
ABSTRACT

Contributions to the Theory and Practice of Prior Elicitation
in Biopharmaceutical Research

Somer Blair, Ph.D.

Mentors: John W. Seaman, Jr. and David J. Kahle

In this dissertation, we consider modeling problems in biopharmaceutical research,

much of which is motivated by industry colleagues. Expert opinion is necessary in many

applications of survival analysis, especially in exploratory and early phase research. We

develop methods for eliciting informative priors using expert knowledge on observable

survival time summaries in the proportional hazards model. In problems with small sample

sizes and censoring, incorporating information from historical studies can enhance statis-

tical inference. To this end, we present methods for selecting a critical parameter in the

power prior using operational assessments of such choices, such as FDA guidance and

prior effective sample size. We investigate the consequences of misspecified information

in prior elicitations and create a mathematical framework and graphical guide with which

to understand the effects. Finally, we investigate the effect of various non-informative prior

choices on the between-trial heterogeneity in a logistic regression network meta-analysis.
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CHAPTER ONE

Introduction

Bayesian inference requires specification of a data model using a likelihood function,

`(θ | x), for some vector parameter, θ ∈ Θ, and data vector x ∈ X . In addition, a joint

prior distribution, π(θ), must be constructed. Then Bayes’ theorem provides the posterior

distribution on θ given x:

π(θ | x) ∝ `(θ | x)π(θ). (1.1)

Priors can be chosen to be more or less informative with a corresponding effect on the pos-

terior. In this dissertation, we consider several aspects of prior construction, from elicitation

of informative priors to unintended consequences of unnecessarily diffuse priors.

The literature on prior construction is vast. Typically, a prior is considered to be

either vague or informative. Basic methods of construction are discussed in most texts on

Bayesian inference. See, for example, Christensen et al. [10].

Relatively non-informative priors can be used. (See, for example, Robert [47] and

Kass and Wasserman [32]). These can lead to difficulties with induced priors, as noted by

Seaman et al. [29], especially in analyses with small sample sizes.

Elicitation of expert information and evaulation of resulting priors is critical. O’Hagan

et al. [41] and Garthwaite et al. [23] provide nice overviews of this subject, including

discussions on criteria for successful elicitations and the psychology behind eliciting opin-

ions. Regarding the latter, Garthwaite et al. recommend eliciting information in terms of

observables with which the experts are familiar. To this end, Bedrick et al. [4] introduce

conditional means priors for regression models. Legedza & Ibrahim [34] and Chaloner et

al. [7] discuss prior elicitation in clinical trials. The latter presents a graphical tool for

doing so. Wu et al. [53] present sensitivity analyses for beta priors with inprecise expert

1



information in clincial trials. Combining expert opinion is discussed in [44], [45], and [41].

Historical data can also be utilized in prior construction. The power prior, introduced by

Chen [9], incorporates historical data. Discussion can be found in [8] and [28].

1.1 Plan of Dissertation

The dissertation is organized as follows. In Chapter Two, we propose a prior elici-

tation method for use in parameteric proportional hazards models. When eliciting expert

opinion, it is recommended to communicate in terms of observables with which the expert

is most familiar. Therefore, we present methodology and simulated examples for obtaining

a prior structure on the parameters of interest through information on median and mean

survival times.

In Chapter Three, we consider power priors, which facilitate utilization of histori-

cal information in current experiments. A critical aspect of their use is the choice of the

power parameter, a0, which limits the influence of the historical data on the posterior. We

propose methods for selection of a fixed a0 through operational assessments based on im-

plications of such choices. These methods utilize the prior effective sample size [36], the

FDA guidelines on Bayesian analyses [2], and expert information.

We turn our attention to relatively non-informative priors in Chapter Four. Through

simulated logistic datasets, we investigate the effect of diffuse prior choices in Bayesian

network meta-analyses. We consider prior specifications regarding the between-trial het-

erogeneity and consequences of ignoring the covariate and/or the baseline in meta-regression.

Our simulations suggest that caution should be taken when modeling small logistic datasets

with few successes in meta-analyses.

In Chapter Five, we study the effect of expert misspecifications in prior elicitation

with beta priors on the success probability in binomial data. Specifically, when the prior

effective sample size [36] is used to assess priors in an analysis, we find that there can be

2



substantial sensitivity of priors to slight deviations in expert-elicited summaries. We pro-

pose a graphical guide for aide in the elicitation process to mitigate the sensitivity problem.
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CHAPTER TWO

Prior Elicitation in Parametric Proportional Hazards Models

2.1 Introduction

Survival analysis consists of statistical techniques for modelling the time until the

occurence of an event. The proportional hazards model (PHM) is commonly used in sur-

vival analysis where interest is in comparing the survival of two or more groups. The PHM

assumes these groups have ratios of hazard rates which are not dependent on time, and

hence have proportional hazards. We assume that the hazard rate follows a specific para-

metric form, which makes our model a parameteric PHM. We focus on prior elicitation in

two models in particular, the exponential PHM and the Weibull PHM.

Expert opinion is necessary in many applications of the PHM, especially in ex-

ploratory and early phase research. In this regard, we consider informative priors on para-

metric PHM’s with one dichotomous covariate, which indicates whether a patient is in the

experimental or standard treatment group. We extend our methods to models with multiple

categorical variables in Section 2.5. Following advice of many in the literature ([30], [35],

[23]), we elicit information on observables with which experts are familar. We then convert

this information to priors on the model’s parameters of interest. We introduce notation and

the basic PHM in Section 2.1.1. We provide the exponential and Weibull proportional haz-

ards models in Sections 2.1.2 and 2.1.3, respectively. We continue in Section 2.2 with an

illustration using prior specification through median survival times in the exponential PHM.

Our methods are extended to the Weibull PHM in Section 2.3. We discuss parameteriza-

tion of the Weibull model and implications in Section 2.3.1. We propose a prior elicitation

method through median survival times in Section 2.3.2 and use simulated data to provide

an example analysis. Section 2.4 includes construction of conditional means priors for the

exponential PHM in Section 2.4.1 and the Weibull PHM in Section 2.4.2. In Section 2.5
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we briefly discuss applicaton of our methods in models with multiple cateogrical variables

and present an illustration in Section 2.5.1. We end the chapter with a discussion in Section

2.6.

2.1.1 Introduction of the Survival Model

We begin with a brief introduction to survival analysis in this section to establish

notation and terminology. We also present our particular survival model.

Let T be a survival time with continuous density, f(t). Here, T represents the time

until an event, such as death or disease recurrence. The survival function, S(t), is the

probability of surviving up to or beyond time t:

S(t) = Pr(T ≥ t).

In practice, we don’t always observe t. Instead, for each patient i, we observe

min(ti, ci) where ci is a censored time. Censoring occurs when a death (or failure) time

is not observed. We consider right-censoring in our model and account for it through the

likelihood function. Details can be found in [33].

The hazard function h(t) is the instantaneous rate of failure (or death) given survival

to time t, defined as

h(t) = lim
∆t→0

Pr {t ≤ T < t+ ∆t | T ≥ t}
∆t

=
f(t)

S(t)
. (2.1)

The proportional hazards model (PHM) has the form

h(t | z) = h0(t)exp (βu) (2.2)

where u is a vector of covariates not dependent on t, and h0(t) is called the baseline hazard

function.

There are several approaches to modelling h0(t) , ranging from assuming a specific

functional form for h0(t) to leaving h0(t) completely unspecified and using Dirichlet pro-
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cess priors. We assume specific parametric baseline hazards, the exponential and Weibull,

in our models.

Ibraham and Chen [27] discuss a piece-wise constant baseline hazard function func-

tion with gamma priors and with a power prior. Ibraham and Chen also use a gamma

process prior on the baseline hazard and a parametric approach with a Weibull baseline

hazard function in which non-informative priors are placed on the Weibull parameters.

Christensen et al. [10] mention the use of an auto-regressive structure through a random

walk prior for cubic B-splines on h0(t). They also model the baseline hazard function on

sub-intervals through a piece-wise constant function.

We assume that h0(t) follows a particular parametric form, which makes our model

a parametric PHM. The coefficient-vector, β, usually does not include an intercept term.

Inclusion of an intercept would produce a constant exponential term that could be absorbed

into h0(t). We focus on PHM’s with one binary covariate, z:

h(t | z) = h0(t)exp (βz) . (2.3)

We consider Weibull and exponential PHM’s, where z = 0 denotes a standard treat-

ment group and z = 1 the experimental group. Often, clinical interest is in the hazard ratio.

Let h1 and h2 be the hazard functions for the experimental and standard treatment groups,

respectively. Then, the hazard ratio is

HR =
h1(t)

h2(t)
=
h0(t)exp(β × 1)

h0(t)exp(β × 0)
= exp(β). (2.4)

Our methods can be extended to include multiple categorical covariates, as well. We

present this in Section 2.5.

2.1.2 Exponential Proportional Hazards Model

A commonly-used parametric form for the baseline hazard is a constant function

corresponding to the exponential PHM. Recall the general form of the PHM in (2.2). We
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specify an exponential baseline hazard function

h0(t) = γ. (2.5)

For a single dichotomous covariate, z, this leads to the exponential PHM

h(t | z) = γexp(βz). (2.6)

with survival function

S(t) = exp

−
t∫

0

γexp(βz)du

 = exp {−tγexp(βz)} (2.7)

and corresponding probability density function

f(t) = γexp(βz)exp {−tγexp(βz)} . (2.8)

This is an exponential density with rate γ exp(βz). Let δ be a vector of censoring indicators

where δi equals one if the ith death time is observed and zero otherwise. Then the likelihood

corresponding to the exponential PHM in (2.6) is:

`(β, γ | t, z, δ) =
n∏
i=1

{γexp(βzi)exp [−tiγexp(βzi)]}δi

× {exp [−tiγexp(βzi)]}1−δi

(2.9)

where t is a vector of n survival times and z is the corresponding vector of dicotomous

covariate values.

2.1.3 Weibull Proportional Hazards Model

The Weibull PHM is a generalized form of the exponential PHM. Specifying a

Weibull baseline hazard function in (2.2),

h0(t) = λrtr−1, (2.10)

yields, for dichotomous z, the Weibull PHM:

h(t | z) = λrtr−1exp(βz). (2.11)
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The survival function at time t is

S(t) = exp {−trλexp(βz)} . (2.12)

The probability density function of t is

f(t) = rtr−1λexp(βz)exp {−trλexp(βz)} . (2.13)

This is a Weibull density with scale determined by λ exp(βz) and shape parameter r. Let

δ = 1 if the death time is observed and zero otherwise. The likelihood for this model is

`w(β, r, λ | t, z, δ) =
n∏
i=1

{
rtr−1
i λexp(βzi)exp [−triλexp(βzi)]

}δi
× {exp [−trλexp(βz)]}1−δi ,

(2.14)

where t, z, and δ are defined as before.

The exponential PHM is the Weibull PHM with the shape parameter, r in (2.11),

equal to one.

2.2 Priors for the Exponential PHM through the Median Survival Time

For a Bayesian analysis, the joint posterior distribution for parameters of interest is

proportional to the product of the likelihood ((2.9) or (2.14)) and a joint prior. In practice,

this computation will require Markov chain Monte Carlo (MCMC) methods and will be

implemented in a software package such as OpenBUGS or STAN.

In this section, we present methodology for eliciting priors on exponential PHM

parameters through expert information on the median survival time. An illustration of the

prior construction and an example analysis are provided in Section 2.2.1.

Given expert information on the median survival time, we wish to obtain a prior

structure on exponential PHM parameters γ and β. Let tm0 and tm1 be the median survival

times for the standard and experimental treatment groups, respectively. By definition, these

median survival times satisfy

S(tm0 | z = 0) = 0.5 (2.15)
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and

S(tm1 | z = 1) = 0.5. (2.16)

We elicit expert opinion on observables tm0 and tm1 and represent this opinion with

probability distributions. This induces distributions on the parameters of interest, γ and β.

To construct the priors on the median survival times, we obtain modes and percentiles from

the expert.

Suppose the expert provides most likely values and high values for the median sur-

vival times above. Let t∗m1
and t∗m0

be the most likely values of tm1 and tm0 , respectively.

These values will be treated as the modes of their respective probability distributions. Let

the high values of the median survival times for the standard and experimental treatment

groups be denoted by um0 and um1 , respectively. Note that low values could be used in-

stead. The expert should think of the high value, umi
, as an unusually large value of the

median survival time, such that there is small probability of the median survival being

greater than umi
. We treat high values as upper percentiles of gamma distributions. We

recommend not eliciting extreme percentiles, and the 90th should be the highest considered

[41].

We begin by specifying probability distributions on tm0 and tm1 . We choose gamma

priors

tm0 ∼ Gamma(k0, θ0) (2.17)

and

tm1 ∼ Gamma(k1, θ1). (2.18)

In our development, these denote the probability density functions given by

f(tmi
) =

1

Γ(ki)θki
tki−1
mi

exp

(
−tmi

θi

)
i = 0, 1 (2.19)

where Γ(·) is the incomplete gamma function. Denote the corresponding cummulative

density function by F (t). We construct the priors to have modes at the elicited values t∗m0
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and t∗m1
. For the parameterization in (2.19) we can write

t∗mi
= (ki − 1)θi, i = 0, 1. (2.20)

Using the expert’s high values, um0 and um1 , we set

F (umi
) =

1

Γ(ki)
γ

(
ki,

umi

θi

)
= ξ, i = 0, 1. (2.21)

where the choice of ξ determines the informativeness of the gamma prior. We will see

that our proposed prior structure often results in highly informative induced priors. We

ultimately recommend ξ = 0.75 for our proposed methods. This results in a system of

equations defined by (2.20) and (2.21) with which we can solve for the gamma parameters

ki and θi, i = 0, 1 in (2.17) and (2.18). This can be done numerically. In many applications,

more is known about the standard treatment than the experimental treatment. In that case,

tm0 should have a smaller variance.

Together, the definitions of the median survival times in (2.16) and (2.15) and the

survival function in (2.7) yield the following relationships:

tm0 =
ln(2)

γ
(2.22)

and

tm1 =
ln(2)

γ exp(β)
. (2.23)

Therefore, the parameters of interest have direct relationships with the median survival

times through

γ =
ln(2)

tm0

(2.24)

and

exp(β) =
ln(2)

γtm1

. (2.25)

Equation (2.24) induces a prior on γ through tm1 , and a prior is induced on β through

(2.25).
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2.2.1 Illustration of Prior Construction

The purpose of our development in this chapter is to provide a means to use expert

opinion in fitting PHM’s. To the degree we accurately represent the opinon of a well-

informed expert, we expect posterior estimates to perform well compared to those obtained

using methods uninformed by prior information, such as maximum likelihood. However,

for completeness, we now provide an illustration of the use of such priors.

As an example, suppose the expert believes that the median survival time for the

experimental treatment is most likely 75 weeks and is less than 105 weeks. The median

survival time for the standard group is not quite as high as the experimental group, but the

expert is more certain about the survival times of the former. Suppose further that the expert

believes the median survival time for the standard treatment is most likely 67 weeks and is

less than 90 weeks. Thus, the elicited quantities for the standard treatment are t∗m0
= 67

and um0 = 90. For the treatment group, these are t∗m1
= 75 and um1 = 105.

The elicited values of t∗mi
and umi

are treated as modes and 75th percentiles of the

gamma distributions in (2.17) and (2.18). O’Hagan et al. [41] discuss reasons against using

extreme percentiles, such as the 90th or 95th. Thus, we have the following gamma priors

on tm0 and tm1 :

tm0 ∼ Gamma(k0 = 9.2, θ0 = 8.1) (2.26)

and

tm1 ∼ Gamma(k1 = 7.6, θ1 = 11.4). (2.27)

We can examine the priors induced on β and γ by these choices via simulation, using

(2.24) and (2.25). These induced priors are exhibited in Figure 2.1. Note that these priors

can be approximated using independent distributions, which we later discuss.

If possible, one should include induced priors on other parameters of clinical interest,

such as the hazard ratio, HR. This facilitates feedback from the expert, allowing for an

iterative process of fitting and checking. In this case, the mode (and mean) of the prior on
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HR is 1. Therefore, the expert’s opinion has implied that the experimental treatment may

not be much different than the standard treatment.

For a posterior analysis, we specify the gamma priors on the median times and the

relationships in (2.24) and (2.25) to induce the priors in OpenBUGS. The priors represent-

ing expert opinion on the median survival times and the induced priors on the parameters

of interest are can be viewed via simulation and are displayed in Figure 2.1. Note that

simulation of the induced priors is not required for implementation in packages such as

OpenBUGS. Though, observing the priors is helpful in collaboration with the expert and

for sensitivity analyses.

Figure 2.1: Gamma densities on tm0 and tm1 with induced prior densities on γ, β and HR.

To complete the example, suppose we have 50 exponential survival times corre-

sponding to the PHM in (2.6), including 3 censored times, with parameters γ = 0.0107

and β = −0.268 corresponding to true median survival times of tm0 = 65 and tm1 = 85.

The survival times are plotted in Figure 2.2. The value of the hazard ratio HR = exp(β) =

0.765. We have assumed our expert’s knowledge is accurate and precise. That is, the true

median times are not far from the corresponding expert-elicited most likely values. In fact,

the true values are near the center of their respective gamma priors.
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Figure 2.2: Simulated exponential survival times.

We fit this model using OpenBUGs by running 50,000 iterations following a 10,000

iteration burn-in. No convergence issues were encountered. The means, 2.5th, and 97.5th

percentiles of the posterior distributions are shown in Table 2.1 along with the frequentist

estimates. The frequentist estimates are found using the R package, SurvRegCensCov.

This package computes maximum likelihood estimates (MLE) numerically by maximizing

the Cox partial likelihood [33]. The 95% confidence interval is computed forHR using the

asymptotic normality of the MLE (for details see Chapter eight of [33]), and the standard

errors (SE) are computed using the delta method (see Chapter twelve of [33]).

Table 2.1: Posterior estimates and maximum likelihood estimates of the exponential PHM
parameters.

Truth Posterior Estimates Frequentist Estimates

Mean 2.5% 97.5% MLE SE

γ 0.0107 0.012 0.007 0.017 0.012 0.0026
β −0.268 −0.190 −0.702 0.318 −0.216 0.292
HR 0.765 0.859 0.499 1.383 0.806 0.235
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The Bayesian estimates contain the true values within their respective 95% posterior

credible intervals. Also, each of the true values are within one standard error of their

respective MLE’s. The posterior mode is slightly farther from the truth than the MLE’s

for β and HR, but the two are comparable. The posterior mean estimates γ better than

the MLE, in this example. Figure 2.3 displays the prior and posterior densities of the

parameters with solid dots indicating respective MLE’s.

Figure 2.3: Posterior densities of β and γ with solid dots at corresponding MLE’s.

In Table 2.1, the posterior mean and MLE are identical for γ. For β and HR, the

posterior mean and MLE are comparable. In this example, the MLE is slightly closer to the

true value.

It is common in the literature to treat the parameters of the PHM as independent

in prior construction — see the discussion in Section 2.7. Here, we take γ and β to be

independent with priors

γ ∼ LN(−4.65, 0.322) (2.28)

and

β ∼ N(−0.127, 0.5022),

where x ∼ LN(µ, σ2) means that ex ∼ N(µ, σ2).

Specifying the approximate independent priors in OpenBUGS, we obtain posterior

means of 0.012 and –0.14 for γ and β, respectively. The corresponding 95% credible

intervals are: λ ∈ (0.008, 0.016) and β ∈ (−0.62, 0.33). The posterior results in Table 2.1,
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using dependent priors, have means closer to the truth and wider 95% credible intervals.

However, they are not far from the posterior results found using independent priors.

Figure 2.4: Induced densities on γ, β and HR with approximate independent priors (dotted
lines).

We recommend specifying the functional relationships between the median times and

the PHM parameters directly in OpenBUGS. The additional computation time is negliga-

ble, and this method automatically accounts for dependence among the parameters through

the relationships in (2.24) and (2.25). Approximating the induced priors with independent

distributions does not account for this dependency. Also, we have encountered induced

priors that are difficult to fit with independent distributions.

2.3 Priors for the Weibull PHM

In this section, we consider priors on parameters for the Weibull PHM. We detail

properties and parameterizations of the model, present prior formulation methods through

elicitation on observables, and provide an example analysis.

2.3.1 Parameterization and Properties of the Weibull PHM

Exponential survival times are, of course, a special case of the Weibull distribution.

General properties of this distribution can be found, for example, in Section 2.2 of [46].
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As we shall see, the choice of parameterization for the Weibull is critical to effective prior

elicitation. Recall from Section 2.1.3 that the survival times corresponding to our Weibull

PHM have density (2.13). In general, the Weibull is a three-parameter distribution includ-

ing a shift parameter, η. The three-parameter Weibull probability density determined by

shift, scale, and shape parameters, η, ξ, and r, respectively, is

f(t | η, ξ, r) = rξ(t− ξ)r−1 exp[−ξ(t− ξ)r], t ≥ ξ. (2.29)

Increasing or decreasing η causes the density curve to shift right or left, respectively. Be-

cause of the shifting effect of η, there is no lifetime t which is smaller than η. For this

reason, η is also called a minimum lifetime [46]. We take the shift parameter, η, to be zero

and denote this distribution, using scale and shape parameters, by t ∼ Weibull(ξ, r). By

taking η = 0, we assume that the survival times begin at zero, instead of later in a time

period.

Expert information can be used in the prior elicitation process to construct a distri-

bution on r as follows. When the shape parameter, r, equals one the Weibull is equivalent

to the exponential distribution. When r < 1 or r > 1, the hazard rate is monotonically de-

creasing or increasing, respectively. The shape parameter is also called the Weibull-slope

because r can be thought of as the slope of the CDF [46]. For example, suppose r = 5.

Then, as time increases by 1 unit, the CDF increases by 5%. In other words, if r = 5, as

time increases by 1 unit, survival decreases by 5%. Thus, supposing that t is in months, we

can ask the expert to provide the expected percent survival decrease after one month.

Increasing and decreasing the scale parameter, ξ, will cause the variation of t to

become larger and smaller, respectively. In our development, we focus on the Weibull

PHM which yields Weibull survival times t with scale ξ, equal to λ exp(βz) and shape

parameter r.
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Figure 2.5: Weibull density with differing values of the shape parameter

2.3.2 Prior Elicitation Through Median Survival Times

Similar to Section 2.2, we use median survival times to inform choices of probability

distributions on parameters of interest. We wish to induce priors on β, r, and λ for the

Weibull PHM in (2.11).

The definitions of the median survival times tm0 and tm1 in (2.16) and (2.15) yield

the following relationships for the Weibull parameters:

r =
log[log(2)/λ]

log(tm0)
(2.30)

and

exp(β) =
log(2)

λtrm1

. (2.31)

The parameter λ acts as a scaling parameter and has no operational interpretation.

However, the choice of λ does have repercussions in the model, especially with respect to

the shape parameter, r. In particular, if λ exp(β) > log(2) and tm0 ≥ 1, then r will be

negative. Indeed, tm0 is typically larger than 1. However, r must be positive, and so must
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the scale, denoted ξ in (2.29), which requires the bounds

0 < λ exp(β) < log(2).

Let d be an unusually large value of the hazard ratio in practical settings. Then, we bound

λ by 1

0 < λ <
log(2)

d
. (2.32)

The choice of d should be determined via a sensitivity analysis. If d is too large, the

posterior density on λwill “pile up” at the upper bound. This occurs when the data suggests

small values of HR. However, a value of d that is too small results in unreasonably precise

priors on β and HR. Other than the required bound, there is no operational interpretation

of λ. We give λ a uniform distribution between 0 and log(2)/d:

λ ∼ U
(

0,
log(2)

d

)
. (2.33)

More generally, a beta distribution on the interval in (2.32) could be selected. To this end,

we use a four-parameter beta distribution. For a random variable x bounded by p and q

with density function

f(x) =
(x− p)a−1(q − x)b−1

B(a, b)(q − p)a+b−1
, (2.34)

we write x ∼ Beta[p,q](a, b). Thus, using the interval in (2.32) as support, we take

λ ∼ Beta[0,log(2)/d](a, b). (2.35)

To illustrate the uniform and more general beta priors, we let d = 3 so that λ is

bounded between 0 and approximately 0.23. We choose values of shape parameters a and

b that concentrate the beta prior on small values of λ. This parameterization yields potential

priors for λ of U(0, log(2)/3) or the beta prior

λ ∼ Beta[0,log(2)/3](1.0, 1.2). (2.36)

1 Note that if the median survival time is less than 1, then λ must be larger than log(2)/ exp(β).
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Figure 2.6 shows both priors for graphical comparison. The beta prior is slightly more

informative than the uniform, giving more probability to smaller values of λ. Increasing b

will increase the peak at the smaller λ values which is of interest if we desire smaller prior

values of λ.

Figure 2.6: Comparison of a uniform versus beta distribution as a potential prior on λ.

Figure 2.7 displays an example of induced priors on the Weibull parameters using the

uniform (2.33) and beta (2.36) priors on λ. Interestingly, the beta prior induces a prior on

r that is slightly more diffuse than that induced by the uniform distribution. The difference

is minimal, and the choice between these priors has little effect on the induced priors on β

and HR. We choose a uniform prior on λ for our example below.

Figure 2.7: Comparison of induced priors using the uniform (subscript "U") versus the beta
(subscript "B") prior on λ.
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As in Section 2.2, through expert elicited modes and upper percentiles, we give tm0

and tm1 gamma priors to represent an expert’s opinion. We use a uniform prior on the

nuisance parameter λ and find induced priors on the Weibull PHM parameters. The median

survival time for the standard group, tm0 , and the parameter λ induce a prior on r through

(2.30). The induced prior on r and the priors on tm1 and λ induce a prior on HR through

(2.31).

For an example, we simulate 50 Weibull survival times, including 8 censored times,

with parameter values r = 0.45, β = −0.13, nuisance parameter λ = 0.08, and HR =

exp(β) = 0.88. The relationships in (2.30) and (2.31) imply that the corresponding true

median survival times are tm0 = 120 and tm1 = 160, in weeks. The simulated data is

plotted in Figure 2.8 along with corresponding theoretical hazard functions for each group.
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Figure 2.8: Simulated survival times and corresponding theoretical hazard functions.

Suppose an expert provides most likely values of tm0 and tm1 of 100 and 125 weeks,

respectively. Also, the expert believes that tm0 and tm1 are no greater than 120 and 165,

respectively. Using the notation from Section 2.2.1, we have t∗m0
= 100 and um0 = 120

for the standard treatment group, and t∗m1
= 125 and um1 = 165 for the experimental group.
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For this example, we take d = 5 to be an usually large value of the hazard ratio, which

yields an upper bound of approximately 0.14 on λ. Using d = 6, which bounds λ below

0.12, would cause the posterior density on λ to “pile up” at the upper bound of 0.12. Using

d = 4, which bounds λ below 0.17, induces in an overly informative prior on β. Thus, we

have the following prior distributions:

tm0 ∼ Gamma(k0 = 14.37, θ0 = 7.47),

tm1 ∼ Gamma(k1 = 8.23, θ1 = 16.59),

(2.37)

and

λ ∼ U
(

0,
log(2)

5

)
.

To view the induced prior structure on the parameters of interest, we simulate 100,000

values of tm0 , tm1 , and λ from their respective prior distributions in R. Using the func-

tional relationships in (2.30) and (2.31) we compute 100,000 values of r, β, and HR. The

resulting induced kernel density estimates are shown in Figure 2.9.

The priors on the median survival times induced fairly informative priors on β, r and

HR. This is expected, but in practice, this might be an important source of feedback for

the expert. If less informative priors are desired, the high values, um0 and um1 , can be set

to a lower percentile. Setting the expert’s most likely value to the median of the gamma

distribution, rather than the mode, results in a less informative prior on β for this example.

At times, the value of d can be increased to inflate the prior on β, as well.

For a posterior analysis, we ran one million iterations in OpenBUGS after a burn-

in of 40,000. There was no evidence of convergence problems. The estimates are shown

in Table 2.2. The means, 2.5th and 97.5th percentiles of the posterior distributions are

shown along with the frequentist estimates. The MLE’s are found numerically in R by

maximizing the Cox partial likelihood. The 95% confidence interval is shown forHR. This

was computed with the R package SurvRegCensCov using the asymptotic normality of

the MLE (for details see Chapter eight of [33]). The package SurvRegCensCov also

computes the standard errors using the delta method (see Chapter twelve of [33]).
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Figure 2.9: Figure: (Top: from left to right) Gamma densities on tm0 and tm1 and Uniform
density on λwith (Bottom: from left to right) induced prior densities on r, β and the hazard
ratio exp(β).

Table 2.2: Posterior results and frequentist estimates for the Weibull PHM parameters.

Truth Posterior Estimates Frequentist Estimates

Mean 2.5% 97.5% MLE SE

λ 0.08 0.059 0.027 0.105 0.040 0.019
r 0.45 0.538 0.417 0.672 0.584 0.076
β −0.13 −0.178 −0.534 0.172 −0.222 0.310
HR 0.88 0.851 0.586 1.187 0.800 C.I. = (0.46, 1.47)

The true values are contained in their respective 95% posterior credible intervals.

Also, the MLE’s all estimate the truth within two standard errors. Given the use of our

informative priors, it is not surprising that the posterior means for β and HR are closer to

the truth than the MLE’s. The posterior densities of the parameters are displayed in Figure

2.10.
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Figure 2.10: Posterior densities on HR, β , λ, and r. Solid dots, “M”’s, and “B”’s indicate
true values, MLE’s and posterior means, respectively.

As we discussed in Section 2.2.1, the PHM parameters are often treated as inde-

pendent. We note those in the literature that do so in Section 2.6. To this end, we can

approximate the induced priors in Figure 2.9 with independent priors on r and β. Here, we

give r and β a shifted exponential and a normal prior, respectively. Specifically, we take

β ∼ N(µβ, σ
2
β), (2.38)

and, for b > 0, we use r − b ∼ Exp(ξ). In effect, we shift the exponential to have support

(b,∞). We denote the shifted exponential by Exp(ξ, b). For our approximations, we use

µβ = −0.1, σβ = 0.23, b = 0.35, and ξ = 4.33. The resulting approximate densities are

shown in Figure 2.11, revealing good fits for all, although the approximate normal on β

truncates the tails of the true induced prior. Other approximating distributions were also

considered. In particular, among the distributions that allow for negative support, the t-

distribution was not sufficiently concentrated, and the skew-normal truncated one of the

tails depending on the direction of skewness.

In our example, the normal approximation on β is more concentrated than the actual

induced density. This is especially of concern because our priors are already highly infor-
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mative. Therefore, appropriate caution should be taken with the induced prior structure.

A prior to posterior sensitivity analysis is recommended. We repeat the example analysis

using the approximate independent priors in (2.38). This results in posterior means of 0.06,

0.54, and –0.15 for λ, r, and β, respectively. The corresponding 95% credible intervals

are: λ ∈ (0.02, 0.11), r ∈ (0.41, 0.68), and β ∈ (−0.51, 0.21). Recall that the results in

Table 2.2 were found by inducing the priors implicitly in OpenBUGS. Our results using the

independent prior structure slightly deviate from those in Table 2.2. The deviation here is

greater than the deviation between the two methods in the exponential PHM case in Section

2.2.
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Figure 2.11: Induced priors on r and β with approximate independent densities (dotted
lines).

2.4 Conditional Means Priors

A natural progression from eliciting prior information on the median survival time is

a conditional means priors development for our proportional hazards model. Conditional

means priors (CMP)rely on expert opinion about observables. It is prefereable to elicit

information on observables which are on the same scale as the data (Tsutakawa and Lin

(1986), [23], [4] ). Given p predictor variables, we condition the mean on p locations in

the predictor space. This yields p conditional means on which we elicit expert information.

For more detail see [4].
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The Weibull and exponential are, of course, skewed distributions. O’Hagan et al.

note in Chapter five of [41] that expert’s may have trouble specifying means, rather than

medians, in skewed distributions. Therefore, caution must be taken when using conditional

means priors in this context. For one, the expert should fully understand the difference

between the mean and median and be comfortable specifying means for skewed data.

As before, suppose we have one binary predictor variable z. Let m0 and m1 be

the conditional mean survival times for the standard treatment group and the experimental

treatment group, respectively. The conditional means are defined as

m0 = E[t | z = 0] (2.39)

and

m1 = E[t | z = 1]. (2.40)

We use probability distributions on m0 and m1 to model information elicited from an ex-

pert. Distributions on m0 and m1 induce priors on parameters of interest from the PHM.

In Section 2.4.1, we illustrate prior construction for the exponential PHM. We present an

example analysis for the Weibull PHM in Section 2.4.2.

2.4.1 CMP for Exponential PHM

As in Section 2.1.2, suppose that we have an exponential PHM:

h(t | z) = γexp(βz). (2.41)

The mean of the exponential distribution is equal to the inverse of its rate. Therefore, the

conditional means are

m0 = E[t | z = 0] = γ−1 (2.42)

and

m1 = E[t | z = 1] = {γ exp(β)}−1 . (2.43)
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We elicit expert information on m0 and m1 in a way similar to that we used with median

survival times. Specifically, we elicit the most likely mean value, m∗i , as well as a high

value, mu
i , i = 0, 1. Given the expert’s most likely values and high values for the means,

we specify gamma distributions as priors for m0 and m1. The gamma distributions induce

priors on γ and β through the relationships

γ = m−1
0

(2.44)

and

β = log

(
1

γm1

)
. (2.45)

To illustrate the prior elicitation, assume an expert believes that the most likely mean

survival times for the standard and experimental treatment groups, respectively, are m∗0 =

67 and m∗1 = 75 weeks. Further, the expert is fairly certain that the the mean survival

times are no greater than mu
0 = 90 and mu

1 = 105 weeks for the standard and experimental

treatment groups, respectively.

Similar to the approach using medians in Sections 2.2 and 2.3.1, we treat the most

likely values and high values as modes and 75th percentiles, respectively, of gamma distri-

butions. The expert opinion is represented by gamma distributions on m0 and m1:

m0 ∼ Gamma(k0 = 9.2, θ0 = 8.1) (2.46)

and

m1 ∼ Gamma(k1 = 7.6, θ1 = 11.4). (2.47)

The priors in (2.46) induce priors on γ and β through (2.44). We find the induced priors

emperically in R. Simulating one million m0 and m1 values from their gamma distributions

and specifying in R the functional relationships in (2.44) gives the kernel density plots in

Figure 2.12. Visualizing the induced priors may be of use during elicitation. Comparison of

priors with resulting posteriors is also a critical aspect of model checking. To this end, we
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can approximate the prior densities in Figure 2.12 with independent distributions, displayed

as dotted lines in Figure 2.12. In this case, the approximate priors are

γ ∼ LN(−4.28, 0.3252);

β ∼ N(−0.127, 0.52).

(2.48)

Figure 2.12: Priors representing expert opinion (top row) and resulting induced priors (bot-

tom row).

To perform a Bayesian analysis via OpenBUGS, we recommend specifying the gamma

priors on m0 and m1 in (2.46) along with their functional relationships to the parameters of

interest in (2.44) in the model statement.

2.4.2 CMP for Weibull PHM

In this section, we apply conditional means priors to the Weibull PHM. As in Section

2.1.3, we have

h(t | z) = λrtr−1exp(βz). (2.49)

Therefore, the conditional mean survival times are defined as

m0 = E[t | z = 0] = λ−1/rΓ (1 + 1/r) (2.50)
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and

m1 = E[t | z = 1] = {λ exp(β)}−1/r Γ (1 + 1/r) . (2.51)

We cannot solve for r explicitly in (2.50). However, we can use the R function rootsolve

to solve for r using the Newton-Raphson method. Given this value, we can use (2.51) to

obtain

β = log

{
1

λ

[
m1

Γ(1 + 1/r)

]−r}
. (2.52)

As in Section 2.3.2, λ is a nuisance parameter and is given a proper uniform prior.

2.4.3 Example Analysis Using CMP Structure in the Weibull PHM

For an example analysis, we simulate 50 Weibull survival times, including 5 censored

times, with parameter values: r = 0.78, β = −0.35, and nuisance parameter λ = 0.08.

Given the relationships in (2.50) and (2.51), the simulated times have theoretical condi-

tional means of m0 = 30 and m1 = 47. To gain information on β and r using the CMP

method, we could attain expert opinion on m0 and m1. Suppose an expert provides the fol-

lowing modes and high values: m∗0 = 35, mU
0 = 50, m∗1 = 53, and mU

1 = 70. Taking d = 3

to be an unusually large value of the hazard ratio, the expert’s information is represented in

the following prior distributions:

m0 ∼ Gamma(k0 = 6.95, θ0 = 5.88),

m1 ∼ Gamma(k1 = 10.13, θ1 = 5.81),

(2.53)

and

λ ∼ U
(

0,
ln(2)

3

)
. (2.54)

To find the induced priors on the Weibull parameters, we simulate 100,000 values of m0,

m1, and λ from their respective prior distributions in (2.53) and (2.54) in R. Specifying the

functional relationships in R yields 100,000 values of r, β, andHR. The priors on the mean

survival times and the resulting induced prior densities are shown in Figure 2.13 below.
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The induced density plot on HR peaks around 0.78, which may be interpreted to

mean that, most likely, the hazard rate of the experimental treatment group is 78% of the

standard group. This implication should be verified with the expert. For the posterior

analysis, we approximate the induced densities in (2.13) with independent priors

r ∼ Exp(3.6, 0.49) (2.55)

and

β ∼ N(−0.22, 0.362). (2.56)

where the prior on r is a shifted exponential as defined in Section 2.3.2.

Figure 2.13 also displays the approximate distributions on the induced priors. While

the approximate distributions fit the densities well, there may be better-fitting approxima-

tions. Note, in particular, that the tails of β’s induced priors are truncated by the approx-

imate normal, which yields less variance. However, the t-distribution was not sufficiently

concentrated for β, and the skew-normal truncated the tails, as well.

Figure 2.13: Priors on conditional means and nuisance parameter (top row) and resulting
induced prior densities on r, β, and HR. Dotted lines represent approximate distributions.
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As we noted above, the approximate independent priors in Figure 2.13 are not a per-

fect fit to the true induced priors. The primary purpose of the approximate independent

priors is to facilitate feedback from an expert and aide prior-to-posterior sensitivity anal-

yses. As we discussed in Sections 2.2 and 2.3.2, we recommend specifying the gamma

priors on tm0 and tm1 and the functional relationships in (2.44) to implicitly induce the

priors in OpenBUGS. This method will automatically capture any dependence, given their

function relationships in (2.24) and (2.25), between the parameters.

The posterior summaries were computed using both the approximate independent

priors and implicitly inducing the priors in OpenBUGS, both using a chain-length of 200,000

with 40,000 burn-in iterations. There were no convergence issues. Results are in Table 2.2

below. The MLE’s were found in R by maximizing the Cox partial likelihood and the stan-

dard errors were computed using the delta method through the package SurvRegCensCov.

In this example, the Bayesian posterior means using both prior structures for β are closer

to the true value than the MLE. This is unsurprising given the use of informative priors.

The MLE for r is identical to the posterior mean on r given the implicitly induced prior

structure. However, in this one-off example, the MLE for λ is closer to the true value than

both posterior means.

Table 2.3: Posterior results and frequentist estimates for Weibull PHM parameters using
CMP prior structure

Truth Implicit Priors Model Independent Priors Model Frequentist Estimates

Mean 2.5% 97.5% Mean 2.5% 97.5% MLE SE

λ 0.08 0.073 0.034 0.132 0.100 0.044 0.182 0.082 0.032
r 0.78 0.729 0.572 0.899 0.680 0.536 0.845 0.729 0.086
β −0.35 −0.527 −1.027 −0.027 −0.442 −0.895 0.006 −0.583 0.300

Figure 2.14 displays the prior and posterior densities on the Weibull parameters.

Solid dots indicate the MLE’s.
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Figure 2.14: Prior and posterior densities on Weibull parameters resulting from the condi-
tional means priors with solid dots at MLE’s.

2.5 Models with Multiple Categorical Variables

In this section, we extend our methods to include multiple categorical variables with

more than two levels. Consider a categorical covariate, x, with ` ≥ 2 levels. We can code

x as ` − 1 dichotomous variates, z1, . . . , z`−1. (See, for example, Chapter eight of [33]).

To be precise, suppose we have h multi-level covariates, x1, . . . , xh, where xi has `i levels.

We convert xi into `i − 1 binary variates, zi1 , . . . , zi`i−1
. We gather these h sets of binary

variates into a p× 1 vector, z, where p =
h∑
i=1

`i − h. The PHM is then

h(t | z) = h0(t) exp(β1z1 + · · ·+ βpzp). (2.57)

Specifying an exponential baseline hazard rate yields the exponential PHM given a vector

of binary covariates

h(t | z) = γ exp(β1z1 + · · ·+ βpzp). (2.58)

Similarly, we can specify a Weibull baseline hazard results in the Weibulll PHM given

multiple binary covariates:

h(t | z) = λrtr−1 exp(β1z1 + · · ·+ βpzp). (2.59)

Our methodology can be readily extended to the PHM in (2.57) with multiple bi-

nary predictors (resulting from multiple categorical predictors). We outline the general

algorithm for elicitation below.
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Recall that we wish to induce a prior structure on the PHM parameters from expert

information on median or mean survival times. To obtain information on the median/mean

survival times, we construct p + 1 variable configurations as shown in Table 2.4. The

first configuration is a vector of 0’s giving all covariates a zero value. From there, for

k = 1, . . . p, the (k + 1)th configuration vector gives all covariates a zero value except for

zk which equals 1. Note that the configurations are hypothetical, for use only in the expert

elicitation.

Table 2.4: Data partition with corresponding probabilities.

Configuration z1 z2 z3 z4 zp

1 0 0 0 0 ... 0
2 1 0 0 0 ... 0
3 0 1 0 0 ... 0
4 0 0 1 0 ... 0
...

...
...

...
...

...
p+ 1 0 0 0 0 ... 1

Then, we have p + 1 median survival times, denoted tm0 , . . . , tmp , or mean survival

times, m0, . . . ,mp, corresponding the the p + 1 configurations. These are shown in Table

2.5.

Table 2.5: Data partition with corresponding probabilities for the exponential (Exp) and
Weibull PHM’s.

Configuration: 1 k + 1

Exp
Median tm0 = log(2)/γ tmk

= log(2)/[γ exp(βk)]

Mean m0 = γ−1 mk = [γ exp(βk)]
−1

Weibull
Median tm0 = [log(2)/λ]1/r tmk

= {log(2)/[λ exp(βk)]}1/r

Mean m0 = λ−1/rΓ (1 + 1/r) mk = [λ exp(βk)]
−1/rΓ (1 + 1/r)
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The median and mean times in Table 2.5 were found via

S(tmk
| Configuration = k + 1) = 0.5, k = 0, . . . , p; (2.60)

and

E(t | Configuration = k + 1) = mk, k = 0, . . . , p (2.61)

where S(t) and E(t) are the survival function and the expected value, respectively, found

for the appropriate distribution.

We induce priors on the PHM parameters in the following way. As before, we elicit

a mode and upper percentile for each tmk
(or mk) for k = 0, . . . , p. Gamma priors are

constructed on the median (or mean) survival times representing this expert information.

For the exponential PHM, a prior on γ is induced through Configuration 1 (see Table

2.4) either through the median or mean survival time. Then, for k = 1, . . . , p, via Configu-

ration k + 1, priors are induced on βk through the induced prior on γ and the prior on tmk

(or mk).

For the Weibull PHM, we construct a uniform prior for λ by choosing d to be an

unusually large value of HR following Section 2.3.2. However, here, there are multiple

HR’s to consider. Therefore, special care must be taken. If the data suggests that one or

more of the true HR’s is small, then the posterior density on λ will pile up at the upper

bound. In this case, d should be decreased. Once a prior is given to λ, Configuration 1

induces a prior on r through expert information on tm0 (or m0). For k = 1, . . . , p, via

Configuration k + 1, a prior is induced on each βk through the induced prior on r and the

prior on tmk
(or mk).

2.5.1 Exponential PHM with Multiple Categorical Variables

Consider an exponential PHM to model survival times t of patients with a progressive

disease. Let x be a dichotomous variable denoting gender and z be a three-level categorical
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variable denoting three stages of the disease.

h(t | x, z1, z2) = γexp (β1x+ β2z2 + β3z3) (2.62)

where z2 is 1 if the patient is in stage 2 of the disease and 0 otherwise; and z3 is 1 if the

patient is in stage 3 of the disease and 0 otherwise.

Because we have four parameters to model, we will have four median survival times

about which to consult an expert. To obtain information on the median survival times,

we construct four variable configurations. In particular, we have median survival times,

denoted tm0 , . . . , tm3 , shown in Table 2.6.

Table 2.6: Design configurations corresponding to particular scenarios for elicitation.

Configuration x z2 z3 Scenario Median

1 0 0 0 Female, Stage 1 tm0 = log(2)/γ
2 1 0 0 Male, Stage 1 tm1 = log(2)/[γ exp(β1)]
3 0 1 0 Female, Stage 2 tm2 = log(2)/[γ exp(β2)]
4 0 0 1 Female, Stage 3 tm3 = log(2)/[γ exp(β3)]

We induce priors on the parameters in the following way. As before, we elicit a mode

and upper percentile for each median survival time. Gamma priors are constructed on the

median survival times representing this expert information. A prior on γ is induced through

Configuration 1. Priors are induced on βk through the induced prior on γ and the prior on

tmk
via Configurations k + 1, k = 1, . . . , 3.

To this end, suppose an expert gives most likely values and high values shown in

Table 2.7. As before, we treat the most likely values and high values as modes and 75th

percentiles, respectively, of gamma distributions. The resulting gamma priors are shown in

Table 2.7.
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Table 2.7: Elicitation configurations corresponding to hypothetical scenarios with resulting
priors on median times.

Configuration Scenario Mode High Value Prior

1 Female, Stage 1 65 92 tm0 ∼ Gamma(7.23, 10.43)
2 Male, Stage 1 60 87 tm1 ∼ Gamma(6.55, 10.80)
3 Female, Stage 2 45 75 tm2 ∼ Gamma(4.22, 13.97)
4 Female, Stage 3 40 70 tm3 ∼ Gamma(3.75, 14.52)

To examine the induced priors, we sample 100,000 values from the gamma priors on

the median survival time. We specify in R the functional relationships between the median

times and the PHM parameters, as in equations (2.24) and (2.25). This results in 100,000

values sampled from the induced priors on the PHM parameters. The priors are shown in

Figure 2.15.

For an example analysis, we simulate 75 survival times, including 5 censored times,

from the exponential PHM in (2.62). The x values are generated from a binomial distribu-

tion with rate 0.5, and z is constructed so that a third of the patients are in each of the three

stages. The simulated data has the following true median times: tm0 = 75, tm1 = 71, tm2 =

53, and tm3 = 50. This yields the true PHM parameters: γ = 0.009, β1 = 0.06, β2 = 0.35,

and β3 = 0.41.

For analysis in OpenBUGS, we specify the gamma priors on the median survival

times in the OpenBUGS model along with their functional relationships to the parameters

of interest. This induces priors on γ and β and accounts for the dependence between them.

We use a chain length of 500,000 after a burn-in of 100,000 iterations. There were no

convergence issues. The posterior mean, 2.5th, and 97.5th posterior percentiles are shown

in Table 2.8. Also, the frequentist estimates are shown, including the MLE, found in R by

maximizing the Cox partial likelihood, and the standard error (S.E.) approximated by the

Delta Method. The true values are within their respective 95% credible intervals and within

one standard error of their MLE’s. For all but one parameter, the posterior means are closer

to the true values than the MLE’s. We expect this because of the addition of the expert’s
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opinion in the Bayesian model. The posteriors with their corresponding priors are shown

in Figure 2.16.

Figure 2.15: Priors on median survival times (top) and induced priors on PHM parameters
(bottom). Dotted lines represent approximate independent densities.

Figure 2.16: Prior to posterior plots for the exponential PHM with multiple covariates.
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Alternatively, we can approximate independent prior distributions for the PHM pa-

rameters. To illustrate, we fit the induced priors with normal distributions, shown as dotted

lines in Figure 2.15. The approximate normal priors are appear to be good fits. The inde-

pendent priors on the parameters are

γ ∼LN(−4.66, 0.372),

β1 ∼N(0.07, 0.562),

β2 ∼N(0.29, 0.642),

(2.63)

and

β3 ∼ N(0.39, 0.672).

Specifying these independent priors for the analysis results in posterior summaries

shown in Table 2.8 along with the posterior summaries resulting from use of the implicitly

induced priors.

Table 2.8: Posterior results and frequentist estimates for exponential PHM parameters with
multiple covariates.

Truth Implicit Priors Model Independent Priors Model Frequentist Estimates

Mean 2.5% 97.5% Mean 2.5% 97.5% MLE SE

γ 0.009 0.009 0.006 0.013 0.01 0.007 0.014 0.0096 0.002
β1 0.06 0.279 −0.148 0.705 0.26 −0.172 0.694 0.294 0.244
β2 0.35 0.503 −0.021 1.102 0.47 0.046 0.972 0.506 0.302
β3 0.41 0.437 −0.068 0.935 0.40 −0.104 0.230 0.411 0.295

2.6 Discussion

In this chapter, we have presented a prior elicitation method for use in parametric

proportional hazards models. We focused on the exponential and the Weibull PHM’s and

elicited expert opinion on median and mean survival times. Such elicitation is desirable

because experts are often more familiar and comfortable with observables such as the sur-

vival time summaries. We also discussed the Weibull PHM parameterization which gave

several additional ways of gathering expert information on observables.
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In our examples, we assumed the experts gave accurate information. The prior for-

mulation on the medians and means induce priors that are consistent with the truth on the

parameters of interest, and our model does a good job of estimating the true parameters

a posteriori. Also in some data sets, our model better estimates the true parameters than

the frequentist MLE’s reflecting our use of informative priors. Indeed, the induced priors

are typically informative and have a relatively substantial affect on the posterior inferences.

Therefore, necessary caution should be taken when applying the priors, such as prior-to-

posterior analyses and checking prior implications with the expert.

In the first sections, we focused on eliciting opinion on median survival times. We

then presented methodology for the means, known as conditional means priors. Both tech-

niques produced posterior results close to the true values. We note that in the data simu-

lation, median and means often differed because of the skewness of the distribution. Also,

medians typically characterized the data better than the means, which is expected due to the

skewed nature of the Weibull and exponential distributions. For this reason, it is important

for the expert to have a good understanding of the inherent difference between medians and

means.

It is common in the literature to give the parameters independent priors although

there is a functional relationship between them. Ibraham and Chen [26] and Christensen

et al. [10] assume the same a priori independence in the parameters. Others that treat

Weibull PHM parameters as independent include: Albert [3], the WinBUGS help manual

[50], Hamanda et al. [25], and Canavos and Tsokos [5]. Papers treating these priors as

dependent include Soland [48], Erto [22], and Rinne [46].

The priors can be induced in OpenBUGS implicitly by specifying the relationships

between the parameters and median survival times. This automatically accounts for the

dependence between the parameters. So far, we have seen that the resulting posteriors

differ slightly from the posteriors given independent approximate priors in the Weibull

PHM.
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CHAPTER THREE

Operational Assessments for Determining a Power Prior

Often in planning experiments, historical data is available from previous studies that

assess the same quantity of interest. Such data can be used in the construction of prior dis-

tributions but care must be taken to gauge similarity to “current” data and avoid dominance

of the “new” likelihood. Power priors are one way to incorporate previous research into

current trials with these goals in mind. The power prior concept was introduced by Chen et

al. [9]. The review paper by Chen and Ibrahim [26] details the background of power priors.

See also Chen and Ibrahim [8].

In Section 3.1, we present the general form of the power prior. In Section 3.2, we

discuss operational assessment of power priors using prior effective sample size (ESS).

In Section 3.3, motivated by FDA guidelines, we suggest another way of selecting power

priors. Corresponding examples are presented in subsequent subsections. We consider the

use of multiple studies in Section 3.4. We briefly consider power prior specification with

multiple experts in Section 3.5. The chapter concludes with a discussion in Section 3.6.

3.1 General Form of the Power Prior

Suppose we have data from a current experiment that we would like to analyze using

a Bayesian model. Further assume that we have historical data from a previous, similar

experiment that we would like to incorporate into our current analysis. The idea behind

power priors is to form a posterior from the historical likelihood and a vague prior, and

to use this posterior as the prior for the current study. Doing so without attenuating the

variance of the historical data can potentially overwhelm the current data. Therefore, the
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power prior formulation raises the historical likelihood to a weighting exponent called the

power parameter.

Formally, suppose there is a historical study with sample size n0, data vector y0,

covariate matrix X0, and likelihood `(θ|D0), whereD0 = (n0,y0,X0). Let π0 be a prior on

θ which is independent of D0 and D. This is called the initial prior for θ. The conditional

power prior distribution for θ is defined as

π(θ|D0, a0) =
[`(θ|D0)]a0π0(θ)∫

Θ
`(θ|D0)a0π0(θ)dθ

≡ C(a0)[`(θ|D0)]a0π0(θ) (3.1)

where we have written the normalizing constant as

C(a0) =

∫
Θ

`(θ | D0)a0π0(θ)dθ

−1

. (3.2)

The power prior will be proper so long as the integral in the normalizing constant is finite

[39]. The power prior is typically written as

π(θ|D0, a0) ∝ [`(θ | D0)]a0 π0(θ). (3.3)

We refer to a0 ∈ [0, 1] as the power parameter.

There are two alternative forms of the power prior, the joint and the modified power

priors. Chen and Ibrahim [26], [8], define the joint power prior for θ and a0 as

π(θ, a0 | D0) =
[`(θ | D0)]a0π0(θ)π(a0)

1∫
0

∫
Θ

[`(θ | D0)]a0π0(θ)π(a0)dθda0

∝ [`(θ | D0)]a0π0(θ)π(a0).

(3.4)

Problems with the form in (3.4) have been noted in several papers, starting with Duan and

Smith in 2006 [20], [19], [40], [39]. Nueuschwander et al. [40] present the modified power

prior to remedy the noted problems with the joint power prior. The modified power prior is

π(θ, a0 | D0) = C(a0)[`(θ | D0)]a0π0(θ)π(a0) (3.5)
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where C(a0) is the normalizing constant in (3.2). Both the joint and modified power priors

treat a0 as random which we do not recommend for reasons we note below.

The power parameter a0 controls the effect of the historical data in the current model.

When a0 = 0, no historical data is used in the current model. If we take a0 = 1 then (3.1)

reduces to Bayes’ theorem, and the resulting posterior becomes the prior for the current

study analysis. The power parameter controls the heaviness of the tails of the prior for θ,

with smaller values yielding heavier tails. Essentially, the power parameter is a weight for

the historical data relative to the likelihood. More discounting of the historical model is

necessary as the current and historical studies become less commensurable.

As we will see, specification of the power parameter is critical to the model and has

substantial implications. However, the literature on the topic is rather limited. Ibrahim &

Chen (2000) [26] use random a0 in models including the proportional hazards model, the

generalized linear model and the cure rate model. Duan et al. (2008) [21] use a compat-

ibility statistic to quantify a0’s effect. Reitbergen et al. (2011) [45] present a sensitivity

analysis for a0 and elicit ranks from an expert to select a fixed a0.

While some specify a prior for a0, doing so can be problematic. The hope is that

the data will update the power parameter’s prior with information on the heterogeneity

between the current and historical trial, but this typically does not occur. Results found

by Nuenschwander et al. [40] imply that the heterogeneity of the data cannot be assed

precisely, especially for small sample sizes. With this in mind, we focus our methods on

selection of a fixed a0.

3.1.1 Example

To illustrate the general construction of the power prior, we generate n0 exponential

survival times t0 = (t01, . . . , t0n0) from an exponential proportional hazards model depen-

dent on a binary covariate z0. That is, let z0i ∈ {0, 1} indicate whether (1) or not (0) the ith

patient is in the experimental treatment group. This will serve as the historical data for our
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example. Thus, for i = 1, . . . , n0,

t0i ∼ exponential (γ exp(βz0i)) .

where γ and β are unknown (see Section 2.1.2). Then, the likelihood for β and γ is

`(β, γ | t0, z0, δ0) =

n0∏
i=1

{γexp(βz0i)exp [−t0iγexp(βz0i)]}δ0i

× {exp [−t0iγexp(βz0i)]}1−δ0i

(3.6)

where δ is an n0 × 1 vector of censoring indicators, with δ0i = 1 if the ith historical death

time is observed and zero otherwise.

We use independent non-informative initial prior densities on β and γ. These are

diffuse normal and exponential initial priors densitites, denoted by φ0(µ, σ2) and ψ0(ν),

respectively, on β and γ. Let the historical data be D0 ≡ (t0, z0, δ0). Then the power prior

is

π(β, γ | D0, a0) =

n0∏
i=1

{γexp(βz0i)exp [−t0iγexp(βz0i)]}a0δ0i

× {exp [−t0iγexp(βz0i)]}a0(1−δ0i) φ0(µ, σ2)ψ0(ν).

(3.7)

The density of the power prior is found by sampling from the posterior in (3.7) using

OpenBUGS. Power priors on β and γ are shown in Figure 3.1. To illustrate the effect of

the power parameter, the graphs show the increase in variance from a0 = 1 to a0 = 0.2.

Clearly, the choice of a0 is critical. We now turn to methods for its selection.

Figure 3.1: Power priors for β and γ with decreasing power parameters.
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3.2 Using Equivalent Sample Size to Determine Power Parameters

Selection of a fixed value of the power parameter, a0, requires an operational assess-

ment of the implications of that choice. In this section we suggest criteria for assessing the

posterior impact of a value of a0 based on prior equivalent sample size (ESS), using the

methods of Morita et al. (2008) [36]. We present three examples using logistic regression

models. In Section 3.2.2 we consider a0 specification in power priors on logistic regression

coefficients. We extend this example in Section 3.2.3 to the logistic regression probabili-

ties. Lastly, in Section 3.2.4 we use a logistic regression model with multiple categorical

variables to illustrate the use of the prior ESS in a0 selection.

The prior effective sample size is a useful tool for determining the effect of the prior

relative to the likelihood. The ESS reflects the amount of information contained in the prior.

It is easily understood by non-statisticians. In effect, the ESS is that number of observations

that would need to be added to the likelihood in order to yield a comparable analysis using

a relatively non-informative prior.

Morita et al. [36] discuss several points of application for the prior ESS. First, values

of the ESS can be used as feedback when eliciting expert information. The expert can verify

or change her opinion based on the resulting prior ESS. Alternatively, a small ESS can be

used to justify a choice of a relatively non-informative prior. More details and motivation

can be found in Section 4 of [36]. If the prior ESS is larger than the sample size of our

current study, the information in the prior could overwhelm the current study information.

We propose selecting a0 so as to avoid this. As Morita et al. (2008) [36] note,

For example, when fitting a Bayesian model to a data set of 10 observations, an
a priori ESS of 1 is reasonable, whereas a prior ESS of 20 implies that the prior,
rather than the data, dominates posterior inferences. If the prior is elicited from
a domain expert, then an informative prior is desirable ... In contrast, if the prior
is only a technically convenient ad hoc choice, as is often the case in practice,
then understanding the ESS may prompt the investigator to reconsider the prior
choice.
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Morita el al. [36] explain the intuition behind the prior ESS using a Beta(a, b) prior. Note

that a Beta(a, b) prior together with a binomial random variable y from a sample of size n

forms a Beta(a − y, b + n − y) posterior. So, the prior has been updated with n Bernoulli

observations. Thus, any Beta(a, b) prior can be identified with a Beta(c + y, d + m − y)

posterior resulting from a diffuse Beta(c, d) prior and m Bernoulli observations. Setting

c + d = ε, for small ε will form a diffuse Beta(c, d) prior, and letting c + d + m = a + b

gives m = a+ b− ε.

Morita el al. [36] describe the prior ESS as follows. Suppose that we have a prior,

π(θ), for a parameter θ ∈ Rp, for which we wish to determine the ESS. To do so, we

construct a vague, “ε-informative” prior π0(θ) and, using some vector of observations, y,

of length m, we find the posterior πm(θ | y). Note that this vector, y, is not used for

posterior inferences but is hypothetical for use in determining m. Morita et al. [36] provide

suggestions for π0(θ). The prior ESS is the value ofm that minimizes the distance between

πm(θ | y) and π(θ). This distance is defined as the difference between the trace of the

Fisher information matrix of π(θ | θ̃) and the expected information matrix of πm(θ | θ̃0, y),

where θ̃ and θ̃0 are vectors of hyperparameters. In the latter, the expectation is taken with

respect to the marginal distribution of the data

The definition of the prior ESS allows for calculation of ESS’s for sub-vectors of θ.

For example, consider θ = (θ0, θ1). As we shall see, we not only find a prior ESS for

θ, but also individually for θ0, and for θ1. The latter are computed through use of their

marginal prior distributions. However, Morita et al. [37] note that ESS(θ0) + ESS(θ1)

usually does not equal the ESS(θ0, θ1). This is because θi typically has a different meaning

in its marginal distribution than in its joint distribution.

3.2.1 Method for Assessing Power Parameter Choices using the Prior ESS

In this section, we narrow choices for a0 by eliminating those that yield prior ESS’s

in excess of the proposed sample size for the current study. Such power parameters will
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likely yield power priors that overwhelm information in the likelihood thereby dominating

posterior inference. We present prior ESS’s for the full power prior and for parameter sub-

vectors, e.g. for θ and for the component θi’s. Note that, while a large prior ESS on, say,

θ0, suggests that the power prior contains a large amount of information on θ0, it does not

automatically rule out that power prior. However, the ESS’s on parameter sub-vectors are

still useful in our problem. If the scientist specifically desires little information on θ0 in

the prior, then the power parameter should be chosen so that the prior ESS on θ0 relatively

small. For example, in a regression setting with two coefficients, there may be no prior

knowledge of the intercept but much information on the slope. Thus, the intercept would

be given a diffuse prior with little information so that the ESS is relatively small, but the

slope may have a fairly large prior ESS. We recommend a prior-to-posterior sensitivity

analysis for large marginal ESS’s. See Morita et al. [36] and [37] for more details on

interpretation of prior ESS’s on parameter sub-vectors.

To illustrate our proposed method for eliminating a0 values based on prior ESS,

we present a simple non-regression example using a power prior for binomial sampling.

Consider historical data, D0, consisting of binomial responses:

y0i ∼ Bin(n0, θ), i = 1, . . . , N0.

We use the initial prior θ ∼ U(0, 1). Then the power prior is, for some power parameter

a0 ∈ [0, 1],

π(θ) ∝
(
θ
∑
y0i(1− θ)

∑
(n0−y0i)

)a0
I(0,1)(θ). (3.8)

The right hand side of (3.8) is proportional to a beta distribution with shape parameters

αp ≡ a0

∑
y0i + 1 and βp ≡ a0

∑
(n0 − y0i) + 1. Essentially, the power prior represents

the information in αp + βp Bernoulli trials yielding αp successes. Thus, the power prior in

(3.8) has a prior ESS, m, of

m = a0

∑
y0i + 1 + a0

∑
(n0 − y0i) + 1

= a0(N0n0) + 2.

(3.9)
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Since m is a linear function of a0 the latter is easily evaluated. To this end, the prior ESS

should be compared to the sample size of the current data model. For example, if the

historical data consisted of N0 = 25 observations of binomial random variables based on

n0 = 10 Bernoulli trials, the prior ESS is

m(a0) = 250a0 + 2.

If the current data set consists of 100 Bernoulli observations, then we find the maximum

plausible a0 by setting m(a0) = 100:

100 = 250(a0) + 2

⇔ a0 = 0.392

(3.10)

The remaining choices for a0 could be discussed with subject-matter experts.

Finally, the subject-matter expert can provide an assessment of the historical data by

specifying an equivalent sample size. This can then be used to determine a0. Clearly this

approach can be problematic. We do not recommend this approach because of the obvious

potential bias. It might be more reasonable for the expert to provide an upper bound on

the ESS, perhaps as a fraction of the planned sample size. We consider this idea further in

Section 3.2.3.

3.2.2 Power Prior on Regression Coefficients

We now consider a logistic regression with one dichotomous covariate and use the

prior ESS to evaluate fixed power parameter choices. Here, the power prior is given to the

vector of logistic regression coefficients. We use an R program to calculate the prior ESS.

Consider a historical logisitic regression model with one binary covariate, so that

y0i ∼ Bernoulli(pi) (3.11)

and

pi = {1 + exp (−β0 − β1x0i)}−1 .
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The likehood function for β = (β0, β1) given the historical data, D0, is

`(β | D0) =

n0∏
i=1

(
1

1 + exp(−β0 − β1x0i)

)y0i (
1− 1

1 + exp(−β0 − β1x0i)

)(1−y0i)

=

(
1

1 + exp(−β0 − β1x0i)

)a0 n0∑
i=1

y0i (
1− 1

1 + exp(−β0 − β1x0i)

)a0 n0∑
i=1

(1−y0i)

.

(3.12)

Following the development in Neelon & O’Malley [39], we use independent and

identical diffuse normal initial prior densities, denoted by φ0(µ, σ2), on β0 and β1. Then

the power prior is 1

π(β | D0, a0) ∝
n0∏
i=1

(
1

1 + exp(−β0 − β1x0i)

)a0y0i
×
(

1− 1

1 + exp(−β0 − β1x0i)

)a0(1−y0i)

φ0(µ, σ2)φ0(µ, σ2)

=

(
1

1 + exp(−β0 − β1x0i)

)a0 n0∑
i=1

y0i

×
(

1− 1

1 + exp(−β0 − β1x0i)

)a0 n0∑
i=1

(1−y0i)

φ0(µ, σ2)φ0(µ, σ2).

For this example we take µ ∼ N(0, 1000) and σ ∼ Half-N(0, 1), which is the positive

half of a N(0, 1) distribution. We find the power prior in (3.13) using Markov chain Monte

Carlo (MCMC) methods in OpenBUGS. Prior ESS is used to judge the affect of a0 on

the power prior. To this end, we find the prior ESS for the vector β as well as β0 and β1

individually, using the R program ESS_RegressionCalculator. 2

To illustrate, consider simulated logistic regression data with β0 = −1 and β1 = 0.16

and n0 = 1000. The design is balanced, with 500 responses for x0 = 0 and 500 for x0 = 1.
1 Note that here, and in regression models throughout the chapter, we assume that the historical and

current model share identical covariates. Neelon & O’Malley [39] discuss relaxing this assumption. They
instead assume exchangeable covariates, giving them different parameters but the same prior distribution.

2 Created to correspond with Morita et al. (2008) [36], this program can be downloaded from the
M.D. Anderson website at https://biostatistics.mdanderson.org/SoftwareDownload/SiteAux/Tags.html.
(See ESS_Regression under the Bayesian program section heading.
ESS_RegressionCalculator.R requires that the prior distributions on the parameters of inter-
est be mutually independent and either normal or gamma distributions.
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We use a0 = 0.85. The resulting power priors, along with their normal approximations, are

shown in Figure 3.2. The normal approximations are N(−0.95, 0.112) and N(0.14, 0.152),

respectively. Specifying these distributions in ESS_RegressionCalculator yields

prior ESS’s of 443, 688, and 442 for β0, β1, and β, respectively.

Figure 3.2: Power priors and their normal approximations on β0 and β1.

To assess power parameter choices, we repeat the computation above for varying

values of a0. Morita et al. [36] note the importance of specifying a prior ESS for the

parameter vector as well as its components. Figure 3.3 shows the prior ESS’s for β0, β1,

and the vector β as a function of a0.

Now, suppose we are planning a study with 300 data points, and we want to use the

historical data set described above, which has a sample size of n0 = 1000. The implications

of selecting a0 can now be seen in terms of prior ESS. For example, selecting a0 = 0.6

yields a prior ESS of approximately 292, 485, and 311 for estimation of β0, β1, and β,

respectively.

In the drug-development context, choosing between the remaining a0 values could

be narrowed further by eliminating values of a0 which are counter to FDA guidelines; see

Section 3.3 for more on this issue.
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Figure 3.3: Prior ESS for regression coefficients given values of a0.

Alternatively, Figure 3.3 can be used in conjunction with an expert-elicited upper

bound on the ESS value, although this invites potential bias. To illustrate, suppose an

expert gives information based on experience with similar models containing both β0 and

β1. Then interest is in the prior ESS on the vector (β0, β1). (See Morital et al. [37] and

Example 7 in [36] for more details.) Say that, based on the commensurability between the

historical and current studies, the expert recommends an upper bound on the prior ESS of

200. Then, power parameter between 0.4 and 0.45 would be appropriate. The potential

for bias is obvious here. Consequent posterior quantities, such as the probability of study

success in drug development, should be carefully considered.

3.2.3 Power Prior on Regression Probabilities

In Section 3.2.2 above, we analyzed the choice of the fixed power parameter, a0,

based on methodology beginning with the power prior on the regression coefficients. Here,

we present another approach which begins with the power prior on the regression probabil-

ities, pi in (3.11). In this approach, the prior ESS is determined analytically without a need

for the empirical computations. Also, experts may be more familiar with the regression

probabilites.
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Assume the same model (3.11) above, and consider the success probabilities. Since

our model contains only one binary covariate x0, we have pi = p0 or pi = p1 given x0 = 0

and x0 = 1, respectively. We use superscripts here to avoid confusion with the observation

indices, e.g. the first observation has success probability p1 which could equal p0. Formally,

the probabilities are defined as

p0 =
1

1 + exp(−β0)
(3.13)

and

p1 =
1

1 + exp(−β0 − β1)
. (3.14)

Let n0
0 and n1

0 be the number of observations such that x0 = 0 and x0 = 1, respectively.

Then n0 = n0
0 + n1

0. We partition the data into n0
0 observations, y0

0, given x0 = 0 and n1
0

observations, y1
0, given x0 = 1. Then, the likelihood of p ≡ (p0, p1), given the historical

data, D0 ≡ (y0
0, y1

0) is

` (p | D0) =

n0
0∏

i=1

(
p0
)y00i (1− p0

)(1−y00i)
n1
0∏

i=1

(
p1
)y10i (1− p1

)(1−y10i) . (3.15)

This likelihood is the product of independent Beta(
∑
y0

0i + 1,
∑

(1− y0
0i) + 1) and

Beta(
∑
y1

0i + 1,
∑

(1− y1
0i) + 1) densities. 3 Consider the power prior with initial priors

π0(pj) for j = 0, 1 taken to be U(0, 1), and with the likelihood in (3.15). Then the power

prior on p is

π (p | D0, a0) ∝


n0
0∏

i=1

(
p0
)y00i (1− p0

)(1−y00i)
n1
0∏

i=1

(
p1
)y10i (1− p1

)(1−y10i)


a0

2∏
j=1

I[0,1](p
j)

=
(
p0
)a0 n0

0∑
i=1

y00i (
1− p0

)a0 n0
0∑

i=1
(1−y00i) I[0,1](p

0)

×
(
p1
)a0 n1

0∑
i=1

y10i (
1− p1

)a0 n1
0∑

i=1
(1−y10i) I[0,1](p

1).

(3.16)
3 This is a bivariate beta distribution if n00 = n10. Specifically, let n00 = n10 = n∗, then (3.15) is

a bivariate beta distribution with PDF f(p0, p1) ∝
(
p0
)a−1 (

p1
)b−1 (

1− p0
)b+c−1 (

1− p1
)a+c−1

where
a =

∑
y00i + 1, b =

∑
y10i + 1 and c = n∗ −

∑
y00i −

∑
y10i. See [42].
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Morita et al. [36] give a general form for calculating the prior ESS of a power prior

for a beta/binomial model, as we have here. Consider the power power π (p | D0, a0) on

the vector of probabilities p. The authors give the prior ESS for π (p | D0, a0) as

mp = a0 × ESS {` (p | D0)}+ ESS {π0(p)} . (3.17)

That is, the ESS of the power prior is a0 times the ESS of the historical likelihood plus the

ESS of the inital prior.4 We will see that our marginal priors on sub-vectors of p do, in

fact, have ESS’s of this form.

The power prior (3.16) implies that we have independent beta priors on p0 and p1:

p0 | y0
0, a0 ∼ Beta

(
a0

∑
y0

0i + 1, a0

∑
(1− y0

0i) + 1
)

(3.18)

and

p1 | y1
0, a0 ∼ Beta

(
a0

∑
y1

0i + 1, a0

∑
(1− y1

0i) + 1
)
. (3.19)

The beta distributions above allow for a straight forward interpretation of the effect of

a0 through the use of prior ESS. The prior ESS for a Beta(a, b) prior distribution with a

binomial likelihood is m = a+ b. Therefore, the prior ESS for p0 and p1 is, respectively,

m0 = a0

∑
y0

0i + 1 + a0

∑
(1− y0

0i) + 1

= a0n
0
0 + 2

(3.20)

and
m1 = a0

∑
y1

0i + 1 + a0

∑
(1− y1

0i) + 1

= a0n
1
0 + 2.

(3.21)

4 There is an apparent error in Morita et al. They refer to a power prior p(θ) ∝
[
θ3(1− θ)7

]a0
θ(1−θ)

arising from a binomial likelihood and a Beta(1,1) initial prior. First, with a Beta(1,1) initial prior, the power
prior should be p(θ) ∝

[
θ3(1− θ)7

]a0 . The likelihood is Beta(4,8), so it has an ESS of 12. However, they
refer to the historical likelihood having an ESS of 10, so that the full prior ESS is 10a0 + 2 where the +2
comes from the ESS of the Beta(1,1) initial prior. The ESS of 10a0+2 is correct, but it’s not a0 times the ESS
of the historical likelihood as a function of θ plus the ESS of the initial prior. For the beta/binomial case, the
correction could read “a0 times (the ESS of the historical likelihood as a function of θ minus 2) plus the ESS
of the initial prior” (or simply subtract 2a0 from their definition), which is what we will use in this section.
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Recall Morita et al.’s prior ESS for p in (3.17). We deduce from (3.15) that the

marginal likelihoods for p0 and p1 are beta distributions with shape parmeters that sum to

n0
0 + 2 and n1

0 + 2, respectively. Also, note the standard uniform initial prior, U(0, 1), is

proportional to Beta(1,1) and has an ESS of 2. Therefore, our ESS equations in (3.20) and

(3.21) have the same form as the definition given by Morita et al. in (3.17) (see footnote

above).

Figure 3.4 shows power priors on p0 and p1 using the data from Section 3.2.2, which

we used to find power priors and ESS’s for β0 and β1. The power priors on p0 and p1 can

be closely approximated by Beta(124, 319) and Beta(132, 295) distributions, respectively

(see Figure 3.4). These approximate beta priors both yield a prior ESS of 427. Recall that

n0
0 = n1

0 = 50 and a0 = 0.85. Then, the equations in (3.20) and (3.21) also yield ESS’s of

427 analytically.

It is of interest to compare the ESS values deduced from probabilities and regression

coefficients. Recall that the ESS’s for β0 and β1 were 442 and 688, respectively. We expect

the prior to contain the same amount of information for β0 and p0, so these values should

be close, as indeed they are. When comparing ESS’s for β1 and p1, note p1’s dependence

on both β0 and β1 in (3.11). Therefore, we don’t expect the ESS for p1 to match either

β0 or β1. In all of our simulations, we have found that the ESS’s of the logistic regression

probabilities are smaller than those of the coefficients.

It is intuitively appealing that the prior ESS’s on the probabilities are directly related

to their respective sample sizes. In the power prior formulation, we are given no initial

expert opinion to form the priors. We use only the historical data (unless we are given an

informative initial prior). So, it makes sense that only the historical data should affect the

amount of information in the power prior. For example, suppose that, instead of a balanced

design, we have n0
0 = 300 and n1

0 = 700. Then, with a0 = 0.85 as before, m0 = 257 and

m1 = 597. Intuitively the amount of information in p0 should be less because we have less

historical data corresponding to p0.
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Figure 3.4: Power priors on regression probabilities found by sampling from the posterior
in OpenBUGS using the same data from Section 3.2.2.

We can view a0 choices in light of the prior ESS in a fashion similar to that in Section

3.2.2. We can do so in terms of success probabilities with minimal computational effort

because the ESS of priors on the probabilities is a linear function of a0. We can also use the

graph in Figure 3.5, to choose an a0 to match an expert-specified ESS value, again being

warry of the resulting bias. For example, suppose that we wish to exploit a historical data

set with n0
0 = 300, n1

0 = 700, and x0 = 0 indicates that a patient is in the standard treatment

group. Further suppose that an expert experienced with studies involving the probability

of success for patients on the standard treatment recommends a maximum prior ESS of

approximately 150 on p0. Per the expert’s suggestion, we would consider only a0 values

less than 0.5, which corresponds to a prior ESS of 152 on p0.

Figure 3.5: Prior ESS of success probabilities as a function of a0.
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3.2.4 Multiple Categorical Variables

The formulation in Section 3.2.3 can be extended to a categorical variable with more

than two levels as well as multiple categorical predictors. For example, consider a logistic

regression model for a progressive disease. Let y0 be a binary response indicating whether

or not treatment for the disease was efficacious. Let x0 ∈ {0, 1} be a dichotomous variable

denoting gender and z0 ∈ {1, 2, 3} be a three-level categorical variable denoting three

stages of the disease. Then, the probability that the treatment is successful for the ith

patient is

pi =
1

1 + exp(−β0 − β1x0i − β2z02i − β3z03i)
(3.22)

where z02 is 1 if the ith patient is in stage 2 of the disease and 0 otherwise, and z03 is 1 if

the ith patient is in stage 3 of the disease and 0 otherwise.

Similar to Section 3.2.3, we partition the historical data into four subvectors, yj0, with

corresponding sample sizes nj0, j = 1, . . . , 4, given the designs shown in Table 3.1. Also

shown in Table 3.1 are the four probabilities p0, p1, p2, p3 corresponding to each partition.

These probabilities are mutually conditionally independent (conditioned on the covariates)

because the partitioned sub-vectors of y0 do not overlap. Similar to above, we will obtain

four beta distributions from which we demonstrate the use of ESS to determine the effect

of a0.

Table 3.1: Historical data partition with corresponding probabilities.

x0 z02 z03 Probabilities

0 0 0 p0 = [1 + exp(−β0)]−1

1 0 0 p1 = [1 + exp(−β0 − β1)]−1

0 1 0 p2 = [1 + exp(−β0 − β2)]−1

0 0 1 p3 = [1 + exp(−β0 − β3)]−1

Then, similar to the formulation in (3.16), the power prior for the four distinct prob-
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abilities is

π(p0, p1, p2, p3 | D0, a0) =
3∏
j=0

nj
0∏

i=1

(pj)a0y
j
0i(1− pj)a0(1−yj0i)I(0,1)(p

j). (3.23)

This yields four independent beta distributions corresponding to the four products in (3.23):

pj | yj0, a0 ∼ Beta
(
a0

∑
yj0i + 1, a0

∑
(1− yj0i) + 1

)
, j = 0, . . . , 3. (3.24)

Prior ESS values can be calculated for the four probabilities by summing their respective

beta shape parameters. The ESS for the full power prior can be found using the formula in

(3.17) given by Morita et al. [36]. As before, the prior ESS’s can be used to determine the

an appropriate a0 value.

3.3 Constraining Power Parameters to Comply with FDA Guidelines

In this section, we present a method for evaluating choices for fixed a0 in accordance

with FDA guidelines on Bayesian analyses [2] and illustrate with two examples. Suppose

we have study success criteria that requires the slope of the logistic regression to be greater

than β∗ with posterior probability at least ξ. The FDA guidance recommends that the prior

probability of success be less than ξ:

FDA recommends you evaluate the prior probability of your study claim if you
are using an informative prior distribution. This is the probability of the study
claim before seeing any new data, and it should not be too high. What constitutes
“too high” is a case-by-case decision. In particular, we recommend the prior
probability not be as high as the success criterion for the posterior probability.

It follows that we should eliminate choices of a0 which yield prior probabilities of success

in excess of the study success criteria.

3.3.1 Using FDA Criterion in Logistic Regression

To illustrate, consider a logistic regression like that in Section 3.2.2 with one di-

chotomous variable, x, denoting whether or not the patient received treatment. Suppose
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we consider the treatment efficacious if β1 > 0 with 95% posterior probability. The power

prior on β is given in (3.13). Using MCMC methods, we simulate from the distribution in

(3.13) and calculate the prior probability that β1 > 0, for various values of a0. We should

rule out use of a0 values which yield a prior probability for β1 > 0 in excess of 95%.

We simulate a data set containing 600 points with (β0, β1) = (−1, 0.4). We treat this

as the historical data to be utilized in the current experiment. These probabilities are found

using the “step” function in OpenBUGS and are plotted against various a0 values in Figure

3.6. The dashed horizontal line represents a prior probability of 95% which corresponds to

a power parameter of 0.5. Thus, power priors that take on a0 values greater than 0.5 would

violate FDA recommendations and should be avoided.

Figure 3.6: Prior probabilities of success as a function of a0. The dotted lines represent a
prior probability of 95% at a0 = 0.5.

3.3.2 Using FDA Criterion with Poisson Data

As another example in determining a single a0, we use the FDA guidance to select a

fixed power parameter for Poisson data. Also, we look at the variance of the historical data

under the Poisson model noting the attenuation effect of the power parameter. Suppose we

have historical data, D0, consisting of n0 Poisson observations

y0i ∼ Poisson (λ) , i = 1, 2, ..., n0.
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For the initial prior π0(λ), we assume a conjugate gamma distribution with shape parame-

ters equal to 0.001. This has probability distribution function

π0(λ) ∝ λ0.001−1 exp(−0.001λ) ≈ 1

λ
. (3.25)

Then the power prior is, for some 0 < a0 < 1,

π(λ | D0, a0) ∝

 λ

n0∑
i=1

y0i
exp(−n0λ)

y01!y02!× · · · × y0n0 !


a0

1

λ

∝ λ
a0

n0∑
i=1

y0i−1
exp[−a0n0λ].

(3.26)

This is a gamma(α, β) distribution with α = a0

n0∑
i=1

y0i and β = a0n0.

Note that the variance of the historical data is λ with maximum likelihood estimate

λ̂ = n−1
0

∑n0

i=1 y0i. The variance of λ under the power prior model is

Var(λ | D0, a0) =

n0∑
i=1

y0i

a0n2
0

=
λ̂

a0n0

.

Therefore, the affect of a0 is to attenuate the historical data variance.

Similar to the logistic regression case, we can look at a0 in light of the FDA guide-

lines. Recall that the FDA recommends the prior probability of success be less than the

posterior success criteria. Suppose that we are planning an experiment in which we wish to

show with 90% posterior certainty that the rate λ of current Poisson data is greater than 1.

We simulate 1000 historical Poisson data and use the power prior in (3.26) for our

prior on λ. In order to adhere to FDA guidelines, the prior probability P (λ > 1) must be

less than 90%. The prior probability is simple to compute using the “pgamma” function in

R. Figure 3.7 shows that values of a0 greater than 0.2 yield prior probabilities P (λ > 1)

greater than 90%. Therefore, the choice for a0 is narrowed to values less than 0.20. If the

success criterion was 95%, choices for a0 would be narrowed to a0’s less than 0.3.
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Figure 3.7: The power parameter a0’s effect on the prior probability P (λ > 1) with dashed
lines representing 90% probability and corresponding a0 = 0.2.

3.3.3 Prior Predictive Probability under the FDA Guidance

In this section, we consider a prior success probability that is a function of the data,

necessitating use of the prior predictive distribution. Suppose we are planning an exper-

iment with n patients who will be receiving an experimental treatment. Assume that the

planned experiment will be considered successful if less than some fraction, δ, of patients

on the experimental treatment experience an adverse effect within 5 years with 90% poste-

rior certainty. Here, δ is chosen to indicate a smaller percentage than that for some standard

treatment. Let y be the number of patients out of n who experience an adverse effect in

the 5-year study period and y∗ = δn. Thus, interest is in the probability that y ≤ δn. To

comply with FDA regulations, the probability that y is less than y∗ should not exceed 90%

a priori. Unlike the previous two examples, here we require probability calculation with

respect to the prior predictive distribution because the probability is on a function of the

unobserved data, y.

Suppose there is a historical data set of size n0, yielding a count of y0 patients on

a similar experimental treatment who experienced adverse effects in a 5-year duration.

Denote this historical data D0 = (y0, n0). Here, y0 ∼ Bin(n0, θ). Then, to utilize the
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historical data, we use a power prior with an Beta(α, β) initial prior, chosen, here, for

convenience (conjugacy). Thus, we have the power prior

π(θ | D0, a0) ∝ θa0
∑n0

i=1 y0i+α−1(1− θ)a0n0−a0
∑n0

i=1 y0i+β−1. (3.27)

This is a Beta(ξ, η) distribution where ξ = a0

∑n0

i=1 y0i+α and η = a0n0−a0

∑n0

i=1 y0i+β.

Thus, we have the prior predictive distribution

p(y) =
π(y | θ)π(θ | D0, a0)

π(θ | y)

∝
(
n

y

)
B(ξ, η)

B(y + ξ, n− y + η)

(3.28)

where B(·, ·) is the Beta function. Therefore, (3.28) is a Beta-Binomial distribution.

We find the prior predictive density in OpenBUGS by specifying the beta power

prior in (3.27) with the current likelihood. However, we do not give OpenBUGS any data

for the current likelihood so that the power prior drives all information on y, yielding the

prior predictive distribution for y. From there, we find the prior predictive probability that

y < y∗ using the “step" function in OpenBUGS.

To illlustrate, suppose we are planning a current study to compare the prevalence of

an adverse reaction in an experimental treatment to a standard therapy. We wish to show

that the number of patients out of n = 300 on the experimental treatment who experience

an adverse reaction, y, is less than 10% of n with 90% certainty a posteriori. We simulate

y0 from a Bin(500, 0.072). This means that the power prior (3.27) reflects information in

favor of our current success criterion because the expected value of y0 is 36, which is indeed

less than 10% of 500. Therefore, it is likely that some high values of a0 may yield prior

probabilities exceeding 90%. This is because larger a0 would incorporate more evidence

that the number of adverse reactions is less than 10% of n0. We let the hyper-parameters

be α = β = 1. Figure 3.8 shows the prior predictive probability that y is greater than 30 as

a function of a0. Values of a0 greater than 0.3 yield success probabilities greater than 90%

and violate FDA rdsegulations.
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Figure 3.8: Prior predictive probability that y is less than 5 for various a0’s. A dotted line is
drawn at 90% probability and at the corresponding a0 value of appoximately 0.3.

3.4 Power Parameter Choices in Multiple Studies

The power prior formulation can be generalized to include more than one historical

study. In this section, we consider power parameter for such models, which are referred to

as multiplie-studies power priors. Here, a vector of power parameters, a0 = (a1, ..., aK)

for K studies is of interest. In Section 3.4.2, we propose a method to constrain power

parameter choices based on the prior ESS, FDA guidelines, and expert information. We

present an example using logistic regression data in Section 3.4.3.

Reitbergen et al. [45] propose eliciting a ranking of the historical studies according

to their commensurability with the current data. In their discussion, the commensurability

between the historical and current trials is based on study characteristics chosen by the

expert as most important.

With this in mind, after ranking the historical trials through expert opinion, we pro-

pose rejecting the power-parameter vectors which violate FDA guidelines and/or prior ESS

constraints. With the remaining power parameters, we again incorporate expert information

through the prior ESS.
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3.4.1 Multiple Studies Power Prior

In this section, we briefly introduce the form and notation for multiple studies power

priors and conclude with a graphical illustration. Suppose there are K0 historical studies,

with kth study summary

D0k = (n0k,y0k,X0k), k = 1, . . . , K0.

LetD0 = (D01, . . . , D0K0). We can have multiple weight parameters, a0 = (a01, . . . , a0K0)

where a0k is the weight for the kth study. Then the power prior incorporating theK0 studies

is defined

π(θ|D0, a0) ∝

(
K0∏
k=1

[l(θ|D0k)]
a0k

)
π0(θ). (3.29)

As an example of the power prior formulation with multiple historical studies, we consider

logistic regression with three historical studies, where x0 is a binary predictor. We give β0

and β1 independent normal initial priors, denoted φ0(µ, σ2). Then the power prior is

π(β | D0, a0) =
3∏

k=1

(
1

1 + exp(−β0 − β1x0k)

)a0k n0k∑
i=1

y0ki

×
(

1− 1

1 + exp(−β0 − β1x0k)

)a0k n0k∑
i=1

(1−y0ki)

× φ0(µ, σ2)φ0(µ, σ2).

(3.30)

Here, we take µ = 0 and σ = 10. We simulate data from 3 historical logistic regression

models with β0 = −1 and β1 = 0.16. In each data set, half of the data corresponds to x0 =

0 and half to x0 = 1. We generate 3000 points from the first historical model, 2000 from

the second, and 2500 from the third. We use the power parameters a0 = (0.6, 0.65, 0.75).

Figure 3.9 shows the power priors on β0 and β1 incorporating the three historical studies.
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Figure 3.9: Power priors on β0 and β1 from multiple studies with a0 = (0.6, 0.65, 0.75).

3.4.2 Method for Multiple Power Parameters Selection

Reitbergen et al. [45] propose eliciting a ranking of the historical studies according to

their commensurability with the current data. With this in mind, after ranking the historical

trials through expert opinion, we propose rejecting the power-parameter vectors which vi-

olate FDA guidelines and/or prior ESS constraints. With the remaining power parameters,

we again incorporate expert information through the prior ESS.

To arrive at a prior ESS value, we elicit a hypothetical number of data points from

the historical trials that the expert would add to the current trial, based on their commen-

surability. In a clinical trial setting, such a question may be “How many patients from the

historical trial would you incorporate into this trial based on the overall commensurability?”

This commensurability might include but should not be limited to similarities between the

patient populations. Being wary of potential bias, we treat this number as the expert’s max-

imum ESS for the power prior. Note that, while it would be ideal to match an elicited ESS

for each historical study to a corresponding power parameter, it is not clear that we can split

the multiple studies power prior on joint parameters in this way.5 Therefore, our elicited

prior ESS should be one value, which can be obtained by summing study-specific ESS’s if

desired.

Suppose an expert ranks the studies 1, 2, . . . , K, in increasing order of commensura-

bility. We assume there are no ties. Let a0j be the power parameter used for the study with
5 Note that in Section 3.4.4, we do “split” the power prior and elicit trial-specifc ESS’s. This is possible,

in part, because the power prior is on only one parameter.
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rank j, j = 1, . . . , K. We assume a01 < a02 < . . . < a0K . Let a0 ≡ (a01, a02, . . . a0K).

While the power parameter can be any real number in theory, for efficiency, suppose

a0i ∈ (0, 0.05, 0.1, 0.15, ..., 1) for i = 1, . . . , K. With this assumption, we simulate all

possible a0’s such that a01 < a02 < · · · < a0K .

We find the prior probability of success corresponding to each vector a0. Some

values of the a0’s can be eliminated by use of the previously mentioned FDA guidelines.

We illustrate this approach with an example in the next section.

3.4.3 Multiple Power Parameter Selection in Logistic Regression

In this example, we use the FDA guidelines, the prior ESS, and expert information

for selection of power parameters in a logistic regression model with multiple historical

studies. We simulate 350 data points from each of three logistic regression models with

one binary predictor:

y0ik ∼ Bernoulli(p0ik) (3.31)

where

logit(p0ik) = β0 + β1x0ik, k = 1, 2, 3

and (β0, β1) = (−1, 0.25). These are treated as the historical models. We construct all

models to be balanced, so that, in each of the trials, half of the data corresponds to a zero

covariate value. The power prior for this problem is shown in (3.30). Here, we take µ to

be normal with mean 0 and variance 1000, and σ to be uniform over 0 to 10. Suppose that

we are planning a current experiment with 500 data points for which we wish to utilize the

historical data in (3.31). For simplicity, suppose that the experiment is successful if β1 > 0

with 95% posterior certainty.

Assume an expert has ordered the historical studies and we have corresponding

power parameters a01 < a02 < a03. From the expert’s ranking, we form a grid of power
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parameter vectors such that:

a01 ∈ (0, 0.05, 0.1, 0.15, . . . , 1),

a02 ∈ [a01, a01 + 0.05, a01 + 0.1, a01 + 0.15, . . . , 1),

(3.32)

and

a03 ∈ [a02, a02 + 0.05, a02 + 0.1, a02 + 0.15, . . . , 1).

This yields a grid consisting of 969 vectors of power parameters. As discussed in

Section 3.3, the FDA recommends that the prior probability of success not exceed the pos-

terior success criteria. We use the “step” function in OpenBUGS along with the functional

forms of the power priors to find the corresponding prior probabilities of success. Out of

the 969 a0-vectors, 748 yield prior success probabilities in excess of 95%. Therefore, we

eliminate 77% of the vectors, leaving 221 in consideration.

We now utilize the prior ESS, as discussed in Section 3.2, to futher constrain choices

for a0. However, here, note that our historical models were simulated such that β1 > 0.

In this way, the historical data provides evidence in favor of the current success criterion.

Therefore, a0 choices that result in large contributions of historical information yield large

prior success probabilities. Thus, as we will see, for this example all a0’s yielding extreme

prior ESS’s have already been eliminated based on the FDA constraint. Furthermore, we

proclude use of any a0 yielding prior ESS values for (β0, β1) larger than the current study’s

sample size, the corresponding a0’s would be automatically disqualified.

We find the ESS’s for the power priors corresponding to the remaining 221 a0’s using

the R program ESS_RegressionCalculator detailed in Section 3.2.2. Figure 3.10

shows box plots of the prior ESS’s. Notice, in particular, a power parameter vector of

a0 = (0.2, 0.35, 0.45) yields a power prior with an ESS of 129.73 for the power prior with

(β0, β1). This is the maximum ESS that the power prior can have while complying with

FDA regulations.
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Figure 3.10: Box plots of the prior ESS values for β, β0, and β1 resulting from multiple-
studies power priors with varying a0-vectors.

Suppose it is decided to limit the effect of historical information in the model by

requiring that the ESS be no more than, say, 1/5 of the planned study size. We find the

a0’s corresponding to power priors with ESS’s within a ±5 margin of 100. This narrows

the choice for a0 down to 15 vectors, about which we suggest further consulting the expert.

The resulting vectors are shown in Table 3.2 below. The expert may believe that Trial 1 has

little commensurability with the current study, while Trial 3 is very relevant. In this case,

the last set of power parameters in Table 3.2 would be appropriate. The marginal prior

ESS’s on β0 and β1 and the prior probabilities of study success are also provided.

Note that the prior probability of study success for all options in Table 3.2 are close

to 95%. This is the result of two choices. First, the historical data was simulated in favor

of the study success criterion. Increasing the effect of the historical likelihood increases

the prior probability of study success. Second, the expert’s ESS was close to the maximum

ESS cut-off before violating FDA guidelines. Note that, after viewing the table, the expert

may wish to modify her opinion. The statistician can also increase the margin around the

elicited upper bound for the prior ESS to include more options for a0.
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Table 3.2: Power parameters with corresponding prior ESS’s for β within a ±5 margin of
the expert-elicited upper bound on the prior ESS.

a01 a02 a03 ESS(β) ESS(β0) ESS(β1) P (β1 > 0 | D0)

0.20 0.25 0.35 107 108 211 0.935
0.20 0.25 0.40 108 107 220 0.944
0.15 0.30 0.45 107 104 225 0.949
0.15 0.30 0.50 108 104 231 0.946
0.15 0.35 0.50 110 107 228 0.940
0.10 0.40 0.50 109 104 231 0.941
0.15 0.30 0.55 111 106 234 0.949
0.10 0.40 0.55 110 105 233 0.941
0.05 0.50 0.55 110 105 235 0.938
0.15 0.30 0.60 110 104 236 0.950
0.05 0.50 0.60 113 106 247 0.941
0.10 0.40 0.65 109 101 239 0.944
0.05 0.50 0.65 110 103 243 0.944
0.05 0.50 0.70 112 104 249 0.940
0.05 0.45 0.90 107 97 246 0.948

3.4.4 Multiple Power Parameters with Binomial Data

In this section, we consider a non-regression binomial model with a beta mulitple-

studies power prior. Specifically, suppose we have K historical data sets that all study

the success probability, θ for some treatment. Assume they have sample sizes n01, . . . , n0K

with k01, . . . , k0K successes, respectively. Then, using a U(0,1) initial prior, the power prior

on θ that incorporates the K studies is

π (θ | D0, a0) ∝ θa01k01 (1− θ)a01(n01−k01)

× θa02k02 (1− θ)a02(n02−k02)

...

× θa0Kk0K (1− θ)a0K(n0K−k0K) I[0,1](θ)

= θ

K∑
i=1

a0ik0i
(1− θ)

K∑
i=1

a0i(n0i−k0i)
I[0,1](θ).

(3.33)
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This is a beta prior with ESS equal to

m = a01n01 + · · ·+ a0Kn0K + 2. (3.34)

By dividing the overall ESS in (3.34) by the number of studies, K, we propose that a prior

ESS value can be elicited from an expert for each individual trial and treated as

mk = a0kn0k +
2

K
, k = 1, . . . , K. (3.35)

This is intuitively appealing. Each historical study contributes a fraction of its sample size

to the total ESS, where the fraction in determined by the value of a0. The addition of 2/K

is minimal, especially for large K and large sample sizes, and represents the prior ESS of

the diffuse initial prior.

We propose the following method to elicit trial-specific power parameters in beta/bi-

nomial models. Set m to be the maximum overall prior ESS chosen by the statistician.

We recommend m be at most equal to the planned sample size for the current experi-

ment. The maximum value of m can be better determined by following the formulation in

Section 3.4.3. In particular, recall that after eliminating a0’s that yield prior probabilities

in violation of FDA guidelines, the remaining a0’s yield a maximum overall prior ESS.

We propose treating m as that maximum ESS corresponding to the remaining a0 vectors.

Letting the expert know m, we elicit individual maximum ESS’s m1, . . . ,mK as a rough

measure of commensurability for each historical study so that the sum is less than m. We

treat these mi’s as upper bounds on trial-specific prior ESS’s, and repeat a process similar

to the method in Section 3.4.2.

To illustrate, consider three historical binomial data sets of sample sizes, n01, n02, n03,

of 600, 700, and 750, respectively. Suppose we are planning a similar current study with

n = 700 for which we wish to incorporate the historical data through a multiple-studies

power prior. Suppose that, using the FDA criteria, we have eliminated possible a0 vectors

and find that m should be 500 at a maximum.
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Based on the commensurability between each historical trial with the current trial,

suppose the expert gives trial-specific maximum ESS’s of 300, 75, and 100 for m1,m2,

and m3, respectively. This implies that the corresponding power parameters can be found

through (3.35) via

300 = 600a01 + 2/3,

75 = 700a02 + 2/3,

(3.36)

and

100 = 750a03 + 2/3.

This yields a power parameter vector of a0 = (0.5, 0.11, 0.13).

3.5 Power Parameter Selection with Multiple Experts

In this section, we assume we have multiple experts from which we elicit informa-

tion regarding the vector of power parameters in power priors with multiple studies. We

present an example from Reitburgen et al. [44] and propose a technique to further nar-

row a0 choices. In their 2014 paper, Reitbergen et al. state that “...the specification of

study weights depends heavily on study specific substantial aspects, rather than statistical

ones, making (clinical) expert knowledge crucial in this process." Mathematical and/or be-

havioural aggregation methods can be employed to reconcile on a set of ranks between the

experts. O’Hagan et al. [41] have a nice chapter on these methods, which can be split into

two main categories: mathematical and behavioral aggregation. Behavioral methods rely

on techniques to elicit information from experts as a group. Mathematical methods do not

require a group consensus on the information, but involve mathematically combining ex-

pert opinions. In the example below, Reitburgen et al. use the well-known Delphi method,

a behavioral approach.

Rietbergen et al. [44] provide a detailed example of eliciting a0 from multiple experts

for a set of studies. They use the Delphi technique to reach an agreement between the

experts on an a0 vector. A panel of four experts is consulted to judge the degree of overlap
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between four historical studies and the current study, which evaluate an insulin sensitizer

called Rosiglitazon. Details about their choice of experts and historical study inclusion can

be found in their paper.

In [44], in the first Delphi round, the experts were asked to rank the four studies

from most to least relevant. All of the experts reached consensus on the ranking in the third

round. They were also asked to assign study weights along with each ranking. For example,

the authors explain that a weight of 50 implies that the expert is willing to incorporate 50%

of the historical data in the prior distribution for the new data. While the variability between

the experts’ weights decreased over the three rounds, agreement was not reached. From the

written expert explanations, Rietbergen et al. found that similarities in the endpoints used

for the outcome measure most motivated higher ranks and weights. The experts’ written

comments are provided in Rietbergen et al. [44].

When consensus is not reached, our methods can be used to narrow the power pa-

rameter vectors. We eliminate expert’s vectors which automatically place the experiment

in violation with FDA guidelines. We can then use the prior ESS corresponding to each

a0’s to discuss choices with the experts.

Suppose the experts reach an agreement on a0. The choice of this vector may yield

prior probabilities which violate the FDA recommendations or contain too much informa-

tion in terms of prior ESS. To this end, we propose the following method. Suppose we have

K0 studies which correspond to K0 power parameters

a0 = {a01, a02, . . . , a0K0}.

Further suppose the experts have ordered the power parameters from most relevant to least

relevant have agreed upon fixed values.

When the agreed-upon fixed a0 vector leads to violation of FDA guidelines or exces-

sive prior ESS, we recommend eliminating a0 values beginning with smallest. In effect,

we have K0 choices of a0 vectors. As in the example in Section 3.1.2, we can plot the
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prior ESS and/or prior probability against the K0 power parameter vectors. To illustrate,

consider the logistic regression with multiple historical studies in example in Figure 3.9.

Suppose that experts have selected the vector

a0 = {0.75, 0.65, 0.6}. (3.37)

Further, suppose that a successful trial will yield a Pr(β1 > 0) with 95% certainty a poste-

riori. The FDA recommends the prior Pr(β1 > 1) not exceed 95%. The power parameter

vector in (3.37) recommended by the experts yields a prior Pr(β1 > 1) of 0.996. To elimi-

nate the smallest a0i, we set a03 = 0 so that Trial 3 is excluded. This yields a power prior

with prior study success probability of 0.9663. Lastly, we consider just one a0 = 0.75.

This power prior incorporates only Trial 1 and has prior Pr(β1 > 0) = 0.814.

This method is appealing because it is not computationally expensive or complex.

However, this is at the cost of potentially ignoring useful information from eliminated

trials.

3.6 Discussion

Power priors facilitate utilization of historical information for inference from cur-

rent experiments. Power priors are typically simple in their utilization and interpretation.

However, care must be taken in consideration of the power parameter, a0. It is not rec-

ommended to give a0 a prior distribution. Therefore, determination of a fixed a0 requires

an operational assessment of implications of such choices. We proposed three main meth-

ods for doing so by utilizing the prior ESS, the FDA guidelines on Bayesian analyses, and

expert information.

In most cases, our proposed methods ruled out a large proportion of power parameter

choices. In some cases, we were able to select a value of a0 based on the particular criteria.

In Section 3.4.4, we were able to “split” the a0 vector corresponding to the multiple-studies

power prior into individual trial-specific power parameters. This allowed for elicitation of
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trial-specific prior ESS’s which directly implied values for each historical study’s individual

power parameter. Further work could include a determination of whether or not this type

of “splitting" is feasible in multiple-studies power priors on joint parameters, such as that

in Section 3.4.3.
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CHAPTER FOUR

Sensitivity to Prior Misspecifications in the Mode-Percentile Method of Elicitation

4.1 Introduction

Prior elicitation refers to the process of converting expert opinion into a probability

distribution for use in a Bayesian data analysis. One question that arises in this process

is the sensitivity of the resulting priors to slight deviations in the expert’s specifications,

which may arise from his inability to precisely quantify his beliefs or miscommunication

between the expert and statistician. See, for example, O’Hagan et al. [41], Ch. 3. In this

chapter we investigate the beta-binomial model’s sensitivity to imprecisely specified prior

summaries.

While the goal of prior elicitation is to represent the expert’s beliefs, doing so can

be problematic. In their third chapter, O’Hagan et al. [41] provide a detailed overview

of difficulties in eliciting expert judgements. The literature on this topic is vast, including

[11], [23], [31], and [41]. Difficulties range from an expert’s misunderstanding of statistical

terminology to bias introduced through the method of questioning. The hope is that the

inevitable misspecifications in the elicitation do not produce substantially different prior

distributions used in the corresponding analysis. However, this is not always the case. In

particular, imprecision in expert summaries can lead to large deviations from their beliefs.

The progression of the current chapter is as follows. In the first section, we provide

a background and conceptual framework in which to consider the problem. We quantify

and present graphics to visualize the extent of the misspecification in Section 4.2. We

extend the development in Section 4.3 to generalize the graphs across a broad range of

misspecifications. We call these graphs sensitivity indicatrices and describe their usefulness

in the elicitation process. We show that the use of lower percentiles results in a more robust

elicitation scheme. We conclude the chapter in Section 4.4.
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4.1.1 Background

Suppose we wish to elicit a joint prior distribution for a k-dimensional parameter

vector θ ∈ Θ ⊆ Rk. We elicit information from an expert in order to form a prior on θ.

Doing so requires the specification of a vector d ∈ D ⊆ Rq, comprised of summaries such

as a mode and various percentiles. We call D the elicitation space containing all possible

elicited values.

An elicitation exercise yields a value dE ∈ D. We say dT ∈ D is the expert’s true

belief if there is no refinement of the exercise, such as rephrasing questions, that would

yield a different value of dT . We assume that dT ∈ D exists and that there is an elicitation

exercise that will yield dT . If dE 6= dT , then dE is misspecified.

Now, let P be a class of priors so that πd(θ) ∈ P denotes a prior for θ determined

by d ∈ D.1 A fundamental question about any elicitation exercise is how does πd(θ) vary

with d ∈ D? Clearly, a misspecified dE will result in a different prior than that from dT .

We let πde(θ) ∈ P and πdT
(θ) ∈ P be the priors resulting from the elicited beliefs dE and

the expert’s true beliefs dT respectively.

The prior effective sample size (ESS) is commonly used as a measure of informa-

tiveness [36] [37]. The ESS is the number of observations that would need to be added to

the model in order to yield a comparable analysis using a relatively non-informative prior.

For more details, see the discussion in Section 3.2 of Chapter three. In this chapter, we use

the prior ESS to gauge a model’s sensitivity to misspecifications by comparing the ESS of

πdT
(θ) to that of a misspecified πdE

(θ) for many different values of dT and a quantified

level of misspecification.

1 At times, dE will not yield a unique prior. In these cases, we use the prior with the smallest ESS.
(See Section 3.2 of Chapter three for details on prior ESS.)
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4.1.2 Problem

In this chapter, we consider the problem of prior misspecification in the mode-

percentile elicitation method for a Bernoulli data model with a beta prior. We let θ be

the Bernoulli success probability and take θ ∼ Beta(α, β).

In the mode-percentile method, we elicit a mode m and upper percentile p from an

expert. An expert might specify that θ is most likely m and less than p. In turn, we treat m

and p as the mode and upper percentile of a Beta(α, β) prior. Note that the map from the

mode-percentile space into the standard parameter space is not injective: for some mode-

percentile specifications, more than one (α, β) combination exists with the given mode and

percentile. Further, it is known that the map is one-to-two in these places. The map can

be made well-defined by always taking the value of the map to be the combination (α, β)

whose sum, the ESS, is smaller. We assume this here.

Therefore, for a well-defined region of the elicitation space, we have a well-defined

injective map f : (0, 1)2 −→ (1,∞)2 = Θ such that (m, p)
f7−→ (α, β). However,

the map f does not have an explicit representation and therefore, for a given m and p, we

numerically solve for the corresponding α and β according to the following scheme. For a

mode m and percentile p, we choose ξ such that Pr(θ ≤ p) = ξ, say 0.85. We set

ξ =

p∫
0

πd(θ | α, β)dθ (4.1)

where πd is the probability density for the beta distribution. We set m equal to the mode of

the distribution:

m =
α− 1

α + β − 2
. (4.2)

This restricts the standard parameter space so that α, β > 1, a minor restriction to en-

sure unimodality. We then solve for α in (4.2) and substitute this solution in (4.1). We

numerically solve for β by finding the root of the function

g(β) = ξ −
∫ p

0

πd

(
θ
∣∣1 +m(β − 2)

1−m
,β

)
dθ. (4.3)
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Note that this is a simple process since the integral is the cumulative distribution function

of the beta distribution, for which there is no closed-form, but there are highly efficient and

accurate implementations. We substitute the solution for β into (4.2) to find α.

We denote the true beliefs (mT , pT ) and corresponding shape parameters (αT , βT ).

If an expert’s (mE, pE) does not equal (mT , pT ), then (mE, pE) is misspecified. For

example, suppose that an expert has true beliefs (mT , pT ) = (0.42, 0.51) but specifies

(mE, pE) = (0.4, 0.5). Will the misspecification really make a difference in the model?

In the subsequent development, we supress the subscript E’s, denoting elicited values, for

ease of notation.

4.2 Visualizing Misspecification

We begin by considering a true belief (mT , pT ) in the elicitation space. Figure 4.1

illustrates the map f (see (4.1) and (4.2)). We indicate (mT , pT ) as a asterick, which is

mapped via f to a resulting (α, β) in standard parameter space. A misspecification can

occur in some range around (mT , pT ). In order to systematically investigate the effect of

misspecification, we need to have a way to quantify and limit the extent of misspecification.

A natural way to do this is to place a disk (of uniform radius) in the elicitation space so that

every point in the disk represents a potential misspecified value. In Figure 4.1, we form a

circle around (mT , pT ) with radius r = 0.02. Every point in the circle is a misspecification

of (mT , pT ). The graphic immediately suggests the questions: “what does the image of the

disk look like under f , and how does the ESS vary over this deformed region?”
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Figure 4.1: A true belief in elicitation space mapped to resulting shape parameters.

Answering these questions mathematically is not possible without an explicit form of

f . Therefore, we solve the problem computationally as follows. We take a mesh of points

along the boundary of the disk and form a path between them. We take each point in the

mesh and follow the same map f to the standard parameter space, tying each point together

in the same order as in the original space. Figure 4.2 shows the mesh in the elicitation space

mapped to the standard parameter space.
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Figure 4.2: A wire frame of points around true beliefs mapped to the standard parameter
space.
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The disk and its resulting image I are shown in Figure 4.4. The image convincingly

suggests that the image forms a convex set in the standard parameter space and the image

is elliptical, and we operate under this assumption for the rest of this chapter.
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Figure 4.3: A circle representing misspecifications of (mT , pT ) mapped to its image I.

4.2.1 Quantifying Misspecification

We begin this section with a brief review of the necessary algebraic structures. A

norm on a real vector space V is a function || · || : V → R satisfying the following three

properties for any a ∈ R and v,u ∈ V:

(1) if ||v|| = 0, then v = 0, the additive identity in V ,

(2) ||av|| = |a|||v||, and

(3) ||u + v|| ≤ ||u||+ ||v|| (the triangle inequality).

Norms provide a notion of length for vectors. A similarly related concept, that of a metric,

provides a notion of distance between them. A metric δ on a real vector space V is a

function δ : V × V → R satisfying the following properties for any vectors v,u,w ∈ V :

(1) δ(v,u) = 0 if and only if v = u,
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(2) δ(v,u) = δ(u, v), and

(3) δ(v,w) ≤ δ(v,u) + δ(u,w).

Norms naturally induce metrics in the following way: if || · || is a norm on V , then δ(v,u) =

||v−u|| is a metric on V . A ball in V of radius r > 0 centered at a vector v is the collection

of all points in V at most r units from v, namely Bv,r = {u ∈ V : δ(v,u) ≤ r}.

Up until this point, our language has suggested the use of the Euclidean norm:

||v||2 =
√∑n

i=1 v
2
i . We wish to describe the extent of the misspecification, but it is difficult

to the describe distances using the Euclidean norm. Indeed, in an `2 ball, like that in Figure

4.2 with radius r, for every point (m, p),

√
(m−mT )2 + (p− pT )2 ≤ r. (4.4)

To better describe the extent of the misspecification, we utilize the `1 norm

||v||1 =
n∑
i=1

|xi| (4.5)

and the `∞ norm

||v||∞ = max{|x1|, . . . , |xn|}. (4.6)

Bounding (4.7) and (4.8) below r results in `1 and `∞ balls, respectively. Thus, we quantify

the mode-percentile misspecifications using the `1 and `∞ norms as

|m−mT |+ |p− pT | ≤ r (4.7)

and

max{|m−mT |, |p− pT |} ≤ r, (4.8)

respectively. In these cases, the extent of an expert’s misspecification is readily inter-

pretible. Using the `1 norm, the sum total of the (absolute) errors on the mode and percentile

is at most r. In the `∞ case, the maximum misspecification on the mode and percentile is

at most r. We show `1 and `∞ elicitation balls with their images in Figure 4.4.
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Figure 4.4: An `1 ball (top left) and an `∞ ball (bottom left) representing misspecifications
of (mT , pT ) mapped to images in standard parameter space.

4.2.2 Measuring Sensitivity

Each point in an image I results in a beta prior. Now that we have described the ex-

tent of the misspecification, we wish to measure how different the resulting priors can be.

We assume πT (θ) = Beta(αT , βT ) is a unique prior representing (mT , pT ). We compare

πT (θ) to erroneous priors which result from misspecified summaries. A transformation

(α, β) in an image I determines a beta prior Beta(α, β) prior with effective sample size

ESS(α, β). We denote ηT = (αT , βT ). We compare erroneous ESS’s to ESS(αT , βT ) to
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gauge the effect of the slight misspecifications on the resulting priors. To this end, we

define our measure of sensitivity to be

MESSηT ,r =
∣∣∣ sup

(α,β)∈I

(
ESS(α, β)− ESS(αT , βT )

)∣∣∣
=
∣∣∣( sup

(α,β)∈I
ESS(α, β)

)
− ESS(αT , βT )

∣∣∣
=
∣∣∣( sup

(α,β)∈I
(α + β)

)
− (αT + βT )

∣∣∣
(4.9)

The MESS is a local measure of sensitivity. If the MESS is zero, then misspecifications do

not cause any difference in the ESS of the resulting priors. Hence, a MESS of zero implies

misspecifications do not impact prior strength. The larger the MESS, the more sensitive the

method is to misspecification of (mT , pT ). MESS is on an absolute, not a relative, scale,

so it can be interpreted directly as the additional number of observations the misspecified

prior would result in, in addition to those of the true prior.

4.2.3 Examples

In this section, we suppose that an expert’s true beliefes about θ can be represented by

a beta distribution with a mode of 0.4, and 95th percentile of 0.5, πT (θ) = Beta(28.4, 42).

We construct `2, `1 and `∞ balls, all with radius r = 0.02, representing misspecification

around (0.4, 0.5), and we find their images in standard parameter space. The images resp-

resent deviations from ηT = (28.4, 42). To illustrate our sensitivy measure, we calculate

the MESS in the balls.

Figure 4.5 displays a `2 ball with its transformed image. The stars represent (mT , pT )

and (αT , βT ) in the elicited space and standard parameter space, respectively. The solid dots

indicate the misspecified mode and percentile pair and resulting shape parameters yielding

the MESS in the elicited space and standard parameter space, respectively. The MESS at

at (α, β) = (55.8, 78.5) is 64. This corresponds to a misspecified mode and
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95th percentile of 0.4142 and 0.4859, respectively. Here, the MESS of 64 results from

|(28.4 + 42)− (55.8 + 78.5)|.
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Figure 4.5: (Left) One elicitation ball with radius 0.02 centered at elicited mode and per-
centile, 0.4 and 0.5. (Right) Transformed ball in the standard parameter space.

In Figure 4.6, the MESS = 38 that occurs when the expert misspecifies her beliefs

and gives a mode and 95th percentile of 0.4072 and 0.4872. This misspecificiation results

in a Beta(44.4, 64.1) prior. It is not surprising that the MESS is less than that in Figure

4.5. The error structure determined by the `2 ball in (4.4) allows the mode and percentile,

together, to have a larger distance from the true beliefs. Indeed, the `1 ball is a subset of the

`2 ball, which is a subset of the `∞ ball.

An `∞ elicitation ball with the same center and radius as those in Figures 4.5 and 4.6

is shown in Figure 4.12. In this case, the MESS is 120, which results from a misspecified

mode of 0.42 and 95th percentile of 0.48. These specifications result in a Beta(80.2, 110.4)

prior.

We refer to the mode-percentile pair resulting in the MESS as the “worst” point.

Notice that in Figures 4.5, 4.6, and 4.7, the worst point of misspecification is the point at

the maximum distance from (mT , pT ) in the fourth quadrant. This is the case for most,

if not all, choices of centers for the `2 and `∞ balls. In our experience, the worst point
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in `1 space varies but is always in the fourth quadrant. This is where the misspecified

modes and percentiles grow closer together. The fact that the worst point occurs here is

not surprising because the resulting priors are most informative here. We discuss this topic

more in Section 4.3.1.
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Figure 4.6: (Left) An `1 elicitation ball with radius 0.02 centered at elicited mode and
percentile, 0.4 and 0.5. (Right) Transformed region in the standard parameter space.
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Figure 4.7: (Left) An `∞ elicitation ball with radius 0.02 centered at elicited mode and
percentile, 0.4 and 0.5. (Right) Transformed ball in the (α, β) space.
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4.3 A Tissot-Style Sensitivity Indicatrix

The previous discussion was limited to understanding the local distortion of the map

of mode-percentile specifications into the standard parameter space at a single point in the

space. To generalize it to the entire space, we consider many such balls like that in Figure

4.5 representing misspecification, each centered at a different point on a coarse mesh on the

elicitation space, and transform each into the standard parameter space. We use the MESS

to measure the sensitivity in each ball and denote the most sensitive regions with darker

shading. We refer to the resulting plot in the elicitation space as a sensitivity indicatrix.

This is reminiscent of Tissot’s indicatrix, which has applications in geography and is used

to measure local deformations in maps2 .

In Figure 4.8, we tile the elicitation space with many `2 balls like that in Figure

4.5 to form a sensitivity indicatrix (left). The balls are centered at mode and percentile

pairs and span possible true beliefs between 0.05 and 0.9. As before, we let the radius

r = 0.02. The right plot in Figure 4.8 graphs the transformed images corresponding to the

misspecification circles in the left plot. A larger diagonal (y = x direction) stretch indicates

a larger MESS. The images with the largest stretch are shaded the darkest, corresponding

to the darkest-shaded elicitation balls.

The biggest MESS is 1161 which occurs when the expert misspecifies a her true

beliefs of (0.45, 0.50) as (0.4646, 0.4863). This misspecification is a 0.03% increase of mT

and 0.03% decrease of pT . In this case, using the elicited prior is equivalent to adding 1161

more prior observations to the model than the true prior would add! A sample size of 1161

could be over double what we would see in practice at times.

The overall pattern in the graphs indicates that as elicited modes and percentiles get

closer together, the diagonal stretch in their transformations grows larger. Therefore, when

the elicited mode and percentile values are close together, slight misspecifications of the

expert’s beliefs result in substantially large deviances in the corresponding priors.
2 See the Wikipedia article on Tissot’s indicatrix found at https://en.wikipedia.org/wiki/

Tissot’s_indicatrix.
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Figure 4.8: (Left) Many elicitation balls with radius 0.02 centered at elicited modes and
percentiles. (Right) Transformed balls in the standard parameter space. The ball labeled
364 in the left image is the top-left most region in the graphic on the right. Note that the
axes in the graph on the right are logarithmic.

How would one use the maps in practice? The maps are useful in informing the

elicitation process itself. If the elicited values are in relatively stable regions of the param-

eter space, innaccuracies are not costly, and the elicitation process can be done relatively

quickly. If the values are in sensitive regions of the parameter space, more caution is nec-

essary to ensure that the elicited values are accurate, lest significant modeling errors occur.

We are interested, also, in the two “most extreme” points on the transformed balls.

These points are the vertices corresponding to the major axes of the ellipses3 in the stan-

dard parameter space. Comparison of these vertices can depict the maximum deviation

in prior ESS’s for a neighborhood around a pair of true shape parameters. Consider, for

example, a scenario in which (mT , pT ) = (0.45, 0.50) yields (α, β) = (123.1, 150.2). In

this elicitation ball, even small misspecifications could result in a prior more informative

by over a thousand observations, or, on a relative scale, by 15 times. The corresponding

transformed region R(η) is shown in Figure 4.9. The two most extreme points in this

3 While the transformed balls appear to be ellipses, we have not yet proven this to be true.
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transformed ball are (αa, βa) = (49.4, 63.5) and (αb, βb) = (666.6, 768.1). A misspecified

mode-percentile pair of (0.4363, 0.5146) yields (αa, βa) which results in a prior with ESS

112.9. The transformation (αb, βb) results from mode-percentile pair (0.4646, 0.4863) and

yields a prior ESS of 1434.7.
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Figure 4.9: Transformed ball corresponding to the largest ESS. Solid dots represent extreme
cases and the star indicates ηT .

Figure 4.10 shows a sensitivity indicatrix tiled with `1 balls. In both Figure 4.8 and

here, the biggest MESS occurs in the ball around (0.45, 0.5). Here, the MESS is 481

which occurs when the expert misspecifies his beliefs and gives a mode of 0.4652 and

95th percentile of 0.4952. Notice, that the 95th percentile would round up to 0.5, but the

decimals, which would otherwise be negligable, clearly make a difference in the resulting

prior!

Lastly, a sensitivity indicatrix tiled with `∞ balls is shown in Figure 4.11. Again,

the largest MESS is in the ball around (mT , pT ) = (0.45, 0.5). A misspecification of

(m, p) = (0.47, 0.48), less than 2% misspecifications, is equivalent to adding 6484 prior

observations added to the model!
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Figure 4.10: `1 elicitation balls with radius 0.02 centered at elicited modes and 95th per-
centiles; shaded according to MESS.

The `∞ ball around (0.45, 0.5) is displayed in Figure 4.12. The image is so stretched

that the region appears to be nearly a line. As in the previous cases, the worst misspec-

ified mode and percentile pair is at the maximum distance in the fourth quadrant. The

misspecification of (0.47, 0.48) yields a Beta(3176.1, 3581.4) prior.
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Figure 4.11: `∞ elicitation balls with radius 0.02 centered at elicited modes and 95th per-
centiles; shaded according to MESS.
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Figure 4.12: An `∞ ball around true beliefs (0.45, 0.5) and the resulting tranformed region.
Stars represent truths and solid dots indicate misspecifications.

4.3.1 Lower Percentiles are Less MESSy

The fact that misspecifications on closely-spaced modes and percentiles yields large

deviances in resulting priors is not surprising. As the distance between mode and percentile

values decreases, the corresponding prior grows more informative. Figure 4.13 shows three

prior distributions resulting from a specified mode of 0.4 and differing values of the 95th

percentile. The most informative prior corresponds to a 95th percentile of 0.6, and the

priors grow more diffuse as the value of the 95th percentile deviates more from the mode.

Prior informativeness can be interpreted as the expert’s confidence level in his specifica-

tions. To this end, if the expert is highly confident in his misspecified elicited values, the

effect on the model is expected to be greater.
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Figure 4.13: Beta priors resulting from elicited mode of 0.4 and differing values of the 95th
percentile (95%).

In cases where modes and percentiles are close together, errors in elicitation not only

have a large effect in terms of ESS but also, due to the nature of informative priors, the

resulting prior has a large effect on the posterior analysis. Using lower percentiles results

in a safer analysis. This is consistent with discussion in the literature, such as [41], which

warn against the use of high percentiles in priors representing expert information. Experts

tend toward over-confidence, and the 95th percentile, for example, gives only a small 5%

chance that values exceed an elicited p. One way to adjust overly informative priors is to

set the specified percentile value to a lower percentage, decreasing ξ.

We present sensitivity indicatrices with ξ = 0.90 and ξ = 0.75 in the left and right

plots, respectively, of Figure 4.14. As expected, the impact of the expert’s misspecifications

lessens as ξ decreases. Here, the largest MESS is 706 and 197 when we set the percentile

values to 90th and 75th percentile, respectively.
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Figure 4.14: Elicitation balls with ξ = 90 (left) and ξ = 75 (right).

4.4 Conclusion

While it is well-known that information in prior elicitations can be misspecified, the

literature lacks a systematic investigation into the consequences that this might have for the

resulting prior. In this chapter, we created a mathematical framework with which to under-

stand the effects of local misspecifications of bounded size. Furthermore, we presented a

visual framework with which to undersand the local behavior more globally. In the case of

the beta-Bernoulli model, the results mirror intuition and provide concrete numbers for the

extent of the effect. The resulting maps can be used prescriptively to inform an elicitation

procedure: if the expert specifies information in a sensitive region of the elicitation space,

more care should be taken to ensure the accuracy of that information.
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CHAPTER FIVE

Modelling Considerations in Network Meta-Analyses

In this chapter, we address modelling problems in network meta-analysis using sim-

ulated logistic regression data. Specifically, we consider prior specification on the between-

trial standard deviation and baseline modelling.

5.1 Introduction

In this section, we provide a brief overview of meta-analysis and introduce the model

we use for the remainder of the chapter.

5.1.1 A Brief Introduction to Meta-Analysis

Meta-analysis has been defined as the “statistical analysis of a collection of analytic

results for the purpose of integrating the findings” [6]. The purpose is to combine results

from different studies with common goals in order to reach an overarching conclusion.

Meta analyses allow for combining trials with small sample sizes to improve influence.

In effect, the trials borrow strength from one another to gain power. Further, results from

meta-analyses can then be generalized to larger populations. DerSimonian and Laird [12]

point out motivation for meta-analysis:

Such analyses are becoming increasingly popular in medical research 
where information on efficacy of a treatment is available from a number of 
clinical studies with similar treatment protocols. If considered separately, 
any one study may be either too small or too limited in scope to come 
to unequivocable or generalizable conclusions about the effect of treat-
ment. Combining the findings across such studies represents an attractive 
alternative to strengthen the evidence about the treatment efficacy.
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In meta-anlayses, either a fixed-effect or random-effect model should be decided

upon. Fixed effects models assume the studies are homogeneous; that is, there are no dif-

ferences in underlying study populations, patient selection criteria, treatment protocol, etc.

Patients assigned to the same treatment but in different studies are considered indistinguish-

able, at least up to included covariate values. That is, patients are assumed exchangeable

across studies, as discussed in [51]. Random effects models treat study effects as drawn

from a population of such effects. These models “borrow strength” across studies bene-

fiting inference for both the population effect and individual study effects. Here we are

assuming the studies are exchangeable.

Frequentist meta-analysis methods use a weighted average of point estimates (one

from each study), with weights based on the standard errors of the estimates. In the fixed

effect model, the weights are the inverse variances of the estimates. In the random-effect

model, the between-study variation is incorporated into the weights. DerSimonian and

Laird [12] provide a nice discussion of the latter. Bayesian meta-analysis methods are

based on hierarchical models. Priors are elicited for parameters and corresponding hyper-

parameters. Priors become more diffuse as you move up in the hierarchy.

In addition to summarizing studies of the same treatment, the meta-analysis frame-

work has been extended to provide indirect comparisons. Indirect comparisons are of in-

terest when the treatments under comparison differ across studies, and we do not have a

case where all studies compare all treatments. For example, suppose we have three stud-

ies. Study 1 might compare treatments A to B, Study 2 compares treatments B to C, and

Study 3 compares treatments C to D. Network meta-analysis (NMA) provides methods for

comparing A with C and D, as well as B with D. In this chapter, we focus on Bayesian

random-effects models in network meta-analyses.

Suppose, for example, that treatment A is the primary reference. The general model

for random effects, two-arm network meta-analysis is depicted in Figure 5.1. Here, yjk is

data from study j on treatment k. The data model is denoted byD and g is the link function.
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Arrows respresent prior structures. The unknown parameters, θjk, include µjb and δjb,

which represent baseline characteristics and treatment effects, respectively, of treatment b in

study j. We use “after” in an alphabetically-ordered sense. In practice, it is often necessary

to fix m and τµ, and we do so in subsequent sections. Also in subsequent sections, we

consider various priors on 1/
√
τδbk , including the uniform shown in the diagram.

Figure 5.1: A diagram for network meta-analysis.

Network meta-analysis is also known as indirect and mixed treatment comparisons or

multiple treatments meta-analysis. A major resource for network meta-analysis is a series

of papers provided by the Decision Support Unit of the UK’s National Institute for Health

and Clinical Excellence [38]. The July 2013 issue of Medical Decision Making is devoted

to evidence synthesis [15], [13],[14], [18], [16], [17], [1]. More details can also be found

in Welton et al. [52].

5.1.2 Model for Simulations

In all simulations throughout the chapter, we generate data from NS binary regres-

sion models, each with two arms. We assume 4 treatments are of interest: A, B, C, and D,

treating A as the reference treatment. We give the meta-analysis design a star geometry,
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meaning that each study compares A to either B, C, or D. For this reason, results for A

versus B, C, or D are called direct comparisons because there is study data as direct evi-

dence. Alternatively, B vs. C, C vs. D, and B vs. D are known as indirect comparisons and

are obtained by subtracting corresponding direct comparisons. We assume the odds ratios

are of interest, which we denote OR. The odds ratio comparing treatments B and C, for

example, is obtained through:

ORBC = ORAC −ORAB. (5.1)

The relation in (5.1) requires a stringent consistency assumption, meaning that if we had

a direct comparison for B vs. C, it would agree with the indirect comparison. For study

j = 1, ..., NS and treatment k = A, B, C, D, define

pjk = probability in study j of a response to treatment k,

rjk = count in study j of response to treatment k,

and

njk = the number given treatment k in study j.

We simulate m data points from each of the NS study models with

rjk ∼ Bin(pjk, njk). (5.2)

Let µjb and δjbk represent the baseline and relative treatment effects, respectively. The

mean, dbk, of the relative treatment effects is defined as the difference in effects of treat-
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ments b and k. For a Bayesian analysis, we use the following model for all j and k:

logit(pjk) = µjb + δjbkI{k after b},

µjb ∼ N(0, τµ),

δjbk ∼ N(dbk, τ),

dbk = dAk − dAb,

dA· ∼ N(0, τd),

τ = 1/σ2,

(5.3)

and

σ ∼ g(·, ·),

where the normal priors are defined in terms of the mean and precision, and g(·, ·) is a prior

with support a subset of the positive reals. We treat the treatment effects as random. The

odds ratios (OR’s) are of interest. The difference in treatment effects dbk = dAk − dAb is

equal to the log odds ratio log (ORbk). Similarly, the direct effects are dAu = log (ORAu),

u = k, b. Thus, the OR’s have diffuse log-normal induced priors, which we discuss in

detail in Section 5.4. The baseline effect, µjb, includes characteristics from each study not

accounted for in the treatment, such as age, race, and disease stage.

In Section 2, we use a basic model to account for baseline effects, and we focus

on specifying g(·, ·) for the between-trial standard deviation. We investigate an alternative

baseline model in Section 3.

5.2 Between-Trial Heterogeneity

Studies used for meta-analyses may differ in terms of design, methodology, and

sampling error due to differing sample sizes. These differences among studies can pro-

duce between-trial heterogeneity. Potential sources of heterogeneity include, for example,

difference in treatment regimens, patient eligibility criteria, baseline disease severity, and

outcomes [43] . In our model, we capture this heterogeneity in the between-trial standard
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deviation σ. In this section, we detail some problems that can occur in modeling σ. We

compare priors on σ through a simulation study in Section 2.1, and we compare parame-

terization of specified priors on σ in Section 2.2.

Some priors commonly used to model the between-study heterogeneity σ include the

half-normal, log-normal, half-student, uniform, and gamma denoted:

σ ∼ Half-N(0, ψ),

σ ∼ Log-N(0, ρ),

σ ∼ Half-Student(ν, η),

σ ∼ U(0, B),

(5.4)

and

τ ∼ Gamma(ξ, ξ),

respectively. The half-normal prior is the positive half of a N(0, ψ) distribution. That is, if

u ∼ N(0, ψ), then |u| is distributed Half-N(0, ψ). Similarly, the half-student prior is the

positive half of a student-t distribution with density

π(σ) ∝

[
1 +

1

ν

(
σ

η

)2
]−(ν+1)/2

where η is a scale parameter and ν is degrees of freedom. The log-normal is a N(0, ρ)

exponentiated. Finally, the gamma prior is in terms of equal shape and scale parameters

and formulated in the same way as previous chapters. Often, prior parameters are chosen

so as to yield “relatively non-informative” priors. For example, one may take B “large” or

ξ “small”. Such choices can be problematic, as we shall see.

Figure 5.2 shows examples of the first four priors listed above. The middle column

contains graphs of the prior density on σ, and the left and right columns are the resulting

induced priors on the precision, τ , and the variance. The first through fourth rows cor-

respond, respectively, to priors: Half-N(0,1), Log-N(0, 1), Half-Student(10, 1), and U(0,

2).
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Plots for the gamma prior listed last in (5.4) are not included above. Gelman [24]

notes problems with this prior. Choosing small ξ, say ξ = 0.001, induces extremely diffuse

priors on σ and the variance. Such highly diffuse priors are known to cause problems with

convergence because extreme values of σ can be sampled. Further, the corresponding prior

on τ is highly concentrated near the origin implying extreme probability that τ is close to

zero. In effect, the gamma prior on τ is highly informative while the resulting induced prior

on σ is overly diffuse.

Figure 5.2: Density plots on the between-trial standard deviation (S.D.) with induced priors
on the precision and variance.

As with any choice of prior distribution, prior-to-posterior sensitivity analyses are

recommended. Consider choosing the upper bound, B, for the uniform prior in (5.4).

Values of B that are too large can cause convergence problems, but small values of B can
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overly influence the posterior results. For example, suppose we are interested in a 95%

credible interval on a particular odds ratio. We can plot the credible interval against various

values of B, as shown in Figure 5.3 for an hypothetical study. The credible interval widths

stabilize when B = 1.5. This suggests that a value of B around 3 may be a good choice.

Figure 5.3: Credible intervals for an odds ratio from an hypothetical NMA varying with the
upper bound, B, in the uniform prior on σ.

It is also helpful to keep in mind practical values of the parameters and corresponding

implications of the prior specification. Spiegelhalter et al. [49] provide more detail on this

point. For example, consider our model in (5.3) where the log-odds ratios δjbk are assumed

normal with mean dbk and standard deviation σ. Then, 95% of the δjbk’s will be in the

interval dbk ± 1.96σ. Furthermore, the ratio of 97.5th to 2.5th percentiles of the odds ratios

(exp(δjbk)) is exp(3.92σ). Therefore, if we believe that the odds ratios from the various

studies differ by no more than a ratio of 15, we can set exp(3.92σ) equal to 15. This

suggests setting σ = 0.7.
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5.2.1 Prior Specification on Between-Trial Standard Deviation

In this section we investigate the sensitivity of posterior results to the specification

of priors on the between-trail standard deviation, σ, in network meta-analyses. We con-

sider uniform, log-normal, and half-normal priors for g(·, ·) in (5.3). Also, we consider an

informative gamma prior on τ which induces a diffuse inverse-gamma on σ2. We vary the

numbers of studies and study sample sizes. We generate 500 different data sets for each

case and compare average posterior summaries.

Below are results from simulations investigating the consequences of different choices

for g(·, ·) on the random effects standard deviation, σ, in network meta-analyses with

NS = 9 and NS = 18 studies. The 500 datasets are simulated using the true value for

µ simulated from a N(–1, 0.4) distribution. The sample sizes nS and nL vary for each

study, where nS and nL denote small and large sample sizes ranging from [50,100] and

[150,250], respectively. We chose these sample sizes by generating nS and nL from a

U(50, 100) and U(150, 250), respectively, for each study. We set τd = τµ = 0.0001 which

results in extremely diffuse priors on the µ’s and d’s, especially for a logistic model. We

consider the following priors in the simulation: Gamma(0.001, 0.001) on τ , and U(0, 5),

Log-N(0, 0.5032), and Half-N(0, 0.3145) on σ. The log-normal and half-normal priors

were chosen to correspond to standard deviations of 0.8 and 2.4, respectively, correspond-

ing to real examples we recently worked on with industry colleagues. The gamma on the

precision is extremely concentrated around zero inducing a prior on σ that is overly diffuse.

The gamma prior in Figure 5.4 is the prior on σ induced by a Gamma(0.001, 0.001) prior

on τ . The density is approximately uniform on (0, 10100).

Posterior results are found in WinBUGS using 30,000 MCMC iterations following

a burn-in of 10,000 iterations.1 Some cases did not converge after 30,000 iterations.

Therefore, in these cases, sample sizes were increased at random to 1000 which allowed

the chains to converge. This could cause bias toward the study(s) whose sample size was
1 This study was motivated by questions from biopharmaceutical industry colleagues. They needed the

iterations to be kept at 30,000 in order to test a new software package.
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increased to 1000, especially in the cases where sample sizes for all other studies were

between 50 and 100.

Figure 5.4: Density plots of the four priors used for σ in simulations.

The chains that used the Gamma(0.001, 0.001) prior did not converge in OpenBUGS.

Therefore, convergence was attempted in JAGS but was also not reached. Indeed, these

chains produced posterior means for odds ratios of up to 1070. The non-convergence and

large posterior means provide more evidence concerning our warning on gamma priors in

Section 5.2 above. The prior induced on σ could be overly diffuse.

Figure 5.5 exhibits the poor behavior of a chain that used a Gamma(0.001, 0.001)

prior. The chain is for ORBD in the 9-study case with small samples sizes. Notice that

many iterations sample extreme values, as high as 200,000. As we will see, this extreme

behavior is a consequence of the combination of the Gamma(0.001, 0.001) prior on τ and

the overly diffuse normal prior on the treatment effects.
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Figure 5.5: History plot of a chain for ORAB given the Gamma(0.001, 0.001) prior on τ .

The average of 500 posterior means, coverages, and CI lengths are displayed in Table

5.1 below. In all cases, the average posterior means over-estimate the true OR’s. As we

will see, this is a consequence of the overly diffuse normal on the treatment effects. We

discuss this in Section 5.4. For the 18-studies case with large sample sizes, the posterior

means using the uniform prior are closest to the true values. The log-normal prior produces

posterior means closest to the true values in the 6-studies case with small sample sizes.

As expected, the average credible interval lengths decrease as the sample data in-

creases for every prior. Overall, the decrease in interval length leads to decreases in cover-

ages. As the interval shrinks, there is less variability to capture the true OR value. There is

no one prior that substantially out-performed the others. Credible interval lengths and cov-

erages were comparable across all priors. The uniform and inverse-gamma priors provided

the best average posterior means. However, the inverse-gamma prior can produce outlying

means. Also, the uniform prior is simple in its interpretation and implementation.

Note that the choice of µ for these datasets yields well-behaved logistic data. There-

fore, all priors seem to perform well. In the next section, we consider these priors in logistic

datasets with fewer successes and small sample sizes.

5.2.2 Prior Performance in Data with Few Successes

In this section we perform the same simulation as detailed in Section 3.1, but we

make two changes to the 500 simulated data sets. We simulate the data using a mean µ ∼

N(–3, 0.25) yielding logistic data with much fewer successes. Also, we consider meta-
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analyses with NS = 6 and NS = 9 studies and only small sample sizes, which is a data

reduction compared to the above simulation study. Overall, this data is not as well-behaved

as the data in the previous section.

This data immediately led to convergence issues in OpenBUGS. After one million

iterations (with burn-in’s of 250,000), there was non-convergence with every prior. This

forced an increase in the precisions τd and τµ. Non-convergence was still present with

τd = τµ = 0.01. Therefore, in these simulations, we use τd = τµ = 0.1. With this

precision, convergence was still difficult to attain. OpenBUGS produced errors when using

the half-normal prior with both 6 and 9 studies and the uniform prior with 6 studies, and

convergence was not reached in JAGS. As before, convergence was not reached with chains

that used the gamma prior. The simulation using the log-normal with 6 studies converged

after 850 thousand iterations (with a burn-in of 100 thousand) in OpenBUGS. We used 1.5

million iterations with a burn-in of 150 thousand and thin of 25 in JAGS for the log-normal

with 9 studies, and 2.5 million iterations with a burn-in of 350 thousand and thin of 50 for

the uniform with 9 studies. These simulations were not time-efficient; some taking up to

20 minutes for one data-set. Table 5.2 shows averages of the 500 posterior means, 95%

credible interval lengths, and coverages.

The log-normal was the only prior that produced convergent chains using 6 studies.

Convergence was reached only with log-normal and uniform priors in the 9-studies cases.

The log-normal performed better than the uniform prior. Specifically, the posterior means

were closer to the true values and the CI lengths were smaller in the log-normal case.

While convergence was not reached with the Gamma(0.001, 0.001) prior, the values

sampled were not nearly as large as in Section 5.2.1. Recall that, before, we used τd =

0.0001 so that the treatment effects were given a normal prior with 0 mean and a precision

of 0.0001. Here, we use τd = 0.1. Indeed, posterior means for the odds ratios were as large

as 14,000, which is extreme, but much less than the 1070 that we saw before. We discuss

the choice of prior on the treatment effects in Section 5.4.
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All of the average posterior means are positively biased. As we will see, this is due to

the induced prior on the odds ratios given the diffuse normal priors on the treatment effects.

We discuss this further in Section 5.4. Many posterior means are quite a bit larger than the

truth which is cause for concern. Of particular concern, the posterior means estimateORCD

to be greater than 1 in all cases, but ORCD is truly less than 1. This result, especially, could

result in an incorrect decision in practice.

Further, the credible interval lengths are impractically large. As expected, the lengths

are extremely large in the 6-study cases and for the indirect comparisons. In fact, these

may be too large to make any real conclusions in some trials. Suprisingly, for ORAD,

the credible interval lengths are larger in the 9-study cases than in the 6-study cases. To

investigate whether this is due to a few outlying lengths, we have included the median of the

lengths (labeled "Median Length") in Table 5.2. While the difference between the average

and median of the 500 lengths suggests a skewed distribution of lengths, the median lengths

are still larger in the 9-study cases. This can be seen in Figure 5.6 as well.

Average posterior medians are comparable across all priors. This implies that ex-

treme values are being sampled and skewing the posterior causing the larger values of and

variability between the means. The posterior median is robust to the outliers, whereas the

mean is skewed with the distribution. Because there is evidence of skewed posteriors, us-

ing the posterior median as a point estimate rather than the mean is recommended. As

expected, medians using 6 studies diverge more from the truth than those using 9 studies.
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Figure 5.6: Densities of 500 posterior credible interval (CI) lengths for ORAD. The ratios
between mean and median and the maximum CI lengths are specified.

Table 5.2: Posterior simulation results for datasets with few successes and small samples.

σ ∼ Unif τ ∼ Gamma σ ∼ Log-N σ ∼ Half-N
True Values NS = 6 NS = 9 NS = 6 NS = 9 NS = 6 NS = 9 NS = 6 NS = 9

ORAB = 1.221

Mean NA 1.87 NA NA 2.05 1.70 NA NA
Median NA 1.37 NA NA 1.34 1.32 NA NA

Coverage NA 0.994 NA NA 0.992 0.986 NA NA
Length NA 5.86 NA NA 7.66 4.91 NA NA

ORAC = 2.014
Mean NA 3.11 NA NA 3.65 2.83 NA NA

Median NA 2.26 NA NA 2.40 2.20 NA NA
Coverage NA 0.988 NA NA 0.994 0.986 NA NA
Length NA 9.78 NA NA 13.57 8.14 NA NA

ORAD = 1.649
Mean NA 5.95 NA NA 2.90 4.07 NA NA

Median NA 2.26 NA NA 1.85 2.24 NA NA
Coverage NA 0.988 NA NA 0.990 0.994 NA NA
Length NA 28.90 NA NA 11.17 17.17 NA NA

Median Length NA 11.72 NA NA 7.78 11.70 NA NA

ORBC = 1.649
Mean NA 2.23 NA NA 13.95 2.14 NA NA

Median NA 1.66 NA NA 2.97 1.69 NA NA
Coverage NA 0.992 NA NA 0.994 0.980 NA NA
Length NA 6.75 NA NA 64.22 6.01 NA NA

ORBD = 1.350
Mean NA 2.24 NA NA 9.90 3.16 NA NA

Median NA 1.63 NA NA 2.20 1.74 NA NA
Coverage NA 0.990 NA NA 0.992 0.982 NA NA
Length NA 16.30 NA NA 44.81 13.24 NA NA

ORCD = 0.819
Mean NA 2.14 NA NA 3.15 1.67 NA NA

Median NA 0.95 NA NA 1.11 1.01 NA NA
Coverage NA 0.984 NA NA 0.994 0.984 NA NA
Length NA 8.18 NA NA 13.98 6.61 NA NA

σ = 0.500
Mean NA 0.86 NA NA 0.92 0.83 NA NA

Median NA 0.75 NA NA 0.83 0.76 NA NA
Coverage NA 0.958 NA NA 0.970 0.964 NA NA
Length NA 2.23 NA NA 1.76 1.42 NA NA
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Table 5.3 displays results using the same model but with different parameter values.

Specifically, here δAB = δAC = δAD = 0.9 and σ = 0.3. This yields odds ratios for

all direct and indirect comparisons of 2.46 and 1, respectively. The simulations using the

half-normal prior and uniform prior with 6 studies did not converge in JAGS and errored

in OpenBUGS. The gamma cases did not converge as the chain sampled extreme values

similar to those discussed above.

Remaining simulations with 9 studies were run in JAGS. For the uniform prior, we

used 2.5 million iterations with 150 thousand as burn-in and thinned every 50. We ran 1.5

million iterations for the log-normal prior with a burn-in of 150 thousand and thin of 25.

We ran 850 thousand iterations in OpenBUGS for the log-normal prior with 6 studies. This

included a burn-in of 100 thousand and no thinning. The Gelman-Rubin statistic, smooth

posterior densities, and history plots fall provided evidence of converegence in all cases.

Further, autocorrelations plots converge to zero after the necessary thinning.

With this data, the uniform prior resulted in posterior means closest to the true val-

ues. This is similar to the results in Table 5.2. However, here, the credible interval length

between the two 9-study cases are comparable. In Table 5.2, the credible interval lengths

using the uniform prior were larger than those with the log-normal prior.

5.3 Impact of the Parameterization of Priors

In this section, we simulate data sets to test the effect of the parameterization in the

uniform and gamma priors.

5.3.1 Uniform Upper Bound

We first consider a uniform prior on the between-study standard deviation σ so that

σ ∼ U(0, B).
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We fix the lower bound at 0 and investigate the effect of changes in the upper bound B on

the posterior results. To do so, we simulate 100 data sets, each with 9 studies with sample

sizes between 50 and 100, following the model in (5.3) with σ = 0.4. True values of the

other variables and the posterior results are shown in Table 5.4. The true value of µ was

simulated from a normal distribution with mean –2 and standard deviation of 0.25. We

chose this data because datasets from the previous sections did not converge in JAGS or

OpenBUGS usingB = 100. Also, we restricted the data to 9 studies because datasets with

6 studies did not converge.

For the B = 2 case, we used 3.5 million iterations in JAGS with a burn-in of 250

thousand and thinned every 30. For B = 5, we also used a thin of 30 with 1.5 million

iterations and a burn-in of 150 thousand. For the B = 50 and B = 100 cases, we ran

3.5 million iterations in JAGS with a burn-in of 250 thousand and thin of 50. The results

displayed in Table 5.4 are the averages of 100 posterior means, coverages, and 95% credible

lengths.

The simulation results imply that there is no real difference between the uniform

priors with upper bounds of 10, 50 and 100. This is particularly apparent in the B = 50

versusB = 100 cases, as the simulations yield the same results. The slight differences seen

in the B = 10 case can be attributed to Monte Carlo error in the simulations. All results

are biased in the positive direction. It is concerning that the posterior means for ORCD are

above 1 while the truth is below 1. This could yield opposing conclusions in studies based

upon odds ratios. Particular care should be taken when using the uniform prior in logistic

data sets with little successess such as these.
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Table 5.3: More posterior results for simulations with few successes and small samples
sizes.

σ ∼ Unif τ ∼ Gamma σ ∼ Log-N σ ∼ Half-N
True Values NS = 6 NS = 9 NS = 6 NS = 9 NS = 6 NS = 9 NS = 6 NS = 9

ORAB = 2.46

Mean NA 3.18 NA NA 3.86 3.11 NA NA
Median NA 2.57 NA NA 2.70 2.55 NA NA

Coverage NA 0.99 NA NA 1.00 0.988 NA NA
Length NA 8.13 NA NA 13.33 7.97 NA NA

ORAC = 2.46
Mean NA 3.35 NA NA 3.95 3.36 NA NA

Median NA 2.69 NA NA 2.71 2.71 NA NA
Coverage NA 1.00 NA NA 0.996 0.984 NA NA
Length NA 8.79 NA NA 13.99 8.94 NA NA

ORAD = 2.46
Mean NA 2.21 NA NA 4.01 1.97 NA NA

Median NA 1.30 NA NA 2.69 1.29 NA NA
Coverage NA 0.864 NA NA 0.998 0.876 NA NA
Length NA 7.72 NA NA 14.62 7.35 NA NA

ORBC = 1
Mean NA 3.00 NA NA 3.08 3.16 NA NA

Median NA 2.46 NA NA 1.31 2.60 NA NA
Coverage NA 0.786 NA NA 0.998 0.752 NA NA
Length NA 7.51 NA NA 13.83 8.06 NA NA

ORBD = 1
Mean NA 1.97 NA NA 3.06 1.82 NA NA

Median NA 1.19 NA NA 1.27 1.21 NA NA
Coverage NA 0.984 NA NA 1.00 0.992 NA NA
Length NA 6.77 NA NA 13.70 6.61 NA NA

ORCD = 1
Mean NA 1.77 NA NA 3.07 1.79 NA NA

Median NA 1.10 NA NA 1.31 1.20 NA NA
Coverage NA 0.996 NA NA 0.998 0.986 NA NA
Length NA 6.07 NA NA 13.74 6.47 NA NA

σ = 0.300
Mean NA 0.63 NA NA 0.84 0.72 NA NA

Median NA 0.53 NA NA 1.62 0.67 NA NA
Coverage NA 0.978 NA NA 0.816 0.832 NA NA
Length NA 1.77 NA NA 1.62 1.25 NA NA

5.3.2 Gamma Parameters

In this section, we give the precision τ a gamma prior and use simulated data sets

to investigate the effect of the gamma parameterization on the posterior results. We have

already noted problems with the Gamma(0.001, 0.001) which induces an overly diffuse

prior on σ. This implies that σ might take on some impractical extreme values and cause

outliers in the posterior means.
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For completeness, we consider τ ∼ Gamma(0.001, 0.001) again. We also use three

other gamma priors with shape and scale parameters, ξ, of 0.5, 0.1, and 0.01. These pri-

ors have means near 0 with variances of 0.125, 0.001, and 1 × 10−6, respectively. The

Gamma(0.001, 0.001) has variance 1 × 10−9. The smaller the shape and rate parame-

ters, the more concentrated near 0 the prior on τ , and the induced prior on σ is more

diffuse. The Gamma(0.5, 0.5) and Gamma(0.1,0.1) priors on τ induce priors on σ with

means of approximately 9.31 and 2.7×1018 and variances of approximately 20,600 and

2.4×1041, respectively. The resulting induced priors on σ from both the Gamma(0.01,0.01)

and Gamma(0.001, 0.001) priors have means of infinity. The Gamma(0.001, 0.001) prior

induces a density on σ that is approximately uniform on 0 to 10100, and the Gamma(0.01,

0.01) induces a density on σ that is approximately uniform on 0 to 1018. (All means, vari-

ances, and densities computed numerically in R). While prior variances are extremely large,

representing large uncertainty, prior means are also extremely large. This is evidence that

these priors exhibit extreme positive bias.

Using 100 simulated data sets with µ ∼ N(–3, 0.25), σ = 0.5, dAB = 0.1, dAC =

0.85, and dAD = 0.4, we obtain the average of 100 posterior means, coverages, and 95%

credible interval lengths using the various gamma priors on τ in OpenBUGS. The gamma

priors with ξ = 0.01 and ξ = 0.001 did not converge after 1.5 million iterations. For the

chains using ξ = 0.1 and ξ = 0.5, we used 1.5 million including a burn-in of 100,000 iter-

ations in OpenBUGS. Table 5.5 shows the averages of the 100 posterior means, coverages,

and 95% credible intervals lengths.

All posterior means are positively biased. As we shall see in Section 5.4, this bias

may partially be due to the induced priors on the odds ratios. Of particular concern are

the posterior means estimating ORCD. The truth and the means fall on opposite sides of 1

which could yield opposing study conclusions. In the ξ = 0.1 case, posterior means for the

odds ratios corresponding to relative treatment effects are extremely large. Setting ξ = 0.5,

versus ξ = 0.1, results in posterior means that are much closer than the truth, nearly a
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fifth of the extreme mean values resulting from ξ = 0.1. However, these posterior results

still exhibit large positive bias. Further, the credible interval lengths of all odds ratios are

extremely large, resulting in coverages of 1. Clearly, the highly informative gamma priors

on τ for modeling between-study heterogeneity needs careful consideration and may not

be a good choice for this type of data.

Table 5.4: Posterior results for uniform prior simulations.

True Values B = 2 B = 10 B = 50 B = 100

ORBC = 1.649
Mean 1.90 1.97 1.97 1.97

Median 1.69 1.73 1.74 1.74
Coverage 0.98 0.97 0.96 0.96
Length 3.71 3.93 3.81 3.81

ORBD = 1.350
Mean 1.88 2.29 2.31 2.31

Median 1.47 1.67 1.65 1.65
Coverage 0.98 0.98 0.98 0.98
Length 5.38 6.64 6.51 6.51

ORCD = 0.819
Mean 1.17 1.23 1.17 1.17

Median 0.90 0.90 0.88 0.88
Coverage 0.99 0.98 0.98 0.98
Length 3.37 3.47 3.15 3.15

ORAB = 1.221
Mean 1.55 1.39 1.44 1.42

Median 1.37 1.21 1.26 1.26
Coverage 0.94 0.98 0.96 0.96
Length 3.12 2.89 2.86 2.86

ORAC = 2.014
Mean 2.38 2.48 2.56 2.56

Median 2.12 2.17 2.24 2.24
Coverage 0.99 0.99 0.98 0.98
Length 4.55 4.98 5.17 5.17

ORAD = 1.649
Mean 2.31 3.00 2.99 2.99

Median 1.81 2.14 2.13 2.13
Coverage 0.97 0.98 0.98 0.98
Length 6.42 8.86 8.89 8.89

σ = 0.500
Mean 0.53 0.57 0.54 0.54

Median 0.47 0.49 0.46 0.46
Coverage 0.96 0.96 0.97 0.97
Length 1.27 1.46 1.41 1.41
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5.4 Induced Priors on the Odds Ratios

We have noted the potential danger of the induced prior on the odds ratios. Indeed,

the induced prior gives too much weight to extremely large positive values which could

skew the posterior in the positive direction. In this section, we discuss the induced priors

on the odds ratios and investigate the impact on posterior results in our model (5.3).

Table 5.5: Posterior results for gamma prior simulations.

ξ : 0.001 0.01 0.1 0.5

ORAB = 1.12

Mean NA NA 3.07 1.77
Median NA NA 1.08 1.13

Coverage NA NA 1.00 1.00
Length NA NA 16.21 6.78

ORAC = 2.34

Mean NA NA 5.57 3.39
Median NA NA 2.06 2.21

Coverage NA NA 1.00 1.00
Length NA NA 29.44 12.75

ORAD = 1.49

Mean NA NA 3.65 2.17
Median NA NA 1.31 1.40

Coverage NA NA 1.00 1.00
Length NA NA 19.26 8.23

ORBC = 2.12

Mean NA NA 42.88 8.90
Median NA NA 2.75 2.71

Coverage NA NA 1.00 1.00
Length NA NA 151.28 41.13

ORBD = 1.35

Mean NA NA 27.94 6.04
Median NA NA 1.75 1.69

Coverage NA NA 1.00 1.00
Length NA NA 102.66 27.29

ORCD = 0.64

Mean NA NA 11.92 2.30
Median NA NA 0.79 0.79

Coverage NA NA 1.00 1.00
Length NA NA 38.90 10.39

σ = 0.40

Mean NA NA 2.45 1.35
Median NA NA 2.28 1.25

Coverage NA NA 0.00 0.00
Length NA NA 3.14 1.90
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Recall that the mean treatment effects, dbk are log odds ratios so that ORbk =

exp(dbk) = exp(dAk − dAb) where dAk and dAb are direct effects assumed to be distributed

N(0, τd). Therefore, the induced prior on the odds ratio corresponding to direct effects,

ORAu, is log-normal with mean 0 and precision τd. The mean relative effects, dbk, are

N(0, τd/2). Thus, the induced prior on the odds ratio is ORbk ∼ LN(0, τd/2). When

τd = 0.1, as in Section 5.2.2, this induced prior is nearly uniform over 0 to 50,000. Setting

τd = 0.0001, as in Section 5.2.1, induces a prior on ORbk that is approximately uniform

from 0 to 10100.

At first thought, the uniform nature of the induced prior may seem appealing because

of the uniform’s typical use as a non-informative prior. However, this prior, LN(0, τd/2),

gives as much probability to extremely large values as to decimal values of ORbk. Thus,

ORbk is equally likely to take on values of, say, 45, 000 as it is to be 0.01. An odds ratio of

45, 000 is impractical, to say the least.

Further, the induced prior, say LN(0, 0.0001/2), gives much greater probability to

values of ORbk that are greater than 1 than below 1. This is problematic considering a

typical study success criterion depends on which side of 1 ORbk is. To see this simply, we

approximate LN(0, 0.0001/2) as a uniform prior on 0 to 10100. Then, the prior probability

that ORbk < 1 is 10−100. The prior probability that ORbk > 1 is equal to 1− 10−100 which

is so large that it is approximately 1. Figure 5.7 illistrates this graphically. The graph of

the induced prior on ORbk is amplified, displayed from 0 to 100, in order to see the small

shaded probability that ORbk is less than 1.
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Figure 5.7: The induced prior, displayed from 0 to 100, on the odds ratio. The shaded region
denotes the probability that the odds ratio is less than 1.

5.4.1 Effect on Posterior Results

In this section, we use simulated data sets to investigate the consequences of the odds

ratio’s induced prior on the posterior results. The simulated data follows the model in (5.3)

with τµ = 0.1 andNS = 9 studies, each with a sample size between 50 and 100. The sample

size for each study was chosen by generating a random number from U(50, 100). The mean

µ was generated from a N(−3, 0.25) distribution, and we set dAB = 0.2, dAC = 0.7, and

dAD = 0.5. In effect, these simulated data are similar to those resulting in Table 5.2 in

Section 5.2.2.

Recall in previous section we used normal priors on the direct treatment effects dAd

and dAk with mean 0 and precision, τd, equal to 0.0001 or 0.1. As discussed above, these

result in unrealistically diffuse induced priors on the odds ratios. Here, we consider normal

priors with 0 means and precisions, τd, of 0.25, 1, and 2. The priors are shown in Figure

5.8. The induced prior on the odds ratio resulting from the 0.25 precision is extremely

diffuse, with its right tail stretching to near one million.
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Figure 5.8: Induced priors on the odds ratio given diffuse normals on the treatment effects.

We ran the simulations in JAGS using 3.5 million iterations including 250,000 burn-

in and thinned every 50. The only exception was the gamma case with the N(0, 0.25) prior,

which ran in OpenBUGS with 500,000 iterations including a burn-in of 100,000 and thin

of 10. The average of the 100 posterior means, medians, 95% credible interval lengths,

and coverages are in Table 5.6. The gamma case with the N(0, 0.25) prior behaves the

worst with extremely large posterior means and credible interval lengths. As expected, the

posterior means are positively skewed. Indeed, the posterior medians, for this case, all

under-estimate the true odds ratios.

Of particular interest are the results for ORCD. This odds ratio is below one. It

is important for the analysis to capture that because, often, a study’s success depends on

which side of one an odds ratio falls. As the prior on the treatment effects gets less diffuse,

the posterior means ofORCD get closer to 1 but still do not fall below 1, as we would hope.

The posterior medians are better estimates in most cases. Indeed the posterior medians of

ORCD are below 1 in most cases, though not far below 1.
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The posteriors for the odds ratios in the N(0, 0.25) case were skewed by such large

outliers, that the densities were unrecognizable. In all odds ratios, the tails of the corre-

sponding posterior distributions were extremely stretched in the positive direction, so much

so that the peak of the density was squeezed into the far left and not interpretable. Figure

5.9 displays posterior densities on ORBD in the first simulated data set. Normal priors (in

terms of mean and precision) on corresponding the treatment effect dBD = log(ORBD) are

noted in top right corners. From left to right, normal priors on dBD are increasingly diffuse

making the posteriors on ORBD increasingly skewed right.

Table 5.6: Posterior simulation results regarding the induced prior on the odds ratio.

dAu ∼ N(0, 0.25) dAu ∼ N(0, 1) dAu ∼ N(0, 2)
Prior on heterogeneity: U G LN U G LN U G LN

ORAB = 1.221

Mean 1.68 6.65 1.63 1.41 1.63 1.41 1.29 1.28 1.29
Median 1.31 0.99 1.31 1.22 0.99 1.22 1.16 1.00 1.15

Coverage 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Length 4.86 45.28 4.43 3.17 6.82 3.15 2.46 3.72 2.48

ORAC = 2.014

Mean 2.82 6.95 2.77 2.14 1.65 2.14 1.80 1.29 1.79
Median 2.24 1.03 2.25 1.88 1.01 1.86 1.64 1.00 1.61

Coverage 0.98 1.00 0.98 0.99 1.00 1.00 0.97 1.00 0.97
Length 7.84 47.26 7.35 4.59 6.93 4.62 3.33 3.75 3.36

ORAD = 1.649

Mean 4.06 6.64 3.77 2.42 2.73 2.43 1.91 1.66 1.91
Median 2.31 0.99 2.33 1.81 1.02 1.81 1.55 1.01 1.53

Coverage 0.98 1.00 0.98 1.00 1.00 0.99 1.00 1.00 1.00
Length 17.11 45.18 15.19 7.78 15.90 7.80 5.19 6.97 5.26

ORBC = 1.649

Mean 2.19 48.81 2.16 1.77 1.63 1.77 1.55 1.28 1.54
Median 1.75 1.05 1.76 1.55 1.00 1.54 1.40 1.00 1.39

Coverage 0.98 1.00 0.99 0.98 1.00 0.99 0.98 1.00 0.99
Length 6.09 235.39 5.73 3.87 6.85 3.90 2.92 3.72 2.95

ORBD = 1.350

Mean 3.06 45.64 2.83 2.00 2.69 2.00 1.65 1.65 1.65
Median 1.76 1.00 1.78 1.48 1.00 1.48 1.32 1.00 1.32

Coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Length 12.64 224.89 11.32 6.47 15.71 6.50 4.53 6.93 4.59

ORCD = 0.819

Mean 1.75 43.46 1.59 1.32 2.65 1.31 1.19 1.63 1.19
Median 1.03 0.96 1.03 0.98 0.99 0.98 0.96 0.99 0.96

Coverage 0.98 1.00 0.98 1.00 1.00 0.99 1.00 1.00 1.00
Length 7.04 213.89 6.08 4.28 15.44 4.20 3.28 6.87 3.29

σ = 0.50

Mean 0.85 16.95 0.82 0.78 16.97 0.79 0.78 16.96 0.79
Median 0.75 16.05 0.77 0.69 16.06 0.74 0.69 16.04 0.74

Coverage 0.96 0.00 0.97 0.98 0.00 0.97 0.98 0.00 0.98
Length 2.12 18.14 1.38 1.92 18.28 1.31 1.88 18.26 1.29
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Figure 5.9: Posterior densities for ORBD. Normal priors (in terms of mean and precision)
on corresponding the treatment effect dBD = log(ORBD) are shown in top right corners.

5.5 Meta-Regression to Model the Baseline

In this section, we extend the model in (5.3) to include a covariate C so that:

logit(pjk) = µjb + βCj + δjbkI{k after b} (5.5)

where I{k after b} equals 1 if the kth study is “after” the bth and 0 otherwise. The under-

lined section of (5.3) is considered the baseline model. The baseline model is also known

as the underlying risk and may explain study characteristics such as patient age and medical

history. Such underlying characteristics can affect treatment. While random effects models

can be used to capture such between-trial heterogeneity, the inclusion of covariates help to

explain the source of the heterogeneity. This is known as meta-regression. In this section,

we investigate the use of meta-regression on the posterior results. We run simulated data

sets using the full model in (5.5), a model ignoring the covariate, and a model ignoring

the baseline effects. For the model ignoring the covariate, we eliminate βCj from (5.5).

To ignore the baseline effects, we give each µjb an independent diffuse normal prior with

mean 0 and precision 0.1.
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5.5.1 Meta-Regression Simulations

We simulate 100 datasets each with a sample size of 100 corresponding to the model

in (5.5) with β = 3. As before, we consider 4 treatments, but we increase the number

of studies to NS = 30. The true value of µ is simulated from a N(−1, 0.252) distribu-

tion. Also, we deviate slightly from the model in (5.3) by giving µ a heirarchical model.

Specifically, µ ∼ N(m, τm) where τm = 1/σm. The hyperparameters m and σm are given

N(0, 102) and U(0,2) priors, respectively. We fit the baseline and relative treatment effects

simultaneously using in WinBUGS. The WinBUGS models are in the appendix. Table 5.7

displays the average of 100 posterior means, coverages, and 95% credible interval lengths

using 4 million MCMC iterations in JAGS with a burn-in of 200 thousand and thinning

every 50 to alleviate autocorrelation.

Posterior means for all of the odds ratios, except for ORAB, are closest to the truth

when using the full model. The unexpected result for ORAB is most likely due to MCMC

error and suggests that there is no real difference between the models for for ORAB. Over-

all, the model ignoring the covariate performs slightly better than the one ignoring the

baseline in terms of posterior means. We may begin to see more divergence between these

results with more simulations with larger sample sizes.

Posterior credible interval lengths widen from the full model to the model ignoring

the covariate to the model ingoring the baseline. This is expected because there is increased

uncertainty in each model. The average coverage is high, above 95%, in each model for all

parameters. Also, the median is closer to the truth than the mean in all cases.
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Table 5.7: Posterior results for n = 100, NS = 30, and β = 3.

True Values Full model Ignoring covariate Ignoring baseline

ORAB = 1.22
Mean 1.374 1.371 1.369

Median 1.277 1.271 1.269
Coverage 0.970 0.990 0.970
Length 2.054 2.092 2.105

ORAC = 2.01
Mean 2.276 2.298 2.299

Median 2.106 2.123 2.124
Coverage 0.960 0.970 0.960
Length 3.512 3.582 3.600

ORAD = 1.65
Mean 2.085 2.150 2.166

Median 1.797 1.843 1.853
Coverage 0.960 0.950 0.960
Length 4.541 4.777 4.853

ORBC = 1.65
Mean 1.811 1.845 1.845

Median 1.676 1.702 1.703
Coverage 0.960 0.960 0.960
Length 2.767 2.879 2.885

ORBD = 1.35
Mean 1.688 1.756 1.767

Median 1.455 1.501 1.509
Coverage 0.960 0.960 0.960
Length 3.673 3.933 3.980

ORCD = 0.82
Mean 1.027 1.063 1.068

Median 0.884 0.905 0.908
Coverage 0.950 0.950 0.940
Length 2.233 2.412 2.438

σ = 0.500
Mean 0.569 0.561 0.564

Median 1.277 1.271 1.269
Coverage 0.950 0.970 0.970
Length 0.931 0.974 0.980
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5.6 Conclusion

In this chapter, we used simulated logistic datasets to investigate the affect of prior

choices on the posterior results. We focused on prior specifications regarding the between-

trial heterogeneity. We looked at four commonly-used diffuse priors in Section 5.2 and

concentrated on parameter choices for the uniform and gamma priors in Section 5.3. In

Section 5.4, we found that the induced prior on the odds ratio may cause positive bias.

In Section 5.5, we considered meta-regression and consequences of ignoring the covariate

and/or the baseline in the baseline model.

Overall, the resulting posterior means were substantially biased in the positive direc-

tion for all simulations with little data. To simulate datasets with little data, we used logistic

data with small means and relatively few studies with small sample sizes. Further credi-

ble interval lengths were large overall. Our simulations provide evidence that much care

should be taken in modeling small logistic datasets with few successes in meta-analyses. In

particular, the extremely informative prior on τ and the diffuse normal priors on the treat-

ment effects are problematic. However, there were no priors that performed well for these

data. Perhaps even fixed-effects models would be a wise choice in cases such as these.
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APPENDIX A

Chapter Two Appendix

A.1 Parametric PHM Assumption Checks

As discussed in Klein and Moeschoberger [33], the proportional hazards and the

parameteric survival times assumption can be tested graphically. Throughout the examples

in this chapter, we used an R function called WeibullDiag to do so. Note that the

exponential distribution is a specific case of the Weibull distribution, and the Weibull PHM

can be expressed as an accelerated failure time (AFT) model. Details on this are discussed

in Section 3.1. The AFT model represents the log cumulative hazard as a linear function of

the log survival times. Therefore, to test the Weibull (or exponential) PHM assumptions,

the log cumulative hazard (produced using Kaplan-Meier estimates) is plotted against the

log survival times for each representation of the categorical variable. If the assumptions

hold, the plot should be linear and parallel. An example diagnostic plot is shown below.

The example plot shows that the Weibull PHM assumptions hold.
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A.2 Code to Find Induced Priors

# input expert best guesses in ascending order

# For one binary covariate model, only 2 modes

modes <- c(65, 60, 45, 40)

# input expert upper bounds in ascending order

# For one binary covariate model, only 2 pctiles

pctiles <- c(92, 87, 75, 70)

# input the percentile to which to set the upper bounds

pct <- .75

# find gamma parameters for priors on conditional means (m)

# or medians (tm) using the expert info

xi1 <- xi2 <- NULL

for(i in 1:length(modes)){

xi1[i] <- elicit_gamma(modes[i], pct, pctiles[i],

"less" )[1]

xi2[i] <- elicit_gamma(modes[i], pct, pctiles[i],

"less" )[2]

}

xi1; xi2

# sample from the gamma priors

# on condtional means (m) or medians (tm)

n <- 100000

m <- matrix(NA, n, length(modes))
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tm <- matrix(NA, n, length(modes))

for(i in 1:length(modes)){

m[,i] <- rgamma(n, shape = xi1[i],

scale = xi2[i]) # means

tm[,i] <- rgamma(n, shape = xi1[i],

scale = xi2[i]) # medians

}

##### EXP CMP ######

# sample induced values

e.m.beta <- matrix(NA, n, length(modes))

e.m.HR <- matrix(NA, n, length(modes))

e.m.gam <- 1/m[,1]

for(i in 2:length(modes)){

e.m.beta[,i] <- log(1/(e.m.gam*m[,i]))

e.m.HR[,i] <- exp(e.m.beta[,i])}

##### EXP MEDIAN ######

# sample induced values

e.med.beta <- matrix(NA, n, length(modes))

e.med.HR <- matrix(NA, n, length(modes))

e.med.gam <- log(2)/tm[,1]

for(i in 2:length(modes)){

e.med.beta[,i] <- log(log(2)/(e.med.gam*tm[,i]))

e.med.HR[,i] <- exp(e.med.beta[,i])}

###### WEIB CMP #########
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# sample induced values

k=3; lambda<-runif(n, 0, (log(2)/k))

w.m.beta <- matrix(NA, n, length(modes))

w.m.HR <- matrix(NA, n, length(modes))

w.m.r=c(); m0 <- m[,1]

for(i in 1:length(m0)){

f<- function(x)

{-((x^(-1))*log(lambda[i]))+lgamma(1+(1/x))-log(m0[i])}

w.m.r[i]= uniroot.all(f, c(0.01,100000))}

for(i in 2:length(modes)){

w.m.beta[,i]=log(((m[,i]/gamma(1+(1/w.m.r)))^

(-w.m.r))/lambda)

w.m.HR[,i]<-exp(w.m.beta[,i])}

###### WEIB MEDIANS ##########

# sample induced values

k=3; lambda<-runif(n, 0, (log(2)/k))

w.med.beta <- matrix(NA, n, length(modes))

w.med.HR <- matrix(NA, n, length(modes))

for(i in 2:length(modes)){

w.med.r <-(log(log(2)/lambda))/(log(tm[,1]))

w.med.beta[,i] <- log((log(2))/(lambda*

((tm[,i])^w.med.r)))

w.med.HR<-exp(w.med.beta[,i])}

\section{OpenBUGS Models for Posterior Analysis}

### EXPONENTIAL PHM WITH ONE BINARY COVARIATE ###
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# OpenBUGS model

ephm <- function(){

tm0 ~ dgamma(k0, s0)

tm1 ~ dgamma(k1, s1)

s0 <- 1/theta0

s1 <- 1/theta1

gamma <- log(2)/tm0

beta <- log((log(2))/(gamma*tm1))

# Approximate Independent Priors

# gamma ~ dlnorm(-4.65, 9.77)

# beta ~ dnorm(-.127, 3.97)

# Likelihood of the survival time data

for (j in 1:N) {

HR[j] <- exp(Z[j]*beta)

rate[j] <- gamma*HR[j]

t[j] ~ dexp(rate[j])%_%I(t.cen[j],)

# the "%_%" is a dummy to prevent R errors

}

}

##### WEIB PHM WITH ONE BINARY COVARIATE ####

# OpenBUGS model

wphm <- function(){

# priors

tm0 ~ dgamma(k0, s0)
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tm1 ~ dgamma(k1, s1)

s0 <- 1/theta0

s1 <- 1/theta1

lambda ~ dunif(0, B)

B <- log(2)/d

# induced priors

# r <- (log(log(2)/lambda))/(log(tm0))

# beta <- log(log(2)/(lambda*pow(tm1,r)))

# Approximate Independent Priors

# r ~ dexp(4.31)%_%T(.3,) # "%_%" is a dummy

# beta ~ dnorm(-0.07, 22.7) # precision

# Likelihood of the survival time data

for (j in 1:N) {

HR[j] <- exp(Z[j]*beta)

Scale[j] <- lambda*HR[j]

t[j] ~ dweib(r,Scale[j])%_%I(t.cen[j],)

}

}
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APPENDIX B

Chapter Three Appendix

B.1 Example of Prior ESS Calculation Using Poisson Sampling

Morita et al. define the prior ESS as the m that minimizes the distance

|Dp(λ)−Dq(m,λ, ym)| (B.1)

whereDp(λ) and Dq(m,λ, ym) are defined as follows.

Dp(λ) =
−∂
∂λ2

log(π(λ | λ̃)) (B.2)

where π(λ | λ̃) is the prior on the parameter of interest λ given hyperparameters λ̃.

Dq(m,λ, ym) =
−∂
∂λ2

log(qm(λ | λ0, ym)) (B.3)

where qm(λ | λ0, ym) ∝ q0(λ | λ̃)
∏
i = 1mf(y | λ) given the hypothetical vague prior

q0(λ | λ̃) (Morita et al. provide suggestions for the hypothetical vague prior) and f(y | λ)

the likelihood of the current data.

The hypothetical prior follows the suggestion in Morita et al.:

q0(λ | λ̃) = λa0
∑
y0i/c exp(

−a0n0λ

c
) (B.4)

where c is large in order to inflate the variance. That is, the vague prior is a gamma with

the same hyperparameters as the power prior divided by a constant c. Therefore,

Dp(λ) =
a0

∑
y0i

λ2
(B.5)

and

Dq(m,λ, ym) =
−∂
∂λ2

log

{
λa0

∑
y0i/c exp(

−a0n0λ

c
) exp(−λm)λ

m∑
i=1

yi

}

=
a0

∑
y0i

cλ2
−

m∑
i=1

yi

λ2

(B.6)
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So, the distance δ(m) to be minimized for the prior ESS calculation is

δ(m) =

∣∣∣∣ 1

cλ2

(
(c− 1) a0

n0∑
i=1

y0i − c
m∑
i=1

yi

)∣∣∣∣ (B.7)
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APPENDIX C

Chapter Four Appendix

C.1 Sensitivity Indicatrices for Lower Percentiles

Figure C.1: Sensitivity indicatrix using the `1 metric and ξ = 0.90.
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Figure C.2: Sensitivity indicatrix using the `1 metric and ξ = 0.80.
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Figure C.3: Sensitivity indicatrix using the `1 metric and ξ = 0.75.

C.2 Code – Elicitation Maps

library(glmcmp)

library(ggrepel)

library(dplyr)

library(grid)

n <- 100

r <- .02

pct <- .95; mm <- .9
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make_l2_ball <- function(center, radius=r, n=n){

x <- center[1]; y <- center[2]

t <- seq(0, 2*pi, length.out = n+1)[-(n+1)]

data.frame(x = x + radius*cos(t), y = y + radius*sin(t))

}

##### make mode-percentile grid, look at image

centers <- expand.grid(

mode = seq(.05, mm, .05),

pctile = seq(.05, mm, .05)

) %>%

filter(mode < pctile) %>% filter(round(mode,2) != round(pctile,2))

# any mode is less than or equal to its corresponding (pctile - 0.5)

labels <- centers$label <- 1:nrow(centers)

centers_image <- centers %>%

select(mode, pctile) %>%

apply(1, function(v){

v <- unname(v)

elicit_beta(mode = v[1], pctile = v[2], pct = pct,

side = "less", U = 1000)

}) %>% t %>% as.data.frame %>%

mutate(label = labels)

centers_image$label <- labels

centers_df <- data.frame(mode_cent = centers$mode,

pctile_cent=centers$pctile,
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centerESS= centers_image$alpha+centers_image$beta)

l2_balls <- centers %>%

select(mode, pctile) %>%

apply(1, make_l2_ball, radius = r, n = n) %>%

bind_rows %>%

mutate(label = rep(labels, each = n))

# transform all of the circle boundary points into the

# standard parameter space (alpha-beta)

l2_balls_images <- l2_balls %>%

select(-label) %>%

apply(1, function(v){

v <- unname(v)

elicit_beta(mode = v[1], pctile = v[2], pct = pct,

side = "less", U = 1000)

}) %>% t %>% as.data.frame %>%

mutate(label = rep(labels, each = n))

#### Calculate ESSs

images_df <- mutate(l2_balls_images,

"ESS"=l2_balls_images$alpha + l2_balls_images$beta)

maxESSdiff <- NULL

for(i in 1:nrow(centers)){

images <- filter(images_df, images_df$label==i)

center <- filter(centers_image, centers_image$label==i)
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centerESS <- center$alpha + center$beta

maxESSdiff[i] <- max(abs(images$ESS-centerESS))

}
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