ABSTRACT
Application of Ab Initio Theory to the Chemistry of Ultrathin Films
Paul A. Brown, Ph.D.
Mentor: Kevin L. Shuford, Ph.D.

In this work, we investigate a number of important nanosheets, e.g., graphene,
haeckelites, and titanium disulfide for the expressed purpose of tuning the electronic
ground state properties. We employ condensed matter techniques to interrogate real-
ized and theoretically postulated ultrathin films to mine ground state properties that
may bolster established, or nascent nanotechnologies. In this regard, a number of
ultrathin films are tuned to induce new material properties that are not intrinsic to
the original crystal. We show that chemical modification with extrinsic substitutional
pnictogen dopants placed within the crystal lattice of graphene can functionalize the
basal plane of graphene to obtain potentially catalytic properties. Furthermore, an
alternative doping strategy, less intensive than pnictogenic substitutions, including
halogen diatomic molecules were introduced as adsorbates on monolayer, bilayer, and
multilayer graphenes of different polymorphism to influence the ground state of the
graphitic nanosheets. We observed the induction of a band gap of controllable size as

a function of halogen and polymorphism. Consequently, the semimetallic graphene



systems formed a p-type semiconductor, which enables field-dependent control of
Dirac carriers within the ultrathin films. Each of these studies take advantage of
the orbital and lattice degrees of freedom enabling tunability of this monoelemen-
tal nanosheet. Furthermore, the authors postulate theorized ultrathin films dubbed
Archimedean ultrathin films. These nanosheets form a unique semiregular polygo-
nal (4,8)-tessellated configuration. This configuration was extended to bulk crystals
where we show the potential for forming ultrathin films that contain this unique sym-
metry. Two groups were studied: the boron pnictides, and the aluminum pnictides.
The ground states featured indirect band gap semiconductors, where it was discovered
that the boron-pnictides, in particular the planar configurations, possessed a double
band gap. Subsequently, the optical response of the boron pnictides were revealed
within linear response time-dependent density functional theory, which showed that
the planar ultrathin films displayed strong optical response from the UV to the IR.
Finally, the electronic ground state of 1T-TiS; was mechanically strained to induce
phase transitions converting this nanosheet into a direct band gap semiconductor.
Hence, we demonstrate the tunability of material properties for a series of ultra-
thin films, whose material properties could provide or support existing and nascent

nanotechnologies for the 21%-century.
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Jacob’s ladder provides a measure of the pedigree of approximation
to the Exc[n] in Equation 2.18. Each rung of the ladder includes
additional exact constraints to improve upon the predictions of the
Excln] term. Jacob’s ladder shows the predictive power of various
approximations starting from the simplest (Hartree-Fock) to the most
computationally demanding with exact-exchange (EXX) with occupied
and/or unoccupied states. Adapted from Jacob’s ladder ¢.1490 French
School.Y . . . .

Diagrammatic representation of the Hohenberg-Kohn existence theo-
rems, which is the upper portion of the diagram (labeled “HK”). The
lower portion of the diagram shows that the many-body wavefunc-
tions, W;,(7), is determined by the external potential, ve.(r), including
the ground-state wavefunction, Wy, (r), which subsequently yields the
ground state density, ng(r). Here the index ¢ is meant to include spin
for generality.? . . . . . .. .. ...

These diagrams show the subsequent formulation of DFT into bijective
mappings between sets of external potentials, V, ground state wave-
functions, G, and ground state densities, N'. Here the mapping of A
and B are one-to-one and onto (bijective) among the sets obeying the
time-independent Schrédinger equation. (a) shows the conclusions of
HK.1 and HK.2 for nondegenerate many-body systems; (b) shows
the same situation as (a) but for degenerate many-body systems.? . .

The Hohenberg-Kohn and Kohn-Sham schemes for solving the inter-
acting and auxiliary systems. The left side represents the interacting
portion provided by the existence theorems of the Hohenberg-Kohn
theorems. The right side displays the Kohn-Sham variational scheme
for the noninteracting system, where the solution of the ground state
density, ng(r), is found by Levy-Lieb constrained search over all Kohn-
Sham wavefunctions, W,y n,.(7), for the noninteracting N,-electron
system. Note the H.K. theorems can be applied to both cases.? . . .

“Correlation dance”.Correlation is the tendency of electrons to dynam-
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29

This diagram highlights the origins of the term of “XC-hole”. The
figure shows the exact ground state density (gray line) of an atom (say
He), where an electron is placed at the origin, r, and another electron
is placed at r’, such that their spins are collinear (oriented up or down).
The depletion of density (red dotted line) around 7’ shows the forma-
tion of a hole around the second electron. The hole can be understood
to originate from the Pauli-Exclusion principle, and dubbed the Fermi
hole for exchange energy contribution. The correlation hole has the
same effect although smaller than the Fermi hole. . . . . . . .. ...

Crystal lattice representation and the reciprocal lattice representation
displaying the path to band structures and density of states.(a) The
real space lattice constructed from primitive lattice vectors a; and as,
where the hexagonal unit cell shows a shift to the primitive lattice vec-
tors. (b) The Wigner-Seitz cell formed around a single point generating
the first-Brillouin zone for a hexagonal cell. Labels within the first-
Brillouin zone mark high symmetry point in reciprocal space shown
in the band structure. (c) Two-dimensional slice of the first-Brillouin
zone in (b) showing high symmetry points K, M, and I" (zone center)
commonly integrated over to generate band structures for hexagonal
cells (dotted line). (d) Resulting band structure and projected density-
of-states for graphene. . . . . . . ... .. 0L

Cartoon of the periodic potential resulting from the crystal transla-
tional symmetry of silicon atoms. The arrangement of nuclei into a re-
peating pattern results in the formation of core, semicore, and valence
states. The extent of localization of core and semicore states ensures
that their interaction is weak, and the importance of their inclusion
into the pseudopotential is less relevant. The envelope (valence) states
can couple across many atoms leading to the formation of bands as a
function of crystallographic translational symmetry. Plane wave basis
set is an appropriate basis to expand wavefunctions within crystals.

Pseudized atoms of (a) phosphorus and (b) bismuth. The lighter blues
highlights the augmentation regions of each element to be frozen and
subsequently subtracted from the all-electron wavefunction. Both el-
ements account for five electrons to be computed in the Kohn-Sham
equations. . . . . . ..

29

37

41



2.10 Excitation within a crystalline system (insulating), such as a semicon-

3.1

3.2

3.3

3.4
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ducting ultrathin film. (left-to-right) The excitation process occurs via
photon source and absorption from valence band electrons, where if the
photon energy is in excess of the bandgap, the formation of conduc-
tion band electrons and a hole (single excitation) can occur (exciton =
eh-pair), and finally radiative (or nonradiative) relaxation back to the
valence band annihilating the electron-hole pair. Note that the eh-pair
within TDDFT is implicitly constructed, where only excited state and
ground state wavefunctions are mixed within the formalism. . . . . .

Geometry optimized structures of the monovacancy. Panel (a) con-
tains the monovacancy with bordering carbon atoms highlighted in
red. Panel (b) displays the structure following relaxation. Note the
symmetry has been reduced. . . . . . . ...

Top and side views of optimized pnictogen-graphene monovacancy sys-
tems: (a) nitrogen (blue), (b) phosphorus (green), (c) arsenic (violet),
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Absolute value of charge density differences for various atomic sub-
stituents and a graphene monovacancy: (a) nitrogen (b) phosphorus
(c) arsenic (d) antimony (e) bismuth. Only nearest neighbors interact
strongly with the nitrogen dopant, while latter pnictogens show charge
delocalization over the entire monovacancy. Contour plots taken in
the plane of graphene for nitrogen and ~0.8 A above the sheet for all
others, corresponding to the location of Cy,Cs, and C3. . . . . . . ..

Projected density of states of each pnictogen atom upon interacting
with monovacancy graphene: (a) nitrogen, (b) phosphorus, (c) arsenic,
(d) antimony, and (e) bismuth. A broader PDOS distribution suggests
more mixing with the graphene monovacancy. . . . .. .. ... ...

Monovacancy band structure (a) and band decomposed charge densi-
ties of relevant bands near the Fermi energy (b-e). Panels b and e are
the m and 7* bands of graphene (blue and red dot, respectively). Pan-
els ¢ and d are impurity states (green and yellow dots respectively).
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Fermi energy. All charge densities are set at 0.01 e/ Ao oo
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3.6 Singly substituted nitrogen band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure.
(b) Charge density of the highest occupied band (blue dot) (c¢) Im-
purity band introduced by nitrogen substituent (red dot). All charge
densities are set at 0.01 e/A%. . . . .. ... L. 76

3.7 Singly substituted phosphorus band structure and band decomposed
charge densities of relevant bands near the Fermi energy. (a) Band
structure. (b) Charge density of m states of graphene (blue dot). (c)
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3.10 Singly substituted bismuth band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure.
(b) Charge density of m bands of graphene monovacancy (blue dot).
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4.1 Different adsorption sites available for halogen molecules on mono-
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Band structures of monolayer 1T-TiSs under strain. Panels (a)-(e)
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Density of states of monolayer 1T-TiS; under strain. Panels (a), (b),
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The quantum-materials pursuit. This figure contains the crucial in-
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properties. The outer-pentagon displays the desired material response
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Janus transition metal dichalcogenides. Newly synthesized heterolep-
tic TMDs feature a permanent dipole moment offering the possibility
of piezoelectric properties or strong Forster energy resonance transfer
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Newly theorized Janus transition metal dipnito-chalcogenides (h-MoPX,
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ground state bandstructures of each nanosheet (Fermi energy is set to
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ground state structures of h-MoPX. Interestingly, each nanosheet h-
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CHAPTER ONE

Introduction

Civilizations have characterized themselves by the materials they shape and
the technologies they derive from them. The ability to utilize emerging technologies
in novel or unexpected ways has been an incessant pursuit by mankind. The human
epochs of the Stone, Bronze, Iron, Nuclear, and Silicon ages have marked significant
societal expansions, whose technologies have propelled human beings to dominate the
earth. However, the preeminence of the world’s civilizations are replete with grow-
ing challenges that endanger its very existence. Rising populations, greater energy
demands, higher demand for information capacity, agricultural security, national se-
curity, and greenhouse emissions are currently the challenges faced by the world’s
civilizations. The necessity to redress these prescient challenges has become an im-
perative need for all nations. Great promise in addressing all of these challenges may
originate from nanochemistry.

The nanoscale is a new frontier of intense research that is dedicated to ab-
solute control of one-billionth of a meter. The ability to control matter in such a
way to tailor nascent nanotechnologies to the needs (challenges) alluded to above is
a tantalizing prospect. Moreover, the ability to tune material properties will enable
a seemingly infinite number of possible technologies for a myriad societal challenges,
which will extend to medical, industrial, information, military, and agricultural ar-
eas so important for society. In particular, the discovery of graphene in 2004, a one
atom thick sheet of carbon, marks a new frontier in nanoscience ripe with possibil-
ities.%” This incredible discovery, for which Geim and Novoselov received the Noble
prize in 2010, presented remarkable properties never observed in existing materials to

date. Monolayer graphene, material suprema, was found to have the largest known



surface area (~ 3000m?/g), highest known thermal conductivity (higher than dia-
mond), strongest material in the universe (Young’s modulus of 17" Pa), stiffest known
material (stiffer than diamond), most stretchable material (20% elasticity), highest
current density at room temperature (~ 1000 times of Cu), impermeable (even to
helium), highest intrinsic mobility (100 times of silicon), conducts electricity in the
limit of no electrons, lightest charge carriers (zero rest mass), and, finally, the longest
mean free path at room temperature (~ 1um).® These superlative material properties
propelled the field of ultrathin films, which began from pencil lead (1564) or graphite
a material known for centuries! Since the discovery of graphene, and the erosion
of scientific dogma that ultrathin films cannot exist, new families of two-dimensional
materials have been discovered holding new possibilities for technological application.
In fact, over the past 14 years graphene has been extended to new nanotechnologies
such as an electrode material, catalyst, resonant tunneling transistors, light emitting
diodes, photovoltaics, and heterostructures, where even proof-of-concept nanoassem-
blies feature record breaking results.®!® However, the proliferation of single-atom
thick nanosheets have been limited by two factors: the rate of production with specific
sheet thicknesses, e.g., monolayer over bilayer, etc., and the quality of the nanosheets,
or the presence of defects and impurities that vitiate intrinsic material properties.!?
In fact, the first two-dimensional material to be isolated was achieved with Scotch
tape, which remains the best method for avoiding impurities and defects.® Regard-
less of these (mass) production limitations ultrathin films continue to thrive with new
discoveries every year.?°?8 Furthermore, as new ultrathin films are discovered, char-
acterizing their electronic properties will be critical especially for tailoring ultrathin

films for given applications.



Every material carries with it quantum degrees-of-freedom that are derived
from the elements forming the material. Specifically, each ultrathin film possesses or-
bital, spin, charge, topological, and lattice degrees-of-freedom.?® Hence, these degrees-
of-freedom form the foundation for tuming material properties for electrical, light,
magnetism, heat, and mechanical applications, see Figure 8.1. In this manuscript, we
investigate the chemical and physical properties of a series of ultrathin films using an
ab initio condensed matter perspective. This approach is suitable for crystalline sys-
tems such as ultrathin films, which form periodic arrangements of atoms on a lattice.
This research exploits condensed matter theoretical tools applied to the investigation
of ultrathin films ranging from well known graphene to unknown haeckelite ultrathin
films, and titanium disulfide, see Chapters three-seven. In Chapter one, we exploit
graphene’s sensitivity to chemical modifications, whereby graphene is perforated with
a single vacancy or monovacancy defect state, which accommodates pnictogen dopants
to observe periodic chemical trends. This work demonstrates the ability to chemi-
cally modify graphene into a functional material, where the basal plane of monolayer
graphene is technically chemically inert. Furthermore, experimental evidence has
demonstrated this to be possible.39 3% Blistering graphene is one way to tune the ma-
terial properties of graphene, yet a viable alternative to physically altering the lattice
could be achieved with halogen adsorbates, Chapter four. In Chapter four, the intro-
duction of halogen diatoms enabled the formation of a band gap, a major limitation
in controlling Dirac carriers in graphene, which converted monolayer and multilayer
graphene into a small gap p-doped semiconductor making field-dependent charge car-
riers possible in a otherwise semimetal. Furthermore, it was found that each diatom
species induced different band gap sizes, which appeared to be intimately related to
the contact distances of a given diatomic molecule. Moreover, unnoticed in the orig-
inal study, a topological Mexican-hat bandstructure forms in these doped systems,

in particular, the multilayer cases, which has become an intense area of research.



These observations were corroborated in earlier experiments that involved bromine
and iodine gas, that is, band gap formation.*¢ Interestingly, a similar observation
was discovered in the newly theorized haeckelite materials of Chapter five. In Chap-
ter five, newly theorized (4,8)-tessellated nanosheets were derived from bulk crystals
that contained the requisite intrinsic symmetries of the ultrathin films. In this work,
group-IIT and group-V elements were placed at the vertices of a (4,8)-tessellation
lattice, and their electronic properties fully determined. A number of notable obser-
vations were made: one, the ability to form a ultrathin film from the bulk crystals
appeared possible from changes in the energy of formation and low cohesive energies;
second, the boron group formed unique Mexican hat bandstructures, which were ac-
companied with van Hove singularities in the projected density of states hinting to
significant optical activity; third, H-BSb ultrathin film was found to be unstable
due to a unique boron-boron bond that formed from charge transfer from antimony
atoms; fourth, all ultrathin films tended to form indirect bandgap semiconductors;
finally, two competing configurations were predicted, where a planar geometry is pos-
sible and, a more stable, buckled configuration was found. Unlike earlier chapters,
Chapter five focused on both lattice and elemental degrees-of-freedom. Furthermore,
because of the unique bandstructures observed in the planar boron-pnictogen ultra-
thin films, Chapter six focused on the optical response of these nanosheets. Chapter
six, showed that each planar haeckelite could potentially support very strong optical
response, which extends from the IR to the UV. This exciting prospect points to the
possibility of photovoltaic applications, where a haeckelite ultrathin film could act as
a tandem with another material to absorb IR light, where approximately 54% of solar
irradiance is emitted from the sun. Much more research is required, however, for the
newly proposed Archimedean nanosheets to understand their behavior, for instance,
substrate interactions. Finally, in Chapter seven, the transition metal dichalcogenide

1T-TiSs polymorph was mechanically strained to observe potential phase transitions



in the ground state electronic structure. In this study, the semimetal 1T-TiS, was
mechanically stretched and compressed to induce the formation of a band gap, which
upon tensile of the nanosheet an indirect band gap appeared and later transitioned
to a direct band gap at higher tensile strain. Consequently, the semimetal 1T-TiS,
was converted into a moderate band gap semiconductor from mechanical strain of its
lattice degree-of-freedom. Hence, 1T-TiS,; could potentially be implemented for op-
toelectronic applications where the material could be mechanically strained to induce
a band gap. Consequently, this body of research demonstrates the impact of tuning
in condensed matter, and, perhaps most importantly, the implications for technolog-
ical impact utilizing the thinnest known materials and the degrees-of-freedom they

support.
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authenticated results produced by Dr. Xu. The subsequent articles were edited and

submitted by the authors for peer review.



CHAPTER TWO

The Many-Body Problem & Ground-Excited State Density Functional Theory

2.1 The Many-Body Problem
Electronic structure theory contains within it many approximations made nec-
essary because of the intractability of the full Hamiltonian. The full nonrelativistic

Hamiltonian of an electronic system is given by the following expression,

ZvalZval
_Z[ ZMI Vit 24weOZyRI—RJ\] Z[ 47Teozfrz—rjl]
Zval
47TEOZZ|R]—I'7,’ 21)

where this expression can be more succinctly written in operator form as,
A:,i}_’_f)[]‘l't_’_f}ee"—f}eﬁ (22)

This expression contains the kinetic energy of the nuclei, 77, the potential energy of
the nuclei, v 1, the kinetic energy of the electrons, t, the potential energy of the elec-
trons, ]}ee, and the potential energy of the electron-ion interaction, V. 1, for a collection
of electrons, r = {r,}, and nuclei, R = {R,}, degrees of freedom.*" This expression
can be adapted to include the influence of electric fields, magnetic fields, and hyperfine

interactions, and relativistic effects such as spin-orbit coupling as well.3” Including

the above electronic Hamiltonian into the time-dependent Schrodinger equation,

0P
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and evolving the full wavefunction (nuclei and electrons), ®({r;},{R,},t), in time

permits a complete description of quantum matter. In fact, all of chemistry can be



understood with the above expressions. Unfortunately, the full Hamiltonian , Equa-
tion 2.1, is intractable to solve for any reasonably sized system of practical chemical
significance. For instance, if one wanted to determine the total wavefunction of ben-
zene with 42 total electrons in a discretized box of 10 A with 50 grid-points for a

molecule approximately 4.5 A across; this would require 5026

operations of Equation
2.1- 2.3 for many time-steps. The computation of the full electronic problem on the
fastest computers reaching approximately 10'® floating-point operations per second
will require 3.73x10'%® years to compute! This is known as the “dimensional wall” or
“exponential wall” for wavefunction based methods commonly encountered in elec-

37:38 Because of the deleterious scaling of computational effort

tronic structure theory.
in computing the full Hamiltonian we are forced to introduce soluble approximations

for predictions of chemically relevant phenomena.

2.1.1 Born-Oppenheimer Approximation
The simplest approximation takes advantage of the mass disparity between

the electrons and the nuclei. In fact, the mass ratio of an electron to nuclei ranges

Me  ~u 1 1
M " 2000 500,000’

hence the motion of the electrons relative to the nuclei appears
instantaneous.?® To decouple the above Equation 2.1 we must employ the ansatz

introduced by Born (1951),

O({ri}, {Rakit) = > Wi{ri}, {Rab)xa({Ru}i ), (2.4)

here x;({Ri};t) is the time-dependent nuclear wavefunction or coefficients of the
full wavefunction expansion, and W;({r;}, {Rz}) is the electronic wavefunction.3" Tt is
important to note that the full wavefunction, ®, obeys orthogonality < Wy |¥; >= §y,.

Substituting Equation 2.4 into Equation 2.3 and project from the left ¥} ({r;}, {Rz})



integrating over all space yields a set of coupled differential equations,

|: — Z %VQ + Ek({RI} ]Xk + chlxl = Zhaaik (25)

where

Cu = / d%p;;[— Z 27;4 vﬂ U, + Mil Z { / d%@;[—mvl]\m}[—mv]], (2.6)
which is the time-dependent Schrodinger equation for coupled electron and nuclear
dynamics.?” The Cy,; is the nonadiabatic coupling operator for the kinetic energy of the
nuclei (first term in Equation 2.6) and the nuclear dependence of their momenta.3”
If we treat only the diagonal terms of the nonadiabatic coupling operator, Cyr =

=Y f d3r¥;Vav,, we introduce the “adiabatic approximation” because the
diagonal terms only consider an adiabatic wavefunction in a single state, ¥,, and
precludes the possibility of electronic excitations resulting from the motion of the

nuclei. This yields the following set of decoupled equations,

OXk
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(2.7)

where the wavefunction can be decoupled by introducing the product wavefunction,

O({ri}, {Ri};t) = Vr({r;}, {R1})xx({R1}; t) Equation 2.7 leads to the expression,

OXk
ot '’

[ -2 " Vi + Ex({R}) |xi = ih—7 - (2.8)

2M;

which yields the well-known “Born-Oppenheimer” approximation. Here the Ej({Ri})
are the adiabatic energies of the electrons parametrically dependent on the nuclear
positions. From Equation 2.8, the nuclear wavefuction moves in a field of elec-
trons in the state k. Hence, the motion of the nuclei has no influence on the

electronic wavefuctions, or the nuclei do not induce transitions between electronic



states. Therefore, Equation 2.8 defines the physical ground state, excluding degener-
acy, for which the electrons instanteously occupy. In the limit of clamped-nuclei the
time-dependence of the nuclear wavefunction vanishes. Therefore, the Born-ansatz
becomes a time-independent wavefunction of the product of nuclear and electron
wavefunctions, e.g., ® ~ x,(R;)¥r(r;; Ry). Substituting this expression into the full

Hamiltonian, H — H(r,R) (Equation 2.1) for stationary solutions yields,

[He + Vi (R)]U,(r;R) = E,(R)U,(r; R), (2.9)

where the kinetic energy of the nuclei is zero, the nuclear coefficients have been re-
duced, and the electronic Hamiltonian, 7:16, operates on all electron degrees of freedom.
The nuclear-nuclear potential energy can be included into the external potential, V,;,
as a pertubation on the ground state of the subsystem of electrons; therefore, we ar-
rive at the time-independent Schrédinger equation for the parametrically dependent

electrons,

HU,(r;R) = E,(R)¥(r;R). (2.10)

This expression is an eigenvalue equation of motion for all adiabatic electron degrees
of freedom for a single equilibrium nuclear configuration, hence we can drop the
parametric dependence leaving the simpler expression, H U (r) = ExVy(r). Equation
2.10 forms the starting point for the subsequent formulation of Density Functional

theory for the motion of electrons moving in a field of quasi-static nuclei.

2.2 Ground-State Density Functional Theory
Ground state density functional theory (DFT) is an exact treatment of the
many-body fermionic system, but the only unknown in the Kohn-Sham equations
of motion is the correlation energy.? It is important to emphasize that DFT is for-

mulated for the computational ease of solving the expression discussed below (and



above), and to overcome the dimensional wall associated with wavefunction based for-
mulations. Moreover, we shall see that the triumph of DFT is rooted in the Levy-Lieb
constrained search approach, which permits a variational solution of the Kohn-Sham
equations that arrived 14 years later after the Nobel paper of Kohn and Sham.?38
With the constrained search approach we shall see that the remaining limitation of
the Kohn-Sham equations rests on the exchange-correlation energy density per par-
ticle. This term is the elusive enigma in the DFT formalism that continues to be the
source of intense research, for complete knowledge of this term would open the pos-
sibility of computing exactly all observables of a given system of interest; moreover,
with the exact exchange-correlation energy term the Kohn-Sham equations would be
complete, but the exact expression remains unknown. Hence, the necessity of ap-
proximations to the exchange-correlation energy per particle is widely employed in
two broad categories, that is, semiempirical and pure exchange-correlation function-
als. As examined below, the exchange-correlation functionals are formed in various
ways, but the use of exact-constraints based on fundamental (well-known) properties
of nature serves as the best way forward for systematic predictions of the correlated
many-body system. We will examine in detail the fundamental expression for DFT,
the ground-state energy, which can be formed as a functional of the electron density.

The time-independent Schrodinger equation contains all of the necessary infor-
mation to describe the motion of electrons on a Born-Oppenheimer potential energy
surface for a given many-body system. It would be instructive to expand the expres-
sion into the essential terms for describing the density of electrons as a functional
of each term in Equation 2.10. Moreover, we will use spatial-spin coordinates for
generality, x = (r;,0), where o is for spin-up (1) and/or spin-down ({) electrons
obeying half-integer Fermi-Dirac statistics, s = % Furthermore, we will determine

the expectation of each operator contributing to Equation 2.10, which can be related

to the ground state energy for a given system. First we must define what the (spin)

10



electron density, n,(x), is for a many-body system of electrons. The electron density,

for a given system, has the following form,

N
= NZ / Hd?’rze(,u - Ew)qf;(x, Xa, ""XN)\IIZ'JI (X’ X2, >XN)
oo’ =2

_Ze — i) | Wip (%), (2.11)

here i is a composite index for i = (R, n,l,m;), which are the ion positions, principle
quantum number, angular momentum quantum number, and azimuthal quantum
number respectively. The Heaviside step-function, 0(u — €;,), guarantees that for
V,, with €, < p are occupied states, and ¢;, > p are unoccupied states for chemical
potential, . The chemical potential is selected so long as the sum rule (normalization)
applies, [ d*azn(x) = N.* Moreover, because the electron density is spin-dependent
the total electron density can be formed by summing both spin-up and spin-down
densities, n(r) = n'(r) + n*(r). Throughout this chapter we will presume that only
Kohn-Sham wavefunctions are discussed, which are not to be construed as the true
ground state wavefunctions. The electron density, presented above, can be shown to
be a functional for all terms in Equation 2.10. The kinetic energy of the electrons

has the following form in DFT,

~

To = Tulnen] = = 375" 001 — €)W}, () V2,4 (x)

ZZQ — €i0)[Vilin(x)], (2.12)

where we have added the notation for the Kohn-Sham noninteracting kinetic energy;,

T,. The external potential energy, E.; = Eer[ng, ny](r) = Een[n](r) = (Viwe[n)(r)),

11



resulting from the attractive interaction between electrons and ions takes the form,

Eea:t n -
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which is just the interaction of the ground state electron density with the exter-
nal potential energy provided by the nuclei. The ion-ion electrostatic interaction,
Err, is similar to Equation 2.13 with an electron density term included; however,
we are assuming ion-clamped approximation (Born-Oppenheimer) for this term and
will forego writing this expression here, so we will presume it forms a portion of
the external interaction potential in Equation 2.13. The electron-electron interac-
tion, & = Eee[nr,ny] = Eeeln] = (Vee[n](r)), has the following density functional

dependence,

E.. [n] =
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where the electron-electron energy contains all of the complex quantum effects, such

as exchange and correlation, among the electrons. The electron-electron interaction

12



can be expanded to account for the antisymmetry of the fermionic wavefunctions into,
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where we have taken advantage of the antisymmetry of the ground state Kohn-Sham
wavefunction to express the electron-electron energy in terms of the Hartree energy,
Un[n], and the exchange-correlation energy, Exc[n], shown below. The nxc(r,r’) is
commonly known as the exchange-correlation hole for fermions, which will become
clear in Section 2.2.3 below. This expression can be further reduced to simply a

spin-dependent second-order pair density, n(x,x’), via

2

1 e n(x,x’)
Eeeln] = = Prd’r'O(pn — €i0)0(1 — €jo) ———+
") 247reoz// ' €io )01 6])|r—r’|

Here we have introduced a second-order correlation function, n(x,x") = n, (x)n (x')—
nxc(x,x )ny (x'), to account for exchange and correlation between electron densities
within a many-body system.? The correlation function is related to another impor-
tant quantity known as the pair-correlation function, g(x,x’), often expressed as,
nxc(x,x') = [g(x,x') — 1]n,(x').? The pair-correlation function is a measure of cor-
relation for a given system. The electron-electron energy effectively contains all of
the essential ingredients of static and dynamical interactions between electrons for a

given atom, molecule, or solid. If we combine all of the expressions above and group
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them together we arrive at the energy as a functional of the ground state density,
Exsln] = Tun] + Unln] + Excln] + / 010 () et (1), (2.17)

where we have omitted the ion-ion electrostatic energy for a single fixed system in its
ground state. The first three terms are the noninteracting Kohn-Sham kinetic energy
density, the Hartree energy, and the exchange-correlation energy. The last term is the
external energy for the attraction of nuclei and electrons, which is system dependent.
However, the first three terms in Equation 2.17 are completely determined from the

interactions among electrons, hence these terms can be succinctly written as,
Exs[n] = F[n] —|—/d3rna(x)th(r), (2.18)

where F[n] = Ts[n| + Uy[n] + Exc[n] is a universal functional of all electrons. As al-
luded to above, this expression forms the basis of DFT, and the exchange-correlation
energy, Fxc[n], is the only unknown. But if exchange-correlation were known exactly,
then it would be possible to compute all properties of any system with Equation 2.18
exactly. Unfortunately, the exact expression for Exc[n] is unknown; consequently,
this term is approximated with various exact constraints based on the homogeneous
electron gas or inclusion of exact-exchange energy to enable better predictions. Thus,
the Exc[n] is the source of intense research culminating into a set of approxima-
tions gradually improving over the well-known local density approximation (LDA),
otherwise known as Jacob’s ladder, see Figure 2.1. In Figure 2.1 the simplest ap-
proximation is to neglect the exchange-correlation term, which is the Hartree-Fock
approximation; above this is the LDA, the generalized gradient approximation (GGA)
which includes the gradient of the density such as the PBE functional, meta-GGA

includes the kinetic energy of the ground-state electron density such as the SCAN
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functional, hybrid approximation includes an add-mixture (a in the figure) of ex-
act exchange (EXX) such as the HSE06 functional, and higher rungs including the
random-phase approximation (RPA) or the inclusion of unoccupied states for config-
uration interaction, Figure 2.1.41753 Jacob’s ladder forms the paradigmatic structure
of DF'T, which is the quintessence of current density functional approximations to the
exchange-correlation energy of the many-body ground state. However, how can we
know that a solution to the Kohn-Sham equation of motion can be found in terms of
the density? In the next section, we explore the existence of such a solution proving
the possibility for formulating the many-body problem in terms of the density alone

without the need of multivariate wavefunctions.

2.2.1 Hohenberg-Kohn Theorems

Kohn-Sham theory is a theory for describing correlated quantum systems.? A
central axiom in DFT is that all of the many-body interactions can be predicted from
knowledge of a single scalar-function, the ground-state electron density, ngy(r). 23" We
shall see that the electron density is a functional of the ground state total energy,
which permits the formation of a variational solution of the Kohn-Sham equations
that enables the ab initio predictions commonly reported in the literature and within
this work. But first we must show that there exist a unique solution for the ground
state density within the framework of DF'T, otherwise the density, which is the solu-
tion to the many-body system, would not be unique for a given correlated system of
electrons; hence, there would exist many possible ground state densities that would be
used for predictions of observables and, yet, we could not distinguish what outcomes
are legitimate for a given many-body system. Nevertheless, the Hohenberg-Kohn the-
orems will show that for a nonrelativistic nondegenerate electron gas, the ground state
electron density can uniquely determine the external potential and, subsequently, the

ground state energy of a given atom, molecule, or solid. Here will will state and prove

the Hohenberg-Kohn theorems of DFT:
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Chemical Accuracy ~ 0.05 eV
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EMGGA, [n] = f d*x ny1(0)eec(r, Vny, Vng, 1y, 11)

ES6A, [n] = f 42 11 (O exe(r, Pry, Viy)

ELDAXC [n] = fd‘*x nL,T(x)Exc (T")

Hartree-Fock Worl

Figure 2.1. Jacob’s ladder provides a measure of the pedigree of approximation to
the Exc[n] in Equation 2.18. Each rung of the ladder includes additional exact con-
straints to improve upon the predictions of the Ex¢[n| term. Jacob’s ladder shows the
predictive power of various approximations starting from the simplest (Hartree-Fock)
to the most computationally demanding with exact-exchange (EXX) with occupied
and/or unoccupied states. Adapted from Jacob’s ladder ¢.1490 French School.?

HK.1 For any system of interacting particles in an external potential, v..(r), the

(1) 2) _

potential is uniquely determined, except for an additive constant, e.g., v.,; — Veyt =

constant, by the ground state electron density, ny(r), where the density is constrained
[ dPrn(r) = N (N is the total number of electrons) and depends on the ground-state
antisymmetric wavefunction, U,,.2%4

Proof. The proof of HK.1 can be completed by reductio ad absurdum. First we use
the Hamiltonian of the electrons in Equation 2.10 for the time-independent nonrela-

(1)

tivistic Schodinger equation. We suppose that there exist two external potentials, v,
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Vet (1) & 1o (1)
U )
LPicr (T) = LIJOJ(T)

Figure 2.2. Diagrammatic representation of the Hohenberg-Kohn existence theorems,
which is the upper portion of the diagram (labeled “HK”). The lower portion of
the diagram shows that the many-body wavefunctions, W,,(r), is determined by the
external potential, v (r), including the ground-state wavefunction, Wy, (r), which
subsequently yields the ground state density, ng(r). Here the index o is meant to
include spin for generality.?

and v

erts Whose density and ground state energy are equivalent. We will further as-

sume that the external potential energies differ by more than a constant. Moreover,
the external potentials will have two different Hamiltonians, H® and H®, along

with two different many-body wavefunctions , \I/S) and U2 which lead to the same

(1ol
(2)
i

ground state density, ng(rr), Figure 2.2. Because V.’ is not the ground state of H®

then,
O — <‘1’§i) o ‘Iffi)> < <‘1’§§) AW \1,2(3>>, (2.19)
where
< @] FO \11(2)> _ <‘I,g2> 7@ \I,(z)> " <\I,(2> o _ g@ q,(z>>
= E®@ 4 / d*r [véﬁ - véiﬂ no(r), (2.20)
hence

EY < E®@ 4 /d37“ [Uéi)t — véi)t} no(r), (2.21)

likewise for E® we arrive at the following,

E® — (v

H<2>’\1/§j,)>, (2.22)

0

@) < ()
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where

&

a®\w) = (wi)| i

‘\11(1>> <\I,<1>

=04 [Erfu - o motr), 223

H(2 ‘\Ij(l)>

hence

E® < W / &r [ v vgﬁt]no(r). (2.24)

If we add Equations 2.21 and Equation 2.24, then we arrive at the contradictory state-
ment, £V + E® <« EMW 4 E@ Hence, there cannot exist two external potentials
that are more than an additive constant which yields the same nondegenerate ground
state electron density. Thus, the ground state density uniquely determines the ex-
ternal potential, and the reverse is true as well, Figure 2.2. Therefore, all properties
of a many-body correlated system can be determined with the ground state density
yielding N, H, and W,, from no(r), quod erat demonstrandum (Q.E.D.).%** We now
prove the second Hohenberg-Kohn theorem.

HK.2 A universal functional for the energy functional E[n] defined in terms of the
density, n(r), and is valid for any external potential, ve,(r), exist. For any particular
Vezt(r), the exact ground state energy is the global minimum of this functional, and
n(r) is the exact ground state density that minimizes this functional.*5*

Proof. We will assume only “v-representable” densities to be a functional of the
ground state energy. The electron density, in this case, is associated with the ground
state energy for a given Hamiltonian and external potential for an antisymmetric
wavefunction, ¥,;,. The variational solution can be applied here to show that the
Kohn-Sham ground state energy is a minimum for electron density (HK.1), n(r).
Because the kinetic energy and potential energies entering the electronic Hamiltonian

are uniquely determined by the ground state electron density, then each term can be
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viewed as a functional of the electron density,

&mW:TM+EMM+/fmm%MM+&I

= Fyk[n] + /d%n(r)vext(r) + Err, (2.25)

where the Ej; is the ion-ion (electrostatic) potential energy interaction, Fyx[n] =
T[n] + Einln], is a universal functional of (only) the interacting kinetic energy of
the electrons and their pair-wise interactions. (we will define explicitly the terms in
Equation 2.25 later) It is important to note that Fiyx[n| is applicable for all external
potentials and number of particles. We must show that Equation 2.25 is a minimum
by recognizing,

EHK[n] = <\I/7;U ﬁ

\Ijia>

= Fyk[n]+ /d3rn(r)vm(r) + Erg

> Flng| + / d*rno(r)Vegt (r) + By
<\IJO,0

= Elno), (2.26)

F[‘%,a>

thus the Kohn-Sham ground state energy functional equality holds for ¥;, = Vg,
which are functionals of the density for the trial density, n(r), and exact density,
no(r). Therefore, all properties of the energy functional, or any other observable that
is a functional of the electron density, can be determined by functional variations of
the many-body energy with respect to the electron density, otherwise Equation 2.26
would not yield anything desirable Q.E.D.%*

The above Hohenberg-Kohn theorems might be generalized by considering the
sets of all external potentials, V), ground state wavefunctions, G, and ground state

densities, N, Figure 2.3.3 Since HK.1 is true, then you can assert that a collection
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of external potentials exist such that the set

V = {Veat|Vesr <= I|Wo) A, # Vegr + C, (2.27)

where the set ground state wavefunctions is,

G ={|T)[|To) == V.3 .|T;) # W)}, (2.28)

form a correspondence, or mapping, A : V +— G, that is bijective between each set
containing each collection of object, potentials and wavefunctions, Figure 2.3(a).?

Moreover, the set of ground state densities is defined,

N = {no(r)lno(r) = (Wola(r)[Wo), V| Wo) € G}, (2.29)

where n(r) = >, d(r —r;) is the particle (Fermion) operator. The correspondence be-
tween the ground state wavefunctions and electron densities, B : G — N, is bijective,
since each ground state wavefunction, which is a solution to Equation 2.10, maps
each wavefunction to a density, where the converse holds as well, Figure 2.3(a). This
generalization holds for both degenerate and nondegenerate many-body solutions to
the Schrodinger equation, Figure 2.3. However, for the case of degeneracy , seen
as lighter circular regions in set G and N in Figure 2.3, the possibility of multiple
wavefunctions and electron densities can occur. Nevertheless, as shown in Figure
2.3(b), the Hohenberg-Kohn theorems still apply. Because a particular set of wave-
functions (G,1) can give rise to a set of densities (N,;) each class always corresponds
to an external potential within the set V, or in this case vy, Figure 2.3(b).3 How-
ever, in spite of the applicability of v-representable pure-state electron densities, this

criterion is too stringent to be obeyed, and counterexamples exist that have shown
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v-representability may not be proven sound. In fact, it is clear that within the de-
generate interacting case described above that bijectivity of the mapping between
each set (A & B) cannot hold. Hence, as we shall see below, the problem can be

reformulated for “N-representable” pure-state electron density. %6

(a) Nondegenerate Many-body System

Degenerate Many-body System

v Z /::g\ s
Aeamun [ oo
e e W o e W
V3 Nv3
gv3
v g N

Figure 2.3. These diagrams show the subsequent formulation of DFT into bijective
mappings between sets of external potentials, V), ground state wavefunctions, G, and
ground state densities, /. Here the mapping of A and B are one-to-one and onto
(bijective) among the sets obeying the time-independent Schrodinger equation. (a)
shows the conclusions of HK.1 and HK.2 for nondegenerate many-body systems;
(b) shows the same situation as (a) but for degenerate many-body systems.?

The two theorems HK.1 and HK.2 codify DFT into an immensely powerful
ab initio framework that enables predictions of correlated many-body systems using

the simpler scalar function, the electron density; this avoids the more demanding
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wavefunction based formalism discussed above allowing for the ability to observe
chemically relevant phenomena of great importance. However, the Hohenberg-Kohn
theorems do not specify what the form of Fyx[n| should be, yet this required another
significant realization provided by the Levy-Lieb constrained search approach that
permitted DFT reach prominence and wide-spread usage into many disciplines of

science. 40

2.2.2  Levy-Lieb Constrained Search

The Levy-Lieb constrained search approach allowed for density functional the-
ory to be formulated into a variational solution for the ground state of a given sys-
tem. %> Moreover, as we shall see, it becomes possible to use “N-representable”
electron densities rather than the more stringent “v-representable” case originally
presumed in the Hohenberg-Kohn theorems of the previous section.

In order to highlight the Levy-Lieb constrained search it is important em-
phasize that instead of searching over “v-representable” pure-state electron densities,
instead the constrained search approach focuses on “N-representable” electron den-
sities, that is, an electron density is obtained from some antisymmetric N-particle
wavefunction. % Moreover, all electron densities are pure state N-representable if
they obey n(r) > 0, [d*rn(r) = N, and [ d®r|[V4/n(r)]? < 00.%*% These three con-
straints on the electron density insure that the density is positive definite, normalized,
and finite. From these constraints on the electron density the Levy-Lieb constrained
formulation proceeds with Equation 2.26 by requiring the Kohn-Sham energy to have

a lower bound (infimum) or no variation over a set of antisymmetric wavefunctions
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Eufn] = inf (| H|¥)

1|{I,1f(\I/|T + Eee + Eert| V)

= inf [ inf (V[T + B ) —|—/d3rn 7)ot (1)
n(r) L|¥)eg

— inf [F[n] / Prn(r)ven r)}, (2.30)

n(r)

thus the constrained search is a minimization over all antisymmetric wavefunctions
yielding n(r), and a constrained search over electron densities.? Therefore, the Levy-
Lieb constrained search establishes an apt definition for F[n| as being a functional
of the ground state electron density that is pure state N-representable, such that,
the electron density minimizes the ground state energy for a given external potential
(HK.1).%°5% Furthermore, the constrained search approach establishes a variational
procedure to the Kohn-Sham ground state energy functional that arrives at a mini-
mum for the many-body Hamiltonian. Consequently, combined with the Kohn-Sham
self-consistent field (SCF) scheme, the ground state properties of a given system can
be understood with exchange-correlation effects included. !

The self-consistent scheme, Figure 2.4, originally formed by Kohn and Sham,
follows the variational approach presented within the constrained search, Equation
2.30.%1 Here we present the canonical equations of motion of an auwiliary system
based on the Kohn-Sham energy functional for the ground state of a given system.
It was originally presumed that the Kohn-Sham energy functional was composed of
noninteracting fermions, and only the exchange-correlation contained the interaction
so important for accurate predictions.®! We will determine the variational solution

to Exs[n] (Equation 2.18) for an noninteracting N-representable pure state electron
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density via a minimization over a grand-canonical functional, Qxg,

02cs[n] = 6| Tufn] + Eewln] + Un[n] + Excln] = (3 eio / @rny(r) = Gijdoe)| = 0

0Eks 5Ts[n] [5E61’t[n] OUn[n] 5EXC[nw b — € Wip(x) =0

50 () o (r) L onx) T on(x) T on(x) ) v
= (]:IKS — Eio—)\ljio(x) =0
I:IKS\I/Z'U(X) = Ew\I/iU(X), (2.31)

which is a single-particle Schrédinger equation for the Kohn-Sham equations of mo-

tion.%6! The Kohn-Sham Hamiltonian has the form,

h2

Mme

Hygg = ——V2+ Vi, (2.32)

for the effective Kohn-Sham potential energy,
Vics = Veat[n](r) + Vi[n](r) + Vion]. (2.33)

Hence, the full expression has the form,

2

( - 27:” e V? + Vewt[n] (r) + Vi [n](r) + v;;c[n]) Ui (r) = €10 Ui (1), (2.34)

which is the canonical form of the Kohn-Sham equations.%! The solution to Equation
2.34 requires an iterative self-consistent approach since the potential energy contains

the electron density, which can be clearly seen by expanding Equation 2.33,

VES _ Vem[n](r) n e Z/dSI‘/Q(,u . Eja’)n ’(X’) + 5E§(c[n] (235)

d7eg v — /| on(x) ’

where the external potential energy, Hartree energy, and exchange-correlation po-

tential energy per particle each contain the electron density. Hence, the solution to
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the canonical Kohn-Sham eigen-equation for the minimum ground state wavefunc-
tions yields the ground state density, external potential energy, and the Kohn-Sham

ground state energy for an N-correlated many-body system of N-fermions, Figure 2.4.

HK KS HK,
Vext (1) € np(r) & no(r) = Vs (1)

U ) ) U
q”ia(r) = 1]100(1‘) Lpi:l,...,Necr(r) = Lpicr (?‘)

Figure 2.4. The Hohenberg-Kohn and Kohn-Sham schemes for solving the interacting
and auxiliary systems. The left side represents the interacting portion provided by
the existence theorems of the Hohenberg-Kohn theorems. The right side displays the
Kohn-Sham variational scheme for the noninteracting system, where the solution of
the ground state density, ng(r), is found by Levy-Lieb constrained search over all
Kohn-Sham wavefunctions, ¥;—;  n.,(7), for the noninteracting N.-electron system.
Note the H.K. theorems can be applied to both cases.?

The above expressions define all the terms that enter into the Kohn-Sham
equations (Equations 2.34-2.35) that permits the solution to the many-body prob-
lem, and defines what F'[n] should be within this construction. Hence, the universal
functional (F'[n]) is the stationary solution to the Kohn-Sham eigenvalue problem,
and the functional derivative of the exchange-correlation energy , E%[n], yields the
potential energy of exchange-correlation energy per particle that contains all addi-
tional quantum effects of the system as a result of the external potential experienced
by the electrons. Therefore, the exchange-correlation potential energy per electron
is the only unknown that is left, in fact, the correlation energy per particle, Ec[n],
is the only quantity that is unknown since exact exchange has been derived since
the Hartree-Fock approximation, which predates DFT.%%6¢ These critical terms are

discussed in the proceeding section.
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2.2.3 Nature’s Glue: Exchange-Correlation Energy

As discussed in the preceding section the exchange-correlation energy per par-
ticle is the only unknown to the Kohn-Sham equations (Equation 2.35). In fact, most
of DFT research is intensely focused on approximating this term (Exc[n]), which
is likely the source of great obfuscation among researchers around the field. In this
section we discuss the essential “ingredients” to various approximations used through-
out this document to provide some understanding to the encyclopedia of acronyms
associated with various approximations in DFT, see Figure 2.1 in section 2.2 above.

Before covering various approximations to the exchange-correlation energy it
is instructive to highlight why this term is so critical in the Kohn-Sham equation
(Equation 2.34). This question can be explained by viewing the range of energies
that that are accessible to the exchange and correlation energy functional. The corre-
lation energy can fluctuate dramatically from 0.87 — 130eV (83.7 — 12,550k Jmol 1),
and the exchange energy can vary significantly as well to 0.87 — 1301eV/(83.68 —
125,519.8kJmol~1)!57 These energies are extraordinarily disparate, and leads to diffi-
culties in describing electron densities in chemical environments where the density is
diffuse or highly concentrated. In the intermittent regime (low-here somewhere-high
density) the incessant fluctuation of electron density becomes a significant challenge
to comprehend with exact analytical expressions (See Appendix B). This is dynami-
cally driven by the motion of electrons within condensed phases, hence the screening
of electrons (Thomas-Fermi screening, kg), and, correspondingly, the kinetic energy
(Fermi wavevector, kr) of the electrons can fluctuate per unit volume time resulting
from the interplay of these two physical effects. So, as discussed below, the exchange-
correlation energy per particle can be considered to be nature’s glue for chemical
bonding, which is the bedrock upon all subsequent chemical /physical properties are
based. Hence, the approximations to Ex¢([n| will have a critical impact on the pre-

dictions and computational ease for comparison to experimental observables.
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Figure 2.5. “Correlation dance”.Correlation is the tendency of electrons to dynam-
ically avoid one another resulting from their mutual Coulomb repulsion (Coulomb
correlation). The avoidance of electrons leads to an alteration of their kinetic energy
densities.

The construction of various approximations to the exchange correlation en-
ergy is central to forming reliable predictions with computational ease in DFT. The
exchange-correlation energy can be understood by combining the Hohenberg-Kohn
exact energy functional (Equation 2.25) with the Kohn-Sham noninteracting energy

functional (Equation 2.31), which yields,

%eln] = (TTn] = Tun]) + ((Vee) — Us[n)). (2.36)

This shows that the exchange-correlation hole (XC-hole) originates from the change
in the interacting kinetic energy density and noninteracting Kohn-Sham kinetic en-
ergy density, and the electron-electron interaction with the removal of the Hartree
energy. 2670 Another way of writing Equation 2.36 is with respect to a parameter \,

Excln] —% ¢ / d)\//d3 gy e (0 1) (2.37)

drey Ir — /|
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here A is a coupling constant that links the noninteracting system (A = 0) to the

6971 See Appendix C for the derivation of this re-

fully interacting system (A = 1).
sult. This second expression in Equation 2.37 is often known in the literature as the
“Adiabatic Connection” expression for the exchange-correlation energy.” ™ There-
fore, this expression holds that the exchange-correlation hole, within the Kohn-Sham
scheme, is the difference between the fully interacting (correlated) system and the
auziliary system, Figure 2.4.%2 Furthermore, the XC-hole is the only unknown in the
Kohn-Sham equations, Equation 2.34, so any approximation for the XC-hole will have
a significant impact on the quality of the predictions. The XC-hole originates from
electron correlations, or to be more precise, from parallel spin fermions tendency to
avoid each other in a system (Fermi correlation), see Figure 2.6. This is the funda-
mental Paul-Exclusion principle that gives all matter its structure. Hence the effect
of two electron densities of equal quantum numbers being in proximity of each other
results in the reduction of probability amplitude in the neighborhood of the second
electron (Figure 2.6) creating a “hole” of dimished density around the second elec-
tron. Therefore, the density functional approximations to the exchange-correlation
energy attempt to accuratly capture the XC-hole, but this is no trivial task.

In the original ansatz for the expansion of the exchange-correlation energy,

Kohn-Sham introduced,
E%cn] = /d3r(€§(léA[n] (r)n(r) + excln, |[Vn|]|Vnl* + ...), (2.38)

where the first term is the local density approximation, the second the generalized

61,73,74

expansion approximation, and so on. The first order term in Equation 2.38 can

be written as,

ELPA[) = / drn(r)ekDAn)(r). (2.39)
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Exact n(r)

Figure 2.6. This diagram highlights the origins of the term of “XC-hole”. The figure
shows the exact ground state density (gray line) of an atom (say He), where an
electron is placed at the origin, r, and another electron is placed at 7/, such that
their spins are collinear (oriented up or down). The depletion of density (red dotted
line) around 7" shows the formation of a hole around the second electron. The hole
can be understood to originate from the Pauli-Exclusion principle, and dubbed the
Fermi hole for exchange energy contribution. The correlation hole has the same effect
although smaller than the Fermi hole.

so that the exchange-correlation energy within LDA depends on the homogeneous
densities (slow variations) of the electron liquid, and e£24[n](r) is the XC-energy per
particle.6%™ In LDA, the exchange-correlation hole is assumed to be equivalent to
that of the uniform electron gas, i.e., €524 [n](r) ~ ¢/ [n](r), which has exact known
constraints for exchange and approximate correlation energies. The exchange energy

for a uniform electron gas (UEG) was expressed by Dirac in 1930. Dirac exchange

was formulated for a plane wave basis originally, and takes the form,
e [n](r) = —CX/d?’rna(r)4/3, (2.40)

where C'xy = %(%)1/ 3 is a constant. The correlation energy, however, has many nu-
merous approximations each of which are derived from UEG, where the correlation is
parameterized with Monte Carlo data for example, see Appendix B.4%7™ The LDA

surprisingly has been found to be accurate for solids, in particular, because the above
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expression obeys known exact constraints for the UEG. For example, the exchange

and the correlation energy are nonpositive, EFx < 0 and Ez < 0, or the Lieb-Oxford

bound Exc > —Cro [ d®rng(r)? (Cro < 2.273), and spin-scaling relations for the

more general case of fermions are all obeyed. %8983 Moreover, LDA has two impor-
[Vn|

tant inverse length scales, namely, == << kp and Wn—”l << kg, where the density

/3 and

varies slowly over space. (here we have the Fermi-wavevector, kr = (37%n(r))
the Thomas-Fermi screening-wavevector, ks = —5 (37%n(r))"/¢ (both are in atomic
units))*® The Fermi and Thomas-Fermi wavevectors originate from the kinetic energy
of the electrons and the screening of electrons within a condensed phase, or molecule.
In this case, densities that are more homogeneous tend to yield good results within
LDA. In fact, using Equation 2.16 and the expression for the XC-hole, the XC-hole
(nxc(r,r’) = nx(r,r') + no(r,r’)) obeys the following constraints, nx(r,r’) < 0,
[ dPrnx(r,v') = -1, and [ dPrnc(r,r’) = 0.8 These constraints (positivity and
sum rules) on the XC-hole follow from the constraints on the energies of each term
above. However, in systems with dopants, or other matter that may violate the above
constraints, LDA tends to poorly describe various empirical aspects of such systems,
see Chapter 3-4, e.g., over delocalization.™

The second order case is the generalized expansion approximation, which was
intended to include inhomogeneities that commonly occur in condensed matter sys-

73,74

tems. The exchange-correlation energy per particle for the GEA has the following

form,

ES¢[n] = /dgreigA[n(r), [Va[][Va(r). (2.41)

In the GEA, it was discovered that the exchange-correlation hole within this expansion
becomes positive, yet in LDA the exchange and correlation are not positive for the
UEG.™™8 This lead to a real-space cutoff for the GEA by requiring the XC-hole
to become effectively zero for low densities.*? #486 This established the generalized

gradient approximation, the ansatz for the exchange-correlation energy per electron
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E%ﬁmzjﬁ%mm%%mmmwm, (2.42)

73,74,87-90 This form

where the expansion includes the real-space cutoff for the XC-hole.
for the second-order term in the expansion of the exchange-correlation energy allowed
for the inclusion of further ingredients or constraints to improve upon LDA. The GGA

of Equation 2.42 can be rewritten in the following form,

B = [ dreielnl Frc(rs(n). ) (2.43)
where the dimensionless density-gradient captures inhomogeneities, s(r) = 2;:—:('”,

and rg is the Wigner-Seitz radius (Appendix B), which are both set as independent
variables of an enhancement factor, Fxc, and e{¥“[n] is Dirac exchange defined

above. 73,74,87

9 This formal expression is the basis of the commonly used PBE GGA
functional that has demonstrated exceptional predictive power, and it is employed
throughout this dissertation (see Appendix A). Typically, PBE can achieve 0.5% error
and 5% error in the exchange and correlation energies over a given system.*® Moreover,
bond lengths tend to be 1% too long effectively yielding correct structures, but have
30% (too low) errors in energy barriers.*? This has been an improvement over LDA,
which has 5% error in exchange energy, 100% error in correlation energy, 1% too short
of bond lengths, and 100% too low energy barriers.*® The improvement in the second
rung of Jacob’s ladder (Figure 2.1) results from the inclusion of higher order-gradient
terms in the GGA not contained within LDA. The success of PBE can be attributed
to the use of exact-constraints on the exchange-correlation functional, rather than
using test sets for highly parameterized exchange-correlation functionals commonly

known as semiempirical DFT. However, it should be noted that the advantage of

semiempirical DFT is the expedience of an answer for a given chemical circumstance,
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but does not describe why the formulation works. Nevertheless, the PBE formulation
has formed the basis for higher order expansions of the exchange-correlation energy.
The next rung contains the meta-GGA. These approximations include the

same ingredients as the lower order approximations seen for LDA and GGA, but in-

clude the kinetic energy of the electron density, 7, = —2732 - > o O — €i0)| VT, 240
The orbital kinetic energy density for spin ¢ incorporated into the exchange-correlation

energy per electron becomes,
EMGOA,] — / Prn(r) XS n(r), |V, ), (2.44)

which includes a nonlocal 7, term to the exchange-correlation. In general, the MGGA
improves overall predictions of GGA, but it heavily depends on the type of MGGA
used, and in some cases, the MGGA can make worse predictions compared to LDA
and GGA.*° However, a new MGGA based on exact constraints (17 constraints in
total) was recently released.?®4? This formulation, dubbed strongly constrained and
appropriately normed (SCAN), was shown to improve over several metrics for chem-
ical systems with lower mean average errors (MAE).%®% Tt has been shown that
for the G3-test (atomization energies of 223 molecules) MAE(SCAN) = 0.25 eV
(MAE(PBE) = 0.96 V), for the BH76-test set (76 reaction barriers) M AE(SCAN) =
0.33 eV (MAE(PBE) = 0.40 eV), for the S22 (22 molecular complexes bound by
weak bonds) MAE(SCAN) = 0.04 eV (MAE(PBE) = 0.12 ¢V), and for the LC20-
test set (20 solids lattice constants including metals, semiconductors, and insulators)
MAE(SCAN) = 0.0007 eV (MAE(PBE) = 0.0025 eV).11991 These results are
striking considering that chemical accuracy is around 0.05 eV, Figure 2.1. More-
over, the MGGA-SCAN includes short-range van der Waals interactions, which are
neglected in semilocal GGAs and LDA.*° However, a long range correction is needed
to correctly describe the van der Waals interaction that is important in multilayer

ultrathin films, see Chapter 4.4%927192 In fact, MGGA, such as with SCAN, it is
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possible to obtain observations at the hybrid-level of approximation or even varia-
tional Monte-Carlo to the Kohn-Sham exchange-correlation energy. 4?4 However,
LDA, GGA, and MGGA do not improve the overall bandgap commonly observed
in semiconductors or insulators since they fail to capture the exact electron affinity
(A) and ionization potential (I), which are the lowest unoccupied molecular orbital
(LUMO) and highest occupied molecular orbital (HOMO), respectively. ™19 The er-
rors can range 30-50% in semilocal approximations.'% The origin of the failure of
the semilocal approximations is attributed to the derivative discontinuity originating
from the removal or addition of an electron, hence, in the Kohn-Sham formalism the
fundamental band gap has an additional term that alters the band gap prediction,
E, = ecpm — evpm + Axc. The Axe term originates from the derivative discon-
tinuity in the exchange-correlation energy approximation.!®® However, the semilocal
approximations discussed so far can be corrected with the inclusion of an admixture
of non-local exact Fock exchange.** 4719 Exact exchange remedies the fundamental
gap to near experimental measurements because within Hartree-Fock, Koopman’s
theorem is obeyed for the removal or addition of an electron so long as relaxation of
the remaining electronic states does not occur.®® Capturing the correct fundamental
gap is critical for understanding the absorption process in ultrathin films, see Chapter
6.

As mentioned above, the hybrid rung of Jacob’s ladder (Figure 2.1) includes

an admixture of exact exchange (Fock exchange).*5:46:104

The hybrid level generally
improves the overall accuracy for material observables, yet the computational cost
scales poorly against lower runges of Jacob’s ladder. This has made hybrid functionals

for periodic systems prohibitive until recent years. The first pure hybrid functional

was derived from PBE, which has the exchange-correlation approximation of the form,

ELEPn) = ELYSF + aolExx — EXPP, (2.45)
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where ag = }L was found to yield an optimum mixture of exact exchange, and Exx
is the exact exchange shown in Equation 2.15, where this hybrid approximation is
known as PBEO0.1% In the case of PBEO, the inclusion of 75% PBE-exchange and
100% PBE-correlation is included at the semilocal approximation, which is accom-
panied with 25% exact exchange, Equation 2.45. This exchange-correlation approxi-
mation improves on the fundamental gap for semiconductors and insulators.!%® An-
other extension of the hybrid density functional approximation was developed within
a screened hybrid approximation decomposing the exact exchange term into short-

range and long-range exact exchange.?>%61% The screened hybrid construction for

the exchange-correlation energy per electron has the following form,

EASES[n) = o BYEHE (W) + (1 — a) EXPPE(Ww) 4 EXR-PBE () + EEBF . (2.46)

where the HSEO6 functional is composed of a fraction of short-range PBE exchange,
full long-range PBE exchange and correlation, while the exact exchange is partitioned
into short-range exact exchange with screening parameter, w = 0.2, and a = }l similar
to PBEO0.!% Here the screening parameter, w, is chosen to optimize fundamental gap
predictions over a large set of molecules and solids. ! The MAE for band gaps with
HSEO06 was later estimated to be 21% or 0.26 eV, and 1.13 eV for PBE, which is a

much better improvement over semilocal approximations. %7

The ability to accurately
capture band edges is very critical to understanding optical response in ultrathin films,
see Chapter 6 compared with band gaps in Chapter 5.

The structure of DF'T, laid out above, forms a series of successive approxima-
tions that generally improve upon lower rungs of Jacob’s ladder, Figure 2.1. However,
one may wonder why density functional theory works at all, considering the density
is the central quantity in all of the above approximations for the exchange-correlation

potential. And the use of wavefunction based theories have demonstrated exceptional

accuracy compared with DFT, albeit with an enormous computational cost. So why
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focus on DFT and not on improving computational scaling of wavefunction based
approaches? The reason for the success of DF'T rest in what is being approximated
and the contribution to the Hamiltonian. For example, if one were to examine the size
of each term in the Kohn-Sham energy functional (Equation 2.17) for the neon atom.
The exact kinetic energy for the neon atom is 128.94 Ha (Hartree), V.. is 53.24 Ha,
and V., is —311.12 Ha; the Kohn-Sham kinetic energy is 128.61 Ha, U 66.06 Ha, and
Excis —12.98 Ha. From the numerics for the neon atom it is clear that the noninter-
acting kinetic energy is very close to the interacting kinetic energy (AT = 0.33 Ha),
while the Ex¢ contribution is very small relative to the other terms entering into the
Kohn-Sham potential. 1% Furthermore, subtracting the Hartee energy and exchange-
correlation energy from the exact electron-electron potential energy, V.., yields 0.16
eV, which is in very close agreement. Therefore, the success of DFT is centered on
capturing the smallest contribution to the many-body system relative to other terms.
However, without accurate approximations formed on rigorous underpinnings of exact
constraints, predictions would not prove useful in any chemical context; therefore, in
spite of the paucity of the contribution the exchange-correlation energy makes to the
Kohn-Sham Hamiltonian, the E'x¢[n| term provides the requisite glue for the forma-
tion of corpuscular matter of all varieties. These density functional approximations
have been used throughout this dissertation to make various predictions of ultrathin
films for a range of properties significant for chemical characterization and application

highlighted in the subsequent chapters.

2.2.4  Periodicity & Plane-Wave DFT

This dissertation is focused on the study of crystalline systems, in particular,
the application of ab initio methods, highlighted in the previous section, to the study
of ultrathin films and their chemical properties. We will define here how translational
invariance is characterized and extend this to the Kohn-Sham formulation given in

the preceding section.
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Crystals are distinguished by their periodicity, where a single set of constituent
elements (basis) can be repeated ad infinitum on a lattice generating a solid crystalline
material. 2% The crystal is formed by defining three Bravais lattice vectors a;, as,
and a3, where the volume of the crystal lattice is Quec = det(h) (h = [a;,as, a3]
Bravais matrix). With the Bravais lattice vectors defined the primitive unit cell can
be constructed, Figure 2.7(a). The primitive unit cell (PUC) contains the essential
space group symmetry of the two-dimensional crystal such that no voids or gaps are
formed as a result of selecting Bravais lattice vectors. Because perfect crystals are spa-
tially invariant it is commonly preferred to employ periodic boundary conditions, e.g.,
rpRC =T — h[h_lr] ~NINT, such that the spatial representation is wrapped back within
the primitive unit cell with the nearest-integer function (NINT').3” With the redun-
dancy of forming the tessellation of the lattice; any crystal lattice can be constructed
by a linear combination of integer multiples of each primitive lattice vector to form
an infinite number of translational lattice vectors, i.e., R, nyns = 121 + nodg + nsas,
which are repetitions of the PUC, Figure 2.7(a) For two-dimensional systems the
third component can be neglected (n3 = 0). Related to the Bravais lattice vectors of
the crystal are the reciprocal lattice vectors, by, € {1, 2,3}, which are orthogonal to
the Bravais lattice vectors,

bl' caj = 27'('(52‘]'. (247)
The reciprocal lattice vectors have the form,

2
bi = —ﬂ-aj X a, (248)
Que

where Qo = a; - (ag X a3) is the volume of the PUC or conventional cell if expanded.
The reciprocal lattice is shown in Figure 2.7(b)-(c), where the Wigner-Seitz volume
(Figure 2.7(b)) is shown for graphene, or any hexagonally symmetric crystal. In

addition to the reciprocal lattice vectors in reciprocal space, there exist translational
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reciprocal lattice vectors, G, in reciprocal space as well, i.e., Gy = Goymoms =
miby + maby + msbs or G = 2m(hT) g, Vg € {i,j, k} € Z* ([by, by, bs] = 2w (hT) 7!
following from Equation 2.47). This characterizes both real and reciprocal lattice
spaces, which are inverse spaces. The consequences of translational invariance on the

Kohn-Sham wavefunctions will now be discussed.
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Figure 2.7. Crystal lattice representation and the reciprocal lattice representation
displaying the path to band structures and density of states.(a) The real space lattice
constructed from primitive lattice vectors a; and as, where the hexagonal unit cell
shows a shift to the primitive lattice vectors. (b) The Wigner-Seitz cell formed around
a single point generating the first-Brillouin zone for a hexagonal cell. Labels within the
first-Brillouin zone mark high symmetry point in reciprocal space shown in the band
structure. (c) Two-dimensional slice of the first-Brillouin zone in (b) showing high
symmetry points K, M, and I" (zone center) commonly integrated over to generate

band structures for hexagonal cells (dotted line). (d) Resulting band structure and
projected density-of-states for graphene.
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Symmetries in quantum equations of motion are typically accompanied with
good quantum numbers, which mark different discrete and allowed quantum states
for a given atom, molecule, or solid. In the case of solids the crystal momentum

(wavevector), k = >, ]lv—iibi(V(li AN;) € Z3) & i € {z,y, 2}, labels allowed reciprocal
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states of a crystal by Born-von Karman (periodic) boundary conditions. The peri-
odic boundary conditions lead to the well known Bloch theorem for translationally
invariant wavefunctions, which are expanded in a complete plane wave basis. Bloch’s

theorem states: an electron in a periodic potential has eigenstates of the form,

U (r) = e (1) (2.49)
1 .

R — k(G el(kJrG)'r7 2.50

Ve 2@ (250

where Up(r) = \/Q%% > euk(G)e'CT is a periodic function in the unit cell normal-
ized with crystal volume, Quc, and k chosen to be in the first-Brillouin zone. 1%
Bloch’s theorem enforces translational invariance such that the translation operator,
'7'3, acting on Equation 2.50, 7-Rllfnk(r) = U,k(r +R). The effect this has on the
Bloch wavefunction is, U,x(r +R) = ﬁ g ek (Gl HR) — ik Ry, (),
where it is required under PBC’s that ¢/6® = 1(VR). Hence, Tg = e’*®. Moreover,
Tr commutes with the electronic Hamiltonian, hence Tr is a simultaneous solution
to the electronic Schrodinger equation. ! Thus, it is clear that any periodic function
can be expanded in a plane wave basis, which is the Fourier transform of the real-
space function to a frequency space function. Or, in other words, in crystalline solids
the crystal wavefunctions are modulated by a periodic function of the crystal. 109112
Hence, the other terms that enter into the Kohn-Sham equations can be expressed in
their Fourier expansions via Equation 2.50.

The Fourier expansion of the Kohn-Sham wavefunction serve as an excellent

approach of representing crystal wavefunctions since the periodicity or translational
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symmetry is embedded within the summation over reciprocal lattice translation vec-

tors, Equation 2.50. In fact the electron density can be written as a Fourier transform,

n(r) =5 > /Q fue > i Gen(G)e <@ (2.51)

= Zn(G)eiG'r7 (252)

here the integration is over k-space of the first-Brillouin zone, and f, are the oc-
cupations for band index, n and wavevector, k. The Kohn-Sham equations can be
rewritten in a Fourier form as well by substituting Equation 2.50 into Equation 2.34

and projecting (k + G| yields,

2

B
(%u{ + Guml®cnc., + Vics(Gm — Gm/)>cnk(Gm/) — epeic(Gm).  (2.53)

This is the well-known Fourier Schrédinger equation of the real-space representation
of the Kohn-Sham equations of Equation 2.34.2 In Equation 2.53 we demand that
the plane-wave expansion be orthogonal over the unit cell volume, (q'|q) = dg,.q,.,
(here m = (my,me,m3) € Z3* given above for reciprocal lattice vectors). More-
over, the effective Kohn-Sham potential is Fourier expanded, Vkg(Gm — Gu) =
Jo PrVis(r)e!Gm =CGm) T where the Kohn-Sham potential energy, Vis(r), is given
in Equation 2.35. The solution to Equation 2.53 permits understanding of material
properties and forms the basis of band theory reformulated in DFT. Hence, this ex-
pression forms the basis of all predictions made in subsequent chapters, allowing for
the broad study of ultrathin films, see Chapters 3-7, Figure 2.7(d) and Figure 2.8.
However, the use of plane-waves to describe highly oscillatory radial wavefunctions
near the nucleus of an atom (core Bohr orbits) is prohibitively expensive. In order to

circumvent this deleterious circumstance, decomposing an atom into core and valence
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wavefunctions provides a suitable point to reduce the need of accounting for rapid os-
cillations in the wavefunctions near the nucleus of the atom. This inherent limitation

in plane-wave basis sets was remedied with the use of the projector augmented wave

method (PAW). 113

2.2.5  Projector-Augmented Wave Method (PAW)

The intractability of employing plane-wave basis sets for the expansion of
wavefunctions can be redressed by decomposing the atom into core and valence elec-
trons. ¥ The PAW method achieves this by realizing that within in an element inner
Bohr orbits are well localized because, while in higher energy bound states of the
atom, within a crystal, can become delocalized to form bands of states, Figure 2.8.
This process of decomposing the atoms into core and valence electrons is commonly
referred to as pseudization, and has proven effective in computing quantum prop-
erties in many different environments for a given pseudized element of the periodic
table.37 It is important to emphasize the PAW method originated after other approx-
imations made in this spirit were established, such as, ultrasoft pseudopotentials,
norm-conserving pseudopotentials, etc. 237

The PAW method, as mentioned above, can be formed by finding an operator
that pseudizes the all-electron (AE) wavefunction into core and valence moments or

channels such that,

) = T[T, 1 (2.54)

We employ a general composite indice m = (n',l,m;,k,n,0), which are defined
throughout this chapter, |¥,) is a pseudowavefunction for valence states, and ¥ is
an unknown operator that connects the all-electron wavefunction to the pseudized
wavefunction. 23713 It is important to note that the operation of Equation 2.54 is
tantamount to transforming between all-electron and pseudized spaces similar to

transforming from Heizenberg and Schrodinger pictures in quantum mechanics. '3
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Figure 2.8. Cartoon of the periodic potential resulting from the crystal translational
symmetry of silicon atoms. The arrangement of nuclei into a repeating pattern results
in the formation of core, semicore, and valence states. The extent of localization of
core and semicore states ensures that their interaction is weak, and the importance
of their inclusion into the pseudopotential is less relevant. The envelope (valence)
states can couple across many atoms leading to the formation of bands as a function
of crystallographic translational symmetry. Plane wave basis set is an appropriate
basis to expand wavefunctions within crystals.

The transformation can be constructed by setting a cutoft radius for an atom, r?,
for those Bohr orbits or atomic quantum states that fall within this distance, Figure
2.8 and Figure 2.9. However, it is critical that the functions within the augmen-
tation spheres, pseudo-onsite (auxiliary) partial waves, \Qg;’n), and all-electron onsite
partial-waves, |¢% ), be smoothly mapped onto the all-electron wavefunctions to ensure
accurate characterization of the envelope states, which are relevant to chemical bond-
ing and material properties.3” The onsite wavefunctions and ¥ are objects within
the augmentation spheres of the atoms, and contain the more rapid terms in the
all-electron wavefunctions.?3%!3 The T is an atom-centered transformation which is

written in the form,

T=1+) T (2.55)
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which transforms the all-electron wavefunction within r¢ such that the augmentation
spheres among elements do not overlap.!'® The augmentation spheres are expanded
in terms of the auxiliary partial waves and onsite partial waves, |¢%) = (14 T%)|¢% ),
such that, T2 ) = |¢% ) —|¢% ) for all m and a. Since T¢ does not operate outside the
cutoff radius, then for r > r% [¢ ) = |¢% ), which will insure that pseudo onsite partial
waves smoothly map onto the all-electron partial waves. ' The smooth pseudo-onsite
partial waves form a complete set within the augmentation spheres, hence the pseudo

wavefunctions can be expanded with them as a basis,

Z 105, (2.56)

where the P, are undetermined functions to be defined below, and the expansion
is within the cutoff radius. Because |¢%) = T%|¢% ), then within the augmentation

spheres,

“Ijm> = S|\Ilm>

= S Phden) (257)

Since ¥ is a linear operator, then P?. is a linear function of |¥,,), hence

P;;”- = <ﬁ?’\pm>

= /d3rpg(r — RV, (r), (2.58)

which are fixed functions within the augmentation spheres commonly referred to as
projector functions.!'® The projector functions form a complete set within the aug-
mentation spheres, hence 3, [¢%)(5?| = 1. Furthermore, the projector functions must
be orthogonal within each augmentation sphere, (5¢|¢%) = §;;.1** Using the results

thus far the onsite transformation operator can be written, T° = > |68 (P} =
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S (108) — [69))(p2]. Therefore, the transformation operator has the complete form,
T=1+3,3.(16%) — |92))(p]. "' Introducing the transformation operator to Equa-
tion 2.54 yields the needed transformation between the all-electron wavefunction to

a pseudized wavefunction for the valence electrons,

V) = [Ton) +ZZ(!¢?> — 1655 [ W) (2.59)

This expression rewrites the all-electron wavefunction into a form that separates the
core electron wavefunctions and highly oscillatory terms within the augmentation
spheres from the smooth portions of valence electrons that are typically many Bohr
radii away from the nucleus of an element. Thus, to carryout the transformation
we need three terms: the onsite partial waves, the smooth pseudo partial waves,
and the smooth projector functions. Furthermore, it is important to note that the
pseudo-wavefunctions are expanded in a plane wave basis which use a plane wave grid
(Equation 2.48), whereas the onsite terms or quantities defined within the augmen-
tation spheres are determined on radial grids. Because of this algorithmic separation
between these quantities the pair-wise interactions will have to be compensated to
enable a separation of each quantity in the final expressions, for instance the Hartree
energy. ' This transformation of the all-electron wavefunctions into pseudized wave-
functions must be applied to all subsequent operators to generate pseudo-operators
within in PAW.

The linear Hermitian operators or observables computed within the PAW
method must be pseudized applying Equation 2.59 to the general expectation op-

erator of local operators which yield (after manipulations),

val core
(0) = 3 Ful Tl OB )+ 37 3~ (10167 (BH10165) )+ - D (05| Ol™).
m a i a «
(2.60)

43



Atom- P Atom- Bi
[——_Augmentation Spheres

5-electron atoms

Figure 2.9. Pseudized atoms of (a) phosphorus and (b) bismuth. The lighter blues
highlights the augmentation regions of each element to be frozen and subsequently
subtracted from the all-electron wavefunction. Both elements account for five elec-
trons to be computed in the Kohn-Sham equations.

where the pf; = > fm<\ifm\ﬁf)<ﬁ?\\ifm) is a one-center density matrix, and we have
added the frozen core electrons that are always present. Such general operators can be
applied to reveal the PAW or simply pseudo operators that are solved self-consistently

within DFT. For instance, the pseudo-density becomes,

val core

() = D10 + 303 (6005 ) = G5 oty + 30D fore

(2.61)

=i(r) + Y _(n(r) — a"(r)), (2.62)

which shows that three terms contribute to the PAW-electron density: the pseudo-
density, the onsite all-electron partial density, and the onsite pseudo-partial density.
In fact, as we shall see, all operators reduce to this pattern shown for the pseudized

electron density, Equation 2.61. Therefore, the noninteracting Kohn-Sham kinetic
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energy has the following form, using Equation 2.60,

val
me ’ - _VQ‘\IJ >

core

+ZZ<¢G __v2|¢a>_< |__v2‘¢ > ”_{_ZZ a,core __2v2’¢

6

(2.63)

= Ts[fb] + Ts[na] — Tg[ﬁa], (264)

which is expected. 314 Furthermore, the exchange-correlation energy per particle

bears a similar resemblance,

Exc[n] = Exc[n] + Exc[n®] — Exc[n?, (2.65)

where the pseudized exchange-correlation energy obeys Equation 2.60, and varies de-
pending on the level of approximation, i.e., LDA, GGA, etc. In the case of the Hartree
energy care must be taken in pseudizing this term in the electronic Hamiltonian. In
the case of the Hartree energy, this term is nonlocal and introducing Equation 2.61

into Equation 2.16 (Ug[n]),

Unln] = 5(n)(n) (2.66)

= —(n)(n) + (n* —n*)(n) + =(n* —n*)(n" — %), (2.67)

where the first and third terms are expanded on a plane wave grid and radial grid, re-
spectively. Here the shorthand (a)(b) = [ d*rd®r’ a?%br(,r'/) is used. However, the second
term contains mixed terms that are expanded on two distinctly different numerical
grids. This circumstance is assumed to be avoided by replacing n with n®, where
the pseudo charge density is approximated with its onsite pseudo-charge density. !

From this assumption, which relies on the projector functions to form a complete

45

a,core
«

)



basis within the augmentation spheres, the Hartree energy decomposes into,

Unln] = %(ﬁ)(ﬁ) +5(n*)(n?) — 5 (a*)(n), (2.68)
which is the needed decomposition obeying Equation 2.60.'4 This form of Ug[n] is
referred to as the Kresse-Joubert approximation to the Hartree energy, however it is
the same as that used by Blochl. '3 In order to derive the pseudized Hamiltonian,
H, it is necessary to include the more baroque expressions that have been obscured
until now, for simplicity.

The pseudized Hamiltonian can be determined by variation over the pseudized

density matrices, p = > |0, (T, |,

g—? = H. (2.69)
The density matrix enters into the above expressions for the one-center density ma-
trices, py;, all-electron onsite charge density, pseudo-onsite charge density, and the
compensation charge. The compensation charge, n, is included into each term to
ensure that n®+n has the same multipole moments as the all-electron charge density,
n® inside the augmentation region.'** The compensation charge is defined to be a sum
of one center terms, 1 = 37,37, pf; L(r), where QL(r) = ¢kgi(lr — R|)Y.(r — R).
Here L = (I,m) is the angular momentum indices and g;(|r — R|) are site-dependent
compensation functions expanded in spherical Bessel functions that ensure agree-
ment within the augmentation spheres between the all-electron and pseudo-charge
densities. ' In this form, Kresse et al., gaurantees smooth mapping between the aug-
mentation spheres and the (pseudized) valence wavefunctions. ! It is now possible to
determine the pseudo-Kohn-Sham ground state energy, pseudized Hamiltonian, and

eigenvalue equation beginning with Equation 2.69.
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The total energy is split into three terms, as expected, E = E + E* — E°,

where the first is the pseudo-energy,

E= me

|W,,,) + B[ 47 + / d*rog[ize[n(r) +a(r)] + UR, Zio),

(2.70)
which contains the frozen core all-electron charge density and point charge density
of the nuclei, nz. = n. + nz, respectively.''* Here U(R, Z;,,) is the nuclear-nuclear
energy, or Vi for a given atomic number Z;,,. The second term is the onsite all

electron energy,
h
= ri{ei] = 5 —V°165) + Enln] + / d*rop[nzdn (v) + Excln® +n], (2.71)
ij €
and the final term is the pseudo-onsite energy,

B* = 37 04381 5 V15 + Enlit i)+ / d*rup iz [ (x) +A(0)] + Bxcli*+7),
ij

(2.72)

which completes the total pseudized energy.''* In order to determine the pseudized

Hamiltonian we employ Equation 2.69 and treat each Equation (2.70)-(2.72) sepa-

rately which has the formal general expression,

dE  OF 5E an OF p;
o d3 'LJ 114 2.
i o / '+ Z Opy O (273)

The total derivative of the ground state energy must be applied to all contributions
to the total energy above, which yields the pseudo-Hamiltonian that is solved in

subsequent chapters. Applying Equation 2.73 to Equation 2.70 yields,

OF hi '
8_ﬁ 2m — V2 +Ueff —I-Z/ I‘Ueff ( ) (2.74)
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Continuing to the subsequent contributions only the one-center density matrices have

a dependence on the pseudo-density matrices and the compensation charges, thus,

oL
D& = 2= — (9] —
1] 3/3 <¢Z ’

h a a
2meV2 + vl (r)|0%), (2.75)

and the pseudo-onsite energy takes the form,

a aEa Ta h Ta ~a e
DYy = G = @]~ V4 gy (018) + Z/d?’meff(r) L)1 (2.76)
¢ L

Combining Equations (2.74)-(2.76) results in the pseudized Hamiltonian,

2
H=— h
2me

V2 4 G (x) + 8Dy + DY — D)4, (2.77)
ij

which has an elegant form.'"* The D;; term is an interaction between the compen-
sation charge accompanied with an electron with the effective one-electron potential
energy, while the last two terms Df; and f);‘] are onsite terms that contain rapid varia-
tions not present in the pseudo-effective potential, T.f¢(r), and pseudo-wavefunction,

|¥,,). 1" This Hamiltonian is solved within the eigenvalue expression,
TTHI|,,) = e,TF(|0,,), (2.78)

which is the well-known eigen-equation for electronic structure theory.!'® The left
side contains the pseudized Hamiltonian which is a similarity transform from all-
electron space to pseudo-space for a given element, and the term, TT, is the overlap
operator, S = TIT = 14+ 3 [p%) ((¢¢]¢2) — (¢¢]62))(p3].1>114 Hence, the general
pseudo-eigenvalue equation takes the form, H|¥,,) = €,S|¥,,). This form of the
pseudo-eigenvalue effective Schrodinger equation resembles the original form of the

expression, Equation 2.34. The final form of the PAW eigen-equation is the basis
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of predictions made herein; furthermore, this formulation is computationally fast
and remedies the shortcomings of employing a plane-wave basis that is needed for
crystalline structures, such as ultrathin films, by reducing the explicit inclusion of
all Bohr orbits (lower core-electrons) to just the valence states involved in chemical

activity, Figure 2.8 and Figure 2.9.

2.3 Excited-State Density Functional Theory

Density functional theory can be extended to include temporal phenomena
such as Born-Oppenheimer dynamics, or excited state transitions within the PAW
framework. Excited state phenomena provide salient spectroscopic signatures of a
given material, or fingerprint for characterizing the optical response of a crystalline
material. In the study of ultrathin films an interesting physical scenario arises, where
one crystallographic direction is significantly smaller, which is the thickness of an
atom in the most extreme, i.e., graphene. The optical response of a material when
exposed to light is shown in Figure 2.10. In the first panel, an insulator with band
gap energy separates occupied and unoccupied states within the crystal. Typically,
in this work especially, the Fermi energy, e, is taken to be zero (dotted green line
Figure 2.10). In order to induce a transition across the energy gap it is necessary
to provide a photon equivalent or greater than the bandgap. The second panel dis-
plays the photoexcitation event leading to the excitation of a single electron into the
conduction states (unoccupied), or absorption. The third panel displays what can
commonly occur in crystalline systems, which is the formation of a bound electron-
hole pair or exciton. Depending on the chemical bonding of the crystal, the type of
exciton can be localized (Frenkel) or delocalized (Wannier-Mott). %! Moreover, the
final panel shows the relaxation back to the valence states recombining radiatively (or
nonradiatively) with the hole which forms after photoabsorption, Figure 2.10. There-
fore, the type of excitations we will capture, see Chapter 6, are neutral excitations

involving exciton generation. This type of optical response of a crystalline system
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can be described within linear response theory, which is elaborated below within
time-dependent density functional theory (TDDFT). In this section we develop some
critical components to the understanding of the optical response of crystalline sys-
tems such as ultrathin films. And we extend notions of TDDFT to the computing of
the intrinsic optical response of ultrathin films such as the dielectric response. As we

shall see, the dielectric response characterizes the interaction of electric fields within

matter.
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Figure 2.10. Excitation within a crystalline system (insulating), such as a semicon-
ducting ultrathin film. (left-to-right) The excitation process occurs via photon source
and absorption from valence band electrons, where if the photon energy is in excess
of the bandgap, the formation of conduction band electrons and a hole (single excita-
tion) can occur (exciton = eh-pair), and finally radiative (or nonradiative) relaxation
back to the valence band annihilating the electron-hole pair. Note that the eh-pair
within TDDFT is implicitly constructed, where only excited state and ground state
wavefunctions are mixed within the formalism.
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2.3.1 Time-dependent DF'T
In TDDEFT, just as in DF'T, we map the temporal wavefunction onto an effec-

tive potential with,
ik (‘3\11( t)
ot

= HU(r, 1), (2.79)
which is the time-dependent Schrodinger equation.? The TDDFT formulation was
highlighted by the Runge-Gross theorems (1984), which, like in static DE'T, a bijective
mapping exists between the time-dependent density n(r,t) and the time-dependent

external potential v, (r,t)."1® The time-dependent Kohn-Sham expression of Equa-

tion 2.79 has the following form,

U, (r,t h?
lha (r7 ) _ _

ot 2m

[](x, 1) | Wi (1, 1), (2.80)

where the effective Kohn-Sham potential energy is the well-known v.rs[n|(r,t) =
Vert (T, 1) + vy [n](r,t) + vxc[n](r,t). The first term is the external potential energy
between electrons and nuclei, the second term is the time-dependent Hartree potential,
vg[nl(r,t) = 47r60 [ &y Trrrf| and the exchange-correlation energy discussed above.
With this expression we can formulate the linear response of a system to an external
perturbation.

Linear response is appropriate for external fields whose field strength does
not exceed the internal electric field of the nuclei, common in spectroscopy, which
permits a perturbative treatment of the induced density. In linear response theory,

the optical susceptibility, x(r,r’,t — '), is critical in the description of the induced

density, dn(r,t), if the external potential changes at dve.(r',t'),

_ / " / By (e,1,t — )50, ), (2.81)
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where the optical susceptibility is x(r, 1/, t—t") = dn(r,t) /dvey (v, /). 211718 However,
we will establish a link between the exact case (Equation 2.81) with the Kohn-Sham
formalism. In this case, we expect the Kohn-Sham response function, ygg(r,r’,t —t),

to have the same formulation,

on(r,t) = /dt’/d3r’XK5(r,r’,t—t’)éveff(r’,t’), (2.82)

where, in a similar fashion, the Kohn-Sham optical susceptibility xgxs(r,r’,t —t') =
dn(r,t)/dvesp(r’,t'). In the case of the exchange-correlation energy per particle within

linear response,
uxcln + n)(r, £) = venl(r, £) + / Frfeelnl(n vt — o, ), (2.83)

where the exchange-correlation kernel is defined as fyc(r, v/, t—t") = dvxc(r, t)/on(r', t'),
which is evaluated for the ground-state density, n(r). In order to link Equation 2.81
and Equation 2.82, we recognize that the density response is the same in both ex-

pressions, hence,

/dt’/d3r’x(r,r’,t—t’)évm(r’,t’)

= /dt’/d3r’XKS(r,r’,t — )00t (', 1) + dvg[n]r ¢ + dvxc[n](x',t), (2.84)
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where this expression can be expanded for each potential energy using the functional

derivatives of the optical susceptibilities mentioned above,

(S’UH I’ t //dtldtQ//dS d3 5U5H ](r t) 5n(r17t1) (5Uem(r2,t2)

n(ri,t1)  0Vest(Ta,t2)

2
e
://dtldtg//d3r1d3r24ﬂeomx(r1,r2,t1 —tg)éveu(rg,tg), (285)
/
Suxeln](t, 1) / / dtydt / / dridrs &’XC[ 0,8 onlrity) 5 t)

(rla tl) 5Uext <r27 t2)

= //dtldtg//d3r1d3r2fxc(r,r,,t,—t)X(I‘l,rg,tl —tg)éth(rg,tg), (286)

and rewriting these expressions into frequency space yields the optical susceptibility,

X(I‘, rla w) = XKS(L rlv w)

e? 1
+//d?’rld‘grngS(r,rl,w)(mm+fXC[n](rl,rz,w))x(rg,r’,w). (2.87)

This expression for the optical susceptibility is a Dyson equation. In this expres-
sion, the optical susceptibility is evaluated by determining the Kohn-Sham optical
susceptibility with some approximated exchange-correlation functional. It is common
to write Equation 2.88 in a more compact form, x = xxs + xxsK(r1,r2)y, where
K(ry,1s) = %Fll‘ﬂ + fxc[n](ri,re,w). For the case of fxc = 0, we have the
well known random-phase approximation (RPA) or Hartree approximation since no
effects of exchange and correlation enter into the Dyson equation (Equation 2.88).
However, we must show what the Kohn-Sham optical response function is based on
time-dependent perturbation theory.

In order to determine the Kohn-Sham response function we can introduce a
time-dependent perturbation , d H(t), into the time-dependent Kohn-Sham equation,

Equation 2.80,
ov,,(r,t
ipdYm(T D)

= [Ho + 6H ()] U (x, 1), (2.88)
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The time-dependent perturbation can be written dH (t) = e™ Zi\il dv(ri, t), where the
exponential ensures an adiabatic switching on of the external perturbation, and 0 <
n << 1118119 The frequency space formulation of the time-dependent perturbation

can be written in the form,

SH(t) = / &y / g—:e—iwtav(r,w)ﬁ(r), (2.89)

where @ = hw + in, and n(r) = Zfil §(r — ;) is the density operator. 119 Within
first-order time-dependent perturbation theory the wavefunction can be written in

the form,
[T (t)) = e To) + > a;(t)e 5 WY). (2.90)
J7#0
The first term is the principle solution to the unperturbed case, while the second term
contains the perturbation on the ground-state wavefunction. The time-dependent

coeflicients admix excited state contributions to the unperturbed wavefunction and

have the following form,

t
a;(t) = —i / dt' ™ot (WO\GH (') Tg)
; 3./ dw [ 1 —i(wo; —O)t / O
=—i | d°r 5 dt' e 0" du(r', w) (V5|0 (r)| W)
™ —00

dw eilwo; —@)t
_ 3 0
_ /d r// 2ﬂ_5v(r',w)<\1}j|mwo>—% — (2.91)

where wy; = E; — Ep is the energy difference from the excited state-j and ground
state. The induced density is given by the change in the perturbed expectation of

the density operator and the ground-state expectation density operator,

on(r,t) = nina(r,t) = (U(0)[2[U (1)) — (Lo(t)|2|Wo (1)), (2.92)
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which when expanded,

Nina(r, 1) = Y _[a;(£) (Wo| A UF)e ™0 + a3 (£)(W)|A|To)e' "]

J#0
" WO A (r") | W) (U] 7 po
o [ [ e s [ B )
2 - Wo; — W
J#0
SR N
Woj + W

In frequency space Equation 2.93 becomes,

ina(r,w) = — / Pre Y [<‘I’jlﬁ<r >|joj> E\Ifgmuw

J#0

N (WOl (x) W) (W] (r) | Wo)

w0j+d)

dv(r,w). (2.94)

From Equation 2.94, the frequency space induced density can be related to the optical
susceptibility by using the the functional derivative of the induced density relative to

the change in the potential,

(W31n(x")[Wo) (Yo fa(r) | WF)
(L2 ()9 (W31 (r)[Yo) 1.

woj+d}

(2.95)

With this general expression we can determine the Kohn-Sham optical susceptibility,
but we define the ground (|¥p)) and excited state (J¥9)) wavefunctions to rewrite
the numerators of Equation 2.95. The ground state fermion wavefunction must be
a product of antisymmetric spin-orbitals or a Slater determinant. If we write the

ground state wavefunction in this form, then,

\Ilg(rl, ...,TN/Q) = ’gZ)l(1‘1)’@/12(1'2)...’(/Jn(ri)...@DN/Q(I'N/Q), (296)
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where the wavefunctions 1 (r1), ..., ¥)n/2(rn/2) are the lowest filled states forming the
ground-state solution to the static Kohn-Sham equations. For single excitations, the
excited state wavefunction can be formed creating an electron in a higher energy state

and destroying an electron in the ground state,

\Il?(rl, o TNy2) = V1(r1)Va(T2). W (1) .. N 2 (TN 2), (2.97)

where the m*-electron is greater than the highest ground state wavefunction. The
matrix elements of the numerator can be understood by expanding the electron
particle number, n, and using the shifting property of Dirac delta functions, i.e.,
(P1(r1)th2(r2).. n(r:) .. VN2 (T Ny2) |6 (T =15 ) [01 (T1)Y2(T2). 00 (13) .. YN 2(rNy2)), and sum-
ming over k, reduces to ¥*(r)v,,(r), which is just a product of the one-particle ground
state wavefunction and one-particle excited state wavefunction. This allows for the

independent density-density response function to be written in the form,

xks(r,r’,w) ZZQJL’” 1— f) (¢ (T Wn( W:(I‘v)@bm(r)

+ ¢;(r/)¢m<rl>¢;z({')¢n(r)) (2.98)
€m — €n + W

The summation over occupied and unoccupied states is accompanied with the occu-
pancies f, and 1 — f,,, respectively. For fermion states the occupation, f,, can be 0
and 1. In order to rewrite Equation 2.98 into form the reflects the periodicity of the
crystal lattice we must Fourier transform the Kohn-Sham optical response function,
Xks(q,q,w). By Bloch’s theorem xxs(q,q’,w) is nonzero if q and q’ differ by a
reciprocal lattice vector G such that q (propagation direction of light) is in the first
Brillouin zone. Hence, q —+ q + G and ¢’ — ¢’ + G; furthermore, sum over states
includes the allowed crystal momentum, k, such that n — nk and m — mk for all

k within the first Brillouin zone. Finally, the Kohn-Sham optical susceptibility with
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the Fourier representation is given by,

XGG’ (q7 - Z ank fmk’)
nk mk’
<< ke | €T |90 (| e HAHEIT ) ) " (Vi | € GFCT |9h1 ) (1| e 7HAFEIT |wmk’>>
Emk/ — €nk — dj €mk!’ — €nk + (:J
_ 1 poa(d+ G)pha(d+ G) | puald + G)piala + G
= __Zvak — fara) v + v :
o €Eckt+G — Eyk — W €Eck+G’ — €k T W

(2.99)

Note we have made the notational change from n — v and m — ¢ for momentum
transfer q — k + G € BZ on the last line. And the p,x(q+ G) = [ d*r

Vi (r)el 9ty o (r). 120121 This expression contains the momentum space repre-
sentation of the independent particle optical susceptibility within the Kohn-Sham
formalism. 118122123 Introducing Equation 2.99 into the Dyson expansion of the opti-
cal susceptibility yields the full optical susceptibility of the density response (Equation
2.87). The optical susceptibility will play a critical role in computing the dielectric

response of an ultrathin film, see Chapter 6.

2.3.2 Dielectric Response

Optical properties of solids provide needed spectroscopic signatures of the
band structure of the material. But optical properties can provide additional in-
sight into impurity levels, lattice vibrations, localized defects, excitons, and magnon
excitations.'?* Typically, the dielectric response can be determined from ellipsomet-
ric spectroscopy, and can be separated into two contributions: real and imaginary
frequency-dependent dielectric functions.?> The imaginary dielectric response is the
key physical observable that is often used to characterize the band structure. More-
over, the frequency-dependent complex dielectric function can be used to relate to
other observables, such as the absorption coefficient, enabling their computation, see

Chapter 6.
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The propagation of electromagnetic waves has long since been characterized
by Maxwell’s equations.?¢ In the following, we will work in Fourier space unless
otherwise stated. And we assume that the electric field is irrotational, i.e.,rotE =
0, such that the electric field depends on the gradient of a scalar potential, E =
V. 126127 In the electronic response of a material to an external perturbation the
density can be rewritten to include external and internal contributions, 1, = Nezr +
nint- 2 Consequently, all of the electrodynamic equations can be partitioned this way,
where the external contributions vanish within the material.? The displacement field is
related to the dielectric response of a material (Fourier representation), via, D(q,w) =
> 5 €ap(q,w)Ep(q, w)."*" Here the 3x3 tensor e is the frequency dependent dielectric
function. Employing the Maxwell relations V - D = 4men,,;(r,t), and for the electric
field V-E = 4men,(r, t), where the real-space representation is used we can formulate
the frequency-dependent dielectric function.?!?"” Fourier transforming the real-space
representations of the displacement field and electric field and solving for the dielectric
function yields, eqa/ (Q, w) = Newt(q, W) /Mot (4, w). 127 This expression for the dielectric

function can be rewritten with the aid of Poisson’s equation, we find,

5‘/;:@5(% W)

- , 2.100
(ﬂéot(qa w) ( )

EGG'(% W)

where a variation is applied to the numerator and denominator for the Poisson equa-
tion (¢*6V = 4medn). With Equation 2.100, we can expand the external potential

(Vewt = Viet— Vi) and use the chain-rule for the Fourier Hartree potential with respect

Vg dn

S5, which reduces to the following expression

to the total, i.e., eqa/(q,w) =1 —

for the macroscopic frequency dependent dielectric function,

caa(q,w) = daa — voPaa (q,w), (2.101)

o8



where vo = is the Fourier Coulomb kernel and Pgg/(q, w) = dn/dV,y is the

4me?
la+Glla+G|
polarization response or irreducible polarizability of the electrons.?1!® Here we applied
q — q+ G as above for the independent Kohn-Sham susceptibility. Moreover, it
can be shown that the irreducible polarizability is related to the Kohn-Sham optical

susceptibility with the following Dyson like equation,

Paar(q,w) = xGe(q,w) + Z XGG: (4, W) fxe,6i6, (a4 w) Pa,ar(q, w). 18

G1G2
(2.102)
This form of the irreducible polarizability contains additional contributions from the

exchange-correlation kernel, fxc. The inclusion of the last term goes beyond RPA;

however, the exchange-correlation kernel is zero, hence,

cGar (a,w) = daar — vexae (a,w), (2.103)
where it is clear that the irreducible polarizability is equivalent to the Kohn-Sham
optical susceptibility of Equation 2.99.1%12! From Equation 2.103 the dielectric re-
sponse can be determined in terms of interband transitions within crystalline systems,
which permits the computation of absorption spectra, Chapter 6. The macroscopic
dielectric function (Equation 2.103) can be approximated from the head of the mi-
croscopic dielectric function in the optical limit or long wavelength limit (q — 0),
€(q,w) ~ limg_,0 €0o(q, w) = 1 —limq_o 4’;—52)(535(% w). 118121 With this approximation
and using the complex dielectric function (e = ) 4 ¢?)), where the imaginary term
characterizes the absorption or attenuation of light, ¢ (w), can be determined for a
given material. 18121 With the independent Kohn-Sham response function of Equa-
tion 2.99 and the various approximations made to the macroscopic dielectric function,
the frequency dependent complex dielectric function can be written in the follow-

@) _

ing form with the aid of the Sokchatsky-Weierstrass theorem (lim.,_,o+ ffooo dx =
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P(L) £ im6(2) keeping the Dirac term for the complex dielectric function),

4rre?
e (q,w)

.1
= g (%112% e wzk 2Wi (Uek +enq | Uvk) (Uck +esq | Uvk)

[(S(ECk — €k — ﬁw) — 5(601{ — €yk T hW)], (2104)

where we have included the tensor dependence, e.g., efb),(q,w) = §o - €P(q,w) - 4z,

of the complex dielectric function because of spatial correlations associated with the
direction of propagation of light, q = q/|q|, and the weight of each symmetrized
crystal wavevector, wy. 18121 The two §(z) functions in Equation 2.104 represent
the absorption (—hw) and emission (Aw) of light. The complex dielectric function
of Equation 2.104 has some interesting properties. First, the inclusion of the Dirac
delta function enforces a selection rule for translationally invariant systems where-
fore the crystal momentum, k, must be equivalent between conduction (¢ index) and
valence (v index) band transitions, hence, k., ~ k, for allowed vertical interband
transitions. Second, the transition probability is given by the cell-periodic functions,
|unk), originally shown in Equation 2.50, and contribute nonzero values for a given
photon frequency, where wavevector conservation is obeyed. Finally, since no explicit
dependence on reciprocal lattice vectors is present, the complex dielectric function
(Equation 2.104) does not include local field effects provided by the underlying crys-
tal structure. 21121 Nevertheless, Equation 2.104 is valid within the linear response
regime for weak electric fields that do not vary on the order of a lattice constant.
This form of the dielectric function can be improved with higher level inputs such as
electron-hole wavefunction expansions for the case of neutral excitons, or many-body

perturbation expansion of the exchange-correlation functional.!?®
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CHAPTER THREE

Periodic Trends of Pnictogen Substitution into a Graphene Monovacancy: A
First-Principles Investigation

This chapter published as: Paul A. Brown; Chengyong Xu; and Kevin L. Shuford
Chem. Mater. 2014 26, 19, 5735-5744

3.1 Abstract

We present a theoretical investigation on the electronic properties and for-
mation energetics of pnictogen substitution into a graphene monovacancy. Our work
elucidates the fundamental interactions that occur between the dopant and graphene,
which ultimately dictate the observed behavior of the material. We find a linear
trend for the energy of formation proceeding down group 15 of the periodic table.
Further, we observe the formation of a protrusion at the monovacancy site, which is
particularly conspicuous for larger pnictogens. This blistering can be attributed to
charge transfer between the substituted heteroatom and the bordering carbon atoms
of the monovacancy. Reorganization of the defect site of graphene becomes more
pronounced for the latter pnictogens antimony and bismuth. An interaction regime
emerges among this group, whereby nitrogen and phosphorus chemisorb strongly to
the vacancy site, arsenic weakly chemisorbs, while antimony and bismuth physisorb
to the surface. These interactions introduce moderate band gaps and yield impurity
states near the Fermi energy, similar to a doped semiconductor material. Moreover,
the extent of chemical bonding and planarity notably alters the band structure and
the accessibility of low lying energy states, which are important for charge transport
and reactivity. This work suggests the possibility of tailoring graphene surfaces for
electronic devices or chemical transformations of interest via the appropriate choice

of pnictogen dopant.
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3.2 Introduction

Graphene has emerged as one of the most promising materials of the 21st cen-
tury. 5712 The two dimensional bipartite lattice of graphene exhibits unique electronic
properties, which makes graphene an interesting material to study.!?® Graphene’s
properties like superlative structural rigidity, high surface area, high extrinsic mo-
bility, long mean free path, high thermal and electrical conductivity,’®® etc. make
it an excellent material for new age electronic devices and as a scaffold for novel
nanoassemblies, 130131

Current research on graphene has focused on tailoring its electronic properties
by doping heteroatoms or forming vacancies directly into the lattice structure. 327138
Heteroatoms may be deposited via chemical vapor deposition onto graphene sheets
at various concentrations.!3%140 Vacancies can be formed during fabrication or by
ion irradiation of mechanically exfoliated graphene sheets. 1143 Clever methods for
structurally manipulating graphene’s charge carriers by introducing (n-type) or ab-
stracting (p-type) electrons from graphene could permit graphene based electronic
devices with various modalities.'* In particular, atomic nitrogen and gold have been
suggested as excellent candidates in achieving this for future graphitic devices, since

molecular absorbates may be too entropically unstable or reactive for such appli-

cations. '*> With the improvement of microscopic technologies, such as transmission

146-148 132,149,150

electron microscopy, scanning tunneling microscopy, and aberration-
corrected transmission electron microscopy, '*! atomic resolution of such defects can
be observed at the atomistic scale.

Prior studies of graphene have examined nitrogen and phosphorus lattice sub-
stitutions; 216! however, research concerning latter pnictogens is rather sparse. 1627164
These carbon alloys might have potentially prominent chemical and electronic utility
in many diverse areas. The rich electronic properties of these elements could vary

wildly proceeding down the group as metallic character increases. Thus, it may be
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possible to influence the concentration of charge carriers by simply controlling the
composition or type of substituent within the graphene defect site.
In this research, we systematically focus on the the entire pnictogen series with

54,61 We focus on the simplest (lex

first principles density functional theory (DFT).
parsimoniae) interaction between heteroatoms and a single graphene monovacancy.
In particular, we substitute all pnictogens into a monovacancy to delineate funda-
mental trends associated with atomic doping of free standing graphene. We find that
stability decreases down the group as formation energies rise. Moreover, the sorption
characteristics and electronic properties of the system change as the pnictogen size
increases. In particular, impurity states form near the Fermi energy generating mag-
netic ground states and local charging, which subsequently diminishes going down
the series. The local magnetic order will be presented in a separate account.

The remainder of this article is outlined as follows. The equations applied to
determine the energy of formation and charge density differences are discussed in the
computational methods section. In the results and discussion section, we present the
stability associated with each pnictogen within the monovacancy and charge density
difference maps highlighting primary interactions between the graphene sheet and
pnictogen. We include the atomic projected density of states of each pnictogen atom
to illustrate the strength of interaction with the graphene monovacancy. We also
present the electronic band structures with selected bands decomposed to show the

perturbing effects of each pnictogen on the graphene monovacancy. We conclude by

summarizing the emergent trends upon substitution into a graphene monovacancy.

3.3 Computational Methods
DFT calculations were conducted with the software package VASP, where the
core-valence interaction was treated within projector augmented wave method. 113165
The exchange-correlation was treated at the generalize gradient approximation (GGA)

level of theory; the Perdew-Burke-Ernzerhof (PBE) functional was utilized.®® Spin
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polarization was accounted for in all cases where the pnictogen substituent was posi-
tioned out of the plane of graphene. A 5 x 5 supercell was constructed with 12 A of
vacuum space to minimize interactions between images. Note, the supercell approxi-
mation is chosen for computational ease for delinating relative trends associated with
pnictogen substitution, though larger supercells will converge to smaller differences
in computed values due to lesser image interaction and lower dopant concentrations.
The lattice constant was set to 2.46 A to match the experimentally determined value.
The kinetic energy cutoff was set to 520 eV for all cases studied herein. All structures
were relaxed on a 12 x 12 x 1 gamma point grid, followed by linear combination of
charge density on 20 x 20 x 1 gamma point grid to optimize bonding interactions.
All energies of formation were determined from the tetrahedron method plus Bléchl
corrections.'% The projected density of states each system was simulated on the
same dense k-point grid with smearing temperature set to o = 0.01 (N, P, As) and
o = 0.1 (Bi, Sb), respectively, where Gaussian smearing was applied to the former
and Methfessel-Paxton smearing!®” for the latter. Geometry optimization was per-
formed on all structures to minimize the Hellmann-Feynman forces with a tolerance
of 0.001 eV/ A. The final, relaxed heteroatom-graphene structures were permitted to
explore all three degrees of freedom, with the pnictogens initially placed above the
graphene sheet monovacancy.

In order to compute the energy of formation Ey of substituted graphene, we
first determined the chemical potentials of carbon, pc, and pnictogens, upy. We

define the energy of formation to be

E; = E, — ncpuc —npyppn, (3.1)

where FEg is the total energy of the substituted graphene monovacancy, ne is the
number of carbon atoms, and npy is the number of pnictogens substituted, which

is unity in this study. Note, the chemical potentials of each pnictogen, pupy, were
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determined from their respective reference states from first principles calculation.
The reference states of each pnictogen are taken as follows: gaseous nitrogen, white
phosphorus, arsenic grey, orthorhombic antimony, and, finally, trigonal rhombohedral
bismuth. To explore the influence of the charge transferred between the defective

graphene sheet and heteroatoms, we determined the density difference as

Ap = psa — puv — Ps (3.2)

where pgq is the total charge density of the graphene-heteroatom system, p,; is the
total charge density of the defect monolayer graphene, and pg is the total charge
density of the substituent heteroatom. Note, the substituent atomic charge density is
placed within identical supercells at the optimized locations within the supercell. The
charge difference topologies presented display the absolute value of Ap, and therefore
highlight the strongest interactions between the heteroatom and graphene carbons,
after subtraction of the monovacancy total charge density and dopant total charge
density. These plots display the magnitude of charge density that has been shifted
between spatial locations. The numerical and topological data are presented in the

results and discussion below.

3.4 Results & Discussion

Pnictogen Configurations & Charge Transfer. The geometry optimized
structures were computed at the GGA level of theory treating the exchange-correlation
with the PBE functional. The original, pristine graphene C-C bond lengths resulting
from our approach were found to be 1.42 A. This is consistent with experimental
assessment of graphene carbon-carbon bond lengths.®"129 The lattice constant was
set to be 2.42 A to ensure accuracy of these calculations. In the case of the monova-
cancy defect, we observe an interesting reorganization of the vacancy, 3.1. The initial

structure, 3.1a, begins with D3, symmetry. Upon relaxation, Cy and C5 deform the
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Figure 3.1. Geometry optimized structures of the monovacancy. Panel (a) contains
the monovacancy with bordering carbon atoms highlighted in red. Panel (b) displays
the structure following relaxation. Note the symmetry has been reduced.

monovacancy by shortening the distance between each other from 2.46 A to 2.03 A.
This is the noticeable Yahn-Teller (YT) distortion of the monovacancy, where the
symmetry has been reduced to Cs. Moreover, the energy of formation computed from
3.1 is 7.66 eV, which is consistent with other studies. !

The results of the relaxed structures with pnictogens interacting with the
monovacancy are presented in 3.1. Each pnictogen was placed above the monovacancy
and fully relaxed to reach self-consistency. The optimized structures are shown in
3.2. Nitrogen substituted graphene prefers to sit in the plane of graphene. This
is because of its small atomic radius, smaller than carbon. The pnictogen-carbon
bond lengths were found to be 1.40 A, approximately 0.02 A smaller than carbon-
carbon bond lengths. Within the plane of graphene, nitrogen adopts full sp? character
having bond angles of approximately 120° making it configurationally trigonal planar.
The bond lengths of neighboring carbons were found to be shorten slightly to 1.41
A, suggesting charge transfer between the nitrogen and nearest neighbor carbons.
Analysis of the nitrogen substituted defect graphene via 3.2 shows 1.06 units of charge
is transferred to the graphene sheet (3.1). 3.3a clearly shows the local nature of the

charge distribution around nitrogen and the nearest neighbor carbons. However,
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Pnictogen d(PN-C), A d(C-C), A Bond Angle (°) OOP, A CT (e)

N 1.40 1.47-1.426 120 - 1.06
P 1.76 1.44-1.44 99.7 1.54 2.39
As 1.90 1.41-1.44 92.6 1.88 1.07
Sb 2.10 1.40-1.45 83.9 2.31 2.02
Bi 2.20 1.40-1.45 79.9 2.48 1.99

Table 3.1. Geometric parameters of substituted graphene structures. Distances
between the pnictogen and graphene are given as d(PN-C). The range of
carbon-carbon bonds within the entire supercell is d(C-C), followed by the angle
measured between the nearest neighbor atoms and heteroatom. The out-of-plane
(OOP) distance is measured vertically from the lowest in-plane carbon atoms in the
unit cell to the heteroatom. The magnitude of charge transferred between the
pnictogen and graphene is presented as CT.
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Figure 3.2. Top and side views of optimized pnictogen-graphene monovacancy sys-
tems: (a) nitrogen (blue), (b) phosphorus (green), (c) arsenic (violet), (d) antimony
(orange), (e) bismuth (purple).
beyond this structural detail, little reorganization is observed near the monovacancy.
The latter pnictogens adopt a different configuration due to steric frustration.
Phosphorus is larger in comparison to carbon and nitrogen, so it adopts a
quasi-trigonal pyramidal type configuration when interacting with the monovacancy
graphene. In-plane phosphorus is possible, but less stable than the out of plane phos-
phorus configuration. The difference in energy between in-plane and out-of-plane
phosphorus doped graphene is 2.1 eV. The equilibrium bond length was found to be

160,161 The monovacancy with phosphorus

1.76 A, in agreement with other reports.
juxtaposed above leads to the puckering of the defect site, where phosphorus sits 1.54

A out of the plane (3.2b and 3.1). This is primarily driven by the dangling states of
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C1, Cy, and C3. Because the monovacancy forms a protuberance around the vacancy,
the bond lengths vary dramatically within the entire graphene sheet, as shown in
3.1. Those carbon atoms within the monovacancy obtain the shortest bond lengths
of 1.404 A, which is counterposed by the longest bond lengths of 1.441 A. This ex-
treme reorganization is driven by the charge transferred between the phosphorus and
graphene sheet, in particular near the monovacancy. Analysis of the amount of charge
transferred was found to be 2.39 for phosphorus. The difference in charge transferred
between phosphorus and the graphene sheet can be attributed to differences in elec-
tron affinity. In the case of phosphorus, lots of charge is transferred to the nearest
neighbors (making these atoms partially negative overall) and additionally some to
the monovacancy site itself (see 3.3b). The addition of charge localized within the
monovacancy saturates the bordering carbon-carbon bonds forcing rehybridization.
Consequently, a protuberance forms around the phosphorus substituent breaking the
two dimensional symmetry of the graphene lattice.

Arsenic, similar to phosphorus, initiates structural reorganization of the mono-
vacancy. The arsenic-carbon equilibrium bond length was found to be 1.90 A, an
increase. Arsenic forms smaller bond angles, which is consistent with longer bonds
(3.1). However, the deformation of the monovacancy grows larger, leading to large
variations in bond lengths between carbon atoms within the graphene sheet. Never-
theless, the above-plane equilibrium position of arsenic drives reorganization of the
entire monovacancy, where the arsenic atom rests 1.88 A above the graphene. Similar
to the nitrogen case, little charge is transferred between arsenic and graphene; how-
ever, the charge is distributed in a manner similar to phosphorus (see 3.3). We find
that the d-manifold remains in its singlet state; most of the charge donated originates
from the 4s and 4p electrons, which contribute 1.07 electrons to the monovacancy.

Thus, the primary interaction between the arsenic and defect graphene is to weakly

68



0420 e/A*

0378

0336

0.294

0.252

0210

0.168

0126

0.084

1.66 e /A%
1.49
1.32

1.16

Figure 3.3. Absolute value of charge density differences for various atomic substituents
and a graphene monovacancy: (a) nitrogen (b) phosphorus (c¢) arsenic (d) antimony
(e) bismuth. Only nearest neighbors interact strongly with the nitrogen dopant, while
latter pnictogens show charge delocalization over the entire monovacancy. Contour
plots taken in the plane of graphene for nitrogen and ~0.8 A above the sheet for all
others, corresponding to the location of C, Cs, and Cj.
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chemisorb to the monovacancy, as some charge is transferred to nearest neighbor car-
bons 1, 5, and C3 and diffused over the entire monovacancy. Consequently, the
dangling states of these nearest neighbor carbons become partially coupled to arsenic
driving them out of the plane, leading to the puckering seen in 3.2.

For the remaining pnictogens, many of the trends described above continue.
The larger atomic radius of antimony leads to longer bonds and shorter bond angles,
3.1. The equilibrium distance of antimony and the graphene defect was found to
be 2.10 A, in good agreement with previous work.62 Moreover, the carbon-carbon
bonds fluctuate between 1.40 A at their shortest to 1.452 A at their longest within
the monovacancy. Bismuth has the longest pnictogen-carbon distance'®3 at 2.20 A
and the smallest angle, which deforms the carbon-carbon bond distances like the
antimony system. The OOP distance of bismuth is 0.17 A longer than antimony
(3.1). Similar amounts of charge are transferred to the carbon lattice in both cases,
and the diffuse nature of the charge redistribution mimics the phosphorus system
(3.3). Both antimony and bismuth form weak interactions in contrast with earlier
pnictogens like nitrogen and phosphorus. The energetics of all pnictogen substitutions
will be discussed in the next subsection.

In general, the underlying driving force for the formation of these protrusions
can be attributed to rehybridization of p, states of vacancy carbon atoms, which fur-
ther stabilizes the pnictogen-graphene system. This enables the formation of charge
localization around the monovacancy, where the addition of charge between the pnic-
togen and graphene further distorts the monovacancy. Moreover, because the atomic
radii increase going down the series, the charge is spread out over a larger region
above the vacancy with respect to the carbon atoms C}, Cs, and C3, which further
exacerbates the puckering of the monovacancy.

Energetics of Formation. The structural behavior discussed in the last

section is reflected in the energetics of each pnictogen system. In particular, we focus
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Table 3.2. Energies of formation, Ey, for each pnictogen-defect graphene system.
Notice the energy steadily rises yet even the least stable substituent lowers the
energy of the monovacancy (MV).

Pnictogen N P As Sb  Bi MV
Ey 0.86 2.94 4.05 538 6.14 7.65

on the energy of formation of each congener, as defined in 3.1 (see Methods). As shown
in 3.2, nitrogen forms the most stable configuration among all the pnictogens, with
the lowest formation energy of 0.863 eV. This is to be expected because nitrogen is
the smallest congener and can be substituted directly into the planar graphene lattice.
Thus, little reconstruction is necessary, permitting the surrounding carbon atoms to
retain their equilibrium distances. However, little resemblance can be drawn below
nitrogen in group 15. The formation energy of the phosphorus dopant was found to
be 2.946 eV. Beyond phosphorus, the formation energy steadily rises, almost linearly
(3.2). As surface reconstruction and the formation of protrusions driven by charge
localization rises, so too does the formation energy. Therefore, the stability of the
latter pnictogens lowers leading to more weakly bound system.

Within the series, nitrogen and phosphorus chemisorb to the graphene mono-
vacancy, while for the d-manifold pnictogens, arsenic tends to weakly chemisorb, and
antimony and bismuth physisorb to the monovacancy. This assertion is further sup-
ported by the projected density of states (PDOS) of the pnictogen, which shows
the nature and extent of interaction between the heteroatom and monovacancy, 3.4.
Nitrogen substituent interacts most strongly through sp? hybridization via in-plane
bonding with monolayer graphene. Thus, nitrogen’s p, and p, states are broadly
dispersed as shown in 3.4a. Such a broad distribution of states can be attributed
to strong interactions with the graphene sheet. Moreover, the p, electrons are also
widely dispersed and sufficiently incorporated into the network to contribute to im-
purity states residing near the Fermi energy, which are seen as sharp peaks (3.4a).

Hence, nitrogen strongly chemisorbs to the monovacancy defect site. Similar state
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dispersion can be observed with the phosphorus substituent (3.4b); however, the p-
electrons of phosphorus interact more strongly with the monovacancy leading to a
slightly broader distribution of electrons from phosphorus. Again, an impurity state
arising from the p, electrons of phosphorus forms at the Fermi energy (3.4b). Arsenic
displays many sharp bands indicating that this substituent interacts more weakly
with the monovacancy and mixes less. Note its contribution to impurity states at
the Fermi energy also decreases notably (3.4c). Antimony (3.4d) and bismuth (3.4e)
continue this trend of localization of atomic states and decreasing contribution to the
impurity band at the Fermi level, suggesting far less state mixing with the graphene
monolayer and more of a physisorption-like interaction with the sheet.

Thus, our calculations suggest that stability falls as one proceeds down group
15. The increase in formation energy is accompanied by larger OOP distances and
more planar deformation. The structural properties coupled to charge transfer char-
acteristics suggest a crossover in sorption characteristics, where early pnictogens
chemisorb while latter pnictogens physisorb. The PDOS supports this interpreta-
tion. Even with notable sheet deformation, it is clear that vacancies can accommo-
date the larger pnictogens bismuth and antimony, potentially extending functionality.
As we shall see, this has important consequences influencing the band structures of
each pnictogen-defect graphene system presented in the following section. Note, we
tested the extent that nonlocal dispersion interactions affected the results via the
Tkatchenko-Scheffler scheme. '8 We found little influence of the structural equilibria
and energetics of formation.

Pnictogen Electronic Band Structure. We now examine the electronic
band structure of each pnictogen-substituted, monovacancy system. In 3.5, we show
the band structure and the partial band decomposition for the monovacancy defect
site. As observed in other studies of this defect state, two resonance bands form

near the Fermi energy, which can be attributed to dangling states from C, Cy, and
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Figure 3.4. Projected density of states of each pnictogen atom upon interacting with
monovacancy graphene: (a) nitrogen, (b) phosphorus, (c) arsenic, (d) antimony, and
(e) bismuth. A broader PDOS distribution suggests more mixing with the graphene
monovacancy.
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C5.190189 Dispersion within these bands is marked by Coulombic repulsion between
each carbon atom within the monovacancy. Partial band decomposition of resonance
bands at the Fermi energy reveal that C', Cs, and C3 primarily form these bands, and
remain localized near or around the monovacancy. Consequently, the single vacancy
has a noticeable magnetic moment of 0.9 up following Lieb’s theorem for bipartite
lattice discussed elsewhere. ™17 The magnetic ground state forms from unquenched
dangling sp? state of C; leading to anisotropic charge distribution of the monovacancy,
3.5¢. The second resonance state forms from partially quenched YT-carbons C5 and
C5 as shown in 3.5d. It is interesting to note that for both resonance states most of
the charge can be found on a sublattice of graphene, which clearly results from the
importance of forming a defect state on a bipartite lattice. " Moreover, the symmetry
of the canonical bands of m and 7* of pristine graphene is destroyed, breaking the
linear dispersion in these bands at K and K’, 3.5b (blue dot) and 3.5e (red dot).
Consequently, the 7* bands are pushed further into the conduction bands, while the
7 states are lowered into the valence bands. This stabilizes the defect state allowing for
the formation of a localized magnetic ground state lowering the Coulombic repulsion
between carbon atoms within the monovacancy.

As mentioned in the introduction, nitrogen substitution has been studied pre-
viously. 12718 For validation of our computational approach, we report the electronic
band structure and the partial band decomposition of states near the Fermi energy.
These states are critical to the performance of electronic devices or chemical reac-
tivity. The nitrogen substituent, due to its small size, can be directly inserted into
the lattice of graphene. From 3.6a we notice the neutrality point (where the 7 and
7 bands intersect at the Fermi level) has shifted down from the original point in
pristine graphene. Note the gap between the valence bands and conduction bands
is highlighted light blue. Because nitrogen has an additional electron that can be

donated to the graphene lattice, the 7* band shifts down into the valence bands (blue
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Figure 3.5. Monovacancy band structure (a) and band decomposed charge densities
of relevant bands near the Fermi energy (b-e). Panels b and e are the 7 and 7* bands
of graphene (blue and red dot, respectively). Panels ¢ and d are impurity states (green
and yellow dots respectively). Panel ¢ is composed of primarily C density. Panel d
is a mixed band composed of Cy and C3 mostly, but it crosses with ¢ mixing in C}
states. Both ¢ and d comprise the dangling states forming near the Fermi energy. All
charge densities are set at 0.01 /A3
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Figure 3.6. Singly substituted nitrogen band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of the highest occupied band (blue dot) (c¢) Impurity band introduced by
nitrogen substituent (red dot). All charge densities are set at 0.01 e/A3.

dot). Shifting these states of graphene into the valence bands is emblematic of n-type
doping, where the additional electron provided from nitrogen is shuttled into the
graphene sheet. The states corresponding to this band are shown in 3.6b. Clearly,
the p, states of the graphene lattice dominate, though the p, orbital can also be seen
on the nitrogen substituent (3.6b). Moreover, nitrogen introduces an impurity band
(3.6¢, red dot) in the band structure of single defect graphene. This impurity state
near the Fermi energy resembles reports for antibonding STM images of this defect
state.1® These states could serve as potential sites of reactivity to anchor various
nanoassemblies or induce impurity scattering within an electronic device.

The phosphorus substituent is not only structurally and energetically different,
its electronic signatures differ substantially from that of the nitrogen case, 3.7. A
resonance state forms at the Fermi energy arising from both the phosphorus dopant
and also its nearest neighbors C4, C; and C3. The band decomposition is shown
in 3.7c (yellow dot). Because of the presence of the impurity state at the Fermi

energy, the graphene 7 and 7* bands lose their symmetry and shift downward into

76



Energy - E; [eV]

Figure 3.7. Singly substituted phosphorus band structure and band decomposed
charge densities of relevant bands near the Fermi energy. (a) Band structure. (b)
Charge density of 7 states of graphene (blue dot). (c¢) Impurity band attributed to
phosphorus and the nearest neighbor carbon atoms (yellow dot). (d) Charge density
of 7* states of graphene (red dot). All charge densities are set at 0.01 e/A3.

the valence bands and upward into the conduction bands, respectively. A pronounced
charge density can be found centered on the phosphorus and its nearest neighbors
(3.7b-d). Consequently, this site could serve as a reactive hot spot for catalyst.!"”
Furthermore, the presence of a populated impurity band transforms graphene into
a moderate band gap semiconductor with an energy gap of approximately 0.55 eV.
The itinerant electrons confined within this narrow band could alter the transport
properties of pristine graphene. 164178

We now turn to the latter pnictogens — arsenic, antimony, and bismuth. These
elements differ only in their size, electron affinity, and electronegativity; however, they
are the same in terms of their envelope states. For these elements, we have included

the d-manifold for completeness. The arsenic band structure is similar to that of phos-

phorus, but the impurity state contains some dispersion arising from inter-vacancy
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interactions or renormalization of p, for nearest neighbor carbons, 3.8a (yellow dot).
Recall that the protrusion is growing ever larger, induced by charge transfer into the
monovacancy. Therefore, blistering of the graphene vacancy shortens the distance
between p. states within the monovacancy, since the curvature of the sheet positions
p. states such that they achieve greater overlap. Moreover, breaking the symmetry
of the graphene monovacancy induces a irrecoverable change in the symmetry at the
neutrality point, located at zero in the band structure plots, which causes the 7 (blue
dot) and 7* (red dot) bands to deviate from the Fermi energy, 3.8a. Arsenic has
an appreciable amount of charge localized onto itself, largely originating from the
nearest neighbor carbon atoms (3.8b). Additionally, the charge is redistributed less
uniformly onto the sublattice of graphene in comparison to the phosphorus substituent
(see 3.7c). Unlike phosphorus, arsenic localizes no excited state density from the 7*
band, suggesting this pnictogen contributes little to the lowest unoccupied states,
3.8d (red dot). The addition of arsenic into the monovacancy opens up an energy
gap of 0.49 eV. Thus, atomic substitution of this particular pnictogen again yields a
semiconductor-like structure. However, in this case, the weaker interactions lead to
a partially unoccupied impurity band, more reminiscent of a hole doped material or
electrophile.

Antimony, similar to arsenic, possesses an impurity band at the Fermi energy
that is formed primarily from nearest neighbor carbon atoms C;, Cy and C3, with
some additional contributions from the graphene sublattice (3.9¢). Even so, some
density is localized on antimony in the impurity state; however, antimony’s contri-
bution to the m and 7* bands is diminished greatly (3.9b and d). Thus, antimony
forms weak interactions with the monovacancy but still lowers the energy of the en-
tire monovacancy. Like arsenic, antimony forms a semiconducting material with a
band gap of 0.45 eV and has a partially unoccupied impurity band that can abstract

electrons. It has been reported that doping antimony onto pristine graphene can lead
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Figure 3.8. Singly substituted arsenic band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of m bands of graphene (blue dot). (c¢) Impurity band attributed to arsenic
and nearest neighbor atoms (yellow dot). (d) Charge density of 7* band of graphene
(red dot). All charge densities are set to 0.01 e/A3.

79



\
i

Energy - E; [eV]

Figure 3.9. Singly substituted antimony band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of 7w bands of graphene (blue dot). (¢) Impurity band attributed to antimony
and mostly nearest neighbor carbon atoms (yellow dot). (d) Charge density of 7*
bands of graphene (red dot). All charge densities are set to 0.01 e/A3.

to the diminution of electrons in graphene, thus generating an upward shift in the
Dirac point of the experimental band structure.*® We observe a similar shift here.
Bismuth mirrors much of antimony’s electronic complexity. However, minute
changes in the resonant state at the Fermi energy can be observed, where dispersion
at the K-points can be seen, (3.10a, yellow dot). The majority of the charge is
found on the nearest neighbor carbon atoms and distributed over the monovacancy
sublattice (3.10c). In contradistinction with the other pnictogens, bismuth contributes
essentially nothing to the resonant states observed at the Fermi energy. Moreover,
partial charge decomposition of all states near the Fermi energy show no build up
of density on bismuth (3.10b-d). Overlap between nearest neighbors has reached a

maximum for bismuth substitution, driven by its larger radius smeared over a greater
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Figure 3.10. Singly substituted bismuth band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of m bands of graphene monovacancy (blue dot). (c) Impurity state arising
from C}, Cy, and C5 nearest neighbor carbon atoms (yellow dot). (d) Charge density
of * bands of the graphene (red dot). All charge densities are set to 0.01 e/A3.

volume compared to its higher members of group 15. Consequently, bismuth stabilizes
the monovacancy the least. Again we find that interactions between this congener
and the monovacancy generate a band gap of approximately 0.45 eV and a partially
unoccupied impurity band, which may display interesting transport properties or

unique chemical reactivity.

3.5 Conclusions
We have investigated the unit substitution of pnictogens within a single va-
cancy site formed from pristine graphene. We have found noticeable trends associated
with each pnictogen substituent. In particular, we have observed a regime of inter-
action, whereby nitrogen and phosphorus chemisorb to the monovacancy, arsenic has
a tendency to weakly chemisorb, and both antimony and bismuth physisorb to the

vacancy. This trend can be attributed to the influence of charge transferred and the
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renormalization of the states within the monovacancy. Consequently, reorganization
of the monovacancy ensues altering the bond lengths and bond angles. Thus, the
energy of formation rises going down group 15. Moreover, each pnictogen transforms
the zero band gap semi-metallic nature of pristine graphene into a moderate band gap
semiconductor, whose electronic properties are dependent upon the extent of interac-
tion between the dopant and surface. The ability to tune the exceptional electronic
properties of graphene is of paramount importance for the design of material devices
possessing wide application in both graphitic-electronic devices and chemical catalyst.
Because of the paucity of electrons in graphene, the ability to alter its properties by
simple atomic substitution is indeed an advantage, which could find many areas of

application far afield.

82



CHAPTER FOUR

Electronic Properties of Halogen-Adsorbed Graphene

This chapter published as: Chengyong Xu; Paul A. Brown; and Kevin L. Shuford J.
Phys. Chem. C, 2015, 119, 30, 17271-17277

4.1 Abstract

We have investigated the electronic properties of 1-; 2-; and 3-layer graphene
upon surface adsorption of halogen molecules by means of density functional calcu-
lations. The most stable adsorption site is parallel to the graphene surface with the
diatomic atoms centered over adjacent carbon rings. Bader analysis shows a large
charge transfer between Fy and graphene, which significantly extends the fluorine
bond length, while only small amounts of charge are transferred to Cly, Bry, and
Is. Adsorbed halogens alter the electronic properties of graphene by pushing the
Fermi level down and bringing forth an accessible impurity band that can be utilized
to alter the material properties. Moreover, molecule-surface interactions introduce
a bandgap at the K-point between 3 and 330 meV, depending upon the particular
graphene-halogen system. When adsorbed on 1-layer graphene, halogen molecules
typically open a small bandgap; however, they induce a notably larger bandgap on
the 2-layer AB-stacked and 3-layer ABC-stacked graphene. This work suggests an
effective way to tune the electronic properties of two-dimensional graphene by ad-

sorption of halogen molecules.

4.2  Introduction
Graphene, first isolated by Novoselov and Geim in 2004, is a two-dimensional
crystal composed of atomic layers of carbon arranged in a lattice of hexagon rings.

7,7,179,180

Since its mechanical exfoliation, graphenes unique properties - such as long

spin relaxation time and length, high mobility, and high thermal conductivity have
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gained significant attention in condensed matter physics, chemistry, nanotechnol-
ogy, and materials science.® Graphene has found various applications by acting as
a platform for anchoring or supporting catalyst, solar fuel, solar cells, and battery
devices.'® In graphene, two equivalent carbon atoms in a primitive unit cell sp? hy-
bridize, while the remaining p, orbital forms m-bonds. From a tight-binding analysis
of graphene, the interaction of p, orbitals yields 7 and 7* bands in the band struc-
ture, which cross each other at the K-points in the first Brillioun zone. Moreover,
graphene forms a bipartite lattice, where it is possible to distinguish the two-atom
basis into two groups of carbons, a-carbons and (-carbons, that form an intralayer

sublattice.® Due to its remarkable mechanical and electronic properties, the incorpo-

182,183 184,185

ration of graphene into practical devices, such as field-effect transistors,
is an active area of research.

Graphenes exceptional electronic properties can be traced to the canonical
dispersion at K-K’ within its band structure, which gives rise to chiral Dirac fermions
that can only be described by the Dirac equation.” In general, the zero bandgap
condition of graphene holds for 1-layer and multilayer bernal and rhombohedral fam-
ilies; ¥ however, graphene based devices, such as field-effect transistors, often de-
mand a non-zero bandgap to function.®” Therefore, creating a bandgap in graphene
and controlling its magnitude is an important technological advance. While spin-
orbit and electron-phonon coupling at the K-point makes this challenging, an effec-
tive way to introduce a bandgap is by disturbing the electron distribution. Several

187

means have been proposed such as chemical physical adsorption,'®’ chemical modifi-

188,189 190-192 193,194

cation, electric field tuning, dimensional restriction, and substrate-
based deposition.*>% Among these, molecular adsorption is attractive because it
preserves the planar hexagonal rings, and electrons undergo less impurity scattering.
Various molecular species have been introduced onto graphene, ranging from small

molecules (HoO,197198 CO,,19 NO,,2% NHs, 98209 halogens?®') to more complex
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organic molecules (e.g. N-methylpyrrolidone,?°? phthalocyanines,?*® TCNQ?204:205),
Note this is different from atomic doping into the graphene lattice, which changes the
electronic structure and density of states (DOS) greatly.?%6 2% Molecular adsorbates
introduce an impurity band near the Fermi level, but the effect on the overall band
structure is less drastic (barring a Fermi level shift and introduction of a bandgap,
as will be discussed below). Moreover, atomic dopants in graphene have been shown
to decrease mobility because of impurity scattering arising from significant structural
reorganization.?°*21% Halogen molecules, however, outperform other dopants like am-
monia in the sense that the detrimental effects on mobility are less pronounced.?!!
In this work, we focus on several different layered graphene structures (1-,
2-, and 3-layer) adsorbed with halogen molecules (X5, X = F, Cl, Br, and I). The
interaction between the molecules and the graphene layer is nonlocal, as they are
not covalently bonded. As a result, van der Waals (vdW) interactions need to be
included to accurately model dispersion interactions. After determining the most
energetically stable adsorption sites, we investigate the electronic properties of the
graphene-halogen systems. In particular, the bandgap opening effect and the ability to
tune the magnitude of bandgap opening via halogen selection and number of graphene
layers will be presented and discussed. Finally, conclusions and perspectives will be

presented in the last section.

4.3 Computational Methods
Model structures. A halogen molecule may take a parallel or perpendicu-
lar orientation with respect to a graphene layer as illustrated in Fig. 1. We have
investigated four parallel (Fig. 1 A-D) and three perpendicular (Fig. 1 E-G) sites
according to high-symmetry configurations. Here we only consider the adsorption of
halogen molecules on one side of graphene to focus specifically on the effects induced
by layering graphene sheets in various ways. Periodic supercells were constructed

from hexagonal 4x4 unit cells, containing 32, 64, and 96 carbon atoms for 1-; 2-, and
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3-layer graphene, respectively. The lattice constant a is taken to be 9.84 A, four times
that of the experimental value (2.46 A) of the primitive unit cell at low temperature.*
Lattice constant c¢ is chosen so that periodic images are separated by approximately
15 A of vacuum. Such a separation is large enough to eliminate interactions between
the periodic images in directions normal to the surface. In 2-layer graphene, layers
can form into AA or AB stacking. However, AA is higher in energy than AB stacking
by approximately 1040 meV per atom.?'? Therefore, we only consider AB stacking
in 2-layer graphene, and in 3-layer graphene, ABA or ABC stacking are considered.
We denote X5G1, XoG2, XoG34p4 and XoG34pc (X = F, Cl, Br, and I) to be the
Xy diatom adsorbed on 1-layer, 2-layer-AB stacking, 3-layer-ABA stacking (bernal),
and 3-layer-ABC stacking (rhombohedral) graphene, respectively (see Fig. 1).
Computational approach. Using density functional theory (DFT), the en-
ergies and electronic properties of halogen-graphene systems have been calculated
with a plane wave basis and projector augmented-wave (PAW) pseudopotentials for
the interaction between the electrons and ions!'*1' as implemented in VASP 114165
package. Molecules adsorbed to a surface are weakly bound, so it is important
to consider dispersion interactions using a vdW correction. Several schemes based
on semi-empirical dispersion potentials have been suggested, such as DFT-D/DFT-
D2 (Dispersion correction),3 vdW-DF 214215 and the Tkatchenko-Scheffler (TS)
method. %97 We tested different vdW schemes as well as non-vdW methods on 2-layer
graphene to determine the best one for our systems (results presented below). We
found the combination of TS-GGA (PBE functional) predicts the inter-layer distance
closest to experimental value; therefore, this scheme of vdW interaction and exchange
correlation functional were used for the energy and electronic calculations. The ge-
ometry was optimized until the force on each atom is no more than 0.005 eV/A.
A Monkhorst-Pack?!® k-point mesh of 5x5x1 and 19x19x1 were used for geometric

relaxation and density of states for all structures, respectively. The band structures
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Figure 4.1. Different adsorption sites available for halogen molecules on monolayer
graphene (A-G). Gray and blue balls represent carbon and halogen atoms, respec-
tively. Sites A-D are denoted as parallel orientations while sites E-G are perpendicu-
lar. H (I) shows the adsorption of molecule on 3-layer ABA (ABC) graphene. 2-layer-
AB stacking is analogous to H (or I) without the bottom graphene layer present.
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Table 4.1. Table 1. Inter-layer distance (d) of 2-layer graphene under different vdW
schemes and the difference (Ad) between the calculated and the experimental
inter-layer distance of 3.340 A.* Positive (negative) Ad means the calculated d is
larger (smaller) than the experimental value.

vdW-GGA  vdW-DF vdW-LDA  non-vdW
TS DFT-D2 TS DFT-D2 LDA GGA
d (A) 3.350, 3.204, 3.312 3.162 2.995 3.302 4.052
Ad (A) 0.010, -0.136, -0.028  -0.178 -0.345 -0.038  0.712

were computed over the high symmetry points of the first Brillouin zone of graphene.

The cutoff energy for the plane wave basis was 500 eV.

4.4 Results and Discussion

We tested different vdW schemes for suitability by investigating a model sys-
tem consisting of 2-layer graphene. The inter-layer distance was computed with and
without a vdW correction using both the GGA and LDA functionals. The results are
displayed in Table 1. Using GGA-TS, the layer distance of 2-layer graphene was cal-
culated to be 3.350 A, in agreement with experimental value of 3.340 A.* Moreover,
the layer separation of 3-layer ABA and ABC graphene was computed and found to be
approximately 3.350 A, showing the universal validity of TS-GGA for graphene struc-
tures. The vdW-DF (using LDA correlation and GGA-PBE exchange functionals)
also predicted an accurate layer distance (3.312 A). GGA-DFT-D2 underestimated
the layer distance by 0.136 A within a 4.1 % error, even worse than non-vdW-LDA.
Serendipitously, the LDA functional without vdW predicts a distance in good agree-
ment with experiment (3.302 A, 1.1 % error). This small error with LDA is due to
two competing errors. There is a local density interaction error and long-ranged dis-
persion is ignored, the combination of which cancels each other fortuitously.?!” Using
non-vdW (PBE) corrects one error by considering non-local electron interaction but

t,218

leaves the other error intac yielding a larger layer distance of graphene (4.052

A). On the contrary, vdW-LDA only corrected for vdW interactions and made no
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alteration to the electron interaction error, resulting in the underestimation of layer
distance between graphene polymorphs (3.00-3.16 A). Considering the better agree-
ment with experiment on 2-layer graphene, GGA-TS was chosen as the best approach
for calculations on our layered graphene systems.

We then introduced halogens into the model system to further validate the
approach. In general, surface interactions brought little change to the molecular
bond lengths. Upon adding adsorbed halogens onto graphene, the GGA-TS approach
predicts molecular bond lengths within 0.01-0.04 A of experimental values of isolated
molecules® except for fluorine. As for Fs, the bond length is found to be ~0.245
A (17 %) larger (it varies slightly with system) than isolated Fy at the same level
of theory. The notable bond length extension for Fy on graphene suggests a sizeable
charge redistribution, which is not present in the other halogens. We performed Bader
analysis?! to quantify charge transfer between the halogen molecules and graphene
for adsorption site A. The results in Table 2 explain the sizable elongation of the F,
bond length compared with Cly, Brg, and 1. All the halogen molecules act as electron
acceptors. Fy obtains 0.432-0.450 electrons from the graphene layer, which elongates
the bond length of Fy up to 0.246 A. However, the charges accepted by Cl,, Bry, and I,
are quite small, only marginally extending their bond lengths. Similar charge transfer
from graphene to Bry was calculated by Yaya et al. (0.084 electron) using LDA 229 and
Chen et al. (0.09 electron) using GGA??! confirming the approach selected for this
study is adequately describing the halogen-graphene systems, including their intimate
interactions like charge transfer in the case of fluorine.

Adsorption of molecules on graphene. We calculated the binding ener-

gies, Ebind, of halogen molecules adsorbed on graphene by the usual definition:

Ebind - Esystem - Egraphene - Emolecule (41)
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Table 4.2. Charge transfer (CT in units of e) between the halogen molecules and
graphene, and the bond length elongation (BL in units of A) in parentheses for
adsorption site A. Elongation is relative to experimental measurements of isolated
molecules.®

X, XoGl XoG2  X2G3apa XoG3ape

F, CT (e) 0432 0.444 0.450 0.449
BL (A) 0243 0.245 0.245 0.246

Cl, CT(e) 0.016 0.014 0.015 0.015
BL (A) 0.005 0.005 0.005 0.006

Br, CT (e) 0.065 0.073 0.074 0.081
BL (A) 0.042 0.050 0.049 0.054

I, CT(e) 0.010 0.027 0.030 0.049
BL (A) 0.020 0.025 0.025 0.028

“Elongation is relative to experimental measurements of isolated molecules.®

where Egystem; Egraphene; and Epgecuie are total energies of the relaxed graphene-
halogen system, pristine graphene, and halogen molecules, respectively. Table 3 shows
the binding energy and equilibrium graphene-molecule distance for the various binding
sites considered (see Fig. 1). For Fy on 1-layer graphene, the binding energy of site
A is slightly less (4 meV) than site G but nearly the same. For Cly, Bry, and Iy,
the binding energies of parallel configurations (A-D) are generally much larger than
the perpendicular configurations (E-G). Adsorption site B is the least stable of the
parallel orientations, while adsorption site A is found to be the most stable. Site
A is typically about 20 meV more stable than the other parallel orientations, which
all have similar binding energies within a range of 3-13 meV per unit cell. The
perpendicular configurations are notably less stable than site A in all cases except
for Fy, where site G is comparable. However, upon considering Fy on 2- and 3-layer
graphene, the binding energies of site A are 17-30 meV per unit cell more than on site
G (See Table S1 in the Supplementary Information). Analogous results are found for
all of the halogens. Given the comparable binding energies of fluorine at sites A and

G for single layer graphene, and the universal agreement that site A is most stable for
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Table 4.3. Binding energy (meV) and equilibrium molecule-layer distance in
parentheses (A) for single layer graphene-halogen systems at different adsorption
sites shown in Fig. 1. For perpendicular orientations, the distance corresponds to

the nearest halogen atom.

Xy A B C D E F G

Fy (meV) 482 464 464 461 449 364 486
(A) 2.919 2968 2.966 2.971 2405 2.826 2.278

Cly (meV) 241 219 221 223 203 175 207
(A) 3477 3.566 3.548 3.554 3.107 3.317 3.071

Bry (meV) 281 259 263 267 247 204 255
(A)  3.601 3.671 3.655 3.641 3.147 3.410 3.104

I, (meV) 367 350 355 363 295 261 300
(A) 3.744 3771 3.761 3.748 3.344 3.521 3.309

“For perpendicular orientations, the distance corresponds to the nearest halogen
atom.

multilayer graphene-halogen systems, all of the following calculations will be based
on halogen adsorption at site A.

Our assertion that parallel adsorption site A is the most stable is consistent
with the work of Rudenko et al.??? They incorporated dispersion using the vdW-DF
scheme to perform energy calculations on halogen-graphene (1-layer) systems. How-
ever, instead of carrying out a geometry relaxation for each configuration, they kept
the molecular orientation and bond length fixed, and determined the distance of the
molecules from the graphene plane by searching for the minimum energy configura-
tion. Using this procedure, they also found that the parallel adsorption site A was
most stable. However, since in our calculations the system is relaxed geometrically, we
find the molecule-graphene separation distance is smaller than distance they reported
by 0.11, 0.14, and 0.06 A for Cly, Bry, and I, respectively.

The same stable site A for Cl, was also confirmed by a previous calculation of
[jids et al.??® Their binding energy was 2 - 3 times larger and their distance between
Cl, and graphene layer was 0.3 - 0.4 A less than our results. However, the perpendic-
ular adsorption site G was calculated to be most energetically stable for Cly by Liu et

al. 224 This may be attributed to the use of GGA functional but without including van
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der Waals interaction. The Cly-graphene distance at site A was 0.28 A larger than
ours, in the absence of dispersion. In another investigation on Bry adsorbed on mono-
layer graphene, LDA was used to study the energetics and electronic properties.?2®
Contrary to our vdW-TS calculation, they found that the perpendicular binding site
G (Brs residing exactly above a carbon atom) was energetically the most stable. This
is contrary to our findings, as there are several parallel site configurations with larger
binding energies. In particular, we find parallel site A to be 26 meV per unit cell more
stable than perpendicular site G. Indeed, their calculation shows that the binding en-
ergy of three perpendicular sites are all larger than or equivalent to those of their
parallel sites. The difference in predicted conformation likely originates from their
approach of using LDA without including dispersion corrections, which neglects Lon-
don forces that can affect geometries of surface complexes. Given the various reports
in the literature, the question of preferred halogen binding orientation on graphene
still exists, especially on multilayer structures. Below we address this specifically,
including vdW corrections, for all of the halogens on various graphene polymorphs.
Halogen adsorption on multilayer graphene. Here we present the bind-
ing properties of halogen molecules on multilayer graphene structures. Only binding
site A is considered, as this configuration was found to be the most stable (see Table
S1 and preceding discussion). Table 4 displays the binding energies and equilib-
rium distances between halogen molecules and the nearest layer in 1-, 2-, and 3-layer
graphene. The binding energies of X5G1 are notably smaller than those of X5G2,
X9G3 44, and X5G3 45¢ for all four halogen molecules. Generally, the binding energy
increases with molecular polarizability and upon increasing the layers of graphene (Fs
displays slightly different behavior as described above). The largest increase occurs
going from 1 to 2-layer graphene, where the binding energy increases approximately 6
% - 16 %. After this only minimal stability gains are achieved by adding an additional

carbon layer. Note that for a specific molecule, the adsorption distances are almost
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Table 4.4. Binding energies (meV) and equilibrium distances (A) between halogen
molecules and the nearest graphene layer in multilayer structures. Molecular
adsorption is at site A.

X, A B C D
F, (meV) 482 521 504 526
(A) 2919 2925 2918 2.926
Cl, (meV) 241 277 284 289
(A) 3477 3481 3.471 3.465
Br, (meV) 281 326 334 339
(A)  3.601 3.606 3.593 3.594
I, (meV) 367 422 432 437
(A) 3744 3.737 3.735 3.730

identical regardless of the number of layers, suggesting the strongest interactions be-
tween the molecule and graphene occur largely between the molecule and the nearest
layer.

Electronic properties. The electronic properties of the halogen-graphene
systems have been calculated using the same level of DFT described above. The
molecular orientation was chosen to be parallel to the graphene sheets at adsorption
site A. Fig. 2 shows a set of band structures for Fy adsorbed on 1-, 2-, and 3-layer
graphene, which is representative of the entire halogen series studied here. The Fermi
level of the bands is pushed down below the valence band maximum (VBM) because
of electron depletion from the graphene -band. The primary feature to note is the
energy gap that opens up at the K-point resulting from the molecular adsorption.
The bandgap data at the K-point for all the halogen-graphene systems are collected
in Table 5. The magnitude of the energy gap varies considerably with the layers of
graphene included and the halogen adsorbed. For single layer graphene, Fy, Bry, and
I, open a negligible bandgap of 3-8 meV while Cly opens a gap of 75 meV. When
adsorbed on 2-layer graphene, they generate much larger gaps except for Cl, with a
decrease to 67 meV. However, Fy, Bry, and I, show dramatic increases to 227, 56, and

35 meV, respectively. For 3-layer graphene, ABA and ABC graphene yield different
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Figure 4.2. Band structure of Fy adsorbed on (a) 1-layer, (b) 2-layer, (c) 3-layer ABA,
and (d) 3-layer ABC stacking graphene. The dotted line indicates the Fermi level.

Table 4.5. Bandgap (meV) of halogen-graphene systems at the K-point in the first
Brillouin zone. Molecular adsorption is at site A.

Egap (meV) XgGl X2G2 XQGSABA X2G3ABC

Fo 3 227 150 330
Cly 75 67 12 78
Bro 8 26 45 98
Iy 8 35 28 76

trends. The bandgaps induced in ABA stacking show a decrease from the 2-layer
case for all halogens by 20-82 %. Conversely, ABC stacking yields an increase from
2-layer graphene of 45 %, 16 %, 75 %, and 117 % for Fy, Cly, Bry, and I,, respectively.
For Fy, the X5G3 4pc structure produces the largest bandgaps at the K-point of 330
meV. For Cl,, Bry and Iy, their XoG3 4pc structures produce band gaps in the range
76-98 meV. The larger energy gaps for Fy compared Cly, Bry, and Iy (as well as other
dissimilar trends reported) likely originate from the sizeable charge transfer found for
these halogen systems.

Further insight into the band gap trends of the various layered systems can

be gleaned from symmetry considerations. The symmetry group of monolayer (Degp,)
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and trilayer ABA (Dsy,) graphene has a horizontal mirror symmetry, which protects
the splitting of 7 and 7* bands even with the existence of an external electric field.?!?
Halogen molecules function similarly to an electric field by inducing charge polariza-
tion. Therefore, the 7w and 7* bands are hardly split by halogen molecular adsorption,
leading to small gaps in XoG1 and X5G3 454 systems. However, the symmetry group
of 2-layer and 3-layer ABC graphene are both (Ds4) and lack a horizontal mirror
symmetry. Thus, the splitting of the m and 7* bands can be modulated to a larger
degree by the redistribution of charges?!? brought by halogen molecular adsorption,
resulting in larger bandgaps.

More generally, the origin of the bandgap and system properties can be under-
stood by considering the effect adsorbed halogens have on the electronic properties of
graphene. In pure graphene, it is well known that the valence and conduction bands
intersect at the Fermi level and are linearly dispersed at the K-point, leading to zero
mass electrons. ¥ With halogen molecules adsorbed on graphene, the 7 and 7* bands
are disturbed around the Dirac point and a bandgap emerges as shown in Fig. 2. Ad-
ditionally, we find the Fermi level is pushed down in energy with respect to the VBM
because of charge transfer between graphene layer and the molecule. 3226 Such a shift
is indicative of electrons transferring from graphene (donor) to the molecules (accep-
tor), p-doping the substrate. As more layers of graphene are included, the depression
of the Fermi level is less due to stabilization provided by additional lattice sites ca-
pable of redistributing charge to hedge carrier depletion from molecular adsorption
(Fig. 2ad). Lastly, the interaction with the molecule produces a flat impurity band
that resides just above the Fermi level and below the VBM. This impurity band is
very clearly visible in the density of states (DOS) as a peak just above the Fermi level
(Fig. 3). Compared with pure graphene, the DOS of a graphene-halogen system is no
longer linear near the Fermi level, or precisely zero at the Fermi level where valence

and conduction bands normally meet. The destruction of the canonical dispersion of

95



(a)F,G1 (b)F,G2 (©) F2G3 g (d) FyG3 agc

~ 40} _ _ ;

S

s | i

wn

Q2oL
OIII \l 1 IIIIlL ||l |III| |Il |Il|| lIl
3210123 321012332101233210123

E-E; (eV) E-E. (eV) E-E. (eV) E-E. (V)

Figure 4.3. DOS of Fy adsorbed on (a) 1-layer, (b) 2-layer graphene, (c) 3-layer
ABA, and (d) 3-layer ABC stacking graphene. Note the states corresponding to the
impurity band just above the Fermi level.

pristine graphene upon the introduction of halogen gas can be attributed to breaking
the symmetry of graphene.'®® As a conseqence, the linear dispersion of the valence
band and conduction band electrons is destroyed, causing band splitting. This opens
up a bandgap at high symmetry K-points in the first Brillouin zone. Moreover, be-
cause the underlying symmetry of each graphene polymorphism changes throughout
the halogen substitutions, the bandgaps vary as well. In particular, these systems pos-
sess characteristics reminiscent of both a semiconductor (small to moderate bandgap)
as well as a metal (nonzero DOS at the Fermi level), the behaviors of which could each
be displayed under certain conditions. For example, one could imagine tuning the
system properties by adjusting the concentration of adsorbed species or meticulously
selecting a particular polymorph. Indeed, it has been found experimentally that the
in-plane conductance of graphene increases with the concentration of Bry surface ad-
sorption.??” Similar conductivity gains have been reported for I, doping and graphene
adsorbed with NH;.209200 This suggests that the unfilled impurity band is accessible
to carriers near the Fermi energy, confirming some quasi-metallic character as alluded

to above.
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4.5 Conclusion

We have investigated the behavior of a system containing halogen molecules
adsorbed on graphene layers. Taking van der Waals interactions into considera-
tion, the most stable adsorption site of halogen molecules is typically parallel to the
graphene surface, with the diatomic atoms centered over two adjacent carbon rings.
The molecule-surface interaction, charge transfer, and symmetry breaking introduce
a band gap into the band structure, whose magnitude depends on the halogen species
and the number of layers of graphene. The electronic properties are further altered
by a shift down in the Fermi level and the introduction of an impurity band just
above the Fermi level but below the valence band maximum. These results suggest
that the interaction of halogen species and graphene can be used as a mechanism to
adjust the optical, electronic, and transport properties of these systems, potentially

towards application as a practical device.

4.6 Supplemental Information

Table 4.6. Binding energy (meV) for halogens on different adsorption sites (A-G) of
1-, 2-, and 3-layer graphene.

Xo-Graphene A B C D E F G
FoG1 482 464 464 461 449 364 486
FoG2 512 499 495 491 469 388 487

FoG3aBa 504 486 486 487 464 381 487
FoG34Bc 526 507 507 505 479 399 496
Cl,G1 241 219 221 223 203 175 207
Cl,G2 277 254 256 258 231 200 238
ClbG3aa 284 258 260 262 235 203 238
ClbG3apc 289 259 260 262 236 203 238
Br,G1 281 259 263 267 247 204 255
BryG2 326 302 305 311 287 234 286
BroG34p4 334 309 313 316 288 239 295
BroG3agc 339 311 315 320 286 238 291
L,G1 367 350 355 363 295 261 300
,G2 422 405 410 418 334 299 340
I,G34Ba 432 413 417 426 339 305 347
,G34Bc 437 414 415 426 339 304 347
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CHAPTER FIVE

Archimedean (4,8)-Tessellation of Haeckelite Ultrathin Nanosheets Composed of
Boron and Aluminum-Group V Binary Materials

This chapter published as: Paul A. Brown and Kevin L. Shuford Nanoscale, 2016,
8, 19287-19301

5.1 Abstract

A compendium of unique haeckelite boron and aluminum-group V binary ma-
terials have been assessed for their fundamental thermodynamic and ground state
electronic properties within density functional theory. We explore their thermody-
namic stability relative to new bulk haeckelite crystal structures and find a number of
stable polymorphs of planar and buckled ultrathin nanosheets. The bulk boron and
aluminum haeckelite crystals display semiconducting and metallic behavior. From
the dispersion curves, we predict the formation of both indirect and direct bandgap
crystals. We also discover the existence of a five-coordinate aluminum antimonide
crystal hitherto never before observed. Moreover, it is found that a number of the
Archimedean four and eight membered ring tessellation planar nanosheets could form
should synthesis be attempted. It is predicted that these nanosheets can attain two
configurations - planar and buckled. From this work we find that combinations of
elements such as boron and nitrogen or phosphorus, and aluminum and nitrogen will
likely become true single-atom thick nanosheets. These materials show intrinsic indi-
rect bandgap character, which spans the ultraviolet, visible, and infrared spectrum.
In the boron series of these materials, the planar structures show double extrema
in the bandstructures with van Hove singularities in the projected density of states
at the Fermi energy suggesting strong light-matter interactions. The aluminum se-

ries we observe strong charge transfer and larger indirect bandgap nanosheets. This
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study serves as a starting point for a new class of inorganic bulk and ultrathin film

materials, which can have many varied applications in nanotechnology.

5.2 Introduction
Ultrathin two-dimensional materials have emerged as a versatile component
to fundamental research involving cross-fertilization of disciplines for their character-
ization. Since the isolation of graphene in 2004,%12%228 many new two-dimensional
thin films have emerged like transition metal dichalcogenides,???23° black phospho-
rus, 229230 mica,?? MXenes,???Y covalent organic frameworks,??%230 III-V materi-

194,231-238
)

als etc., where these materials possess exceptional electronic, mechanical,

and optical properties. Much of the impetus for research into these materials can be

traced to their two-dimensional confinement with weak interlayer interactions, high

mechanical flexibility, expansive active surface area, and optical transparency.22%239

Consequently, two-dimensional ultrathin films have found new roles in many di-

verse areas as support and active components to emerging nanotechnologies like

221,230 6,10,142,143,239

biomedicine, energy storage and conversion, 12 electronics/optoelectronics,

and catalysis. 238240 However, the most studied ultrathin films possess hexagonal sym-
metry like graphene, or transition metal dichalcogenides and boron nitride.??

Among the many emerging ultrathin films the III-V class exhibit many useful

properties and structural polymorphisms. Such combinations of elements have varied

241,242 lasers, 243-245 246,247

applications for light-emitting diodes, and solar photovoltaics.

Recent research on two-dimensional thin films involving combinations of III-V ele-

194,231,232,234-238 [t wwag

ments have been extensively covered for hexagonal structures.
predicted that the possibility of forming honeycomb structures of combinations of I1I-
V elements could be achieved with these metastable materials. Moreover, Singh et al.,
predicts that isoelectronic I1I-V ultrathin films could form with formation energies in

the range of 0.1-1 eV /atom relative to bulk. And, Zhuang et al., predicted that these

isostructural nanosheets possess a range of material properties from semiconducting
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to metallic. 231,232

Incidentally, around that time hexagonal AIN was synthesized by
molecular beam epitaxy, where STM measurements realized the formation of h-AIN
on Au(111) surface.?*® Moreover, h-GaN was synthesized using a novel technique of
graphene encapsulation to form both monolayer and bilayer nanosheets of both planar
and buckled configurations. 24’

Recently it was predicted that a haeckelite configuration of GaN nanosheet
and nanotubes possess competitive electronic properties to existing two-dimensional
ultrathin films.?*® Haeckelite structures can be composed of polynuclear rings of four,
five, six, seven, and eight members.?**252 It was reported that haeckelite GaN pos-
sesses an indirect band gap of approximately 1.60 eV, and could be chemically mod-
ified to become a direct bandgap with values ranging from 1.54-3.45 eV predicted
from semilocal exchange-correlation density functional theory.?*® Moreover, because
of its low cohesive energy, this Archimedean (These are semiregular tessellations of
regular polygons repeated periodically with the regular polygons forming along their
vertice.) motif exhibits thermodynamic stability, which suggest potential few-layer
nanosheet formation from possible exfoliation of the bulk (4,8)-GaN crystal.?*® Two-
dimensional ultrathin films of this type will require novel synthetic strategies such as
on-surface polymerization, where large varities of two-dimensional monomeric units
form from covalent coupling to generate low-dimensional configurations with varying
ploymorphisms and ring structures. %3256

We extend this haeckelite (4,8)-configuration to both boron and aluminum
nanosheets. This article explores the ground state electronic properties of novel haeck-
elite structures composed of group-III and group-V elements with density functional
theory.?*%! In particular, we consider boron and aluminum combinations of pnicto-
gens, which taken within their respective entirety are referred to as the boron and

aluminum series. Furthermore, we explore the thermodynamic stability of these boron

and aluminum haeckelite structures by determining their formation energy relative
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to bulk, cohesive energy of each nanosheet, and ground state electronic properties.
We find two configurational structures composed of in-plane and buckled thin films
with reasonable stability. Moreover, we observe the formation of indirect bandgaps
in these nanosheets spanning the infrared, visible, and ultraviolet suggesting possible
use in light-driven nanotechnologies. Our discussion begins with the boron series and
proceeds to the aluminum series where we cover the structural, thermodynamic, and
electronic structure of each combination of the haeckelite series presented below. Fi-
nally, we conclude with possible candidates for experimental synthesis based on the

key factors discussed in the preceding sections.
5.3 Computational Method

5.3.1 Computational Details
All ground state predictions herein are obtained within semilocal density func-
tional theory employing the Perdew-Burke-Ernzerhof (PBE) exchange correlation ap-

14 where

proximation.® We use the Vienna ab-initio simulation package (VASP),
the core-valence interaction is approximated within the projector augmented wave
(PAW) method.'® The ns?mp? and ns*mp' atomic configurations are used for the
pnictogen and boron/aluminum elements core-valence pseudopotentials within the
PAW method. The plane wave expansion was converged to 600 eV with a reciprocal
space sampling of 42 x 42 x 1 gamma-centered and 12 x 12 x 12 Monkhorst- Pack?'6
grids for haeckelite nanosheets and bulk crystals respectively. We also introduce a
vacuum space of 12 A and 18 A for the nanosheet crystals of planar and buckled
geometries respectively. The smearing width was set to 0.03 with finite temperature
Gaussian smearing, '® which has been applied to all band structures. For all crystal
structures the forces are converged well below 1 meV/A with external pressure less

than 0.01 GPa. Moreover, the ground state energetics were converged to less than 1

meV. The resulting optimized ground state structures are presented in later sections.
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The projected density of states (PDOS) was tabulated with the tetrahedron method
plus Blochl corrections.'®® Furthermore, all energetic tabulations made herein were

computed from this approach.

5.3.2 Thermodynamic Stability
The thermodynamic stability is assessed by comparison to bulk crystal struc-
tures. In order to ascertain the thermodynamic stability of each nanosheet, we de-

termine the formation energy of each combination using

1
Ey = W[Ens — (nepc + npyppn)) (5.1)

where F, is the total energy of haeckelite nanosheet, ue is the chemical potential
of boron or aluminum cation and ppy is the chemical potential of the pnictogen, N,
nc, and npy are the total number of atoms in the unit cell, total number of boron
or aluminum atoms, and total number of pnictogen atoms per unit cell, respectively.
The chemical potentials of boron and aluminum are taken from bulk rhombohedral
boron and FCC aluminum, where the latter is a naturally occurring reference state.
It is important to mention that the homogeneous formation of elemental boron does
not occur in nature. Thus, for continuity of our computations of formation ener-
gies containing boron, we've selected a homogeneous synthetic polymorph of boron.
For the pnictogens we have extracted their chemical potentials from their respective
reference states of formation (gaseous nitrogen, white phosphorus, arsenic grey, and
orthorhombic antimony). Hence, the change in formation energy to form an ultrathin

haeckelite nanosheet is obtained in this work by the expression

AEy = EfP — E}P (5.2)
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where E?D and E?D are the formation energies determined by Eqn. 5.1. Moreover,
to get a sense of the depth of the potential energy of coalescence of elements forming

each haeckelite nanosheet, we define the cohesive energy as

1

Ecoh = N[Ens - (nC’EC + nPNEPN)] (53)

where F is the total energy of the spin polarized boron or aluminum atom, and Epy
is the total energy of spin polarized pnictogen atom with respect to the number of
atoms per unit cell. These quantities are tabulated and presented in the forthcoming

sections.
5.4 Results and Discussion

5.4.1 Boron Series

5.4.1.1 Bulk Boron Pnictogen Crystals.

In this section we delineate the fundamental ground state and structural prop-
erties of the boron series of bulk haeckelite structures. We have formed each lattice
following a similar construction as that reported elsewhere,?" and the optimized
crystal structures are displayed in Fig. 5.1 using the computational method above.
We employ the shorthand H-BgP Ng to designate haeckelite structures with unit cell
stoichiometry as subscripts in this work. As shown in Fig. 5.1, all boron pnicto-
gen combinations form a body-centered tetragonal lattice, whose coordination yields
tetrahedra around both boron and pnictogen elements with I4cm (C10) symmetry.2*”
These crystals display gradual bond lengthening with increasing atomic number, and
Bader analysis shows charge transfer is predominantly from boron to pnictogen ele-
ments (Table 5.1).2%2% However, bulk H-BgSbg shows a dramatic reversal of charge

transfer to the boron atom, -0.49 e/at., whereas lower atomic number congeners
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Figure 5.1. Top and side view of bulk haeckelite structures of the boron series. (a)
H-BgNs, (b) H-BgPs, (¢) H-BgAss, and (d) H-BgSbs. 1-3 indicate bond labels for
crystallographic directions: 1 c-axis, 2 ab-plane, and 3 diagonal. An expanded unit
cell of H-BgNg is shown as a representative model for bulk crystals of this type, Fig.
S2.

display an opposite charge transfer effect. Incidentally, the cohesive energies rise im-
plying a lower stability in these latter bulk haeckelite crystals, where the most stable
H-BgNg has a value of -5.319 eV /at. Coupled with these physical attributes, the
formation energies also rise following a similar pattern of decreasing stability with in-
creasing atomic number, with H-BgNg obtaining the lowest formation energy, -0.998
eV /at., relative to standard state compounds. And H-BgPs shows a stable energy of
formation, -0.316 eV /at., while H-Bg Asg and H-BgSbg show unstable formation ener-
gies relative to their standard states. Hence, stability in these crystalline structures
proceeds as H-BgNg > H-Bg Py > H-BgAsg > H-BgSbs.

The formation of each combination of boron paired with a pnictogen yields
a series of semiconducting crystals, whose bandgaps vary across the UV to IR, Ta-
ble 5.1. However, only H-BgNg has a direct bandgap at the I point (Fig. 5.2) ,
whereas H-Bg Py onwards possess an indirect bandgap where the conduction band
edge is highlighted with a red dot along the Z-P high symmetry direction. From
the PDOS, we see a notable presence of p-manifold of states contributed from the

lower atomic number pnictogens, Fig. 5.3a, yet this contribution diminishes to higher
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Table 5.1. Bulk boron haeckelite pnictogen crystals. For each material we show the
boron-pnictogen bond length d(B — PN) [A] enumerated 1 - 3 for the c-axes,
ab-plane, and diagonal bonds respectively, bandgap energy E, [eV], charge transfer
from boron to the pnictogen Ag [e/at.], cohesive energy Ec,p, [eV/at.], and the
formation energy E [eV/at.].

Material d(B — PN) Eg Aq ECoh Ef

H-BgNg 1.561, 1.612, 1.511 4.809 2.12 -5.319 -0.998
H-BgPs 1.981, 1.989,1.938 1.200 0.41 -5.194 -0.316
H-BgAsg  2.095, 2.110, 2.054 1.178 0.05 -4.538 0.159
H-BgSbs 2.297, 2.315, 2.255 0.890 -0.49 -4.028 0.534

atomic number pnictogens, Fig. 5.3d. This can be attributed to the charge transfer
previously discussed to which less charge is captured by the pnictogen elements as
one proceeds to higher atomic number (Table 5.1). Moreover, a reversal occurs with
H-BgSbg, thus boron quantal states contribute to a greater extent near the Fermi
energy. This suggests that the overall chemical bonding within these bulk crystals
begins polar bonding with H-BgNg/H-Bg Py , covalent bonding H-BgAsg, and polar-
covalent bonding for H-BgSbs. The ground state electronic structure indicates a
weakening of the overall bonding as the splitting of valence and conduction bands
lessens, hence the bandgap lowers, as shown in Fig 5.2. It is interesting to note that
there is a sudden drop in bandgap going from H-BgNg to H-BgPs, where H-Bg/Ng
exhibits insulating character while H-BgPs forms an optical semiconductor with a
bandgap difference of 3.609 eV. This conspicuous lowering of the band edges can be
understood from the charge transfer between boron and pnictogen elements. Further-
more, this disparity emerges from atomic (Pauli) electronegativities of the elements
themselves, which underscores the trends discussed here. Thus, the greater the differ-
ence in electronegativity between boron and pnictogen atoms results in shorter bond
lengths, and greater electrostatic stabilization between ions. Indeed, this is apparent
from the ground state charge density of each crystal displayed in Fig. 5.4. We see
regions of the bulk crystal with larger concentrations of charge (red) versus depriva-

tion of charge (blue). For H-BgNg there is immoderate localization around nitrogen
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Figure 5.2. Dispersion curves of bulk boron haeckelite structures. (a) H-BgNg, (b)
H-BgPg, (c¢) H-BgAsg, and (d) H-BgSbs. The red dot indicates the conduction band
extrema for indirect bandgap materials.

centers, whereas proceeding down pnictogen congeners to antimony there is greater
delocalization of charge. Transitioning to H-Bg Ps, we can see that the strong localiza-
tion of charge around the pnictogen has lessened. This is evidenced by lesser charge
transfer, Table 5.1. For H-BgAsg (Fig. 5.4¢), we predict lesser polarization of charge
density around the pnictogen centers as high density regions become more covalent in
this bulk haeckelite material. Hence proceeding down group-V, the elemental proper-
ties like electronegativity weaken. Consequently, the binding of electrons around the
pnictogen centers decreases, lowering the bandgap. However, once we reach H-BgSbg
the reversal in charge transfer can be clearly seen in Fig. 5.4d, where the charge
is redistributed onto the boron centers. This preserves the bandgap trend, hence
this material remains semiconducting. These bulk haeckelite crystals will serve as a

starting point for the formation of the ultrathin nanosheets of the boron series.
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Figure 5.3. Projected density of states of bulk boron haeckelite structures. (a) H-
BgNg, (b) H-BgPs, (¢) H-BgAss, and (d) H-BgSbs. The blue vertical line indicates
the Fermi energy, ep.
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Figure 5.4. Isosurfaces of bulk haeckelite boron pnictogen crystals. (a) H-BgNg, (b)
H-Bg Py, (¢) H-BgAss, and (d) H-BgSbs. The charge density is projected onto the
local potential to render the color map. Here red regions depict greater amounts of
charge (e) per unit volume (A?).

5.4.1.2 Haeckelite Boron Nanosheets.

We begin our discussion of boron haeckelite ultrathin nanosheets with the
structural and thermodynamic results shown in Fig. 5.5 and Table 5.2. From opti-
mization within density functional theory, we find that H- B4 /N, and H- B, P, haeckelite
nanosheets remain true two-dimensional crystalline lattices with space group symme-
try P4/mbm (D3,). For H-B,N, we predict the shortest bond lengths forming a sp?
hybridized haeckelite network of alternating bond lengths of 1.405 A and 1.478 A.
Moreover, H-B, P, also obtains similar sp? hybridization of 1.818 A and 1.890 A (Ta-
ble 5.2). For these two cases, the longer bond is found to form in the smaller square
ring, whereas the shorter bond forms a portion of the eight membered ring, Fig 5.5.
Because of the strong electronegativity differences among these pnictogens (N,P) the
cohesive energies per atom are quite stable; H-B4Ny is -6.778 eV /at. and H-B4 Py is
-4.710 eV /at. Moreover, the formation energy change to create the two-dimensional
films are small to moderate (Table 5.2). It is important to note that h-BN has a

reported cohesive energy of approximately -7.1 eV /at.,?*! which we have found as
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well applying the computational setup reported above. For H-B,N,; we find the for-
mation energy, tabulated from Eqn. 5.2, to be 0.050 eV /at., and it increases to 0.482
eV/at. for the H-B,P, nanosheet. This increase in the thermodynamic figures-of-
merit can be attributed to the amount of charge transfer between boron and nitrogen
or phosphorus. Here we see for H-B4N, the greatest exchange of electrons at 2.20
e/at., whereas its ultrathin counterpart H-B4 P, obtains lesser charge transfer at 0.68
e/at. (Table 5.2). The chemical ramification of proceeding from nitrogen to phos-
phorus leads to the elemental reduction in electronegativity and an increase in ionic
radius. Similar to bulk haeckelite boron crystals, the electrostatic interaction weak-
ens in keeping with the elemental properties of the two congeners. Consequently, the
strength of attraction between boron and phosphorus weakens making the change in
formation energy larger, and thus a discernible decrease in charge transfer. Hence,
the potential energy of attraction lowers as well, which increases the bond lengths in
H-B4P,. This behavior extends to higher atomic number ultrathin films of H-B4Asy

and H—B4Sb4, Table 5.2.

Table 5.2. Boron haeckelite pnictide nanosheets. The ‘B’ subscript under the
material heading indicates buckled cases. For each material we show the
boron-pnictogen bond length d(B — PN) [A], bandgap energy FE, [eV], charge
transfer from boron to pnictogen A q [e/at.], cohesive energy Fco, [€V/at.], and the
change in formation energy to form the nanosheet relative to bulk AE} [eV/at.].

Material ~ d(B — PN) E, Aq  Econ AEf
H-B,N, 1.405, 1.478 4.077 (4.081) 2.20 -6.778 0.050
H-B,FPy 1.818, 1.890 0.790 (0.791) 0.68 -4.710 0.482
H-B,;As, 1916, 1.999 0.703 (0.702) 0.23 -3.962 0.800
Hp-B4Asy 2.031, 2.014 1.032 0.05 -4.163 0.372
H-B,Sb,  2.115, 2.204 0.361 (0.361) -0.36 -3.252 1.886
Hy-B,Sb, 2.167, 2.343 Metallic -0.41 -3.659 0.369

As shown in Fig. 5.5, the H-ByAs, and H-B4Sbs nanosheets can form two

possible configurations — planar (Dj,) and buckled ultrathin crystals. The buckled
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Figure 5.5. Planar (4,8)-tessellation of boron pnictide nanosheets and buckled struc-
tures. (a) H-ByNy, (b) H-B4Py, (¢) H-ByAsy, (d) H-B4Sby, (e) & (f) Hp-B4Asy, and
(g) & (h) Hp-B4Sby. Note that Hp-B,4Sb, forms a boron-boron bond connecting the
vertices of the tetragonal ring.

ultrathin films, Fig. 5.5e- 5.5h, form corrugations arising from the formation of trig-
onal pyramidal geometry around both arsenic and antimony, while boron adopts a
quasi-trigonal planar geometry within t