determined that the MARS items loaded onto two factors using a principal 

components analysis. Forty-five of the items loaded onto the first factor, which he labeled 

“Problem-Solving Anxiety” and 31 items loaded onto the second factor, which he labeled 
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“Evaluation Anxiety”. The remaining 18 items did not load onto a factor at a salient 

magnitude. 

Rounds and Hendel (1980) found that the MARS loaded onto two factors using 

principal components analysis. Items were determined to load onto a factor if they 

demonstrated loadings of .30 or above. Factor 1, which was composed of 42 items, was 

labeled “Math Test Anxiety”, as several of the items with salient loadings on this factor 

were related to anxiety before, during, and after taking math tests. Factor 2, which was 

composed of 44 items, was labeled “Numerical Anxiety”, as several of the items on the 

factor were associated with conducting numerical calculations in everyday situations. 

Three MARS items had factor loadings of .30 on both factors and five items did not have 

factor loadings of .30 or greater on either factor. The two scales were only moderately 

correlated at .34, sharing 12% of common variance. There was a significant difference 

between participant scores on the Math Test Anxiety scale and Numerical Anxiety scale 

(Cohen’s d = 2.24), representing a large effect. 

Alexander and Cobb (1987) found a two-factor solution for the MARS using 

principal components analysis. Factor 1, labeled “Math Test/Course Anxiety”, contained 

17 items and accounted for approximately 33% of the variance in item responses. Factor 

2, labeled “Numerical Test Anxiety”, contained 7 items accounted for 7% of the variance 

in scores. The remaining 74 items did not demonstrate salient loadings on either factor. 

The two factors were only moderately correlated at r = .32, sharing 10% of common 

variance.  

Using principal components analysis, Resnick, Viehe, and Segal (1982) 

determined that a three-factor solution best fit the MARS. Factor 1 was composed of 19 
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items and accounted for 36% of the variance in scores. It was labeled “Evaluation 

Anxiety”, as items loading on the factor were associated with evaluation of math ability. 

Factor 2 was composed of 4 items and accounted for 5% of the variance in scores. It was 

labeled “Social Responsibility Anxiety”, as items loading on the factor were associated 

with the real-world application of math in organizations and clubs. Factor 3 was 

composed of 7 items, which accounted for 4% of the variance in scores. It was labeled 

“Arithmetic Computation Anxiety”, as the items loading on the factor were associated 

with everyday situations involving mathematical computation. The remaining 68 items 

did not demonstrate salient loadings on either factor. 

 
Revised Versions of the MARS  

 
Given the long length of the MARS and inconsistent findings regarding its factor 

structure, Alexander and Martray (1989) created an abbreviated version of the measure 

known as the Revised Mathematics Anxiety Rating Scale (RMARS). The authors 

reduced the 98-item MARS to 69 items and found that a three-factor model fit best. 

Factor 1, “Math Test Anxiety”, contained 15 items and accounted for 24% of the variance 

in scores. Factor 2, “Numerical Task Anxiety”, was composed of 5 items accounted for 

4% of variance. Factor 3, “Math Course Anxiety”, was composed of 5 items and 

accounted for 3% of variance. The 44 items that did not load strongly onto the three 

factors were dropped from the measure.  

 Baloğlu & Zelhart (2007) conducted a confirmatory factor analysis of Alexander 

and Martray’s (1989) RMARS using the proposed three factor solution to further 

investigate the factor validity of the measure. The authors found that the proposed three-

factor model was not supported by goodness-of-fit indices under Maximum Likelihood 
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(ML; CFI = .88, RMSEA = .10) or robust estimation methods (CFI = .88, RMSEA = 

.09), given the index cutoff values proposed by Hu and Bentler (1999). The authors 

conducted an exploratory factor analysis (EFA) and found that a different three-factor 

model best fit the data. The three factors, which retained the same names, accounted for 

66.08% of the variance in item scores. Five items with factor loadings smaller than .60 

were dropped from the model. The authors conducted a second CFA using the revised 

model. Although fit for the revised model was improved over the original model, the 

goodness-of-fit indices under ML (CFI = .92, RMSEA = .09) and robust estimation 

methods (CFI = .92, RMSEA = .09) did not suggest a good fit for the data. The measure 

resulted in a similar fit in a second sample under the Maximum Likelihood estimation 

method (CFI = .91, RMSEA = .09) and an improved fit under the robust estimation 

method (CFI = .94, RMSEA = .07), although neither met cutoff values for a good fitting 

model. Baloğlu & Zelhart tested the modified RMARS for factorial invariance across 

male and female undergraduates. They reported that the model produced a slightly 

different fit for women (ML: CFI = .91, RMSEA = .06; robust: CFI = .92, RMSEA = .07) 

than for men (ML: CFI = .92, RMSEA = .09; robust: CFI = .94, RMSEA = .06), but that 

a comparison of the fit indices demonstrated factorial invariance of the measure across 

gender. 

Like Alexander and Martray (1989), Plake and Parker (1982) created an alternate 

abbreviated version of the MARS composed of 24 items, also known as the Revised 

Mathematics Anxiety Rating Scale (MARS-R). The authors chose the majority of the 

items for the scale from the Math Test Anxiety subscale of the MARS. Using principal 

components analysis, the authors determined that a two-factor solution best fit the data 
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and accounted for 60% of the variance in scores. Factor 1, “Learning Math Anxiety”, 

contained 16 items and factor 2, “Mathematics Evaluation Anxiety”, consisted of the 

remaining eight items. Fit indices were not reported for the model.  

 Hopko (2003) conducted a confirmatory factor analysis on the MARS-R using the 

proposed two-factor solution. Goodness-of-fit index results suggested that the two-factor 

model did not produce a good fit for the data (RMSEA = .09, GFI = .81, AGFI = .78), 

given suggested fit index cutoffs for assessing adequate model fit (i.e., Hooper et al., 

2008; Hu & Bentler, 1999; Shevlin & Miles, 1998). Results of a single factor model 

produced an even poorer fit than the two-factor model (RMSEA = .10, GFI = .69, AGFI 

= 63). As a result, Hopko removed items from the measure using a model modification 

procedure described by Hatcher (1994), until an adequate model fit was achieved. After 

12 items were dropped from the model, a two-factor solution composed of the remaining 

twelve items demonstrated an adequate fit for the data (RMSEA = .05, GFI = .95, AGFI 

= .93, BCFI = .97). The two factors were highly correlated (r = .72), and the revised 

model correlated strongly with the original MARS-R (r = .97). Hopko conducted a 

confirmatory factor analysis in a replication sample to test the modified 12-item measure. 

Goodness-of-fit indices suggested that the two-factor solution approached an adequate 

model fit for the data but did not meet cutoff criteria for a good fit for the scale (RMSEA 

= .06, GFI = .94, AGFI = .92). Hopko tested the revised model for factorial invariance 

across gender. Fit indices for men (RMSEA = .07, GFI = .94, AGFI = .91, BCFI = .94) 

and women (RMSEA = .06, GFI = .95, AGFI = .92, BCFI = .96) were similar, suggesting 

that the model was invariant across gender. 
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Limitations of the Original and Revised Versions of the MARS 
 

Despite the wide usage of the MARS and its derivations for the measurement of 

math anxiety, the scale demonstrates a number of substantial limitations. First, the length 

of the original MARS calls the feasibility of its use as a research instrument into question. 

At 98 items, the length of the measure creates a large response burden for participants 

(Rolstad et al., 2011). As research suggests that participant response rates are negatively 

associated with questionnaire length (Galesic & Bosnjak, 2009; Rolstad et al., 2011; 

Sahlqvist et al., 2011), the scale’s length makes it less useful for data collection than a 

briefer questionnaire.  

Second, the original and abbreviated versions of the MARS lack strong factor 

validity. As demonstrated above, the factor structures of the MARS, MARS-R, and 

RMARS differ drastically across studies, even among similar populations. Further, 

goodness-of-fit indices associated with the “best-fitting” factor solutions for the measures 

do not meet cutoff criteria for good model fit. The measures have required substantial 

change in content before the model fit indices have approached acceptable criteria, and 

only Hopko’s (2003) drastically modified version of the MARS-R has demonstrated good 

model fit.  

 
The Abbreviated Math Anxiety Scale (AMAS) 

 
   

Development.  After finding that his heavily modified version of Plake and 

Parker’s (1982) MARS-R demonstrated a good fitting model, Hopko and colleagues 

(2003) sought to develop a briefer and more parsimonious version of the measure to 

assess math anxiety. Using an undergraduate sample, the authors conducted an EFA on 
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item responses to the MARS-R. The authors found that a two-factor solution accounted 

for approximately 52% of the variance in items scores. They then dropped the 14 items 

from the scale that did not demonstrate loadings of .70 or above on a single factor. The 

authors determined that two items were redundant and combined them into a single item, 

for a total of nine items on the scale. Hopko and colleagues named the scale the 

Abbreviated Math Anxiety Scale (AMAS).  

Hopko and colleagues (2003) conducted an exploratory factor analysis of the 

nine-item AMAS, finding that a two-factor solution accounted for 70% of variance in 

item scores. The authors named the two factors “Learning Math Anxiety” and “Math 

Evaluation Anxiety” after the scales on the MARS-R. The Learning Math Anxiety 

(LMA) factor was composed of five items, with factor coefficients ranging from .52 - .86. 

The Math Evaluation Anxiety (MEA) factor was composed of four items, with factor 

coefficients ranging from .66 - .89. The mean score for the undergraduate sample was 

21.1 (SD = 7.0), and female students (M = 21.9, SD = 6.9) reported significantly more 

math anxiety than male students (M = 19.5, SD = 6.9). The MEA and LMA subscale 

scores correlated highly with one another (r = .62), although they remained below the .85 

cutoff for problematic discriminant validity. The AMAS total score also correlated highly 

with the LMA (r = .88) and MEA subscales (r = .92).  

Hopko and colleagues (2003) conducted a confirmatory factor analysis (CFA) of 

the AMAS in a replication sample of undergraduate students. Standardized path 

coefficients ranged from .43 to .86 on the LMA and MEA factors and the two-factor 

solution produced the following goodness-of-fit statistics: χ2 = 50.81 (df = 26, p < .001), 

RMSEA = .06, GFI = .95, AGFI = .92, BCFI = .96. Based on Hu and Bentler’s (1999) 
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goodness-of-fit cutoff values, the results of the confirmatory factor analysis suggested 

that the two-factor solution provided a good fit for the data. The two-factor model was 

also tested for invariance across gender. Results suggested that the two-factor solution 

produced a good fit for both female [χ2 = 37.56 (df = 26), p < .001; RMSEA= .05, GFI = 

.95, AGFI = .91, BCFI = .97] and male undergraduate students [χ2 = 36.98 (df = 26), p < 

.001; RMSEA = .07, GFI = .93, AGFI = .90, BCFI = .93].  

 
Factor structure of the AMAS in adult populations.  Primi and colleagues (2014) 

conducted a CFA of an Italian version of the AMAS in high school and undergraduate 

students. The two-factor model produced a good fit for both the high school sample [χ2 = 

56.46 (df = 26), p < .001; CFI= .96; TLI = .95; RMSEA = .07] and the undergraduate 

sample [χ2 =75.10, (df = 26), p < .001; CFI = .95; TLI = .93; RMSEA = .08].  There was 

a large correlation between the LMA and MEA factors for both the high school (r = .54) 

and college (r = .55) samples, and standardized path coefficients ranged from .60 to .94 

and .51 to .90, respectively. The two-factor model resulted in the following goodness-of-

fit index values for males: χ2 = 74.791 (df = 26), p < .001; CFI = .94; TLI = .92; RMSEA 

= .08, and the following index values for females: χ2 = 59.7 (df = 26), p < .001; CFI = 

.96; TLI = .94; RMSEA = .07. The authors concluded that the comparative fit statistics of 

the invariance models suggested equality of the scale across genders for both the high 

school and college samples. 

Vahedi and Farrokhi (2011) conducted a CFA of a Persian version of the AMAS 

in a sample of undergraduate students. The two-factor model produced the following 

goodness-of-fit statistics: χ2 = 60.79 (df = 25), p < .001; CFI = .96; TLI = .94; RMSEA = 

.07, suggesting a good fit for the data. The two factors were highly correlated (r = .67). 
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The authors conducted a multi-group CFA to evaluate factor invariance across gender. 

The two-factor model resulted in the following goodness-of-fit index values for females: 

χ2 = 41.60 (df = 25), p < 0.02; CFI = .96; IFI = .95; RMSEA = .06, and the following 

index values for males: χ2 = 48.88 (df = 25), p < 0.003; CFI = .94; IFI= .94; RMSEA = 

.08. Results of additional analyses suggested that the scale was invariant across gender. 

Cipora and colleagues (2015) measured the factor structure a Polish version of the 

AMAS in undergraduate students. Scores for the LMA and MEA subscales were 

moderately correlated (r = .49) and both subscales were highly correlated with the total 

AMAS score (r = .85, .88, respectively). A confirmatory factor analysis using a two-

factor solution produced the following goodness-of-fit statistics: RMSEA = .09, AGFI = 

.86, suggesting that the model did not provide an adequate fit for the data. The authors 

conducted a second CFA adding a path from an item assessing math homework-related 

anxiety on the MEA factor to the LMA factor, with the explanation that homework is 

related to both learning and evaluation. With the addition of this path, the model 

produced the following goodness-of-fit statistics: RMSEA = .07, AGFI = .91, suggesting 

an improved, but still inadequate fit for the data. The results of the CFA suggest that the 

measure does not provide an adequate fit for a Polish population, comparable to those 

seen for American, Italian, and Iranian populations (i.e., Hopko et al., 2003; Primi et al., 

2014; Vahedi & Farrokhi, 2011). 

 
Factor structure of the AMAS in child populations.  Caviola and colleagues 

(2017) investigated the factor structure of the Italian version of the AMAS in primary 

school children ages 8 to 11 years old. The AMAS total score demonstrated large 

correlations with the LMA subscale (r = .83) and the MEA subscale (r = .88). A CFA 
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using a two-factor solution produced the following goodness-of-fit statistics: χ2 = 153.26 

(df = 26), p < 0.001; CFI = .93; TLI = .90, RMSR = .07; RMSEA = .07, suggesting a 

fairly good fit for the data. The authors conducted a multiple-group CFA to investigate 

the invariance of the model across gender. The model produced a slightly better fit for 

girls (χ2 = 72.69 (df = 26), p < 0.001; CFI = .94; TLI = .92; RMSR= .07; RMSEA = .06) 

than for boys (χ2 = 104.22 (df = 26), p < 0.001; CFI = .91; TLI = .90; RMSR = .08; 

RMSEA = .08), although additional analyses suggested that measurement error was 

equivalent across genders. 

Carey and colleagues (2017) modified items of the AMAS to make them more 

applicable to children in the British school system. They conducted a CFA of the 

modified AMAS (mAMAS) using a two-factor solution to evaluate the model fit for 

English students ages 8 to 9 and 11 to 13 years-old. All standardized path coefficients for 

the model were higher than .60, and all parameter estimates were significantly different 

from zero. The two-factor model produced the following goodness-of-fit statistics: χ2= 

466.95 (df = 84), p < 0.001; RMSEA = .07; CFI = .97, suggesting a good fit for the data. 

 
Psychometric Properties of the AMAS.  Studies report coefficient alphas for the 

AMAS in undergraduate populations ranging from .82 to .90 for the total scale, .74 to .85 

for the LMA subscale, and .79 to .88 for the MEA subscale (Cipora et al., 2015; Hopko et 

al., 2003; Primi et al., 2014; Vahedi & Farrokhi, 2011), suggesting that the AMAS 

demonstrates good internal consistency reliability in adult populations. 

Caviola and colleagues (2017) reported alpha coefficients of .77 for the AMAS 

total scale, .64 for the LMA subscale, .74 for the MEA subscale in primary school 

students ages 8 to 11 years-old. On the modified AMAS, Carey and colleagues (2017) 
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reported coefficient alphas of .85 for the total scale, .77 for the LMA subscale, and .79 

for the MEA subscale for 8- to 9-year-olds, and .86 for the total scale, .80 for the LMA 

subscale, and .81 for the MEA subscale for 11 to 13 year-olds. Primi and colleagues 

(2014) reported alpha coefficients of .86 for the AMAS total scale, .81 for the LMA 

subscale, and .80 for the MEA subscale in high school students ages 14 to 19 years-old. 

These results suggest that the internal consistency reliability of the AMAS increases with 

participant age and that the measure demonstrates good internal consistency for children 

ages 11 years and above.   

Hopko and colleagues (2003) reported two-week Pearson product moment 

correlation coefficients of .85 for the total scale, .85 for the LMA subscale, and .83 for 

the MEA subscale in an undergraduate population, suggesting good test-retest reliability. 

Cipora and colleagues (2015) reported four-month test-test reliability coefficients of .71 

for the AMAS total scale, .71 for the MEA subscale, and .59 for the LMA subscale, 

suggesting that the LMA subscale did not demonstrate adequate test-retest reliability in 

an undergraduate population.  

The AMAS has demonstrated strong convergent validity with the MARS-R for 

the total score (r = .85), LMA subscale (r = .70), and the MEA subscale (r = .81) in 

undergraduate students (Hopko et al., 2003). It has demonstrated large correlations with 

measures of test anxiety (r = .52 - .57) and small correlations with measures of general 

anxiety (r = .22 - .33), attitudes towards math (r = -.48; Hopko et al., 2003; Primi et al., 

2014). The AMAS has also demonstrated moderate correlations with high school math 

grades [r = (-.34) - (-.52)] and number of high school math courses taken (r = -.31; 
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Hopko et al., 2003), suggesting that the scale demonstrates good convergent validity for 

adult populations.  

Total scores on the AMAS have demonstrated large correlations with measures of 

test anxiety (r = .54) and attitudes towards math (r = -.53), as well as moderate 

correlations with measures of general anxiety (r = .40) for high school and primary 

school students (Caviola et al., 2017; Primi et al., 2014). Hill and colleagues (2016) 

found that the AMAS demonstrated moderate positive correlations with a measure of 

general anxiety for students in grades 3 to 5 and moderate negative correlations with 

math performance for students in grades 6 to 8, although the authors did not report 

correlation coefficients. Overall, findings suggest that the AMAS demonstrates good 

convergent validity in children and adolescents.  

Carey and colleagues (2017) performed an exploratory factor analysis using the 

items from the modified AMAS (mAMAS), Children’s Test Anxiety Scale (Wren & 

Benson, 2004), and Revised Children’s Manifest Anxiety Scale (Reynolds & Richmond, 

1985) to evaluate the discriminant validity of the measures. Results suggested a five-

factor solution, with all items from the mAMAS and a single item of the Children’s Test 

Anxiety Scale loading onto a single factor labeled “Math Anxiety”. A confirmatory factor 

analysis of the five-factor model produced the following goodness-of-fit statistics: SRMR 

= .06, RMSEA = .04, CFI = .94, suggesting an adequate fit for the data. The findings 

suggest that the mAMAS measures separate constructs from the Children’s Test Anxiety 

Scale and Revised Children’s Manifest Anxiety Scale, indicating good divergent validity 

from test and general anxiety scales in children.  
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Limitations of Existing Research on the AMAS 
 

The Abbreviated Math Anxiety Scale is the most promising scale currently 

available for the measurement of math anxiety, given its high internal consistency and 

test-retest reliability, short-length, strong convergent and discriminant validity, and 

parsimonious factor structure demonstrating good model fit (Ashcraft & Ridley, 2005; 

Hopko et al., 2003). Although the psychometric properties of the AMAS have been 

investigated in American adults, the measure has not yet been validated for use with 

middle school children in the United States.   

Research suggests that math anxiety may increase significantly for almost one-

quarter of students over the course of middle school (Ahmed, 2018). This finding is 

especially alarming, given that students who experience high levels of math anxiety in 

middle school are less likely than their peers to be employed in STEM jobs as adults 

(Ahmed, 2018). As STEM-related jobs offer higher salaries and better prospected growth 

than careers in other industries, math anxiety therefore places students at a disadvantage 

by the time they finish middle school (Fayer, Lacey, & Watson, 2017; National Science 

Board, 2018). A significant amount of research and funding has been focused on 

increasing youth interest in STEM fields in the United States and closing the gender gap 

in STEM-related careers (Buffington et al., 2016; National Center for Science and 

Engineering Statistics, 2021; U.S. Department of Education, 2021). In order to identify 

at-risk individuals, develop efficacious interventions, and monitor treatment outcomes for 

this population, it is necessary to have a psychometrically sound scale for measuring 

math anxiety in these populations. Although Carey and colleagues (2017) found a 

modified version of the AMAS (mAMAS) to be a reliable and valid scale for measuring 
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math anxiety in English children ages 11 to 13 years, there are two major limitations to 

the study.  

Carey and colleagues (2017) did not test for factorial invariance of the measure 

across girls and boys. Although females report more math anxiety than males on the 

AMAS, as demonstrated in undergraduate (Cohen’s d = 0.35 - 0.61), high school 

(Cohen’s d = 0.49), primary school (grades 3 to 5; Hedges’ g = .26), and secondary 

school (grades 6 to 8) samples (Hedges’ g = .28; Cipora et al., 2015; Hill et al., 2016; 

Hopko et al., 2003; Primi et al., 2014), it is impossible to unambiguously compare these 

reported rates of math anxiety between boys and girls without first determining whether 

the measure assesses the construct of math anxiety similarly in both groups (Cheung & 

Rensvold, 2002; Meredith & Teresi, 2006). Therefore, before the AMAS can be used to 

measure differences in boys and girls, it must first be shown to measure the same 

constructs in these two populations. It is important to establish the factorial invariance of 

a scale across gender before using it in clinical and research contexts, because if 

measurement invariance is responsible for the score discrepancy between boys and girls 

rather than true response differences, true need for resources and policy changes may be 

under or over represented (Meredith & Teresi, 2006). Although factorial invariance 

across gender has been established for the AMAS among elementary school aged 

children and adults (Caviola et al., 2017; Hopko et al., 2003; Primi et al., 2014; Vahedi & 

Farrokhi, 2011), it has not yet been evaluated among middle school age children. 

Rodriguez (2016a) suggests that when conducting psychometric analysis of a 

scale, it is important to determine a) whether specific factors (i.e., subscales) provide 

predictive validity for external variables above and beyond that of a general factor (i.e., 
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full scale), and b) the strength of the relationship between specific factors and item 

responses independent of the common factor. Although Carey and colleagues (2017) 

reported that a two-factor solution produced a good fit for the measure, this correlated-

factors solution does not provide information regarding whether the Learning Math 

Anxiety (LMA) and Math Evaluation Anxiety (MEA) subscales account for additional 

variance in item responses above and beyond the full scale (F. F. Chen et al., 2006). 

Therefore, it is unclear whether reporting the subscale scores of the AMAS and using the 

subscales in statistical analyses provide additional benefit in predicting relationships with 

other variables beyond the full scale score (F. F. Chen et al., 2006; DeMars, 2013).  

The bifactor model has come into increased popularity and usage in educational 

research and psychology over the past decade (Reise, 2012). It is a type of hierarchical 

model with one superordinate (i.e., common factor) and multiple subordinate (i.e., 

specific) factors (Markon, 2019). The model posits that there is a general factor (i.e., full 

scale) that accounts for commonalities shared by the facets of a construct and that 

multiple specific factors (e.g. subscales) account for unique variance in sets of facet-

specific items (i.e., scale items) above and beyond the general factor (F. F. Chen et al., 

2012). A bifactor model separates the unique variance in item scores accounted for by the 

specific factors from the common variance shared by the factors (F. F. Chen et al., 2012; 

DeMars, 2013). The bifactor model is advantageous for psychometric analysis for several 

reasons. First, the bifactor model allows researchers to determine whether subscales have 

predictive value over and above the predictive value of the full scale. This information 

can provide guidance on whether a scale should be treated as unidimensional in analysis, 

or whether reporting subscale scores and using them in analysis provides any additional 
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benefit beyond that of the full-scale score (DeMars, 2013; Rodriguez et al., 2016b). 

Second, a bifactor model allows for the testing of measurement invariance of subscale 

scores in addition to the total scale score, indicating whether subscales measure the same 

latent construct across groups (F. F. Chen et al., 2006). To our knowledge, despite the 

benefits of the bifactor model in psychometric evaluation, the model has never been 

tested for fit for the AMAS for children or adults.  

 
Purpose of the Present Study 

 
The present study aimed to fill the aforementioned gap in the empirical literature 

by validating the AMAS for use with American middle school populations. Specifically, 

the present study aimed to examine a) the factor structure and model fit of the scale as 

indicators of factor validity, b) the equivalence of the factor structure for girls and boys to 

evaluate factorial invariance across gender, c) the internal consistency of subscale and 

total scale scores as indicators of reliability, d) correlations of the total scale and subscale 

scores with measures of theoretically-related constructs as indicators of convergent 

validity, and e) correlations of the total scale and subscale scores with a measure of a 

theoretically-unrelated construct as indicators of discriminant validity.  

Based on existing literature regarding the reliability and validity of the AMAS in 

children, adolescents, and adults, the following hypotheses were tested in the sample: 

1. A bifactor model will provide an improved fit for AMAS item scores 

compared to a two-factor solution, with resulting goodness-of-fit indices 

meeting or exceeding cutoff scores for adequate model fit (CFI ≥ .95, TLI ≥ 

.95, SRMR ≤ .09, RMSEA ≤ .06; Hu & Bentler, 1999). 
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2. The AMAS total scale and MLA and MEA subscales will be invariant across 

male and female participants, as evidenced by increasingly constrained nested 

models a) meeting or exceeding cutoff criteria for adequate model fit in both 

groups (CFI ≥ .95, TLI ≥ .95, SRMR ≤ .09, RMSEA ≤ .06; Hu and Bentler, 

1999), b) demonstrating decrements in CFI values less than or equal to .01 in 

magnitude (Cheung & Rensvold, 2002), and c) demonstrating change in 

RMSEA values less than or equal to .015 in magnitude (F. F. Chen, 2007).  

3. The AMAS total scale, MEA subscale, and LMA subscale will demonstrate 

adequate internal consistency reliability as evidenced by Cronbach alphas and 

coefficient omegas of .80 or greater (Dunn et al., 2014; Nunnally, 1978; 

Raykov & Marcoulides, 2011; Rodriguez et al., 2016a, 2016b).  

4. The AMAS total scale, MEA subscale, and LMA subscale will demonstrate 

good convergent validity, as evidenced by large positive correlations (r ≥ .50) 

with a measure of math anxiety (e.g., r = .85; Hopko et al., 2003) and a  

measure of test anxiety (e.g., r = .52 - .57; Hopko et al., 2003; Primi et al., 

2014), medium to large negative correlations (r ≤ -.30) with a measure of 

attitudes towards math [e.g., r = (-.48) - (-.53); Primi et al., 2014], medium 

positive correlations (.30 ≤  r < .50) with a measure of worry (e.g., r = .40; 

Caviola et al., 2017), and small negative correlations (r < -.30) with a measure 

of interest in STEM careers (e.g., r = .32-.38; Huang et al., 2019). 

5.  The total scale of the AMAS, MEA subscale, and LMA subscale will 

demonstrate good discriminant validity, as evidenced by smaller correlations 

with a scale measuring positive affect than with a scale measuring worry.  
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6. Girls will report significantly more math anxiety than boys, as evidenced by 

higher mean scores on the AMAS. Mean score differences will represent a 

small effect, as evidenced by a Cohen’s d value greater than .20 and less than 

.50 (e.g., Hedges’ g = .28; Hill et al., 2016).  
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CHAPTER THREE 
 

Methods 
 
 

Participants 
 
 As completion of all study materials was not mandatory for participation in the 

study, participants’ responses were included in data analysis if they completed at least 

50% of items on the AMAS questionnaire, which was the first questionnaire presented in 

the study. A total of 604 students from two middle schools in Central and Southeast 

Texas completed at least 50% of the measure. Of these students, 64 completed study 

measures in person, while 540 students completed study measures online after their 

schools closed due to the COVID-19 pandemic.  

 
Measures 

 
 Descriptive statistics of questionnaire results are presented in Table B.2.  

 
 

Abbreviated Math Anxiety Scale (AMAS; Hopko et al., 2003)  
 

The AMAS is a 9-item self-report questionnaire for assessing math anxiety. 

Respondents rate items on a Likert-type scale ranging from 1 (low anxiety) to 5 (high 

anxiety). A total score is derived by summing responses for all items. Total scores range 

from 1 to 45, with higher scores indicating greater anxiety. As noted above, a modified 

version of the AMAS has demonstrated coefficient alphas of .86 for the total scale, .80 

for the Learning Math Anxiety (LMA) subscale, and .81 for the Math Evaluation Anxiety 

(MEA) subscale among 11- to 13-year-old children, suggesting good internal consistency 
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for children 11 years of age and older (Carey et al., 2017). The measure has demonstrated 

good two-week test-retest reliability in adults, with coefficients of .85 for the total scale, 

.85 for the LMA subscale, and .83 for the MEA subscale (Hopko et al., 2003). A CFA 

including a modified version of the AMAS suggests that the scale demonstrates good 

divergent validity from measures of test and general anxiety in middle school children 

(Carey et al., 2017).  

 
Children’s Test Anxiety Scale (CTAS; Wren & Benson, 2004)  
 

The CTAS is a 30-item self-report questionnaire for assessing test anxiety in 

children. Respondents rate how often they experience thoughts, off-task behaviors, and 

autonomic reactions related to anxiety on a Likert-type scale ranging from 1 (almost 

never) to 4 (almost always). A total score is derived by summing responses to all items. 

Total scores range from 30 to 120, with higher scores indicating greater anxiety. The 

CTAS has demonstrated excellent internal consistency with elementary and middle 

school children (α = .92) and good divergent validity with a modified form of the AMAS 

in children (Carey et al., 2017; Wren & Benson, 2004). 

 
Attitude Toward Mathematics Inventory (ATMI; Tapia, 1996) 
 

The ATMI is a 40-item self-report questionnaire for assessing attitudes toward 

math. Respondents rate thoughts and feelings towards mathematics and math-related 

activities on a Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree). 

Negatively stated items are reverse scored (i.e., 1 = 5, 2 = 4, 3 = 3, 4 = 2, 5 = 1). Higher 

scores are associated with more positive attitudes towards math. The ATMI has 

previously demonstrated moderate to large negative correlations with the AMAS in high 
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school and undergraduate samples [r = (-.48) - (-.53); Primi et al., 2014) and excellent 

internal consistency in a middle school population (α = .95; Tapia & Marsh, 2000). 

 
Revised Mathematics Anxiety Rating Scale (MARS-R; Plake & Parker, 1982) 

The MARS-R is a 24-item self-report questionnaire for assessing math anxiety. 

Respondents indicate how much anxiety they experience in situations involving 

mathematics on a Likert-type scale. Response options for each item ranges from 1 (not at 

all) to 5 (very much) anxious. Higher scores are associated with more math anxiety. The 

MARS-R demonstrated a large correlation with the AMAS in a previous study (r = .85; 

Hopko et al., 2003) and excellent internal consistency among young adults (α = .98; 

Plake & Parker, 1982).  

 
Penn State Worry Questionnaire for Children (PSWQ-C; Chorpita et al., 1997)  

The PSWQ-C is a 14-item self-report questionnaire developed to assess the 

frequency of worry in children ages 7 to 17 years over and above anxiety and depression. 

Respondents rate items on a Likert-type scale ranging from 0 (never true) to 3 (always 

true). Higher scores are associated with more frequent worrying. The measure 

demonstrates excellent internal consistency in children ages 5- to 19-years-old (α = .91; 

Pestle et al., 2008) and has the ability to sufficiently differentiate between children and 

adolescents who meet criteria for an anxiety disorder and those who do not (Chorpita et 

al., 1997). 
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Positive and Negative Affect Schedule for Children, Shortened Version (PANAS-C-SV; 
Ebesutani et al., 2012)  
 

The PANAS-C-SV is a 10-item self-report measure for identifying anxiety and 

mood symptoms in children. Respondents rate items on a Likert-type scale ranging from 

1 (very slightly or not at all) to 5 (extremely). Higher scores on the positive affect 

subscale (PA) and lower scores on the negative affect (NA) subscale indicate fewer mood 

and anxiety symptoms in children. The PA and NA subscales demonstrate good internal 

consistency in children ages 6 to 18 years-old, with coefficient alphas of .81 and .86, 

respectively (Ebesutani et al., 2012). The PA subscale is able to sufficiently discriminate 

between children and adolescents with and without mood disorders, and the NA subscale 

is able to sufficiently discriminate between children with and without mood and anxiety 

disorders (Ebesutani et al., 2012). The PA and NA subscales of the PANAS-C-SV 

demonstrate larger inter-item correlations than their corresponding scales on the 30-item 

PANAS-C (Ebesutani et al., 2012). The diagnostic classification accuracy for the PA and 

NA scales on the PANAS-C-SV do not significantly differ from those on the PANAS-C 

(Ebesutani et al., 2012). 

 
STEM Career Interest Survey (STEM-CIS; Kier et al., 2014)  

The STEM-CIS is a 44-item self-report questionnaire developed to measure 

interest in pursuing science, technology, engineering, and math classes and careers for 

middle school students. Respondents rate 11 items on a Likert-type scale ranging from 1 

(strongly disagree) to 5 (strongly agree) for four different vocational field subscales, 

Science, Technology, Engineering, and Math. Higher subscale scores suggest greater 

interest in pursuing careers in each of the STEM fields. A total score summing responses 
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from all four subscales suggests respondent interest in the pursuit of a STEM career 

overall. The items of the STEM-CIS were designed to capture key elements of Lent’s 

(1994) social cognitive career theory, including beliefs about self-efficacy, personal 

goals, outcome expectations, interest, personal inputs, and contextual supports and 

barriers (Kier et al., 2014). The Science, Technology, Engineering, and Math subscales 

demonstrate good internal consistency in students in grades 5-8, with coefficient alphas 

of .77, .89, .86, and .85, respectively (Kier et al., 2014). The survey also demonstrates 

good reliability with test-retest correlations of .87 for the full scale and correlations of 

.67, .73, .89, and .85 for the Science, Technology, Engineering, and Math subscales, 

respectively (Ünlü et al., 2016). Confirmatory factor analysis of the measure suggests that 

a four-factor solution provides the best model fit for the items, suggesting that the 

interpretation of individual subscale scores may provide a better measure of career 

interest in the four STEM areas than the total scale score (Kier et al., 2014; Ünlü et al., 

2016). For the current study, individual subscale scores were interpreted rather than the 

full-scale score in order to determine the relation between math anxiety and career 

interest in the four separate STEM categories. 

 
Procedure 

 
Participants were initially recruited in person at a middle school in the Central 

Texas region. Participants were offered the chance to participate in a research study 

related to math anxiety. Students received paper packets in math class approximately one 

week prior to data collection including information about the study and consent and 

assent forms. Consent forms were offered in both English and Spanish. Students were 

eligible for participation if they returned a consent form signed by a parent or guardian 
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and an assent form signed by the student. Students who were unable to read and write in 

English and/or who had an intellectual disability that precluded them from understanding 

the consent process and/or the administered measures were excluded from recruitment. 

Eligible participants completed a paper questionnaire packet in their classroom, which 

included demographic questions and the AMAS, CTAS, ATMI, MARS-R, PSWQ-C, 

PANAS-C-SV, and STEM-CIS questionnaires. Due to school closures from the COVID-

19 pandemic in March 2020 and the associated transition to remote learning via online 

classes, recruitment and data collection efforts pivoted online. Recruitment extended to a 

second middle school in Southeast Texas, and all potential participants (students enrolled 

in math classes at the middle schools) were offered the opportunity to win one of eight 

$25 gift cards for a major online retailer through completion of the study. Participants 

provided assent and completed the aforementioned questionnaires through Qualtrics, a 

study generator program, which was accessible from any device with Internet access. 

Survey collection was anonymous, with the exception of participants providing the first 

two letters of their first and last names to allow teachers to disseminate gift cards to the 

winning students. Gift card winners were chosen at random using a random number 

generator. All measures and recruitment and data collection practices were reviewed and 

approved by the Institutional Review Board of Baylor University and the principals of the 

participating schools.  

 
Data Analytic Strategy  

 
Data analyses were performed using Microsoft© Excel for Mac, Version 16.16.3, 

IBM SPSS© Statistics© for Mac, Version 26, and R©, Version 3.6.3, using the lavaan 

and semPlots packages. Responses from the 604 participants who completed at least 50% 
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of the AMAS were included in confirmatory factor analysis, multigroup confirmatory 

factor analysis, reliability analysis, and analysis of demographic characteristics.  Only 

participants who completed all study measures were included in correlational analyses for 

convergent and discriminant validity in order to provide consistent group size across 

measures.  

 
Missing Data  

Questionnaires with at least 50% of items completed were considered to be 

completed by participants. For survey measures with missing data, a Missing Value 

Analysis was run to determine whether there were any patterns to the missing responses. 

Little’s test of Missing Completely at Random (MCAR) was also run to determine 

whether item responses for the questionnaires were missing at random (Little, 1988). For 

data that was found to be missing at random, item responses were estimated using the 

Expectation Maximization algorithm, an estimation algorithm for missing data based on 

maximum-likelihood estimation (Dempster et al., 1977; Schafer & Graham, 2002). For 

responses that were not found to be missing at random, missing items were not replaced 

and were considered to represent “0” in data analysis.  

 
Outliers and Normality 

Questionnaire responses were assessed for outliers through examination of box-

plots of the data. Outliers were defined as data values falling outside of the following 

ranges: (Q1 – 1.5*IQ) to (3Q +1.5*IQ).1 Outlier cases were examined and evaluated for 

exclusion from the data on a case by case basis. Questionnaire responses were examined 

                                                
1 Q = Quartile; IQ = Interquartile range 
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for skewness and kurtosis to determine the normality of the data (Brown, 2014), as 

violations in the assumption of normality can lead to bias in a number of statistical tests, 

including correlation, t-tests, and analysis of variance (Mishra et al., 2019). Although 

violation of normality has a lesser impact on data including more than 100 observations, 

it remains important to correct for non-normal distributions (Mishra et al., 2019). For 

sample sizes between 50 and 300 participants, z scores, computed by dividing the 

skewness and kurtosis values by their respective standard error, were used to determine 

normality of the data (Kim, 2013; Mishra et al., 2019). Skewness and kurtosis absolute z-

values less than 3.29 were considered to fall within the bounds of a normal distribution. 

For sample sizes larger than 300 participants, histograms and normal Q-Q plots were 

used to determine normality of the distribution. Absolute skewness and kurtosis values 

>greater than 2.00 for univariate distributions and absolute values greater than 3.00 for 

multivariate distributions were considered to indicate non-normality (Bandalos, 2018; 

Kim, 2013). Data found to be positively skewed was transformed using logarithmic (log) 

transformation (Keene, 1995).    

 
Model Fit 
 

Confirmatory factor analyses (CFA) were conducted to test the latent structure of 

the AMAS items (Brown, 2014). Three types of models were tested for fit, 1) a one-

factor model with all items loading onto a single latent factor (math anxiety), 2) a two-

factor model with items loading onto two correlated latent factors [Learning Math 

Anxiety (LMA) and Math Evaluation Anxiety (MEA)], and 3) a bifactor model with 

items loading onto two orthogonal factors (LMA and MEA) and a common g-factor. For 

the two-factor model, items 1, 3, 6, 7, and 9 of the AMAS were specified to load onto the 
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first factor (LMA) and items 2, 4, 5, 8 were specified to load onto the second factor 

(MEA). Item coefficients were fixed to zero for the factor that the items were not 

expected to load on (Bandalos, 2018). The first item loading onto each factor (i.e., item 1 

on LMA and item 2 on MEA) were fixed to 1.0 as a marker indicator (Bandalos, 2018; 

Brown, 2014). For the bifactor model, items were specified to load onto the LMA and 

MEA factors in the same manner as the two-factor model but were also specified to load 

onto the g-factor. Given results of the previous EFAs and CFAs of the AMAS 

highlighted above, a two-factor model was expected to provide a superior fit to the data 

than a one-factor model. To our knowledge, a bifactor solution has not been previously 

tested for the AMAS. A bifactor model allows for the simultaneous assessment of both 

the specific, independent effects of the latent factors (i.e., the LMA and MEA factors) 

and the common, general effect on the items shared by the factors (i.e., g-factor; F. F. 

Chen et al., 2012). The bifactor model suggests that the specific factors contribute to 

effects on the measured items above and beyond that accounted for by the common 

factor, which accounts for the effects on the items shared among the factors. The factors 

in the bifactor model are orthogonal, or uncorrelated, with the common g-factor (Chen et 

al., 2012). For the purposes of this study, the bifactor model would allow us to determine 

whether the LMA and MEA factors independently contribute to the variance in the 

AMAS scale items above and beyond their shared common influence (i.e., g-factor). If 

the bifactor model provided a better fit for the data than the two-factor model, it would 

provide additional support that the LMA and MEA factors measure separate constructs 

by controlling for the general factor underlying all item responses (Furtner et al., 2015). 

Thus, a bifactor model was also tested for data fit.  
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Maximum likelihood model estimation (ML) was used, as ML tends to produce 

estimators that are unbiased and consistent even if the model is misspecified (Bandalos, 

2018). In ML estimation, the weight matrix is equal to the reproduced covariance matrix 

of the data (Bandalos, 2018). The weight matrix is updated during each iteration of the 

CFA process, ensuring that it is fitted to weight the residuals (Bandalos, 2018). The 

Satorra-Bentler (2010) scaled chi-square and robust standard error adjustments were 

applied, as violations in the assumption of normality can lead to bias in standard errors 

and model fit indices (Bandalos, 2018). For non-normally distributed data, the Satorra-

Bentler scaled chi-square statistic provides a more accurate indication of model fit than 

the non-scaled chi-square statistic obtained from Maximum Likelihood (ML) estimation, 

and Satorra-Bentler robust standard errors also demonstrate greater accuracy than those 

obtained from ML estimation (Bandalos, 2018). 

The chi-square statistic and goodness-of-fit indices were used to evaluate fit of the 

three models (Bandalos, 2018; Brown, 2014). The chi-square test tests the null hypothesis 

that the sample covariance matrix is equal to the model-implied covariance matrix 

(Bandalos, 2018). Therefore, a chi-square test statistic of zero indicates that a model 

perfectly reproduces the sample covariance matrix (Bandalos, 2018). A significant chi-

square value rejects the null hypothesis, suggesting that the model does not provide an 

adequate fit for the data (Brown, 2014). A non-significant chi-square value that is less 

than or equal to its degrees of freedom is indicative of a good fitting model (Bandalos, 

2018; Brown, 2014; Hooper et al., 2008). However, the chi-square test statistic is highly 

dependent on sample size and may reject models for discrepancies in fit function that are 

considered negligible (Bandalos, 2018; Brown, 2014). Because of the tendency for the 
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chi square test to over-reject good-fitting models, the resulting chi-square statistic will 

not be weighed as highly in assessing model fit for the proposed study as the other fit 

indices described below. The formula for the chi-square test is χ2 = (n – 1) x F, where n is 

the sample size and F is the minimum value of the fit function (i.e., the difference 

between the sample matrix and the reproduced covariance matrix; Bandalos, 2018). 

The following absolute and comparative fit indices will be used to test model fit 

based on recommendations by Hu and Bentler (1999): comparative fit index (CFI; 

Bentler, 1990), Tucker-Lewis index (TLI; Tucker & Lewis, 1973), standardized root 

mean square residual (SRMR; Bentler, 1995), and the root mean square error of 

approximation (RMSEA; Steiger & Lind, 1980). Goodness-of-fit index cutoff criteria 

recommended by Hu and Bentler (1999) will be used to evaluate model fit (CFI ≥ .95, 

TLI ≥ .95, SRMR ≤ .09, RMSEA ≤ .06). The results for these indices will be evaluated in 

conjunction to assess fit for the two-factor model (Hu & Bentler, 1999). 

The CFI and TFI indicate the relative improvement in fit of the proposed model 

over the baseline model, in which all parameters are fixed to zero (Bandalos, 2018). For 

these indices, values closer to 1.0 suggest improvement in fit over the baseline model 

(Brown, 2014). Hu and Bentler (1999) proposed a cutoff value of .95 for the CFI and TLI 

when evaluating model fit. The equation for the CFI is 1 – [(χ 2M – dfM) / (χ 2B – dfB)], 

where M refers to the factor model and B refers to the baseline model (Bandalos, 2018).  

The equation for the TLI is [(χ 2B / dfB) – (χ 2M / dfM)] / [(χ 2B / dfB) – 1], where M refers to 

the factor model and B refers to the baseline model (Tucker & Lewis, 1973). 

The RMSEA is the square root of the average of the squared discrepancies 

between the model’s and sample’s covariance matrices (Bandalos, 2018). The RMSEA 
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incorporates factorial parsimony into the evaluation of model fit, with values closer to 0 

indicating better model fit (Bandalos, 2018). The RMSEA will be equal to 0 if a model’s 

chi-square statistic equals its degrees of freedom, indicating a perfect fit for the model 

(Bandalos, 2018). The SRMR is a standardized version of the RMSEA, which is 

computed by turning the sample covariance matrix and model-implied covariance matrix 

into correlation matrices (Bandalos, 2018). SRMR values closer to 0 suggest fewer 

discrepancies between the model and sample matrices (Bandalos, 2018). Hu and Bentler 

(1999) suggest cutoff values of .09 for SRMR and .06 for RMSEA as indicators of a good 

fitting model. Values at or below these criteria tend to produce lower Type II error rates 

while minimizing costs of Type I error rates (Hu & Bentler, 1999). The equation for the 

RMSEA and SRMR are (√ χ 2 – df) / √ df (n–1) and                  ,, respectively. 

 
Factorial Invariance 

A multigroup confirmatory factor analysis (MGCFA) was used to investigate 

whether the AMAS demonstrated strong factorial invariance across the sample of girls 

and boys, in order to allow for the comparison of group means without item-specific 

biases (Meredith & Teresi, 2006). In order to meet the criteria of strong factorial 

invariance, all specific factor factors and intercepts had to be equivalent across groups 

(Meredith & Teresi, 2006). The following sequence of tests were conducted to evaluate 

configural, metric, and scalar invariance, respectively: 1) simultaneous analysis of equal 

form, 2) test of equal factor loadings, and 3) invariant intercepts analysis (Brown, 2014; 

Putnick & Bornstein, 2016). Invariance testing proceeded in a stepwise fashion, in which 

the least restricted solution was evaluated first, followed by nested models with 

increasingly restrictive constraints (Brown, 2014; Putnick & Bornstein, 2016). 
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As a preliminary step, the best fitting model identified in the previous step (the 

bifactor model) was tested separately in both boys and girls to determine whether it 

provided an acceptable fit for both groups. CFAs with the bifactor model were conducted 

using ML estimation with Satorra-Bentler (2010) robust standard error adjustments 

separately for AMAS item responses for boys and girls. Model fit for both groups was 

assessed using the CFI, TLI, SRMR, and RMSEA goodness-of-fit indices, with the 

following cutoffs for adequate model fit (CFI ≥ .95, TLI ≥ .95, SRMR ≤ .09, RMSEA ≤ 

.06; Hu & Bentler, 1999). Model fit was also assessed using the chi-square statistic, 

although it carried less weight than the other fit indices due to its tendency to over-reject 

models with adequate fit (Bandalos, 2018; Brown, 2014). After the bifactor model was 

found to provide a good fit for both groups, the AMAS scale was tested for configural 

invariance.  

The first step in the MGCFA was to test for configural invariance, or invariance 

of model form across groups (Putnick & Bornstein, 2016). This step was used to 

determine whether the subscales of Math Evaluation Anxiety (MEA) and Learning Math 

Anxiety (LMA) had the same pattern of factor loadings for boys and girls (Putnick & 

Bornstein, 2016). A CFA with the bifactor model was conducted using ML estimation 

with Satorra-Bentler (2010) robust standard error adjustments to evaluate model fit 

independently in boys and girls. Items 3, 6, 7, and 9 of the AMAS were freely estimated 

by the model for Factor 1 (LMA) and fixed at 0 for Factor 2 (MEA). Item 1 was fixed at 

1.0 on Factor 1 as a marker indicator and item 2 was fixed at 1.0 for factor 2 (MEA). For 

Factor 2, items 4, 5, and 8 were freely estimated by the model, and items 1, 3, 6, 7, and 9 

were fixed at 0. All items were freely estimated by the model for the g-factor. 
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Correlations between the LMA, MEA, and g-factors were set to 0. Model fit for both 

groups was assessed using the fit indices and chi-square test, as highlighted in the 

preliminary step.  

The second step was to test for metric invariance, or the equivalence of item 

loadings on the LMA and MEA factors (Putnick & Bornstein, 2016). In order to test for 

metric invariance, factor loadings were constrained to be equal for both boys and girls 

(Putnick & Bornstein, 2016). The resulting metric invariance model was then compared 

with the configural invariance model to assess for discrepancies in fit (Putnick & 

Bornstein, 2016). Equivalence of model fit was evaluated using Cheung and Rensvold’s 

(2002) and Chen’s (2007) suggested criteria of: a) a decrement in the CFI index of .01 or 

smaller (ΔCFI ≤ -.01, and b) a change in the RMSEA index of .015 or smaller (ΔRMSEA 

≤ .015).  

The third step was to test for scalar invariance, which is the equivalence of item 

intercepts across groups (Putnick & Bornstein, 2016). For this step, the item intercepts 

(i.e., item means) were constrained to be equal for boys and girls (Putnick & Bornstein, 

2016). The resulting scalar invariance model was then compared to the metric invariance 

model for difference in fit. Change in model fit was again assessed using Cheung and 

Rensvold’s (2002) and Chen’s (2007) suggested criteria (ΔCFI ≤ -.01 and ΔRMSEA ≤ 

.015). 

 
Internal Consistency 
 

Internal consistency reliability coefficients measure the degree to which items on 

a scale elicit consistent responses, by measuring correlations between different item 

composite forms of a scale (Bandalos, 2018). Cronbach’s alpha is most commonly used 
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method for assessing internal consistency reliability (Bardhoshi & Erford, 2017; Yang & 

Green, 2011). The statistic represents the average of all possible split-half reliability 

coefficients for a scale (Cronbach, 1951). Cronbach’s alpha coefficient ranges from 0.0 to 

1.0, with values approaching 1.0 suggesting better internal consistency (Yang & Green, 

2011). Traditionally, coefficient alpha values.80 have indicated adequate levels of 

internal consistency for scales in initial development, basic research scales, and scales 

used for clinical purposes, respectively (Nunnally, 1978; Raykov & Marcoulides, 2011; 

Yang & Green, 2011). Cronbach’s alpha is calculated using the formula                           

                               ,, where k is the number of items on the test,              is the sum of k 

item variances, and      is the variance of the total test score (Bandalos, 2018). Because 

Cronbach’s alpha is the most widely used measure of internal consistency in the 

literature, it is reported in the current study for the AMAS total scale, LMA subscale, and 

MEA subscale. In line with much of the literature in the social and behavioral sciences, a 

coefficient alpha of .80 or above was used as a cutoff to indicate adequate internal 

consistency of the overall scale and subscale. 

However, Cronbach’s alpha has two major statistical limitations (Rodriguez et al., 

2016b; Zwaanswijk et al., 2017). First, Cronbach’s alpha does not account for the 

variance in scores contributed by specific factors independently from common factor 

variance. Second, the statistic tends to overestimate reliability for multidimensional 

models because it assumes a unidimensional model. Therefore, for the present study, the 

coefficient omega (McDonald, 1999), coefficient omega hierarchical (McDonald, 1999), 

and coefficient omega hierarchical subscale (Reise et al., 2013) will be used to determine 

reliability of the AMAS total scale and LMA and MEA subscale scores.  
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Coefficient omega (w) (McDonald, 1999) is a measure of model-based internal 

reliability for a multidimensional measure (Reise et al., 2013; Rodriguez et al., 2016a). It 

indicates the proportion of score variance (in both the full scale and subscales) that can be 

attributed to both the general and specific factors of the measure, after partitioning out 

error variance (Hammer & Toland, 2016; Rodriguez et al., 2016a). Coefficient omega is 

calculated using the following formula, 

                                                                                                                                  . 
 

Coefficient omega hierarchical (wH; McDonald, 1999) indicates the amount of 

total scale variance attributed to the common factor (g) after partitioning out the variance 

of specific factors (i.e., LMA and MEA; Hammer & Toldand, 2016; Reise et al., 2013). 

As such, it indicates the degree to which the total score reflects the common factor (g). 

Reise et al. (2013) suggest that a wH > .80 indicates that the measure predominantly 

reflects a single common factor, despite its multidimensionality, and that the total score 

provides a sufficiently reliable measure of the general factor. A coefficient omega 

hierarchical greater than .80 for the AMAS suggests that the AMAS should be considered 

unidimensional instrument for the purposes of measurement and that AMAS subscale 

scores should not be interpreted (Hammer & Toland, 2016). Coefficient omega 

hierarchical is calculated using the following formula, 

                                                                                                               . 

Coefficient omega hierarchical subscale (wHS; Reise et al., 2013) indicates the amount of 

subscale score variance attributed to the specific factor after accounting for the common 

factor (g; Hammer & Toland, 2016). A coefficient omega hierarchical subscale value < 

.50 suggests that the majority of the variance in a subscale’s score is due to the general 
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factor, and that the variance due to the specific factor is negligible and does not provide a 

reliable measure of the intended subconstruct (Hammer & Toland, 2016; Reise et al., 

2013). As such, a coefficient omega hierarchical subscale value < .50 for the LMA and 

MEA subscales suggests that the subscales do not provide reliable measures of learning 

math anxiety and math evaluation anxiety, and that their scores should not be interpreted 

(Hammer & Toland, 2016).  Coefficient omega hierarchical subscale is calculated using  

the following formula, omegaHS                                                                                        . 

 
Validity  

Convergent validity is a type of criterion-related validity, which reflects the 

degree to which tests that are theoretically expected to measure the same or similar 

constructs are related (Bandalos, 2018). For the present study, convergent validity was 

evaluated by examining the Pearson product moment correlations between the total scales 

of the AMAS with the total scales of the MARS-R, CTAS, ATMI, PSWQ-C, and STEM-

CIS. Small, medium, and large effect sizes were defined according to Cohen’s (1988) 

conventions (r = .10, .30, and .50, respectively). As noted previously, both the AMAS 

and MARS-R were developed for assessing the construct of math anxiety, with the 

former scale constructed using items from the latter scale (Hopko et al., 2003; Plake & 

Parker, 1982). Hopko and colleagues (2003) demonstrated a large correlation of r = .85 

between the total scales of the AMAS and the MARS-R in an undergraduate sample, 

suggesting that the AMAS demonstrates good convergent validity with the MARS-R in 

adults. For the current study, the AMAS total scale was expected to demonstrate a large 

positive correlation greater than or equal to .85 with the MARS-R total scale in a middle 

school sample, given that a correlation of this magnitude or greater suggests that the 
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scales are measuring the same construct (Brown, 2014). Large positive correlations were 

expected between the total scale and subscales of the AMAS and the CTAS, given 

reported correlations between the total scale of the AMAS and measures of test anxiety 

ranging from r = .52 - .57  (Hopko et al., 2003; Primi et al., 2014). Moderate to large 

negative correlations (r ≤ -.30) were expected between the total scales of the AMAS and 

the ATMI, given Primi et al.’s (2014) reported correlations ranging from r = (-.48) - (-

.53) between the two measures. Moderate positive correlations were expected between 

the total scale and subscales of the AMAS and PSWQ-C, given a reported correlation of r 

= .40 between the total scale of the AMAS and a measure of worry in children (Caviola et 

al., 2017). Moderate negative correlations were expected between the total scale and 

subscales of the AMAS and the subscales of the STEM-CIS, given Huang et al.’s (2019) 

reported correlations of r = -.32 for boys and r = -.38 for girls between measures of math 

anxiety and career interest in math and science.  

 Divergent validity assesses the degree to which tests theoretically expected to 

measure the same or similar constructs are more strongly related than tests expected to 

measure theoretically different or dissimilar constructs (Bandalos, 2018). For the present 

study, divergent validity of the AMAS was be assessed by comparing Pearson 

correlations between the AMAS total scale and subscales and the Positive Affect (PA) 

scale on the PANAS-C-SV. The PANAS-C-SV is a briefer and more psychometrically 

sound version of the PANAS-C (Ebesutani et al., 2012). The PANAS-C-SV is therefore 

expected to produce correlations with measures of worry and general anxiety similar to 

those of the PANAS-C. The original 15-item PA scale on the PANAS-C demonstrated 

small to moderate negative correlations with measures of worry and general anxiety in 
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children ranging from r = (-.24) – (-.32; Hughes & Kendall, 2009). Given that the AMAS 

was developed to measure math anxiety, which is a separate construct from general 

anxiety (e.g., Suárez-Pellicioni et al., 2016), the AMAS scales are expected to produce 

smaller correlations with the PA scale than with a scale measuring worry (PSWQ-C). 

 
Mean Differences 

Two-tailed independent samples t-tests, with the conventional alpha of p < .05, 

were used to examine differences in AMAS total scale and subscale scores by gender.  

The equation for an independent samples t-test, assuming unequal variances, is 

                                , where x̅1 and x̅2 are the means for the two samples, s1 and s1 are the 

sample standard deviations, and n1 and n2 are the sample sizes. For significant results, 

Cohen’s d statistic was be computed to determine the size of the effect. Cohen’s d 

statistic is an effect size that indicates the difference between two group means measured 

in standard deviation units (Cohen, 1988). Cohen’s d is calculated using the formula  

d =        , where x̅1 and x̅2 are the group means and                            is the pooled 

standard deviation of the two groups. The magnitude of the effect was evaluated using 

Cohen’s (1988) conventions, with d = 0.20, 0.50, and 0.80, representing small, medium, 

and large effects sizes, respectively. 

 
Chi-Square Test of Independence 
 

 The chi-square test for independence was used to examine associations between 

questionnaire completion rates, gender, and school. The chi-square test evaluates the 

association between two categorical variables. Specifically, the chi-square test evaluates 
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the difference between observed counts and expected counts in the population if the two 

variables are independent. The formula for the chi-square test is                           ,  

where c is degrees of freedom, O is the observed value, and E is the expected value. 
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CHAPTER FOUR 

 
Results 

 
 

Descriptive Statistics 
 
 Six hundred and four participants completed the AMAS. Of these participants, 

422 completed all administered questionnaires (69.9%). Only participants who completed 

all measures were included in validity correlation analysis. Of survey completers, 74.6% 

attended a middle school in Central Texas and 25.4% attended a middle school in 

Southeast Texas. Additional descriptive statistics for the sample are presented in Table 

B.1.  

 
Study Measures 
 

Descriptive statistics for all study measures are presented in Table B.2. 

 
AMAS.  Of the 604 participants who completed the AMAS, two participants 

produced invalid responses to several items on the scale by either providing more than 

one response to an item or responding with invalid text response (i.e., responding with 

the word “anxiety” rather than indicating a Likert response). These responses were 

excluded, and the affected items were treated as missing data. For the AMAS, less than or 

equal to 1.0% of item responses were missing. A Missing Value Analysis was run on the 

AMAS items, with results suggesting that there were no patterns to the missing item 

responses. Little’s test of Missing Completely at Random (MCAR) was run to determine 

whether item responses on the AMAS scale were missing at random (Little, 1988). 
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Little’s MCAR test was not significant, suggesting that item responses on the AMAS 

scale were missing completely at random, X2 (84) = 83.810, p = .485. Through inspection 

of box plots, the AMAS total scale was found to have one outlier, the LMA subscale was 

found to have two outliers, and the MEA subscale did not have any outliers. The outliers 

were kept in the dataset as they appeared to be the product of natural variation in scores 

rather than aberrant responses. Responses on the AMAS total scale, LMA subscale, and 

MEA were found to uphold the assumption of normality through examination of 

histogram, normal Q-Q plot, and skewness and kurtosis values of the data, which were 

within normal limits.  

 
MARS-R.  For the MARS-R, less than or equal to 1.4% of all item responses were 

missing. A Missing Value Analysis suggested there were no patterns to the missing item 

responses. Little’s test of missing completely at random was significant, suggesting that 

item responses on the MARS-R were not missing at random, X2 (346) = 498.82, p < .001. 

Therefore, missing items were not replaced and were represented as “0” in data analysis.  

One outlier was identified for the MARS-R full scale retained for analysis through 

examination of a box-plot, as it appeared to be the product of natural variation in scores 

rather than an aberrant response. The data was normally distributed as assessed by 

examination of histogram, Q-Q plot, and skewness and kurtosis values of the data. 

Internal consistency for the scale was good, α = .96. 

 
CTAS.  For the CTAS, less than or equal to 1.4% of all item responses were 

missing. A Missing Value Analysis suggested there were no patterns to the missing item 

responses. Little’s test of missing completely at random was significant, suggesting that 
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item responses on the CTAS were not missing at random, X2 (670) = 824.03, p < .001. 

Therefore, missing items were not replaced and were represented as “0” in data analysis. 

No outliers were identified through inspection of a box-plot. The data was normally 

distributed as determined by examination of histogram, Q-Q plot, and skewness and 

kurtosis values of the data. Internal consistency for the scale was good, α = .95. 

 
ATMI. For the ATMI, less than or equal to 0.9% of all item responses were 

missing. A Missing Value Analysis suggested there were no patterns to the missing item 

responses. Little’s test of missing completely at random was significant, suggesting that 

item responses on the ATMI were not missing at random, X2 (809) = 1205.95, p < .001. 

Therefore, missing items were not replaced and were represented as “0” in data analysis. 

There were no missing values for the ATMI. Five outliers were identified by box-plot 

and kept in the dataset, as they appeared to be the product of natural variation in scores 

rather than aberrant responses. The data was normally distributed as determined by 

examination of histogram, Q-Q plot, and skewness and kurtosis values of the data.  

Internal consistency for the scale was good, α = .97. 

 
PSWQ-C. For the PSWQ-C, less than or equal to 0.9% of all item responses were 

missing. A Missing Value Analysis suggested there were no patterns to the missing item 

responses. Little’s test of missing completely at random was significant, suggesting that 

item responses on the PSWQ-C were not missing at random, X2 (150) = 181.29, p = .042. 

One outlier was identified for the PSWQ-C full scale retained for analysis through 

examination of a box-plot, as it appeared to be the product of natural variation in scores 

rather than an aberrant response. The data was normally distributed as assessed by 
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examination of histograms, Q-Q plots, and skewness and kurtosis values of the data. 

Internal consistency for the scale was good, α = .90. 

 
STEM-CIS.  For the STEM-CIS, less than or equal to 1.4% of all item responses 

were missing. A Missing Value Analysis suggested there were no patterns to the missing 

item responses. Little’s test of missing completely at random was significant, suggesting 

that item responses on the STEM-CIS were not missing at random, X2 (1762) = 2024.64, 

p < .001. Seven outliers were identified by inspection of a box-plot. These responses 

were kept in the dataset, as they appeared to be the product of natural variation in scores. 

The data was normally distributed as assessed by examination of histogram, Q-Q plot, 

and skewness and kurtosis values of the data. Internal consistency for the scale was good, 

α = .94. 

 
PANAS-C-SV. For the PANAS-C-SV positive affect scale, less than or equal to 

1.2% of item responses were missing. A Missing Value Analysis suggested there were no 

patterns to the missing item responses. Little’s test of missing completely at random was 

significant, suggesting that item responses on the PANAS-C-SV positive affect scale 

were not missing at random, X2 (9) = 14.90, p < .05. Therefore, missing items were not 

replaced and were represented as “0” in data analysis. No outliers were identified by 

examination of a box-plot. The data was normally distributed as assessed by examination 

of histograms, Q-Q plots, and skewness and kurtosis values of the data. No outliers were 

identified. Internal consistency for the scale was good, α = .91. 
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Group Differences 
 

Descriptive statistics for between group difference tests are presented in Table 
B.3. 
 
 
Study Completion 
 

Chi-square independence tests indicated that participants from the middle school 

in Central Texas were more likely to complete the full survey than participants from the 

middle school in Southeast Texas, X2 (1, N = 604) = 24.21, p < .001. Completers were 

also more likely to be female X2 (1, N = 532) = 9.78, p = .002.  

 
Mode of Administration 
 

Independent-samples t-tests were performed to determine whether math anxiety 

ratings differed by mode of questionnaire administration. There was homogeneity of 

variances, as assessed by Levene's (1960) test for equality of variances for the AMAS 

total scale (p = .801) and the LMA subscale (p = .067), but not for the MEA subscale (p = 

.008). Students who completed the questionnaire using paper and pencil had significantly 

higher scores on the AMAS total scale, t(602) = 3.40, p = .001, representing a small to 

medium effect,  d = 0.46, and MEA subscale t(602) = 4.50, p < .001 (equal variances not 

assumed), representing a medium effect, d = 0.55, than participants who completed the 

questionnaire online.  There were no significant mean differences between groups on the 

LMA subscale, t(602) = 1.80, p = .07.   

 
Gender 
 

Independent-samples t-tests were performed to determine whether boys and girls 

reported different amounts of math anxiety. There was homogeneity of variances, as 
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assessed by Levene's test for equality of variances for the AMAS total scale (p = .652), 

LMA subscale (p = .710), and MEA subscale (p = .515). Contrary to our hypothesis, 

there were no significant differences in scores between boys and girls on the AMAS total 

score, t(530) = 0.63, p = .531, LMA subscale, t(530) = 0.06, p = .500, or MEA subscale, 

t(530) = 1.13, p = .258. 

 
Race 
 
 One-way ANOVAs were performed to determine whether there were group 

differences in participant reported math anxiety by race. There was homogeneity of 

variances, as assessed by Levene's test for equality of variances for the AMAS total scale 

(p = .775), LMA subscale (p = .344), and MEA subscale (p = .968). The mean score 

differences in math anxiety between racial groups were not significant for the AMAS 

total score, F(4, 383) = 1.60, p = .174, LMA subscale, F(4, 383) = 1.88, p = .113, or 

MEA subscale, F(4, 383) = 0.72, p = .582.  

 
Ethnicity 
 

Independent-samples t-tests were performed to determine whether students who 

identified as Hispanic and non-Hispanic reported different amounts of math anxiety. 

There was homogeneity of variances, as assessed by Levene's test for equality of 

variances for the AMAS total scale (p = .576), LMA subscale (p = .690), and MEA 

subscale (p = .372). Hispanic students reported significantly more math anxiety than non-

Hispanic students on the AMAS total score, t(599) = 2.23, p = .026, indicating a small 

effect, d = 0.20. Hispanic students reported significantly more learning math anxiety than 

non-Hispanic students on the LMA subscale score, t(599) = 2.42, p = .016, indicating a 
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small effect, d = 0.21. However, there were no significant differences in scores on the 

MEA subscale, t(599) = 1.49, p = .137. 

 
Parental Level of Education 
  
 Highest level of parent education was used as a measure of SES in the sample. 

One-way ANOVAs were performed to determine whether there were group differences 

in participant reported math anxiety on the AMAS by parental level of education (proxy 

for SES). There was homogeneity of variances, as assessed by Levene's test for equality 

of variances for the AMAS total scale (p = .457), LMA subscale (p = .054), and MEA 

subscale (p = .977). There were significant differences between parental education groups 

for the AMAS total score, F(4, 516) = 2.50, p = .042, and MEA subscale, F(4, 516) = 

2.45, p = .046, but not for the LMA subscale, F(4, 516) = 1.87, p = .115. However, 

results of the Tukey-Kramer (1977) post-hoc test did not find any significant differences 

between groups of parental education levels for AMAS full scale or MEA subscale. The 

Sidak-Bonferroni (1967) test was run to reduce impact on statistical power and correct 

for multiple tests, but no significant differences between groups were found for either 

scale. These contradictory results suggest that the significant omnibus F test findings may 

be due to type 1 error rather than actual group differences (T. Chen et al., 2018).  

 
Academic Performance 
 

One-way ANOVAs were run to determine whether there was an association 

between academic performance, as measured by students’ math class grades from the 

previous semester, and current levels of math anxiety. Math grades were collapsed into 

three categories due to the small number of students who received grades below B. 
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Groups were composed of above average performance (N = 261), including participants 

who received A grades, average performance (N = 180), including participants who 

received B grades, and below average performance (N = 76), including participants who 

received C, D, and E/F grades. There was homogeneity of variances, as assessed by 

Levene's test for equality of variances for the AMAS total scale (p = .231), LMA 

subscale (p = .712), and MEA subscale (p = .078). The mean differences in math anxiety 

between academic performance groups were not significant for the AMAS total score, 

F(2, 514) = 1.08, p = .340, LMA subscale, F(2, 514) = 0.26, p = .770, or MEA subscale, 

F(2, 514) = 2.06, p = .128.  

 
Mental Health Diagnoses 
 
 

Attention-Deficit/Hyperactivity Disorder (ADHD).  Independent samples t-tests 

were run to determine whether participants with ADHD and participants without ADHD 

reported different amounts of math anxiety, as measured by the AMAS total score, LMA 

subscale, and MEA subscale. There was homogeneity of variances, as assessed by 

Levene's test for equality of variances for the AMAS total scale (p = .250), LMA 

subscale (p = .211), and MEA subscale (p = .563). There were no significant differences 

in scores between participants with and without ADHD on the AMAS total score, t(599) 

= 0.03, p = .976, LMA subscale, t(599) = 0.781, p = .435, or MEA subscale, t(599) = 

0.83, p = .405.  

 
Anxiety.  Independent samples t-tests was run to determine whether participants 

with anxiety and participants without anxiety reported different amounts of math anxiety, 

as measured by the AMAS total scale, LMA subscale, and MEA subscale. There was 
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homogeneity of variances, as assessed by Levene's test for equality of variances for the 

AMAS total scale (p = .070), LMA subscale (p = .419), and MEA subscale (p = .056).  

There were no significant differences in scores between participants with and without 

anxiety on the AMAS total score, t(599) = 1.01, p = .315 or LMA subscale, t(599) = 0.21, 

p = .832. There was a significant difference in scores on the MEA subscale, t(599) = 

2.16, p = .031, with participants with anxiety reporting higher levels of math anxiety than 

participants without anxiety. This represents a small effect d = 0.29. 

 
Depression.  Independent samples t-tests were run to determine whether 

participants with depression and participants without depression reported different 

amounts of math anxiety, as measured by the AMAS total scale, LMA subscale, and 

MEA subscale. There was homogeneity of variances, as assessed by Levene's test for 

equality of variances for the AMAS total scale (p = .624), LMA subscale (p = .648), and 

MEA subscale (p = .163). There were no significant differences in scores between 

participants with and without depression on the AMAS total score, t(599) = .513,  

p = .608, LMA subscale, t(599) = 0.526, p = .599, or MEA subscale, t(599) = 1.576,  

p = .115.  

 
Learning disorders.  Of the 12 participants who reported learning disorders, one 

participant reported a learning disorder in math (8%), nine participants reported learning 

disorders in reading (75%), and three participants did not qualify their learning disorder 

(25%). Independent samples t-tests were run to determine whether participants with 

learning disorders and participants without learning disorders reported different amounts 

of math anxiety, as measured by the AMAS total scale, LMA subscale, and MEA 
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subscale. There was homogeneity of variances, as assessed by Levene's test for equality 

of variances for the AMAS total scale (p = .430), LMA subscale (p = .442), and MEA 

subscale (p = .228). Students diagnosed with learning disorders reported significantly 

more learning math anxiety than students without learning disorders on the AMAS total 

scale, t(599) = 2.04, p = .041, indicating a medium effect, d = 0.53, and on the MEA 

subscale, t(599) = 2.53, p = .012, indicating a small effect, d = 0.22. However, there were 

no significant differences in scores on the MEA subscale, t(599) = 1.19, p = .235. 

 
Other mental health and neurological disorders.  Analyses on the other mental 

health and neurological disorders surveyed for in the sample (Autism Spectrum Disorder 

and epilepsy) were not conducted due to the small number of participants who reported 

these disorders (N ≤ 3).  

 
Special Education Services 
 

Independent-samples t-tests were performed to determine whether participants 

who have ever received special education services reported different amounts of math 

anxiety from participants who have never received special education services. There was 

homogeneity of variances, as assessed by Levene's test for equality of variances for the 

AMAS total scale (p = .876), LMA subscale (p = .832), and MEA subscale (p = .642). 

There were no significant differences in scores between students who have received and 

who have not received special education services on the AMAS total score, t(601) = 0.20, 

p = .842, LMA subscale, t(601) = 0.58, p = .561, or MEA subscale, t(601) = 0.28,  

p = .777. 
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Math Test Recency 
 

One-way ANOVAs were run to determine whether there was an association 

between the time since participants last took a math test and their amount of math 

anxiety. There was homogeneity of variances, as assessed by Levene's test for equality of 

variances for the AMAS total scale (p = .230), LMA subscale (p = .207), and MEA 

subscale (p = .365). The mean score differences in math anxiety for test recency were not 

significant for the AMAS total scale, F(5, 460) = 0.83, p = .526, or LMA subscale, F(5, 

460) = 0.62, p = .689. However, mean score differences were significant for the MEA 

subscale, F(5, 460) = 2.48, p = .031.  Results of the Tukey-Kramer (1977) post-hoc test 

indicated that participants who took a math test last week reported significantly more 

math evaluation anxiety than participants who took a math test more than two weeks ago, 

p = .013. 

 
Model Fit 

 
Fit indices for all models are presented in Table B.4 and differences in model fit 

are presented in Table B.5. Item loadings are presented in Table B.6, item means are 

presented in Table B.7, and inter-item correlations are presented in Table B.8. 

 
One-Factor Model 
 

The first model tested was a one-factor (unidimensional) model, in which all 

items were loaded onto a single latent factor, Math Anxiety. Chi-square results from the 

ML model estimation with Satorra-Bentler adjustment produced a significant value  

X2 (36) = 1871.023, p < .001, which initially suggested that the model did not provide 

adequate fit for the data. However, due to the strong tendency for the chi-square test to 
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reject good-fitting models due to negligible discrepancies in fit function, other fit indices 

were weighted more highly in determining model fit (Brown, 2014; Hu & Bentler, 1999). 

The unidimensional model produced the following fit indices: Robust CFI = .85, Robust 

TLI = .80, SRMR = .07, Robust RMSEA = .14. When compared to the fit index values 

recommended by Hu and Bentler (1999) for identifying good-fitting models (CFI ≥ .95, 

TLI ≥ .95, SRMR ≤ .09, RMSEA ≤ .06), the model did not demonstrate a good fit. 

Standardized loadings for AMAS factor items ranged from .48 - .72 onto the 

unidimensional factor. Of note, only one item (Item 3) demonstrated a standardized factor 

loading with a magnitude above +/- .70, which is commonly suggested as a minimum 

cutoff point for meaningful item contribution to a scale. The one-factor model is depicted 

in Figure A.1. 

 
Two-Factor Model 

 
The second model tested was a two-factor (bidimensional) model, in which items 

were loaded onto two latent factors, Learning Math Anxiety (LMA) and Math Evaluation 

Anxiety (MEA), based on the findings of previous CFAs of the AMAS (e.g. Hopko, 

2003).  Chi-square results from the ML model estimation with Satorra-Bentler adjustment 

produced a significant value X2 (36) = 81.346, p < .001 and the following fit index values: 

Robust CFI = .96, Robust TLI = .95, SRMR = .04, Robust RMSEA = .07. With the 

exception of the RMSEA, which was marginally above the cutoff value, comparisons of 

the model fit index values to Hu and Bentler’s (1999) recommended values for model fit 

suggested that the two-factor model demonstrated a good fit. The two-factor model 

findings were in line with that of previous research, which found that a two-factor model 

demonstrated superior fit for the AMAS in children and adults than a single-factor model 



 

 66 

(e.g., Carey et al., 2017; Caviola et al., 2017; Hopko, 2003). The LMA and MEA latent 

factors demonstrated a large correlation of r = .70, which is similar to previous findings 

and below the cutoff of .85 for problematic discriminant validity (Brown, 2014). 

Standardized item loadings on the LMA factor ranged from .49 - .78, with all but two 

items (items 1 and 9) loading with magnitudes of above .70. Standardized item loadings 

on the MEA factor ranged from .56 - .78, with all but one item (item 5) loading with 

magnitudes of above .70. The two-factor model is depicted in Figure A.2.  

A chi-square test between the single-factor and two-factor models was significant 

X2 (1) = 456.26, p < .001, suggesting a significant difference in fit between the two 

models. Taking all of these findings into account, the two-factor model was found to 

demonstrate a good fit for the AMAS and improved fit over the single-factor model. 

 
Bifactor Model 
 

The third model tested was a bifactor model, in which items were fixed and 

loaded onto the LMA and MEA factors as described for the two-factor model above, with 

the exception that all items were also set to load freely on the common g-factor. Factors 

in bifactor models are orthogonal, thus correlations between factors were set to 0. Chi-

square results from the ML model estimation with Satorra-Bentler adjustment produced a 

non-significant value X2 (18) = 28.66, p = .05, which suggested that the model provided 

adequate fit for the AMAS items. The bifactor model produced the following fit index 

values: Robust CFI = .99, Robust TLI = .99, SRMR = .02, Robust RMSEA = .03. 

Comparisons of the model fit index values to Hu and Bentler’s (1999) recommended 

values for good model fit suggested that the two-factor model demonstrated excellent fit. 
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Standardized item loadings ranged between .11 - .64 on the LMA factor, .26 - .46 on the 

MEA factor, and .44 - .68 on the g-factor. The bifactor model is depicted in Figure A.3.  

A chi-square test between the bifactor and two-factor models was significant  

X2 (8) = 54.51, p < .001, suggesting a significant difference in fit between the two 

models. Taking the fit results from the single-factor, two-factor, and bifactor models into 

account, the bifactor model provided an excellent fit and the best fit of the three models 

tested.  

 
Factorial Invariance 

 
 Increasing restricted and nested multigroup confirmatory factor analyses were run 

using the bifactor model from the previous step to determine whether the factor structure 

of the AMAS was invariant across groups. Of the 604 participants who completed the 

AMAS, 72 participants (11.9%) did not report their gender and were excluded from the 

multigroup confirmatory factor analysis. 

 
Model Fit by Gender 
 

As a preliminary step, the bifactor model, found to provide an excellent fit for the 

entire sample in the previous step, was evaluated for fit independently in boys and girls to 

determine whether the model provided a good fit for both groups and if a multigroup 

confirmatory factor analysis was further indicated. Fit indices for the combined bifactor 

model and bifactor models for boys and girls only are presented in Table B.9. Responses 

on all three AMAS scales were normally distributed for boys and girls as determined by 

examination of histograms, normal Q-Q plots, and skewness and kurtosis values of the 
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data. For the bifactor model for boys and girls combined, chi-square results from the ML 

model estimation with Satorra-Bentler adjustment produced a significant value,  

X2 (18) = 31.93, p = .02, and the following fit index values: Robust CFI = .99,  

Robust TLI = .98, SRMR = .02, Robust RMSEA = .05, suggesting a good fit for the data. 

Standardized item loadings ranged between .06 - .69 on the LMA factor, .32 - .42 on the 

MEA factor, and .44 - .67 on the g-factor.  

For the bifactor model using data from girls only, chi-square results from the ML 

model estimation with Satorra-Bentler adjustment produced a significant value,  

X2 (18) = 35.86, p = .007. The bifactor model also produced the following fit index 

values: Robust CFI = .98, Robust TLI = .96, SRMR = .03, Robust RMSEA = .06, which 

suggested a good fit for the data. Standardized item loadings ranged between .04 - .71 on 

the LMA factor, .30 - .45 on the MEA factor, and .48 - .72 on the g-factor. The bifactor 

model for girls is depicted in Figure A.4. 

For the bifactor model using data from boys only, chi-square results from the ML 

model estimation with Satorra-Bentler adjustment produced a non-significant value,  

X2 (18) = 28.29, p = .06. The bifactor model also produced the following fit index values: 

Robust CFI = .98, Robust TLI = .96, SRMR = .05, Robust RMSEA = .06, suggesting a 

good fit for the data. Standardized item loadings ranged between .11 - .79 on the LMA 

factor, .36 - .68 on the MEA factor, and .23 - .83 on the g -actor. The bifactor model for 

boys is depicted in Figure A.5. 

 
Configural Invariance 
 
 Because the bifactor model provided a good fit for both boys and girls 

independently, a confirmatory factor analysis was run with the two groups nested in order 
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to assess for configural invariance. Fit indices for the nested models are presented in 

Table B.10. The bifactor model with Satorra-Bentler adjustment using nested data from 

both groups produced a significant chi-square value, X2 (36) = 64.05, p = .003 and the 

following fit index values: Robust CFI = .98, Robust TLI = .96, SRMR = .04, Robust 

RMSEA = .06. Compared to Hu and Bentler’s (1999) recommended fit indices, the 

model was found to provide a good fit for the data, which supported configural 

invariance for gender for the measure.  

 
Metric Invariance 
 

Because the measure demonstrated configural invariance for gender, the model 

was next tested for metric invariance, or the equivalence of item loadings on the factors 

(Putnick & Bornstein, 2016). Differences in CFI and RMSEA indices were measured to 

determine whether the model fit for the metric invariance model was significantly 

different from the model for configural invariance. The model produced a decrease in the 

CFI index of .003 and an increase in the RMSEA index of .011 from the configural 

invariance. When compared to Hu and Bentler’s (1999) criteria of ΔCFI ≤ -.01 and 

ΔRMSEA ≤ .015, item loadings were found to be invariant across groups and metric 

invariance of the scale for boys and girls was supported.  

 
Scalar Invariance 
 

As metric invariance of gender was supported for the scale, the bifactor model 

was tested for scalar invariance, or equivalence of item intercepts across groups (Putnick 

& Bornstein, 2016). For this step, item intercepts (i.e., item means) were constrained to 

be equal for boys and girls (Putnick & Bornstein, 2016). The model produced an increase 
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in the CFI index of .003 and a decrease in the RMSEA index of .006 from the metric 

invariance model. Compared to Hu and Bentler’s (1999) recommended criteria for 

change in fit index values, item intercepts were found to be invariant across groups and 

scalar invariance of the scale for boys and girls was supported.  

 
Reliability 

 
 Reliability coefficients are presented in Table B.11. 

As measured by Cronbach’s alpha, the AMAS full scale demonstrated good 

internal consistency with a coefficient of 0.86. Also in line with our hypotheses, the 

Learning Math Anxiety (LMA) Scale and Math Evaluation Anxiety (MEA) Scale 

demonstrated high levels of internal consistency with Cronbach’s alpha of 0.82 and 0.80, 

respectively.  

The coefficient omega (w) value for the full scale suggested that 89% of variance 

in the total score was attributable to the common factors (g, LMA, and MEA), after 

controlling for error variance (Hammer & Toland, 2016). Coefficient omega values for 

the LMA and MEA subscales suggested that 83% and 81% of variance in the subscale 

scores were attributed to the common factors of the AMAS, respectively (Hammer & 

Toland, 2016). These results suggest good internal reliability for the multidimensional 

total scale and subscales.  

The coefficient omega hierarchical (wH) value indicated that 74% of the variance 

in the total score was attributable to the g factor, after partitioning out the variance 

attributable to the LMA and MEA factors. Although the value was lower than the .80 

cutoff proposed by Reise et al. (2013) for determining the unidimensional of scale, the 
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value of .74 is close and suggests that the LMA and MEA subscale scores should be 

interpreted with caution.  

The coefficient omega hierarchical scale (wHS) values of .26 for the LMA 

subscale and .20 for the MEA subscale suggest that only 26% and 20% of variance in 

subscale scores are attributable to the LMA and MEA factors, respectively. These 

findings also suggest that the majority of the variance in subscale scores is due to the 

common factor, g. Therefore, the LMA and MEA subscale scores do not reliably measure 

their intended constructs of learning math anxiety and math evaluation anxiety, 

respectively. The subscale scores will still be included in analyses for comparison with 

other studies, as they still account for some of the variance in scores. However, they 

should be interpreted with caution and the full-scale score should be weighed more 

heavily for interpretation of results. 

 
Validity 

 
 Descriptive statistics for all questionnaires are presented in Table B.2. 

Correlations between the AMAS scales and all questionnaires are presented in Table 

B.12. Correlations among validity questionnaires are presenting in B.13.  

 
Convergent Validity 
 
 
 MARS-R.  Pearson's product-moment correlations were run to assess the 

relationships between the total scale of the MARS-R and the AMAS total scale, LMA 

subscale, and MEA subscale. Inspection of scatter plots suggested linear relationships 

between the MARS-R and AMAS total scale, LMA subscale, and MEA subscale. In line 

with our hypotheses, there were statistically significant, large positive correlations 
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between the MARS-R full scale and the AMAS full scale, r(420) = .70, p <.001, LMA 

subscale, r(420) = .59, p <.001, and MEA subscale r(420) = .68, p <.001. 

 
CTAS.  Pearson product-moment correlations were run to assess the relationships 

between math anxiety, learning math anxiety, math evaluation anxiety, and test anxiety, 

as measured by the AMAS total scale, LMA subscale, MEA subscale, and CTAS total 

scale, respectively. Inspection of scatter plots suggested linear relationships between the 

CTAS total scale and all three AMAS scales. In line with our hypothesis, there were 

statistically significant, large positive correlations between the CTAS and AMAS total 

scale, r(420) = .65, p <.001, CTAS and LMA subscale, r(420) = .55, p <.001, and CTAS 

and MEA subscale, r(420) = .62, p <.001.  

 
PSWQ-C.  Pearson's product-moment correlations were run to assess the 

relationships between the total scale of the PSWQ-C and the AMAS total scale, LMA 

subscale, and MEA subscale. Inspection of scatter plots suggested linear relationships 

between the PSWQ-C total scale and all three AMAS scales. As hypothesized, there were 

statistically significant, medium positive correlations between the PSWQ-C total scale 

and the AMAS total scale, r(420) = .47, p <.001, LMA subscale, r(420) = .36, p <.001, 

and MEA subscale, r(420) = .49, p <.001.  

 
ATMI.  Pearson's product-moment correlations were run to assess the 

relationships between the total scale of the ATMI and the AMAS total scale, LMA 

subscale, and MEA subscale. Inspection of scatter plots suggested linear relationships 

between the ATMI total scale and all three AMAS scales. Consistent with our hypothesis, 

there were statistically significant, medium negative correlations between the ATMI and 
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AMAS full scale, r(420) = -.46, p <.001, LEA subscale, r(420) = -.37, p <.001, and MEA 

subscale, r(420) = -.45, p <.001.  

 
STEM-CIS.  Pearson's product-moment correlations were run to assess the 

relationships between the Science subscale of the STEM-CIS and the AMAS total scale, 

LMA subscale, and MEA subscale. Visual inspection of scatterplots suggested that there 

was not a linear relationship between the Science subscale and the AMAS scales. The 

lack of significant relationships between the variables was confirmed by non-significant 

Pearson product-moment correlations with the AMAS full scale, r(420) = 0, p = .865, 

LMA subscale, r(420) = -.06, p = .209, and MEA subscale, r(420) = .05, p = .286.  

Pearson's product-moment correlations were run to assess the relationships 

between the Technology subscale of the STEM-CIS and the AMAS total scale, LMA 

subscale, and MEA subscale. Visual inspection of scatterplots suggested that there was 

not a linear relationship between the Technology subscale and any of the AMAS scales. 

The lack of significant relationships between the variables was confirmed by non-

significant Pearson product-moment correlations with the AMAS full scale, r(420) = -

.04, p = .451, LMA subscale, r(420) = -.07, p = .136, and MEA subscale, r(420) = .01, p 

= .825.  

Pearson's product-moment correlations were run to assess the relationships 

between the Engineering subscale of the STEM-CIS and the AMAS total scale, LMA 

subscale, and MEA subscale. Visual inspection of scatterplots suggested that there was 

not a linear relationship between Engineering subscale and any of the AMAS scales. The 

lack of significant relationships between the variables was confirmed by non-significant 
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Pearson product-moment correlations with the AMAS full scale, r(420) = -.05, p = .341, 

LMA subscale, r(420) = -.08, p = .124, and MEA subscale, r(420) = -.01, p = .892. 

Pearson's product-moment correlations were run to assess the relationship 

between the Math subscale of the STEM-CIS and the AMAS total scale, LMA subscale, 

and MEA subscale. Visual inspection of scatterplots suggested weak linear relationships 

between the Math subscale and all three AMAS scales. The relationships between the 

variables were confirmed by statistically significant, small negative correlations between 

the math subscale and the AMAS total scale, r(420) = -.21, p < .001, LMA subscale, 

r(420) = -.18, p < .001, and MEA subscale, r(420) = -.20, p < .001.   

Pearson's product-moment correlations were run to assess the relationships 

between the total scale STEM-CIS and the AMAS total scale, LMA subscale, and MEA 

subscale. Visual inspection of scatterplots suggested that there was not a linear 

relationship between total scale and any of the AMAS scales. The lack of significant 

relationships between the variables was confirmed by non-significant Pearson product-

moment correlations with the AMAS full scale, r(420) = -.10, p = .050, p = .136, and 

MEA subscale, r(420) = -.04, p = .374. However, the STEM-CIS total scale demonstrated 

a statistically significant, small negative correlation with the LMA subscale,  

r(420) = -.12, p = .011. 

 
Divergent Validity 
 

Pearson's product-moment correlations were run to assess the relationship 

between the positive affect scale of the PANAS-C-SV and the AMAS total scale, LMA 

subscale, and MEA subscale. Scatter plots of the data suggested weak linear relationships 

among the scales. As hypothesized, there were statistically significant, negative 
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correlations between the PANAS-C-SV positive affect scale and the AMAS full scale, 

r(420) = -.17, p <.001, LMA subscale, r(420) = -.123 p <.001, and MEA subscale, r(420) 

= -.17, p <.001, which were smaller in magnitude than the correlations between the 

PSWQ-C full scale and the AMAS total scale, r(420) = .47, p <.001, LMA subscale, 

r(420) = .36, p <.001, and MEA subscale, r(420) = .49, p <.001. 
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CHAPTER FIVE 
 

Discussion 
 

 
The purpose of the current study was to evaluate the factor structure and 

psychometric properties of the Abbreviated Math Anxiety Scale (AMAS) to determine 

whether it can be a) considered a valid and reliable measure of math anxiety in middle 

school students, and b) used to compare differences in math anxiety between boys and 

girls. For our sample of 6-8th grade students from public middle schools in the 

Southwestern United States, the AMAS demonstrated good internal consistency and 

strong convergent and divergent validity with a number of established scales. A bifactor 

model provided an improved fit for the AMAS over one-factor and two-factor models, 

and the bifactor model was invariant across gender at the configural, scalar, and metric 

levels.  

 
Factor Structure 

 
In order to confirm the factor structure of the AMAS and assess model fit in a 

middle school population, we performed confirmatory factor analyses for one-factor, 

two-factor, and bifactor models. Previous studies have found the two-factor model to 

provide a good fit for the AMAS in college and elementary school populations in the 

United States and abroad (Carey et al., 2017; Caviola et al., 2017). We therefore expected 

a two-factor model to provide an improved fit for the data compared to a unidimensional 

model, with items loading onto two subscales, Learning Math Anxiety (LMA) and Math 

Evaluation Anxiety (MEA; Hopko et al., 2003). We also sought to determine whether a 
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bifactor model would provide a good and improved fit for the data compared to a two-

factor model, as bifactor models allow for the simultaneous assessment of the common 

and independent effect of specific, latent factors on scale items, and are increasingly 

being used in the field of psychological research (Bornovalova et al., 2020). In line with 

our hypotheses, we found that the two-factor model provided a good fit for the data and 

an improved fit over the one-factor model, which did not provide an adequate fit. Further, 

we found that the bifactor model provided a superior fit for the data over the two-factor 

model, suggesting that the specific factors of LMA and MEA independently contribute to 

the variance in AMAS item responses above and beyond their shared common influence, 

or the g-factor. These findings suggest that the LMA and MEA subscales independently 

provide information about participant responses above and beyond the full-scale and 

should be considered in future use of the AMAS as a research and clinical tool.  

Of note, two items produced small item loadings across all models tested. 

Specifically, item 1 “Having to use tables in the back of a math book” and item 5 “Being 

given a homework assignment of many difficult problems that is due the next class 

meeting” produced standardized item loadings of less than .60 for the one-factor and two-

factor models. These findings suggest that item 1 and item 5 may not be particularly 

salient items for assessing math anxiety in this population. Closer examination of item 

means presented in Table B.7 suggests that participants reported relatively lower scores 

for item 1 and relatively higher scores for item 5 compared to other items. However, 

examination of the inter-item coefficients presented in Table B.8 indicates that the 

magnitude of the correlations between items 1 and 5 and the other items on their 

respective subscales were large enough to indicate that they measure similar constructs 
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(e.g. r >.20; Piedmont, 2014). We propose several explanations for the weak loadings of 

these items onto the full scale and subscales of the AMAS. 

First, as schools are increasingly integrating technology into the classroom, 

especially during the COVID-19 pandemic, it is possible that many students have 

adopted the use of digital math texts rather than printed books for learning and 

completing assignments. It is, therefore, possible that today’s school-age students are not 

familiar with the process of turning to the back of a math book to check for reference 

tables. This hypothesis is supported by the author’s anecdotal experience in administering 

the AMAS questionnaire in-person, when several students expressed confusion regarding 

the meaning of item 1 and indicated that they did not use printed textbooks in math class. 

Due to changes in the modern learning environment since the AMAS was first published 

in 2003, item 1 may no longer capture the construct that it was intended to measure.  

Second, compared to the other items on the MEA scale that measure anxiety 

related to tests and quizzes, item 5 pertains to anxiety related to completing homework. 

Because homework may be viewed as a less threatening task than quizzes or tests, it is 

possible that item 5 measures a closely related, yet distinct construct (e.g. Math 

Assignment Anxiety). However, previous exploratory factor analyses of the items in 

other samples have found item 5 to load adequately onto the MEA subscale. Thus, we 

hypothesize that item 5 measures a subsection of evaluation math anxiety that 

participants in this particular sample found less anxiety provoking. 

Third, it is possible that both items represent additional latent factors that are not 

accounted for by the model. Given that the two items do not correlate strongly (r = .26), it 

is unlikely that they would load onto the same latent factor and would represent separate 



 

 79 

factors. However, taking into account results of previous exploratory and confirmatory 

analyses supporting a two-factor solution for the AMAS, as well as the principle of 

parsimony (Vandekerckhove et al., 2015), this explanation is unlikely. 

 
Factorial Invariance 

 
The bifactor model was found to provide a good fit for both boys and girls in the 

sample. Results of a multigroup confirmatory factor analysis indicated that the model was 

equivalent for boys and girls across form, factor loadings, and intercepts. Because 

configural, metric, and scalar invariance was supported between boys and girls, these 

results suggest that the AMAS demonstrates strong factorial invariance across gender for 

middle school students and can be used to measure and compare mean differences in 

math anxiety in middle-school aged boys and girls in an unbiased manner.  

 
Reliability 

 
In line with our hypothesis, the full scale, LMA subscale, and MEA subscales of 

the AMAS demonstrated high levels of internal consistency reliability (α ≥ .80), 

indicating that participants responded to the different items on the full scale and subscales 

in a similar manner. These results support the reliability of the measure.  

 Although Cronbach’s alpha is the most commonly used statistic for measuring 

internal consistency in the measurement literature, it assumes a unidimensional measure. 

Therefore, we also measured coefficient omega, coefficient omega hierarchical, and 

coefficient omega hierarchical subscale to account for the multidimensionality of the 

measure and control for variance attributable in scores to error. Our findings suggested 

that 89% of variance in the total score, 83% of variance in LMA scores, and 81% of 
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variance in MEA scores were attributable to the common factor and specific factors after 

controlling for error variance. These results suggest that the total scales and subscales of 

the AMAS demonstrate good internal reliability. The coefficient omega hierarchical 

value indicated that the majority of variance in the total scale (74%) was attributable to 

the common factor rather than the LMA and MEA factors. Reise et al. (2013) suggest 

that value greater than or equal to 80% indicate that a measure should be treated as 

unidimensional for the purpose of interpretation, despite its multidimensionality. 

Although the coefficient hierarchical value did not fall above this cutoff for the AMAS, 

the finding suggests that the full scale should be weighed more heavily in interpretation 

than the LMA and MEA subscales, which do not appear to provide a substantial increase 

in value above the total scale. Specifically, the coefficient omega hierarchical subscale 

values for the LMA and MEA subscales suggest that close to only one quarter of the 

variance in items is due to these factors alone, independent of their shared contribution to 

the variance. In accordance with Reise and colleagues (2013), the results suggest that the 

subscales do not provide reliable measures of their intended constructs independent of the 

total scale. Thus, the scores of the LMA and MEA subscale scores should be interpreted 

with caution relative to the full scale, as the total scale accounts for the majority of 

variance in item responses. However, because the coefficient omega hierarchical was less 

than the suggested cutoff for unidimensionality, we have also included the LMA and 

MEA subscales in our analyses in addition to the total scale. However, we recommend 

that the full scale be the primary measure of math anxiety interpreted for clinical and 

research purposes. 
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 Of note, the present study initially aimed to collect AMAS responses at two 

different time points in order to assess the test-retest reliability of the measure. However, 

school closures and the necessary pivot to online data collection due to the COVID-19 

pandemic prevented us from collecting data at a second time point. Specifically, we 

chose not to collect identifying information through online data collection in order to 

ensure the privacy of our minor participants and the anonymity of responses. Although 

such information would have allowed us to match participant responses across time 

points, we did not believe that it would support our participants’ best interests to do so 

given their age and the sensitive nature of the mental health data collected.   

 
Validity 

 
 
Convergent and Discriminant Validity 

 
The AMAS full scale, LMA subscale, and MEA subscale demonstrated large, 

statistically significant correlations with the total scale of the MARS-R, a validated scale 

for the assessment of math anxiety in college students. Although the magnitude of the 

correlations did not reach a cutoff proposed by Brown (2014) for demonstrating that two 

scales measure the same construct (r ≥ .85), the AMAS full scale demonstrated a strong 

correlation with the full scale of the MARS-R (r = .71). We therefore argue that the 

strength of the association between the two scales suggests that they measure similar 

constructs. Moreover, as the MARS-R contains items that are intended for college 

students rather than middle school students, it is possible that the differences in 

participants’ responses to the two measures were due to the relevance of item content for 

this sample. The magnitude of the correlations between the LMA and MEA subscales and 
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the full scale of the MARS-R were not as strong as the correlation with the full scale of 

the AMAS. This was not entirely surprising, given that the subscales are intended to 

measure facets of math anxiety, whereas the AMAS and MARS-R full scales are 

intended to measure the whole construct. However, given that the correlations of the 

subscales with the MARS-R full scale were not particularly strong (r ≤ .62), these 

findings may suggest that the AMAS full scale is a better measure of math anxiety than 

the individual subscales. 

In line with our hypotheses, the AMAS full scale, LMA subscale, and MEA 

subscale produced large positive correlations with a measure of test anxiety, medium 

positive correlations with a measure of worry, moderate negative correlations with a 

measure of attitudes towards math, and small negative correlations with a measure of 

math career interest. The AMAS scales also produced smaller correlations with a 

measure of positive affect than a measure of worry. These findings suggest that the 

AMAS full scale and subscales demonstrate good convergent and discriminant validity, 

which further supports the validity of the measure in this population.  

Surprisingly, while math career interest was significantly negatively correlated 

with the AMAS scales, there was no significant relationship between the AMAS scales 

and career interest in science, technology, or engineering. It is possible that with the 

rising interest, visibility, and availability of careers involving science, technology, and 

engineering, math anxiety in middle school may not be as strong of a predictor of career 

interest in these fields as previously suggested in the literature (e.g., Ahmed, 2018). 

Given that avoidance of STEM-related career paths is more strongly associated with math 

anxiety in high school-aged youth, these findings may point to middle school as an ideal 
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time for introducing interventions to reduce the impact of math anxiety on the pursuit of 

higher learning in math and related fields among youth and young adults.  

 
Demographic Characteristics 

 
 
Gender 
 

Contrary to our hypothesis, there were no significant mean differences in AMAS 

full scale or subscale scores between male and female participants. This finding was 

unexpected, given the large body of research documenting higher reported levels of math 

anxiety among girls than boys (e.g., Bieg et al., 2015; Dowker et al., 2016; Hill et al., 

2016). Several possibilities are suggested to account for this unexpecting finding.  

The mean score for both genders suggests that boys and girls did not report 

particularly high levels of math anxiety overall. On average, boys and girls provided 

Likert response scores of 2.42 and 2.47 per item, respectively, with item responses 

ranging from 1 (Not at All) to 5 (Very Much) anxiety. As state tests were cancelled for 

the majority of participants during the COVID-19 pandemic and many schools 

substantially reduced student academic demands and expectations during this time 

(Kuhfeld et al., 2020), it is possible that both boys and girls experienced lower levels of 

math anxiety overall. It is also possible that participant math anxiety was overshadowed 

by the substantial and numerous stressors impacting youth during the pandemic, 

including fears related to the health and safety of friends and family members, financial 

concerns, worries about the future, and the impact of social isolation on mood 

(Golberstein et al., 2020). Although data is still limited on the impact on child and 

adolescent mental health, preliminary research suggests that the pandemic and associated 
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lockdowns are associated with increased anxiety, depression, substance use, and stress in 

youth, as well as possible increases in child abuse and neglect (Jones et al., 2021; 

Marques de Miranda et al., 2020; Ortiz et al., 2021). Therefore, anxiety associated with 

math learning and evaluation may not have been as salient relative to other stressors. 

It is also possible that the schools sampled for this study provide support for 

students in a manner that reduces gender-specific factors impacting math anxiety, or that 

the gender discrepancy in math anxiety is shrinking in Texas, or possibly nationwide. If 

the lack of measured difference in math anxiety between boys and girls in this study is 

due to a local or national trend, it would provide support for future equality of 

opportunity and achievement in STEM between men and women.  

 
Race, Ethnicity, and Socioeconomic Status  
 

In line with previous findings in the literature, there were no significant mean 

differences in AMAS full scale or subscale scores among participants in our sample from 

different racial or socioeconomic groups (e.g. Hart & Ganley; Hembree, 1990). However, 

there was a small effect of ethnicity on math anxiety, with Hispanic students reporting 

higher levels of math anxiety than non-Hispanic students on the full scale and LMA 

subscale. These results suggest that Hispanic students may especially benefit from 

interventions targeting math anxiety. These findings are particularly salient in light of the 

discrepancy in STEM-employment rates for Hispanic individuals relative to individuals 

of White non-Hispanic and Asian heritage (Funk & Parker, 2018). In line with the 

recommendations of Fernández and colleagues (2021), future studies should investigate 

whether interventions targeting study skills in Hispanic students have beneficial effects 

on reducing math anxiety within this population.  
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Math Performance and Math Test Recency 
 

Our results did not demonstrate mean differences in math anxiety between 

participants who were high and low achieving in math, as measured by their grades. This 

finding was unexpected due to the negative relationship between math anxiety and math 

performance extensively described in the literature (e.g., Devine et al., 2012; Ma, 1999). 

The results from our sample may be attributable to participant grades providing too broad 

a measure of math performance, as 50% of participants reporting receiving A grades in 

their math course last semester. Thus, the measure of math achievement included in this 

study may not provide a valid measure of the construct, providing and explanation for the 

discrepancy between our findings and those of previous studies. 

We found that students who most recently took a math test a week before 

participating in the study reported more math evaluation anxiety than students who most 

recently took a math test more than two weeks before participating. No other group 

differences were found related to time since most recent math test for the MEA subscale, 

LMA subscale, or AMAS full scale. The overall lack of group differences is consistent 

with Conlon and colleagues’ (2021) finding that ratings of math anxiety did not differ by 

time point, with the exception of directly following a math test, and support the 

conceptualization of math anxiety as a state rather than trait form of anxiety (e.g., 

Ashcraft & Ridley, 2005; Bieg et al., 2015). 

 
Mental Health Diagnoses 
 

Although participants with anxiety reported higher levels of math evaluation 

anxiety on the MEA scale than participants without anxiety, there were no differences in 

scores on the total scale or LMA subscale. These findings are consistent with the 
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evaluation of a student’s performance, rather than the act of learning the information, 

being the driving force of anxiety in these participants. Conversely, participants with 

learning disorders reported more math anxiety on the total scale and learning math 

anxiety on the LMA subscale, but not on the MEA subscale, than their peers. This finding 

is consistent with participants with learning difficulties (in math and/or other academic 

areas) reporting higher levels of anxiety related to the act of learning math, and is in line 

with expected results. Surprisingly, participants who have previously received special 

education services did not report differing amounts of math anxiety on the full scale, 

LMA subscale, or MEA subscale than participants who had never received special 

education services. These findings may be due to the very small percentage of the sample 

who ever received special education services (7.1%) and/or the wide range of special 

education services that participants received. Although, a previous study found that 

college students with ADHD reported significantly more math anxiety than their peers 

(Canu et al., 2007), we did not find group differences  in math anxiety for students with 

and without ADHD in our sample. Once again, our findings were likely impacted by the 

very small percentage of our students who reported diagnoses of ADHD (10.8%) in our 

sample.  

Limitations 
 

This study has a number of limitations. First, the majority of data was collected 

several months into nationwide lockdowns imposed in response to the COVID-19 

pandemic. It is possible that changes in participant schedules, learning environments, and 

levels of stress related to environmental factors (e.g., COVID-19 related worry, economic 



 

 87 

impact, isolation, increased mental health difficulties) may have impacted ratings of math 

anxiety and other constructs.  

Second, data was collected at two separate time points, with some students 

participating in the school setting with questionnaires administered via paper-and-pencil, 

while other students participated at home with questionnaires administered electronically. 

Although, research suggests that response differences to questionnaires administered 

electronically versus on paper tend to be negligible (Gwaltney et al., 2008; 

Mangunkusumo et al., 2005; Muehlhausen et al., 2015), our results indicated that 

participants who completed the questionnaire electronically reported significantly less 

math anxiety than participants who completed the survey on paper. Although it is unclear 

whether these differences in scores are due to demand characteristics, setting, modality, 

effects of the pandemic, or other factors, these differences may have impacted our overall 

findings.  

Third, as we collected data from school children under the age of majority, which 

is a specially protected population, we did not penalize participants for skipping items 

that they did not wish to respond to. As a result, demographic information is missing for a 

number of participants and approximately 30% of participants who began the survey did 

not complete all measures. Notably, our sample’s rate of completion was very close to 

those of large scale online surveys with youth participants (Anderson & Jiang, 2018; 

Larson et al., 2011), suggesting that our completion rate was within expected limits.  

Fourth, much of the data was gathered in the last months of the school year after 

students had completed much of their math testing and learning. Thus, the timing of data 

collection may have impacted participants’ reported levels of math anxiety. 
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Fifth, our sample population was strongly homogenous in that the large majority 

of participants in the sample were White, not Hispanic, in 7th grade, and had no mental 

health diagnoses. Therefore, results of the study may not generalize to other populations 

and the study would benefit from replication in a more diverse sample. 

Sixth, we were unable to collect AMAS data from participants at different time 

points, as initially proposed for the study, due to the pivot from in-person data collection 

to online data collection during the pandemic. As a result, we were unable to determine 

test-retest reliability for the AMAS full scale and subscales in this sample. Although the 

AMAS has been found to demonstrate good test-retest reliability in adult populations, 

future research should seek to measure test-retest reliability in middle school-aged 

students as well. 

 
Future Directions for Research 

 
 As the bifactor model provided an improved fit for the AMAS over the two-factor 

model previously identified for adult and child samples, we suggest that the bifactor 

model should be tested with other populations to determine whether it provides improved 

fit across populations. We also suggest that further research continue to explore the 

relative advantage of using the full scale of the measure relative to the subscales in 

different populations.  

Due to the relative homogeneity of the sample for the current study, this study 

should be replicated in a more ethnically, racially, and socioeconomically diverse school 

sample in order to determine the generalizability of results across populations. The 

current study would also benefit from replication following the COVID-19 pandemic, to 



 

 89 

determine whether changes due to lockdowns and quarantine impacted participant 

responses.  

As we did not find differences in mean AMAS scores between boys and girls in 

this sample, we recommend that the measure be further tested for invariance in a sample 

that better reflects gender differences in math anxiety documented in the literature (e.g., 

Dowker et al., 2016). Because of the increasing integration of electronic tools and the 

Internet in the classroom, the AMAS would likely also benefit from an update to the 

terminology and content of items to account for changes in the learning environment.  

 
Clinical Implications 

 
Studies suggest that a wide range of clinical interventions may be effective for 

reducing math anxiety in youth. Interventions include sustained exposure to math cues, 

scaffolding parent-child interactions involving math, expressive writing, breathing, 

mindfulness, and positive affirmation exercises, and changing cognitive appraisals of 

math and physiological cues of anxiety (Brunyé et al., 2013; Jamieson et al., 2016; 

Luttenberger et al., 2018; Park et al., 2014; Ramirez et al., 2018; Samuel & Warner, 

2019; Supekar et al., 2015). Results of these studies support the implementation of what 

are likely low-cost, short-term, psychological treatments for math anxiety that can be 

implemented in home, school, and/or therapy environments.  

Despite the limitations of the current study, our results support the use of the 

AMAS as an outcome measure for clinical practice and research focusing on reducing 

math anxiety in middle school-aged populations. The robust psychometric properties of 

the measure, including its factor structure, internal consistency and convergent and 

discriminant validity suggest that the AMAS demonstrates strong construct validity for 
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math anxiety in this population. Because the measure demonstrates factorial invariance 

across gender, it can be readily used to accurately compare boys’ and girls’ levels of math 

anxiety at baseline, during, and following clinical intervention. The short length of the 

AMAS also makes it an ideal measure for use in clinical work and research with school-

age populations, as it is not cumbersome to administer, respond to, or score. The findings 

of the current study highlight middle school as an ideal time for implementing 

interventions for reducing math anxiety, as well as support the use of the AMAS as a 

reliable and valid scale for measuring the outcomes.     

 
Conclusion 

 
In a homogenous community sample of middle school students, the AMAS was 

found to be a valid and reliable measure of math anxiety. The AMAS demonstrated 

factorial invariance for gender, suggesting that the items are interpreted in a similar 

manner by both boys and girls. A bifactor model provided the best fit for the measure, 

suggesting that the Math Evaluation Anxiety and Learning Math Anxiety subscales 

contribute additional variance in scores over and above the total scale. Overall, our 

findings suggest that the AMAS is a psychometrically sound measure of math anxiety for 

use in middle school-aged populations with similar demographic characteristics to our 

sample and can be used to compare differences in math anxiety between boys and girls in 

an unbiased manner.   
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Figure A.1. One-Factor Model of the AMAS 
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Figure A.2. Two-Factor Model of the AMAS 
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Figure A.3. Bifactor Model of the AMAS 
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Figure A.4. Bifactor Model of the AMAS for Girls 
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Figure A.5. Bifactor Model of the AMAS for Boys 
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APPENDIX B 

Tables 

Table B.1  

Sample Characteristics 

Characteristic  n   Percent of Sample 
Gender 
Male 203 33.6 
Female 329 54.5 
Missing 72 11.9 

Grade 
5 1 0.2 
6 39 6.5 
7 330 54.6 
8 158 26.2 

School Location 
Central TX 413 68.4 
Southeast TX 191 31.6 

Race 
White 275 45.5 
Black 42 7.0 
Asian 12 2.0 
Other 16 2.6 
Multiracial 43 7.1 
Missing 216 35.7 

Ethnicity 
Hispanic 198 32.8 
Not Hispanic 403 66.7 
Missing 3 0.5 

Parental Level of Education 
Some High School 63 10.4 
High School or GED 72 11.9 

                     (Continued)
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Characteristic n  Percent of Sample 
Some College or Vocational 
     School 63 10.4 
College 201 33.3 
Graduate Degree 122 20.2 
Missing 83 13.7 

Math Grades 
A 261 43.2 
B 180 29.8 
C 58 9.6 
D 14 2.3 
E/F 4 0.7 
Missing 87 14.4 

Mental Health Diagnoses 
ADHD 65 10.8 
Anxiety 54 8.9 
Depression 28 4.6 
Autism Spectrum Disorder 3 0.5 
Learning Disorder 12 2.0 
Epilepsy 2 0.3 

Special Education Services 
Ever Received Special 
Education Services 

43 7.1 

Never Received Special 
Education Services 

560 92.7 

Missing 1 0.2 

Math Test Recency 
Today 95 15.7 
Yesterday 56 9.3 
This Week 56 9.3 
Last Week 140 23.2 
Two Weeks Ago 23 3.8 
More than Two Weeks Ago 96 15.9 
Missing 138 22.8 

Note. N = 604. Participant age ranged from 10-15 years-old with a mean 
age of 12.99 years (SD = .78). 
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Table B.2 

Descriptive Statistics for Questionnaires 

Instrument N Mean SD Skewness 
Statistic 

Skewness 
SE 

Kurtosis 
Statistic 

Kurtosis 
SE 

AMAS Full 
Scale 

604 22.04 7.55 .33 .10 -.67 .20 

LMA Scale 604 10.48 4.52 .64 .10 -.43 .20 
MEA Scale 604 11.56 3.98 .28 .10 -.62 .20 
RMARS 422 50.95 20.20 .60 .12 -.36 .24 
CTAS 422 66.19 19.73 .28 .12 -.48 .24 
ATMI 422 136.23 30.10 -.21 .12 -.04 .24 
PSWQ-C 422 34.41 10.28 .35 .12 -.51 .24 
STEM-CIS 
   Science Scale 422 40.05 7.75 -.33 .12 .18 .24 
STEM-CIS   
 Technology 

   Scale 422 40.00 8.83 -.41 .12 .38 .24 
STEM-CIS 
 Engineering 
 Scale 422 35.93 9.47 -.05 .12 .03 .24 

STEM-CIS 
   Math Scale 422 39.13 8.10 -.41 .12 .18 .24 
STEM-CIS 
   Total Scale 422 155.10 26.66 -.28 .12 .53 .24 
PANAS-C-SV 
  Positive 
  Affect 

422 15.64 4.99 .07 .12 -.57 .24 
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Table B.3 

Descriptive Statistics for Between Group Difference Tests 

Demographic 
Characteristic 

AMAS Full 
Scale 

LMA Subscale MEA Subscale 

Mode of 
 Administration 

N Mean SD Mean SD Mean SD 

 Paper 64 25.08 7.44 11.43 4.19 13.65 4.51 

 Electronic 540 21.68 7.44 10.36 4.55 11.32 3.84 

Gender 
 Boys 203 21.76 7.59 10.43 4.64 11.33 3.86 

 Girls 329 22.19 7.64 10.46 4.58 11.73 4.02 

Race 
 White 275 21.53 7.82 10.09 4.79 11.44 4.03 

 Black 42 23.79 7.51 11.60 4.39 12.19 3.86 
 Asian 12 18.00 6.54 7.83 3.19 10.17 3.69 

 Other 16 21.88 8.49 10.31 5.17 11.56 3.97 
 Multiracial 43 20.88 7.25 9.67 4.20 11.20 4.00 

Ethnicity 

 Hispanic 198 23.00 7.66 11.11 4.53 11.89 3.80 
 Not Hispanic 403 21.54 7.30 10.16 4.51 11.38 4.06 

Parental 
  Educational 
  Level 
 Some High 
  School 63 21.39 7.27 10.33 4.28 11.06 4.04 

 High School or 
  GED 72 23.15 7.28 11.11 4.29 12.04 3.76 

                   (Continued). 
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Demographic 
Characteristic 

AMAS Full 
Scale 

LMA Subscale MEA Subscale 

N Mean SD Mean SD Mean SD 
 Some College or 

 Vocational 
 School 

63 23.40 8.15 11.24 5.12 12.15 3.89 

 College 201 22.24 7.56 10.36 4.60 11.87 4.02 

 Graduate Degree 122 20.38 7.54 9.63 4.44 10.75 3.96 

Math Grades 
 Above Average 

(A) 261 21.65 7.49 10.28 4.50 11.37 3.97 

 Average (B) 180 21.88 7.47 10.41 4.62 11.46 3.76 
 Below Average 
    (C, D, E/F) 76 23.11 8.73 10.71 5.05 12.40 4.39 

Mental Health 

 Diagnoses 
 ADHD 65 22.00 6.94 10.06 4.25 11.94 3.76 

 No ADHD 536 22.03 7.65 10.53 4.57 11.50 4.00 
 Anxiety 54 23.01 8.20 10.35 4.71 12.66 4.35 

 No Anxiety 547 21.93 7.50 10.49 4.52 11.44 3.93 
 Depression 28 22.74 7.80 10.04 4.43 12.71 4.40 

 No Depression 573 21.99 7.56 10.50 4.54 11.49 3.95 
 Learning 
  Disorder 12 26.43 9.45 12.02 6.07 14.42 4.64 

 No Learning 
    Disorder 

589 21.94 7.51 10.44 4.50 11.49 3.95 

Special Education 
   Ever Received 43 21.81 7.83 10.09 4.89 11.72 4.17 
 Never Received 560 22.05 7.54 10.51 4.50 11.54 3.96 

                   (Continued). 
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Demographic 
Characteristic 

AMAS Full 
Scale 

LMA Subscale MEA Subscale 

N Mean SD Mean SD Mean SD 
Math Test 
 Recency 

 Today 95 21.11 7.44 9.87 4.33 11.24 4.01 
 Yesterday 56 22.66 7.20 11.10 4.60 11.56 3.73 
 Earlier This 
  Week 56 21.45 6.60 10.02 4.11 11.43 3.46 

 Last Week 140 22.23 7.74 10.24 4.76 11.98 3.85 
 Two Weeks Ago 23 21.39 9.27 10.91 5.54 10.48 4.34 
 More Than Two 

 Weeks Ago 96 20.61 7.54 10.29 4.88 10.32 3.49 
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Table B.4 

Fit Indices by Model 

Model X2SB df CFIa TLIa RMSEAa CI 
Low 

CI 
Up 

SRMR 

One-
Factor 
 Model 

253.872 27 0.851 0.802 0.135 0.12 0.151 0.067 

Two-
Factor 
 Model 

81.346 26 0.963 0.949 0.069 0.052 0.086 0.044 

Bifactor 
 Model 

28.657 18 0.993 0.985 0.037 0.000 0.061 0.019 

 Note.  aIndex values are corrected for robust standard errors; X2SB is chi-square test value 
 with Satorra-Bentler (2001) correction applied. 

Table B.5 

Differences in Model Fit 

Model df AIC BIC X2SB ΔX2SB Δdf p-value 
One-Factor 
  Model 

27 15877.18 15996.08 253.872 

Two-Factor 
  Model 

26 15655.51 15778.81 81.346 442.357 1 <.001 

Bifactor Model 18 15601.46 15759.99 28.657 54.509 8 <.001 
 Note. X2SB is chi-square test value with Satorra-Bentler (2001) correction applied. 



 

 104 

Table B.6 
 

AMAS Item Loadings by Model 
 

Indicator One-Factor Model Two-Factor Model Bifactor Model 
  LMA MEA LMA MEA g 
Item 1 0.507 0.489  0.110  0.504 
Item 2 0.677  0.754  0.312 0.675 
Item 3 0.719 0.756  0.379  0.643 
Item 4 0.674  0.772  0.385 0.675 
Item 5 0.478  0.576  0.464 0.441 
Item 6 0.682 0.772  0.642  0.539 
Item 7 0.668 0.752  0.547  0.542 
Item 8 0.650  0.709  0.264 0.654 
Item 9 0.667 0.663  0.235  0.630 

Note. All Betas presented are standardized. 
 
 
 
 

Table B.7 
 

AMAS Item Means 
 
 

 

 

 

 

 
 
 
 
 

 
 
 
 
 

 

Item Mean 
Item 1 1.75 
Item 2 2.77 
Item 3 2.32 
Item 4 2.99 
Item 5 3.11 
Item 6 2.11 
Item 7 2.09 
Item 8 2.70 
Item 9 2.21 
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Table B.8 
 

AMAS Inter-Item Pearson Correlation Coefficients 

Note. All correlation coefficients are significant at the .001 level. aCorrelations between 
items loading onto the LMA scale. bCorrelations between items loading onto the MEA 
scale.  
 
 
 
 

Table B.9 
 

Bifactor Model Fit Indices for Boys and Girls 
 

Model X2SB df CFIa TLIa RMSEAa CI 
Low 

CI 
Up 

SRMR 

Bifactor Boys and  
   Girls Combined 

31.931 18 0.989 0.979 0.045 0.017 0.070 0.022 

Bifactor Model    
    Boys 

28.287 18 0.980 0.960 0.062 0.000 0.104 0.051 

Bifactor Model   
    Girls 

35.864 18 0.979 0.959 0.063 0.032 0.094 0.027 

Note. aIndex values are corrected for robust standard errors; X2SB is chi-square test value 
with Satorra-Bentler (2001) correction applied. 
 
 
 
 
 

 
 

 Item 
1 

Item 
2 

Item 
3 

Item 
4 

Item  
5 

Item 
6 

Item 
7 

Item 
8 

Item 1         
Item 2 .357        
Item 3 .343a .447       
Item 4 .313 .579b .475      
Item 5 .264 .440b .234 .474b     
Item 6 .322a .393 .595a .343 .199    
Item 7 .373a .358 .553a .330 .211 .642a   
Item 8 .328 .520b .390 .541b .417b .352 .377  
Item 9 .361a .398 .486a .418 .309 .492a .471 .440 
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Table B.10 
 

Fit Indices of Nested Bifactor Gender Measurement Invariance Models 
 

Note. aIndex values are corrected for robust standard errors; X2SB is chi-square test value 
with Satorra-Bentler (2001) correction applied. 
 
 
 
 

Table B.11 
 

Reliability Coefficients 
 

 AMAS Total Scale LMA MEA g 
a .86 .82 .80  
w  .83 .81 .89 
wH    .74 
wHS  .26 .20  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Invariance Step X2SB df CFIa TLIa RMSEAa RMSEA CIa SRMR 

Configural   
   Invariance 

64.052 36 0.980 0.959 0.063 [0.037,0.088] 0.036 

Metric Invariance 82.877 51 0.977 0.968 0.056 [0.032,0.077] 0.042 
Scalar Invariance 85.991 57 0.980 0.975 0.050 [0.026, 0.070] 0.042 

Strict Invariance 92.329 66 0.982 0.980 0.044 [0.019, 0.064] 0.042 
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Table B.12 
 

Pearson Product-Moment Correlations Between Questionnaires and AMAS Scales 
 

Instrument AMAS Total Scale LMA Subscale MEA Subscale 

MARS-R .70** .59** .68** 
CTAS .65** .55** .62** 
PSWQ-C .47** .36** .49** 
ATMI -.46** -.37** -.45** 
STEM-CIS Science Scale -.01a -.06a .05a 
STEM-CIS Technology  
    Scale 

 
-.04a 

 
-.07a 

 
-.01a 

STEM-CIS Engineering  
    Scale 

 
-.05a 

 
-.080a 

 
-.01a 

STEM-CIS Math Scale  -.21** -.18** -.20** 
STEM-CIS Total Scale -.10a -.12* -.04a 
PANAS-C-SV Positive  
    Affect 

 
-.17** 

 
-.13** 

 
-.17** 

Note. N = 422. ** p < .001, * p < .05; aCorrelation coefficient is not significant at p ≥ .05. 
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Table B.13 
 

Pearson Product-Moment Correlations Among Validity Questionnaires 
 

Scale  PANAS-C-
SV Positive 

Affect PSWQ-C MARS-R ATMI CTAS 
STEM-

CIS Total   
PANAS-C-SV  
     Positive Affect 

1 -.302*** -.254*** .336*** -.299*** .220*** 

PSWQ-C -.302*** 1 .583*** -.349*** .551*** -.062 

MARS-R -.254*** .583*** 1 -.561*** .635*** -.127** 

ATMI .336*** -.349*** -.561*** 1 -.488*** .457*** 

CTAS -.299*** .551*** .635*** -.488*** 1 -.102* 

STEM-CIS Total .220*** -.062 -.127** .457*** -.102* 1 
Note. N = 422. ***p < .001, **p < .01, *p < .01. 
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APPENDIX C 

 
Measures 

 
 

Abbreviated Math Anxiety Scale (AMAS) 
 
Answer each item below to indicate how much anxiety each situation causes you using 
the following code: 
 
1 = low anxiety 
2 = a little anxiety 
3 = moderate anxiety 
4 = much anxiety 
5 = high anxiety 
 
1. Having to use tables in the back of a math ___ ___ ___ ___ ___ 
 book. 
 
2. Thinking about an upcoming math test ___ ___ ___ ___ ___ 
 1 day before. 
 
3. Watching a teacher work on an algebraic  ___ ___ ___ ___ ___ 
 equation on the blackboard. 
 
4. Taking an examination in a math course. ___ ___ ___ ___ ___ 
  
 
5. Being given a homework assignment of ___ ___ ___ ___ ___ 
 many difficult problems that is 
 due the next class meeting. 
 
6. Listening to a lecture in a math class.  ___ ___ ___ ___ ___ 
 
 
7. Listening to another student explain a ___ ___ ___ ___ ___ 
 math formula. 
 
8. Being given a “pop” quiz in a math class. ___ ___ ___ ___ ___ 
 
 
9. Starting a new chapter in a math book. ___ ___ ___ ___ ___ 
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Math Anxiety Rating Scale, Revised (MARS-R) 
 

ATTITUDE INVENTORY 
 

DIRECTIONS.  The items in this questionnaire refer to things and experiences that may 
cause fear or apprehension.  Answer each item below to indicate how you feel today 
using the following code: 
 
 1 = not at all 
 2 = a little 
 3 = moderate 
 4 = much 
 5 = very much 
 
Work quickly and be sure to consider each item individually. 
 
       1 2 3  4 5 
 
1. Watching a teacher work on an algebraic  ___ ___ ___ ___ ___ 
 equation on the blackboard. 
 
2. Buying a textbook.    ___ ___ ___ ___ ___ 
 
3. Being given a homework assignment of ___ ___ ___ ___ ___ 
 many difficult problems which is 
 due the next class meeting. 
 
4. Thinking about an upcoming math test on ___ ___ ___ ___ ___ 
 the day before. 
 
5. Solving a square root problem.  ___ ___ ___ ___ ___ 
 
6. Reading and interpreting graphs and charts. ___ ___ ___ ___ ___ 
 
7. Signing up for a course in statistics.  ___ ___ ___ ___ ___ 
 
8. Listening to another student explain a ___ ___ ___ ___ ___ 
 math formula. 
 
9. Walking into a math class.   ___ ___ ___ ___ ___ 
 
10. Looking through the pages of a math book. ___ ___ ___ ___ ___ 
 
11. Starting a new chapter in a math book. ___ ___ ___ ___ ___ 
 
 



 

 111 

12. Walking on campus and thinking about a ___ ___ ___ ___ ___ 
 math course. 
 
13. Picking up a math textbook to begin   ___ ___ ___ ___ ___ 
 working on a homework assignment. 
 
14. Taking an examination (quiz) in a math ___ ___ ___ ___ ___ 
 course. 
 
15. Reading the word “statistics”.     ___ ___ ___ ___ ___ 
 
16. Working on an abstract mathematical  ___ ___ ___ ___ ___ 
 problem such as:  “If X = outstanding bills 
 and Y = total income, calculate how much 
 you have left for recreational expenditures”. 
 
17. Reading a formula in chemistry.  ___ ___ ___ ___ ___ 
 
18. Taking an examination (final) in a math ___ ___ ___ ___ ___ 
 class. 
 
19. Getting ready to study for a math test. ___ ___ ___ ___ ___ 
 
20. Being given a “pop” quiz in a math class. ___ ___ ___ ___ ___ 
 
21. Waiting to get a math test returned on which ___ ___ ___ ___ ___ 
 you expected to do well. 
 
22. Listening to a lecture in a math class.  ___ ___ ___ ___ ___ 
 
23. Having to use tables in the back of a math ___ ___ ___ ___ ___ 
 book. 
 
24. Being told how to interpret probability  ___ ___ ___ ___ ___ 
 statements. 
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Children’s Test Anxiety Scale (CTAS) 
 
While I am Taking Tests… Almost 

Never 
Some of 
the Time 

Most of the 
Time 

Almost 
Always 

1. I wonder if I will pass. 1 2 3 4 

2. My heart beats fast. 1 2 3 4 

3. I look around the room. 1 2 3 4 

4. I feel nervous. 1 2 3 4 

5. I think I am going to get a 
bad grade. 

1 2 3 4 

6. It is hard for me to 
remember the answers. 

1 2 3 4 

7. I play with my pencil. 1 2 3 4 

8. My face feels hot. 1 2 3 4 

9. I worry about failing. 1 2 3 4 

10. My belly feels funny. 1 2 3 4 

11. I worry about doing 
something wrong.  

1 2 3 4 

12. I check the time. 1 2 3 4 

13. I think about what my grade 
will be. 

1 2 3 4 

14. I find it hard to sit still. 1 2 3 4 

15. I wonder if my answers are 
right. 

1 2 3 4 

16. I think that I should have 
studied more. 

1 2 3 4 

17. My head hurts. 1 2 3 4 

18. I look at other people. 1 2 3 4 
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19. I think most of my answers 
are wrong. 

1 2 3 4 

20. I feel warm. 1 2 3 4 

21. I worry about how hard the 
test is. 

1 2 3 4 

22. I try to finish up fast. 1 2 3 4 

23. My hand shakes. 1 2 3 4 

24. I think about what will 
happen if I fail. 

1 2 3 4 

25. I have to go to the 
bathroom. 

1 2 3 4 

26. I tap my feet. 1 2 3 4 

27. I think about how poorly I 
am doing.  

1 2 3 4 

28. I feel scared. 1 2 3 4 

29. I worry about what my 
parents will say. 

1 2 3 4 

30. I stare. 1 2 3 4 
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Attitudes Toward Mathematics Inventory (ATMI) 
 

Directions: This inventory consists of statements about your attitude toward mathematics. 
There are no correct or incorrect responses. Read each item carefully. Please think about 
how you feel about each item. Enter the letter that most closely corresponds to how each 
statement best describes your feelings.  
 
PLEASE USE THESE RESPONSE CODES:  
 
A – Strongly Disagree 
B – Disagree 
C – Neutral 
D – Agree 
E – Strongly Agree 
 
1. Mathematics is a very worthwhile and necessary subject. 

2. I want to develop my mathematical skills. 

3. I get a great deal of satisfaction out of solving a mathematics problem. 

4. Mathematics helps develop the mind and teaches a person to think. 

5. Mathematics is important in everyday life. 

6. Mathematics is one of the most important subjects for people to study. 

7. High school math courses would be very helpful no matter what I decide to study. 

8. I can think of many ways that I use math outside of school. 

9. Mathematics is one of my most dreaded subjects. 

10. My mind goes blank and I am unable to think clearly when working with  

      mathematics. 

11. Studying mathematics makes me feel nervous. 

12. Mathematics makes me feel uncomfortable. 

13. I am always under a terrible strain in a math class. 

14. When I hear the word mathematics, I have a feeling of dislike. 

15. It makes me nervous to even think about having to do a mathematics problem. 

16. Mathematics does not scare me at all. 
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17. I have a lot of self-confidence when it comes to mathematics. 

18. I am able to solve mathematics problems without too much difficulty. 

19. I expect to do fairly well in any math class I take. 

20. I am always confused in my mathematics class. 

21. I feel a sense of insecurity when attempting mathematics. 

22. I learn mathematics easily. 

23. I am confident that I could learn advanced mathematics. 

24. I have usually enjoyed studying mathematics in school. 

25. Mathematics is dull and boring. 

26. I like to solve new problems in mathematics. 

27. I would prefer to do an assignment in math than to write an essay. 

28. I would like to avoid using mathematics in college. 

29. I really like mathematics. 

30. I am happier in a math class than in any other class. 

31. Mathematics is a very interesting subject. 

32. I am willing to take more than the required amount of mathematics. 

33. I plan to take as much mathematics as I can during my education. 

34. The challenge of math appeals to me. 

35. I think studying advanced mathematics is useful. 

36. I believe studying math helps me with problem solving in other areas. 

37. I am comfortable expressing my own ideas on how to look for solutions to a difficult  

      problem in math. 

38. I am comfortable answering questions in math class. 

39. A strong math background could help me in my professional life. 

40. I believe I am good at solving math problems. 
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Penn State Worry Questionnaire for Children (PSWQ-C) 
 

Directions. This form is about worrying. Worrying happens when you are scared about 
something and you think about it a lot. People sometimes worry about school, their 
family, their health, things coming up in the future, and other kinds of things. For each 
sentence that you read, circle the answer that best tells how true that sentence is about 
you. 
 
1. My worries really 

bother me. 
Never True Sometimes 

True 
Most Times 

True 
Always 

True 

2. I don’t really worry 
about things. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

3. Many things make 
me worry. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

4. I know I shouldn’t 
worry about things, 
but I just can’t help 
it. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

5. When I am under 
pressure, I worry a 
lot. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

6. I am always worrying 
about something. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

7. I find it easy to stop 
worrying when I 
want. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

8. When I finish one 
thing, I start to worry 
about everything else. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

9. I never worry about 
anything. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

10. I’ve been a worrier 
all my life. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

11. I notice that I have 
been worrying about 
things. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 
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12. Once I start 
worrying, I can’t 
stop. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 

13. I worry all the time. Never True Sometimes 
True 

Most Times 
True 

Always 
True 

14. I worry about things 
until they are all 
done. 

Never True Sometimes 
True 

Most Times 
True 

Always 
True 
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STEM Career Interest Survey (STEM-CIS) 
 

Science      

1. I am able to get a 
good grade in my 
science class. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

2. I am able to complete 
my science 
homework. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

3. I plan to use science 
in my future career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

4. I will work hard in 
my science classes. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

5. If I do well in science 
classes, it will help 
me in my future 
career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

6. My parents would 
like it if I choose a 
science career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

7. I am interested in 
careers that use 
science. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

8. I like my science 
class. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

9. I have a role model in 
a science career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

10.  I would feel 
comfortable talking 
to people who work 
in science careers. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

11.  I know of someone 
in my family who 
uses science in their 
career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 
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Math 
12. I am able to get a 

good grade in my 
math class. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

13. I am able to complete 
my math homework. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

14. I plan to use 
mathematics in my 
future career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

15. I will work hard in 
my mathematics 
classes. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

16. If I do well in 
mathematics classes, 
it will help me in my 
future career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

17. My parents would 
like it if I choose a 
mathematics career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

18. I am interested in 
careers that use 
mathematics. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

19. I like my 
mathematics class. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

20. I have a role model in 
a mathematics career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

21.  I would feel 
comfortable talking 
to people who work 
in mathematics 
careers. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

22.  I know of someone 
in my family who 
uses mathematics in 
their career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 
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Technology 
23. I am able to do well 

in activities that 
involve technology. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

24. I am able to learn 
new technologies. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

25. I plan to use 
technology in my 
future career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

26. I will learn about 
new technologies that 
will help me with 
school. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

27. If I learn a lot about 
technology, I will be 
able to do lots of 
different types of 
careers. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

28. My parents would 
like it if I choose a 
technology career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

29. I like to use 
technology for class 
work. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

30. I am interested in 
careers that use 
technology. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

31. I have a role model 
who uses technology 
in their career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

32. I would feel 
comfortable talking 
to people who work 
in technology 
careers. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

33. I know of someone in 
my family who uses 
technology in their 
career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 
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Engineering 
34. I am able to do well 

in activities that 
involve engineering. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

35. I am able to complete 
activities that involve 
engineering. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

36. I plan to use 
engineering in my 
future career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

37. I will work hard on 
activities at school 
that involve 
engineering. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

38. If I learn a lot about 
engineering, I will be 
able to do lots of 
different types of 
careers. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

39. My parents would 
like it if I choose an 
engineering career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

40. I am interested in 
careers that involve 
engineering. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

41. I like activities that 
involve engineering. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

42. I have a role model in 
an engineering 
career. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

43. I would feel 
comfortable talking 
to people who are 
engineers. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 

44. I know of someone in 
my family who is an 
engineer. 

Strongly 
Disagree 

Disagree Neither 
Agree nor 
Disagree 

Agree Strongly 
Agree 
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Positive and Negative Affect Scale for Children, Revised Version (PANAS-C-RV) 

This scale consists of a number of words that describe different feelings and emotions. 
Read each item and then circle the appropriate answer next to that word. 
 
Indicate to what extent you have felt this way during the past few weeks. 

Feeling or 
emotion 

Very 
slightly or 
not at all 

A little Moderately Quite a bit Extremely 

Joyful 1 2 3 4 5 
Cheerful 1 2 3 4 5 
Happy 1 2 3 4 5 
Lively 1 2 3 4 5 
Proud 1 2 3 4 5 

Miserable 1 2 3 4 5 
Mad 1 2 3 4 5 

Afraid 1 2 3 4 5 
Scared 1 2 3 4 5 

Sad 1 2 3 4 5 
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Demographic Questionnaire 
 
Demographic Information 
 
Do not write your name on this page or any page in this packet. 
Please answer the questions in this packet to the best of your ability. Try to answer all 
questions. If you do not know the answer, try to guess. 
 
What is your age? _________________ 
 
What grade are you in? _________________ 
 
What’s the name of your school? _________________ 
 
What is your gender?           Boy            Girl 
 
What is your race/ethnicity? (Circle all that apply)        

White            Black            Hispanic            Asian            Other_________________ 
 
What is the highest education attained by your mother or father? 

 Some high school or less 

 High school diploma or GED 

 Vocational school or some college 

 College degree 

 Professional or graduate degree (for example, doctor, lawyer, professor) 

 

What was your grade last semester in the following school subjects? (Please circle) 

 History/Social Studies    A    B    C    D    F 

 Math                               A    B    C    D    F 

 English/Reading             A    B    C    D    F 

 Science                           A    B    C    D    F 

 

 

 

 

 



 

 124 

Have you ever been diagnosed with by any of the following by a health provider? (for 

example, a doctor or psychologist) 

 ADHD or ADD  

Autism 

Anxiety 

 Depression 

 Epilepsy/Seizure Disorder 

 Learning Disability/Disorder 

  If yes, do you know what kind? _________________ 

 
 
Have you ever been enrolled in special education classes at school? 
 No 
 Yes 
  During which grades? __________________________________ 
   

For which classes/subjects? __________________________________ 
   

Were you taught in a separate classroom or with the rest of your grade?  

____________________________________________________________ 

 

When was the last time you took a math quiz or test? (This can be for class or a 
standardized test.) 

 Today 

 Yesterday 

 Earlier this week 

 Last week 

 Two weeks ago 

 More than two weeks ago 
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