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N;-free groups, abelian groups whose countable subgroups are free, are objects of
both algebraic and set-theoretic interest. Illustrating this, we note that N;-free groups,
and in particular the question of when N;-free groups are free, were central to the
resolution of the Whitehead problem as undecidable. In elucidating the relationship
between Ni-freeness and freeness, we prove the following result: an abelian group G
is N;-free in a countable transitive model of ZFC (and thus by absoluteness, in every
transitive model of ZFC) if and only if it is free in some generic model extension. We
would like to answer the more specific question of when an N;-free group can be forced
to be free while preserving the cardinality of the group. For groups of size 8;, we
establish a necessary and sufficient condition for when such forcings are possible. We
also identify both existing and novel forcings which force such Ni-free groups of size
N; to become free with cardinal preservation. These forcings lay the groundwork for
a larger project which uses forcing to explore various algebraic properties of Ni-free

groups and develops new set-theoretical tools for working with them.
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CHAPTER ONE

Introduction

N;-free groups, abelian groups whose countable subgroups are free, are objects
of both algebraic and set-theoretic interest. They played a critical role in Shelah’s
celebrated resolution of the Whitehead problem, the question of whether there exist
any non-free abelian groups A with Ext(A,Z) = 0 [11]. Such groups are known as
Whitehead groups, and the Whitehead problem asks whether every Whitehead group
is free. It can be shown algebraically that every Whitehead group is Ni-free. Shelah
proved that the Whitehead problem was undecidable within ZFC by demonstrating
that it is undecidable whether every N;-free Whitehead group of size N; is free.

This remarkable result represented the first time a seemingly purely algebraic
problem was proved to be undecidable, and came as a great surprise to many in
the mathematical community. N;-free groups and their properties, particularly those
pertaining to the relationship between N;-freeness and freeness, seem to lie at the heart
of this undecidability. It is from this observation that we launch the investigations
that comprise this work.

The core question that we investigate in this work is when an N;-free group can
be forced to be free. Forcing is a set-theoretical technique developed by Paul Cohen
in 1963 to prove the independence of the Continuum Hypothesis [5], and which is
the standard method of generating consistency and independence results. The general

method of forcing involves constructing, from some suitable ground model M of ZFC,



a model extension M[G] having specific prescribed properties, or in which a desired
proposition holds. The central result of this dissertation provides a necessary and
sufficient condition under which Ni-free groups of size N; can be forced to be free
while preserving the cardinality of the group. The question of cardinal preservation
is an important one, as cardinality can sometimes vary between the ground model
and the extension depending upon the forcing. In the case of forcing an ¥;-free group
to be free, this can be accomplished rather trivially by forcing the cardinality of
the group to become countable. However, we seek a forcing which adds a basis to
the Ni-free group while making minimal changes to the ground model. We explore
both established and novel forcings which make such RN;-free groups free with cardinal
preservation, thus providing a number of different ways in which to generate various
model extensions which add a basis to an N;-free group.

The results contained here constitute the groundwork of a larger proposed program
investigating various forcings related to Ni-free groups. Due to the unique positioning
of Ni-free groups in the intersection between algebra and set theory, such an inves-
tigation could point to the development of new set-theoretical tools for constructing

algebraic objects with various prescribed properties.

1.1 Two Perspectives: Vyi-Free Groups in Algebra and Set Theory
From an algebraic point of view, the class of N;-free groups displays a significant
degree of complexity, as demonstrated by the test of ring realization. However, from
a set-theoretical perspective, Ni-free groups are rather simple objects, as evidenced

by the absoluteness of W;-freeness, which will be proved in this work. We propose



forcing as a tool through which to bridge the gap between the algebraic and set-
theoretical perspectives. In particular, in identifying and developing a number of
different forcings related to Ni-free groups, we can explore the algebraic diversity of
N;-free groups within the set-theoretical framework provided by forcing. For example,
the characterization that we give of “turbid groups” provides an algebraic description
of a class of Ny-free groups which can be thought of as “universally non-free” (subject
to the requirement of cardinal preservation) in the sense that they cannot be made
free in any model extension without collapsing the size of the group to countable.
This dissertation in particular focuses on forcings which make certain Xi-free groups
free, but future work would broaden this investigation to other properties of N;-free
groups.

The class of Ni-free groups exhibits a high degree of diversity. One standardized
test of the algebraic complexity of a class is ring realization: Dugas and Gobel [7] and
Corner and Gobel [6] show that any ring with free additive structure can be realized
as the endomorphism ring of some N;-free group. This can be interpreted as a strong
statement of algebraic complexity: almost any property that does not contradict
N;-freeness outright will be realized by some N;-free group. In particular, we can
construct arbitrarily large N;-free groups A such that End(A) = 7Z, indicating that
the class of Ni-free groups is significantly different from the class of free groups, for
which every endomorphism is uniquely determined by the images of its basis elements
(and thus the endomorphism ring of a rank « free group will have size 2).

Yet set-theoretically, Ri-free groups can be thought of as somewhat simple objects.

One important set-theoretic property of N;-freeness which demonstrates this is its



absoluteness, which is proved in Chapter 2 of this work. The absoluteness of N;-
freeness states that if an abelian group H is N;-free in some transitive model of ZFC,
then H is N;-free in any transitive model of ZFC containing H. It is properties such
as this absoluteness that make N;-free groups particularly susceptible to set-theoretic
techniques.

In the wake of Shelah’s result that the question of whether there exist any non-free
Whitehead groups is undecidable from ZFC, set-theoretic prediction principles and
axioms have become widely accepted tools for X-free constructions. We propose that
a thorough investigation into the family of forcings relating to N;-free groups could
yield novel set-theoretic principles which can be used for constructing N;-free groups

with prescribed properties.

1.2 The Relationship Between Ni-Freeness and Freeness

Clearly, any free group is also Ni-free, as subgroups of free groups are free. How-
ever, the converse is not true, as the direct product of countably many infinite cyclic
groups, known as the Baer-Specker group Z“, provides an example of a group which
is Wy-free but not free, as proved by Baer and Specker [2, 12].

However, an N;-free group can be made free in a suitable model extension. The ab-
soluteness of N;-freeness offers this novel, set-theoretic characterization of N;-freeness:
that G is N;-free in a countable transitive model M of ZFC if and only if G is free in
some transitive model extension of M. This result is the main result established in

Chapter 2.



We conclude Chapter 2 by presenting other applications and consequences of the
absoluteness of N;-freeness and of the central characterization presented in that chap-
ter. In particular, we observe that this absoluteness result and characterization offers
a new method of proof, one which can be used to prove novel results, or to offer novel
proofs of established theorems. To illustrate this potential, we present simple new
proofs of two established results relating to particular algebraic properties of Ni-free

groups, using the absoluteness of N;-freeness.

1.3 Forcing an Xy-Free Group to be Free

The novel characterization of N;-freeness given in Chapter 2 provides a jumping-
off point from which we begin our deeper investigation into model extensions with the
property that any particular N;-free group becomes free. Indeed, the chapters that
follow concern the construction of such model extensions using various established and
novel forcing techniques. As previously mentioned, such a forcing can be achieved
by collapsing the cardinality of the group to be countable. However, much of the
structure of the group and of the ground model is lost in such a cardinal collapse. We
would like to know under what conditions such a forcing is possible without collapsing
the cardinality of the group. In Chapter 3, we explore two natural candidates for such
forcings defined using filters over posets of partial bases, P; and Ps, and some of their
various properties. Specifically, we focus on properties related to cardinal preservation

such as chain conditions and closure conditions.



1.4 Forcing Xy-Free Groups to Be Free with Cardinal Preservation

In Chapter 4 of this work, we establish a necessary and sufficient condition, for
groups of size Ny, for when an N;-free group can be forced to be free. In particular,
for an Ny-free group H of size N, we show that such a forcing is possible if and only
if I'(H) # [N;]. The I'-invariant, denoted I'(H), was introduced by Eklof and Mekler
in [8]. Given an N;-filtration of H, I'(H) := [{a < Xy : H/H, is not N;-free}], where
[-] designates the equivalence class defined by intersection with closed unbounded
subsets of N;. Under this definition, H is free if and only if I'(H) = [].

We call such groups for which I'(H) = [¥;] “turbid groups.” In particular, N;-
preserving forcings which make an Ni-free group free can be achieved for non-turbid
groups by forcing a club into a stationary subset of N; which is defined by the I'-
invariant of the group. We show that a forcing presented by Baumgartner, Harrington,
and Kleinberg [4] achieves this while preserving the cardinality of the group, while a
forcing given by Abraham and Shelah [1] achieves this while preserving cardinality
generally. Finally, we demonstrate that the novel poset Py presented in chapter three
forces non-turbid N;-free groups to be free while preserving the cardinality of the
group. This forcing, unlike those in [4] and [1] which merely demonstrate that a basis
exists in the extension, provides a clear picture of the basis added to the generic

extension in terms of the partial bases in the ground model.



1.5 Other Forcings and Further Work

As pertains to the application of the forcings described here which force non-turbid
N;-free groups to become free, the natural question arises of how to characterize a
turbid group, or perhaps more pertinently, how to characterize a non-turbid group.
A simple characterization or test of when a group is turbid would allow for easier
application of these forcings in an algebraic context.

More broadly, future investigations into N;-free forcings could branch-off in many
different directions. One quite natural off-shoot of the work in this dissertation would
be a generalization of the results found here to the setting of iterated forcing, in which
two (or more) Wi-free groups could be simultaneously forced to be free. Note that it
would then be trivial to force an isomorphism between the groups by subsequently
forcing the cardinality of the two groups to be the same. (Such isomorphisms could
potentially also be forced without the groups becoming free using a partial isomor-
phism approach similar to the partial basis approach we use in the forcing P,, and
this method might be favored as a more minimalist approach which does not require
such drastic changes to the ground model.) Such iterated forcings could also provide
a setting in which results from homological algebra related to free groups could be
applied to Ni-free groups.

Another class of N;-free forcings which could prove fruitful to investigate is forcings
which force an R;-free group to have an endomorphism ring with prescribed properties.
Given the ring realization property described above (recall that any ring with free

additive structure can be realized as the endomorphism ring of some Y;-free group),



this could provide a powerful tool for algebraists to generate a wide variety of examples
and counterexamples.

As an eventual goal, Ni-free forcings could provide the foundation for more readily
producing consistency and independence results in algebra, as well as guiding the
development of predictive principles or axioms which can be used in the construction

of algebraic objects with various prescribed properties.



CHAPTER TWO

Absoluteness and Ni-Free Groups

2.1 Introduction to Absoluteness
We begin in this section by introducing and collecting some general definitions
and results on absoluteness. We refer the reader to [10, Chapter IV.2-5] for further
proofs and details.
We first define relativization, which allows us to explore the notion of truth in a

given model M.

2.1.1 Definition. Let M be any class. Then for any formula ¢, we define ™, the

relativization of ¢ to M, inductively as follows:

1. (x=yMisxz=y.

2. (reyMisxey.

3. (¢ AP)M gs oM A M,
4o ()M is = (™).
5. 3z )M is Jo (x e M A ¢M).

2.1.2 Definition. Let M be any class. For a sentence ¢, “¢ is true in M” means that
o™ is true. For a set of sentences S, “S is true in M” means that each sentence in

S is true in M.



We are now ready to give a definition for absoluteness.

2.1.3 Definition. Let ¢ be a formula with free variables x1,...,x,. If M < N, ¢ s
absolute for M, N if and only if

Voo, .. xn € M(0M(zy, ..., 2,) < N (21,...,20)).
We say that ¢ is absolute for M if and only if ¢ is absolute for M, V. That is,

Yoy, .. x, € M(M(zy, ..., 3,) < oy, ..., 2)).

Intuitively, the absoluteness of ¢ for M, N means that ¢(x1,...,x,) is true in M
if and only if it is true in N. Note that if ¢ is absolute for both M and N, and
M < N, then ¢ is absolute for M, N. The following lemma states that absoluteness

is preserved under logical equivalence.

2.1.4 Lemma. Suppose M < N, and both M and N are models for a set of sentences

S such that

SEVYry, .., (0(x, .. xy) < V(X ..., x)).

Then ¢ is absolute for M, N if and only if ¥ is absolute for M, N.

The following definition introduces a family of formulas, the Aq formulas, which

is foundational to our results on absoluteness.

2.1.5 Definition. A formula is Aq if it is built inductively according to the following:
1. xey and x =y are Ay.
2. If ¢, are Ay, then —¢, ¢ A, ¢ v b, ¢ — 1 and ¢ < Y are A,.
3. If ¢ is Ao, then dx (x € y A @) is Ay.

10



We use Jx € y ¢ as abbreviation for 3x (z € y A ¢) and Vx € y ¢ as abbreviation
for Vo ((z € y) — ¢), and we call 3z € y and Yz € y bounded quantifiers. According
to Definition 2.1.5, a formula in which all quantifiers are bounded of type Jz € y is

automatically Ag. The next lemma connects Ag formulas to absoluteness.

2.1.6 Lemma. If M is transitive and ¢ is Ag, then ¢ is absolute for M.

Note that (Vz € y ¢) «— —(3x € y (—¢)). Thus, the above lemmas tell us that
formulas in which all quantifiers are bounded are logically equivalent to Ay formulas
and hence absolute.

In addition to the previous exposition, we need also to account for the absoluteness
of defined notions which take the form of functions. This gives rise to the following

definition.

2.1.7 Definition. If M < N, and F(z1,...,x,) is a well-defined function both for M
and N, we say F is absolute for M, N if the formula F(xy,...,x,) =y is absolute
for M, N.
More formally, suppose that F(x1,...,x,) was defined as the unique y such that
d(x1, ... xn,y). Then F(xy,...,x,) is a well-defined function for M, N only if

Vo, ..oz, Ny oz, ... 20, y)
is true in both M and N. Assuming this, F' is absolute for M, N if and only if ¢ is

absolute.

This definition allows us to make full sense of the following lemma, which states

that absolute notions are closed under composition.

11



2.1.8 Lemma. Let M < N, and suppose that formula ¢(xy,...,x,) and functions
F(zy,...,xn), Gi(yr, - ym) (i = 1,...,n) are absolute for M,N. Then so are the

formula

A(Gr(Y1, - Um)s - GulYr,y - -+ Ym))

and the function
F(Gi(Y1s-sUm)y -, Gu(yty - Ym))-

Using the definitions and results above, we can establish the absoluteness of a
number of defined notions and formulas from set theory which produce useful results

on the absoluteness of properties of finite sets.

2.1.9 Lemma. The following are absolute for any transitive model M of ZFC:

1. ordered pairs (x,y), 4. x is an ordinal,
2. set union | Jx, 5 a+ B, a- B for ordinals a, 3,
3. set inclusion x < vy, 6. wand (Z,+,-).

Proof. Note that Z is formally defined as a set of ordered pairs from w x w.
We need to check the absoluteness of some formal definition of Z. For definiteness
let us take
Z = ((w % {0}) U (@ x {1}))\(0,0),
where (n, 1) represents the integer n and (n,0) represents —n. The operations +
and - on Z are defined appropriately and are primarily determined by the ordinal

arithmetic of w. ]

The absoluteness of finite sets will be of particular importance.

12



2.1.10 Lemma. If M is a transitive model of ZFC, then every finite subset of M 1is in

M, and “x is finite” is absolute for M.

Our last lemma in this section addresses the absoluteness of formulas which are
built recursively over w from absolute formulas. While the result can be generalized
to include transfinite recursion over well-founded and set-like relations on an arbitrary
class A, cf. [10, Chapter IV, Theorem 5.6], for simplicity we present only the version
involving standard induction over w. We will use this to establish the absoluteness

results of the next section.

2.1.11 Lemma. Suppose F': V — V and let G :w — V be defined so that
Vnew|G(n)=F(G | n),
where G | n denotes the restriction of G to the domain n ={0,1,...,n — 1}.
Let M be a transitive model of ZFC and assume that F' is absolute for M. Then

also G is absolute for M.

2.2 The Absoluteness of Ni-Freeness
We will now apply the absoluteness results in Section 2.1 to some algebraic notions.
After relating in Theorem 2.2.10 the N;-freeness of a group to the freeness of the pure
subgroups generated by its finite subsets, we will be ready to establish the main result

of this section, Theorem 2.2.11, namely the absoluteness of N;-freeness.

13



2.2.1 Basic Absoluteness Results for Abelian Groups

In this section, we collect some first basic absoluteness results on abelian groups.
We will follow the algebraic convention of using G as a shorthand to denote the
abelian group (G, +).
2.2.1 Lemma. Suppose M is a transitive model of ZFC. Then “G is an abelian group”

1s absolute for M.

Proof. Suppose (G, +) € M. Note the logical equivalence
“G is an abelian group” < ¢1 A @9 A @3,

where ¢1, ¢o and ¢3 denote the sentences

1.VxeGVyeGVzeG (v+ (y+2) = (z+y) + 2),

2. ueG(VzeG (x+u=2)AVereGIyeG (z+y=u))),

3. VreGYyeG (v +y=y+ux).

Note that each of ¢i,¢s and ¢3 involves only bounded quantifiers and logical
symbols, so each property is equivalent to a Ay statement, and thus is absolute for
M. So as each of ¢1,¢2 and ¢3 is absolute, “G is an abelian group” is absolute for

M. [l

2.2.2 Lemma. Suppose M is a transitive model of ZFC and (G,+) € M is abelian.

The defined notions “O¢” and “nz” (n € Z,x € G) are absolute for M.

Proof. To see that “0g” is an absolute defined notion, note that O¢ is uniquely defined
by

2=00 <= (e GAVreldG (z+2z=n1)),

14



where the right-hand side of the above equivalence is a Ag formula. As the right-hand
side of the above equivalence is easily seen to be equivalent to a Ay statement, “0g”
is an absolute defined notion.

For the absoluteness of “nx”, note that nx for n > 0 is formally defined recursively
onn € wby 0z =0 and nt = (n — 1)z + x for all n > 0 (cf. Lemma 2.1.10).

Absoluteness easily extends to n < 0 as nz is the additive inverse of (—n)x. ]

2.2.3 Lemma. Suppose M is a transitive model of ZFC and (G,+) € M is abelian.

Then “G s torsion-free” is absolute for M.

Proof. Note that
“G is torsion-free” < Vo € G Vn e w (nx = 0g — (z = 0g v n = 0)),
where the right-hand side above is obtained by substituting absolute notions “04”

and “nz” into a Ay sentence. O

2.2.2 Establishing the Absoluteness of Ni-Freeness

We are nearly ready to establish our main result concerning the absoluteness of
N;-freeness. We will review finite rank pure subgroups and Pontryagin’s Criterion,
the main ingredients of the proof of Theorem 2.2.10. The interested reader may refer

to [9] for more detail.

2.2.4 Definition. A subgroup H of an abelian group G is said to be a pure subgroup
if foranyxe H, 0 #neZ,n|x in G impliesn | x in H. In particular, a subgroup
H of a torsion-free group G is pure if and only if x = ny implies y € H for all

reHyeG and 0 # neZ.

15



The intersection of pure subgroups of a torsion-free group is again pure. Therefore
if G is a torsion-free abelian group, and S is a subset of G, the intersection of all pure
subgroups containing S is the minimal pure subgroup containing S, which we denote
by (S)s-

Ezxplicitly, we may write

(SHe={yeG|In,ny,...,npe€Z,n #03s1,...,8,€S:nYy =n181 + ... + NS}

2.2.5 Lemma. Suppose M is a transitive model of ZFC. Suppose (G,+) € M is

abelian and S is a finite subset of G. Then “{S).” is an absolute notion for M.

Proof. Let S = {s1,...,5n}. Recall that
SHe={yeG|In,ny,....npneZ,n#0: ny=mn15 + ...+ NmSn}.

Then we have the logical equivalence

2 ={S), =

[[Vyez [yeG/\Hn,nl,...,nmEZ(ﬂ(n:O)/\nyznlsl—k...—i-nmsm)ﬂ

A [Vy eG[(@n,n1, ..., npeZ(=(n=0) Any =nisi+...+Npsp)) = Y € z]]],

where the statement on the right-hand side above involves only bounded quantifiers,
logical symbols, “Z”, and various multiples of elements. So it can be seen that the
right-hand side is obtained by substituting the absolute notions “Z”, “ny”, “nis;”,

)

., “npsy” into a sentence which is logically equivalent to a Ay statement. Thus

by the closure under composition of absolute notions, “{S),” is absolute. O]

2.2.6 Remark. The proof of Lemma 2.2.5 can easily be modified to drop the finiteness
condition. In particular, “{S),” is an absolute notion for any subset S of G in M.
Note also that for any finite set S € V with S € G, we have {S), € M.

16



In order to establish our result on the absoluteness of X-freeness, we need a simple
estimate for the torsion-free rank of (S),. Recall that the torsion-free rank rko(G) of
a torsion-free abelian group G is defined as the size of a maximal linearly independent
subset S < G. We must first show that if S is a finite subset of an abelian group G,
then rko({(S).) < |S|.

To this end, we prove the following lemma.

2.2.7 Lemma. If S is a finite subset of a torsion-free abelian group, then
ko ((S)s) < |9].
If S’ is a maximal linearly independent subset of a finite subset S of a torsion-free

abelian group, then

<Sl>* = <S>*

Proof. Let S = {s1,...,5,} and let S’ be a maximal linearly independent subset of
the finite set S.

Suppose S = {s1,...,8,} and S" = {s1,...,s;} with & < m. Clearly, {(S"), <
(S)s. Let t € {(S),. Then there exist N,ny,...,n, € Z, N + 0 such that Nt =
D nisi. So Nt e (S).

For any i > k, S U {s;} is linearly dependent, so there exists 0 # NV; € Z such that
N;si € (S").

Note NNiy1Nigio... Nyt € {((Nkg1 ... Nim$1), o, (Ngy1 - - Npsm)y. - We claim
that

<(Nk+1 ... Nmsl), ey (Nk+1 . NmSm)> - <81, Ceey 8k> = <S,>,

17



and thus, that ¢ € (S"),. To see this, note that
Nis1Neso - Nosirr = Nito - o Ny (Nisr18e11) € (S0,
Similarly, for any k£ < i < m,
Nps1Niso oo Nuusi = Nar« .. NieyiNiwr .. N (Nis;) € (S,
Finally, for any ¢ < k, it is clear that Ny,1 ... Nys; € (S"). This establishes the claim,
and completes the proof.

Choose S’ to be a maximal linearly independent subset of S. We wish to show
tko((S)«) = |S’|. By way of contradiction, suppose there exists some t € (S), such
that S’ U {t} is linearly independent. Then ¢ € (S), = (S").. So there exists some
0 # n € Z such that nt € {(S"), and t is linearly dependent on S’, contradicting
our assumption. Thus, S” is a maximal linearly independent subset of (S),, and so

tko((S)«) = [5'] < |5]. O

2.2.8 Remark. An alternative proof of Lemma 2.2.7 uses the divisible hull Q ® (S
and tko({(S),) = dimg(Q ® (S)) = 1ko((S)). We have chosen a more elementary
approach to emphasize the underlying aspects of set theory.

More generally, using the aziom of choice (AC), rko({(S)«) < |S| holds for any

subset of a torsion-free group.

We recall Pontryagin’s Criterion next. For a proof, see [9, Chapter 3, Theorem

7.1].

2.2.9 Theorem (Pontryagin’s Criterion). A countable torsion-free abelian group is free

if and only if each of its finite rank subgroups is free.
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The theorem below gives a number of equivalent characterizations of N;-freeness.
We will use the last of these alternative characterizations to prove the absoluteness of
N;-freeness. Note that rk(G) denotes the rank of G, and rky(G) denotes its torsion-free

rank.

2.2.10 Theorem. Let M be a transitive model of ZFC and G be an abelian group in

M. The following statements are equivalent:

(1) G is Wy-free, that is, for all subgroups H of G, if |H| < Wy, then H is free.

(13) For all subgroups H of G, if rk(H) is finite, then H is free.

(17i) G 1is torsion-free and for all pure subgroups H of G, if rk(H) is finite, then H

18 free.

(iv) G is torsion-free and for all finite subsets S of G, {S), is free.

Proof. For (i) — (ii), let H be a subgroup of G with rk(H) finite. By (i), all cyclic
subgroups of GG are free. Hence G is torsion-free, and H < G is torsion-free, too. This
implies rk(H) = rko(H) and |H| < R - rk(H). Hence |H| < Ny, and H is free.

The direction (i) — (iii) — (iv) is easy. For (ii) — (iii), note that with (i)
every cyclic subgroup of G is free, hence G is torsion-free. For (iii) — (iv), note that
if S is finite, then (S, is of finite rank by Lemma 2.2.7.

To see that (iv) — (i), let H be a subgroup of G with |H| < N,. If H =0, H
is free, so suppose that H is non-trivial. Then as G is torsion-free, |H| = X,. We
wish to use Pontryagin’s Criterion to show that H is free, so let K be a finite rank
subgroup of H. Choose S to be a maximal linearly independent subset of K. Then
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as S is finite, (S), is free, and K < (S), is free, too. So by Pontryagin’s Criterion,

H is free. u
Finally, we are ready to establish the absoluteness of N;-freeness below.

2.2.11 Theorem. Suppose M is a transitive model of ZFC, and G is an abelian group

in M. Then “G is Ny-free” is absolute.

Proof. Let ¢ denote the statement

G is torsion-free A VS((S € G A S is finite) — (S), is free).
By Theorem 2.2.10, “G is Ni-free” is equivalent to ¢. To establish the absoluteness
of Ni-freeness, we will show that VG e M (¢M «—— ¢).

We need to determine ¢™ first. Recall that torsion-freeness, set inclusion, finite-
ness and “(S),” (for finite subsets S of a torsion-free abelian group) are absolute.
Unfortunately, however, freeness is not absolute. Thus ¢™ is the statement

G is torsion-free A VS e M ((S < G A S is finite) — (S), is free™).

For oM — ¢, let S € V such that S < G and S is finite, and assume ¢™. Note
that by our previous result on the absoluteness of finite sets, as G € M, if S is a finite
subset of G then S € M. Thus, {(S), has a basis in M, which is automatically a basis
of {(S), in V.

For ¢ — ¢™, let S € M such that S € G and S is finite, and assume ¢. Then
(S is free in V. Choose a basis B € V of (S),. Then, still in V, rkq({S).) = |B|
and rko({S):) < |S]. So |B| < |S|, and thus B < {(S), < G is a finite set. Suppose

B = {xy,...,x,}. As each z; € B is in H, by the transitivity of M, each z; € B is in

20



M. Then using union and finite recursion, we have that B € M, and B will witness
that (S), is free in M.

Thus, N;-freeness is absolute. n

2.3 Proofs with Model FExtensions

In this section, we discuss some major applications and consequences of the ab-
soluteness of Ni-freeness. We start with a general observation concerning the rela-
tionship between N;-freeness and freeness in different models of set theory. We then
demonstrate how this observation can be turned into a quick and elegant routine for
generating and simplifying proofs concerning N;-free groups.

We will repeatedly reference the use of forcing to collapse the cardinality of a given
N;-free group G to countable. Such a forcing may be defined by the partial order
consisting of all injective functions from finite subsets of w into G which results in a
model extension in which G is countable. Thus, by the absoluteness of ¥;-freeness, G
is free in this model extension, as it is a countable subgroup of itself. For more detail
on this type of forcing, we refer the reader to Remark 3.1.18. However, the technical
details of forcing are not necessary in order to understand the applications below.
Rather, we simply reference forcing as a method for producing a model extension
with some required properties, namely with the property that G is free in this model
extension.

The following result is another take on Theorem 2.2.11 and highlights how N;-
freeness as an initially algebraic property can be interpreted and understood in the

context of model extensions in set theory.
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2.3.1 Theorem. Let M be a transitive model of ZFC, and G an abelian group in M.

Then the following are equivalent:

(i) G is Ny-free in M.

(77) G is Ny-free in V.

(i13) G is Wy-free in any transitive model N with G € N.

In addition, if M is a countable transitive model of ZFC, we may add to the above

list of equivalent statements:
(1v) G is free in some generic extension N of M.

Proof. The equivalence of (i), (i7) and (zi¢) is an immediate consequence of the ab-
soluteness of N;-freeness, Theorem 2.2.11.

We have (iv) — (i) as G is free in N implies G is Rj-free in N, and thus by
the absoluteness of Nj-freeness, G is Nj-free in M. Finally, (i) — (iv) can be seen
by letting N be the generic extension obtained by collapsing the cardinality of G to

countable. n

Theorem 2.3.1 provides a new approach to proving statements about Ni-free
groups. To illustrate the utility of such an approach, we give a remarkably sim-
ple proof of the well-known transitivity of N;-free groups. We will be using countable
transitive models of ZFC as is common convention for forcing arguments. It should be
understood that countable transitive models only exist for finite lists of axioms, and
we will provide in Remark 2.3.4 an explanation of how these proofs with countable
transitive models translate into a formal proof within the metatheory.
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2.3.2 Theorem. If H and G/H are Ny-free for abelian groups H < G, then G is

N -free.

Proof. We will assume a countable transitive model M with H,G € M. Let N be
the generic extension of M produced by collapsing the cardinality of G to countable.
Then G/H is countable and N;-free in N, thus it is free in N. In particular, we have
GN ~ H®G/H, and as H is also countable and free in N, G is free in N. With

Theorem 2.3.1, (iv) — (i), G is Ny-free in M. O

2.3.3 Theorem. Let G be Xy-free and let H < G be a finite rank pure subgroup of G.

Then G/H is Xy-free.

Proof. Without loss of generality, assume G € M for some countable transitive model
M of ZFC. Suppose that N is some generic model extension of M in which G is
countable. Then G is free in N. So in N, as G is free, we can choose a basis B of G.

Let H be a finite rank pure subgroup of G (recall that this is an absolute property).
Then by the Pontryagin Criterion, H is free of finite rank, so we can choose B’ € B
finite with H < (B’).

Now H is a pure subgroup of G, and thus, H is pure in (B’). So (B')/H is
torsion-free, and as it is also finitely generated, {(B’)/H is free by the Fundamental
Theorem of Abelian Groups.

So H is a direct summand of (B’), which is a direct summand of (B) = G. Thus

G/H is free in N, and by the absoluteness of N;-freeness, G/H is Nj-free in M. [
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2.3.4 Remark. We will discuss a more formal argument for why we can restrict our-
selves to countable transitive models M with H,G € M in our proof of Theorem 2.5.2
and Theorem 2.3.3.

Let 1 denote the first-order logical sentence which expresses the statement of The-
orem 2.3.2 (or Theorem 2.3.3) and note that the proofs of Theorem 2.3.2 and The-
orem 2.3.3 can be formalized using a finite list of axioms 1, ...,p, of ZFC. If ¥
were not provable on the basis of ZFC, then Godel’s Completeness Theorem implies
the ezistence of a model for ZFC + —i. In particular, the finite list of azioms
O1y -y On, — 1S consistent and a standard procedure using the Reflection Theorem,
Lowenheim-Skolem Theorem, and Mostowski Collapse Lemma produces a countable
transitive model M for o1, ..., ©n, =. In particular, in M we can find abelian groups
G, H for which 1 fails and going from M to a generic model extension N where GN
s countable we can reproduce the proofs of Theorem 2.3.2 and Theorem 2.5.3 for a

contradiction.
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CHAPTER THREE

Forcing an W;-Free Group to Become Free

Forcing is a general technique used to produce models of set theory satisfying
a variety of different properties. It is an indispensable tool for producing relative
consistency and independence results.

The key idea behind forcing is to begin with a countable transitive model M of
ZFC called the ground model, and to construct from it another countable transitive
model of ZFC called M[G] which extends M. To build M[G], we begin by choosing
a partially ordered set in M, the properties of which will determine what propositions
hold in M[G] beyond ZFC.

One technical issue is that there cannot be a proof from ZFC that there exists
a countable transitive model of ZFC, for the existence of such a proof would be a
violation of Godel’s Second Incompleteness Theorem.

We may resolve this by noting that while we may not be able to build set models
of ZFC from ZFC, we can build a countable transitive model of any finite fragment of
ZFC from ZFC. So we only need M to satisfy enough of ZFC to carry out the given

argument. For further discussion of this approach, see [10, Chapter IV.1].

3.1 Forcing Basics
We will now discuss briefly how the extensions M[G], called generic extensions,

are built.
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3.1.1 Posets, Filters, and Generic Extensions
3.1.1 Definition. A partially ordered set, or a “poset”, is a pair {P,<) such that

P # & and < is a relation on P such that the following properties hold:
1. Vpe P (p<p)

2.Vp,qe P((p<qnrqg<p) —>p=q)
8. ¥p,qreP((p<qgnqg<r)—>p<r)
In a slight abuse of notation, we may speak of a poset P to indicate a pair (P, <).

For p, q € P, if there exists an r € P such that » < p and r < ¢, we call such an r
a common extension of p and ¢ in P. If there does not exist a common extension of
p and ¢ in P, we say that p and ¢ are incompatible, and write p L q.

For forcing purposes, we will restrict our attention to partial orders with a maximal
element, that is, an element 1 such that Vp € P (p < 1). When we refer to a partial
order in this work, we will be referring specifically to one with a maximal element,

and refer to this element as “1”.

3.1.2 Definition. Let (P, <) be a partial order. G < P is a filter in P if and only if

the following conditions hold:

1. Vp,qeGIreG (r<par<gq)

2. VpeGVqe P(p<q—qe@)

3.1.3 Definition. Let (P, <) be a partial order. D < P is dense in P if and only if

Vpe PIg<p(qe D).
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3.1.4 Definition. Let (P, <) be a partial order. G € V is P-generic over M if and

only if G is a filter in P and for all dense D < P with D e M, G n D # (.

The following lemmas give properties of P-generic filters which will help us con-

struct our desired model extensions and establish the relevant forcing notions.

3.1.5 Lemma. If M is countable and p € P, there is a P-generic G € V over M with

ped.

3.1.6 Lemma. If M is a transitive model of ZF — P, and {P,<,1) € M is such that
Vpe PIqg,re P(g<parr<pnqlr)

and G € V is P-generic over M, then G ¢ M.

We are now ready to introduce generic model extensions. We will set aside many
details here, but the interested reader is referred to [10, Chapter IV.2] for further
details.

Beginning with a countable transitive model M of ZFC, a partial order P € M,
and a P-generic filter G € V, we define the generic extension M[G]. M|G] is the
smallest model of ZFC such that M € M[G] and G € M[G], and can be thought of
as the set of all sets which can be built from G using processes definable in M.

Formally, this is done by defining, through transfinite recursion, names for every
element of M|G] which describe how the element is constructed. These are called
P-names, and they do not make any explicit reference to a particular GG. Thus the P-
names can be understood from the perspective of M. However, the objects in M|G]

to which the P-names refer cannot in general be identified from the perspective of
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M, as G does not exist in M. If 7 is a P-name, we will use 74 to refer to the object

in M[G] which is named by 7.

3.1.7 Definition. 7 is a P-name if and only if T is a relation and
V{o,pye T (o is a P-name A p € P).
This is a definition by transfinite recursion on the (set-theoretic) rank of T. In par-

ticular, T = & s trivially a P-name.

3.1.8 Definition. V¥ denotes the class of P-names in V. If M is a transitive model

of ZFC with P € M, then M¥ = VI A M is the class of P-names in M.

3.1.9 Definition. For 7 a P-name and G € V with G < P, let

¢ ={og:Ipe G ({o,p)e 1)}
denote the valuation of 7 with respect to G. This is again a definition by transfinite

recursion on the rank of T.

3.1.10 Definition. If M is a transitive model of ZFC, P € M, and G € V with G < P,

then M[G] = {7g : T € M?}.

Using the definitions above, it is possible to represent any element x € M in a

canonical way by a P-name called .
3.1.11 Definition. Define the P-name & recursively by & = {(g,1) : y € x}.

3.1.12 Lemma. IfM is a transitive model of ZEC, P a poset in M, and G a non-empty

filter on P, then Vox e M (i € MY A &g = x).

We can then construct a forcing language which uses the P-names to make state-
ments about M[G] which are understandable from the perspective of M. Generally,
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we will not know from the perspective of M whether a given proposition is true in
M][G]. However, we will still be able to give some surprisingly explicit conditions on

GG under which such a proposition holds.

3.1.13 Definition. Let ¢(x) be a formula, M a countable transitive model of ZFC,
(P,<)eM, 7 a P-name, and p € P. We say that p forces ¢(1), written p |- ¢(7) if
and only if for all G € V such that G is P-generic over M and p € G, ¢(7¢) holds in

MI[G].

From the definition above, it is clear that if G € V is a P-generic filter containing
some p which forces ¢, then ¢ holds in M[G]. Amazingly, the converse also holds.
That is, if G is P-generic over M and ¢ holds in M[G], then there exists some p € G
such that p |- ¢. This is known as the Fundamental Theorem of Forcing.

Importantly, and perhaps surprisingly, it can be decided from M whether p |- ¢,
although M will in general not know of any P-generic filters.

In order to decide such statements from within M, we must define a new notion,
I-*, such that for all ¢, (p I- ¢) < (p IF* $)M. There are many equivalent defini-
tions of |-*, and the details of one construction may be found in [10, Chapter IV].

Summarizing, we have the following critical result about forcing.

3.1.14 Theorem. Let M be a countable transitive model for ZFC, (P,<) € M, 7 a

P-name, and G € V P-generic over M. Then
(e G @I oM < [Bpe@ i o(r)] < (d(re)M.

In other words, a proposition holds in M[G] if and only if some p € G forces it.
This establishes the relationship between forcing and truth in the generic extension.
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In the following example, we will show how to use forcing to construct a function
from w to 2 which is not in the ground model. In essence, we can think of this
as building a generic extension in which there exist more real numbers than in the

ground model.

3.1.15 Example. Let M be a countable transitive model of ZFC. Let (P,<) be the
poset with

P ={p|pisa function A |p| <w A dom(p) € w A range(p) < 2},
where p < q means ¢ < p, i.e., the function p is an extension of the function q.
Finally, let G € V be a P-generic filter over M.

Then | G is a function from a subset of w to 2. | JG is indeed a function, as the
filter properties of G guarantee that any two elements of G will agree in value where
their domains overlap due to their having a common extension in G.

Furthermore, the domain of the function | JG is w by the P-genericity of G. To
see this, let D, = {p € P | n € dom(p)}. Then for alln < w, D, is dense, as any
p € P which is not in D,, can be extended to one which is by extending its domain to
include n. Thus G n D, # & for all n, and so dom(| JG) = w.

To see that this new function | JG does not exist in the ground model M, suppose
by way of contradiction that | JG € M and let D = {pe P | p & |JG}. D is dense,
as given any p € P we can extend p to a function q such that g(n) # (|JG)(n) for
some n. However, GnD = J. Note that by absoluteness, if | JG € M, then D € M,
but then G n D = & contradicts the P-genericity of G. Thus | JG ¢ M. However,

note that | JG € M[G] as G € M[G].
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This is a special case of a more general class of forcing posets, given below, of

partial functions.

3.1.16 Definition. For any infinite cardinal A, let
Fn(I, J,A) = {p||p| < A A p is a function A~ dom(p) < I A range(p) < J}.

Order Fn(I, J,\) by p < q < q < p.
Note that when A\ > w, Fn(I, J, \) is not absolute for M.

3.1.17 Lemma. If I, J A e M, (X is an infinite cardina)™, J # &, (|I| = )M, and

G eV is Fu(I, J,\)M-generic over M, then | JG is a function from I onto J.

3.1.18 Remark. [In creating such new functions in our generic extensions, we introduce
the possibility of changing the cardinals in the model extension. In fact, the forcing
described above can be used to collapse the cardinality k of a group to be countable as

discussed in the first chapter, by taking I = w, J = Kk, and A = w.
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3.1.2 Cardinal Preservation

Recall the following properties and definitions concerning cardinals.

3.1.19 Definition. The cardinality |A| of a set A is the least ordinal « such that there

exists a bijection between A and o. We say that « is a cardinal if and only if a is an
ordinal with |a] = «.

The cofinality of B, cf(8), is the least ordinal «a such that there is a map from «

into B whose range is unbounded in 3. We say [ is regular if and only if 5 is a limit

ordinal and cf(f8) = 5.

We now define what it means for a forcing poset P to preserve cardinals.

3.1.20 Definition. If (P,<) € M, P preserves cardinals if whenever G € V is P-

generic over M, then

VB e M [(8B is a cardina)™ < (B is a cardinal)MI].

If a cardinal x is not preserved by a poset P, we say that P collapses k, that is,

forcing with P introduces to the generic extension M[G] bijections between k and

some sets in M of smaller size.

We will now give two conditions under which a poset P preserves certain cardinals.
These two conditions taken together will describe an interval of cardinals in M which
may possibly be collapsed by P. Cardinal preservation is guaranteed outside this
interval. For proofs and further information, we refer the reader to [10, Chapter
IV.5-6].

3.1.21 Definition. An antichain in (P, <) is a subset A < P such that
Vpge Alp#q—pLlaq.
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3.1.22 Definition. A partial order (P, <) has the #-chain condition if and only if every

antichain in P has cardinality < 0.

3.1.23 Theorem. Assume (P,<) € M, and that in M, 6 is a cardinal, P has the

0-chain condition, and 0 is reqular. Then P preserves cardinals = 0.

While the #-chain condition provides a sufficient condition under which P pre-
serves cardinals > 6, it is not a necessary condition. Pikry forcing provides one
example which demonstrates this fact.

Note that Fn(7, J, \) has the (]J|=*)"-chain condition. Thus we have the following

result.

3.1.24 Lemma. Assume I,J € M, and that in M, X is reqular, |J| < 2<%, and

0 = (2<M)*. Then Fn(I, J,\)M preserves cardinals = 0.

3.1.25 Definition. A partial order {P,<,1) is A-closed if and only if whenever o < A
and {ps : B < a} is a decreasing sequence of elements of P, then

dge PVB < a (q < pp).

3.1.26 Theorem. Assume P € M, and that in M, X is a cardinal, and P is A-closed.

Then P preserves cardinals < .
If X is regular, then Fn(Z, J,\)M is A-closed. Thus we have the following result.

3.1.27 Lemma. Assume I,J € M, and that in M, X is reqular, 2<* = X\, and |J| < \.

Then Fn(I, J, \)M preserves all cardinals.
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The #-chain condition provides an upper bound on the set of cardinals which could
potentially fail to be preserved by a given poset P, while A-closure provides a lower
bound on the set of cardinals which may fail to be preserved by P.

Note that the #-chain condition relates to the size of the largest antichain in P,
called the width of P, while A\-closure relates to the smallest size of a maximal chain
in P.

Combining the two conditions, we have the following:

3.1.28 Theorem. Assume P € M, and that in M, X\ and 6 are cardinals, 0 is reqular,
and P is A-closed and has the 0-chain condition. If A < 6 in M, then P preserves all
cardinals k such that k ¢ (A, 0).

If X" =0 in M, then P preserves all cardinals.

3.2 Adding a Basis to an Ni-Free Group
In this section, we begin by presenting the simple example of adding a basis to a
vector space using forcing with partial bases, and then explore the analogous case of

adding a basis to an Ni-free group using partial basis forcing.

3.2.1 A Simple Forcing Example: Adding a Basis to a Vector Space
We will now give an example of a forcing notion which provides a new basis for a
vector space in the generic extension.
In the next sections, we will generalize this forcing to free and N;-free groups.
Note that in this example, we refer to fields F' and F'-vector spaces V in the

ground model M. It is easily seen from our discussion in Chapter 2 that being a field
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or an F'-vector space is an absolute notion for M provided F,V € M, so we need not

specify in which model these sets are fields and vector spaces.

3.2.1 Example. Let M be a countable transitive model of ZFC. Let F € M be a field
and V € M be an F-vector space with (dimV = X > Rg)M.

Define the poset P = {S < V : S linearly independent, |S| < \}M, ordered by
ScS 8«8,

Let G € V be a P-generic filter over M, and define B = | JG.

Clearly B 1is linearly independent, for if B was linearly dependent, there would be
some dependence relation

mxi + ... + npx, =0 with distinct x4, ...,x,, € UG.

Then there exist S; € G with x; € S; fori < m. Let S € G be a common extension of
all of the S;. Then xq,...,x, € S. But then 1, ..., x,, must be linearly independent.

Furthermore, B spans V. To see this, define for each x €V,

D, ={SeP:xelS)}.

To see that D, is dense in P, let S € P and suppose S ¢ D,. Then S is linearly
independent, but x ¢ (S), so x is not linearly dependent on S. Thus S U {x} € D,,
and S v {z} < S. So because G is P-generic, G n D, # & for each x € V', and thus
foreach x eV, z e JG) = (B).

Thus B is a basis for V. It remains to see that B ¢ M, that is, that B is in fact

a new basis not in the ground model.
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To see this, assume by way of contradiction that B € M, and let G' = {S < B :
S| < APM. We can see that G < G, forif S € G, then (|S| < M)M and S = | JG = B,
and therefore S € G'.

Note that G' € M and thus, P — G’ € M.

We now wish to show that P — G’ is dense. Let S € P, and assume S € G'. Then
|S| < A, so S is a proper subset of B. Thus we can choose some b€ B — S. There
are now two cases, depending on the characteristic of the field F'. If F' does not have
characteristic 2, then we can take S U {—b} to be an extension of S which is in P—G'.
If F' does have characteristic 2, then we can choose some by,by € B— S, and note that
S U {by, by + by} € P—G' is an extension of S. Thus in either case, P — G’ is dense.

Finally, note that (P—G')nG < (P—-G)nG = . So (P—G')nG = &, which

contradicts the genericity of G.

We have shown in the above example that we may use forcing to add a basis to
a vector space in the generic extension. We may wish to know whether cardinals
are preserved in such a forcing extension. As we establish in the following lemma,
the A-closure of the poset in the above example ensures that such a forcing preserves

cardinals less than or equal to the dimension A of the vector space V.

3.2.2 Lemma. Let M be a countable transitive model of ZFC. Let F € M be a field
and V € M be an F-vector space with (dimV = X = No)M where (X is reqular)™.

Define the poset P = {S < V : S linearly independent,|S| < A\}M, ordered by
Sc§ o8 <S.

Then P is A-closed, and thus preserves cardinals < A.
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Proof. Let v < A, and suppose we have a decreasing sequence {S, : o < 7} < P.

Thus, for all @ < f <7, S, € Ss. Let S =J,_., Sa. We wish to show that S € P,

a<y
for this would demonstrate that P is A-closed.

To see that S € P, note that for all o, as S, € P, |Ss| < A. Thus, as |y| < A and A
is regular in M, we must have |S| < A. Furthermore, S must be linearly independent,
as if it were not, there would be some dependence relation

nixy + ...+ Nypx, = 0 with distinct x4,...,2,, € S.

Then there would exist a; < v with x; € S,, for i < m. For o/ = max{«a; : i < m} <,

Sy 1s a common extension of all of the S,,. Then z,...,z, € Sy. DBut then
T1,...,T, must be linearly independent.
Thus S € P, and therefore P is A-closed. O

Expanding on the previous example in which we use forcing to add a new basis
to a vector space, it is natural to ask whether we can use a similar forcing notion to

add a basis to a free group.

3.2.2 Finding a Suitable Poset
Let M be a countable transitive model of ZFC, and let H € M be a free group of
rank \ > N.
Recall that the poset which we used to force a new basis for a vector space V' was
the collection of all linearly independent subsets of V' of size less than the dimension
of V. Without adjustments, this poset clearly will not work for free groups.

As an example, take the free group to be H = @._ Ze; with A = R, and note

1EW
that {2e0} < H is a linearly independent set of size less than A\. However, we cannot
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extend this subset to a linearly independent set B with ey € (B). Thus, the union of
any generic filter G' over the poset of finite, linearly independent subsets of H with
2eq € GG will not, as it did with vector spaces, produce a basis, as it fails to generate H.

In order to ensure that such a situation does not arise, we must insist that the

subsets of H which we include in the poset generate pure subgroups of H.

3.2.3 Definition. Let
Py ={S c H : 8 is linearly independent A |S| <X A {S) <, HM

ordered by 8’ < S & S < .

3.2.4 Remark. Note that for torsion-free groups H the statement of purity {(S) S, H
is equivalent to H /{S) being torsion-free.

To see this, note that in general, A/G torsion-free implies G is pure in A, cf. [9,
Section 5.1]. If A is torsion-free with G pure in A, then assuming n(a + G) = G

implies na € G and, by purity of G, a + G = G.

For X a regular cardinal, P; is A-closed, which means that forcing with P; preserves
cardinals < .

Naively, one might hope that adding the purity condition will rule out the situation
we had above in which the poset “dead ends” with certain elements which cannot be
extended to a full basis. However, the condition turns out not to be strong enough.
As we will see, any subset S of H for which H/{S) is not N;-free will also fail to
extend to a full basis of H in V. To make matters worse, the set of all such S is dense

in Py, which means that for any P;-generic filter G, | JG will fail to be a basis of H.

38



In fact, the condition that H/{S) be N;-free is, in conjunction with the condition
that S be linearly independent, both necessary and sufficient to guarantee that S can
be extended to a full basis of H in V. Thus we may define a second poset Py by

further restricting the conditions on P; as follows:

3.2.5 Definition. Let
Py ={S < H : S is linearly independent A |S| < X A H/{(S) is R;-free}™

ordered by 8" < S —~ S < S

If G is Pa-generic, then |G is a basis for H.
Note that P, does not satisfy the A-chain condition. To see this, take as an example

the free group H = @ ., Ze,, and consider the set {{e,, eq + e} : 0 < a < A}. Then

aeX
this set forms an antichain of size A in P;. Note that this antichain also demonstrates
that P; does not have the A-chain condition. So we cannot use chain conditions to
demonstrate cardinal preservation (in particular, preservation of the cardinality A of
the group H).

It is also the case that P, is not A-closed, as we will prove at the end of this chapter,
which means that we cannot assess cardinal preservation using this closure condition
either. In particular, we are concerned with the preservation of cardinals less than
or equal to A\. Recall that as M is a countable model of ZFC, H is countable in V.
So trivially, we could add a basis to H by collapsing the size of H to be countable in
a forcing extension. Then since H is countable and N;-free in the forcing extension

(by the absoluteness of Nj-freeness), H itself must be free in the forcing extension.

Ideally, we would like to avoid such trivial cases by ensuring that |H| > Rg in M[G].
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Note that G being R;-free implies G is torsion-free, for the countable subgroup {g)
will be free and thus torsion-free for every g € G. Thus we have that H/{S) R;-free
implies H/{S) torsion-free, which in turn implies (S) is pure in H (cf. Remark 3.2.4).
Thus P, € P;. For further results concerning the nature of the relationship between

P1 and Ps, the interested reader is referred to the appendix.

3.2.8 Forcing with Py

Let M be a countable transitive model of ZFC, and let H € M be an N;-free group
of rank \ > Ny, and let P; be defined as in Definition 3.2.3.

As in our Example 3.2.1 with vector spaces, if we let G € V be a P;-generic filter,
and define B = | JG, then B is clearly linearly independent. Furthermore, if B is
a basis for H in M[G], then it must not be in M. This is clear to see if H is not
free in M. However, to see this in the case where H is free in M, assume by way of
contradiction that B € M, and define in M the set

D ={S:|S| < A A S is linearly independent A S < some basis of H A S & B}.
We claim that D is dense in P;. To see this, assume 7' € B with |T'| < A, and let
bi,bo € B—T. Then (B u {b; + by}) — {bo} is a basis of H, so T' U {b; + by} is an
element of D extending 7. So then D is dense in Py, and G D # (J by the genericity
of G, but this contradicts that B = | JG. Furthermore, for regular cardinals A\, P;
also preserves cardinals < A, as the union of a chain of pure subgroups is pure [9,
Section 5.1, and thus P; is A-closed. However, even with these adjustments to the
poset, B will still fall short of providing us with a new basis of H. In particular, B

fails to generate the group H. This is demonstrated using the lemmas below.
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3.2.6 Lemma. Let S € P;. Then S can be extended to a basis of H in 'V if and only

if H/{S) is Ny-free.

Proof. First, suppose that there is some basis B of H in V with S < B. Then
H/(S) = (B)/{S) = (B —S) is free in V, and thus H/{S) is R;-free in V. So by
absoluteness of N-freeness, H/{S) is N;-free in M.

In the other direction, suppose H/{S) is Ni-free. Recall that H is countable in
V. Then if H/{S) is Ny-free, it is free in V as a countable subgroup of itself (again
using the absoluteness of Ni-freeness). So H =~ (S) @ H/(S), cf. [9, Chapter 3,

Theorem 1.5], and we can extend S to a full basis of H in V. O

In spite of the previous result, there is at least one such S € P; which does not

extend to a full basis in V.

3.2.7 Example. Let H be an Xy-free group of cardinality X\ > Rg. Fiz a well-ordering
of H in M. We will construct a set of elements e; € H, i € w with the property that
for each i € w, e; is minimal with respect to this well-ordering such that {e; : j < i}
is linearly independent, and H/{e; : j < iy is Ny-free. This construction is done by
induction as follows.

Assume that we have already constructed eg, ey, ..., e;_1 satisfying the properties
above. As H/{(e; : j <i—1) is Ny-free in M, it is free in V, so {e; : j <i—1)is a
direct summand of H in V. And as {e; : j < i — 1} is linearly independent and H is
free in 'V, we can extend {e; : j <i—1} to a basis B of H in V, as in the previous

lemma.
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Now choose any e; € B—{e; : j <i—1}. Then{e; : j < i} is linearly independent.
Moreover, as {e; : j < i} extends to a basis B of H in 'V, by the previous lemma,
H/{e; = j < 1) is Ny-free. This demonstrates that a pick for e; € H is possible such
that eg, e1,...,e; satisfy the above properties. We will proceed to choose e; minimal
with respect to our fived well-ordering, possibly discarding our initial pick for e;.

If H/e; : i < w) is not Ry-free, then we are done, as {e; : i < w} must not extend

to a basis. So assume H/{e; : i < w) is Ny-free. Let H' = {e; : i < w) = @, Ze;,

1
it+1

and define the surjective group homomorphism ¢ : H — Q by ¢ : e; — and extend
by linearity. Let K = ker ¢. Then as H' is free and K is a subgroup of H', K is free.
And as K € H', |K| < Wg. Let S be a basis of K.

By the first isomorphism theorem, we have Q = Im ¢ ~ H'/ker ¢ = H'/(S). So we
have H/H' and H'/{S) both torsion-free, and therefore by Remark 3.2.4, {S) is pure in
H' and H' is pure in H. By the transitivity of purity [9, Chapter 5, Theorem 1.3(i1)],
(S) is pure in H. To see that H/{S) is torsion-free, note that if nh + {(S) = 0, then
h € {S), and so by the purity of {S), h € (S) and thus h + {(S) =0. So S € P;.

However, H/{S) cannot be Xi-free, for it contains a copy of Q as a subgroup
H'/{S) < H/{S), which is countable but not free. Thus S does not extend to a basis

of H in V. In particular, if G € V is Py-generic with S € G, then | JG is not a basis

for H.

Note that the contradiction above was generated by showing that H'/{S) =~ Q,
which is not free. This gives us a clue into the nature of such counterexamples. More

specifically, we see that H'/{S) is a countable subgroup of H/{S) which is not free,
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and thus H/(S) is not N;-free. However, H/(S) is Wi-free if and only if S can be
extended to a basis of H in V (cf. Lemma 3.2.6). Thus the failure of H/{S) to be
N;-free is what lies at the heart of the issue.

Despite the result above, one might naively hope that there is at least some P;-
generic filter G which avoids all such S which do not extend to a full basis. However,

as the following lemma shows, any P;-generic filter must contain at least one such S.

3.2.8 Lemma. Let D be the set of all S € Py such that H/{S) is not ¥y -free. Then D

is dense in P;.

Proof. Let S € P;. It S ¢ Py, then we are done. So assume S € P, that is, that
H/(S) is Ny-free.

Note that |H/{S)| = |H| = A. Then by taking H/{S) to be our uncountable
N;-free group in the construction in the preceding example, we can find K’ (with
appropriate corresponding set K of representatives) such that K’ = {z +{S) : z € K}
with K’ countable and linearly independent, and (H /{S))/{K") torsion-free but not
N;-free.

Let T = SuUK. Then as K" and S are linearly independent, T'= S U K is linearly
independent. Moreover, |T| < A. So it remains to see that H /(T is torsion-free, but
not N;-free, in order to establish that 7" is an extension of S in D.

We have

HAT) = HIS v K) = (H/(S))/((S 0 K)/(S)) = (H/{S)) K"
with the isomorphism above given by the third isomorphism theorem. Recall that

(H/{S))/{K") is torsion-free but not X;-free. Thus T is an extension of S in D. [
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Thus as D is dense in Py, any P;-generic filter G € V will contain some element
which cannot be extended to a full basis of H. So | J G will not provide a basis for H
in our generic extension M|G].

However, we can strengthen our conditions on P; to form the poset Py which, we

will show, does furnish a basis for H in any generic extension.

3.2.4 Forcing with P
As seen in the last section, we will need to strengthen our conditions on the poset
if we wish for the union | JG of a generic filter G on that poset to span H. To that

end, we will use Ps.

3.2.9 Theorem. Let M be a countable transitive model of ZFC, and let H € M be
an Vi-free abelian group with (tk(H) = X > No)M. Let G be Py-generic, and let

B =|JG. Then B is a basis of H in M[G], with B ¢ M.

Proof. B is linearly independent and B ¢ M by the same arguments given for the
case involving P .

To see that B is a basis for H, we must show that H = (B). To this end, define
for all z € H the set D, = {S € Py:xe(S)}. As Py e M, D, € M. We wish to show
that D, is dense in Py. Suppose S € Py with x ¢ (S). To see that D, is dense, we
must find some S” with S € 5" € D,. Consider the group T = (S U {z}), < H. We
wish to show that T is generated by a linearly independent set S’ with S < S’, and

that H/T = H/{S") is Ny-free, thus establishing the denseness of D,.
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To see that T has a basis S’ which extends S, note that (S), = {S). This is
because H/{S) is Ri-free, and thus every countable subgroup is free, in particular,
the subgroup (y + (S)) < H/{(S) is free and thus torsion-free for all y € H. So
ny € (S) withn e Z, n # 0 and y € H implies n(y +{S)) = {S), hence y+{S) = (S),
and y € (S). Or in other words, (S) contains all elements of H of which its elements
are nonzero multiples, and thus (S) is a pure subgroup of H. Therefore, (S), = {S).

Clearly, T/(S)s # 0asx € T—(S) = T—{(S),. We now show that rk(7/(S),) = 1.
Let a,b € (S u{x}). —(S).. We wish to show that a + (S), and b+ (S), are linearly
dependent in T/{S),. As a € (S U {z}),, there exist some n € Z with n > 0 and
na € (S u {z}). Thus we can write na = s + ma for some m € Z and some s € {S).
We have m # 0 as a ¢ (S),. Similarly, there exist n’,;m’ € Z with n’ > 0, m’ # 0, and
s' € (S) such that n'b = s’ + m/xz. Then m'na — mn’'b = m/(s + mx) —m(s' + m'z) =
m's —ms' € (S) = {(S).. So m'n(a+ {(S)s) —mn'(b+ (S).) = (S)sx in T/{(S),, thus
demonstrating the linear dependence of a + (S), and b + {(S).. So rk(T/{S),) = 1.

Note that T'/(S), is torsion-free. For if z + (S), # (S), in T/{S),, this means
that z ¢ (S),, which implies that nz ¢ (S), for all n € Z, n # 0 by purity. Thus
T/(S) = T/{S), must be countable, as it is a torsion-free, abelian group of rank
1, and thus embeds in Q [9, Section 3.4]. Thus, since T/{S) < H/{S) is Ni-free,
T/{S) is a rank 1 free group. So we can write T as the direct sum of free groups, as
T ={(S)®T/{S). Therefore T is free, and we can write T' = {S’), for some linearly
independent S’ with S < S’. Let y € T be such that S" = S U {y}.

In order to see that B is a basis for H, it remains now to show that H/T' = H/{S")

is Ny-free. That is, we must show that (x;+7 : i € w) is a free subgroup of H/T for any
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countable set of elements z; € H, i € w. To this end, let U = (Su {z;,y : i € w}) < H.
Then U/(S) = (x; + {S),y + (S) : i € w) is a countable subgroup of H/{S), which
is Wy-free. Thus, U/(S) is free, and we can write U as the direct sum of free groups,
U= {S)®U/S). Thus U is free, and we can write y = a + b, with a € {S) and
be UKS).

We claim now that (b) is pure in U/{S). To see this, suppose ¢ € U/{S), and
nc = mb for some n,m € Z,n > 0, that is, ¢ € (b),. We wish to show that ¢ € {b).
Note that nc = mb e (b) < (S U {b}) = (") = (S U {z})4, so nc is an element of a
pure subgroup of H, namely (S"). Thus, c € (S") = (S u {b}) = (S) @ (b). Thus, as
ceUKS)and U = (S)® U/(S), it follows that c € (b).

Now, as U/{(S) is free, and b € U/{S), b can be written as the finite linear combina-
tion of basis elements by, . .., b, with respect to some basis of U /{S). So we can write
UKS) = A® B, where B' = @, _,,, Zb;. So B’ is finitely generated and A is free.
Also, (b) = (b), in B’, as purity is preserved in subgroups. Now B’/{b), is finitely
generated and by purity, torsion-free. Therefore B'/(b), is free. So B' = (by® B’/{b).

Thus,

U=(S)@U/S)=(S)DA®B =(S)® A ) ®B/b)
=S uih@(A@B/(b) =S uiyh)@(A® B/LD)
=(SH@(A@B/(b) =T (A® B/(b))

Therefore, U/T =~ A® B/{b). And as A and B/{b) are free, U/T is free. Thus

H/T is Ny-free.

This establishes that | G is a basis for H. O
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3.2.10 Remark. Note that we can dramatically simplify the preceding proof using the
proof technique introduced in Chapter 2 which utilizes the absoluteness of Ni-freeness.

In particular, we can prove the denseness of D, = {S € Py : x € (S)} as follows.

Proof. Let q € P,. Then by Lemma 3.2.6, ¢ can be extended to a basis B in V. So
we can write H = (¢)® (B — ¢) in V. Then we have z = a + b, with a € {¢) and
be (B —¢q). We can then write b in terms of B —q, say b = n1z1 + ... + Ny Tpy. SO We
have H = (¢)®{x1,...,Tp)®C in V, with C free. Thus H ={qu{zy,..., 2} ®C,

and so q U {z1,...,x,} € D,, and thus D, is dense. O

3.2.5 Cardinal Preservation

The question remains as to whether this forcing preserves cardinals less than or
equal to the size A of the group (note that as we are concerned here with uncountable
free groups, the size and rank are the same). A standard method for demonstrating
such properties of cardinal preservation is the test of A-closure, as this provides a sim-
ple condition which guarantees the preservation of cardinals < A, c¢f. Theorem 3.1.26.
However, as we will demonstrate in the next lemma, Py even fails to be N;-closed,
and thus if we wish to settle the question of cardinal preservation, we must do so by

alternative means.

3.2.11 Lemma. If H is an Xy-free group of cardinality A > Ny, then Py is not Ny-

closed.

Proof. We begin by demonstrating that P, is not N;-closed if H is free of countable

rank, with H = @,__ Ze,;.

1EW
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Define s; = €; — (1 + 1)e;r1, S; = {s; : j < i} for all i € w. We wish to show
that S; is linearly independent for all 7. By way of induction, suppose S; is linearly
independent for j < i. We have

Si=Si1u{ei— (i +1)eg}

Observing that the element e;,; does not contribute to S;_; < @Ogj@ Zej, it is
obvious that S; 1 and e; — (i + 1)e; ;1 are linearly independent from each other. Thus
S, is linearly independent.

Define By = {eqg, e1,...}, Biy1 = {S0, 81, -, Si, €it1, €ir2, ...} for ¢ = 0. Note that
By is obviously a basis of H while B, results from B; by replacing the basis element
e; with the element s; = ¢; — (i + 1)e; 1. Thus, an easy induction shows that each B;

is a basis for H. Then we have H = (S;,) ® @_, Ze; for each i € w. So each {S;) is

j>i
a pure subgroup of H (as direct summands are pure subgroups cf. [9, Section 5.1]),
and H/(S;) = @,.; Ze; is free for each i. So S; € P, for all i € w.

Define S =

i Si = {8 1 i € w}, and note that the S; form a countable descend-
ing sequence in Py. Defining the homomorphism ¢ : H — Q by mapping e; — %, note
that (S) < ker ¢ while ¢(eg) = 1. Thus ey ¢ (S). To show that S ¢ Ps, it suffices
to show that ey + (S) is divisible in H/{S) and that H/{S) is torsion-free. For if
H/{S) contains a torsion-free divisible subgroup, then it contains a copy of Q (cf. [9,
Chapter 4, Theorem 3.1]), which is countable and not free. Thus H/{S) cannot be
N;-free.

To see that H/{S) is torsion-free, suppose that n(h + {(S)) = 0 for some n € Z,
n # 0. Then there exist n; € Z, 0 <4 < k, such that nh = >} _,_, n;s; € (S, and by

the purity of (Si), h € (Sk) = {(S). Thus h + {(S) = {(S) in H/{S). The construction
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of the s; gives us that ey +(S) = ile; +{S) for all i € w. Thus e is divisible in H /{S).
So S ¢ Ps.

It remains to check that there is no p < S with p € P,. Suppose by way of
contradiction that such a p exists. Then H/(p) is Ni-free. As p € Ps, it is linearly
independent, and since S € p, (p)/{S) is free. By the third isomorphism theorem,
we have H/(p) = (H/{S))/({(p)/{S)). Thus H/{S) is Ny-free by Theorem 2.3.2. But
then S € Py, which is a contradiction.

Let us now consider the general case of an Ni-free group H of size A > Ry, and
pick a strictly decreasing sequence {p; : i € w} of finite sets p; € Py. If |J,o i & Po,
then by the argument in the preceding paragraph, there is no p < J,., p; with p € Ps.
So assume |J,.,pi € P2 and let H' = {J,o, pi)- As e, i € P2, H/H' is Ry-free.
Furthermore, H' is free of countable rank (with basis | J,., pi). So we can write
H' = @®,_, Ze;, and perform the construction given in the first half of this proof

for countable rank free groups to construct s;,S;, and S = | J,. S; as above. Then

1EW
H'/{S;) is free and H/H' is Wy-free, so again by the third isomorphism theorem and
Theorem 2.3.2, we have that H/{(S;) is Wi-free, so S; € Ps.

Now by the divisibility argument above, Q < H'/{(S) < H/{S). So H/{S) is

not Ni-free, and thus S ¢ P,. We can complete the proof by carrying through the

argument that there is no p < S in Ps. O]
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CHAPTER FOUR

Forcing N;-Free Groups to Be Free with Cardinal Preservation

4.1 Preliminaries
Here, we give a formal definition of the I'-invariant and state a theorem which
characterizes the freeness of an N-free group of size ¥; using the I'-invariant.
We also discuss two established forcings which, given a stationary subset A of Ny,

add a closed unbounded subset to A while preserving N;.

4.1.1 The I'-Invariant

We now define the I'-invariant of an Ni-free group of cardinality Ny, and state
a theorem of Eklof and Mekler relating the freeness of the group to its I'-invariant.
For further details and proofs, see [8, Section IV.1]. The definition of the I'-invariant
requires that we first define an N;-filtration, and an equivalence relation on subsets

of Ny. These definitions are given below.

4.1.1 Definition. Let H be an abelian group of cardinality ;. An Wi-filtration of H
is a sequence {H, : o < Ny} of subgroups of H whose union is H and which satisfies

for all o, B < Ny
1. |Ha| < NO;
2. if a < B, then H, < Hp;

3. if ais a limit ordinal, then Ho =|J4_, Hp.
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4.1.2 Definition. If X and Y are subsets of Xy, we can define an equivalence relation
by X ~Y if and only if there exists some closed (with respect to the order topology)
and unbounded set (club) C' < Ny such that X nC =Y n C. Denote the equivalence

class of X by [X].

We may now give the definition of the I'-invariant of an N;-free group of cardinality

N; as follows:

4.1.3 Definition. Let H be an Ny-free abelian group of cardinality Xy, and let {H, :
a < Wy} be an Ry-filtration of H. Let E = {a < Ny : H/H, is not Wy-free}. The

[-invariant of H, denoted T'(H), is defined to be the equivalence class of E, [E].

Note that the I'-invariant I'(H) does not depend on the choice of filtration.
We now state the key result of Eklof and Mekler relating the freeness of an N;-free

group to its I'-invariant.

4.1.4 Theorem. If H is an Ni-free group of size Ny, then H 1is free if and only if

It is of interest to note that given any subset E of Wi, an N;-free group H of
cardinality N, with I'(H) = [E] can be constructed.

We can see that H is free if and only if the representative F of the equivalence
class [E] defining the I-invariant I'(H) is not stationary. So if we wish to force a
non-free N;-free group H of cardinality N; to become free, we must force F to become

non-stationary, i.e., we must add a club to Ny — E.
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4.1.2 Forcing a Club into a Stationary Set

In [4], Baumgartner, Harrington, and Kleinberg describe a forcing which, for any
stationary subset A of Ny, forces a closed unbounded subset of X; into A. Furthermore,
this forcing preserves the cardinality of R;. In particular, if M is a countable transitive
model of ZFC, and A < N is stationary, then there exists a generic extension N of M
which has the same reals as M and in which there exists some club C' with C' € A. The
poset defining this forcing consists of all closed subsets of A of successor order-type
with ¢ < p if and only if p is a subset of ¢ and (¢ —p) n (Up) =

If we wish to preserve all cardinals, we may use the forcing described by Abraham
and Shelah in [1, Theorem 3]. The poset which describes this forcing adds a closed
unbounded subset to a given stationary subset A of 8; while preserving the cardinality
of Ny, and the poset itself has size N; and thus preserves all cardinals. However, it
does add new reals to the base model M.

We will show that if I'(H) # [N;], then H is free of size X; in some generic

extension produced by either of these forcings.

4.2 Forcing an Ni-Free Group to Become Free with Cardinal Preservation
4.2.1 Lemma. Let M be a transitive model of ZFC and H a (non-free) Ry-free abelian
group with cardinality Xy and I'(H) = [Ny] in M. If N is any transitive model of ZFC

containing M with H free in N, then ®;™ = N
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Proof. Note first that if T'(H) = [E] = [N{], where E is any representative of the
[-invariant, then there exists some club C'in X; with EnC' =8, nC = (', and thus
C < E. So we will prove the result under this assumption by contrapositive.

Thus, let N be a transitive model of ZFC with M < N, and assume XM = &, .
Then if {H, : @ < Wy} is an Wy-filtration of H in M, it is also an N;-filtration in N,
by absoluteness and because M = NN with M < N.

So by the absoluteness of N;-freeness,

E:={aeN : H/H, is not R-free}™ = {a € Ny : H/H, is not N;-free}™,
and thus, (I'(H) = [E])N. We note that while the definition of the set £ as a
representative of the ['-invariant is absolute, the equivalence class of E is not absolute.

AsT(H) = [E] = [N1] in M there exists some club C'in X; in M with C' < E. Note
that as C'is a club in ¥; in M, then C' is also a club in X; in N. Now, let C’ be any
club in N. Then as the intersection of two clubs is nonempty, & # CnC' < En (.
So E is stationary in N, and thus H is not free in N.

Thus, if H is free in N, then N, is not preserved in the model extension. O]

4.2.2 Lemma. Let M be a countable transitive model of ZFC and in M, let H be an
N;-free abelian group of cardinality Xy with T'(H) # [R{]. Then there exists a generic

extension N of M which preserves the cardinality of H with H free in N.

Proof. Let M be a countable transitive model of ZFC and H be an N;-free abelian
group of cardinality ¥y with T'(H) # [X;] in M. Let E be a representative of the

[-invariant of H resulting from some Nj-filtration {H, : a < ¥y} of H in M.
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We argue first in M that Ny — E' is stationary. Proceeding by contrapositive, if
N; — F is not stationary, then there exists some club C in N; with C < E. Thus
EnC =C =X nC,andso [E] = [N;]. SoX; — F is stationary, and thus we can use
the forcings described by [4] and [1, Theorem 3] to produce generic extensions N of
M which preserve the cardinality of H in which there exists some club C' in 8; with
ccRX —FE.

Thus in N, E is not stationary. And as (I'(H) = [E])N, as shown in the previous

proof, (I'(H) = [E] = [&])N. Thus H is free in N. O

Combining the previous two lemmas gives the following necessary and sufficient
condition under which an N;-free group of size X; can be forced to be free while

preserving the cardinality of the group.

4.2.3 Theorem. Let M be a countable transitive model of ZFC and H an Ny-free
abelian group of size Xy in M. Then there exists some transitive model N of ZFC
extending M in which the cardinality of H is preserved and H is free if and only if

T(H) # [R,] in M.

Note that the backwards direction of this result can in fact be strengthened, as we
do not require M to be countable. That is, if we begin with an arbitrary transitive
model M of ZFC containing H in which I'(H) = [X;], then there is no transitive

extension of M in which Ny is preserved and H is free, cf. Lemma 4.2.1.
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4.2.1 The Baer-Specker Group is Turbid Assuming CH

Theorem 4.2.3 motivates the following definition.
4.2.4 Definition. We call an R;-free group H turbid if |H| =8y and I'(H) = [Ry].

We note that the Baer-Specker group, Z“ = [, Ze;, is ¥;-free of cardinality 2.
If we assume the Continuum Hypothesis (CH), the Baer-Specker group has cardinality
Ny, and so it makes sense to ask whether it is a turbid group. It is, in fact, turbid,
owing to the fact that it is strongly N;-free, which we define below. See [8, Chapter

IV.0] for further details regarding strongly N;-free groups.

4.2.5 Definition. We call a group H strongly Ni-free if every countable subset of H is

contained in some countable free subgroup K < H with H/K N;-free.

4.2.6 Remark. Note that every strongly X -free group is automatically N, -free. More-
over, a group H of size Xy is strongly Ri-free if and only if it allows an Wi-filtration
{H, : a € X1} such that Xy — E is unbounded. Thus, if H is not strongly W,-free, then
Ny — E is bounded for every filtration, in which case I'(H) = [E] = [Ny], i.e., H is

turbid. Note that the converse is not true as there exist strongly Xy -free turbid groups.

We now cite the following result concerning the uncountable product of copies of

the integers [8, Theorem 2.8].
4.2.7 Theorem. For any infinite cardinal k, 7" = [ [, Zeq is not strongly X, -free.

As the Baer-Specker group is not strongly Wi-free, it is turbid (assuming the
Continuum Hypothesis). Thus, if H is the Baer-Specker group in a ground model M
for ZFC + CH, there is no N;-preserving transitive extension of M in which H is free.
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4.2.2 Py Revisited

In an even more algebraic fashion, we may also explicitly add a basis to our non-
turbid Ni-free group H of size N;. Since the final goal is to add a full basis, it is
appropriate that our forcing set should be a set of ‘partial bases,” i.e., sets of linearly
independent elements of H.

Recall the definition of the partial order P, given in Definition 3.2.5.

Py = {p < H : pis linearly independent, |p| < Wy, and H/{p) is N;-free}

There is a natural ordering on the elements of Py by p < ¢ < g < p. Recall also that

forcing with Py produces a basis for H, c¢f. Theorem 3.2.9. That is:

4.2.8 Theorem. Let M be a countable transitive model of ZFC, and let H be an Xy -free
group of size Ny in M. Let G € V be a Pa-generic filter and define B = JG. Then

B is a basis of H in M[G], with B ¢ M.

If we restrict our attention to non-turbid groups, we are able to settle the question
of cardinal preservation. In particular, if H is a non-turbid N;-free group of size Ny,

then forcing with P, preserves the cardinality of H.

4.2.9 Theorem. Let M be a countable transitive model of ZFC and let H be a non-
turbid Wy -free group of size Wy in M. Let (P, <) be defined to be Py as above. Then

forcing with P preserves Ny, and H is free of size ¥y in M[G].

Proof. Fix some filtration {H, : @ < N;} of H in M (without loss of generality we
may choose this to be a strictly increasing filtration with o < 8 — H, < Hpg). Let

E = {a <N, : H/H, is not R;-free}. Since H is not turbid, we have that the set
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Ny — F={a<N;: H/H, is Ny-free} is stationary. Then define
P ={peP:3Jae; — E with p a basis for H,}.
We claim that P’ is dense in P.

Let p € P. As p is finite or countable, it is contained in some H,. Since X; — F is
unbounded, we may, without loss of generality, choose this « to be in ¥; — E. Now,
as p € P,H/(p) is Nj-free. Furthermore, because H,/{p) is a countable subgroup of
H/{p), H,/{p) is free. So we can extend p to some basis g of H,. Thus we have
g € P’ with ¢ < p, so P’ is dense in P.

Let p € P’. Since the filtration is strictly increasing, we can define the “height” of
p to be the unique ordinal h(p) such that (p) = Hj).

We will prove that P preserves Ny, that is, that there is no bijection f : w — wM
in M[G]. So suppose by way of contradiction that M[G] contains such a function
f:w — wM. Then let 7 be a P-name such that 7 = f. Then by the Fundamental
Theorem of Forcing, there must be some p € P (hence some p € P’) which forces this.
That is, there is some p € P’ such that

p I “7 is a bijection from & to WM. (4.1)

Within M, we will define an ascending sequence {A, : a < N;} of subsets A, <
P’ x w x ““w; as follows: if (¢,n,g) € A, then dom(g) = n = {0,1,2,...,n — 1}
and ¢ | “7 is a bijection from @ to m with 7 [ n = ¢g.”. In other words, this
sequence consists of partial functions which approximate this bijection, and elements

of P" which force this approximation. We will also define, for each A,, a (countable)

ordinal h, = sup{h(q) : (¢,n,g) € A,}. We construct the A,’s inductively as follows.
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First define Ay = {(p,0, )} where p is the element of P’ given in (4.1). For
the successor step, let A, be defined with h, < Ny, and suppose that for each ¢ |-

—~—

“r is a bijection from & to wiM with 7 | 7 = §.” Now, within M[G], T evaluates to
such a bijection, i.e., 7¢ : w — wi™M. Because 7¢ is defined in M[G], 7¢(n) € w™.
Define a function ¢’ € ""lw; by ¢ = g U {(n,7¢(n))}. Evidently, both ¢’ and g are
finite functions such that g < ¢’. Therefore ¢ € M and 74 | ntl= gv’ . By the
Fundamental Theorem of Forcing there exists some r € P such that
r |- “7 is a bijection from w to w\lﬂ with 7 | ntl= gv’.”

Because ¢ and r are contained in the filter G, choose s € G such that s < ¢, (by
taking a common extension of ¢ and r if necessary), and let ¢’ < s with ¢’ € P’ and
h(q') > hy. Then define

Ao = A v {(d,n+1,9): (g,n,9) € Au}, (4.2)
completing the successor step. Note that a fixed choice for (¢,n + 1,¢') can be
obtained by choosing it to be minimal with respect to some fixed well-ordering of

P x w x =¥

wy in M. Note also that this procedure is well-defined and decidable
within M, as we can replace |- by I-*.

Finally, for o a limit ordinal define A, = Uﬁ o Ap.

From the construction, it is clear that for 8 < a < R; we have that Ag < A,.
Furthermore, for each a < Ny, A, is countable. This can be seen by first noting that
|Ag| < Wy, and if |A,| < N; then the successor step construction produces some A1
which is also countable. Finally, if « is a countable limit ordinal, it may be written

as o = J,, B for ordinals 3; < «, hence A, = J,., Ap, is a countable union of

€W
countable sets. So A, is countable for any ordinal o < N;.
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As A, is countable, by the regularity of Ny, we have that h, < N; is countable for
each a. Note that 8 < a — hg < hq, and for a a limit ordinal, h, = supg_, hgs.

Then the set C' = {h, : @ < ¥y} is a club in ¥y, as is the set C* = {h, : a <
Ny, a is a limit ordinal}, which is also a club in N;.

Since Ny — F is a stationary set, it has nontrivial intersection with C* so choose
some hqx € (Ny — E) n C*. Since a* is a countable limit ordinal, cf(a*) = w, so there
is a set of strictly increasing ordinals {a, : n € w} with supremum «*. Thus

hox = sup hg = sup hy,,.
B<a* new

We will now construct within M a sequence {(g,,n,g,) : n € w} such that
(qn+1,n+1, gns1) € Aa,,, — A, First define (¢o, 0, g0) = (p,0, F) € Ag < Aq,. Then,
assume that (g,,n,g,) € Aa, is given, and let (¢,41,m + 1, 9,11) = (¢,,n+ 1,9)) €

Ap, 41— Aa, €A — A,, asin (4.2).

Qn 41
The construction of the A,’s above assures that ¢,+1 = ¢, < ¢, and g, < g, =
Gn+1- Then g =, o, 9n defines a function from w to wy in M. Finally, by construc-

tion, ha, < h(qns1) = h(q),) < ha,+1 < h Thus sup,,c,, #(¢n) = Sup,c,, Pa,, = Rax-

Qn41°
Now note that ¢, € P’ is a basis for Hy,). Then ¢* := |, ¢n is a basis for
Hywp,  hign) = Hn - Since hox € ¥y — E, H/{(q*) = H/H}, , is ;-free. Thus ¢* € P’

with h(q*) = hex and ¢* < @,. Thus

—~——
~

q* I+ “7 is a bijection from & to wiM with 7 = §.

But this is a contradiction, as it implies that we have a bijection g € M. ]

4.2.10 Remark. In addition to preserving Ny, forcing with P also preserves reals.

To see this, in the above proof we can replace “r is a bijection from & to w™” with
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“r is a function from & to 2 with T ¢ (‘“\2)/1\/1,” that is T is a new real number not

in M.
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CHAPTER FIVE

Further Work

Further work in this area could branch-out in several different directions. We
would like to enable algebraists to easily apply the forcings described here, a goal
which would be benefited by the development of an algebraic characterization of tur-
bid (or more-pertinently, non-turbid) groups which does not require direct reference
to the I'-invariant, which can be quite difficult to work with in practice. One might
also like to find the precise conditions under which these or similar forcings can be ap-
plied to Ni-free groups of larger cardinality. We can also use these forcings to produce
powerful new forcings through iterated forcing, which could be applied to the setting
of homological algebra. Branching out even further, we can take inspiration from the
forcing techniques developed here to explore new forcings which illuminate the notion

of “almost isomorphism,”

or which could aid algebraists in the construction of objects
with particular prescribed properties. Finally, it is our hope that the creation and
analysis of different forcings related to Ni-free groups will lead to the development of
new predictive principles or axioms which can be used in algebraic constructions and
in more easily generating independence and consistency results within algebra.
Beyond these proposed expansions upon the specific forcings described in this
dissertation, the extension of these results via the method of iterated forcing could

prove a powerful tool for applying these types of forcings to various questions in

abelian group and ring theory and homological algebra. Iterated forcing is a method
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of applying multiple forcings simultaneously in order to generate a model extension
in which all of the propositions forced by the individual forcings hold. Thus we could
use iterated forcing to force multiple Ni-free groups to be free simultaneously. It is
important to note that it is not the case that any two non-turbid N;-free groups of
cardinality ¥; can be simultaneously forced to be free. As an example, suppose that
H; and Hy are non-turbid groups of cardinality ¥y with I'(Hy) = [E4], T'(Hz) = [Es],
and (Ny — Ey) n (X — Ey) = &. Then if we force a club into X; — E} in order to
make H; free, we cannot force a club into ¥; — E5 in order to make Hy free, as the
intersection of clubs cannot be empty. So the question of when precisely these iterated
forcings can be achieved with cardinal preservation would again be a relevant one.

Such iterated forcings would open the door to applying these methods to homo-
logical algebra. As a simple example, suppose A, B, and C' are N;-free groups in some
countable transitive ground model M, and suppose

0->ALB%LC 0
is a short exact sequence. It is well-known that the functor Hom(—, D), where D is
any abelian group, is exact on the category of free abelian groups, that is, it preserves
short exact sequences. So using the iterated forcing technique above, we could find
a transitive model extension in which A, B, and C' are free. In this model extension
then,
0 — Hom(A, D) ©> Hom(B, D) £> Hom(C, D) — 0

is short exact for any abelian group D. Indeed, with class forcing techniques, we
could even perform iterated forcing on entire classes of N;-free groups (although for

technical reasons, we cannot for instance, force the entire class of non-turbid N-free
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groups of size 8y to become free without cardinal collapse). This could enable further
investigations into independence and consistency results in homological algebra.
Iterated forcing could also be used to force isomorphisms between particular N;-
free groups, by forcing both groups to become free, and then forcing their cardinalities
to be equal. However, a more straightforward way to force an isomorphism between
N;-free groups might be an approach by partial isomorphism similar to the forcings
defined by partial bases described here. As with our partial basis forcing, this ap-
proach would be preferred over an approach which relies on cardinal collapse because
it would constitute a more “minimally-invasive” forcing. It would also help illuminate
the notion of partial isomorphism. Partial isomorphisms are a way to describe the
degree of similarity between two algebraic structures, in which the notion of a global
isomorphism is replaced by local isomorphisms between substructures which are com-
patible with each other and can be extended. This approach to describing algebraic
similarity can be mirrored by the set-theoretic approach of considering “potential
isomorphism,” in which two algebraic objects are said to be “almost isomorphic” if
they are isomorphic in some generic extension of the set-theoretic universe. These
two approaches, that of partial isomorphism and potential isomorphism, are in fact
equivalent, as shown by Barwise [3]. Forcing provides the ideal setting through
which to bridge these two perspectives, and further investigation into forcings which
make two N;-free groups isomorphic would help illuminate the mechanics behind this
equivalence and enable algebraists to more easily explore and construct partial iso-
morphisms. The locally free structure of N;-free groups make them ideal targets for
such investigations into partial isomorphisms, and indeed one might even expect some
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natural (although perhaps more limited) generalizations to the realm of k-free groups
and modules in the spirit of the generalizations described at the end of Chapter 4.

Another class of Ni-free forcings that would be of interest to investigate is the
class of forcings which force an Ni-free group to have a particular endomorphism
ring, or at least, an endomorphism ring with particular properties. Owing to the ring
realization property of Ni-free groups (that is, any ring with free additive structure
can be realized as the endomorphism ring of some X;-free group), such forcings could
provide a powerful tool for algebraic constructions.

Ultimately, as the family of N;-free forcings is further developed and taxonomized,
we expect to see patterns and commonalities arising between the generic extensions
which they produce. An analysis of the relations between these forcing extensions
may, in the long-run, point to the development of new predictive principles or ax-
ioms which can be easily used by algebraists in constructions, or in producing new

consistency and independence results in algebra.
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APPENDIX

Comparing P, and Ps

As we have seen above, while P, is a subset quite naturally defined out of Py, these
two posets have very distinct properties with regards to the properties exhibited by
their forcing extensions. For example, the union of a Ps-generic filter produces a basis
for H, while the same is never true of a P;-generic filter. In addition, P; preserves
cardinals less than or equal to the cardinality of H, while P, does not always preserve
these cardinals.

Intuitively, there are branches in P; which “dead-end,” that is, which cannot be
extended to produce a full basis of H. Recall that these “dead ends” cannot be
avoided by a generic filter because they form a dense set, ¢f. Lemma 3.2.8.

In general, P, involves a much stronger condition than P;. This is further illus-
trated by the following lemma which states that if an element in P; is a “dead end,”
we cannot simply remove finitely many members of it in order to arrive at an element

in 7)2.

A.0.1 Lemma. Letpe Py and x € p. If p€ Py — P, then p — {z} € Py — Ps.

Proof. We will prove the converse, which is that if p € P; and = ¢ p with pu {z} € Py,

then p € Py implies p U {x} € Ps.
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Suppose p € Py with x ¢ p and p U {z} € Py. For p € Py, we have

pe Py «—— HJN(p)yis Ni-free in M
— H/{p)is free in V
«—— (p)is a direct summand of H in V
— H={(p)®C for some Cin V

«—— 1z € H can be written in V as x = x1 ® x5 for some z1 € (p), x5 € C.

We claim that x5 is pure in C, that is, that (xs) is a pure subgroup of C'. Assume
by contradiction that zs is not pure in C'. Then x5 = ny for some n > 1,y € C'. So
T =T+ ny.

Consider y + {p u {z}) e H/(p u {z}). Then
n(y+puie}) =ny+puizh) =z -z +{pufsh) =z+{pufs}) =puizh.
However, y + (p u {z}) # {(p u {x}). Thus H/{(p u {z}) fails to be torsion-free, so
p U {z} ¢ Py, which is a contradiction.

So x5 is pure in C', and thus can be extended to a basis of C'in V as C' is free.
To see this, recall that C' is free in V, as C' =~ H/{(p). So we can write C' = C} @ Cs
with Cy of finite rank and x5 € C;. As x4 is pure in C, it is pure in Cy. So C}/{x) is
torsion-free and finitely generated. Thus Cy/{x2) is free, so (z5) is a direct summand
of C1, which is a direct summand of C.

So we can write H = (p) @ C = (p)®{x2) ®C" ={p u {z})® " in V, for some
(free) subgroup C' of C.

Thus, as H/{p u {z}) is free in V, H/{p U {x}) is Nj-free in M. Thus p u {z} €

Ps. [l
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As P, is a subset of P;, and these posets define the model extensions in question,
we might wish to know how these model extensions relate with each other. Specifi-
cally, if M, is the model extension generated by P;, and My is the model extension
generated by Ps, is it necessarily the case that My < M;? In general, the answer is
no. However, we can guarantee that My < M, if there is an embedding of Py into
P, which is “complete” (see definition below).

Thus, if we can find a complete embedding of P, into P, we can prove that Po
preserves cardinalities < A. For if Py embeds completely into Py, then My < M;.
And as Py is A-closed, M contains no bijections collapsing cardinalities < A, and thus
M, cannot contain any such bijections and must therefore also preserve cardinalities
<A

Clearly, for turbid groups H, a complete embedding of Py into P; is impossi-
ble, as we know that no cardinal preserving forcing which makes H free exists, see
Theorem 4.2.3. However, a complete embedding may still be possible for non-turbid
N;-free groups H. We may ask the even more specific question of if the canonical
embedding of P, into P; can be complete. As we will show below, this canonical
embedding is not complete for any X;-free group H.

We first give the formal definition of a complete embedding. For further discussion

of complete embeddings, see [10, Chapter IV.7].

A.0.2 Definition. Let P and Q) be partial orders and i : P — @ a function from P to

Q. i is a complete embedding if and only if it satisfies the following three conditions:

1. Vp,p'e P(p <p—i(p) <i(p))
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2. Vp,p' e P(p Lp < i(p) Li(p))
3. ¥YqeQIpe PYp e P(p) <p— (i(p)) and q are compatible in Q))
If p is as in Condition 3, then we call p a reduction of q to P.

While Condition 1 of the above definition trivially holds for the canonical embed-

ding function 7 : Py, — P;, we will now show that Condition 3 fails.

A.0.3 Lemma. The canonical embedding Py < Py is not complete.

Proof. Let T € P; — Po. Assume by way of contradiction that there is a reduction
S of T to Pa. As S € Py, H/(S) is Ny-free. Thus H/{S) is free in V, and thus S
extends to a basis B of H in V.

By Condition 3, S and T are comparable in Py, so S U T is contained in some
S’ € Py, and thus S U T is linearly independent. We claim that T < S. To see this,

let t € T. Then we can write t in terms of B, say

t= anb22nbb+ Z nbb.

beB beS beB-S

If > mb =0, then ¢t € S, as desired. So assume >, mnpb # 0. Then there
beB-S beB-S

exists some ¢ € (B — S) such that ¢ is pure in H with b ; Snbb = nc (letting
B
n = ged(ny : b e B—S)). We can extend {c} to a basis of (B — S). To see this,
note that we can write ¢ in terms of some finite subset B’ of B — S, and so {c) is
a pure subgroup of the finite rank free summand (B’) of (B — S). Thus (B’)/{c) is
torsion-free by the purity of {¢), and finitely generated. Therefore (B’)/(c) is free,
and (¢) = (B’). Then {c} can be extended to a basis B” u {c} of (B’), and so
B" U {c}u (B—S—B')is abasis of (B —S). So we can extend S U {c} to a basis

of H in V and thus S u {c} € Ps.
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Now by Condition 3, S U {c} and T" are compatible in Py, and thus S u {c} U T
is linearly independent, with ¢ = bZS nb + ne. Sot € S U {c}. But note that we
=
can replicate the argument above with —c in place of ¢, which would imply that
te S u{—c}. And thus, we must have that t € S.
So T'< S. But this contradicts that T' € P; — P,, that is, that T' does not extend

to a basis of H in V. For as S € Py, S extends to a basis of H in V, but T' < S.

Thus the canonical embedding Py, S P; is not complete. O
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