
ABSTRACT

Forcing ℵ1-Free Groups to Be Free
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Mentor: Daniel Herden, Ph.D.

ℵ1-free groups, abelian groups whose countable subgroups are free, are objects of

both algebraic and set-theoretic interest. Illustrating this, we note that ℵ1-free groups,

and in particular the question of when ℵ1-free groups are free, were central to the

resolution of the Whitehead problem as undecidable. In elucidating the relationship

between ℵ1-freeness and freeness, we prove the following result: an abelian group G

is ℵ1-free in a countable transitive model of ZFC (and thus by absoluteness, in every

transitive model of ZFC) if and only if it is free in some generic model extension. We

would like to answer the more specific question of when an ℵ1-free group can be forced

to be free while preserving the cardinality of the group. For groups of size ℵ1, we

establish a necessary and sufficient condition for when such forcings are possible. We

also identify both existing and novel forcings which force such ℵ1-free groups of size

ℵ1 to become free with cardinal preservation. These forcings lay the groundwork for

a larger project which uses forcing to explore various algebraic properties of ℵ1-free

groups and develops new set-theoretical tools for working with them.
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CHAPTER ONE

Introduction

ℵ1-free groups, abelian groups whose countable subgroups are free, are objects

of both algebraic and set-theoretic interest. They played a critical role in Shelah’s

celebrated resolution of the Whitehead problem, the question of whether there exist

any non-free abelian groups A with ExtpA,Zq “ 0 [11]. Such groups are known as

Whitehead groups, and the Whitehead problem asks whether every Whitehead group

is free. It can be shown algebraically that every Whitehead group is ℵ1-free. Shelah

proved that the Whitehead problem was undecidable within ZFC by demonstrating

that it is undecidable whether every ℵ1-free Whitehead group of size ℵ1 is free.

This remarkable result represented the first time a seemingly purely algebraic

problem was proved to be undecidable, and came as a great surprise to many in

the mathematical community. ℵ1-free groups and their properties, particularly those

pertaining to the relationship between ℵ1-freeness and freeness, seem to lie at the heart

of this undecidability. It is from this observation that we launch the investigations

that comprise this work.

The core question that we investigate in this work is when an ℵ1-free group can

be forced to be free. Forcing is a set-theoretical technique developed by Paul Cohen

in 1963 to prove the independence of the Continuum Hypothesis r5s, and which is

the standard method of generating consistency and independence results. The general

method of forcing involves constructing, from some suitable ground model M of ZFC,
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a model extension MrGs having specific prescribed properties, or in which a desired

proposition holds. The central result of this dissertation provides a necessary and

sufficient condition under which ℵ1-free groups of size ℵ1 can be forced to be free

while preserving the cardinality of the group. The question of cardinal preservation

is an important one, as cardinality can sometimes vary between the ground model

and the extension depending upon the forcing. In the case of forcing an ℵ1-free group

to be free, this can be accomplished rather trivially by forcing the cardinality of

the group to become countable. However, we seek a forcing which adds a basis to

the ℵ1-free group while making minimal changes to the ground model. We explore

both established and novel forcings which make such ℵ1-free groups free with cardinal

preservation, thus providing a number of different ways in which to generate various

model extensions which add a basis to an ℵ1-free group.

The results contained here constitute the groundwork of a larger proposed program

investigating various forcings related to ℵ1-free groups. Due to the unique positioning

of ℵ1-free groups in the intersection between algebra and set theory, such an inves-

tigation could point to the development of new set-theoretical tools for constructing

algebraic objects with various prescribed properties.

1.1 Two Perspectives: ℵ1-Free Groups in Algebra and Set Theory

From an algebraic point of view, the class of ℵ1-free groups displays a significant

degree of complexity, as demonstrated by the test of ring realization. However, from

a set-theoretical perspective, ℵ1-free groups are rather simple objects, as evidenced

by the absoluteness of ℵ1-freeness, which will be proved in this work. We propose
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forcing as a tool through which to bridge the gap between the algebraic and set-

theoretical perspectives. In particular, in identifying and developing a number of

different forcings related to ℵ1-free groups, we can explore the algebraic diversity of

ℵ1-free groups within the set-theoretical framework provided by forcing. For example,

the characterization that we give of “turbid groups” provides an algebraic description

of a class of ℵ1-free groups which can be thought of as “universally non-free” (subject

to the requirement of cardinal preservation) in the sense that they cannot be made

free in any model extension without collapsing the size of the group to countable.

This dissertation in particular focuses on forcings which make certain ℵ1-free groups

free, but future work would broaden this investigation to other properties of ℵ1-free

groups.

The class of ℵ1-free groups exhibits a high degree of diversity. One standardized

test of the algebraic complexity of a class is ring realization: Dugas and Göbel [7] and

Corner and Göbel [6] show that any ring with free additive structure can be realized

as the endomorphism ring of some ℵ1-free group. This can be interpreted as a strong

statement of algebraic complexity: almost any property that does not contradict

ℵ1-freeness outright will be realized by some ℵ1-free group. In particular, we can

construct arbitrarily large ℵ1-free groups A such that EndpAq – Z, indicating that

the class of ℵ1-free groups is significantly different from the class of free groups, for

which every endomorphism is uniquely determined by the images of its basis elements

(and thus the endomorphism ring of a rank κ free group will have size 2κ).

Yet set-theoretically, ℵ1-free groups can be thought of as somewhat simple objects.

One important set-theoretic property of ℵ1-freeness which demonstrates this is its
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absoluteness, which is proved in Chapter 2 of this work. The absoluteness of ℵ1-

freeness states that if an abelian group H is ℵ1-free in some transitive model of ZFC,

then H is ℵ1-free in any transitive model of ZFC containing H. It is properties such

as this absoluteness that make ℵ1-free groups particularly susceptible to set-theoretic

techniques.

In the wake of Shelah’s result that the question of whether there exist any non-free

Whitehead groups is undecidable from ZFC, set-theoretic prediction principles and

axioms have become widely accepted tools for ℵ1-free constructions. We propose that

a thorough investigation into the family of forcings relating to ℵ1-free groups could

yield novel set-theoretic principles which can be used for constructing ℵ1-free groups

with prescribed properties.

1.2 The Relationship Between ℵ1-Freeness and Freeness

Clearly, any free group is also ℵ1-free, as subgroups of free groups are free. How-

ever, the converse is not true, as the direct product of countably many infinite cyclic

groups, known as the Baer-Specker group Zω, provides an example of a group which

is ℵ1-free but not free, as proved by Baer and Specker r2, 12s.

However, an ℵ1-free group can be made free in a suitable model extension. The ab-

soluteness of ℵ1-freeness offers this novel, set-theoretic characterization of ℵ1-freeness:

that G is ℵ1-free in a countable transitive model M of ZFC if and only if G is free in

some transitive model extension of M. This result is the main result established in

Chapter 2.
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We conclude Chapter 2 by presenting other applications and consequences of the

absoluteness of ℵ1-freeness and of the central characterization presented in that chap-

ter. In particular, we observe that this absoluteness result and characterization offers

a new method of proof, one which can be used to prove novel results, or to offer novel

proofs of established theorems. To illustrate this potential, we present simple new

proofs of two established results relating to particular algebraic properties of ℵ1-free

groups, using the absoluteness of ℵ1-freeness.

1.3 Forcing an ℵ1-Free Group to be Free

The novel characterization of ℵ1-freeness given in Chapter 2 provides a jumping-

off point from which we begin our deeper investigation into model extensions with the

property that any particular ℵ1-free group becomes free. Indeed, the chapters that

follow concern the construction of such model extensions using various established and

novel forcing techniques. As previously mentioned, such a forcing can be achieved

by collapsing the cardinality of the group to be countable. However, much of the

structure of the group and of the ground model is lost in such a cardinal collapse. We

would like to know under what conditions such a forcing is possible without collapsing

the cardinality of the group. In Chapter 3, we explore two natural candidates for such

forcings defined using filters over posets of partial bases, P1 and P2, and some of their

various properties. Specifically, we focus on properties related to cardinal preservation

such as chain conditions and closure conditions.
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1.4 Forcing ℵ1-Free Groups to Be Free with Cardinal Preservation

In Chapter 4 of this work, we establish a necessary and sufficient condition, for

groups of size ℵ1, for when an ℵ1-free group can be forced to be free. In particular,

for an ℵ1-free group H of size ℵ1, we show that such a forcing is possible if and only

if ΓpHq ‰ rℵ1s. The Γ-invariant, denoted ΓpHq, was introduced by Eklof and Mekler

in [8]. Given an ℵ1-filtration of H, ΓpHq :“ rtα ă ℵ1 : H{Hα is not ℵ1-freeus, where

r¨s designates the equivalence class defined by intersection with closed unbounded

subsets of ℵ1. Under this definition, H is free if and only if ΓpHq “ rHs.

We call such groups for which ΓpHq “ rℵ1s “turbid groups.” In particular, ℵ1-

preserving forcings which make an ℵ1-free group free can be achieved for non-turbid

groups by forcing a club into a stationary subset of ℵ1 which is defined by the Γ-

invariant of the group. We show that a forcing presented by Baumgartner, Harrington,

and Kleinberg [4] achieves this while preserving the cardinality of the group, while a

forcing given by Abraham and Shelah [1] achieves this while preserving cardinality

generally. Finally, we demonstrate that the novel poset P2 presented in chapter three

forces non-turbid ℵ1-free groups to be free while preserving the cardinality of the

group. This forcing, unlike those in [4] and [1] which merely demonstrate that a basis

exists in the extension, provides a clear picture of the basis added to the generic

extension in terms of the partial bases in the ground model.
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1.5 Other Forcings and Further Work

As pertains to the application of the forcings described here which force non-turbid

ℵ1-free groups to become free, the natural question arises of how to characterize a

turbid group, or perhaps more pertinently, how to characterize a non-turbid group.

A simple characterization or test of when a group is turbid would allow for easier

application of these forcings in an algebraic context.

More broadly, future investigations into ℵ1-free forcings could branch-off in many

different directions. One quite natural off-shoot of the work in this dissertation would

be a generalization of the results found here to the setting of iterated forcing, in which

two (or more) ℵ1-free groups could be simultaneously forced to be free. Note that it

would then be trivial to force an isomorphism between the groups by subsequently

forcing the cardinality of the two groups to be the same. (Such isomorphisms could

potentially also be forced without the groups becoming free using a partial isomor-

phism approach similar to the partial basis approach we use in the forcing P2, and

this method might be favored as a more minimalist approach which does not require

such drastic changes to the ground model.) Such iterated forcings could also provide

a setting in which results from homological algebra related to free groups could be

applied to ℵ1-free groups.

Another class of ℵ1-free forcings which could prove fruitful to investigate is forcings

which force an ℵ1-free group to have an endomorphism ring with prescribed properties.

Given the ring realization property described above (recall that any ring with free

additive structure can be realized as the endomorphism ring of some ℵ1-free group),
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this could provide a powerful tool for algebraists to generate a wide variety of examples

and counterexamples.

As an eventual goal, ℵ1-free forcings could provide the foundation for more readily

producing consistency and independence results in algebra, as well as guiding the

development of predictive principles or axioms which can be used in the construction

of algebraic objects with various prescribed properties.
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CHAPTER TWO

Absoluteness and ℵ1-Free Groups

2.1 Introduction to Absoluteness

We begin in this section by introducing and collecting some general definitions

and results on absoluteness. We refer the reader to [10, Chapter IV.2–5] for further

proofs and details.

We first define relativization, which allows us to explore the notion of truth in a

given model M.

2.1.1 Definition. Let M be any class. Then for any formula φ, we define φM, the

relativization of φ to M, inductively as follows:

1. px “ yqM is x “ y.

2. px P yqM is x P y.

3. pφ^ ψqM is φM ^ ψM.

4. p φqM is  pφMq.

5. pDx φqM is Dx px PM^ φMq.

2.1.2 Definition. Let M be any class. For a sentence φ, “φ is true in M” means that

φM is true. For a set of sentences S, “ S is true in M” means that each sentence in

S is true in M.
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We are now ready to give a definition for absoluteness.

2.1.3 Definition. Let φ be a formula with free variables x1, . . . , xn. If M Ď N, φ is

absolute for M,N if and only if

@x1, . . . , xn PM pφM
px1, . . . , xnq ÐÑ φN

px1, . . . , xnqq.

We say that φ is absolute for M if and only if φ is absolute for M,V. That is,

@x1, . . . , xn PM pφM
px1, . . . , xnq ÐÑ φpx1, . . . , xnqq.

Intuitively, the absoluteness of φ for M,N means that φpx1, . . . , xnq is true in M

if and only if it is true in N. Note that if φ is absolute for both M and N, and

M Ď N, then φ is absolute for M,N. The following lemma states that absoluteness

is preserved under logical equivalence.

2.1.4 Lemma. Suppose M Ď N, and both M and N are models for a set of sentences

S such that

S $ @x1, . . . , xn pφpx1, . . . , xnq ÐÑ ψpx1, . . . , xnqq.

Then φ is absolute for M,N if and only if ψ is absolute for M,N.

The following definition introduces a family of formulas, the ∆0 formulas, which

is foundational to our results on absoluteness.

2.1.5 Definition. A formula is ∆0 if it is built inductively according to the following:

1. x P y and x “ y are ∆0.

2. If φ, ψ are ∆0, then  φ, φ^ ψ, φ_ ψ, φÑ ψ and φØ ψ are ∆0.

3. If φ is ∆0, then Dx px P y ^ φq is ∆0.
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We use Dx P y φ as abbreviation for Dx px P y ^ φq and @x P y φ as abbreviation

for @x ppx P yq Ñ φq, and we call Dx P y and @x P y bounded quantifiers. According

to Definition 2.1.5, a formula in which all quantifiers are bounded of type Dx P y is

automatically ∆0. The next lemma connects ∆0 formulas to absoluteness.

2.1.6 Lemma. If M is transitive and φ is ∆0, then φ is absolute for M.

Note that p@x P y φq ÐÑ  pDx P y p φqq. Thus, the above lemmas tell us that

formulas in which all quantifiers are bounded are logically equivalent to ∆0 formulas

and hence absolute.

In addition to the previous exposition, we need also to account for the absoluteness

of defined notions which take the form of functions. This gives rise to the following

definition.

2.1.7 Definition. If M Ď N, and F px1, . . . , xnq is a well-defined function both for M

and N, we say F is absolute for M,N if the formula F px1, . . . , xnq “ y is absolute

for M,N.

More formally, suppose that F px1, . . . , xnq was defined as the unique y such that

φpx1, . . . , xn, yq. Then F px1, . . . , xnq is a well-defined function for M,N only if

@x1, . . . , xn D!y φpx1, . . . , xn, yq

is true in both M and N. Assuming this, F is absolute for M,N if and only if φ is

absolute.

This definition allows us to make full sense of the following lemma, which states

that absolute notions are closed under composition.
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2.1.8 Lemma. Let M Ď N, and suppose that formula φpx1, . . . , xnq and functions

F px1, . . . , xnq, Gipy1, . . . , ymq pi “ 1, . . . , nq are absolute for M,N. Then so are the

formula

φpG1py1, . . . , ymq, . . . , Gnpy1, . . . , ymqq

and the function

F pG1py1, . . . , ymq, . . . , Gnpy1, . . . , ymqq.

Using the definitions and results above, we can establish the absoluteness of a

number of defined notions and formulas from set theory which produce useful results

on the absoluteness of properties of finite sets.

2.1.9 Lemma. The following are absolute for any transitive model M of ZFC:

1. ordered pairs px, yq,

2. set union
Ť

x,

3. set inclusion x Ď y,

4. x is an ordinal,

5. α ` β, α ¨ β for ordinals α, β,

6. ω and pZ,`, ¨q.

Proof. Note that Z is formally defined as a set of ordered pairs from ω ˆ ω.

We need to check the absoluteness of some formal definition of Z. For definiteness

let us take

Z “ ppω ˆ t0uq Y pω ˆ t1uqqzx0, 0y,

where xn, 1y represents the integer n and xn, 0y represents ´n. The operations `

and ¨ on Z are defined appropriately and are primarily determined by the ordinal

arithmetic of ω.

The absoluteness of finite sets will be of particular importance.
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2.1.10 Lemma. If M is a transitive model of ZFC, then every finite subset of M is in

M, and “x is finite” is absolute for M.

Our last lemma in this section addresses the absoluteness of formulas which are

built recursively over ω from absolute formulas. While the result can be generalized

to include transfinite recursion over well-founded and set-like relations on an arbitrary

class A, cf. [10, Chapter IV, Theorem 5.6], for simplicity we present only the version

involving standard induction over ω. We will use this to establish the absoluteness

results of the next section.

2.1.11 Lemma. Suppose F : VÑ V, and let G : ω Ñ V be defined so that

@n P ω rGpnq “ F pG æ nqs,

where G æ n denotes the restriction of G to the domain n “ t0, 1, . . . , n´ 1u.

Let M be a transitive model of ZFC and assume that F is absolute for M. Then

also G is absolute for M.

2.2 The Absoluteness of ℵ1-Freeness

We will now apply the absoluteness results in Section 2.1 to some algebraic notions.

After relating in Theorem 2.2.10 the ℵ1-freeness of a group to the freeness of the pure

subgroups generated by its finite subsets, we will be ready to establish the main result

of this section, Theorem 2.2.11, namely the absoluteness of ℵ1-freeness.
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2.2.1 Basic Absoluteness Results for Abelian Groups

In this section, we collect some first basic absoluteness results on abelian groups.

We will follow the algebraic convention of using G as a shorthand to denote the

abelian group pG,`q.

2.2.1 Lemma. Suppose M is a transitive model of ZFC. Then “G is an abelian group”

is absolute for M.

Proof. Suppose pG,`q PM. Note the logical equivalence

“G is an abelian group” Ø φ1 ^ φ2 ^ φ3,

where φ1, φ2 and φ3 denote the sentences

1. @x P G @y P G @z P G px` py ` zq “ px` yq ` zq,

2. Du P G pp@x P G px` u “ xqq ^ p@x P G Dy P G px` y “ uqqq,

3. @x P G @y P G px` y “ y ` xq.

Note that each of φ1, φ2 and φ3 involves only bounded quantifiers and logical 

symbols, so each property is equivalent to a ∆0 statement, and thus is absolute for 

M. So as each of φ1, φ2 and φ3 is absolute, “G is an abelian group” is absolute for 

M.

2.2.2 Lemma. Suppose M is a transitive model of ZFC and pG, ̀ q P M is abelian. 

The defined notions “ 0G” and “ nx” pn P Z, x P Gq are absolute for M.

Proof. To see that “ 0G” is an absolute defined notion, note that 0G is uniquely defined 

by

z “ 0G ðñ pz P G ^ @x P G px ` z “ xqq,

14



where the right-hand side of the above equivalence is a ∆0 formula. As the right-hand

side of the above equivalence is easily seen to be equivalent to a ∆0 statement, “ 0G”

is an absolute defined notion.

For the absoluteness of “nx”, note that nx for n ě 0 is formally defined recursively

on n P ω by 0x “ 0G and nx “ pn ´ 1qx ` x for all n ą 0 (cf. Lemma 2.1.10).

Absoluteness easily extends to n ă 0 as nx is the additive inverse of p´nqx.

2.2.3 Lemma. Suppose M is a transitive model of ZFC and pG,`q P M is abelian.

Then “G is torsion-free” is absolute for M.

Proof. Note that

“G is torsion-free” Ø @x P G @n P ω pnx “ 0G Ñ px “ 0G _ n “ 0qq,

where the right-hand side above is obtained by substituting absolute notions “ 0G”

and “nx” into a ∆0 sentence.

2.2.2 Establishing the Absoluteness of ℵ1-Freeness

We are nearly ready to establish our main result concerning the absoluteness of

ℵ1-freeness. We will review finite rank pure subgroups and Pontryagin’s Criterion,

the main ingredients of the proof of Theorem 2.2.10. The interested reader may refer

to [9] for more detail.

2.2.4 Definition. A subgroup H of an abelian group G is said to be a pure subgroup

if for any x P H, 0 ‰ n P Z, n | x in G implies n | x in H. In particular, a subgroup

H of a torsion-free group G is pure if and only if x “ ny implies y P H for all

x P H, y P G and 0 ‰ n P Z.
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The intersection of pure subgroups of a torsion-free group is again pure. Therefore

if G is a torsion-free abelian group, and S is a subset of G, the intersection of all pure

subgroups containing S is the minimal pure subgroup containing S, which we denote

by xSy˚.

Explicitly, we may write

xSy˚“ty P G |Dn, n1, . . . , nmPZ, n ‰ 0 Ds1, . . . , smPS :ny “ n1s1 ` . . .` nmsmu.

2.2.5 Lemma. Suppose M is a transitive model of ZFC. Suppose pG,`q P M is

abelian and S is a finite subset of G. Then “ xSy˚” is an absolute notion for M.

Proof. Let S “ ts1, . . . , smu. Recall that

xSy˚ “ ty P G | Dn, n1, . . . , nm P Z, n ‰ 0 : ny “ n1s1 ` . . .` nmsmu.

Then we have the logical equivalence

z “ xSy˚ ðñ
„

”

@y P z
“

y P G^ Dn, n1, . . . , nm P Z p pn “ 0q ^ ny “ n1s1 ` . . .` nmsmq
‰

ı

^

”

@y P G
“

pDn, n1, . . . , nmPZ p pn “ 0q ^ ny “ n1s1`. . .`nmsmqqÑ y P z
‰

ı



,

where the statement on the right-hand side above involves only bounded quantifiers,

logical symbols, “Z”, and various multiples of elements. So it can be seen that the

right-hand side is obtained by substituting the absolute notions “Z”, “ny”, “n1s1”,

. . . , “nmsm” into a sentence which is logically equivalent to a ∆0 statement. Thus

by the closure under composition of absolute notions, “ xSy˚” is absolute.

2.2.6 Remark. The proof of Lemma 2.2.5 can easily be modified to drop the finiteness

condition. In particular, “ xSy˚” is an absolute notion for any subset S of G in M.

Note also that for any finite set S P V with S Ď G, we have xSy˚ PM.
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In order to establish our result on the absoluteness of ℵ1-freeness, we need a simple

estimate for the torsion-free rank of xSy˚. Recall that the torsion-free rank rk0pGq of

a torsion-free abelian group G is defined as the size of a maximal linearly independent

subset S Ď G. We must first show that if S is a finite subset of an abelian group G,

then rk0pxSy˚q ď |S|.

To this end, we prove the following lemma.

2.2.7 Lemma. If S is a finite subset of a torsion-free abelian group, then

rk0pxSy˚q ď |S|.

If S 1 is a maximal linearly independent subset of a finite subset S of a torsion-free

abelian group, then

xS 1y˚ “ xSy˚

Proof. Let S “ ts1, . . . , smu and let S 1 be a maximal linearly independent subset of

the finite set S.

Suppose S “ ts1, . . . , smu and S 1 “ ts1, . . . , sku with k ď m. Clearly, xS 1y˚ Ď

xSy˚. Let t P xSy˚. Then there exist N, n1, . . . , nm P Z, N ­“ 0 such that Nt “

řm
i“1 nisi. So Nt P xSy.

For any i ą k, S 1Ytsiu is linearly dependent, so there exists 0 ‰ Ni P Z such that

Nisi P xS
1y.

Note NNk`1Nk`2 . . . Nmt P xpNk`1 . . . Nms1q, . . . , pNk`1 . . . Nmsmqy. We claim

that

xpNk`1 . . . Nms1q, . . . , pNk`1 . . . Nmsmqy Ď xs1, . . . , sky “ xS
1
y,
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and thus, that t P xS 1y˚. To see this, note that

Nk`1Nk`2 . . . Nmsk`1 “ Nk`2 . . . NmpNk`1sk`1q P xS
1
y.

Similarly, for any k ă i ď m,

Nk`1Nk`2 . . . Nmsi “ Nk`1 . . . Ni´1Ni`1 . . . NmpNisiq P xS
1
y.

Finally, for any i ď k, it is clear that Nk`1 . . . Nmsi P xS
1y. This establishes the claim,

and completes the proof.

Choose S 1 to be a maximal linearly independent subset of S. We wish to show

rk0pxSy˚q “ |S
1|. By way of contradiction, suppose there exists some t P xSy˚ such

that S 1 Y ttu is linearly independent. Then t P xSy˚ “ xS
1y˚. So there exists some

0 ‰ n P Z such that nt P xS 1y, and t is linearly dependent on S 1, contradicting

our assumption. Thus, S 1 is a maximal linearly independent subset of xSy˚, and so

rk0pxSy˚q “ |S
1| ď |S|.

2.2.8 Remark. An alternative proof of Lemma 2.2.7 uses the divisible hull Qb xSy

and rk0pxSy˚q “ dimQpQ b xSyq “ rk0pxSyq. We have chosen a more elementary

approach to emphasize the underlying aspects of set theory.

More generally, using the axiom of choice (AC), rk0pxSy˚q ď |S| holds for any

subset of a torsion-free group.

We recall Pontryagin’s Criterion next. For a proof, see [9, Chapter 3, Theorem

7.1].

2.2.9 Theorem (Pontryagin’s Criterion). A countable torsion-free abelian group is free

if and only if each of its finite rank subgroups is free.
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The theorem below gives a number of equivalent characterizations of ℵ1-freeness.

We will use the last of these alternative characterizations to prove the absoluteness of

ℵ1-freeness. Note that rkpGq denotes the rank of G, and rk0pGq denotes its torsion-free

rank.

2.2.10 Theorem. Let M be a transitive model of ZFC and G be an abelian group in

M. The following statements are equivalent:

piq G is ℵ1-free, that is, for all subgroups H of G, if |H| ď ℵ0, then H is free.

piiq For all subgroups H of G, if rkpHq is finite, then H is free.

piiiq G is torsion-free and for all pure subgroups H of G, if rkpHq is finite, then H

is free.

pivq G is torsion-free and for all finite subsets S of G, xSy˚ is free.

Proof. For piq Ñ piiq, let H be a subgroup of G with rkpHq finite. By piq, all cyclic

subgroups of G are free. Hence G is torsion-free, and H Ď G is torsion-free, too. This

implies rkpHq “ rk0pHq and |H| ď ℵ0 ¨ rkpHq. Hence |H| ď ℵ0, and H is free.

The direction piiq Ñ piiiq Ñ pivq is easy. For piiq Ñ piiiq, note that with piiq

every cyclic subgroup of G is free, hence G is torsion-free. For piiiq Ñ pivq, note that

if S is finite, then xSy˚ is of finite rank by Lemma 2.2.7.

To see that pivq Ñ piq, let H be a subgroup of G with |H| ď ℵ0. If H “ 0, H

is free, so suppose that H is non-trivial. Then as G is torsion-free, |H| “ ℵ0. We

wish to use Pontryagin’s Criterion to show that H is free, so let K be a finite rank

subgroup of H. Choose S to be a maximal linearly independent subset of K. Then
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as S is finite, xSy˚ is free, and K Ď xSy˚ is free, too. So by Pontryagin’s Criterion,

H is free.

Finally, we are ready to establish the absoluteness of ℵ1-freeness below.

2.2.11 Theorem. Suppose M is a transitive model of ZFC, and G is an abelian group

in M. Then “G is ℵ1-free” is absolute.

Proof. Let φ denote the statement

G is torsion-free ^ @SppS Ď G^ S is finiteq Ñ xSy˚ is freeq.

By Theorem 2.2.10, “G is ℵ1-free” is equivalent to φ. To establish the absoluteness

of ℵ1-freeness, we will show that @G PM pφM ÐÑ φq.

We need to determine φM first. Recall that torsion-freeness, set inclusion, finite-

ness and “ xSy˚” (for finite subsets S of a torsion-free abelian group) are absolute.

Unfortunately, however, freeness is not absolute. Thus φM is the statement

G is torsion-free ^ @S PM ppS Ď G^ S is finiteq Ñ xSy˚ is freeMq.

For φM Ñ φ, let S P V such that S Ď G and S is finite, and assume φM. Note

that by our previous result on the absoluteness of finite sets, as G PM, if S is a finite

subset of G then S PM. Thus, xSy˚ has a basis in M, which is automatically a basis

of xSy˚ in V.

For φ Ñ φM, let S P M such that S Ď G and S is finite, and assume φ. Then

xSy˚ is free in V. Choose a basis B P V of xSy˚. Then, still in V, rk0pxSy˚q “ |B|

and rk0pxSy˚q ď |S|. So |B| ď |S|, and thus B Ď xSy˚ Ď G is a finite set. Suppose

B “ tx1, ..., xnu. As each xi P B is in H, by the transitivity of M, each xi P B is in
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M. Then using union and finite recursion, we have that B PM, and B will witness

that xSy˚ is free in M.

Thus, ℵ1-freeness is absolute.

2.3 Proofs with Model Extensions

In this section, we discuss some major applications and consequences of the ab-

soluteness of ℵ1-freeness. We start with a general observation concerning the rela-

tionship between ℵ1-freeness and freeness in different models of set theory. We then

demonstrate how this observation can be turned into a quick and elegant routine for

generating and simplifying proofs concerning ℵ1-free groups.

We will repeatedly reference the use of forcing to collapse the cardinality of a given

ℵ1-free group G to countable. Such a forcing may be defined by the partial order

consisting of all injective functions from finite subsets of ω into G which results in a

model extension in which G is countable. Thus, by the absoluteness of ℵ1-freeness, G

is free in this model extension, as it is a countable subgroup of itself. For more detail

on this type of forcing, we refer the reader to Remark 3.1.18. However, the technical

details of forcing are not necessary in order to understand the applications below.

Rather, we simply reference forcing as a method for producing a model extension

with some required properties, namely with the property that G is free in this model

extension.

The following result is another take on Theorem 2.2.11 and highlights how ℵ1-

freeness as an initially algebraic property can be interpreted and understood in the

context of model extensions in set theory.
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2.3.1 Theorem. Let M be a transitive model of ZFC, and G an abelian group in M.

Then the following are equivalent:

piq G is ℵ1-free in M.

piiq G is ℵ1-free in V.

piiiq G is ℵ1-free in any transitive model N with G P N.

In addition, if M is a countable transitive model of ZFC, we may add to the above

list of equivalent statements:

pivq G is free in some generic extension N of M.

Proof. The equivalence of piq, piiq and piiiq is an immediate consequence of the ab-

soluteness of ℵ1-freeness, Theorem 2.2.11.

We have pivq Ñ piq as G is free in N implies G is ℵ1-free in N, and thus by

the absoluteness of ℵ1-freeness, G is ℵ1-free in M. Finally, piq Ñ pivq can be seen

by letting N be the generic extension obtained by collapsing the cardinality of G to

countable.

Theorem 2.3.1 provides a new approach to proving statements about ℵ1-free

groups. To illustrate the utility of such an approach, we give a remarkably sim-

ple proof of the well-known transitivity of ℵ1-free groups. We will be using countable

transitive models of ZFC as is common convention for forcing arguments. It should be

understood that countable transitive models only exist for finite lists of axioms, and

we will provide in Remark 2.3.4 an explanation of how these proofs with countable

transitive models translate into a formal proof within the metatheory.
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2.3.2 Theorem. If H and G{H are ℵ1-free for abelian groups H Ď G, then G is

ℵ1-free.

Proof. We will assume a countable transitive model M with H,G P M. Let N be

the generic extension of M produced by collapsing the cardinality of G to countable.

Then G{H is countable and ℵ1-free in N, thus it is free in N. In particular, we have

GN – H ‘ G{H, and as H is also countable and free in N, G is free in N. With

Theorem 2.3.1, pivq Ñ piq, G is ℵ1-free in M.

2.3.3 Theorem. Let G be ℵ1-free and let H Ď G be a finite rank pure subgroup of G.

Then G{H is ℵ1-free.

Proof. Without loss of generality, assume G PM for some countable transitive model

M of ZFC. Suppose that N is some generic model extension of M in which G is

countable. Then G is free in N. So in N, as G is free, we can choose a basis B of G.

Let H be a finite rank pure subgroup of G (recall that this is an absolute property).

Then by the Pontryagin Criterion, H is free of finite rank, so we can choose B1 Ď B

finite with H Ď xB1y.

Now H is a pure subgroup of G, and thus, H is pure in xB1y. So xB1y{H is

torsion-free, and as it is also finitely generated, xB1y{H is free by the Fundamental

Theorem of Abelian Groups.

So H is a direct summand of xB1y, which is a direct summand of xBy “ G. Thus

G{H is free in N, and by the absoluteness of ℵ1-freeness, G{H is ℵ1-free in M.
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2.3.4 Remark. We will discuss a more formal argument for why we can restrict our-

selves to countable transitive models M with H,G PM in our proof of Theorem 2.3.2

and Theorem 2.3.3.

Let ψ denote the first-order logical sentence which expresses the statement of The-

orem 2.3.2 por Theorem 2.3.3 q and note that the proofs of Theorem 2.3.2 and The-

orem 2.3.3 can be formalized using a finite list of axioms ϕ1, . . . , ϕn of ZFC. If ψ

were not provable on the basis of ZFC, then Gödel’s Completeness Theorem implies

the existence of a model for ZFC +  ψ. In particular, the finite list of axioms

ϕ1, . . . , ϕn, ψ is consistent and a standard procedure using the Reflection Theorem,

Löwenheim-Skolem Theorem, and Mostowski Collapse Lemma produces a countable

transitive model M for ϕ1, . . . , ϕn, ψ. In particular, in M we can find abelian groups

G,H for which ψ fails and going from M to a generic model extension N where GN

is countable we can reproduce the proofs of Theorem 2.3.2 and Theorem 2.3.3 for a

contradiction.
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CHAPTER THREE

Forcing an ℵ1-Free Group to Become Free

Forcing is a general technique used to produce models of set theory satisfying

a variety of different properties. It is an indispensable tool for producing relative

consistency and independence results.

The key idea behind forcing is to begin with a countable transitive model M of

ZFC called the ground model, and to construct from it another countable transitive

model of ZFC called MrGs which extends M. To build MrGs, we begin by choosing

a partially ordered set in M, the properties of which will determine what propositions

hold in MrGs beyond ZFC.

One technical issue is that there cannot be a proof from ZFC that there exists

a countable transitive model of ZFC, for the existence of such a proof would be a

violation of Gödel’s Second Incompleteness Theorem.

We may resolve this by noting that while we may not be able to build set models

of ZFC from ZFC, we can build a countable transitive model of any finite fragment of

ZFC from ZFC. So we only need M to satisfy enough of ZFC to carry out the given

argument. For further discussion of this approach, see [10, Chapter IV.1].

3.1 Forcing Basics

We will now discuss briefly how the extensions MrGs, called generic extensions,

are built.
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3.1.1 Posets, Filters, and Generic Extensions

3.1.1 Definition. A partially ordered set, or a “poset”, is a pair xP,ďy such that

P ‰ H and ď is a relation on P such that the following properties hold:

1. @p P P pp ď pq

2. @p, q P P ppp ď q ^ q ď pq Ñ p “ qq

3. @p, q, r P P ppp ď q ^ q ď rq Ñ p ď rq

In a slight abuse of notation, we may speak of a poset P to indicate a pair xP,ďy.

For p, q P P , if there exists an r P P such that r ď p and r ď q, we call such an r

a common extension of p and q in P . If there does not exist a common extension of

p and q in P , we say that p and q are incompatible, and write p K q.

For forcing purposes, we will restrict our attention to partial orders with a maximal

element, that is, an element 1 such that @p P P pp ď 1q. When we refer to a partial

order in this work, we will be referring specifically to one with a maximal element,

and refer to this element as “1”.

3.1.2 Definition. Let xP,ďy be a partial order. G Ď P is a filter in P if and only if

the following conditions hold:

1. @p, q P G Dr P G pr ď p^ r ď qq

2. @p P G @q P P pp ď q Ñ q P Gq

3.1.3 Definition. Let xP,ďy be a partial order. D Ď P is dense in P if and only if

@p P P Dq ď p pq P Dq.

26



3.1.4 Definition. Let xP,ďy be a partial order. G P V is P -generic over M if and

only if G is a filter in P and for all dense D Ď P with D PM, GXD ‰ H.

The following lemmas give properties of P -generic filters which will help us con-

struct our desired model extensions and establish the relevant forcing notions.

3.1.5 Lemma. If M is countable and p P P , there is a P -generic G P V over M with

p P G.

3.1.6 Lemma. If M is a transitive model of ZF ´ P , and xP,ď, 1y PM is such that

@p P P Dq, r P P pq ď p^ r ď p^ q K rq

and G P V is P -generic over M, then G RM.

We are now ready to introduce generic model extensions. We will set aside many

details here, but the interested reader is referred to [10, Chapter IV.2] for further

details.

Beginning with a countable transitive model M of ZFC, a partial order P P M,

and a P -generic filter G P V, we define the generic extension MrGs. MrGs is the

smallest model of ZFC such that M ĎMrGs and G PMrGs, and can be thought of

as the set of all sets which can be built from G using processes definable in M.

Formally, this is done by defining, through transfinite recursion, names for every

element of MrGs which describe how the element is constructed. These are called

P -names, and they do not make any explicit reference to a particular G. Thus the P -

names can be understood from the perspective of M. However, the objects in MrGs

to which the P -names refer cannot in general be identified from the perspective of
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M, as G does not exist in M. If τ is a P -name, we will use τG to refer to the object

in MrGs which is named by τ .

3.1.7 Definition. τ is a P -name if and only if τ is a relation and

@xσ, py P τ pσ is a P -name^ p P P q.

This is a definition by transfinite recursion on the (set-theoretic) rank of τ . In par-

ticular, τ “ H is trivially a P -name.

3.1.8 Definition. VP denotes the class of P -names in V. If M is a transitive model

of ZFC with P PM, then MP “ VP XM is the class of P -names in M.

3.1.9 Definition. For τ a P -name and G P V with G Ď P , let

τG “ tσG : Dp P G pxσ, py P τqu

denote the valuation of τ with respect to G. This is again a definition by transfinite

recursion on the rank of τ .

3.1.10 Definition. If M is a transitive model of ZFC, P PM, and G P V with G Ď P ,

then MrGs “ tτG : τ PMP u.

Using the definitions above, it is possible to represent any element x P M in a

canonical way by a P -name called x̌.

3.1.11 Definition. Define the P -name x̌ recursively by x̌ “ txy̌, 1y : y P xu.

3.1.12 Lemma. If M is a transitive model of ZFC, P a poset in M, and G a non-empty

filter on P , then @x PM px̌ PMP ^ x̌G “ xq.

We can then construct a forcing language which uses the P -names to make state-

ments about MrGs which are understandable from the perspective of M. Generally,
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we will not know from the perspective of M whether a given proposition is true in

MrGs. However, we will still be able to give some surprisingly explicit conditions on

G under which such a proposition holds.

3.1.13 Definition. Let φpxq be a formula, M a countable transitive model of ZFC,

xP,ďy PM, τ a P -name, and p P P . We say that p forces φpτq, written p , φpτq if

and only if for all G P V such that G is P -generic over M and p P G, φpτGq holds in

MrGs.

From the definition above, it is clear that if G P V is a P -generic filter containing

some p which forces φ, then φ holds in MrGs. Amazingly, the converse also holds.

That is, if G is P -generic over M and φ holds in MrGs, then there exists some p P G

such that p , φ. This is known as the Fundamental Theorem of Forcing.

Importantly, and perhaps surprisingly, it can be decided from M whether p , φ,

although M will in general not know of any P -generic filters.

In order to decide such statements from within M, we must define a new notion,

,˚, such that for all φ, pp , φq Ø pp ,˚ φqM. There are many equivalent defini-

tions of ,˚, and the details of one construction may be found in [10, Chapter IV].

Summarizing, we have the following critical result about forcing.

3.1.14 Theorem. Let M be a countable transitive model for ZFC, xP,ďy P M, τ a

P -name, and G P V P -generic over M. Then

“

Dp P G pp ,˚ φpτqqM
‰

Ø
“

Dp P G pp , φpτqq
‰

Ø pφpτGqq
MrGs.

In other words, a proposition holds in MrGs if and only if some p P G forces it.

This establishes the relationship between forcing and truth in the generic extension.
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In the following example, we will show how to use forcing to construct a function

from ω to 2 which is not in the ground model. In essence, we can think of this

as building a generic extension in which there exist more real numbers than in the

ground model.

3.1.15 Example. Let M be a countable transitive model of ZFC. Let xP,ďy be the

poset with

P “ tp | p is a function ^ |p| ă ω ^ domppq Ď ω ^ rangeppq Ď 2u,

where p ď q means q Ď p, i.e., the function p is an extension of the function q.

Finally, let G P V be a P -generic filter over M.

Then
Ť

G is a function from a subset of ω to 2.
Ť

G is indeed a function, as the

filter properties of G guarantee that any two elements of G will agree in value where

their domains overlap due to their having a common extension in G.

Furthermore, the domain of the function
Ť

G is ω by the P -genericity of G. To

see this, let Dn “ tp P P | n P domppqu. Then for all n ă ω, Dn is dense, as any

p P P which is not in Dn can be extended to one which is by extending its domain to

include n. Thus GXDn ‰ H for all n, and so domp
Ť

Gq “ ω.

To see that this new function
Ť

G does not exist in the ground model M, suppose

by way of contradiction that
Ť

G P M and let D “ tp P P | p Ę
Ť

Gu. D is dense,

as given any p P P we can extend p to a function q such that qpnq ‰ p
Ť

Gqpnq for

some n. However, GXD “ H. Note that by absoluteness, if
Ť

G PM, then D PM,

but then G X D “ H contradicts the P -genericity of G. Thus
Ť

G R M. However,

note that
Ť

G PMrGs as G PMrGs.
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This is a special case of a more general class of forcing posets, given below, of

partial functions.

3.1.16 Definition. For any infinite cardinal λ, let

FnpI, J, λq “ tp | |p| ă λ^ p is a function^ domppq Ď I ^ rangeppq Ď Ju.

Order FnpI, J, λq by p ď q Ø q Ď p.

Note that when λ ą ω, FnpI, J, λq is not absolute for M.

3.1.17 Lemma. If I, J, λ P M, pλ is an infinite cardinalqM, J ‰ H, p|I| ě λqM, and

G P V is FnpI, J, λqM-generic over M, then
Ť

G is a function from I onto J .

3.1.18 Remark. In creating such new functions in our generic extensions, we introduce

the possibility of changing the cardinals in the model extension. In fact, the forcing

described above can be used to collapse the cardinality κ of a group to be countable as

discussed in the first chapter, by taking I “ ω, J “ κ, and λ “ ω.
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3.1.2 Cardinal Preservation

Recall the following properties and definitions concerning cardinals.

3.1.19 Definition. The cardinality |A| of a set A is the least ordinal α such that there

exists a bijection between A and α. We say that α is a cardinal if and only if α is an

ordinal with |α| “ α.

The cofinality of β, cfpβq, is the least ordinal α such that there is a map from α

into β whose range is unbounded in β. We say β is regular if and only if β is a limit

ordinal and cfpβq “ β.

We now define what it means for a forcing poset P to preserve cardinals.

3.1.20 Definition. If xP, ďy P M, P preserves cardinals if whenever G P V is P -

generic over M, then

@β P M rpβ is a cardinalqM 
Ø pβ is a cardinalqMrGs

s.

If a cardinal κ is not preserved by a poset P , we say that P collapses κ, that is,

forcing with P introduces to the generic extension MrGs bijections between κ and

some sets in M of smaller size.

We will now give two conditions under which a poset P preserves certain cardinals.

These two conditions taken together will describe an interval of cardinals in M which

may possibly be collapsed by P . Cardinal preservation is guaranteed outside this

interval. For proofs and further information, we refer the reader to [10, Chapter

IV.5-6].

3.1.21 Definition. An antichain in xP, ďy is a subset A Ď P such that

@p, q P A pp ‰ q Ñ p K qq.
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3.1.22 Definition. A partial order xP,ďy has the θ-chain condition if and only if every

antichain in P has cardinality ă θ.

3.1.23 Theorem. Assume xP,ďy P M, and that in M, θ is a cardinal, P has the

θ-chain condition, and θ is regular. Then P preserves cardinals ě θ.

While the θ-chain condition provides a sufficient condition under which P pre-

serves cardinals ě θ, it is not a necessary condition. Pikry forcing provides one

example which demonstrates this fact.

Note that FnpI, J, λq has the p|J |ăλq`-chain condition. Thus we have the following

result.

3.1.24 Lemma. Assume I, J P M, and that in M, λ is regular, |J | ď 2ăλ, and

θ “ p2ăλq`. Then FnpI, J, λqM preserves cardinals ě θ.

3.1.25 Definition. A partial order xP,ď, 1y is λ-closed if and only if whenever α ă λ

and tpβ : β ă αu is a decreasing sequence of elements of P , then

Dq P P @β ă α pq ď pβq.

3.1.26 Theorem. Assume P PM, and that in M, λ is a cardinal, and P is λ-closed.

Then P preserves cardinals ď λ.

If λ is regular, then FnpI, J, λqM is λ-closed. Thus we have the following result.

3.1.27 Lemma. Assume I, J PM, and that in M, λ is regular, 2ăλ “ λ, and |J | ď λ.

Then FnpI, J, λqM preserves all cardinals.
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The θ-chain condition provides an upper bound on the set of cardinals which could

potentially fail to be preserved by a given poset P , while λ-closure provides a lower

bound on the set of cardinals which may fail to be preserved by P .

Note that the θ-chain condition relates to the size of the largest antichain in P ,

called the width of P , while λ-closure relates to the smallest size of a maximal chain

in P .

Combining the two conditions, we have the following:

3.1.28 Theorem. Assume P PM, and that in M, λ and θ are cardinals, θ is regular,

and P is λ-closed and has the θ-chain condition. If λ ă θ in M, then P preserves all

cardinals κ such that κ R pλ, θq.

If λ` ě θ in M, then P preserves all cardinals.

3.2 Adding a Basis to an ℵ1-Free Group

In this section, we begin by presenting the simple example of adding a basis to a

vector space using forcing with partial bases, and then explore the analogous case of

adding a basis to an ℵ1-free group using partial basis forcing.

3.2.1 A Simple Forcing Example: Adding a Basis to a Vector Space

We will now give an example of a forcing notion which provides a new basis for a

vector space in the generic extension.

In the next sections, we will generalize this forcing to free and ℵ1-free groups.

Note that in this example, we refer to fields F and F -vector spaces V in the

ground model M. It is easily seen from our discussion in Chapter 2 that being a field
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or an F -vector space is an absolute notion for M provided F, V PM, so we need not

specify in which model these sets are fields and vector spaces.

3.2.1 Example. Let M be a countable transitive model of ZFC. Let F PM be a field

and V PM be an F -vector space with pdimV “ λ ě ℵ0q
M.

Define the poset P “ tS Ă V : S linearly independent, |S| ă λuM, ordered by

S Ď S 1 Ø S 1 ď S.

Let G P V be a P-generic filter over M, and define B “
Ť

G.

Clearly B is linearly independent, for if B was linearly dependent, there would be

some dependence relation

n1x1 ` . . .` nmxm “ 0 with distinct x1, . . . , xm P
ď

G.

Then there exist Si P G with xi P Si for i ď m. Let S P G be a common extension of

all of the Si. Then x1, . . . , xm P S. But then x1, . . . , xm must be linearly independent.

Furthermore, B spans V . To see this, define for each x P V ,

Dx “ tS P P : x P xSyu.

To see that Dx is dense in P, let S P P and suppose S R Dx. Then S is linearly

independent, but x R xSy, so x is not linearly dependent on S. Thus S Y txu P Dx,

and S Y txu ď S. So because G is P-generic, GXDx ‰ H for each x P V , and thus

for each x P V , x P x
Ť

Gy “ xBy.

Thus B is a basis for V . It remains to see that B RM, that is, that B is in fact

a new basis not in the ground model.
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To see this, assume by way of contradiction that B P M, and let G1 “ tS Ă B :

|S| ă λuM. We can see that G Ď G1, for if S P G, then p|S| ă λqM and S Ď
Ť

G “ B,

and therefore S P G1.

Note that G1 PM and thus, P ´G1 PM.

We now wish to show that P ´G1 is dense. Let S P P, and assume S P G1. Then

|S| ă λ, so S is a proper subset of B. Thus we can choose some b P B ´ S. There

are now two cases, depending on the characteristic of the field F . If F does not have

characteristic 2, then we can take SYt´bu to be an extension of S which is in P´G1.

If F does have characteristic 2, then we can choose some b1, b2 P B´S, and note that

S Y tb1, b1 ` b2u P P ´G1 is an extension of S. Thus in either case, P ´G1 is dense.

Finally, note that pP´G1qXG Ď pP´GqXG “ H. So pP´G1qXG “ H, which

contradicts the genericity of G.

We have shown in the above example that we may use forcing to add a basis to

a vector space in the generic extension. We may wish to know whether cardinals

are preserved in such a forcing extension. As we establish in the following lemma,

the λ-closure of the poset in the above example ensures that such a forcing preserves

cardinals less than or equal to the dimension λ of the vector space V .

3.2.2 Lemma. Let M be a countable transitive model of ZFC. Let F P M be a field

and V PM be an F -vector space with pdimV “ λ ě ℵ0q
M where pλ is regularqM.

Define the poset P “ tS Ă V : S linearly independent, |S| ă λuM, ordered by

S Ď S 1 Ø S 1 ď S.

Then P is λ-closed, and thus preserves cardinals ď λ.
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Proof. Let γ ă λ, and suppose we have a decreasing sequence tSα : α ă γu Ď P .

Thus, for all α ď β ă γ, Sα Ď Sβ. Let S “
Ť

αăγ Sα. We wish to show that S P P ,

for this would demonstrate that P is λ-closed.

To see that S P P , note that for all α, as Sα P P , |Sα| ă λ. Thus, as |γ| ă λ and λ

is regular in M, we must have |S| ă λ. Furthermore, S must be linearly independent,

as if it were not, there would be some dependence relation

n1x1 ` . . .` nmxm “ 0 with distinct x1, . . . , xm P S.

Then there would exist αi ă γ with xi P Sαi for i ď m. For α1 “ maxtαi : i ď mu ă γ,

Sα1 is a common extension of all of the Sαi . Then x1, . . . , xm P Sα1 . But then

x1, . . . , xm must be linearly independent.

Thus S P P , and therefore P is λ-closed.

Expanding on the previous example in which we use forcing to add a new basis

to a vector space, it is natural to ask whether we can use a similar forcing notion to

add a basis to a free group.

3.2.2 Finding a Suitable Poset

Let M be a countable transitive model of ZFC, and let H PM be a free group of

rank λ ě ℵ0.

Recall that the poset which we used to force a new basis for a vector space V was

the collection of all linearly independent subsets of V of size less than the dimension

of V . Without adjustments, this poset clearly will not work for free groups.

As an example, take the free group to be H “
À

iPω Zei with λ “ ℵ0, and note

that t2e0u Ă H is a linearly independent set of size less than λ. However, we cannot
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extend this subset to a linearly independent set B with e0 P xBy. Thus, the union of

any generic filter G over the poset of finite, linearly independent subsets of H with

2e0 P G will not, as it did with vector spaces, produce a basis, as it fails to generate H.

In order to ensure that such a situation does not arise, we must insist that the

subsets of H which we include in the poset generate pure subgroups of H.

3.2.3 Definition. Let

P1 “ tS Ă H : S is linearly independent ^ |S| ă λ^ xSy Ď˚ Hu
M

ordered by S 1 ď S Ø S Ď S 1.

3.2.4 Remark. Note that for torsion-free groups H the statement of purity xSy Ď˚ H

is equivalent to H{xSy being torsion-free.

To see this, note that in general, A{G torsion-free implies G is pure in A, cf. [9,

Section 5.1]. If A is torsion-free with G pure in A, then assuming npa ` Gq “ G

implies na P G and, by purity of G, a`G “ G.

For λ a regular cardinal, P1 is λ-closed, which means that forcing with P1 preserves

cardinals ď λ.

Naively, one might hope that adding the purity condition will rule out the situation

we had above in which the poset “dead ends” with certain elements which cannot be

extended to a full basis. However, the condition turns out not to be strong enough.

As we will see, any subset S of H for which H{xSy is not ℵ1-free will also fail to

extend to a full basis of H in V. To make matters worse, the set of all such S is dense

in P1, which means that for any P1-generic filter G,
Ť

G will fail to be a basis of H.
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In fact, the condition that H{xSy be ℵ1-free is, in conjunction with the condition

that S be linearly independent, both necessary and sufficient to guarantee that S can

be extended to a full basis of H in V. Thus we may define a second poset P2 by

further restricting the conditions on P1 as follows:

3.2.5 Definition. Let

P2 “ tS Ă H : S is linearly independent ^ |S| ă λ^H{xSy is ℵ1-freeuM

ordered by S 1 ď S Ø S Ď S 1.

If G is P2-generic, then
Ť

G is a basis for H.

Note that P2 does not satisfy the λ-chain condition. To see this, take as an example

the free group H “
À

αPλ Zeα, and consider the set tteα, eα` e0u : 0 ă α ă λu. Then

this set forms an antichain of size λ in P2. Note that this antichain also demonstrates

that P1 does not have the λ-chain condition. So we cannot use chain conditions to

demonstrate cardinal preservation (in particular, preservation of the cardinality λ of

the group H).

It is also the case that P2 is not λ-closed, as we will prove at the end of this chapter,

which means that we cannot assess cardinal preservation using this closure condition

either. In particular, we are concerned with the preservation of cardinals less than

or equal to λ. Recall that as M is a countable model of ZFC, H is countable in V.

So trivially, we could add a basis to H by collapsing the size of H to be countable in

a forcing extension. Then since H is countable and ℵ1-free in the forcing extension

(by the absoluteness of ℵ1-freeness), H itself must be free in the forcing extension.

Ideally, we would like to avoid such trivial cases by ensuring that |H| ą ℵ0 in MrGs.
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Note that G being ℵ1-free implies G is torsion-free, for the countable subgroup xgy

will be free and thus torsion-free for every g P G. Thus we have that H{xSy ℵ1-free

implies H{xSy torsion-free, which in turn implies xSy is pure in H (cf. Remark 3.2.4).

Thus P2 Ď P1. For further results concerning the nature of the relationship between

P1 and P2, the interested reader is referred to the appendix.

3.2.3 Forcing with P1

Let M be a countable transitive model of ZFC, and let H PM be an ℵ1-free group

of rank λ ą ℵ0, and let P1 be defined as in Definition 3.2.3.

As in our Example 3.2.1 with vector spaces, if we let G P V be a P1-generic filter,

and define B “
Ť

G, then B is clearly linearly independent. Furthermore, if B is

a basis for H in MrGs, then it must not be in M. This is clear to see if H is not

free in M. However, to see this in the case where H is free in M, assume by way of

contradiction that B PM, and define in M the set

D “ tS : |S| ă λ^ S is linearly independent^ S Ď some basis of H ^ S Ę Bu.

We claim that D is dense in P1. To see this, assume T Ď B with |T | ă λ, and let

b1, b2 P B ´ T . Then pB Y tb1 ` b2uq ´ tb2u is a basis of H, so T Y tb1 ` b2u is an

element of D extending T . So then D is dense in P1, and GXD ‰ H by the genericity

of G, but this contradicts that B “
Ť

G. Furthermore, for regular cardinals λ, P1

also preserves cardinals ď λ, as the union of a chain of pure subgroups is pure [9,

Section 5.1], and thus P1 is λ-closed. However, even with these adjustments to the

poset, B will still fall short of providing us with a new basis of H. In particular, B

fails to generate the group H. This is demonstrated using the lemmas below.
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3.2.6 Lemma. Let S P P1. Then S can be extended to a basis of H in V if and only

if H{xSy is ℵ1-free.

Proof. First, suppose that there is some basis B of H in V with S Ď B. Then

H{xSy “ xBy{xSy – xB ´ Sy is free in V, and thus H{xSy is ℵ1-free in V. So by

absoluteness of ℵ1-freeness, H{xSy is ℵ1-free in M.

In the other direction, suppose H{xSy is ℵ1-free. Recall that H is countable in

V. Then if H{xSy is ℵ1-free, it is free in V as a countable subgroup of itself (again

using the absoluteness of ℵ1-freeness). So H – xSy ‘ H{xSy, cf. [9, Chapter 3,

Theorem 1.5], and we can extend S to a full basis of H in V.

In spite of the previous result, there is at least one such S P P1 which does not

extend to a full basis in V.

3.2.7 Example. Let H be an ℵ1-free group of cardinality λ ą ℵ0. Fix a well-ordering

of H in M. We will construct a set of elements ei P H, i P ω with the property that

for each i P ω, ei is minimal with respect to this well-ordering such that tej : j ď iu

is linearly independent, and H{xej : j ď iy is ℵ1-free. This construction is done by

induction as follows.

Assume that we have already constructed e0, e1, . . . , ei´1 satisfying the properties

above. As H{xej : j ď i´ 1y is ℵ1-free in M, it is free in V, so xej : j ď i´ 1y is a

direct summand of H in V. And as tej : j ď i´ 1u is linearly independent and H is

free in V, we can extend tej : j ď i´ 1u to a basis B of H in V, as in the previous

lemma.
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Now choose any ei P B´tej : j ď i´ 1u. Then tej : j ď iu is linearly independent.

Moreover, as tej : j ď iu extends to a basis B of H in V, by the previous lemma,

H{xej : j ď iy is ℵ1-free. This demonstrates that a pick for ei P H is possible such

that e0, e1, . . . , ei satisfy the above properties. We will proceed to choose ei minimal

with respect to our fixed well-ordering, possibly discarding our initial pick for ei.

If H{xei : i ă ωy is not ℵ1-free, then we are done, as tei : i ă ωu must not extend

to a basis. So assume H{xei : i ă ωy is ℵ1-free. Let H 1 “ xei : i ă ωy “
À

iPω Zei,

and define the surjective group homomorphism φ : H 1 Ñ Q by φ : ei ÞÑ
1
i`1

and extend

by linearity. Let K “ kerφ. Then as H 1 is free and K is a subgroup of H 1, K is free.

And as K Ď H 1, |K| ď ℵ0. Let S be a basis of K.

By the first isomorphism theorem, we have Q “ Imφ – H 1{ kerφ “ H 1{xSy. So we

have H{H 1 and H 1{xSy both torsion-free, and therefore by Remark 3.2.4, xSy is pure in

H 1 and H 1 is pure in H. By the transitivity of purity [9, Chapter 5, Theorem 1.3(ii)],

xSy is pure in H. To see that H{xSy is torsion-free, note that if nh ` xSy “ 0, then

h P xSy, and so by the purity of xSy, h P xSy and thus h` xSy “ 0. So S P P1.

However, H{xSy cannot be ℵ1-free, for it contains a copy of Q as a subgroup

H 1{xSy Ď H{xSy, which is countable but not free. Thus S does not extend to a basis

of H in V. In particular, if G P V is P1-generic with S P G, then
Ť

G is not a basis

for H.

Note that the contradiction above was generated by showing that H 1{xSy – Q,

which is not free. This gives us a clue into the nature of such counterexamples. More

specifically, we see that H 1{xSy is a countable subgroup of H{xSy which is not free,
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and thus H{xSy is not ℵ1-free. However, H{xSy is ℵ1-free if and only if S can be

extended to a basis of H in V (cf. Lemma 3.2.6). Thus the failure of H{xSy to be

ℵ1-free is what lies at the heart of the issue.

Despite the result above, one might naively hope that there is at least some P1-

generic filter G which avoids all such S which do not extend to a full basis. However,

as the following lemma shows, any P1-generic filter must contain at least one such S.

3.2.8 Lemma. Let D be the set of all S P P1 such that H{xSy is not ℵ1-free. Then D

is dense in P1.

Proof. Let S P P1. If S R P2, then we are done. So assume S P P2, that is, that

H{xSy is ℵ1-free.

Note that |H{xSy| “ |H| “ λ. Then by taking H{xSy to be our uncountable

ℵ1-free group in the construction in the preceding example, we can find K 1 (with

appropriate corresponding set K of representatives) such that K 1 “ tx`xSy : x P Ku

with K 1 countable and linearly independent, and pH{xSyq{xK 1y torsion-free but not

ℵ1-free.

Let T “ SYK. Then as K 1 and S are linearly independent, T “ SYK is linearly

independent. Moreover, |T | ă λ. So it remains to see that H{xT y is torsion-free, but

not ℵ1-free, in order to establish that T is an extension of S in D.

We have

H{xT y “ H{xS YKy – pH{xSyq{pxS YKy{xSyq “ pH{xSyq{xK 1
y

with the isomorphism above given by the third isomorphism theorem. Recall that

pH{xSyq{xK 1y is torsion-free but not ℵ1-free. Thus T is an extension of S in D.
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Thus as D is dense in P1, any P1-generic filter G P V will contain some element

which cannot be extended to a full basis of H. So
Ť

G will not provide a basis for H

in our generic extension MrGs.

However, we can strengthen our conditions on P1 to form the poset P2 which, we

will show, does furnish a basis for H in any generic extension.

3.2.4 Forcing with P2

As seen in the last section, we will need to strengthen our conditions on the poset

if we wish for the union
Ť

G of a generic filter G on that poset to span H. To that

end, we will use P2.

3.2.9 Theorem. Let M be a countable transitive model of ZFC, and let H P M be

an ℵ1-free abelian group with prkpHq “ λ ą ℵ0q
M. Let G be P2-generic, and let

B “
Ť

G. Then B is a basis of H in MrGs, with B RM.

Proof. B is linearly independent and B R M by the same arguments given for the

case involving P1.

To see that B is a basis for H, we must show that H “ xBy. To this end, define

for all x P H the set Dx “ tS P P2 : x P xSyu. As P2 PM, Dx PM. We wish to show

that Dx is dense in P2. Suppose S P P2 with x R xSy. To see that Dx is dense, we

must find some S 1 with S Ď S 1 P Dx. Consider the group T “ xS Y txuy˚ Ď H. We

wish to show that T is generated by a linearly independent set S 1 with S Ď S 1, and

that H{T “ H{xS 1y is ℵ1-free, thus establishing the denseness of Dx.
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To see that T has a basis S 1 which extends S, note that xSy˚ “ xSy. This is

because H{xSy is ℵ1-free, and thus every countable subgroup is free, in particular,

the subgroup xy ` xSyy Ď H{xSy is free and thus torsion-free for all y P H. So

ny P xSy with n P Z, n ‰ 0 and y P H implies npy`xSyq “ xSy, hence y`xSy “ xSy,

and y P xSy. Or in other words, xSy contains all elements of H of which its elements

are nonzero multiples, and thus xSy is a pure subgroup of H. Therefore, xSy˚ “ xSy.

Clearly, T {xSy˚ ‰ 0 as x P T´xSy “ T´xSy˚. We now show that rkpT {xSy˚q “ 1.

Let a, b P xS Ytxuy˚´xSy˚. We wish to show that a`xSy˚ and b`xSy˚ are linearly

dependent in T {xSy˚. As a P xS Y txuy˚, there exist some n P Z with n ą 0 and

na P xS Y txuy. Thus we can write na “ s `mx for some m P Z and some s P xSy.

We have m ‰ 0 as a R xSy˚. Similarly, there exist n1,m1 P Z with n1 ą 0, m1 ‰ 0, and

s1 P xSy such that n1b “ s1 `m1x. Then m1na´mn1b “ m1ps`mxq ´mps1 `m1xq “

m1s ´ms1 P xSy “ xSy˚. So m1npa ` xSy˚q ´mn1pb ` xSy˚q “ xSy˚ in T {xSy˚, thus

demonstrating the linear dependence of a` xSy˚ and b` xSy˚. So rkpT {xSy˚q “ 1.

Note that T {xSy˚ is torsion-free. For if z ` xSy˚ ‰ xSy˚ in T {xSy˚, this means

that z R xSy˚, which implies that nz R xSy˚ for all n P Z, n ‰ 0 by purity. Thus

T {xSy “ T {xSy˚ must be countable, as it is a torsion-free, abelian group of rank

1, and thus embeds in Q [9, Section 3.4]. Thus, since T {xSy Ď H{xSy is ℵ1-free,

T {xSy is a rank 1 free group. So we can write T as the direct sum of free groups, as

T – xSy ‘ T {xSy. Therefore T is free, and we can write T “ xS 1y, for some linearly

independent S 1 with S Ă S 1. Let y P T be such that S 1 “ S Y tyu.

In order to see that B is a basis for H, it remains now to show that H{T “ H{xS 1y

is ℵ1-free. That is, we must show that xxi`T : i P ωy is a free subgroup of H{T for any
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countable set of elements xi P H, i P ω. To this end, let U “ xSYtxi, y : i P ωuy Ď H.

Then U{xSy “ xxi ` xSy, y ` xSy : i P ωy is a countable subgroup of H{xSy, which

is ℵ1-free. Thus, U{xSy is free, and we can write U as the direct sum of free groups,

U – xSy ‘ U{xSy. Thus U is free, and we can write y “ a ` b, with a P xSy and

b P U{xSy.

We claim now that xby is pure in U{xSy. To see this, suppose c P U{xSy, and

nc “ mb for some n,m P Z, n ą 0, that is, c P xby˚. We wish to show that c P xby.

Note that nc “ mb P xby Ď xS Y tbuy “ xS 1y “ xS Y txuy˚, so nc is an element of a

pure subgroup of H, namely xS 1y. Thus, c P xS 1y “ xS Y tbuy “ xSy ‘ xby. Thus, as

c P U{xSy and U “ xSy ‘ U{xSy, it follows that c P xby.

Now, as U{xSy is free, and b P U{xSy, b can be written as the finite linear combina-

tion of basis elements b1, . . . , bn with respect to some basis of U{xSy. So we can write

U{xSy “ A ‘ B1, where B1 “
À

1ďiďn Zbi. So B1 is finitely generated and A is free.

Also, xby “ xby˚ in B1, as purity is preserved in subgroups. Now B1{xby˚ is finitely

generated and by purity, torsion-free. Therefore B1{xby˚ is free. So B1 – xby‘B1{xby.

Thus,

U – xSy ‘ U{xSy “ xSy ‘ A‘B – xSy ‘ A‘ xby ‘B{xby

“ xS Y tbuy ‘ pA‘B{xbyq “ xS Y tyuy ‘ pA‘B{xbyq

“ xS 1y ‘ pA‘B{xbyq “ T ‘ pA‘B{xbyq

Therefore, U{T – A ‘ B{xby. And as A and B{xby are free, U{T is free. Thus

H{T is ℵ1-free.

This establishes that
Ť

G is a basis for H.
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3.2.10 Remark. Note that we can dramatically simplify the preceding proof using the

proof technique introduced in Chapter 2 which utilizes the absoluteness of ℵ1-freeness.

In particular, we can prove the denseness of Dx “ tS P P2 : x P xSyu as follows.

Proof. Let q P P2. Then by Lemma 3.2.6, q can be extended to a basis B in V. So

we can write H “ xqy ‘ xB ´ qy in V. Then we have x “ a ` b, with a P xqy and

b P xB´ qy. We can then write b in terms of B´ q, say b “ n1x1` . . .`nmxm. So we

have H “ xqy‘xx1, . . . , xmy‘C in V, with C free. Thus H “ xqYtx1, . . . , xmuy‘C,

and so q Y tx1, . . . , xmu P Dx, and thus Dx is dense.

3.2.5 Cardinal Preservation

The question remains as to whether this forcing preserves cardinals less than or

equal to the size λ of the group (note that as we are concerned here with uncountable

free groups, the size and rank are the same). A standard method for demonstrating

such properties of cardinal preservation is the test of λ-closure, as this provides a sim-

ple condition which guarantees the preservation of cardinals ď λ, cf. Theorem 3.1.26.

However, as we will demonstrate in the next lemma, P2 even fails to be ℵ1-closed,

and thus if we wish to settle the question of cardinal preservation, we must do so by

alternative means.

3.2.11 Lemma. If H is an ℵ1-free group of cardinality λ ą ℵ0, then P2 is not ℵ1-

closed.

Proof. We begin by demonstrating that P2 is not ℵ1-closed if H is free of countable

rank, with H “
À

iPω Zei.

47



Define si “ ei ´ pi ` 1qei`1, Si “ tsj : j ď iu for all i P ω. We wish to show

that Si is linearly independent for all i. By way of induction, suppose Sj is linearly

independent for j ă i. We have

Si “ Si´1 Y tei ´ pi` 1qei`1u.

Observing that the element ei`1 does not contribute to Si´1 Ď
À

0ďjďi Zej, it is

obvious that Si´1 and ei´pi` 1qei`1 are linearly independent from each other. Thus

Si is linearly independent.

Define B0 “ te0, e1, . . .u, Bi`1 “ ts0, s1, . . . , si, ei`1, ei`2, . . .u for i ě 0. Note that

B0 is obviously a basis of H while Bi`1 results from Bi by replacing the basis element

ei with the element si “ ei´ pi` 1qei`1. Thus, an easy induction shows that each Bi

is a basis for H. Then we have H “ xSiy ‘
À

jąi Zej for each i P ω. So each xSiy is

a pure subgroup of H (as direct summands are pure subgroups cf. [9, Section 5.1]),

and H{xSiy –
À

jąi Zej is free for each i. So Si P P2 for all i P ω.

Define S “
Ť

iPω Si “ tsi : i P ωu, and note that the Si form a countable descend-

ing sequence in P2. Defining the homomorphism φ : H Ñ Q by mapping ei ÞÑ
1
i!
, note

that xSy Ď kerφ while φpe0q “ 1. Thus e0 R xSy. To show that S R P2, it suffices

to show that e0 ` xSy is divisible in H{xSy and that H{xSy is torsion-free. For if

H{xSy contains a torsion-free divisible subgroup, then it contains a copy of Q (cf. [9,

Chapter 4, Theorem 3.1]), which is countable and not free. Thus H{xSy cannot be

ℵ1-free.

To see that H{xSy is torsion-free, suppose that nph ` xSyq “ 0 for some n P Z,

n ‰ 0. Then there exist ni P Z, 0 ď i ď k, such that nh “
ř

0ďiďk nisi P xSky, and by

the purity of xSky, h P xSky Ď xSy. Thus h` xSy “ xSy in H{xSy. The construction
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of the si gives us that e0`xSy “ i!ei`xSy for all i P ω. Thus e0 is divisible in H{xSy.

So S R P2.

It remains to check that there is no p ď S with p P P2. Suppose by way of

contradiction that such a p exists. Then H{xpy is ℵ1-free. As p P P2, it is linearly

independent, and since S Ď p, xpy{xSy is free. By the third isomorphism theorem,

we have H{xpy – pH{xSyq{pxpy{xSyq. Thus H{xSy is ℵ1-free by Theorem 2.3.2. But

then S P P2, which is a contradiction.

Let us now consider the general case of an ℵ1-free group H of size λ ą ℵ0, and

pick a strictly decreasing sequence tpi : i P ωu of finite sets pi P P2. If
Ť

iPω pi R P2,

then by the argument in the preceding paragraph, there is no p ď
Ť

iPω pi with p P P2.

So assume
Ť

iPω pi P P2 and let H 1 “ x
Ť

iPω piy. As
Ť

iPω pi P P2, H{H
1 is ℵ1-free.

Furthermore, H 1 is free of countable rank (with basis
Ť

iPω pi). So we can write

H 1 “
À

iPω Zei, and perform the construction given in the first half of this proof

for countable rank free groups to construct si, Si, and S “
Ť

iPω Si as above. Then

H 1{xSiy is free and H{H 1 is ℵ1-free, so again by the third isomorphism theorem and

Theorem 2.3.2, we have that H{xSiy is ℵ1-free, so Si P P2.

Now by the divisibility argument above, Q Ď H 1{xSy Ď H{xSy. So H{xSy is

not ℵ1-free, and thus S R P2. We can complete the proof by carrying through the

argument that there is no p ď S in P2.

49



CHAPTER FOUR

Forcing ℵ1-Free Groups to Be Free with Cardinal Preservation

4.1 Preliminaries

Here, we give a formal definition of the Γ-invariant and state a theorem which

characterizes the freeness of an ℵ1-free group of size ℵ1 using the Γ-invariant.

We also discuss two established forcings which, given a stationary subset A of ℵ1,

add a closed unbounded subset to A while preserving ℵ1.

4.1.1 The Γ-Invariant

We now define the Γ-invariant of an ℵ1-free group of cardinality ℵ1, and state

a theorem of Eklof and Mekler relating the freeness of the group to its Γ-invariant.

For further details and proofs, see [8, Section IV.1]. The definition of the Γ-invariant

requires that we first define an ℵ1-filtration, and an equivalence relation on subsets

of ℵ1. These definitions are given below.

4.1.1 Definition. Let H be an abelian group of cardinality ℵ1. An ℵ1-filtration of H

is a sequence tHα : α ă ℵ1u of subgroups of H whose union is H and which satisfies

for all α, β ă ℵ1:

1. |Hα| ď ℵ0;

2. if α ď β, then Hα Ď Hβ;

3. if α is a limit ordinal, then Hα “
Ť

βăαHβ.
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4.1.2 Definition. If X and Y are subsets of ℵ1, we can define an equivalence relation

by X „ Y if and only if there exists some closed (with respect to the order topology)

and unbounded set pclub q C Ď ℵ1 such that X XC “ Y XC. Denote the equivalence

class of X by rXs.

We may now give the definition of the Γ-invariant of an ℵ1-free group of cardinality

ℵ1 as follows:

4.1.3 Definition. Let H be an ℵ1-free abelian group of cardinality ℵ1, and let tHα :

α ă ℵ1u be an ℵ1-filtration of H. Let E “ tα ă ℵ1 : H{Hα is not ℵ1-freeu. The

Γ-invariant of H, denoted ΓpHq, is defined to be the equivalence class of E, rEs.

Note that the Γ-invariant ΓpHq does not depend on the choice of filtration.

We now state the key result of Eklof and Mekler relating the freeness of an ℵ1-free

group to its Γ-invariant.

4.1.4 Theorem. If H is an ℵ1-free group of size ℵ1, then H is free if and only if

ΓpHq “ rHs.

It is of interest to note that given any subset E of ℵ1, an ℵ1-free group H of

cardinality ℵ1 with ΓpHq “ rEs can be constructed.

We can see that H is free if and only if the representative E of the equivalence

class rEs defining the Γ-invariant ΓpHq is not stationary. So if we wish to force a

non-free ℵ1-free group H of cardinality ℵ1 to become free, we must force E to become

non-stationary, i.e., we must add a club to ℵ1 ´ E.

51



4.1.2 Forcing a Club into a Stationary Set

In [4], Baumgartner, Harrington, and Kleinberg describe a forcing which, for any

stationary subset A of ℵ1, forces a closed unbounded subset of ℵ1 into A. Furthermore,

this forcing preserves the cardinality of ℵ1. In particular, if M is a countable transitive

model of ZFC, and A Ď ℵ1 is stationary, then there exists a generic extension N of M

which has the same reals as M and in which there exists some club C with C Ď A. The

poset defining this forcing consists of all closed subsets of A of successor order-type

with q ď p if and only if p is a subset of q and pq ´ pq X p
Ť

pq “ H.

If we wish to preserve all cardinals, we may use the forcing described by Abraham

and Shelah in [1, Theorem 3]. The poset which describes this forcing adds a closed

unbounded subset to a given stationary subset A of ℵ1 while preserving the cardinality

of ℵ1, and the poset itself has size ℵ1 and thus preserves all cardinals. However, it

does add new reals to the base model M.

We will show that if ΓpHq ‰ rℵ1s, then H is free of size ℵ1 in some generic

extension produced by either of these forcings.

4.2 Forcing an ℵ1-Free Group to Become Free with Cardinal Preservation

4.2.1 Lemma. Let M be a transitive model of ZFC and H a pnon-freeq ℵ1-free abelian

group with cardinality ℵ1 and ΓpHq “ rℵ1s in M. If N is any transitive model of ZFC

containing M with H free in N, then ℵ1
M
‰ ℵ1

N.
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Proof. Note first that if ΓpHq “ rEs “ rℵ1s, where E is any representative of the

Γ-invariant, then there exists some club C in ℵ1 with E XC “ ℵ1XC “ C, and thus

C Ď E. So we will prove the result under this assumption by contrapositive.

Thus, let N be a transitive model of ZFC with M Ď N, and assume ℵ1
M
“ ℵ1

N.

Then if tHα : α ă ℵ1u is an ℵ1-filtration of H in M, it is also an ℵ1-filtration in N,

by absoluteness and because ℵ1
M
“ ℵ1

N with M Ď N.

So by the absoluteness of ℵ1-freeness,

E :“ tα P ℵ1 : H{Hα is not ℵ1-freeuM “ tα P ℵ1 : H{Hα is not ℵ1-freeuN,

and thus, pΓpHq “ rEsqN. We note that while the definition of the set E as a

representative of the Γ-invariant is absolute, the equivalence class of E is not absolute.

As ΓpHq “ rEs “ rℵ1s in M there exists some club C in ℵ1 in M with C Ď E. Note

that as C is a club in ℵ1 in M, then C is also a club in ℵ1 in N. Now, let C 1 be any

club in N. Then as the intersection of two clubs is nonempty, H ‰ C XC 1 Ď E XC 1.

So E is stationary in N, and thus H is not free in N.

Thus, if H is free in N, then ℵ1 is not preserved in the model extension.

4.2.2 Lemma. Let M be a countable transitive model of ZFC and in M, let H be an

ℵ1-free abelian group of cardinality ℵ1 with ΓpHq ‰ rℵ1s. Then there exists a generic

extension N of M which preserves the cardinality of H with H free in N.

Proof. Let M be a countable transitive model of ZFC and H be an ℵ1-free abelian

group of cardinality ℵ1 with ΓpHq ‰ rℵ1s in M. Let E be a representative of the

Γ-invariant of H resulting from some ℵ1-filtration tHα : α ă ℵ1u of H in M.
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We argue first in M that ℵ1 ´ E is stationary. Proceeding by contrapositive, if

ℵ1 ´ E is not stationary, then there exists some club C in ℵ1 with C Ď E. Thus

EXC “ C “ ℵ1XC, and so rEs “ rℵ1s. So ℵ1´E is stationary, and thus we can use

the forcings described by [4] and [1, Theorem 3] to produce generic extensions N of

M which preserve the cardinality of H in which there exists some club C in ℵ1 with

C Ď ℵ1 ´ E.

Thus in N, E is not stationary. And as pΓpHq “ rEsqN, as shown in the previous

proof, pΓpHq “ rEs “ rHsqN. Thus H is free in N.

Combining the previous two lemmas gives the following necessary and sufficient

condition under which an ℵ1-free group of size ℵ1 can be forced to be free while

preserving the cardinality of the group.

4.2.3 Theorem. Let M be a countable transitive model of ZFC and H an ℵ1-free

abelian group of size ℵ1 in M. Then there exists some transitive model N of ZFC

extending M in which the cardinality of H is preserved and H is free if and only if

ΓpHq ‰ rℵ1s in M.

Note that the backwards direction of this result can in fact be strengthened, as we

do not require M to be countable. That is, if we begin with an arbitrary transitive

model M of ZFC containing H in which ΓpHq “ rℵ1s, then there is no transitive

extension of M in which ℵ1 is preserved and H is free, cf. Lemma 4.2.1.
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4.2.1 The Baer-Specker Group is Turbid Assuming CH

Theorem 4.2.3 motivates the following definition.

4.2.4 Definition. We call an ℵ1-free group H turbid if |H| “ ℵ1 and ΓpHq “ rℵ1s.

We note that the Baer-Specker group, Zω “
ś

iPω Zei, is ℵ1-free of cardinality 2ℵ0 .

If we assume the Continuum Hypothesis (CH), the Baer-Specker group has cardinality

ℵ1, and so it makes sense to ask whether it is a turbid group. It is, in fact, turbid,

owing to the fact that it is strongly ℵ1-free, which we define below. See [8, Chapter

IV.0] for further details regarding strongly ℵ1-free groups.

4.2.5 Definition. We call a group H strongly ℵ1-free if every countable subset of H is

contained in some countable free subgroup K Ď H with H{K ℵ1-free.

4.2.6 Remark. Note that every strongly ℵ1-free group is automatically ℵ1-free. More-

over, a group H of size ℵ1 is strongly ℵ1-free if and only if it allows an ℵ1-filtration

tHα : α P ℵ1u such that ℵ1´E is unbounded. Thus, if H is not strongly ℵ1-free, then

ℵ1 ´ E is bounded for every filtration, in which case ΓpHq “ rEs “ rℵ1s, i.e., H is

turbid. Note that the converse is not true as there exist strongly ℵ1-free turbid groups.

We now cite the following result concerning the uncountable product of copies of

the integers [8, Theorem 2.8].

4.2.7 Theorem. For any infinite cardinal κ, Zκ “
ś

αăκ Zeα is not strongly ℵ1-free.

As the Baer-Specker group is not strongly ℵ1-free, it is turbid (assuming the

Continuum Hypothesis). Thus, if H is the Baer-Specker group in a ground model M

for ZFC`CH, there is no ℵ1-preserving transitive extension of M in which H is free.
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4.2.2 P2 Revisited

In an even more algebraic fashion, we may also explicitly add a basis to our non-

turbid ℵ1-free group H of size ℵ1. Since the final goal is to add a full basis, it is

appropriate that our forcing set should be a set of ‘partial bases,’ i.e., sets of linearly

independent elements of H.

Recall the definition of the partial order P2 given in Definition 3.2.5.

P2 “ tp Ă H : p is linearly independent, |p| ă ℵ1, and H{xpy is ℵ1-freeu

There is a natural ordering on the elements of P2 by p ď q ô q Ď p. Recall also that

forcing with P2 produces a basis for H, cf. Theorem 3.2.9. That is:

4.2.8 Theorem. Let M be a countable transitive model of ZFC, and let H be an ℵ1-free

group of size ℵ1 in M. Let G P V be a P2-generic filter and define B “
Ť

G. Then

B is a basis of H in MrGs, with B RM.

If we restrict our attention to non-turbid groups, we are able to settle the question

of cardinal preservation. In particular, if H is a non-turbid ℵ1-free group of size ℵ1,

then forcing with P2 preserves the cardinality of H.

4.2.9 Theorem. Let M be a countable transitive model of ZFC and let H be a non-

turbid ℵ1-free group of size ℵ1 in M. Let pP ,ďq be defined to be P2 as above. Then

forcing with P preserves ℵ1, and H is free of size ℵ1 in MrGs.

Proof. Fix some filtration tHα : α ă ℵ1u of H in M (without loss of generality we

may choose this to be a strictly increasing filtration with α ă β Ñ Hα Ă Hβ). Let

E “ tα ă ℵ1 : H{Hα is not ℵ1-freeu. Since H is not turbid, we have that the set
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ℵ1 ´ E “ tα ă ℵ1 : H{Hα is ℵ1-freeu is stationary. Then define

P 1 “ tp P P : Dα P ℵ1 ´ E with p a basis for Hαu.

We claim that P 1 is dense in P .

Let p P P . As p is finite or countable, it is contained in some Hα. Since ℵ1´E is

unbounded, we may, without loss of generality, choose this α to be in ℵ1 ´ E. Now,

as p P P ,H{xpy is ℵ1-free. Furthermore, because Hα{xpy is a countable subgroup of

H{xpy, Hα{xpy is free. So we can extend p to some basis q of Hα. Thus we have

q P P 1 with q ď p, so P 1 is dense in P .

Let p P P 1. Since the filtration is strictly increasing, we can define the “height” of

p to be the unique ordinal hppq such that xpy “ Hhppq.

We will prove that P preserves ℵ1, that is, that there is no bijection f : ω Ñ ωM
1

in MrGs. So suppose by way of contradiction that MrGs contains such a function

f : ω Ñ ωM
1 . Then let τ be a P-name such that τG “ f . Then by the Fundamental

Theorem of Forcing, there must be some p P P (hence some p P P 1) which forces this.

That is, there is some p P P 1 such that

p , “τ is a bijection from ω̌ to }ω1
M.” (4.1)

Within M, we will define an ascending sequence tAα : α ă ℵ1u of subsets Aα Ď

P 1 ˆ ω ˆ ăωω1 as follows: if pq, n, gq P Aα then dompgq “ n “ t0, 1, 2, . . . , n ´ 1u

and q , “τ is a bijection from ω̌ to }ω1
M with τ æ ň “ ǧ.”. In other words, this

sequence consists of partial functions which approximate this bijection, and elements

of P 1 which force this approximation. We will also define, for each Aα, a (countable)

ordinal hα “ supthpqq : pq, n, gq P Aαu. We construct the Aα’s inductively as follows.
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First define A0 “ tpp, 0,Hqu where p is the element of P 1 given in (4.1). For

the successor step, let Aα be defined with hα ă ℵ1, and suppose that for each q ,

“τ is a bijection from ω̌ to }ω1
M with τ æ ň “ ǧ.” Now, within MrGs, τ evaluates to

such a bijection, i.e., τG : ω Ñ ω1
M. Because τG is defined in MrGs, τGpnq P ω1

M.

Define a function g1 P n`1ω1 by g1 “ g Y txn, τGpnqyu. Evidently, both g1 and g are

finite functions such that g Ď g1. Therefore g1 P M and τG æ ~n` 1 “ qg1. By the

Fundamental Theorem of Forcing there exists some r P P such that

r , “τ is a bijection from ω̌ to }ω1
M with τ æ ~n` 1 “ qg1.”

Because q and r are contained in the filter G, choose s P G such that s ď q, r (by

taking a common extension of q and r if necessary), and let q1 ď s with q1 P P 1 and

hpq1q ą hα. Then define

Aα`1 “ Aα Y tpq
1, n` 1, g1q : pq, n, gq P Aαu, (4.2)

completing the successor step. Note that a fixed choice for pq1, n ` 1, g1q can be

obtained by choosing it to be minimal with respect to some fixed well-ordering of

P 1 ˆ ω ˆ ăωω1 in M. Note also that this procedure is well-defined and decidable

within M, as we can replace , by ,˚.

Finally, for α a limit ordinal define Aα “
Ť

βăαAβ.

From the construction, it is clear that for β ă α ă ℵ1 we have that Aβ Ă Aα.

Furthermore, for each α ă ℵ1, Aα is countable. This can be seen by first noting that

|A0| ă ℵ1, and if |Aα| ă ℵ1 then the successor step construction produces some Aα`1

which is also countable. Finally, if α is a countable limit ordinal, it may be written

as α “
Ť

iPω βi for ordinals βi ă α, hence Aα “
Ť

iPω Aβi is a countable union of

countable sets. So Aα is countable for any ordinal α ă ℵ1.
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As Aα is countable, by the regularity of ℵ1, we have that hα ă ℵ1 is countable for

each α. Note that β ă αÑ hβ ă hα, and for α a limit ordinal, hα “ supβăα hβ.

Then the set C “ thα : α ă ℵ1u is a club in ℵ1, as is the set C˚ “ thα : α ă

ℵ1, α is a limit ordinalu, which is also a club in ℵ1.

Since ℵ1 ´ E is a stationary set, it has nontrivial intersection with C˚ so choose

some hα˚ P pℵ1´EqXC
˚. Since α˚ is a countable limit ordinal, cfpα˚q “ ω, so there

is a set of strictly increasing ordinals tαn : n P ωu with supremum α˚. Thus

hα˚ “ sup
βăα˚

hβ “ sup
nPω

hαn .

We will now construct within M a sequence tpqn, n, gnq : n P ωu such that

pqn`1, n`1, gn`1q P Aαn`1´Aαn . First define pq0, 0, g0q “ pp, 0,Hq P A0 Ď Aα0 . Then,

assume that pqn, n, gnq P Aαn is given, and let pqn`1, n ` 1, gn`1q “ pq
1
n, n ` 1, g1nq P

Aαn`1 ´ Aαn Ď Aαn`1 ´ Aαn as in (4.2).

The construction of the Aα’s above assures that qn`1 “ q1n ď qn and gn Ď g1n “

gn`1. Then g “
Ť

nPω gn defines a function from ω to ω1 in M. Finally, by construc-

tion, hαn ă hpqn`1q “ hpq1nq ď hαn`1 ď hαn`1 . Thus supnPω hpqnq “ supnPω hαn “ hα˚ .

Now note that qn P P 1 is a basis for Hhpqnq. Then q˚ :“
Ť

nPω qn is a basis for

HsupnPω hpqnq “ Hhα˚
. Since hα˚ P ℵ1 ´ E, H{xq˚y “ H{Hhα˚

is ℵ1-free. Thus q˚ P P 1

with hpq˚q “ hα˚ and q˚ ď qn. Thus

q˚ , “τ is a bijection from ω̌ to }ω1
M with τ “ ǧ.”

But this is a contradiction, as it implies that we have a bijection g PM.

4.2.10 Remark. In addition to preserving ℵ1, forcing with P also preserves reals.

To see this, in the above proof we can replace “τ is a bijection from ω̌ to }ω1
M” with
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“τ is a function from ω̌ to 2̌ with τ R ­pω2qM,” that is τ is a new real number not

in M.
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CHAPTER FIVE

Further Work

Further work in this area could branch-out in several different directions. We

would like to enable algebraists to easily apply the forcings described here, a goal

which would be benefited by the development of an algebraic characterization of tur-

bid (or more-pertinently, non-turbid) groups which does not require direct reference

to the Γ-invariant, which can be quite difficult to work with in practice. One might

also like to find the precise conditions under which these or similar forcings can be ap-

plied to ℵ1-free groups of larger cardinality. We can also use these forcings to produce

powerful new forcings through iterated forcing, which could be applied to the setting

of homological algebra. Branching out even further, we can take inspiration from the

forcing techniques developed here to explore new forcings which illuminate the notion

of “almost isomorphism,” or which could aid algebraists in the construction of objects

with particular prescribed properties. Finally, it is our hope that the creation and

analysis of different forcings related to ℵ1-free groups will lead to the development of

new predictive principles or axioms which can be used in algebraic constructions and

in more easily generating independence and consistency results within algebra.

Beyond these proposed expansions upon the specific forcings described in this

dissertation, the extension of these results via the method of iterated forcing could

prove a powerful tool for applying these types of forcings to various questions in

abelian group and ring theory and homological algebra. Iterated forcing is a method
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of applying multiple forcings simultaneously in order to generate a model extension

in which all of the propositions forced by the individual forcings hold. Thus we could

use iterated forcing to force multiple ℵ1-free groups to be free simultaneously. It is

important to note that it is not the case that any two non-turbid ℵ1-free groups of

cardinality ℵ1 can be simultaneously forced to be free. As an example, suppose that

H1 and H2 are non-turbid groups of cardinality ℵ1 with ΓpH1q “ rE1s, ΓpH2q “ rE2s,

and pℵ1 ´ E1q X pℵ1 ´ E2q “ H. Then if we force a club into ℵ1 ´ E1 in order to

make H1 free, we cannot force a club into ℵ1 ´ E2 in order to make H2 free, as the

intersection of clubs cannot be empty. So the question of when precisely these iterated

forcings can be achieved with cardinal preservation would again be a relevant one.

Such iterated forcings would open the door to applying these methods to homo-

logical algebra. As a simple example, suppose A,B, and C are ℵ1-free groups in some

countable transitive ground model M, and suppose

0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0

is a short exact sequence. It is well-known that the functor Homp´, Dq, where D is

any abelian group, is exact on the category of free abelian groups, that is, it preserves

short exact sequences. So using the iterated forcing technique above, we could find

a transitive model extension in which A, B, and C are free. In this model extension

then,

0 Ñ HompA,Dq
f˚
ÝÑ HompB,Dq

g˚
ÝÑ HompC,Dq Ñ 0

is short exact for any abelian group D. Indeed, with class forcing techniques, we

could even perform iterated forcing on entire classes of ℵ1-free groups (although for

technical reasons, we cannot for instance, force the entire class of non-turbid ℵ1-free
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groups of size ℵ1 to become free without cardinal collapse). This could enable further

investigations into independence and consistency results in homological algebra.

Iterated forcing could also be used to force isomorphisms between particular ℵ1-

free groups, by forcing both groups to become free, and then forcing their cardinalities

to be equal. However, a more straightforward way to force an isomorphism between

ℵ1-free groups might be an approach by partial isomorphism similar to the forcings

defined by partial bases described here. As with our partial basis forcing, this ap-

proach would be preferred over an approach which relies on cardinal collapse because

it would constitute a more “minimally-invasive” forcing. It would also help illuminate

the notion of partial isomorphism. Partial isomorphisms are a way to describe the

degree of similarity between two algebraic structures, in which the notion of a global

isomorphism is replaced by local isomorphisms between substructures which are com-

patible with each other and can be extended. This approach to describing algebraic

similarity can be mirrored by the set-theoretic approach of considering “potential

isomorphism,” in which two algebraic objects are said to be “almost isomorphic” if

they are isomorphic in some generic extension of the set-theoretic universe. These

two approaches, that of partial isomorphism and potential isomorphism, are in fact

equivalent, as shown by Barwise r3s. Forcing provides the ideal setting through

which to bridge these two perspectives, and further investigation into forcings which

make two ℵ1-free groups isomorphic would help illuminate the mechanics behind this

equivalence and enable algebraists to more easily explore and construct partial iso-

morphisms. The locally free structure of ℵ1-free groups make them ideal targets for

such investigations into partial isomorphisms, and indeed one might even expect some
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natural (although perhaps more limited) generalizations to the realm of κ-free groups

and modules in the spirit of the generalizations described at the end of Chapter 4.

Another class of ℵ1-free forcings that would be of interest to investigate is the

class of forcings which force an ℵ1-free group to have a particular endomorphism

ring, or at least, an endomorphism ring with particular properties. Owing to the ring

realization property of ℵ1-free groups (that is, any ring with free additive structure

can be realized as the endomorphism ring of some ℵ1-free group), such forcings could

provide a powerful tool for algebraic constructions.

Ultimately, as the family of ℵ1-free forcings is further developed and taxonomized,

we expect to see patterns and commonalities arising between the generic extensions

which they produce. An analysis of the relations between these forcing extensions

may, in the long-run, point to the development of new predictive principles or ax-

ioms which can be easily used by algebraists in constructions, or in producing new

consistency and independence results in algebra.
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Comparing P1 and P2

As we have seen above, while P2 is a subset quite naturally defined out of P1, these

two posets have very distinct properties with regards to the properties exhibited by

their forcing extensions. For example, the union of a P2-generic filter produces a basis

for H, while the same is never true of a P1-generic filter. In addition, P1 preserves

cardinals less than or equal to the cardinality of H, while P2 does not always preserve

these cardinals.

Intuitively, there are branches in P1 which “dead-end,” that is, which cannot be

extended to produce a full basis of H. Recall that these “dead ends” cannot be

avoided by a generic filter because they form a dense set, cf. Lemma 3.2.8.

In general, P2 involves a much stronger condition than P1. This is further illus-

trated by the following lemma which states that if an element in P1 is a “dead end,”

we cannot simply remove finitely many members of it in order to arrive at an element

in P2.

A.0.1 Lemma. Let p P P1 and x P p. If p P P1 ´ P2, then p´ txu P P1 ´ P2.

Proof. We will prove the converse, which is that if p P P1 and x R p with pYtxu P P1,

then p P P2 implies pY txu P P2.
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Suppose p P P2 with x R p and pY txu P P1. For p P P1, we have

p P P2 ÐÑ H{xpy is ℵ1-free in M

ÐÑ H{xpy is free in V

ÐÑ xpy is a direct summand of H in V

ÐÑ H – xpy ‘ C for some C in V

ÐÑ x P H can be written in V as x “ x1 ‘ x2 for some x1 P xpy, x2 P C.

We claim that x2 is pure in C, that is, that xx2y is a pure subgroup of C. Assume

by contradiction that x2 is not pure in C. Then x2 “ ny for some n ą 1, y P C. So

x “ x1 ` ny.

Consider y ` xpY txuy P H{xpY txuy. Then

npy ` xpY txuyq “ ny ` xpY txuy “ x´ x1 ` xpY txuy “ x` xpY txuy “ xpY txuy.

However, y ` xp Y txuy ‰ xp Y txuy. Thus H{xp Y txuy fails to be torsion-free, so

pY txu R P1, which is a contradiction.

So x2 is pure in C, and thus can be extended to a basis of C in V as C is free.

To see this, recall that C is free in V, as C – H{xpy. So we can write C “ C1 ‘ C2

with C1 of finite rank and x2 P C1. As x2 is pure in C, it is pure in C1. So C1{xx2y is

torsion-free and finitely generated. Thus C1{xx2y is free, so xx2y is a direct summand

of C1, which is a direct summand of C.

So we can write H “ xpy ‘ C “ xpy ‘ xx2y ‘ C 1 “ xp Y txuy ‘ C 1 in V, for some

(free) subgroup C 1 of C.

Thus, as H{xp Y txuy is free in V, H{xp Y txuy is ℵ1-free in M. Thus p Y txu P

P2.
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As P2 is a subset of P1, and these posets define the model extensions in question,

we might wish to know how these model extensions relate with each other. Specifi-

cally, if M1 is the model extension generated by P1, and M2 is the model extension

generated by P2, is it necessarily the case that M2 ĎM1? In general, the answer is

no. However, we can guarantee that M2 Ď M1 if there is an embedding of P2 into

P1 which is “complete” (see definition below).

Thus, if we can find a complete embedding of P2 into P1, we can prove that P2

preserves cardinalities ď λ. For if P2 embeds completely into P1, then M2 Ď M1.

And as P1 is λ-closed, M1 contains no bijections collapsing cardinalities ď λ, and thus

M2 cannot contain any such bijections and must therefore also preserve cardinalities

ď λ.

Clearly, for turbid groups H, a complete embedding of P2 into P1 is impossi-

ble, as we know that no cardinal preserving forcing which makes H free exists, see

Theorem 4.2.3. However, a complete embedding may still be possible for non-turbid

ℵ1-free groups H. We may ask the even more specific question of if the canonical

embedding of P2 into P1 can be complete. As we will show below, this canonical

embedding is not complete for any ℵ1-free group H.

We first give the formal definition of a complete embedding. For further discussion

of complete embeddings, see [10, Chapter IV.7].

A.0.2 Definition. Let P and Q be partial orders and i : P Ñ Q a function from P to

Q. i is a complete embedding if and only if it satisfies the following three conditions:

1. @p, p1 P P pp1 ď pÑ ipp1q ď ippqq
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2. @p, p1 P P pp K p1 Ø ippq K ipp1qq

3. @q P Q Dp P P @p1 P P pp1 ď pÑ pipp1q and q are compatible in Qqq

If p is as in Condition 3, then we call p a reduction of q to P .

While Condition 1 of the above definition trivially holds for the canonical embed-

ding function i : P2 Ñ P1, we will now show that Condition 3 fails.

A.0.3 Lemma. The canonical embedding P2 Ď P1 is not complete.

Proof. Let T P P1 ´ P2. Assume by way of contradiction that there is a reduction

S of T to P2. As S P P2, H{xSy is ℵ1-free. Thus H{xSy is free in V, and thus S

extends to a basis B of H in V.

By Condition 3, S and T are comparable in P1, so S Y T is contained in some

S 1 P P1, and thus S Y T is linearly independent. We claim that T Ď S. To see this,

let t P T . Then we can write t in terms of B, say

t “
ÿ

b PB

nbb “
ÿ

b PS

nbb`
ÿ

b PB´S

nbb.

If
ř

b PB´S

nbb “ 0, then t P S, as desired. So assume
ř

b PB´S

nbb ‰ 0. Then there

exists some c P xB ´ Sy such that c is pure in H with
ř

b PB´S

nbb “ nc (letting

n “ gcdpnb : b P B ´ Sq). We can extend tcu to a basis of xB ´ Sy. To see this,

note that we can write c in terms of some finite subset B1 of B ´ S, and so xcy is

a pure subgroup of the finite rank free summand xB1y of xB ´ Sy. Thus xB1y{xcy is

torsion-free by the purity of xcy, and finitely generated. Therefore xB1y{xcy is free,

and xcy Ď xB1y. Then tcu can be extended to a basis B2 Y tcu of xB1y, and so

B2 Y tcu Y pB ´ S ´ B1q is a basis of xB ´ Sy. So we can extend S Y tcu to a basis

of H in V and thus S Y tcu P P2.
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Now by Condition 3, S Y tcu and T are compatible in P1, and thus S Y tcu Y T

is linearly independent, with t “
ř

b PS

nbb ` nc. So t P S Y tcu. But note that we

can replicate the argument above with ´c in place of c, which would imply that

t P S Y t´cu. And thus, we must have that t P S.

So T Ď S. But this contradicts that T P P1 ´P2, that is, that T does not extend

to a basis of H in V. For as S P P2, S extends to a basis of H in V, but T Ď S.

Thus the canonical embedding P2 Ď P1 is not complete.
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[9] Fuchs, László. Abelian Groups, Heidelberg: Springer, 2015.

[10] Kunen, Kenneth. Set Theory: An Introduction to Independence Proofs, Amster-

dam: Elsevier B. V., 1980.

[11] Shelah, Saharon. “Infinite Abelian Groups, Whitehead Problem and Some Con-

structions,” Israel Journal of Mathematics 18 (1974): 243–256.

[12] Specker, Ernst. “Additive Gruppen von Folgen ganzer Zahlen,” Portugaliae

Mathematica 9, no. 3 (1950): 131–140.

71




