
ABSTRACT

Application of Ab Initio Theory to the Chemistry of Ultrathin Films

Paul A. Brown, Ph.D.

Mentor: Kevin L. Shuford, Ph.D.

In this work, we investigate a number of important nanosheets, e.g., graphene,

haeckelites, and titanium disulfide for the expressed purpose of tuning the electronic

ground state properties. We employ condensed matter techniques to interrogate real-

ized and theoretically postulated ultrathin films to mine ground state properties that

may bolster established, or nascent nanotechnologies. In this regard, a number of

ultrathin films are tuned to induce new material properties that are not intrinsic to

the original crystal. We show that chemical modification with extrinsic substitutional

pnictogen dopants placed within the crystal lattice of graphene can functionalize the

basal plane of graphene to obtain potentially catalytic properties. Furthermore, an

alternative doping strategy, less intensive than pnictogenic substitutions, including

halogen diatomic molecules were introduced as adsorbates on monolayer, bilayer, and

multilayer graphenes of different polymorphism to influence the ground state of the

graphitic nanosheets. We observed the induction of a band gap of controllable size as

a function of halogen and polymorphism. Consequently, the semimetallic graphene



systems formed a p-type semiconductor, which enables field-dependent control of

Dirac carriers within the ultrathin films. Each of these studies take advantage of

the orbital and lattice degrees of freedom enabling tunability of this monoelemen-

tal nanosheet. Furthermore, the authors postulate theorized ultrathin films dubbed

Archimedean ultrathin films. These nanosheets form a unique semiregular polygo-

nal (4,8)-tessellated configuration. This configuration was extended to bulk crystals

where we show the potential for forming ultrathin films that contain this unique sym-

metry. Two groups were studied: the boron pnictides, and the aluminum pnictides.

The ground states featured indirect band gap semiconductors, where it was discovered

that the boron-pnictides, in particular the planar configurations, possessed a double

band gap. Subsequently, the optical response of the boron pnictides were revealed

within linear response time-dependent density functional theory, which showed that

the planar ultrathin films displayed strong optical response from the UV to the IR.

Finally, the electronic ground state of 1T-TiS2 was mechanically strained to induce

phase transitions converting this nanosheet into a direct band gap semiconductor.

Hence, we demonstrate the tunability of material properties for a series of ultra-

thin films, whose material properties could provide or support existing and nascent

nanotechnologies for the 21st-century.
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CHAPTER ONE

Introduction

Civilizations have characterized themselves by the materials they shape and

the technologies they derive from them. The ability to utilize emerging technologies

in novel or unexpected ways has been an incessant pursuit by mankind. The human

epochs of the Stone, Bronze, Iron, Nuclear, and Silicon ages have marked significant

societal expansions, whose technologies have propelled human beings to dominate the

earth. However, the preeminence of the world’s civilizations are replete with grow-

ing challenges that endanger its very existence. Rising populations, greater energy

demands, higher demand for information capacity, agricultural security, national se-

curity, and greenhouse emissions are currently the challenges faced by the world’s

civilizations. The necessity to redress these prescient challenges has become an im-

perative need for all nations. Great promise in addressing all of these challenges may

originate from nanochemistry.

The nanoscale is a new frontier of intense research that is dedicated to ab-

solute control of one-billionth of a meter. The ability to control matter in such a

way to tailor nascent nanotechnologies to the needs (challenges) alluded to above is

a tantalizing prospect. Moreover, the ability to tune material properties will enable

a seemingly infinite number of possible technologies for a myriad societal challenges,

which will extend to medical, industrial, information, military, and agricultural ar-

eas so important for society. In particular, the discovery of graphene in 2004, a one

atom thick sheet of carbon, marks a new frontier in nanoscience ripe with possibil-

ities.6,7 This incredible discovery, for which Geim and Novoselov received the Noble

prize in 2010, presented remarkable properties never observed in existing materials to

date. Monolayer graphene, material suprema, was found to have the largest known
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surface area (∼ 3000m2/g), highest known thermal conductivity (higher than dia-

mond), strongest material in the universe (Young’s modulus of 1TPa), stiffest known

material (stiffer than diamond), most stretchable material (20% elasticity), highest

current density at room temperature (∼ 1000 times of Cu), impermeable (even to

helium), highest intrinsic mobility (100 times of silicon), conducts electricity in the

limit of no electrons, lightest charge carriers (zero rest mass), and, finally, the longest

mean free path at room temperature (∼ 1µm).8 These superlative material properties

propelled the field of ultrathin films, which began from pencil lead (1564) or graphite

a material known for centuries! Since the discovery of graphene, and the erosion

of scientific dogma that ultrathin films cannot exist, new families of two-dimensional

materials have been discovered holding new possibilities for technological application.

In fact, over the past 14 years graphene has been extended to new nanotechnologies

such as an electrode material, catalyst, resonant tunneling transistors, light emitting

diodes, photovoltaics, and heterostructures, where even proof-of-concept nanoassem-

blies feature record breaking results.9–18 However, the proliferation of single-atom

thick nanosheets have been limited by two factors: the rate of production with specific

sheet thicknesses, e.g., monolayer over bilayer, etc., and the quality of the nanosheets,

or the presence of defects and impurities that vitiate intrinsic material properties.19

In fact, the first two-dimensional material to be isolated was achieved with Scotch

tape, which remains the best method for avoiding impurities and defects.6 Regard-

less of these (mass) production limitations ultrathin films continue to thrive with new

discoveries every year.20–28 Furthermore, as new ultrathin films are discovered, char-

acterizing their electronic properties will be critical especially for tailoring ultrathin

films for given applications.
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Every material carries with it quantum degrees-of-freedom that are derived

from the elements forming the material. Specifically, each ultrathin film possesses or-

bital, spin, charge, topological, and lattice degrees-of-freedom.29 Hence, these degrees-

of-freedom form the foundation for tuning material properties for electrical, light,

magnetism, heat, and mechanical applications, see Figure 8.1. In this manuscript, we

investigate the chemical and physical properties of a series of ultrathin films using an

ab initio condensed matter perspective. This approach is suitable for crystalline sys-

tems such as ultrathin films, which form periodic arrangements of atoms on a lattice.

This research exploits condensed matter theoretical tools applied to the investigation

of ultrathin films ranging from well known graphene to unknown haeckelite ultrathin

films, and titanium disulfide, see Chapters three-seven. In Chapter one, we exploit

graphene’s sensitivity to chemical modifications, whereby graphene is perforated with

a single vacancy or monovacancy defect state, which accommodates pnictogen dopants

to observe periodic chemical trends. This work demonstrates the ability to chemi-

cally modify graphene into a functional material, where the basal plane of monolayer

graphene is technically chemically inert. Furthermore, experimental evidence has

demonstrated this to be possible.30–35 Blistering graphene is one way to tune the ma-

terial properties of graphene, yet a viable alternative to physically altering the lattice

could be achieved with halogen adsorbates, Chapter four. In Chapter four, the intro-

duction of halogen diatoms enabled the formation of a band gap, a major limitation

in controlling Dirac carriers in graphene, which converted monolayer and multilayer

graphene into a small gap p-doped semiconductor making field-dependent charge car-

riers possible in a otherwise semimetal. Furthermore, it was found that each diatom

species induced different band gap sizes, which appeared to be intimately related to

the contact distances of a given diatomic molecule. Moreover, unnoticed in the orig-

inal study, a topological Mexican-hat bandstructure forms in these doped systems,

in particular, the multilayer cases, which has become an intense area of research.
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These observations were corroborated in earlier experiments that involved bromine

and iodine gas, that is, band gap formation.36 Interestingly, a similar observation

was discovered in the newly theorized haeckelite materials of Chapter five. In Chap-

ter five, newly theorized (4,8)-tessellated nanosheets were derived from bulk crystals

that contained the requisite intrinsic symmetries of the ultrathin films. In this work,

group-III and group-V elements were placed at the vertices of a (4,8)-tessellation

lattice, and their electronic properties fully determined. A number of notable obser-

vations were made: one, the ability to form a ultrathin film from the bulk crystals

appeared possible from changes in the energy of formation and low cohesive energies;

second, the boron group formed unique Mexican hat bandstructures, which were ac-

companied with van Hove singularities in the projected density of states hinting to

significant optical activity; third, H-BSb ultrathin film was found to be unstable

due to a unique boron-boron bond that formed from charge transfer from antimony

atoms; fourth, all ultrathin films tended to form indirect bandgap semiconductors;

finally, two competing configurations were predicted, where a planar geometry is pos-

sible and, a more stable, buckled configuration was found. Unlike earlier chapters,

Chapter five focused on both lattice and elemental degrees-of-freedom. Furthermore,

because of the unique bandstructures observed in the planar boron-pnictogen ultra-

thin films, Chapter six focused on the optical response of these nanosheets. Chapter

six, showed that each planar haeckelite could potentially support very strong optical

response, which extends from the IR to the UV. This exciting prospect points to the

possibility of photovoltaic applications, where a haeckelite ultrathin film could act as

a tandem with another material to absorb IR light, where approximately 54% of solar

irradiance is emitted from the sun. Much more research is required, however, for the

newly proposed Archimedean nanosheets to understand their behavior, for instance,

substrate interactions. Finally, in Chapter seven, the transition metal dichalcogenide

1T-TiS2 polymorph was mechanically strained to observe potential phase transitions
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in the ground state electronic structure. In this study, the semimetal 1T-TiS2 was

mechanically stretched and compressed to induce the formation of a band gap, which

upon tensile of the nanosheet an indirect band gap appeared and later transitioned

to a direct band gap at higher tensile strain. Consequently, the semimetal 1T-TiS2

was converted into a moderate band gap semiconductor from mechanical strain of its

lattice degree-of-freedom. Hence, 1T-TiS2 could potentially be implemented for op-

toelectronic applications where the material could be mechanically strained to induce

a band gap. Consequently, this body of research demonstrates the impact of tuning

in condensed matter, and, perhaps most importantly, the implications for technolog-

ical impact utilizing the thinnest known materials and the degrees-of-freedom they

support.

1.1 Attribution

The work published herein was conducted chiefly by the authors listed. Chap-

ters three, five, and six were carried out by the first author, whose data and manuscript

were gathered and formed. This work was subsequently edited by the coauthors,

and submitted for peer review. Chapters four and seven were spear-headed by Dr.

Chengyong Xu (first author). The coauthors subsequently revised, extended, and

authenticated results produced by Dr. Xu. The subsequent articles were edited and

submitted by the authors for peer review.
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CHAPTER TWO

The Many-Body Problem & Ground-Excited State Density Functional Theory

2.1 The Many-Body Problem

Electronic structure theory contains within it many approximations made nec-

essary because of the intractability of the full Hamiltonian. The full nonrelativistic

Hamiltonian of an electronic system is given by the following expression,

Ĥ =
∑
I

[
− ~2

2MI

∇2
I +

1

2

e2

4πε0

∑
I 6=J

Zval
I Zval

J

|RI −RJ |

]
+
∑
i

[
− ~2

2me

∇2
i +

e2

4πε0

∑
i 6=j

1

|ri − rj|

]
− e2

4πε0

∑
I

∑
i

Zval
I

|RI − ri|
, (2.1)

where this expression can be more succinctly written in operator form as,

Ĥ = T̂I + V̂II + T̂e + V̂ee + V̂eI . (2.2)

This expression contains the kinetic energy of the nuclei, T̂I , the potential energy of

the nuclei, V̂II , the kinetic energy of the electrons, T̂e, the potential energy of the elec-

trons, V̂ee, and the potential energy of the electron-ion interaction, V̂eI , for a collection

of electrons, r = {ri}, and nuclei, R = {RI}, degrees of freedom.37 This expression

can be adapted to include the influence of electric fields, magnetic fields, and hyperfine

interactions, and relativistic effects such as spin-orbit coupling as well.37 Including

the above electronic Hamiltonian into the time-dependent Schrödinger equation,

i~
∂Φ

∂t
= ĤΦ({ri}, {RJ}, t), (2.3)

and evolving the full wavefunction (nuclei and electrons), Φ({ri}, {RJ}, t), in time

permits a complete description of quantum matter. In fact, all of chemistry can be
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understood with the above expressions. Unfortunately, the full Hamiltonian , Equa-

tion 2.1, is intractable to solve for any reasonably sized system of practical chemical

significance. For instance, if one wanted to determine the total wavefunction of ben-

zene with 42 total electrons in a discretized box of 10 Å with 50 grid-points for a

molecule approximately 4.5 Å across; this would require 50126 operations of Equation

2.1- 2.3 for many time-steps. The computation of the full electronic problem on the

fastest computers reaching approximately 1018 floating-point operations per second

will require 3.73x10188 years to compute! This is known as the “dimensional wall” or

“exponential wall” for wavefunction based methods commonly encountered in elec-

tronic structure theory.37,38 Because of the deleterious scaling of computational effort

in computing the full Hamiltonian we are forced to introduce soluble approximations

for predictions of chemically relevant phenomena.

2.1.1 Born-Oppenheimer Approximation

The simplest approximation takes advantage of the mass disparity between

the electrons and the nuclei. In fact, the mass ratio of an electron to nuclei ranges

me
M
≈ 1

2000
− 1

500,000
, hence the motion of the electrons relative to the nuclei appears

instantaneous.39 To decouple the above Equation 2.1 we must employ the ansatz

introduced by Born (1951),

Φ({ri}, {RI}; t) =
∞∑
l=0

Ψl({ri}, {RI})χl({RI}; t), (2.4)

here χl({RI}; t) is the time-dependent nuclear wavefunction or coefficients of the

full wavefunction expansion, and Ψl({ri}, {RI}) is the electronic wavefunction.37 It is

important to note that the full wavefunction, Φ, obeys orthogonality < Ψk|Ψl >= δkl.

Substituting Equation 2.4 into Equation 2.3 and project from the left Ψ∗l ({ri}, {RI})
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integrating over all space yields a set of coupled differential equations,

[
−
∑
I

~2

2MI

∇2
I + Ek({RI})

]
χk +

∑
l

Cklχl = i~
∂χk
∂t

, (2.5)

where

Ckl =

∫
d3rΨ∗k

[
−
∑
I

~2

2MI

∇2
I

]
Ψl +

1

MI

∑
I

{∫
d3rΨ∗k[−i~∇I ]Ψl

}
[−i~∇I ], (2.6)

which is the time-dependent Schrödinger equation for coupled electron and nuclear

dynamics.37 The Ckl is the nonadiabatic coupling operator for the kinetic energy of the

nuclei (first term in Equation 2.6) and the nuclear dependence of their momenta.37

If we treat only the diagonal terms of the nonadiabatic coupling operator, Ckk =

−
∑

I
~2

2MI

∫
d3rΨ∗k∇2

IΨk, we introduce the “adiabatic approximation” because the

diagonal terms only consider an adiabatic wavefunction in a single state, Ψk, and

precludes the possibility of electronic excitations resulting from the motion of the

nuclei. This yields the following set of decoupled equations,

[
−
∑
I

~2

2MI

∇2
I + Ek({RI}) + Ckk({RI})

]
χk = i~

∂χk
∂t

, (2.7)

where the wavefunction can be decoupled by introducing the product wavefunction,

Φ({ri}, {RI}; t) ≈ Ψk({ri}, {RI})χk({RI}; t) Equation 2.7 leads to the expression,

[
−
∑
I

~2

2MI

∇2
I + Ek({RI})

]
χk = i~

∂χk
∂t

, (2.8)

which yields the well-known “Born-Oppenheimer” approximation. Here the Ek({RI})

are the adiabatic energies of the electrons parametrically dependent on the nuclear

positions. From Equation 2.8, the nuclear wavefuction moves in a field of elec-

trons in the state k. Hence, the motion of the nuclei has no influence on the

electronic wavefuctions, or the nuclei do not induce transitions between electronic
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states. Therefore, Equation 2.8 defines the physical ground state, excluding degener-

acy, for which the electrons instanteously occupy. In the limit of clamped-nuclei the

time-dependence of the nuclear wavefunction vanishes. Therefore, the Born-ansatz

becomes a time-independent wavefunction of the product of nuclear and electron

wavefunctions, e.g., Φ ∼ χk(RI)Ψk(ri; RI). Substituting this expression into the full

Hamiltonian, Ĥ 7→ Ĥ(r,R) (Equation 2.1) for stationary solutions yields,

[Ĥe + VII(R)]Ψk(r; R) = Ek(R)Ψk(r; R), (2.9)

where the kinetic energy of the nuclei is zero, the nuclear coefficients have been re-

duced, and the electronic Hamiltonian, Ĥe, operates on all electron degrees of freedom.

The nuclear-nuclear potential energy can be included into the external potential, VeI ,

as a pertubation on the ground state of the subsystem of electrons; therefore, we ar-

rive at the time-independent Schrödinger equation for the parametrically dependent

electrons,

ĤΨk(r; R) = Ek(R)Ψ(r; R). (2.10)

This expression is an eigenvalue equation of motion for all adiabatic electron degrees

of freedom for a single equilibrium nuclear configuration, hence we can drop the

parametric dependence leaving the simpler expression, ĤΨk(r) = EkΨk(r). Equation

2.10 forms the starting point for the subsequent formulation of Density Functional

theory for the motion of electrons moving in a field of quasi-static nuclei.

2.2 Ground-State Density Functional Theory

Ground state density functional theory (DFT) is an exact treatment of the

many-body fermionic system, but the only unknown in the Kohn-Sham equations

of motion is the correlation energy.2 It is important to emphasize that DFT is for-

mulated for the computational ease of solving the expression discussed below (and

9



above), and to overcome the dimensional wall associated with wavefunction based for-

mulations. Moreover, we shall see that the triumph of DFT is rooted in the Levy-Lieb

constrained search approach, which permits a variational solution of the Kohn-Sham

equations that arrived 14 years later after the Nobel paper of Kohn and Sham.2,38

With the constrained search approach we shall see that the remaining limitation of

the Kohn-Sham equations rests on the exchange-correlation energy density per par-

ticle. This term is the elusive enigma in the DFT formalism that continues to be the

source of intense research, for complete knowledge of this term would open the pos-

sibility of computing exactly all observables of a given system of interest; moreover,

with the exact exchange-correlation energy term the Kohn-Sham equations would be

complete, but the exact expression remains unknown. Hence, the necessity of ap-

proximations to the exchange-correlation energy per particle is widely employed in

two broad categories, that is, semiempirical and pure exchange-correlation function-

als. As examined below, the exchange-correlation functionals are formed in various

ways, but the use of exact-constraints based on fundamental (well-known) properties

of nature serves as the best way forward for systematic predictions of the correlated

many-body system. We will examine in detail the fundamental expression for DFT,

the ground-state energy, which can be formed as a functional of the electron density.

The time-independent Schrödinger equation contains all of the necessary infor-

mation to describe the motion of electrons on a Born-Oppenheimer potential energy

surface for a given many-body system. It would be instructive to expand the expres-

sion into the essential terms for describing the density of electrons as a functional

of each term in Equation 2.10. Moreover, we will use spatial-spin coordinates for

generality, x = (ri, σ), where σ is for spin-up (↑) and/or spin-down (↓) electrons

obeying half-integer Fermi-Dirac statistics, s = 1
2
. Furthermore, we will determine

the expectation of each operator contributing to Equation 2.10, which can be related

to the ground state energy for a given system. First we must define what the (spin)

10



electron density, nσ(x), is for a many-body system of electrons. The electron density,

for a given system, has the following form,

nσ(x) = N
∑
σσ

′

∫ N∏
i=2

d3riθ(µ− εiσ)Ψ∗iσ(x,x2, ...,xN)Ψiσ′ (x,x2, ...,xN)

=
∑
iσ

θ(µ− εiσ)|Ψiσ(x)|2, (2.11)

here i is a composite index for i ≡ (R, n, l,ml), which are the ion positions, principle

quantum number, angular momentum quantum number, and azimuthal quantum

number respectively. The Heaviside step-function, θ(µ − εiσ), guarantees that for

Ψiσ with εiσ < µ are occupied states, and εiσ > µ are unoccupied states for chemical

potential, µ. The chemical potential is selected so long as the sum rule (normalization)

applies,
∫
d4xn(x) = N .40 Moreover, because the electron density is spin-dependent

the total electron density can be formed by summing both spin-up and spin-down

densities, n(r) = n↑(r) + n↓(r). Throughout this chapter we will presume that only

Kohn-Sham wavefunctions are discussed, which are not to be construed as the true

ground state wavefunctions. The electron density, presented above, can be shown to

be a functional for all terms in Equation 2.10. The kinetic energy of the electrons

has the following form in DFT,

T̂e = T̂s[n↑, n↓] = − ~2

2me

∑
σ

∑
i

θ(µ− εiσ)Ψ∗iσ(x)∇2
iΨiσ(x)

=
~2

2me

∑
σ

∑
i

θ(µ− εiσ)|∇iΨiσ(x)|2, (2.12)

where we have added the notation for the Kohn-Sham noninteracting kinetic energy,

T̂s. The external potential energy, EeI ≡ EeI [n↑, n↓](r) = Eext[n](r) = 〈Vext[n](r)〉,
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resulting from the attractive interaction between electrons and ions takes the form,

Eext[n] = − e2

4πε0

∑
i,σ

∑
I

∫
d3rθ(µ− εiσ)Ψ∗iσ(x)

Zval
I

|RI − ri|
Ψiσ(x)

= − e2

4πε0

∑
i,σ

∑
I

∫
d3rθ(µ− εiσ)

Zval
I

|RI − ri|
|Ψiσ(x)|2

=

∫
d3rvext(r)nσ(x), (2.13)

which is just the interaction of the ground state electron density with the exter-

nal potential energy provided by the nuclei. The ion-ion electrostatic interaction,

EII , is similar to Equation 2.13 with an electron density term included; however,

we are assuming ion-clamped approximation (Born-Oppenheimer) for this term and

will forego writing this expression here, so we will presume it forms a portion of

the external interaction potential in Equation 2.13. The electron-electron interac-

tion, Eee ≡ Eee[n↑, n↓] = Eee[n] = 〈Vee[n](r)〉, has the following density functional

dependence,

Eee[n] =

1

2

e2

4πε0me

∑
σσ′

∫ ∫
d3rd3r′θ(µ− εiσ)θ(µ− εjσ)Ψ∗iσ′(x′)Ψ∗jσ(x)

1

|r− r′|
Ψjσ′(x′)Ψiσ(x),

(2.14)

where the electron-electron energy contains all of the complex quantum effects, such

as exchange and correlation, among the electrons. The electron-electron interaction

12



can be expanded to account for the antisymmetry of the fermionic wavefunctions into,

Eee[n] =
1

2

e2

4πε0

∑
σσ′

∫ ∫
d3rd3r′θ(µ− εiσ)θ(µ− εjσ)

[Ψjσ(x)Ψ∗jσ′(x′)
1

|r− r′|
Ψ∗iσ′(x′)Ψiσ(x)−Ψ∗iσ′(x′)Ψ∗jσ(x)

1

|r− r′|
Ψjσ′(x′)Ψiσ(x)]

=
1

2

e2

4πε0

∑
σσ′

∫ ∫
d3rd3r′θ(µ− εiσ)θ(µ− εjσ)

[nσ′(x)nσ(x′)

|r− r′|
− nσ(x)nXC(x,x′)

|r− r′|

]
(2.15)

where we have taken advantage of the antisymmetry of the ground state Kohn-Sham

wavefunction to express the electron-electron energy in terms of the Hartree energy,

UH [n], and the exchange-correlation energy, EXC [n], shown below. The nXC(r, r′) is

commonly known as the exchange-correlation hole for fermions, which will become

clear in Section 2.2.3 below. This expression can be further reduced to simply a

spin-dependent second-order pair density, n(x,x′), via

Eee[n] =
1

2

e2

4πε0

∑
σσ′

∫ ∫
d3rd3r′θ(µ− εiσ)θ(µ− εjσ)

n(x,x′)

|r− r′|

= UH [n] + EXC [n]. (2.16)

Here we have introduced a second-order correlation function, n(x,x′) = nσ(x)nσ′(x′)−

nXC(x,x′)nσ′(x′), to account for exchange and correlation between electron densities

within a many-body system.2 The correlation function is related to another impor-

tant quantity known as the pair-correlation function, g(x,x′), often expressed as,

nXC(x,x′) = [g(x,x′)− 1]nσ′(x′).2 The pair-correlation function is a measure of cor-

relation for a given system. The electron-electron energy effectively contains all of

the essential ingredients of static and dynamical interactions between electrons for a

given atom, molecule, or solid. If we combine all of the expressions above and group
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them together we arrive at the energy as a functional of the ground state density,

EKS[n] = Ts[n] + UH [n] + EXC [n] +

∫
d3rnσ(x)vext(r), (2.17)

where we have omitted the ion-ion electrostatic energy for a single fixed system in its

ground state. The first three terms are the noninteracting Kohn-Sham kinetic energy

density, the Hartree energy, and the exchange-correlation energy. The last term is the

external energy for the attraction of nuclei and electrons, which is system dependent.

However, the first three terms in Equation 2.17 are completely determined from the

interactions among electrons, hence these terms can be succinctly written as,

EKS[n] = F [n] +

∫
d3rnσ(x)vext(r), (2.18)

where F [n] = Ts[n] +UH [n] +EXC [n] is a universal functional of all electrons. As al-

luded to above, this expression forms the basis of DFT, and the exchange-correlation

energy, EXC [n], is the only unknown. But if exchange-correlation were known exactly,

then it would be possible to compute all properties of any system with Equation 2.18

exactly. Unfortunately, the exact expression for EXC [n] is unknown; consequently,

this term is approximated with various exact constraints based on the homogeneous

electron gas or inclusion of exact-exchange energy to enable better predictions. Thus,

the EXC [n] is the source of intense research culminating into a set of approxima-

tions gradually improving over the well-known local density approximation (LDA),

otherwise known as Jacob’s ladder, see Figure 2.1. In Figure 2.1 the simplest ap-

proximation is to neglect the exchange-correlation term, which is the Hartree-Fock

approximation; above this is the LDA, the generalized gradient approximation (GGA)

which includes the gradient of the density such as the PBE functional, meta-GGA

includes the kinetic energy of the ground-state electron density such as the SCAN
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functional, hybrid approximation includes an add-mixture (a0 in the figure) of ex-

act exchange (EXX) such as the HSE06 functional, and higher rungs including the

random-phase approximation (RPA) or the inclusion of unoccupied states for config-

uration interaction, Figure 2.1.41–53 Jacob’s ladder forms the paradigmatic structure

of DFT, which is the quintessence of current density functional approximations to the

exchange-correlation energy of the many-body ground state. However, how can we

know that a solution to the Kohn-Sham equation of motion can be found in terms of

the density? In the next section, we explore the existence of such a solution proving

the possibility for formulating the many-body problem in terms of the density alone

without the need of multivariate wavefunctions.

2.2.1 Hohenberg-Kohn Theorems

Kohn-Sham theory is a theory for describing correlated quantum systems.2 A

central axiom in DFT is that all of the many-body interactions can be predicted from

knowledge of a single scalar-function, the ground-state electron density, n0(r).2,37 We

shall see that the electron density is a functional of the ground state total energy,

which permits the formation of a variational solution of the Kohn-Sham equations

that enables the ab initio predictions commonly reported in the literature and within

this work. But first we must show that there exist a unique solution for the ground

state density within the framework of DFT, otherwise the density, which is the solu-

tion to the many-body system, would not be unique for a given correlated system of

electrons; hence, there would exist many possible ground state densities that would be

used for predictions of observables and, yet, we could not distinguish what outcomes

are legitimate for a given many-body system. Nevertheless, the Hohenberg-Kohn the-

orems will show that for a nonrelativistic nondegenerate electron gas, the ground state

electron density can uniquely determine the external potential and, subsequently, the

ground state energy of a given atom, molecule, or solid. Here will will state and prove

the Hohenberg-Kohn theorems of DFT:
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Figure 2.1. Jacob’s ladder provides a measure of the pedigree of approximation to
the EXC [n] in Equation 2.18. Each rung of the ladder includes additional exact con-
straints to improve upon the predictions of the EXC [n] term. Jacob’s ladder shows the
predictive power of various approximations starting from the simplest (Hartree-Fock)
to the most computationally demanding with exact-exchange (EXX) with occupied
and/or unoccupied states. Adapted from Jacob’s ladder c.1490 French School.1

HK.1 For any system of interacting particles in an external potential, vext(r), the

potential is uniquely determined, except for an additive constant, e.g., v
(1)
ext − v

(2)
ext =

constant, by the ground state electron density, n0(r), where the density is constrained∫
d3rn(r) = N (N is the total number of electrons) and depends on the ground-state

antisymmetric wavefunction, Ψiσ.2,54

Proof. The proof of HK.1 can be completed by reductio ad absurdum. First we use

the Hamiltonian of the electrons in Equation 2.10 for the time-independent nonrela-

tivistic Schödinger equation. We suppose that there exist two external potentials, v
(1)
ext
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Figure 2.2. Diagrammatic representation of the Hohenberg-Kohn existence theorems,
which is the upper portion of the diagram (labeled “HK”). The lower portion of
the diagram shows that the many-body wavefunctions, Ψiσ(r), is determined by the
external potential, vext(r), including the ground-state wavefunction, Ψ0σ(r), which
subsequently yields the ground state density, n0(r). Here the index σ is meant to
include spin for generality.2

and v
(2)
ext, whose density and ground state energy are equivalent. We will further as-

sume that the external potential energies differ by more than a constant. Moreover,

the external potentials will have two different Hamiltonians, Ĥ(1) and Ĥ(2), along

with two different many-body wavefunctions , Ψ
(1)
iσ and Ψ

(2)
iσ , which lead to the same

ground state density, n0(rr), Figure 2.2. Because Ψ
(2)
iσ is not the ground state of Ĥ(1)

then,

E(1) =
〈

Ψ
(1)
iσ

∣∣∣Ĥ(1)
∣∣∣Ψ(1)

iσ

〉
<
〈

Ψ
(2)
iσ

∣∣∣Ĥ(1)
∣∣∣Ψ(2)

iσ

〉
, (2.19)

where

〈
Ψ

(2)
iσ

∣∣∣Ĥ(1)
∣∣∣Ψ(2)

iσ

〉
=
〈

Ψ
(2)
iσ

∣∣∣Ĥ(2)
∣∣∣Ψ(2)

iσ

〉
+
〈

Ψ
(2)
iσ

∣∣∣Ĥ(1) − Ĥ(2)
∣∣∣Ψ(2)

iσ

〉
= E(2) +

∫
d3r
[
v

(1)
ext - v

(2)
ext

]
n0(r), (2.20)

hence

E(1) < E(2) +

∫
d3r
[
v

(1)
ext − v

(2)
ext

]
n0(r), (2.21)

likewise for E(2) we arrive at the following,

E(2) =
〈

Ψ
(2)
iσ

∣∣∣Ĥ(2)
∣∣∣Ψ(2)

iσ

〉
<
〈

Ψ
(1)
iσ

∣∣∣Ĥ(2)
∣∣∣Ψ(1)

iσ

〉
, (2.22)

17



where

〈
Ψ

(1)
iσ

∣∣∣Ĥ(2)
∣∣∣Ψ(1)

iσ

〉
=
〈

Ψ
(1)
iσ

∣∣∣Ĥ(1)
∣∣∣Ψ(1)

iσ

〉
+
〈

Ψ
(1)
iσ

∣∣∣Ĥ(2) − Ĥ(1)
∣∣∣Ψ(1)

iσ

〉
= E(1) +

∫
d3r
[
v

(2)
ext - v

(1)
ext

]
n0(r), (2.23)

hence

E(2) < E(1) +

∫
d3r
[
v

(2)
ext − v

(1)
ext

]
n0(r). (2.24)

If we add Equations 2.21 and Equation 2.24, then we arrive at the contradictory state-

ment, E(1) + E(2) < E(1) + E(2). Hence, there cannot exist two external potentials

that are more than an additive constant which yields the same nondegenerate ground

state electron density. Thus, the ground state density uniquely determines the ex-

ternal potential, and the reverse is true as well, Figure 2.2. Therefore, all properties

of a many-body correlated system can be determined with the ground state density

yielding N , Ĥ, and Ψiσ from n0(r), quod erat demonstrandum (Q.E.D.).2,54 We now

prove the second Hohenberg-Kohn theorem.

HK.2 A universal functional for the energy functional E[n] defined in terms of the

density, n(r), and is valid for any external potential, vext(r), exist. For any particular

vext(r), the exact ground state energy is the global minimum of this functional, and

n(r) is the exact ground state density that minimizes this functional.2,54

Proof. We will assume only “v-representable” densities to be a functional of the

ground state energy. The electron density, in this case, is associated with the ground

state energy for a given Hamiltonian and external potential for an antisymmetric

wavefunction, Ψiσ. The variational solution can be applied here to show that the

Kohn-Sham ground state energy is a minimum for electron density (HK.1), n(r).

Because the kinetic energy and potential energies entering the electronic Hamiltonian

are uniquely determined by the ground state electron density, then each term can be
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viewed as a functional of the electron density,

EHK [n] = T [n] + Eint[n] +

∫
d3rn(r)vext(r) + EII

≡ FHK [n] +

∫
d3rn(r)vext(r) + EII , (2.25)

where the EII is the ion-ion (electrostatic) potential energy interaction, FHK [n] =

T [n] + Eint[n], is a universal functional of (only) the interacting kinetic energy of

the electrons and their pair-wise interactions. (we will define explicitly the terms in

Equation 2.25 later) It is important to note that FHK [n] is applicable for all external

potentials and number of particles. We must show that Equation 2.25 is a minimum

by recognizing,

EHK [n] =
〈

Ψiσ

∣∣∣Ĥ∣∣∣Ψiσ

〉
= FHK [n] +

∫
d3rn(r)vext(r) + EII

≥ F [n0] +

∫
d3rn0(r)vext(r) + EII

=
〈

Ψ0,σ

∣∣∣Ĥ∣∣∣Ψ0,σ

〉
= E[n0], (2.26)

thus the Kohn-Sham ground state energy functional equality holds for Ψiσ = Ψ0,σ,

which are functionals of the density for the trial density, n(r), and exact density,

n0(r). Therefore, all properties of the energy functional, or any other observable that

is a functional of the electron density, can be determined by functional variations of

the many-body energy with respect to the electron density, otherwise Equation 2.26

would not yield anything desirable Q.E.D.54

The above Hohenberg-Kohn theorems might be generalized by considering the

sets of all external potentials, V , ground state wavefunctions, G, and ground state

densities, N , Figure 2.3.3 Since HK.1 is true, then you can assert that a collection
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of external potentials exist such that the set

V = {vext|vext ⇐⇒ ∃|Ψ0〉 ∧ v
′

ext 6= vext + C}, (2.27)

where the set ground state wavefunctions is,

G = {|Ψ0〉||Ψ0〉 ⇐⇒ V . 3 .|Ψ′

0〉 6= eiφ|Ψ0〉}, (2.28)

form a correspondence, or mapping, A : V 7→ G, that is bijective between each set

containing each collection of object, potentials and wavefunctions, Figure 2.3(a).3

Moreover, the set of ground state densities is defined,

N = {n0(r)|n0(r) = 〈Ψ0|n̂(r)|Ψ0〉,∀|Ψ0〉 ∈ G}, (2.29)

where n̂(r) =
∑

i δ(r−ri) is the particle (Fermion) operator. The correspondence be-

tween the ground state wavefunctions and electron densities, B : G 7→ N , is bijective,

since each ground state wavefunction, which is a solution to Equation 2.10, maps

each wavefunction to a density, where the converse holds as well, Figure 2.3(a). This

generalization holds for both degenerate and nondegenerate many-body solutions to

the Schrödinger equation, Figure 2.3. However, for the case of degeneracy , seen

as lighter circular regions in set G and N in Figure 2.3, the possibility of multiple

wavefunctions and electron densities can occur. Nevertheless, as shown in Figure

2.3(b), the Hohenberg-Kohn theorems still apply. Because a particular set of wave-

functions (Gv1) can give rise to a set of densities (Nv1) each class always corresponds

to an external potential within the set V , or in this case vext,1, Figure 2.3(b).3 How-

ever, in spite of the applicability of v-representable pure-state electron densities, this

criterion is too stringent to be obeyed, and counterexamples exist that have shown

20



v-representability may not be proven sound. In fact, it is clear that within the de-

generate interacting case described above that bijectivity of the mapping between

each set (A & B) cannot hold. Hence, as we shall see below, the problem can be

reformulated for “N-representable” pure-state electron density.55,56

Figure 2.3. These diagrams show the subsequent formulation of DFT into bijective
mappings between sets of external potentials, V , ground state wavefunctions, G, and
ground state densities, N . Here the mapping of A and B are one-to-one and onto
(bijective) among the sets obeying the time-independent Schrödinger equation. (a)
shows the conclusions of HK.1 and HK.2 for nondegenerate many-body systems;
(b) shows the same situation as (a) but for degenerate many-body systems.3

The two theorems HK.1 and HK.2 codify DFT into an immensely powerful

ab initio framework that enables predictions of correlated many-body systems using

the simpler scalar function, the electron density; this avoids the more demanding
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wavefunction based formalism discussed above allowing for the ability to observe

chemically relevant phenomena of great importance. However, the Hohenberg-Kohn

theorems do not specify what the form of FHK [n] should be, yet this required another

significant realization provided by the Levy-Lieb constrained search approach that

permitted DFT reach prominence and wide-spread usage into many disciplines of

science.40

2.2.2 Levy-Lieb Constrained Search

The Levy-Lieb constrained search approach allowed for density functional the-

ory to be formulated into a variational solution for the ground state of a given sys-

tem.55–59 Moreover, as we shall see, it becomes possible to use “N-representable”

electron densities rather than the more stringent “v-representable” case originally

presumed in the Hohenberg-Kohn theorems of the previous section.

In order to highlight the Levy-Lieb constrained search it is important em-

phasize that instead of searching over “v-representable” pure-state electron densities,

instead the constrained search approach focuses on “N-representable” electron den-

sities, that is, an electron density is obtained from some antisymmetric N-particle

wavefunction.55,56 Moreover, all electron densities are pure state N-representable if

they obey n(r) ≥ 0,
∫
d3rn(r) = N , and

∫
d3r|∇

√
n(r)|2 <∞.59,60 These three con-

straints on the electron density insure that the density is positive definite, normalized,

and finite. From these constraints on the electron density the Levy-Lieb constrained

formulation proceeds with Equation 2.26 by requiring the Kohn-Sham energy to have

a lower bound (infimum) or no variation over a set of antisymmetric wavefunctions
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G,

E0[n] = inf
|Ψ〉
〈Ψ|Ĥ|Ψ〉

= inf
|Ψ〉
〈Ψ|T̂e + Eee + Eext|Ψ〉

= inf
n(r)

[
inf
|Ψ〉∈G
〈Ψ|T̂e + Eee|Ψ〉+

∫
d3rn(r)vext(r)

]
= inf

n(r)

[
F [n] +

∫
d3rn(r)vext(r)

]
, (2.30)

thus the constrained search is a minimization over all antisymmetric wavefunctions

yielding n(r), and a constrained search over electron densities.55 Therefore, the Levy-

Lieb constrained search establishes an apt definition for F [n] as being a functional

of the ground state electron density that is pure state N-representable, such that,

the electron density minimizes the ground state energy for a given external potential

(HK.1).2,55,59 Furthermore, the constrained search approach establishes a variational

procedure to the Kohn-Sham ground state energy functional that arrives at a mini-

mum for the many-body Hamiltonian. Consequently, combined with the Kohn-Sham

self-consistent field (SCF) scheme, the ground state properties of a given system can

be understood with exchange-correlation effects included.61

The self-consistent scheme, Figure 2.4, originally formed by Kohn and Sham,

follows the variational approach presented within the constrained search, Equation

2.30.61 Here we present the canonical equations of motion of an auxiliary system

based on the Kohn-Sham energy functional for the ground state of a given system.

It was originally presumed that the Kohn-Sham energy functional was composed of

noninteracting fermions, and only the exchange-correlation contained the interaction

so important for accurate predictions.61 We will determine the variational solution

to EKS[n] (Equation 2.18) for an noninteracting N-representable pure state electron
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density via a minimization over a grand-canonical functional, ΩKS,

δΩKS[n] = δ
[
Ts[n] + Eext[n] + UH [n] + EXC [n]− (

∑
σ

εiσ

∫
d3rnσ(r)− δijδσσ′)

]
= 0

⇒ δEKS
δΨ∗iσ(r)

=
δT̂s[n]

δΨ∗iσ(r)
+
[δEext[n]

δn(x)
+
δUH [n]

δn(x)
+
δEXC [n]

δn(x)

]δn(x)

δΨ∗iσ
− εiσΨiσ(x) = 0

⇒ (ĤKS − εiσ)Ψiσ(x) = 0

∴ ĤKSΨiσ(x) = εiσΨiσ(x), (2.31)

which is a single-particle Schrödinger equation for the Kohn-Sham equations of mo-

tion.2,61 The Kohn-Sham Hamiltonian has the form,

ĤKS = − ~2

2me

∇2 + V σ
KS, (2.32)

for the effective Kohn-Sham potential energy,

V σ
KS = Vext[n](r) + VH [n](r) + V σ

XC [n]. (2.33)

Hence, the full expression has the form,

(
− ~2

2me

∇2 + Vext[n](r) + VH [n](r) + V σ
XC [n]

)
Ψiσ(r) = εiσΨiσ(r), (2.34)

which is the canonical form of the Kohn-Sham equations.61 The solution to Equation

2.34 requires an iterative self-consistent approach since the potential energy contains

the electron density, which can be clearly seen by expanding Equation 2.33,

V σ
KS = Vext[n](r) +

e2

4πε0

∑
σ′

∫
d3r′θ(µ− εjσ′)

nσ′(x′)

|r− r′|
+
δEσ

XC [n]

δn(x)
, (2.35)

where the external potential energy, Hartree energy, and exchange-correlation po-

tential energy per particle each contain the electron density. Hence, the solution to
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the canonical Kohn-Sham eigen-equation for the minimum ground state wavefunc-

tions yields the ground state density, external potential energy, and the Kohn-Sham

ground state energy for an N-correlated many-body system of N-fermions, Figure 2.4.

Figure 2.4. The Hohenberg-Kohn and Kohn-Sham schemes for solving the interacting
and auxiliary systems. The left side represents the interacting portion provided by
the existence theorems of the Hohenberg-Kohn theorems. The right side displays the
Kohn-Sham variational scheme for the noninteracting system, where the solution of
the ground state density, n0(r), is found by Levy-Lieb constrained search over all
Kohn-Sham wavefunctions, Ψi=1,...,Neσ(r), for the noninteracting Ne-electron system.
Note the H.K. theorems can be applied to both cases.2

The above expressions define all the terms that enter into the Kohn-Sham

equations (Equations 2.34-2.35) that permits the solution to the many-body prob-

lem, and defines what F [n] should be within this construction. Hence, the universal

functional (F [n]) is the stationary solution to the Kohn-Sham eigenvalue problem,

and the functional derivative of the exchange-correlation energy , Eσ
XC [n], yields the

potential energy of exchange-correlation energy per particle that contains all addi-

tional quantum effects of the system as a result of the external potential experienced

by the electrons. Therefore, the exchange-correlation potential energy per electron

is the only unknown that is left, in fact, the correlation energy per particle, EC [n],

is the only quantity that is unknown since exact exchange has been derived since

the Hartree-Fock approximation, which predates DFT.62–66 These critical terms are

discussed in the proceeding section.
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2.2.3 Nature’s Glue: Exchange-Correlation Energy

As discussed in the preceding section the exchange-correlation energy per par-

ticle is the only unknown to the Kohn-Sham equations (Equation 2.35). In fact, most

of DFT research is intensely focused on approximating this term (EXC [n]), which

is likely the source of great obfuscation among researchers around the field. In this

section we discuss the essential “ingredients” to various approximations used through-

out this document to provide some understanding to the encyclopedia of acronyms

associated with various approximations in DFT, see Figure 2.1 in section 2.2 above.

Before covering various approximations to the exchange-correlation energy it

is instructive to highlight why this term is so critical in the Kohn-Sham equation

(Equation 2.34). This question can be explained by viewing the range of energies

that that are accessible to the exchange and correlation energy functional. The corre-

lation energy can fluctuate dramatically from 0.87− 130eV (83.7− 12, 550kJmol−1),

and the exchange energy can vary significantly as well to 0.87 − 1301eV (83.68 −

125, 519.8kJmol−1)!67 These energies are extraordinarily disparate, and leads to diffi-

culties in describing electron densities in chemical environments where the density is

diffuse or highly concentrated. In the intermittent regime (low-here somewhere-high

density) the incessant fluctuation of electron density becomes a significant challenge

to comprehend with exact analytical expressions (See Appendix B). This is dynami-

cally driven by the motion of electrons within condensed phases, hence the screening

of electrons (Thomas-Fermi screening, kS), and, correspondingly, the kinetic energy

(Fermi wavevector, kF ) of the electrons can fluctuate per unit volume time resulting

from the interplay of these two physical effects. So, as discussed below, the exchange-

correlation energy per particle can be considered to be nature’s glue for chemical

bonding, which is the bedrock upon all subsequent chemical/physical properties are

based. Hence, the approximations to EXC [n] will have a critical impact on the pre-

dictions and computational ease for comparison to experimental observables.
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Figure 2.5. “Correlation dance”.Correlation is the tendency of electrons to dynam-
ically avoid one another resulting from their mutual Coulomb repulsion (Coulomb
correlation). The avoidance of electrons leads to an alteration of their kinetic energy
densities.

The construction of various approximations to the exchange correlation en-

ergy is central to forming reliable predictions with computational ease in DFT. The

exchange-correlation energy can be understood by combining the Hohenberg-Kohn

exact energy functional (Equation 2.25) with the Kohn-Sham noninteracting energy

functional (Equation 2.31), which yields,

Eσ
XC [n] = (T̂ [n]− T̂s[n]) + (〈V̂ee〉 − UH [n]). (2.36)

This shows that the exchange-correlation hole (XC-hole) originates from the change

in the interacting kinetic energy density and noninteracting Kohn-Sham kinetic en-

ergy density, and the electron-electron interaction with the removal of the Hartree

energy.2,67,68 Another way of writing Equation 2.36 is with respect to a parameter λ,

EXC [n] =
1

2

e2

4πε0

∫ 1

0

dλ

∫ ∫
d3rd3r′

nσ(r)nλXC(r, r′)

|r− r′|
, (2.37)

27



here λ is a coupling constant that links the noninteracting system (λ = 0) to the

fully interacting system (λ = 1).69–71 See Appendix C for the derivation of this re-

sult. This second expression in Equation 2.37 is often known in the literature as the

“Adiabatic Connection” expression for the exchange-correlation energy.70–72 There-

fore, this expression holds that the exchange-correlation hole, within the Kohn-Sham

scheme, is the difference between the fully interacting (correlated) system and the

auxiliary system, Figure 2.4.2 Furthermore, the XC-hole is the only unknown in the

Kohn-Sham equations, Equation 2.34, so any approximation for the XC-hole will have

a significant impact on the quality of the predictions. The XC-hole originates from

electron correlations, or to be more precise, from parallel spin fermions tendency to

avoid each other in a system (Fermi correlation), see Figure 2.6. This is the funda-

mental Paul-Exclusion principle that gives all matter its structure. Hence the effect

of two electron densities of equal quantum numbers being in proximity of each other

results in the reduction of probability amplitude in the neighborhood of the second

electron (Figure 2.6) creating a “hole” of dimished density around the second elec-

tron. Therefore, the density functional approximations to the exchange-correlation

energy attempt to accuratly capture the XC-hole, but this is no trivial task.

In the original ansatz for the expansion of the exchange-correlation energy,

Kohn-Sham introduced,

Eσ
XC [n] =

∫
d3r(εLDAXC [n](r)n(r) + εXC [n, |∇n|]|∇n|2 + ...), (2.38)

where the first term is the local density approximation, the second the generalized

expansion approximation, and so on.61,73,74 The first order term in Equation 2.38 can

be written as,

ELDA
XC [n] =

∫
d3rn(r)εLDAXC [n](r), (2.39)
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Figure 2.6. This diagram highlights the origins of the term of “XC-hole”. The figure
shows the exact ground state density (gray line) of an atom (say He), where an
electron is placed at the origin, r, and another electron is placed at r′, such that
their spins are collinear (oriented up or down). The depletion of density (red dotted
line) around r′ shows the formation of a hole around the second electron. The hole
can be understood to originate from the Pauli-Exclusion principle, and dubbed the
Fermi hole for exchange energy contribution. The correlation hole has the same effect
although smaller than the Fermi hole.

so that the exchange-correlation energy within LDA depends on the homogeneous

densities (slow variations) of the electron liquid, and εLDAXC [n](r) is the XC-energy per

particle.61,74 In LDA, the exchange-correlation hole is assumed to be equivalent to

that of the uniform electron gas, i.e., εLDAXC [n](r) ≈ εunifXC [n](r), which has exact known

constraints for exchange and approximate correlation energies. The exchange energy

for a uniform electron gas (UEG) was expressed by Dirac in 1930.75 Dirac exchange

was formulated for a plane wave basis originally, and takes the form,

εunifX [n](r) = −CX
∫
d3rnσ(r)4/3, (2.40)

where CX = 3
4
( 3
π
)1/3 is a constant. The correlation energy, however, has many nu-

merous approximations each of which are derived from UEG, where the correlation is

parameterized with Monte Carlo data for example, see Appendix B.41,76–79 The LDA

surprisingly has been found to be accurate for solids, in particular, because the above
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expression obeys known exact constraints for the UEG. For example, the exchange

and the correlation energy are nonpositive, EX < 0 and EC ≤ 0, or the Lieb-Oxford

bound EXC ≥ −CLO
∫
d3rnσ(r)4/3 (CLO ≤ 2.273), and spin-scaling relations for the

more general case of fermions are all obeyed.40,80–83 Moreover, LDA has two impor-

tant inverse length scales, namely, |∇n|
n

<< kF and |∇n|
n

<< kS, where the density

varies slowly over space. (here we have the Fermi-wavevector, kF = (3π2n(r))1/3, and

the Thomas-Fermi screening-wavevector, kS = 2
π1/2 (3π2n(r))1/6 (both are in atomic

units))40 The Fermi and Thomas-Fermi wavevectors originate from the kinetic energy

of the electrons and the screening of electrons within a condensed phase, or molecule.

In this case, densities that are more homogeneous tend to yield good results within

LDA. In fact, using Equation 2.16 and the expression for the XC-hole, the XC-hole

(nXC(r, r′) = nX(r, r′) + nC(r, r′)) obeys the following constraints, nX(r, r′) < 0,∫
d3rnX(r, r′) = −1, and

∫
d3rnC(r, r′) = 0.73,74,84 These constraints (positivity and

sum rules) on the XC-hole follow from the constraints on the energies of each term

above. However, in systems with dopants, or other matter that may violate the above

constraints, LDA tends to poorly describe various empirical aspects of such systems,

see Chapter 3-4, e.g., over delocalization.71

The second order case is the generalized expansion approximation, which was

intended to include inhomogeneities that commonly occur in condensed matter sys-

tems.73,74 The exchange-correlation energy per particle for the GEA has the following

form,

EGEA
XC [n] =

∫
d3rεGEAXC [n(r), |∇n|]|∇n(r)|2. (2.41)

In the GEA, it was discovered that the exchange-correlation hole within this expansion

becomes positive, yet in LDA the exchange and correlation are not positive for the

UEG.73,74,85 This lead to a real-space cutoff for the GEA by requiring the XC-hole

to become effectively zero for low densities.42–44,86 This established the generalized

gradient approximation, the ansatz for the exchange-correlation energy per electron
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is,

EGGA
XC [n] =

∫
d3rn(r)εGGAXC [n(r), |∇n|], (2.42)

where the expansion includes the real-space cutoff for the XC-hole.73,74,87–90 This form

for the second-order term in the expansion of the exchange-correlation energy allowed

for the inclusion of further ingredients or constraints to improve upon LDA. The GGA

of Equation 2.42 can be rewritten in the following form,

EGGA
XC [n] =

∫
d3rεUEGX [n]FXC(rS(n), s(r)), (2.43)

where the dimensionless density-gradient captures inhomogeneities, s(r) = |∇n|
2kFn(r)

,

and rS is the Wigner-Seitz radius (Appendix B), which are both set as independent

variables of an enhancement factor, FXC , and εUEGX [n] is Dirac exchange defined

above.73,74,87–90 This formal expression is the basis of the commonly used PBE GGA

functional that has demonstrated exceptional predictive power, and it is employed

throughout this dissertation (see Appendix A). Typically, PBE can achieve 0.5% error

and 5% error in the exchange and correlation energies over a given system.40 Moreover,

bond lengths tend to be 1% too long effectively yielding correct structures, but have

30% (too low) errors in energy barriers.40 This has been an improvement over LDA,

which has 5% error in exchange energy, 100% error in correlation energy, 1% too short

of bond lengths, and 100% too low energy barriers.40 The improvement in the second

rung of Jacob’s ladder (Figure 2.1) results from the inclusion of higher order-gradient

terms in the GGA not contained within LDA. The success of PBE can be attributed

to the use of exact-constraints on the exchange-correlation functional, rather than

using test sets for highly parameterized exchange-correlation functionals commonly

known as semiempirical DFT. However, it should be noted that the advantage of

semiempirical DFT is the expedience of an answer for a given chemical circumstance,
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but does not describe why the formulation works. Nevertheless, the PBE formulation

has formed the basis for higher order expansions of the exchange-correlation energy.

The next rung contains the meta-GGA. These approximations include the

same ingredients as the lower order approximations seen for LDA and GGA, but in-

clude the kinetic energy of the electron density, τσ = − ~2
2me

∑
iσ θ(µ − εiσ)|∇Ψiσ|2.40

The orbital kinetic energy density for spin σ incorporated into the exchange-correlation

energy per electron becomes,

EMGGA
XC [n] =

∫
d3rn(r)εMGGA

XC [n(r), |∇n|, τσ], (2.44)

which includes a nonlocal τσ term to the exchange-correlation. In general, the MGGA

improves overall predictions of GGA, but it heavily depends on the type of MGGA

used, and in some cases, the MGGA can make worse predictions compared to LDA

and GGA.40 However, a new MGGA based on exact constraints (17 constraints in

total) was recently released.48,49 This formulation, dubbed strongly constrained and

appropriately normed (SCAN), was shown to improve over several metrics for chem-

ical systems with lower mean average errors (MAE).48,49 It has been shown that

for the G3-test (atomization energies of 223 molecules) MAE(SCAN) = 0.25 eV

(MAE(PBE) = 0.96 eV), for the BH76-test set (76 reaction barriers)MAE(SCAN) =

0.33 eV (MAE(PBE) = 0.40 eV), for the S22 (22 molecular complexes bound by

weak bonds) MAE(SCAN) = 0.04 eV (MAE(PBE) = 0.12 eV), and for the LC20-

test set (20 solids lattice constants including metals, semiconductors, and insulators)

MAE(SCAN) = 0.0007 eV (MAE(PBE) = 0.0025 eV).48,49,91 These results are

striking considering that chemical accuracy is around 0.05 eV, Figure 2.1. More-

over, the MGGA-SCAN includes short-range van der Waals interactions, which are

neglected in semilocal GGAs and LDA.49 However, a long range correction is needed

to correctly describe the van der Waals interaction that is important in multilayer

ultrathin films, see Chapter 4.49,92–102 In fact, MGGA, such as with SCAN, it is
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possible to obtain observations at the hybrid-level of approximation or even varia-

tional Monte-Carlo to the Kohn-Sham exchange-correlation energy.48,49 49 However,

LDA, GGA, and MGGA do not improve the overall bandgap commonly observed

in semiconductors or insulators since they fail to capture the exact electron affinity

(A) and ionization potential (I), which are the lowest unoccupied molecular orbital

(LUMO) and highest occupied molecular orbital (HOMO), respectively.71,103 The er-

rors can range 30-50% in semilocal approximations.103 The origin of the failure of

the semilocal approximations is attributed to the derivative discontinuity originating

from the removal or addition of an electron, hence, in the Kohn-Sham formalism the

fundamental band gap has an additional term that alters the band gap prediction,

Eg = εCBM − εV BM + ∆XC . The ∆XC term originates from the derivative discon-

tinuity in the exchange-correlation energy approximation.103 However, the semilocal

approximations discussed so far can be corrected with the inclusion of an admixture

of non-local exact Fock exchange.45–47,103 Exact exchange remedies the fundamental

gap to near experimental measurements because within Hartree-Fock, Koopman’s

theorem is obeyed for the removal or addition of an electron so long as relaxation of

the remaining electronic states does not occur.103 Capturing the correct fundamental

gap is critical for understanding the absorption process in ultrathin films, see Chapter

6.

As mentioned above, the hybrid rung of Jacob’s ladder (Figure 2.1) includes

an admixture of exact exchange (Fock exchange).45,46,104 The hybrid level generally

improves the overall accuracy for material observables, yet the computational cost

scales poorly against lower runges of Jacob’s ladder. This has made hybrid functionals

for periodic systems prohibitive until recent years. The first pure hybrid functional

was derived from PBE, which has the exchange-correlation approximation of the form,

EPBE0
XC [n] = EPBE

XC + a0[EXX − EPBE
X ], (2.45)
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where a0 = 1
4

was found to yield an optimum mixture of exact exchange, and EXX

is the exact exchange shown in Equation 2.15, where this hybrid approximation is

known as PBE0.104 In the case of PBE0, the inclusion of 75% PBE-exchange and

100% PBE-correlation is included at the semilocal approximation, which is accom-

panied with 25% exact exchange, Equation 2.45. This exchange-correlation approxi-

mation improves on the fundamental gap for semiconductors and insulators.105 An-

other extension of the hybrid density functional approximation was developed within

a screened hybrid approximation decomposing the exact exchange term into short-

range and long-range exact exchange.45,46,106 The screened hybrid construction for

the exchange-correlation energy per electron has the following form,

EHSE06
XC [n] = aESR−HF

X (ω) + (1− a)ESR−PBE
X (ω) + ELR−PBE

X (ω) + EPBE
C , (2.46)

where the HSE06 functional is composed of a fraction of short-range PBE exchange,

full long-range PBE exchange and correlation, while the exact exchange is partitioned

into short-range exact exchange with screening parameter, ω = 0.2, and a = 1
4

similar

to PBE0.106 Here the screening parameter, ω, is chosen to optimize fundamental gap

predictions over a large set of molecules and solids.106 The MAE for band gaps with

HSE06 was later estimated to be 21% or 0.26 eV, and 1.13 eV for PBE, which is a

much better improvement over semilocal approximations.107 The ability to accurately

capture band edges is very critical to understanding optical response in ultrathin films,

see Chapter 6 compared with band gaps in Chapter 5.

The structure of DFT, laid out above, forms a series of successive approxima-

tions that generally improve upon lower rungs of Jacob’s ladder, Figure 2.1. However,

one may wonder why density functional theory works at all, considering the density

is the central quantity in all of the above approximations for the exchange-correlation

potential. And the use of wavefunction based theories have demonstrated exceptional

accuracy compared with DFT, albeit with an enormous computational cost. So why
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focus on DFT and not on improving computational scaling of wavefunction based

approaches? The reason for the success of DFT rest in what is being approximated

and the contribution to the Hamiltonian. For example, if one were to examine the size

of each term in the Kohn-Sham energy functional (Equation 2.17) for the neon atom.

The exact kinetic energy for the neon atom is 128.94 Ha (Hartree), Vee is 53.24 Ha,

and Vext is −311.12 Ha; the Kohn-Sham kinetic energy is 128.61 Ha, U 66.06 Ha, and

EXC is −12.98 Ha. From the numerics for the neon atom it is clear that the noninter-

acting kinetic energy is very close to the interacting kinetic energy (∆T = 0.33 Ha),

while the EXC contribution is very small relative to the other terms entering into the

Kohn-Sham potential.108 Furthermore, subtracting the Hartee energy and exchange-

correlation energy from the exact electron-electron potential energy, Vee, yields 0.16

eV, which is in very close agreement. Therefore, the success of DFT is centered on

capturing the smallest contribution to the many-body system relative to other terms.

However, without accurate approximations formed on rigorous underpinnings of exact

constraints, predictions would not prove useful in any chemical context; therefore, in

spite of the paucity of the contribution the exchange-correlation energy makes to the

Kohn-Sham Hamiltonian, the EXC [n] term provides the requisite glue for the forma-

tion of corpuscular matter of all varieties. These density functional approximations

have been used throughout this dissertation to make various predictions of ultrathin

films for a range of properties significant for chemical characterization and application

highlighted in the subsequent chapters.

2.2.4 Periodicity & Plane-Wave DFT

This dissertation is focused on the study of crystalline systems, in particular,

the application of ab initio methods, highlighted in the previous section, to the study

of ultrathin films and their chemical properties. We will define here how translational

invariance is characterized and extend this to the Kohn-Sham formulation given in

the preceding section.
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Crystals are distinguished by their periodicity, where a single set of constituent

elements (basis) can be repeated ad infinitum on a lattice generating a solid crystalline

material.2,109 The crystal is formed by defining three Bravais lattice vectors a1, a2,

and a3, where the volume of the crystal lattice is ΩUC = det(h) (h = [a1, a2, a3]

Bravais matrix). With the Bravais lattice vectors defined the primitive unit cell can

be constructed, Figure 2.7(a). The primitive unit cell (PUC) contains the essential

space group symmetry of the two-dimensional crystal such that no voids or gaps are

formed as a result of selecting Bravais lattice vectors. Because perfect crystals are spa-

tially invariant it is commonly preferred to employ periodic boundary conditions, e.g.,

rPBC = r− h[h−1r]NINT , such that the spatial representation is wrapped back within

the primitive unit cell with the nearest-integer function (NINT ).37 With the redun-

dancy of forming the tessellation of the lattice; any crystal lattice can be constructed

by a linear combination of integer multiples of each primitive lattice vector to form

an infinite number of translational lattice vectors, i.e., Rn1n2n3 = n1a1 + n2a2 + n3a3,

which are repetitions of the PUC, Figure 2.7(a) For two-dimensional systems the

third component can be neglected (n3 = 0). Related to the Bravais lattice vectors of

the crystal are the reciprocal lattice vectors, bi, i ∈ {1, 2, 3}, which are orthogonal to

the Bravais lattice vectors,

bi · aj = 2πδij. (2.47)

The reciprocal lattice vectors have the form,

bi =
2π

ΩUC

aj × ak, (2.48)

where ΩUC = a1 · (a2×a3) is the volume of the PUC or conventional cell if expanded.

The reciprocal lattice is shown in Figure 2.7(b)-(c), where the Wigner-Seitz volume

(Figure 2.7(b)) is shown for graphene, or any hexagonally symmetric crystal. In

addition to the reciprocal lattice vectors in reciprocal space, there exist translational
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reciprocal lattice vectors, G, in reciprocal space as well, i.e., Gm = Gm1m2m3 =

m1b1 + m2b2 + m3b3 or G = 2π(hT )−1g,∀g ∈ {i, j, k} ∈ Z3 ([b1,b2,b3] = 2π(hT )−1

following from Equation 2.47). This characterizes both real and reciprocal lattice

spaces, which are inverse spaces. The consequences of translational invariance on the

Kohn-Sham wavefunctions will now be discussed.

Figure 2.7. Crystal lattice representation and the reciprocal lattice representation
displaying the path to band structures and density of states.(a) The real space lattice
constructed from primitive lattice vectors a1 and a2, where the hexagonal unit cell
shows a shift to the primitive lattice vectors. (b) The Wigner-Seitz cell formed around
a single point generating the first-Brillouin zone for a hexagonal cell. Labels within the
first-Brillouin zone mark high symmetry point in reciprocal space shown in the band
structure. (c) Two-dimensional slice of the first-Brillouin zone in (b) showing high
symmetry points K, M , and Γ (zone center) commonly integrated over to generate
band structures for hexagonal cells (dotted line). (d) Resulting band structure and
projected density-of-states for graphene.

Symmetries in quantum equations of motion are typically accompanied with

good quantum numbers, which mark different discrete and allowed quantum states

for a given atom, molecule, or solid. In the case of solids the crystal momentum

(wavevector), k =
∑

i
li
Ni

bi(∀(li ∧Ni) ∈ Z3) & i ∈ {x, y, z}, labels allowed reciprocal
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states of a crystal by Born-von Karman (periodic) boundary conditions. The peri-

odic boundary conditions lead to the well known Bloch theorem for translationally

invariant wavefunctions, which are expanded in a complete plane wave basis. Bloch’s

theorem states: an electron in a periodic potential has eigenstates of the form,

Ψnk(r) = eik·runk(r) (2.49)

=
1√
ΩUC

∑
G

cnk(G)ei(k+G)·r, (2.50)

where unk(r) = 1√
ΩUC

∑
G cnk(G)eiG·r is a periodic function in the unit cell normal-

ized with crystal volume, ΩUC, and k chosen to be in the first-Brillouin zone.110,111

Bloch’s theorem enforces translational invariance such that the translation operator,

T̂R, acting on Equation 2.50, T̂RΨnk(r) = Ψnk(r + R). The effect this has on the

Bloch wavefunction is, Ψnk(r + R) = 1√
ΩUC

∑
G cnk(G)ei(k+G)·(r+R) = eik·RΨnk(r),

where it is required under PBC’s that eiG·R = 1(∀R). Hence, T̂R = eik·R. Moreover,

T̂R commutes with the electronic Hamiltonian, hence T̂R is a simultaneous solution

to the electronic Schrödinger equation.111 Thus, it is clear that any periodic function

can be expanded in a plane wave basis, which is the Fourier transform of the real-

space function to a frequency space function. Or, in other words, in crystalline solids

the crystal wavefunctions are modulated by a periodic function of the crystal.109,112

Hence, the other terms that enter into the Kohn-Sham equations can be expressed in

their Fourier expansions via Equation 2.50.

The Fourier expansion of the Kohn-Sham wavefunction serve as an excellent

approach of representing crystal wavefunctions since the periodicity or translational
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symmetry is embedded within the summation over reciprocal lattice translation vec-

tors, Equation 2.50. In fact the electron density can be written as a Fourier transform,

n(r) =
1

Ω

∑
n

∫
ΩBZ

fnk
∑
GG′

c∗nk(G′)cnk(G)ei(k+G)·rd3k (2.51)

=
∑
G

n(G)eiG·r, (2.52)

here the integration is over k-space of the first-Brillouin zone, and fnk are the oc-

cupations for band index, n and wavevector, k. The Kohn-Sham equations can be

rewritten in a Fourier form as well by substituting Equation 2.50 into Equation 2.34

and projecting 〈k + Gm′ | yields,

( ~2

2m
|k + Gm|2δGmGm′ + VKS(Gm −Gm′)

)
cnk(Gm′) = εnkcnk(Gm). (2.53)

This is the well-known Fourier Schrödinger equation of the real-space representation

of the Kohn-Sham equations of Equation 2.34.2 In Equation 2.53 we demand that

the plane-wave expansion be orthogonal over the unit cell volume, 〈q′|q〉 = δGmGm′

(here m = (m1,m2,m3) ∈ Z3 given above for reciprocal lattice vectors). More-

over, the effective Kohn-Sham potential is Fourier expanded, VKS(Gm −Gm′) =∫
Ω
d3rVKS(r)ei(Gm′−Gm)·r, where the Kohn-Sham potential energy, VKS(r), is given

in Equation 2.35. The solution to Equation 2.53 permits understanding of material

properties and forms the basis of band theory reformulated in DFT. Hence, this ex-

pression forms the basis of all predictions made in subsequent chapters, allowing for

the broad study of ultrathin films, see Chapters 3-7, Figure 2.7(d) and Figure 2.8.

However, the use of plane-waves to describe highly oscillatory radial wavefunctions

near the nucleus of an atom (core Bohr orbits) is prohibitively expensive. In order to

circumvent this deleterious circumstance, decomposing an atom into core and valence
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wavefunctions provides a suitable point to reduce the need of accounting for rapid os-

cillations in the wavefunctions near the nucleus of the atom. This inherent limitation

in plane-wave basis sets was remedied with the use of the projector augmented wave

method (PAW).113

2.2.5 Projector-Augmented Wave Method (PAW)

The intractability of employing plane-wave basis sets for the expansion of

wavefunctions can be redressed by decomposing the atom into core and valence elec-

trons.113 The PAW method achieves this by realizing that within in an element inner

Bohr orbits are well localized because, while in higher energy bound states of the

atom, within a crystal, can become delocalized to form bands of states, Figure 2.8.

This process of decomposing the atoms into core and valence electrons is commonly

referred to as pseudization, and has proven effective in computing quantum prop-

erties in many different environments for a given pseudized element of the periodic

table.37 It is important to emphasize the PAW method originated after other approx-

imations made in this spirit were established, such as, ultrasoft pseudopotentials,

norm-conserving pseudopotentials, etc.2,37

The PAW method, as mentioned above, can be formed by finding an operator

that pseudizes the all-electron (AE) wavefunction into core and valence moments or

channels such that,

|Ψm〉 = T|Ψ̃m〉.113 (2.54)

We employ a general composite indice m = (n′, l,ml,k, n, σ), which are defined

throughout this chapter, |Ψ̃n〉 is a pseudowavefunction for valence states, and T is

an unknown operator that connects the all-electron wavefunction to the pseudized

wavefunction.2,37,113 It is important to note that the operation of Equation 2.54 is

tantamount to transforming between all-electron and pseudized spaces similar to

transforming from Heizenberg and Schrödinger pictures in quantum mechanics.113

40



Figure 2.8. Cartoon of the periodic potential resulting from the crystal translational
symmetry of silicon atoms. The arrangement of nuclei into a repeating pattern results
in the formation of core, semicore, and valence states. The extent of localization of
core and semicore states ensures that their interaction is weak, and the importance
of their inclusion into the pseudopotential is less relevant. The envelope (valence)
states can couple across many atoms leading to the formation of bands as a function
of crystallographic translational symmetry. Plane wave basis set is an appropriate
basis to expand wavefunctions within crystals.

The transformation can be constructed by setting a cutoff radius for an atom, rac ,

for those Bohr orbits or atomic quantum states that fall within this distance, Figure

2.8 and Figure 2.9. However, it is critical that the functions within the augmen-

tation spheres, pseudo-onsite (auxiliary) partial waves, |φ̃am〉, and all-electron onsite

partial-waves, |φam〉, be smoothly mapped onto the all-electron wavefunctions to ensure

accurate characterization of the envelope states, which are relevant to chemical bond-

ing and material properties.37 The onsite wavefunctions and T are objects within

the augmentation spheres of the atoms, and contain the more rapid terms in the

all-electron wavefunctions.2,37,113 The T is an atom-centered transformation which is

written in the form,

T = 1 +
∑
a

Ta, (2.55)
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which transforms the all-electron wavefunction within rac such that the augmentation

spheres among elements do not overlap.113 The augmentation spheres are expanded

in terms of the auxiliary partial waves and onsite partial waves, |φam〉 = (1 +Ta)|φ̃am〉,

such that, Ta|φ̃am〉 = |φam〉−|φ̃am〉 for all m and a. Since Ta does not operate outside the

cutoff radius, then for r > rac |φam〉 = |φ̃am〉, which will insure that pseudo onsite partial

waves smoothly map onto the all-electron partial waves.113 The smooth pseudo-onsite

partial waves form a complete set within the augmentation spheres, hence the pseudo

wavefunctions can be expanded with them as a basis,

|Ψ̃m〉 =
∑
i

P a
mi|φ̃ai 〉, (2.56)

where the P a
mi are undetermined functions to be defined below, and the expansion

is within the cutoff radius. Because |φam〉 = Ta|φ̃am〉, then within the augmentation

spheres,

|Ψm〉 = T|Ψ̃m〉

=
∑
i

P a
mi|φai 〉. (2.57)

Since T is a linear operator, then P a
mi is a linear function of |Ψ̃m〉, hence

P a
mi = 〈p̃ai |Ψm〉

=

∫
d3rp̃ai (r−Ra)Ψ̃m(r), (2.58)

which are fixed functions within the augmentation spheres commonly referred to as

projector functions.113 The projector functions form a complete set within the aug-

mentation spheres, hence
∑

i |φ̃ai 〉〈p̃ai | = 1. Furthermore, the projector functions must

be orthogonal within each augmentation sphere, 〈p̃ai |φ̃aj 〉 = δij.
113 Using the results

thus far the onsite transformation operator can be written, Ta =
∑

i |φ̃ai 〉〈p̃ai | =
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∑
i(|φai 〉 − |φ̃ai 〉)〈p̃ai |. Therefore, the transformation operator has the complete form,

T = 1 +
∑

a

∑
i(|φai 〉− |φ̃ai 〉)〈p̃ai |.113 Introducing the transformation operator to Equa-

tion 2.54 yields the needed transformation between the all-electron wavefunction to

a pseudized wavefunction for the valence electrons,

|Ψm〉 = |Ψ̃m〉+
∑
a

∑
i

(|φai 〉 − |φ̃ai 〉)〈p̃ai |Ψ̃m〉. (2.59)

This expression rewrites the all-electron wavefunction into a form that separates the

core electron wavefunctions and highly oscillatory terms within the augmentation

spheres from the smooth portions of valence electrons that are typically many Bohr

radii away from the nucleus of an element. Thus, to carryout the transformation

we need three terms: the onsite partial waves, the smooth pseudo partial waves,

and the smooth projector functions. Furthermore, it is important to note that the

pseudo-wavefunctions are expanded in a plane wave basis which use a plane wave grid

(Equation 2.48), whereas the onsite terms or quantities defined within the augmen-

tation spheres are determined on radial grids. Because of this algorithmic separation

between these quantities the pair-wise interactions will have to be compensated to

enable a separation of each quantity in the final expressions, for instance the Hartree

energy.114 This transformation of the all-electron wavefunctions into pseudized wave-

functions must be applied to all subsequent operators to generate pseudo-operators

within in PAW.

The linear Hermitian operators or observables computed within the PAW

method must be pseudized applying Equation 2.59 to the general expectation op-

erator of local operators which yield (after manipulations),

〈O〉 =
val∑
m

fm〈Ψ̃m|O|Ψ̃m〉+
∑
a

∑
ij

(
〈φai |O|φaj 〉−〈φ̃ai |O|φ̃aj 〉

)
ρaij+

∑
a

core∑
α

〈φa,coreα |O|φa,coreα 〉,

(2.60)
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Figure 2.9. Pseudized atoms of (a) phosphorus and (b) bismuth. The lighter blues
highlights the augmentation regions of each element to be frozen and subsequently
subtracted from the all-electron wavefunction. Both elements account for five elec-
trons to be computed in the Kohn-Sham equations.

where the ρaij =
∑

m fm〈Ψ̃m|p̃ai 〉〈p̃aj |Ψ̃m〉 is a one-center density matrix, and we have

added the frozen core electrons that are always present. Such general operators can be

applied to reveal the PAW or simply pseudo operators that are solved self-consistently

within DFT. For instance, the pseudo-density becomes,

n(r) =
val∑
m

|Ψ̃m(r)|2 +
∑
a

∑
ij

(
φai (r)φaj (r)− φ̃ai (r)φ̃aj (r)

)
ρaij +

∑
a

core∑
α

|φa,coreα |2

(2.61)

= ñ(r) +
∑
a

(na(r)− ña(r)), (2.62)

which shows that three terms contribute to the PAW-electron density: the pseudo-

density, the onsite all-electron partial density, and the onsite pseudo-partial density.

In fact, as we shall see, all operators reduce to this pattern shown for the pseudized

electron density, Equation 2.61. Therefore, the noninteracting Kohn-Sham kinetic
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energy has the following form, using Equation 2.60,

TS[n] =
val∑
m

fm〈Ψ̃m| −
~2

2me

∇2|Ψ̃m〉

+
∑
a

∑
ij

(
〈φai | −

~2

2me

∇2|φaj 〉 − 〈φ̃ai | −
~2

2me

∇2|φ̃aj 〉
)
ρaij +

∑
a

core∑
α

〈φa,coreα | − ~2

2me

∇2|φa,coreα 〉

(2.63)

= TS[ñ] + TS[na]− TS[ña], (2.64)

which is expected.113,114 Furthermore, the exchange-correlation energy per particle

bears a similar resemblance,

EXC [n] = EXC [ñ] + EXC [na]− EXC [ña], (2.65)

where the pseudized exchange-correlation energy obeys Equation 2.60, and varies de-

pending on the level of approximation, i.e., LDA, GGA, etc. In the case of the Hartree

energy care must be taken in pseudizing this term in the electronic Hamiltonian. In

the case of the Hartree energy, this term is nonlocal and introducing Equation 2.61

into Equation 2.16 (UH [n]),

UH [n] =
1

2
(n)(n) (2.66)

=
1

2
(ñ)(ñ) + (na − ña)(ñ) +

1

2
(na − ña)(na − ña), (2.67)

where the first and third terms are expanded on a plane wave grid and radial grid, re-

spectively. Here the shorthand (a)(b) =
∫
d3rd3r′ a(r)b(r′)

|r−r′| is used. However, the second

term contains mixed terms that are expanded on two distinctly different numerical

grids. This circumstance is assumed to be avoided by replacing ñ with ña, where

the pseudo charge density is approximated with its onsite pseudo-charge density.114

From this assumption, which relies on the projector functions to form a complete
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basis within the augmentation spheres, the Hartree energy decomposes into,

UH [n] =
1

2
(ñ)(ñ) +

1

2
(na)(na)− 1

2
(ña)(ña), (2.68)

which is the needed decomposition obeying Equation 2.60.114 This form of UH [n] is

referred to as the Kresse-Joubert approximation to the Hartree energy, however it is

the same as that used by Blöchl.113,114 In order to derive the pseudized Hamiltonian,

H̃, it is necessary to include the more baroque expressions that have been obscured

until now, for simplicity.

The pseudized Hamiltonian can be determined by variation over the pseudized

density matrices, ρ̃ =
∑

m |Ψ̃m〉〈Ψ̃m|,

∂E

∂ρ̃
= Ĥ. (2.69)

The density matrix enters into the above expressions for the one-center density ma-

trices, ρaij, all-electron onsite charge density, pseudo-onsite charge density, and the

compensation charge. The compensation charge, n̂, is included into each term to

ensure that ña+ n̂ has the same multipole moments as the all-electron charge density,

na inside the augmentation region.114 The compensation charge is defined to be a sum

of one center terms, n̂ =
∑

ij

∑
L ρ

a
ijQ̂

L
ij(r), where Q̂L

ij(r) = qLijgl(|r −R|)YL(r −R).

Here L = (l,m) is the angular momentum indices and gl(|r−R|) are site-dependent

compensation functions expanded in spherical Bessel functions that ensure agree-

ment within the augmentation spheres between the all-electron and pseudo-charge

densities.114 In this form, Kresse et al., gaurantees smooth mapping between the aug-

mentation spheres and the (pseudized) valence wavefunctions.114 It is now possible to

determine the pseudo-Kohn-Sham ground state energy, pseudized Hamiltonian, and

eigenvalue equation beginning with Equation 2.69.
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The total energy is split into three terms, as expected, E = Ẽ + Ea − Ẽa,

where the first is the pseudo-energy,

Ẽ =
∑
m

fm〈Ψ̃m|−
~2

2me

∇2|Ψ̃m〉+EH [ñ+ n̂]+

∫
d3rvH [ñZc][ñ(r)+ n̂(r)]+U(R, Zion),

(2.70)

which contains the frozen core all-electron charge density and point charge density

of the nuclei, nZc = nc + nZ , respectively.114 Here U(R, Zion) is the nuclear-nuclear

energy, or VII for a given atomic number Zion. The second term is the onsite all

electron energy,

Ea =
∑
ij

ρaij〈φai |−
~

2me

∇2|φaj 〉+EH [na] +

∫
d3rvH [nZc]n

a(r) +EXC [na +nc], (2.71)

and the final term is the pseudo-onsite energy,

Ẽa =
∑
ij

ρaij〈φ̃ai |−
~

2me

∇2|φ̃aj 〉+EH [ña+n̂]+

∫
d3rvH [ñZc][ñ

a(r)+n̂(r)]+EXC [ña+n̂],

(2.72)

which completes the total pseudized energy.114 In order to determine the pseudized

Hamiltonian we employ Equation 2.69 and treat each Equation (2.70)-(2.72) sepa-

rately which has the formal general expression,

dE

dρ̃
=
∂E

∂ρ̃
+

∫
d3r

δE

δñ(r)

∂ñ(r)

∂ρ̃
+
∑
ij

∂E

∂ρij

ρij
∂ρ̃
.114 (2.73)

The total derivative of the ground state energy must be applied to all contributions

to the total energy above, which yields the pseudo-Hamiltonian that is solved in

subsequent chapters. Applying Equation 2.73 to Equation 2.70 yields,

∂Ẽ

∂ρ̃
= − ~

2me

∇2 + ṽeff (r) +
∑
L

∫
d3rṽeff (r)Q̂L

ij(r).114 (2.74)
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Continuing to the subsequent contributions only the one-center density matrices have

a dependence on the pseudo-density matrices and the compensation charges, thus,

Da
ij =

∂Ea

∂ρ̃
= 〈φai | −

~
2me

∇2 + vaeff (r)|φaj 〉, (2.75)

and the pseudo-onsite energy takes the form,

D̃a
ij =

∂Ẽa

∂ρ̃
= 〈φ̃ai | −

~
2me

∇2 + veff (r)|φ̃aj 〉+
∑
L

∫
d3rṽaeff (r)Q̂L

ij(r).114 (2.76)

Combining Equations (2.74)-(2.76) results in the pseudized Hamiltonian,

Ĥ = − ~2

2me

∇2 + ṽeff (r) +
∑
ij

|p̃ai 〉(D̂ij +Da
ij − D̃a

ij)〈p̃aj |, (2.77)

which has an elegant form.114 The D̂ij term is an interaction between the compen-

sation charge accompanied with an electron with the effective one-electron potential

energy, while the last two terms Da
ij and D̃a

ij are onsite terms that contain rapid varia-

tions not present in the pseudo-effective potential, ṽeff (r), and pseudo-wavefunction,

|Ψ̃m〉.114 This Hamiltonian is solved within the eigenvalue expression,

T†ĤT|Ψ̃m〉 = εmT
†T|Ψ̃m〉, (2.78)

which is the well-known eigen-equation for electronic structure theory.113 The left

side contains the pseudized Hamiltonian which is a similarity transform from all-

electron space to pseudo-space for a given element, and the term, T†T, is the overlap

operator, S̃ = T†T = 1 +
∑

ij |p̃aj 〉(〈φai |φaj 〉 − 〈φ̃ai |φ̃aj 〉)〈p̃aj |.113,114 Hence, the general

pseudo-eigenvalue equation takes the form, H̃|Ψ̃m〉 = εmS̃|Ψ̃m〉. This form of the

pseudo-eigenvalue effective Schrödinger equation resembles the original form of the

expression, Equation 2.34. The final form of the PAW eigen-equation is the basis
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of predictions made herein; furthermore, this formulation is computationally fast

and remedies the shortcomings of employing a plane-wave basis that is needed for

crystalline structures, such as ultrathin films, by reducing the explicit inclusion of

all Bohr orbits (lower core-electrons) to just the valence states involved in chemical

activity, Figure 2.8 and Figure 2.9.

2.3 Excited-State Density Functional Theory

Density functional theory can be extended to include temporal phenomena

such as Born-Oppenheimer dynamics, or excited state transitions within the PAW

framework. Excited state phenomena provide salient spectroscopic signatures of a

given material, or fingerprint for characterizing the optical response of a crystalline

material. In the study of ultrathin films an interesting physical scenario arises, where

one crystallographic direction is significantly smaller, which is the thickness of an

atom in the most extreme, i.e., graphene. The optical response of a material when

exposed to light is shown in Figure 2.10. In the first panel, an insulator with band

gap energy separates occupied and unoccupied states within the crystal. Typically,

in this work especially, the Fermi energy, εF , is taken to be zero (dotted green line

Figure 2.10). In order to induce a transition across the energy gap it is necessary

to provide a photon equivalent or greater than the bandgap. The second panel dis-

plays the photoexcitation event leading to the excitation of a single electron into the

conduction states (unoccupied), or absorption. The third panel displays what can

commonly occur in crystalline systems, which is the formation of a bound electron-

hole pair or exciton. Depending on the chemical bonding of the crystal, the type of

exciton can be localized (Frenkel) or delocalized (Wannier-Mott).2,115 Moreover, the

final panel shows the relaxation back to the valence states recombining radiatively (or

nonradiatively) with the hole which forms after photoabsorption, Figure 2.10. There-

fore, the type of excitations we will capture, see Chapter 6, are neutral excitations

involving exciton generation. This type of optical response of a crystalline system
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can be described within linear response theory, which is elaborated below within

time-dependent density functional theory (TDDFT). In this section we develop some

critical components to the understanding of the optical response of crystalline sys-

tems such as ultrathin films. And we extend notions of TDDFT to the computing of

the intrinsic optical response of ultrathin films such as the dielectric response. As we

shall see, the dielectric response characterizes the interaction of electric fields within

matter.

Figure 2.10. Excitation within a crystalline system (insulating), such as a semicon-
ducting ultrathin film. (left-to-right) The excitation process occurs via photon source
and absorption from valence band electrons, where if the photon energy is in excess
of the bandgap, the formation of conduction band electrons and a hole (single excita-
tion) can occur (exciton = eh-pair), and finally radiative (or nonradiative) relaxation
back to the valence band annihilating the electron-hole pair. Note that the eh-pair
within TDDFT is implicitly constructed, where only excited state and ground state
wavefunctions are mixed within the formalism.
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2.3.1 Time-dependent DFT

In TDDFT, just as in DFT, we map the temporal wavefunction onto an effec-

tive potential with,

i~
∂Ψ(r, t)

∂t
= ĤΨ(r, t), (2.79)

which is the time-dependent Schrödinger equation.2 The TDDFT formulation was

highlighted by the Runge-Gross theorems (1984), which, like in static DFT, a bijective

mapping exists between the time-dependent density n(r, t) and the time-dependent

external potential vext(r, t).
116 The time-dependent Kohn-Sham expression of Equa-

tion 2.79 has the following form,

i~
∂Ψm(r, t)

∂t
=
[
− ~2

2me

∇2 + veff [n](r, t)
]
Ψm(r, t), (2.80)

where the effective Kohn-Sham potential energy is the well-known veff [n](r, t) =

vext(r, t) + vH [n](r, t) + vXC [n](r, t). The first term is the external potential energy

between electrons and nuclei, the second term is the time-dependent Hartree potential,

vH [n](r, t) = e2

4πε0

∫
d3r′ n(r′,t)

|r−r′| , and the exchange-correlation energy discussed above.

With this expression we can formulate the linear response of a system to an external

perturbation.

Linear response is appropriate for external fields whose field strength does

not exceed the internal electric field of the nuclei, common in spectroscopy, which

permits a perturbative treatment of the induced density. In linear response theory,

the optical susceptibility, χ(r, r′, t − t′), is critical in the description of the induced

density, δn(r, t), if the external potential changes at δvext(r
′, t′),

δn(r, t) =

∫
dt′
∫
d3r′χ(r, r′, t− t′)δvext(r′, t′), (2.81)
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where the optical susceptibility is χ(r, r′, t−t′) = δn(r, t)/δvext(r
′, t′).2,117,118 However,

we will establish a link between the exact case (Equation 2.81) with the Kohn-Sham

formalism. In this case, we expect the Kohn-Sham response function, χKS(r, r′, t−t′),

to have the same formulation,

δn(r, t) =

∫
dt′
∫
d3r′χKS(r, r′, t− t′)δveff (r′, t′), (2.82)

where, in a similar fashion, the Kohn-Sham optical susceptibility χKS(r, r′, t − t′) =

δn(r, t)/δveff (r
′, t′). In the case of the exchange-correlation energy per particle within

linear response,

vXC [n+ δn](r, t) = vXC [n](r, t) +

∫
d3rfXC [n](r, r′, t− t′)δn(r′, t′), (2.83)

where the exchange-correlation kernel is defined as fXC(r, r′, t−t′) = δvXC(r, t)/δn(r′, t′),

which is evaluated for the ground-state density, n(r). In order to link Equation 2.81

and Equation 2.82, we recognize that the density response is the same in both ex-

pressions, hence,

∫
dt′
∫
d3r′χ(r, r′, t− t′)δvext(r′, t′)

=

∫
dt′
∫
d3r′χKS(r, r′, t− t′)δvext(r′, t′) + δvH [n]r′, t′ + δvXC [n](r′, t′), (2.84)
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where this expression can be expanded for each potential energy using the functional

derivatives of the optical susceptibilities mentioned above,

δvH [n](r′, t′) =

∫ ∫
dt1dt2

∫ ∫
d3r1d

3r2
δvH [n](r′, t′)

δn(r1, t1)

δn(r1, t1)

δvext(r2, t2)
δvext(r2, t2)

=

∫ ∫
dt1dt2

∫ ∫
d3r1d

3r2
e2

4πε0

1

|r1 − r′|
χ(r1, r2, t1 − t2)δvext(r2, t2), (2.85)

δvXC [n](r′, t′) =

∫ ∫
dt1dt2

∫ ∫
d3r1d

3r2
δvXC [n](r′, t′)

δn(r1, t1)

δn(r1, t1)

δvext(r2, t2)
δvext(r2, t2)

=

∫ ∫
dt1dt2

∫ ∫
d3r1d

3r2fXC(r, r′, t′ − t)χ(r1, r2, t1 − t2)δvext(r2, t2), (2.86)

and rewriting these expressions into frequency space yields the optical susceptibility,

χ(r, r′, ω) = χKS(r, r′, ω)

+

∫ ∫
d3r1d

3r2χKS(r, r1, ω)
( e2

4πε0

1

|r1 − r2|
+ fXC [n](r1, r2, ω)

)
χ(r2, r

′, ω). (2.87)

This expression for the optical susceptibility is a Dyson equation. In this expres-

sion, the optical susceptibility is evaluated by determining the Kohn-Sham optical

susceptibility with some approximated exchange-correlation functional. It is common

to write Equation 2.88 in a more compact form, χ = χKS + χKSK(r1, r2)χ, where

K(r1, r2) = e2

4πε0
1

|r1−r2| + fXC [n](r1, r2, ω). For the case of fXC = 0, we have the

well known random-phase approximation (RPA) or Hartree approximation since no

effects of exchange and correlation enter into the Dyson equation (Equation 2.88).

However, we must show what the Kohn-Sham optical response function is based on

time-dependent perturbation theory.

In order to determine the Kohn-Sham response function we can introduce a

time-dependent perturbation , δH(t), into the time-dependent Kohn-Sham equation,

Equation 2.80,

i~
∂Ψm(r, t)

∂t
= [Ĥ0 + δH(t)]Ψm(r, t). (2.88)
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The time-dependent perturbation can be written δH(t) = eηt
∑N

i=1 δv(ri, t), where the

exponential ensures an adiabatic switching on of the external perturbation, and 0 <

η << 1.118,119 The frequency space formulation of the time-dependent perturbation

can be written in the form,

δH(t) =

∫
d3r

∫
dω

2π
e−iω̆tδv(r, ω)n̂(r), (2.89)

where ω̆ = ~ω + iη, and n̂(r) =
∑N

i=1 δ(r − ri) is the density operator.118,119 Within

first-order time-dependent perturbation theory the wavefunction can be written in

the form,

|Ψ(t)〉 = e−iE0t|Ψ0〉+
∑
j 6=0

aj(t)e
−iEjt|Ψ0

j〉. (2.90)

The first term is the principle solution to the unperturbed case, while the second term

contains the perturbation on the ground-state wavefunction. The time-dependent

coefficients admix excited state contributions to the unperturbed wavefunction and

have the following form,

aj(t) = −i
∫ t

−∞
dt′eiω̆0jt

′〈Ψ0
j |δH(t′)|Ψ0〉

= −i
∫
d3r′

∫
dω

2π

∫ t

−∞
dt′e−i(ω0j−ω̆)t′δv(r′, ω)〈Ψ0

j |n̂(r)|Ψ0〉

= −
∫
d3r′

∫
dω

2π
δv(r′, ω)〈Ψ0

j |n̂|Ψ0〉
ei(ω0j−ω̆)t

ω0j − ω̆
, (2.91)

where ω0j = Ej − E0 is the energy difference from the excited state-j and ground

state. The induced density is given by the change in the perturbed expectation of

the density operator and the ground-state expectation density operator,

δn(r, t) = nind(r, t) = 〈Ψ(t)|n̂|Ψ(t)〉 − 〈Ψ0(t)|n̂|Ψ0(t)〉, (2.92)
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which when expanded,

nind(r, t) =
∑
j 6=0

[aj(t)〈Ψ0|n̂|Ψ0
j〉e−iω0jt + a∗j(t)〈Ψ0

j |n̂|Ψ0〉eiω0jt]

= −
∫
d3r′

∫
dω

2π
δv(r, ω)e−iω̆t

∑
j 6=0

[〈Ψ0
j |n̂(r′)|Ψ0〉〈Ψ0|n̂(r)|Ψ0

j〉
ω0j − ω̆

+
〈Ψ0|n̂(r′)|Ψ0

j〉〈Ψ0
j |n̂(r)|Ψ0〉

ω0j + ω̆

]
. (2.93)

In frequency space Equation 2.93 becomes,

nind(r, ω) = −
∫
d3r′e−iω̆t

∑
j 6=0

[〈Ψ0
j |n̂(r′)|Ψ0〉〈Ψ0|n̂(r)|Ψ0

j〉
ω0j − ω̆

+
〈Ψ0|n̂(r′)|Ψ0

j〉〈Ψ0
j |n̂(r)|Ψ0〉

ω0j + ω̆

]
δv(r, ω). (2.94)

From Equation 2.94, the frequency space induced density can be related to the optical

susceptibility by using the the functional derivative of the induced density relative to

the change in the potential,

χ(r, r′, ω) =
δn(r, ω)

δv(r′, ω)
= −

∑
j 6=0

[〈Ψ0
j |n̂(r′)|Ψ0〉〈Ψ0|n̂(r)|Ψ0

j〉
ω0j − ω̆

+
〈Ψ0|n̂(r′)|Ψ0

j〉〈Ψ0
j |n̂(r)|Ψ0〉

ω0j + ω̆

]
. (2.95)

With this general expression we can determine the Kohn-Sham optical susceptibility,

but we define the ground (|Ψ0〉) and excited state (|Ψ0
j〉) wavefunctions to rewrite

the numerators of Equation 2.95. The ground state fermion wavefunction must be

a product of antisymmetric spin-orbitals or a Slater determinant. If we write the

ground state wavefunction in this form, then,

Ψ0(r1, ..., rN/2) = ψ1(r1)ψ2(r2)...ψn(ri)...ψN/2(rN/2), (2.96)
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where the wavefunctions ψ1(r1), ..., ψN/2(rN/2) are the lowest filled states forming the

ground-state solution to the static Kohn-Sham equations. For single excitations, the

excited state wavefunction can be formed creating an electron in a higher energy state

and destroying an electron in the ground state,

Ψ0
j(r1, ..., rN/2) = ψ1(r1)ψ2(r2)...ψm(ri)...ψN/2(rN/2), (2.97)

where the mth-electron is greater than the highest ground state wavefunction. The

matrix elements of the numerator can be understood by expanding the electron

particle number, n̂, and using the shifting property of Dirac delta functions, i.e.,

〈ψ1(r1)ψ2(r2)...ψn(ri)...ψN/2(rN/2)|δ(r−rk)|ψ1(r1)ψ2(r2)...ψn(ri)...ψN/2(rN/2)〉, and sum-

ming over k, reduces to ψ∗n(r)ψm(r), which is just a product of the one-particle ground

state wavefunction and one-particle excited state wavefunction. This allows for the

independent density-density response function to be written in the form,

χKS(r, r′, ω) = −
∑
n

∑
m

2fn(1− fm)
(ψ∗m(r′)ψn(r′)ψ∗n(r)ψm(r)

εm − εn − ω̆

+
ψ∗n(r′)ψm(r′)ψ∗m(r)ψn(r)

εm − εn + ω̆

)
. (2.98)

The summation over occupied and unoccupied states is accompanied with the occu-

pancies fn and 1− fm, respectively. For fermion states the occupation, fn, can be 0

and 1. In order to rewrite Equation 2.98 into form the reflects the periodicity of the

crystal lattice we must Fourier transform the Kohn-Sham optical response function,

χKS(q,q′, ω). By Bloch’s theorem χKS(q,q′, ω) is nonzero if q and q′ differ by a

reciprocal lattice vector G such that q (propagation direction of light) is in the first

Brillouin zone. Hence, q → q + G and q′ → q′ + G; furthermore, sum over states

includes the allowed crystal momentum, k, such that n → nk and m → mk for all

k within the first Brillouin zone. Finally, the Kohn-Sham optical susceptibility with
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the Fourier representation is given by,

χKSGG′(q, ω) = − 1

Ω

∑
nk

∑
mk′

2fnk(1− fmk′)

(〈ψmk′ |ei(q+G)r|ψnk〉〈ψnk|e−i(q+G′)r′|ψmk′〉
εmk′ − εnk − ω̆

+
〈ψmk′|ei(q+G)r|ψnk〉〈ψnk|e−i(q+G′)r′ |ψmk′〉

εmk′ − εnk + ω̆

)
= − 1

Ω

∑
vck

2fvk(1− fck+G)
(ρvck(q + G)ρ∗vck(q + G′)

εck+G − εvk − ω̆
+
ρvck(q + G)ρ∗vck(q + G′)

εck+G′ − εvk + ω̆

)
.

(2.99)

Note we have made the notational change from n 7→ v and m 7→ c for momentum

transfer q 7→ k + G ∈ BZ on the last line. And the ρvck(q + G) =
∫
d3r

ψ∗vk(r)ei(q+G)rψck+G(r).120,121 This expression contains the momentum space repre-

sentation of the independent particle optical susceptibility within the Kohn-Sham

formalism.118,122,123 Introducing Equation 2.99 into the Dyson expansion of the opti-

cal susceptibility yields the full optical susceptibility of the density response (Equation

2.87). The optical susceptibility will play a critical role in computing the dielectric

response of an ultrathin film, see Chapter 6.

2.3.2 Dielectric Response

Optical properties of solids provide needed spectroscopic signatures of the

band structure of the material. But optical properties can provide additional in-

sight into impurity levels, lattice vibrations, localized defects, excitons, and magnon

excitations.124 Typically, the dielectric response can be determined from ellipsomet-

ric spectroscopy, and can be separated into two contributions: real and imaginary

frequency-dependent dielectric functions.125 The imaginary dielectric response is the

key physical observable that is often used to characterize the band structure. More-

over, the frequency-dependent complex dielectric function can be used to relate to

other observables, such as the absorption coefficient, enabling their computation, see

Chapter 6.
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The propagation of electromagnetic waves has long since been characterized

by Maxwell’s equations.126 In the following, we will work in Fourier space unless

otherwise stated. And we assume that the electric field is irrotational, i.e.,rotE =

0, such that the electric field depends on the gradient of a scalar potential, E =

∇φ.126,127 In the electronic response of a material to an external perturbation the

density can be rewritten to include external and internal contributions, ntot = next +

nint.
2 Consequently, all of the electrodynamic equations can be partitioned this way,

where the external contributions vanish within the material.2 The displacement field is

related to the dielectric response of a material (Fourier representation), via, D(q, ω) =∑
β εαβ(q, ω)Eβ(q, ω).127 Here the 3x3 tensor ε is the frequency dependent dielectric

function. Employing the Maxwell relations ∇ ·D = 4πenext(r, t), and for the electric

field∇·E = 4πentot(r, t), where the real-space representation is used we can formulate

the frequency-dependent dielectric function.2,127 Fourier transforming the real-space

representations of the displacement field and electric field and solving for the dielectric

function yields, εGG′(q, ω) = next(q, ω)/ntot(q, ω).127 This expression for the dielectric

function can be rewritten with the aid of Poisson’s equation, we find,

εGG′(q, ω) =
δVext(q, ω)

δVtot(q, ω)
, (2.100)

where a variation is applied to the numerator and denominator for the Poisson equa-

tion (q2δV = 4πeδn). With Equation 2.100, we can expand the external potential

(Vext = Vtot−VH) and use the chain-rule for the Fourier Hartree potential with respect

to the total, i.e., εGG′(q, ω) = 1− δVH
δn

δn
δVtot

, which reduces to the following expression

for the macroscopic frequency dependent dielectric function,

εGG′(q, ω) = δGG′ − νCPGG′(q, ω), (2.101)
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where νC = 4πe2

|q+G||q+G′| is the Fourier Coulomb kernel and PGG′(q, ω) = δn/δVtot is the

polarization response or irreducible polarizability of the electrons.2,118 Here we applied

q → q + G as above for the independent Kohn-Sham susceptibility. Moreover, it

can be shown that the irreducible polarizability is related to the Kohn-Sham optical

susceptibility with the following Dyson like equation,

PGG′(q, ω) = χKSGG′(q, ω) +
∑
G1G2

χGG1(q, ω)fXC,G1G2(q, ω)PG2G′(q, ω).118,128

(2.102)

This form of the irreducible polarizability contains additional contributions from the

exchange-correlation kernel, fXC . The inclusion of the last term goes beyond RPA;

however, the exchange-correlation kernel is zero, hence,

εRPAGG′ (q, ω) = δGG′ − νCχKSGG′(q, ω), (2.103)

where it is clear that the irreducible polarizability is equivalent to the Kohn-Sham

optical susceptibility of Equation 2.99.118,121 From Equation 2.103 the dielectric re-

sponse can be determined in terms of interband transitions within crystalline systems,

which permits the computation of absorption spectra, Chapter 6. The macroscopic

dielectric function (Equation 2.103) can be approximated from the head of the mi-

croscopic dielectric function in the optical limit or long wavelength limit (q → 0),

ε(q, ω) ∼ limq→0 ε00(q, ω) = 1− limq→0
4πe2

q2
χKS00 (q, ω).118,121 With this approximation

and using the complex dielectric function (ε = ε(1) + ε(2)), where the imaginary term

characterizes the absorption or attenuation of light, ε(2)(ω), can be determined for a

given material.118,121 With the independent Kohn-Sham response function of Equa-

tion 2.99 and the various approximations made to the macroscopic dielectric function,

the frequency dependent complex dielectric function can be written in the follow-

ing form with the aid of the Sokchatsky-Weierstrass theorem (limγ→0+
∫∞
−∞ dx

f(x)
x+iγ

=
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P( 1
x
)± iπδ(x) keeping the Dirac term for the complex dielectric function),

ε
(2)
αβ(q, ω) =

4πe2

ΩUC

lim
q→0

1

q2

∑
cvk

2wk〈uck+eαq|uvk〉〈uck+eβq|uvk〉

[δ(εck − εvk − ~ω)− δ(εck − εvk + ~ω)], (2.104)

where we have included the tensor dependence, e.g., ε
(2)
αβ(q, ω) = q̂α · ε(2)(q, ω) · q̂β,

of the complex dielectric function because of spatial correlations associated with the

direction of propagation of light, q = q̂/|q|, and the weight of each symmetrized

crystal wavevector, wk.118,121 The two δ(x) functions in Equation 2.104 represent

the absorption (−~ω) and emission (~ω) of light. The complex dielectric function

of Equation 2.104 has some interesting properties. First, the inclusion of the Dirac

delta function enforces a selection rule for translationally invariant systems where-

fore the crystal momentum, k, must be equivalent between conduction (c index) and

valence (v index) band transitions, hence, kc ∼ kv for allowed vertical interband

transitions. Second, the transition probability is given by the cell-periodic functions,

|unk〉, originally shown in Equation 2.50, and contribute nonzero values for a given

photon frequency, where wavevector conservation is obeyed. Finally, since no explicit

dependence on reciprocal lattice vectors is present, the complex dielectric function

(Equation 2.104) does not include local field effects provided by the underlying crys-

tal structure.2,118,121 Nevertheless, Equation 2.104 is valid within the linear response

regime for weak electric fields that do not vary on the order of a lattice constant.

This form of the dielectric function can be improved with higher level inputs such as

electron-hole wavefunction expansions for the case of neutral excitons, or many-body

perturbation expansion of the exchange-correlation functional.128
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CHAPTER THREE

Periodic Trends of Pnictogen Substitution into a Graphene Monovacancy: A
First-Principles Investigation

This chapter published as: Paul A. Brown; Chengyong Xu; and Kevin L. Shuford
Chem. Mater. 2014 26, 19, 5735-5744

3.1 Abstract

We present a theoretical investigation on the electronic properties and for-

mation energetics of pnictogen substitution into a graphene monovacancy. Our work

elucidates the fundamental interactions that occur between the dopant and graphene,

which ultimately dictate the observed behavior of the material. We find a linear

trend for the energy of formation proceeding down group 15 of the periodic table.

Further, we observe the formation of a protrusion at the monovacancy site, which is

particularly conspicuous for larger pnictogens. This blistering can be attributed to

charge transfer between the substituted heteroatom and the bordering carbon atoms

of the monovacancy. Reorganization of the defect site of graphene becomes more

pronounced for the latter pnictogens antimony and bismuth. An interaction regime

emerges among this group, whereby nitrogen and phosphorus chemisorb strongly to

the vacancy site, arsenic weakly chemisorbs, while antimony and bismuth physisorb

to the surface. These interactions introduce moderate band gaps and yield impurity

states near the Fermi energy, similar to a doped semiconductor material. Moreover,

the extent of chemical bonding and planarity notably alters the band structure and

the accessibility of low lying energy states, which are important for charge transport

and reactivity. This work suggests the possibility of tailoring graphene surfaces for

electronic devices or chemical transformations of interest via the appropriate choice

of pnictogen dopant.
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3.2 Introduction

Graphene has emerged as one of the most promising materials of the 21st cen-

tury.6,7,129 The two dimensional bipartite lattice of graphene exhibits unique electronic

properties, which makes graphene an interesting material to study.129 Graphene’s

properties like superlative structural rigidity, high surface area, high extrinsic mo-

bility, long mean free path, high thermal and electrical conductivity,129 etc. make

it an excellent material for new age electronic devices and as a scaffold for novel

nanoassemblies.130,131

Current research on graphene has focused on tailoring its electronic properties

by doping heteroatoms or forming vacancies directly into the lattice structure.132–138

Heteroatoms may be deposited via chemical vapor deposition onto graphene sheets

at various concentrations.139,140 Vacancies can be formed during fabrication or by

ion irradiation of mechanically exfoliated graphene sheets.141–143 Clever methods for

structurally manipulating graphene’s charge carriers by introducing (n-type) or ab-

stracting (p-type) electrons from graphene could permit graphene based electronic

devices with various modalities.144 In particular, atomic nitrogen and gold have been

suggested as excellent candidates in achieving this for future graphitic devices, since

molecular absorbates may be too entropically unstable or reactive for such appli-

cations.145 With the improvement of microscopic technologies, such as transmission

electron microscopy,146–148 scanning tunneling microscopy,132,149,150 and aberration-

corrected transmission electron microscopy,151 atomic resolution of such defects can

be observed at the atomistic scale.

Prior studies of graphene have examined nitrogen and phosphorus lattice sub-

stitutions;152–161 however, research concerning latter pnictogens is rather sparse.162–164

These carbon alloys might have potentially prominent chemical and electronic utility

in many diverse areas. The rich electronic properties of these elements could vary

wildly proceeding down the group as metallic character increases. Thus, it may be
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possible to influence the concentration of charge carriers by simply controlling the

composition or type of substituent within the graphene defect site.

In this research, we systematically focus on the the entire pnictogen series with

first principles density functional theory (DFT).54,61 We focus on the simplest (lex

parsimoniae) interaction between heteroatoms and a single graphene monovacancy.

In particular, we substitute all pnictogens into a monovacancy to delineate funda-

mental trends associated with atomic doping of free standing graphene. We find that

stability decreases down the group as formation energies rise. Moreover, the sorption

characteristics and electronic properties of the system change as the pnictogen size

increases. In particular, impurity states form near the Fermi energy generating mag-

netic ground states and local charging, which subsequently diminishes going down

the series. The local magnetic order will be presented in a separate account.

The remainder of this article is outlined as follows. The equations applied to

determine the energy of formation and charge density differences are discussed in the

computational methods section. In the results and discussion section, we present the

stability associated with each pnictogen within the monovacancy and charge density

difference maps highlighting primary interactions between the graphene sheet and

pnictogen. We include the atomic projected density of states of each pnictogen atom

to illustrate the strength of interaction with the graphene monovacancy. We also

present the electronic band structures with selected bands decomposed to show the

perturbing effects of each pnictogen on the graphene monovacancy. We conclude by

summarizing the emergent trends upon substitution into a graphene monovacancy.

3.3 Computational Methods

DFT calculations were conducted with the software package VASP, where the

core-valence interaction was treated within projector augmented wave method.113,165

The exchange-correlation was treated at the generalize gradient approximation (GGA)

level of theory; the Perdew-Burke-Ernzerhof (PBE) functional was utilized.85 Spin
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polarization was accounted for in all cases where the pnictogen substituent was posi-

tioned out of the plane of graphene. A 5 x 5 supercell was constructed with 12 Å of

vacuum space to minimize interactions between images. Note, the supercell approxi-

mation is chosen for computational ease for delinating relative trends associated with

pnictogen substitution, though larger supercells will converge to smaller differences

in computed values due to lesser image interaction and lower dopant concentrations.

The lattice constant was set to 2.46 Å to match the experimentally determined value.

The kinetic energy cutoff was set to 520 eV for all cases studied herein. All structures

were relaxed on a 12 x 12 x 1 gamma point grid, followed by linear combination of

charge density on 20 x 20 x 1 gamma point grid to optimize bonding interactions.

All energies of formation were determined from the tetrahedron method plus Blöchl

corrections.166 The projected density of states each system was simulated on the

same dense k-point grid with smearing temperature set to σ = 0.01 (N, P, As) and

σ = 0.1 (Bi, Sb), respectively, where Gaussian smearing was applied to the former

and Methfessel-Paxton smearing167 for the latter. Geometry optimization was per-

formed on all structures to minimize the Hellmann-Feynman forces with a tolerance

of 0.001 eV/Å. The final, relaxed heteroatom-graphene structures were permitted to

explore all three degrees of freedom, with the pnictogens initially placed above the

graphene sheet monovacancy.

In order to compute the energy of formation Ef of substituted graphene, we

first determined the chemical potentials of carbon, µC , and pnictogens, µPN . We

define the energy of formation to be

Ef = Es − nCµC − nPNµPN , (3.1)

where ES is the total energy of the substituted graphene monovacancy, nC is the

number of carbon atoms, and nPN is the number of pnictogens substituted, which

is unity in this study. Note, the chemical potentials of each pnictogen, µPN , were
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determined from their respective reference states from first principles calculation.

The reference states of each pnictogen are taken as follows: gaseous nitrogen, white

phosphorus, arsenic grey, orthorhombic antimony, and, finally, trigonal rhombohedral

bismuth. To explore the influence of the charge transferred between the defective

graphene sheet and heteroatoms, we determined the density difference as

∆ρ = ρSG − ρMV − ρS (3.2)

where ρSG is the total charge density of the graphene-heteroatom system, ρMV is the

total charge density of the defect monolayer graphene, and ρS is the total charge

density of the substituent heteroatom. Note, the substituent atomic charge density is

placed within identical supercells at the optimized locations within the supercell. The

charge difference topologies presented display the absolute value of ∆ρ, and therefore

highlight the strongest interactions between the heteroatom and graphene carbons,

after subtraction of the monovacancy total charge density and dopant total charge

density. These plots display the magnitude of charge density that has been shifted

between spatial locations. The numerical and topological data are presented in the

results and discussion below.

3.4 Results & Discussion

Pnictogen Configurations & Charge Transfer. The geometry optimized

structures were computed at the GGA level of theory treating the exchange-correlation

with the PBE functional. The original, pristine graphene C-C bond lengths resulting

from our approach were found to be 1.42 Å. This is consistent with experimental

assessment of graphene carbon-carbon bond lengths.6,7,129 The lattice constant was

set to be 2.42 Å to ensure accuracy of these calculations. In the case of the monova-

cancy defect, we observe an interesting reorganization of the vacancy, 3.1. The initial

structure, 3.1a, begins with D3h symmetry. Upon relaxation, C2 and C3 deform the
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Figure 3.1. Geometry optimized structures of the monovacancy. Panel (a) contains
the monovacancy with bordering carbon atoms highlighted in red. Panel (b) displays
the structure following relaxation. Note the symmetry has been reduced.

monovacancy by shortening the distance between each other from 2.46 Å to 2.03 Å.

This is the noticeable Yahn-Teller (YT) distortion of the monovacancy, where the

symmetry has been reduced to Cs. Moreover, the energy of formation computed from

3.1 is 7.66 eV, which is consistent with other studies.151

The results of the relaxed structures with pnictogens interacting with the

monovacancy are presented in 3.1. Each pnictogen was placed above the monovacancy

and fully relaxed to reach self-consistency. The optimized structures are shown in

3.2. Nitrogen substituted graphene prefers to sit in the plane of graphene. This

is because of its small atomic radius, smaller than carbon. The pnictogen-carbon

bond lengths were found to be 1.40 Å, approximately 0.02 Å smaller than carbon-

carbon bond lengths. Within the plane of graphene, nitrogen adopts full sp2 character

having bond angles of approximately 120◦ making it configurationally trigonal planar.

The bond lengths of neighboring carbons were found to be shorten slightly to 1.41

Å, suggesting charge transfer between the nitrogen and nearest neighbor carbons.

Analysis of the nitrogen substituted defect graphene via 3.2 shows 1.06 units of charge

is transferred to the graphene sheet (3.1). 3.3a clearly shows the local nature of the

charge distribution around nitrogen and the nearest neighbor carbons. However,
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Pnictogen d(PN-C), Å d(C-C), Å Bond Angle (◦) OOP, Å CT (e)
N 1.40 1.47-1.426 120 - 1.06
P 1.76 1.44-1.44 99.7 1.54 2.39
As 1.90 1.41-1.44 92.6 1.88 1.07
Sb 2.10 1.40-1.45 83.9 2.31 2.02
Bi 2.20 1.40-1.45 79.9 2.48 1.99

Table 3.1. Geometric parameters of substituted graphene structures. Distances
between the pnictogen and graphene are given as d(PN-C). The range of

carbon-carbon bonds within the entire supercell is d(C-C), followed by the angle
measured between the nearest neighbor atoms and heteroatom. The out-of-plane

(OOP) distance is measured vertically from the lowest in-plane carbon atoms in the
unit cell to the heteroatom. The magnitude of charge transferred between the

pnictogen and graphene is presented as CT.

Figure 3.2. Top and side views of optimized pnictogen-graphene monovacancy sys-
tems: (a) nitrogen (blue), (b) phosphorus (green), (c) arsenic (violet), (d) antimony
(orange), (e) bismuth (purple).

beyond this structural detail, little reorganization is observed near the monovacancy.

The latter pnictogens adopt a different configuration due to steric frustration.

Phosphorus is larger in comparison to carbon and nitrogen, so it adopts a

quasi-trigonal pyramidal type configuration when interacting with the monovacancy

graphene. In-plane phosphorus is possible, but less stable than the out of plane phos-

phorus configuration. The difference in energy between in-plane and out-of-plane

phosphorus doped graphene is 2.1 eV. The equilibrium bond length was found to be

1.76 Å, in agreement with other reports.160,161 The monovacancy with phosphorus

juxtaposed above leads to the puckering of the defect site, where phosphorus sits 1.54

Å out of the plane (3.2b and 3.1). This is primarily driven by the dangling states of
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C1, C2, and C3. Because the monovacancy forms a protuberance around the vacancy,

the bond lengths vary dramatically within the entire graphene sheet, as shown in

3.1. Those carbon atoms within the monovacancy obtain the shortest bond lengths

of 1.404 Å, which is counterposed by the longest bond lengths of 1.441 Å. This ex-

treme reorganization is driven by the charge transferred between the phosphorus and

graphene sheet, in particular near the monovacancy. Analysis of the amount of charge

transferred was found to be 2.39 for phosphorus. The difference in charge transferred

between phosphorus and the graphene sheet can be attributed to differences in elec-

tron affinity. In the case of phosphorus, lots of charge is transferred to the nearest

neighbors (making these atoms partially negative overall) and additionally some to

the monovacancy site itself (see 3.3b). The addition of charge localized within the

monovacancy saturates the bordering carbon-carbon bonds forcing rehybridization.

Consequently, a protuberance forms around the phosphorus substituent breaking the

two dimensional symmetry of the graphene lattice.

Arsenic, similar to phosphorus, initiates structural reorganization of the mono-

vacancy. The arsenic-carbon equilibrium bond length was found to be 1.90 Å, an

increase. Arsenic forms smaller bond angles, which is consistent with longer bonds

(3.1). However, the deformation of the monovacancy grows larger, leading to large

variations in bond lengths between carbon atoms within the graphene sheet. Never-

theless, the above-plane equilibrium position of arsenic drives reorganization of the

entire monovacancy, where the arsenic atom rests 1.88 Å above the graphene. Similar

to the nitrogen case, little charge is transferred between arsenic and graphene; how-

ever, the charge is distributed in a manner similar to phosphorus (see 3.3). We find

that the d-manifold remains in its singlet state; most of the charge donated originates

from the 4s and 4p electrons, which contribute 1.07 electrons to the monovacancy.

Thus, the primary interaction between the arsenic and defect graphene is to weakly
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Figure 3.3. Absolute value of charge density differences for various atomic substituents
and a graphene monovacancy: (a) nitrogen (b) phosphorus (c) arsenic (d) antimony
(e) bismuth. Only nearest neighbors interact strongly with the nitrogen dopant, while
latter pnictogens show charge delocalization over the entire monovacancy. Contour
plots taken in the plane of graphene for nitrogen and ∼0.8 Å above the sheet for all
others, corresponding to the location of C1, C2, and C3.
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chemisorb to the monovacancy, as some charge is transferred to nearest neighbor car-

bons C1, C2, and C3 and diffused over the entire monovacancy. Consequently, the

dangling states of these nearest neighbor carbons become partially coupled to arsenic

driving them out of the plane, leading to the puckering seen in 3.2.

For the remaining pnictogens, many of the trends described above continue.

The larger atomic radius of antimony leads to longer bonds and shorter bond angles,

3.1. The equilibrium distance of antimony and the graphene defect was found to

be 2.10 Å, in good agreement with previous work.162 Moreover, the carbon-carbon

bonds fluctuate between 1.40 Å at their shortest to 1.452 Å at their longest within

the monovacancy. Bismuth has the longest pnictogen-carbon distance163 at 2.20 Å

and the smallest angle, which deforms the carbon-carbon bond distances like the

antimony system. The OOP distance of bismuth is 0.17 Å longer than antimony

(3.1). Similar amounts of charge are transferred to the carbon lattice in both cases,

and the diffuse nature of the charge redistribution mimics the phosphorus system

(3.3). Both antimony and bismuth form weak interactions in contrast with earlier

pnictogens like nitrogen and phosphorus. The energetics of all pnictogen substitutions

will be discussed in the next subsection.

In general, the underlying driving force for the formation of these protrusions

can be attributed to rehybridization of pz states of vacancy carbon atoms, which fur-

ther stabilizes the pnictogen-graphene system. This enables the formation of charge

localization around the monovacancy, where the addition of charge between the pnic-

togen and graphene further distorts the monovacancy. Moreover, because the atomic

radii increase going down the series, the charge is spread out over a larger region

above the vacancy with respect to the carbon atoms C1, C2, and C3, which further

exacerbates the puckering of the monovacancy.

Energetics of Formation. The structural behavior discussed in the last

section is reflected in the energetics of each pnictogen system. In particular, we focus
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Table 3.2. Energies of formation, Ef , for each pnictogen-defect graphene system.
Notice the energy steadily rises yet even the least stable substituent lowers the

energy of the monovacancy (MV).

Pnictogen N P As Sb Bi MV
Ef 0.86 2.94 4.05 5.38 6.14 7.65

on the energy of formation of each congener, as defined in 3.1 (see Methods). As shown

in 3.2, nitrogen forms the most stable configuration among all the pnictogens, with

the lowest formation energy of 0.863 eV. This is to be expected because nitrogen is

the smallest congener and can be substituted directly into the planar graphene lattice.

Thus, little reconstruction is necessary, permitting the surrounding carbon atoms to

retain their equilibrium distances. However, little resemblance can be drawn below

nitrogen in group 15. The formation energy of the phosphorus dopant was found to

be 2.946 eV. Beyond phosphorus, the formation energy steadily rises, almost linearly

(3.2). As surface reconstruction and the formation of protrusions driven by charge

localization rises, so too does the formation energy. Therefore, the stability of the

latter pnictogens lowers leading to more weakly bound system.

Within the series, nitrogen and phosphorus chemisorb to the graphene mono-

vacancy, while for the d-manifold pnictogens, arsenic tends to weakly chemisorb, and

antimony and bismuth physisorb to the monovacancy. This assertion is further sup-

ported by the projected density of states (PDOS) of the pnictogen, which shows

the nature and extent of interaction between the heteroatom and monovacancy, 3.4.

Nitrogen substituent interacts most strongly through sp2 hybridization via in-plane

bonding with monolayer graphene. Thus, nitrogen’s px and py states are broadly

dispersed as shown in 3.4a. Such a broad distribution of states can be attributed

to strong interactions with the graphene sheet. Moreover, the pz electrons are also

widely dispersed and sufficiently incorporated into the network to contribute to im-

purity states residing near the Fermi energy, which are seen as sharp peaks (3.4a).

Hence, nitrogen strongly chemisorbs to the monovacancy defect site. Similar state
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dispersion can be observed with the phosphorus substituent (3.4b); however, the p-

electrons of phosphorus interact more strongly with the monovacancy leading to a

slightly broader distribution of electrons from phosphorus. Again, an impurity state

arising from the pz electrons of phosphorus forms at the Fermi energy (3.4b). Arsenic

displays many sharp bands indicating that this substituent interacts more weakly

with the monovacancy and mixes less. Note its contribution to impurity states at

the Fermi energy also decreases notably (3.4c). Antimony (3.4d) and bismuth (3.4e)

continue this trend of localization of atomic states and decreasing contribution to the

impurity band at the Fermi level, suggesting far less state mixing with the graphene

monolayer and more of a physisorption-like interaction with the sheet.

Thus, our calculations suggest that stability falls as one proceeds down group

15. The increase in formation energy is accompanied by larger OOP distances and

more planar deformation. The structural properties coupled to charge transfer char-

acteristics suggest a crossover in sorption characteristics, where early pnictogens

chemisorb while latter pnictogens physisorb. The PDOS supports this interpreta-

tion. Even with notable sheet deformation, it is clear that vacancies can accommo-

date the larger pnictogens bismuth and antimony, potentially extending functionality.

As we shall see, this has important consequences influencing the band structures of

each pnictogen-defect graphene system presented in the following section. Note, we

tested the extent that nonlocal dispersion interactions affected the results via the

Tkatchenko-Scheffler scheme.168 We found little influence of the structural equilibria

and energetics of formation.

Pnictogen Electronic Band Structure. We now examine the electronic

band structure of each pnictogen-substituted, monovacancy system. In 3.5, we show

the band structure and the partial band decomposition for the monovacancy defect

site. As observed in other studies of this defect state, two resonance bands form

near the Fermi energy, which can be attributed to dangling states from C1, C2, and
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Figure 3.4. Projected density of states of each pnictogen atom upon interacting with
monovacancy graphene: (a) nitrogen, (b) phosphorus, (c) arsenic, (d) antimony, and
(e) bismuth. A broader PDOS distribution suggests more mixing with the graphene
monovacancy.
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C3.150,169 Dispersion within these bands is marked by Coulombic repulsion between

each carbon atom within the monovacancy. Partial band decomposition of resonance

bands at the Fermi energy reveal that C1, C2, and C3 primarily form these bands, and

remain localized near or around the monovacancy. Consequently, the single vacancy

has a noticeable magnetic moment of 0.9 µB following Lieb’s theorem for bipartite

lattice discussed elsewhere.170–176 The magnetic ground state forms from unquenched

dangling sp2 state of C1 leading to anisotropic charge distribution of the monovacancy,

3.5c. The second resonance state forms from partially quenched YT-carbons C2 and

C3 as shown in 3.5d. It is interesting to note that for both resonance states most of

the charge can be found on a sublattice of graphene, which clearly results from the

importance of forming a defect state on a bipartite lattice.176 Moreover, the symmetry

of the canonical bands of π and π∗ of pristine graphene is destroyed, breaking the

linear dispersion in these bands at K and K ′, 3.5b (blue dot) and 3.5e (red dot).

Consequently, the π∗ bands are pushed further into the conduction bands, while the

π states are lowered into the valence bands. This stabilizes the defect state allowing for

the formation of a localized magnetic ground state lowering the Coulombic repulsion

between carbon atoms within the monovacancy.

As mentioned in the introduction, nitrogen substitution has been studied pre-

viously.152–158 For validation of our computational approach, we report the electronic

band structure and the partial band decomposition of states near the Fermi energy.

These states are critical to the performance of electronic devices or chemical reac-

tivity. The nitrogen substituent, due to its small size, can be directly inserted into

the lattice of graphene. From 3.6a we notice the neutrality point (where the π and

π∗ bands intersect at the Fermi level) has shifted down from the original point in

pristine graphene. Note the gap between the valence bands and conduction bands

is highlighted light blue. Because nitrogen has an additional electron that can be

donated to the graphene lattice, the π∗ band shifts down into the valence bands (blue
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Figure 3.5. Monovacancy band structure (a) and band decomposed charge densities
of relevant bands near the Fermi energy (b-e). Panels b and e are the π and π∗ bands
of graphene (blue and red dot, respectively). Panels c and d are impurity states (green
and yellow dots respectively). Panel c is composed of primarily C1 density. Panel d
is a mixed band composed of C2 and C3 mostly, but it crosses with c mixing in C1

states. Both c and d comprise the dangling states forming near the Fermi energy. All
charge densities are set at 0.01 e/Å3.
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Figure 3.6. Singly substituted nitrogen band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of the highest occupied band (blue dot) (c) Impurity band introduced by
nitrogen substituent (red dot). All charge densities are set at 0.01 e/Å3.

dot). Shifting these states of graphene into the valence bands is emblematic of n-type

doping, where the additional electron provided from nitrogen is shuttled into the

graphene sheet. The states corresponding to this band are shown in 3.6b. Clearly,

the pz states of the graphene lattice dominate, though the pz orbital can also be seen

on the nitrogen substituent (3.6b). Moreover, nitrogen introduces an impurity band

(3.6c, red dot) in the band structure of single defect graphene. This impurity state

near the Fermi energy resembles reports for antibonding STM images of this defect

state.160 These states could serve as potential sites of reactivity to anchor various

nanoassemblies or induce impurity scattering within an electronic device.

The phosphorus substituent is not only structurally and energetically different,

its electronic signatures differ substantially from that of the nitrogen case, 3.7. A

resonance state forms at the Fermi energy arising from both the phosphorus dopant

and also its nearest neighbors C1, C2 and C3. The band decomposition is shown

in 3.7c (yellow dot). Because of the presence of the impurity state at the Fermi

energy, the graphene π and π∗ bands lose their symmetry and shift downward into
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Figure 3.7. Singly substituted phosphorus band structure and band decomposed
charge densities of relevant bands near the Fermi energy. (a) Band structure. (b)
Charge density of π states of graphene (blue dot). (c) Impurity band attributed to
phosphorus and the nearest neighbor carbon atoms (yellow dot). (d) Charge density
of π∗ states of graphene (red dot). All charge densities are set at 0.01 e/Å3.

the valence bands and upward into the conduction bands, respectively. A pronounced

charge density can be found centered on the phosphorus and its nearest neighbors

(3.7b-d). Consequently, this site could serve as a reactive hot spot for catalyst.177

Furthermore, the presence of a populated impurity band transforms graphene into

a moderate band gap semiconductor with an energy gap of approximately 0.55 eV.

The itinerant electrons confined within this narrow band could alter the transport

properties of pristine graphene.164,178

We now turn to the latter pnictogens – arsenic, antimony, and bismuth. These

elements differ only in their size, electron affinity, and electronegativity; however, they

are the same in terms of their envelope states. For these elements, we have included

the d-manifold for completeness. The arsenic band structure is similar to that of phos-

phorus, but the impurity state contains some dispersion arising from inter-vacancy
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interactions or renormalization of pz for nearest neighbor carbons, 3.8a (yellow dot).

Recall that the protrusion is growing ever larger, induced by charge transfer into the

monovacancy. Therefore, blistering of the graphene vacancy shortens the distance

between pz states within the monovacancy, since the curvature of the sheet positions

pz states such that they achieve greater overlap. Moreover, breaking the symmetry

of the graphene monovacancy induces a irrecoverable change in the symmetry at the

neutrality point, located at zero in the band structure plots, which causes the π (blue

dot) and π∗ (red dot) bands to deviate from the Fermi energy, 3.8a. Arsenic has

an appreciable amount of charge localized onto itself, largely originating from the

nearest neighbor carbon atoms (3.8b). Additionally, the charge is redistributed less

uniformly onto the sublattice of graphene in comparison to the phosphorus substituent

(see 3.7c). Unlike phosphorus, arsenic localizes no excited state density from the π∗

band, suggesting this pnictogen contributes little to the lowest unoccupied states,

3.8d (red dot). The addition of arsenic into the monovacancy opens up an energy

gap of 0.49 eV. Thus, atomic substitution of this particular pnictogen again yields a

semiconductor-like structure. However, in this case, the weaker interactions lead to

a partially unoccupied impurity band, more reminiscent of a hole doped material or

electrophile.

Antimony, similar to arsenic, possesses an impurity band at the Fermi energy

that is formed primarily from nearest neighbor carbon atoms C1, C2 and C3, with

some additional contributions from the graphene sublattice (3.9c). Even so, some

density is localized on antimony in the impurity state; however, antimony’s contri-

bution to the π and π∗ bands is diminished greatly (3.9b and d). Thus, antimony

forms weak interactions with the monovacancy but still lowers the energy of the en-

tire monovacancy. Like arsenic, antimony forms a semiconducting material with a

band gap of 0.45 eV and has a partially unoccupied impurity band that can abstract

electrons. It has been reported that doping antimony onto pristine graphene can lead
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Figure 3.8. Singly substituted arsenic band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of π bands of graphene (blue dot). (c) Impurity band attributed to arsenic
and nearest neighbor atoms (yellow dot). (d) Charge density of π∗ band of graphene
(red dot). All charge densities are set to 0.01 e/Å3.
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Figure 3.9. Singly substituted antimony band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of π bands of graphene (blue dot). (c) Impurity band attributed to antimony
and mostly nearest neighbor carbon atoms (yellow dot). (d) Charge density of π∗

bands of graphene (red dot). All charge densities are set to 0.01 e/Å3.

to the diminution of electrons in graphene, thus generating an upward shift in the

Dirac point of the experimental band structure.145 We observe a similar shift here.

Bismuth mirrors much of antimony’s electronic complexity. However, minute

changes in the resonant state at the Fermi energy can be observed, where dispersion

at the K-points can be seen, (3.10a, yellow dot). The majority of the charge is

found on the nearest neighbor carbon atoms and distributed over the monovacancy

sublattice (3.10c). In contradistinction with the other pnictogens, bismuth contributes

essentially nothing to the resonant states observed at the Fermi energy. Moreover,

partial charge decomposition of all states near the Fermi energy show no build up

of density on bismuth (3.10b-d). Overlap between nearest neighbors has reached a

maximum for bismuth substitution, driven by its larger radius smeared over a greater
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Figure 3.10. Singly substituted bismuth band structure and band decomposed charge
densities of relevant bands near the Fermi energy. (a) Band structure. (b) Charge
density of π bands of graphene monovacancy (blue dot). (c) Impurity state arising
from C1, C2, and C3 nearest neighbor carbon atoms (yellow dot). (d) Charge density
of π∗ bands of the graphene (red dot). All charge densities are set to 0.01 e/Å3.

volume compared to its higher members of group 15. Consequently, bismuth stabilizes

the monovacancy the least. Again we find that interactions between this congener

and the monovacancy generate a band gap of approximately 0.45 eV and a partially

unoccupied impurity band, which may display interesting transport properties or

unique chemical reactivity.

3.5 Conclusions

We have investigated the unit substitution of pnictogens within a single va-

cancy site formed from pristine graphene. We have found noticeable trends associated

with each pnictogen substituent. In particular, we have observed a regime of inter-

action, whereby nitrogen and phosphorus chemisorb to the monovacancy, arsenic has

a tendency to weakly chemisorb, and both antimony and bismuth physisorb to the

vacancy. This trend can be attributed to the influence of charge transferred and the
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renormalization of the states within the monovacancy. Consequently, reorganization

of the monovacancy ensues altering the bond lengths and bond angles. Thus, the

energy of formation rises going down group 15. Moreover, each pnictogen transforms

the zero band gap semi-metallic nature of pristine graphene into a moderate band gap

semiconductor, whose electronic properties are dependent upon the extent of interac-

tion between the dopant and surface. The ability to tune the exceptional electronic

properties of graphene is of paramount importance for the design of material devices

possessing wide application in both graphitic-electronic devices and chemical catalyst.

Because of the paucity of electrons in graphene, the ability to alter its properties by

simple atomic substitution is indeed an advantage, which could find many areas of

application far afield.
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CHAPTER FOUR

Electronic Properties of Halogen-Adsorbed Graphene

This chapter published as: Chengyong Xu; Paul A. Brown; and Kevin L. Shuford J.
Phys. Chem. C, 2015, 119, 30, 17271-17277

4.1 Abstract

We have investigated the electronic properties of 1-, 2-, and 3-layer graphene

upon surface adsorption of halogen molecules by means of density functional calcu-

lations. The most stable adsorption site is parallel to the graphene surface with the

diatomic atoms centered over adjacent carbon rings. Bader analysis shows a large

charge transfer between F2 and graphene, which significantly extends the fluorine

bond length, while only small amounts of charge are transferred to Cl2, Br2, and

I2. Adsorbed halogens alter the electronic properties of graphene by pushing the

Fermi level down and bringing forth an accessible impurity band that can be utilized

to alter the material properties. Moreover, molecule-surface interactions introduce

a bandgap at the K-point between 3 and 330 meV, depending upon the particular

graphene-halogen system. When adsorbed on 1-layer graphene, halogen molecules

typically open a small bandgap; however, they induce a notably larger bandgap on

the 2-layer AB-stacked and 3-layer ABC-stacked graphene. This work suggests an

effective way to tune the electronic properties of two-dimensional graphene by ad-

sorption of halogen molecules.

4.2 Introduction

Graphene, first isolated by Novoselov and Geim in 2004,6 is a two-dimensional

crystal composed of atomic layers of carbon arranged in a lattice of hexagon rings.

Since its mechanical exfoliation, graphenes unique properties7,7,179,180 - such as long

spin relaxation time and length, high mobility, and high thermal conductivity have

83



gained significant attention in condensed matter physics, chemistry, nanotechnol-

ogy, and materials science.8 Graphene has found various applications by acting as

a platform for anchoring or supporting catalyst, solar fuel, solar cells, and battery

devices.181 In graphene, two equivalent carbon atoms in a primitive unit cell sp2 hy-

bridize, while the remaining pz orbital forms π-bonds. From a tight-binding analysis

of graphene, the interaction of pz orbitals yields π and π∗ bands in the band struc-

ture, which cross each other at the K-points in the first Brillioun zone. Moreover,

graphene forms a bipartite lattice, where it is possible to distinguish the two-atom

basis into two groups of carbons, α-carbons and β-carbons, that form an intralayer

sublattice.6 Due to its remarkable mechanical and electronic properties, the incorpo-

ration of graphene into practical devices,182,183 such as field-effect transistors,184,185

is an active area of research.

Graphenes exceptional electronic properties can be traced to the canonical

dispersion at K-K’ within its band structure, which gives rise to chiral Dirac fermions

that can only be described by the Dirac equation.7 In general, the zero bandgap

condition of graphene holds for 1-layer and multilayer bernal and rhombohedral fam-

ilies;186 however, graphene based devices, such as field-effect transistors, often de-

mand a non-zero bandgap to function.187 Therefore, creating a bandgap in graphene

and controlling its magnitude is an important technological advance. While spin-

orbit and electron-phonon coupling at the K-point makes this challenging, an effec-

tive way to introduce a bandgap is by disturbing the electron distribution. Several

means have been proposed such as chemical physical adsorption,187 chemical modifi-

cation,188,189 electric field tuning,190–192 dimensional restriction,193,194 and substrate-

based deposition.195,196 Among these, molecular adsorption is attractive because it

preserves the planar hexagonal rings, and electrons undergo less impurity scattering.

Various molecular species have been introduced onto graphene, ranging from small

molecules (H2O,197,198 CO2,199 NO2,200 NH3,198,200 halogens201) to more complex
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organic molecules (e.g. N-methylpyrrolidone,202 phthalocyanines,203 TCNQ204,205).

Note this is different from atomic doping into the graphene lattice, which changes the

electronic structure and density of states (DOS) greatly.206–208 Molecular adsorbates

introduce an impurity band near the Fermi level, but the effect on the overall band

structure is less drastic (barring a Fermi level shift and introduction of a bandgap,

as will be discussed below). Moreover, atomic dopants in graphene have been shown

to decrease mobility because of impurity scattering arising from significant structural

reorganization.209,210 Halogen molecules, however, outperform other dopants like am-

monia in the sense that the detrimental effects on mobility are less pronounced.211

In this work, we focus on several different layered graphene structures (1-,

2-, and 3-layer) adsorbed with halogen molecules (X2, X = F, Cl, Br, and I). The

interaction between the molecules and the graphene layer is nonlocal, as they are

not covalently bonded. As a result, van der Waals (vdW) interactions need to be

included to accurately model dispersion interactions. After determining the most

energetically stable adsorption sites, we investigate the electronic properties of the

graphene-halogen systems. In particular, the bandgap opening effect and the ability to

tune the magnitude of bandgap opening via halogen selection and number of graphene

layers will be presented and discussed. Finally, conclusions and perspectives will be

presented in the last section.

4.3 Computational Methods

Model structures. A halogen molecule may take a parallel or perpendicu-

lar orientation with respect to a graphene layer as illustrated in Fig. 1. We have

investigated four parallel (Fig. 1 A-D) and three perpendicular (Fig. 1 E-G) sites

according to high-symmetry configurations. Here we only consider the adsorption of

halogen molecules on one side of graphene to focus specifically on the effects induced

by layering graphene sheets in various ways. Periodic supercells were constructed

from hexagonal 4x4 unit cells, containing 32, 64, and 96 carbon atoms for 1-, 2-, and
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3-layer graphene, respectively. The lattice constant a is taken to be 9.84 Å, four times

that of the experimental value (2.46 Å) of the primitive unit cell at low temperature.4

Lattice constant c is chosen so that periodic images are separated by approximately

15 Å of vacuum. Such a separation is large enough to eliminate interactions between

the periodic images in directions normal to the surface. In 2-layer graphene, layers

can form into AA or AB stacking. However, AA is higher in energy than AB stacking

by approximately 1040 meV per atom.212 Therefore, we only consider AB stacking

in 2-layer graphene, and in 3-layer graphene, ABA or ABC stacking are considered.

We denote X2G1, X2G2, X2G3ABA and X2G3ABC (X = F, Cl, Br, and I) to be the

X2 diatom adsorbed on 1-layer, 2-layer-AB stacking, 3-layer-ABA stacking (bernal),

and 3-layer-ABC stacking (rhombohedral) graphene, respectively (see Fig. 1).

Computational approach. Using density functional theory (DFT), the en-

ergies and electronic properties of halogen-graphene systems have been calculated

with a plane wave basis and projector augmented-wave (PAW) pseudopotentials for

the interaction between the electrons and ions113,114 as implemented in VASP114,165

package. Molecules adsorbed to a surface are weakly bound, so it is important

to consider dispersion interactions using a vdW correction. Several schemes based

on semi-empirical dispersion potentials have been suggested, such as DFT-D/DFT-

D2 (Dispersion correction),92,213 vdW-DF,214,215 and the Tkatchenko-Scheffler (TS)

method.95,97 We tested different vdW schemes as well as non-vdW methods on 2-layer

graphene to determine the best one for our systems (results presented below). We

found the combination of TS-GGA (PBE functional) predicts the inter-layer distance

closest to experimental value; therefore, this scheme of vdW interaction and exchange

correlation functional were used for the energy and electronic calculations. The ge-

ometry was optimized until the force on each atom is no more than 0.005 eV/Å.

A Monkhorst-Pack216 k-point mesh of 5x5x1 and 19x19x1 were used for geometric

relaxation and density of states for all structures, respectively. The band structures
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Figure 4.1. Different adsorption sites available for halogen molecules on monolayer
graphene (A-G). Gray and blue balls represent carbon and halogen atoms, respec-
tively. Sites A-D are denoted as parallel orientations while sites E-G are perpendicu-
lar. H (I) shows the adsorption of molecule on 3-layer ABA (ABC) graphene. 2-layer-
AB stacking is analogous to H (or I) without the bottom graphene layer present.
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Table 4.1. Table 1. Inter-layer distance (d) of 2-layer graphene under different vdW
schemes and the difference (∆d) between the calculated and the experimental

inter-layer distance of 3.340 Å.4 Positive (negative) ∆d means the calculated d is
larger (smaller) than the experimental value.

vdW-GGA vdW-DF vdW-LDA non-vdW
TS DFT-D2 TS DFT-D2 LDA GGA

d (Å) 3.350, 3.204, 3.312 3.162 2.995 3.302 4.052
∆d (Å) 0.010, -0.136, -0.028 -0.178 -0.345 -0.038 0.712

were computed over the high symmetry points of the first Brillouin zone of graphene.

The cutoff energy for the plane wave basis was 500 eV.

4.4 Results and Discussion

We tested different vdW schemes for suitability by investigating a model sys-

tem consisting of 2-layer graphene. The inter-layer distance was computed with and

without a vdW correction using both the GGA and LDA functionals. The results are

displayed in Table 1. Using GGA-TS, the layer distance of 2-layer graphene was cal-

culated to be 3.350 Å, in agreement with experimental value of 3.340 Å.4 Moreover,

the layer separation of 3-layer ABA and ABC graphene was computed and found to be

approximately 3.350 Å, showing the universal validity of TS-GGA for graphene struc-

tures. The vdW-DF (using LDA correlation and GGA-PBE exchange functionals)

also predicted an accurate layer distance (3.312 Å). GGA-DFT-D2 underestimated

the layer distance by 0.136 Å within a 4.1 % error, even worse than non-vdW-LDA.

Serendipitously, the LDA functional without vdW predicts a distance in good agree-

ment with experiment (3.302 Å, 1.1 % error). This small error with LDA is due to

two competing errors. There is a local density interaction error and long-ranged dis-

persion is ignored, the combination of which cancels each other fortuitously.217 Using

non-vdW (PBE) corrects one error by considering non-local electron interaction but

leaves the other error intact,218 yielding a larger layer distance of graphene (4.052

Å). On the contrary, vdW-LDA only corrected for vdW interactions and made no
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alteration to the electron interaction error, resulting in the underestimation of layer

distance between graphene polymorphs (3.00-3.16 Å). Considering the better agree-

ment with experiment on 2-layer graphene, GGA-TS was chosen as the best approach

for calculations on our layered graphene systems.

We then introduced halogens into the model system to further validate the

approach. In general, surface interactions brought little change to the molecular

bond lengths. Upon adding adsorbed halogens onto graphene, the GGA-TS approach

predicts molecular bond lengths within 0.01-0.04 Å of experimental values of isolated

molecules5 except for fluorine. As for F2, the bond length is found to be ∼0.245

Å (17 %) larger (it varies slightly with system) than isolated F2 at the same level

of theory. The notable bond length extension for F2 on graphene suggests a sizeable

charge redistribution, which is not present in the other halogens. We performed Bader

analysis219 to quantify charge transfer between the halogen molecules and graphene

for adsorption site A. The results in Table 2 explain the sizable elongation of the F2

bond length compared with Cl2, Br2, and I2. All the halogen molecules act as electron

acceptors. F2 obtains 0.432-0.450 electrons from the graphene layer, which elongates

the bond length of F2 up to 0.246 Å. However, the charges accepted by Cl2, Br2, and I2

are quite small, only marginally extending their bond lengths. Similar charge transfer

from graphene to Br2 was calculated by Yaya et al. (0.084 electron) using LDA220 and

Chen et al. (0.09 electron) using GGA221 confirming the approach selected for this

study is adequately describing the halogen-graphene systems, including their intimate

interactions like charge transfer in the case of fluorine.

Adsorption of molecules on graphene. We calculated the binding ener-

gies, Ebind, of halogen molecules adsorbed on graphene by the usual definition:

Ebind = Esystem − Egraphene − Emolecule (4.1)
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Table 4.2. Charge transfer (CT in units of e) between the halogen molecules and
graphene, and the bond length elongation (BL in units of Å) in parentheses for

adsorption site A. Elongation is relative to experimental measurements of isolated
molecules.5

X2 X2G1 X2G2 X2G3ABA X2G3ABC
F2 CT (e) 0.432 0.444 0.450 0.449

BL (Å) 0.243 0.245 0.245 0.246
Cl2 CT (e) 0.016 0.014 0.015 0.015

BL (Å) 0.005 0.005 0.005 0.006
Br2 CT (e) 0.065 0.073 0.074 0.081

BL (Å) 0.042 0.050 0.049 0.054
I2 CT (e) 0.010 0.027 0.030 0.049

BL (Å) 0.020 0.025 0.025 0.028
aElongation is relative to experimental measurements of isolated molecules.5

where Esystem, Egraphene, and Emolecule are total energies of the relaxed graphene-

halogen system, pristine graphene, and halogen molecules, respectively. Table 3 shows

the binding energy and equilibrium graphene-molecule distance for the various binding

sites considered (see Fig. 1). For F2 on 1-layer graphene, the binding energy of site

A is slightly less (4 meV) than site G but nearly the same. For Cl2, Br2, and I2,

the binding energies of parallel configurations (A-D) are generally much larger than

the perpendicular configurations (E-G). Adsorption site B is the least stable of the

parallel orientations, while adsorption site A is found to be the most stable. Site

A is typically about 20 meV more stable than the other parallel orientations, which

all have similar binding energies within a range of 3-13 meV per unit cell. The

perpendicular configurations are notably less stable than site A in all cases except

for F2, where site G is comparable. However, upon considering F2 on 2- and 3-layer

graphene, the binding energies of site A are 17-30 meV per unit cell more than on site

G (See Table S1 in the Supplementary Information). Analogous results are found for

all of the halogens. Given the comparable binding energies of fluorine at sites A and

G for single layer graphene, and the universal agreement that site A is most stable for
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Table 4.3. Binding energy (meV) and equilibrium molecule-layer distance in
parentheses (Å) for single layer graphene-halogen systems at different adsorption
sites shown in Fig. 1. For perpendicular orientations, the distance corresponds to

the nearest halogen atom.

X2 A B C D E F G
F2 (meV) 482 464 464 461 449 364 486

(Å) 2.919 2.968 2.966 2.971 2.405 2.826 2.278
Cl2 (meV) 241 219 221 223 203 175 207

(Å) 3.477 3.566 3.548 3.554 3.107 3.317 3.071
Br2 (meV) 281 259 263 267 247 204 255

(Å) 3.601 3.671 3.655 3.641 3.147 3.410 3.104
I2 (meV) 367 350 355 363 295 261 300

(Å) 3.744 3.771 3.761 3.748 3.344 3.521 3.309
aFor perpendicular orientations, the distance corresponds to the nearest halogen

atom.

multilayer graphene-halogen systems, all of the following calculations will be based

on halogen adsorption at site A.

Our assertion that parallel adsorption site A is the most stable is consistent

with the work of Rudenko et al.222 They incorporated dispersion using the vdW-DF

scheme to perform energy calculations on halogen-graphene (1-layer) systems. How-

ever, instead of carrying out a geometry relaxation for each configuration, they kept

the molecular orientation and bond length fixed, and determined the distance of the

molecules from the graphene plane by searching for the minimum energy configura-

tion. Using this procedure, they also found that the parallel adsorption site A was

most stable. However, since in our calculations the system is relaxed geometrically, we

find the molecule-graphene separation distance is smaller than distance they reported

by 0.11, 0.14, and 0.06 Å for Cl2, Br2, and I2 respectively.

The same stable site A for Cl2 was also confirmed by a previous calculation of

Ijiäs et al.223 Their binding energy was 2 - 3 times larger and their distance between

Cl2 and graphene layer was 0.3 - 0.4 Å less than our results. However, the perpendic-

ular adsorption site G was calculated to be most energetically stable for Cl2 by Liu et

al.224 This may be attributed to the use of GGA functional but without including van
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der Waals interaction. The Cl2-graphene distance at site A was 0.28 Å larger than

ours, in the absence of dispersion. In another investigation on Br2 adsorbed on mono-

layer graphene, LDA was used to study the energetics and electronic properties.225

Contrary to our vdW-TS calculation, they found that the perpendicular binding site

G (Br2 residing exactly above a carbon atom) was energetically the most stable. This

is contrary to our findings, as there are several parallel site configurations with larger

binding energies. In particular, we find parallel site A to be 26 meV per unit cell more

stable than perpendicular site G. Indeed, their calculation shows that the binding en-

ergy of three perpendicular sites are all larger than or equivalent to those of their

parallel sites. The difference in predicted conformation likely originates from their

approach of using LDA without including dispersion corrections, which neglects Lon-

don forces that can affect geometries of surface complexes. Given the various reports

in the literature, the question of preferred halogen binding orientation on graphene

still exists, especially on multilayer structures. Below we address this specifically,

including vdW corrections, for all of the halogens on various graphene polymorphs.

Halogen adsorption on multilayer graphene. Here we present the bind-

ing properties of halogen molecules on multilayer graphene structures. Only binding

site A is considered, as this configuration was found to be the most stable (see Table

S1 and preceding discussion). Table 4 displays the binding energies and equilib-

rium distances between halogen molecules and the nearest layer in 1-, 2-, and 3-layer

graphene. The binding energies of X2G1 are notably smaller than those of X2G2,

X2G3ABA, and X2G3ABC for all four halogen molecules. Generally, the binding energy

increases with molecular polarizability and upon increasing the layers of graphene (F2

displays slightly different behavior as described above). The largest increase occurs

going from 1 to 2-layer graphene, where the binding energy increases approximately 6

% - 16 %. After this only minimal stability gains are achieved by adding an additional

carbon layer. Note that for a specific molecule, the adsorption distances are almost
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Table 4.4. Binding energies (meV) and equilibrium distances (Å) between halogen
molecules and the nearest graphene layer in multilayer structures. Molecular

adsorption is at site A.

X2 A B C D
F2 (meV) 482 521 504 526

(Å) 2.919 2.925 2.918 2.926
Cl2 (meV) 241 277 284 289

(Å) 3.477 3.481 3.471 3.465
Br2 (meV) 281 326 334 339

(Å) 3.601 3.606 3.593 3.594
I2 (meV) 367 422 432 437

(Å) 3.744 3.737 3.735 3.730

identical regardless of the number of layers, suggesting the strongest interactions be-

tween the molecule and graphene occur largely between the molecule and the nearest

layer.

Electronic properties. The electronic properties of the halogen-graphene

systems have been calculated using the same level of DFT described above. The

molecular orientation was chosen to be parallel to the graphene sheets at adsorption

site A. Fig. 2 shows a set of band structures for F2 adsorbed on 1-, 2-, and 3-layer

graphene, which is representative of the entire halogen series studied here. The Fermi

level of the bands is pushed down below the valence band maximum (VBM) because

of electron depletion from the graphene -band. The primary feature to note is the

energy gap that opens up at the K-point resulting from the molecular adsorption.

The bandgap data at the K-point for all the halogen-graphene systems are collected

in Table 5. The magnitude of the energy gap varies considerably with the layers of

graphene included and the halogen adsorbed. For single layer graphene, F2, Br2, and

I2 open a negligible bandgap of 3-8 meV while Cl2 opens a gap of 75 meV. When

adsorbed on 2-layer graphene, they generate much larger gaps except for Cl2 with a

decrease to 67 meV. However, F2, Br2, and I2 show dramatic increases to 227, 56, and

35 meV, respectively. For 3-layer graphene, ABA and ABC graphene yield different
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Figure 4.2. Band structure of F2 adsorbed on (a) 1-layer, (b) 2-layer, (c) 3-layer ABA,
and (d) 3-layer ABC stacking graphene. The dotted line indicates the Fermi level.

Table 4.5. Bandgap (meV) of halogen-graphene systems at the K-point in the first
Brillouin zone. Molecular adsorption is at site A.

Egap (meV) X2G1 X2G2 X2G3ABA X2G3ABC
F2 3 227 150 330
Cl2 75 67 12 78
Br2 8 56 45 98
I2 8 35 28 76

trends. The bandgaps induced in ABA stacking show a decrease from the 2-layer

case for all halogens by 20-82 %. Conversely, ABC stacking yields an increase from

2-layer graphene of 45 %, 16 %, 75 %, and 117 % for F2, Cl2, Br2, and I2, respectively.

For F2, the X2G3ABC structure produces the largest bandgaps at the K-point of 330

meV. For Cl2, Br2 and I2, their X2G3ABC structures produce band gaps in the range

76-98 meV. The larger energy gaps for F2 compared Cl2, Br2, and I2 (as well as other

dissimilar trends reported) likely originate from the sizeable charge transfer found for

these halogen systems.

Further insight into the band gap trends of the various layered systems can

be gleaned from symmetry considerations. The symmetry group of monolayer (D6h)

94



and trilayer ABA (D3h) graphene has a horizontal mirror symmetry, which protects

the splitting of π and π∗ bands even with the existence of an external electric field.212

Halogen molecules function similarly to an electric field by inducing charge polariza-

tion. Therefore, the π and π∗ bands are hardly split by halogen molecular adsorption,

leading to small gaps in X2G1 and X2G3ABA systems. However, the symmetry group

of 2-layer and 3-layer ABC graphene are both (D3d) and lack a horizontal mirror

symmetry. Thus, the splitting of the π and π∗ bands can be modulated to a larger

degree by the redistribution of charges212 brought by halogen molecular adsorption,

resulting in larger bandgaps.

More generally, the origin of the bandgap and system properties can be under-

stood by considering the effect adsorbed halogens have on the electronic properties of

graphene. In pure graphene, it is well known that the valence and conduction bands

intersect at the Fermi level and are linearly dispersed at the K-point, leading to zero

mass electrons.187 With halogen molecules adsorbed on graphene, the π and π∗ bands

are disturbed around the Dirac point and a bandgap emerges as shown in Fig. 2. Ad-

ditionally, we find the Fermi level is pushed down in energy with respect to the VBM

because of charge transfer between graphene layer and the molecule.36,226 Such a shift

is indicative of electrons transferring from graphene (donor) to the molecules (accep-

tor), p-doping the substrate. As more layers of graphene are included, the depression

of the Fermi level is less due to stabilization provided by additional lattice sites ca-

pable of redistributing charge to hedge carrier depletion from molecular adsorption

(Fig. 2ad). Lastly, the interaction with the molecule produces a flat impurity band

that resides just above the Fermi level and below the VBM. This impurity band is

very clearly visible in the density of states (DOS) as a peak just above the Fermi level

(Fig. 3). Compared with pure graphene, the DOS of a graphene-halogen system is no

longer linear near the Fermi level, or precisely zero at the Fermi level where valence

and conduction bands normally meet. The destruction of the canonical dispersion of
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Figure 4.3. DOS of F2 adsorbed on (a) 1-layer, (b) 2-layer graphene, (c) 3-layer
ABA, and (d) 3-layer ABC stacking graphene. Note the states corresponding to the
impurity band just above the Fermi level.

pristine graphene upon the introduction of halogen gas can be attributed to breaking

the symmetry of graphene.186 As a conseqence, the linear dispersion of the valence

band and conduction band electrons is destroyed, causing band splitting. This opens

up a bandgap at high symmetry K-points in the first Brillouin zone. Moreover, be-

cause the underlying symmetry of each graphene polymorphism changes throughout

the halogen substitutions, the bandgaps vary as well. In particular, these systems pos-

sess characteristics reminiscent of both a semiconductor (small to moderate bandgap)

as well as a metal (nonzero DOS at the Fermi level), the behaviors of which could each

be displayed under certain conditions. For example, one could imagine tuning the

system properties by adjusting the concentration of adsorbed species or meticulously

selecting a particular polymorph. Indeed, it has been found experimentally that the

in-plane conductance of graphene increases with the concentration of Br2 surface ad-

sorption.227 Similar conductivity gains have been reported for I2 doping and graphene

adsorbed with NH3.200,201 This suggests that the unfilled impurity band is accessible

to carriers near the Fermi energy, confirming some quasi-metallic character as alluded

to above.
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4.5 Conclusion

We have investigated the behavior of a system containing halogen molecules

adsorbed on graphene layers. Taking van der Waals interactions into considera-

tion, the most stable adsorption site of halogen molecules is typically parallel to the

graphene surface, with the diatomic atoms centered over two adjacent carbon rings.

The molecule-surface interaction, charge transfer, and symmetry breaking introduce

a band gap into the band structure, whose magnitude depends on the halogen species

and the number of layers of graphene. The electronic properties are further altered

by a shift down in the Fermi level and the introduction of an impurity band just

above the Fermi level but below the valence band maximum. These results suggest

that the interaction of halogen species and graphene can be used as a mechanism to

adjust the optical, electronic, and transport properties of these systems, potentially

towards application as a practical device.

4.6 Supplemental Information

Table 4.6. Binding energy (meV) for halogens on different adsorption sites (A-G) of
1-, 2-, and 3-layer graphene.

X2-Graphene A B C D E F G
F2G1 482 464 464 461 449 364 486
F2G2 512 499 495 491 469 388 487

F2G3ABA 504 486 486 487 464 381 487
F2G3ABC 526 507 507 505 479 399 496

Cl2G1 241 219 221 223 203 175 207
Cl2G2 277 254 256 258 231 200 238

Cl2G3ABA 284 258 260 262 235 203 238
Cl2G3ABC 289 259 260 262 236 203 238

Br2G1 281 259 263 267 247 204 255
Br2G2 326 302 305 311 287 234 286

Br2G3ABA 334 309 313 316 288 239 295
Br2G3ABC 339 311 315 320 286 238 291

I2G1 367 350 355 363 295 261 300
I2G2 422 405 410 418 334 299 340

I2G3ABA 432 413 417 426 339 305 347
I2G3ABC 437 414 415 426 339 304 347
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CHAPTER FIVE

Archimedean (4,8)-Tessellation of Haeckelite Ultrathin Nanosheets Composed of
Boron and Aluminum-Group V Binary Materials

This chapter published as: Paul A. Brown and Kevin L. Shuford Nanoscale, 2016,
8, 19287-19301

5.1 Abstract

A compendium of unique haeckelite boron and aluminum-group V binary ma-

terials have been assessed for their fundamental thermodynamic and ground state

electronic properties within density functional theory. We explore their thermody-

namic stability relative to new bulk haeckelite crystal structures and find a number of

stable polymorphs of planar and buckled ultrathin nanosheets. The bulk boron and

aluminum haeckelite crystals display semiconducting and metallic behavior. From

the dispersion curves, we predict the formation of both indirect and direct bandgap

crystals. We also discover the existence of a five-coordinate aluminum antimonide

crystal hitherto never before observed. Moreover, it is found that a number of the

Archimedean four and eight membered ring tessellation planar nanosheets could form

should synthesis be attempted. It is predicted that these nanosheets can attain two

configurations - planar and buckled. From this work we find that combinations of

elements such as boron and nitrogen or phosphorus, and aluminum and nitrogen will

likely become true single-atom thick nanosheets. These materials show intrinsic indi-

rect bandgap character, which spans the ultraviolet, visible, and infrared spectrum.

In the boron series of these materials, the planar structures show double extrema

in the bandstructures with van Hove singularities in the projected density of states

at the Fermi energy suggesting strong light-matter interactions. The aluminum se-

ries we observe strong charge transfer and larger indirect bandgap nanosheets. This

98



study serves as a starting point for a new class of inorganic bulk and ultrathin film

materials, which can have many varied applications in nanotechnology.

5.2 Introduction

Ultrathin two-dimensional materials have emerged as a versatile component

to fundamental research involving cross-fertilization of disciplines for their character-

ization. Since the isolation of graphene in 2004,6,129,228 many new two-dimensional

thin films have emerged like transition metal dichalcogenides,229,230 black phospho-

rus,229,230 mica,229 MXenes,229,230 covalent organic frameworks,229,230 III-V materi-

als,194,231–238 etc., where these materials possess exceptional electronic, mechanical,

and optical properties. Much of the impetus for research into these materials can be

traced to their two-dimensional confinement with weak interlayer interactions, high

mechanical flexibility, expansive active surface area, and optical transparency.229,230

Consequently, two-dimensional ultrathin films have found new roles in many di-

verse areas as support and active components to emerging nanotechnologies like

biomedicine,221,230 energy storage and conversion,12 electronics/optoelectronics,6,10,142,143,239

and catalysis.238,240 However, the most studied ultrathin films possess hexagonal sym-

metry like graphene, or transition metal dichalcogenides and boron nitride.229

Among the many emerging ultrathin films the III-V class exhibit many useful

properties and structural polymorphisms. Such combinations of elements have varied

applications for light-emitting diodes,241,242 lasers,243–245 and solar photovoltaics.246,247

Recent research on two-dimensional thin films involving combinations of III-V ele-

ments have been extensively covered for hexagonal structures.194,231,232,234–238 It was

predicted that the possibility of forming honeycomb structures of combinations of III-

V elements could be achieved with these metastable materials. Moreover, Singh et al.,

predicts that isoelectronic III-V ultrathin films could form with formation energies in

the range of 0.1-1 eV/atom relative to bulk. And, Zhuang et al., predicted that these

isostructural nanosheets possess a range of material properties from semiconducting
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to metallic.231,232 Incidentally, around that time hexagonal AlN was synthesized by

molecular beam epitaxy, where STM measurements realized the formation of h-AlN

on Au(111) surface.248 Moreover, h-GaN was synthesized using a novel technique of

graphene encapsulation to form both monolayer and bilayer nanosheets of both planar

and buckled configurations.249

Recently it was predicted that a haeckelite configuration of GaN nanosheet

and nanotubes possess competitive electronic properties to existing two-dimensional

ultrathin films.250 Haeckelite structures can be composed of polynuclear rings of four,

five, six, seven, and eight members.250–252 It was reported that haeckelite GaN pos-

sesses an indirect band gap of approximately 1.60 eV, and could be chemically mod-

ified to become a direct bandgap with values ranging from 1.54-3.45 eV predicted

from semilocal exchange-correlation density functional theory.250 Moreover, because

of its low cohesive energy, this Archimedean (These are semiregular tessellations of

regular polygons repeated periodically with the regular polygons forming along their

vertice.) motif exhibits thermodynamic stability, which suggest potential few-layer

nanosheet formation from possible exfoliation of the bulk (4,8)-GaN crystal.250 Two-

dimensional ultrathin films of this type will require novel synthetic strategies such as

on-surface polymerization, where large varities of two-dimensional monomeric units

form from covalent coupling to generate low-dimensional configurations with varying

ploymorphisms and ring structures.253–256

We extend this haeckelite (4,8)-configuration to both boron and aluminum

nanosheets. This article explores the ground state electronic properties of novel haeck-

elite structures composed of group-III and group-V elements with density functional

theory.54,61 In particular, we consider boron and aluminum combinations of pnicto-

gens, which taken within their respective entirety are referred to as the boron and

aluminum series. Furthermore, we explore the thermodynamic stability of these boron

and aluminum haeckelite structures by determining their formation energy relative
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to bulk, cohesive energy of each nanosheet, and ground state electronic properties.

We find two configurational structures composed of in-plane and buckled thin films

with reasonable stability. Moreover, we observe the formation of indirect bandgaps

in these nanosheets spanning the infrared, visible, and ultraviolet suggesting possible

use in light-driven nanotechnologies. Our discussion begins with the boron series and

proceeds to the aluminum series where we cover the structural, thermodynamic, and

electronic structure of each combination of the haeckelite series presented below. Fi-

nally, we conclude with possible candidates for experimental synthesis based on the

key factors discussed in the preceding sections.

5.3 Computational Method

5.3.1 Computational Details

All ground state predictions herein are obtained within semilocal density func-

tional theory employing the Perdew-Burke-Ernzerhof (PBE) exchange correlation ap-

proximation.85 We use the Vienna ab-initio simulation package (VASP),114 where

the core-valence interaction is approximated within the projector augmented wave

(PAW) method.113 The ns2mp3 and ns2mp1 atomic configurations are used for the

pnictogen and boron/aluminum elements core-valence pseudopotentials within the

PAW method. The plane wave expansion was converged to 600 eV with a reciprocal

space sampling of 42 x 42 x 1 gamma-centered and 12 x 12 x 12 Monkhorst- Pack216

grids for haeckelite nanosheets and bulk crystals respectively. We also introduce a

vacuum space of 12 Å and 18 Å for the nanosheet crystals of planar and buckled

geometries respectively. The smearing width was set to 0.03 with finite temperature

Gaussian smearing,165 which has been applied to all band structures. For all crystal

structures the forces are converged well below 1 meV/Å with external pressure less

than 0.01 GPa. Moreover, the ground state energetics were converged to less than 1

meV. The resulting optimized ground state structures are presented in later sections.
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The projected density of states (PDOS) was tabulated with the tetrahedron method

plus Blöchl corrections.166 Furthermore, all energetic tabulations made herein were

computed from this approach.

5.3.2 Thermodynamic Stability

The thermodynamic stability is assessed by comparison to bulk crystal struc-

tures. In order to ascertain the thermodynamic stability of each nanosheet, we de-

termine the formation energy of each combination using

Ef =
1

N
[Ens − (nCµC + nPNµPN)] (5.1)

where Ens is the total energy of haeckelite nanosheet, µC is the chemical potential

of boron or aluminum cation and µPN is the chemical potential of the pnictogen, N ,

nC , and nPN are the total number of atoms in the unit cell, total number of boron

or aluminum atoms, and total number of pnictogen atoms per unit cell, respectively.

The chemical potentials of boron and aluminum are taken from bulk rhombohedral

boron and FCC aluminum, where the latter is a naturally occurring reference state.

It is important to mention that the homogeneous formation of elemental boron does

not occur in nature. Thus, for continuity of our computations of formation ener-

gies containing boron, we’ve selected a homogeneous synthetic polymorph of boron.

For the pnictogens we have extracted their chemical potentials from their respective

reference states of formation (gaseous nitrogen, white phosphorus, arsenic grey, and

orthorhombic antimony). Hence, the change in formation energy to form an ultrathin

haeckelite nanosheet is obtained in this work by the expression

∆Ef = E2D
f − E3D

f (5.2)
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where E2D
f and E3D

f are the formation energies determined by Eqn. 5.1. Moreover,

to get a sense of the depth of the potential energy of coalescence of elements forming

each haeckelite nanosheet, we define the cohesive energy as

Ecoh =
1

N
[Ens − (nCEC + nPNEPN)] (5.3)

where EC is the total energy of the spin polarized boron or aluminum atom, and EPN

is the total energy of spin polarized pnictogen atom with respect to the number of

atoms per unit cell. These quantities are tabulated and presented in the forthcoming

sections.

5.4 Results and Discussion

5.4.1 Boron Series

5.4.1.1 Bulk Boron Pnictogen Crystals.

In this section we delineate the fundamental ground state and structural prop-

erties of the boron series of bulk haeckelite structures. We have formed each lattice

following a similar construction as that reported elsewhere,250 and the optimized

crystal structures are displayed in Fig. 5.1 using the computational method above.

We employ the shorthand H-B8PN8 to designate haeckelite structures with unit cell

stoichiometry as subscripts in this work. As shown in Fig. 5.1, all boron pnicto-

gen combinations form a body-centered tetragonal lattice, whose coordination yields

tetrahedra around both boron and pnictogen elements with I4cm (C10
4v ) symmetry.257

These crystals display gradual bond lengthening with increasing atomic number, and

Bader analysis shows charge transfer is predominantly from boron to pnictogen ele-

ments (Table 5.1).258,259 However, bulk H-B8Sb8 shows a dramatic reversal of charge

transfer to the boron atom, -0.49 e/at., whereas lower atomic number congeners
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Figure 5.1. Top and side view of bulk haeckelite structures of the boron series. (a)
H-B8N8, (b) H-B8P8, (c) H-B8As8, and (d) H-B8Sb8. 1-3 indicate bond labels for
crystallographic directions: 1 c-axis, 2 ab-plane, and 3 diagonal. An expanded unit
cell of H-B8N8 is shown as a representative model for bulk crystals of this type, Fig.
S2.

display an opposite charge transfer effect. Incidentally, the cohesive energies rise im-

plying a lower stability in these latter bulk haeckelite crystals, where the most stable

H-B8N8 has a value of -5.319 eV/at. Coupled with these physical attributes, the

formation energies also rise following a similar pattern of decreasing stability with in-

creasing atomic number, with H-B8N8 obtaining the lowest formation energy, -0.998

eV/at., relative to standard state compounds. And H-B8P8 shows a stable energy of

formation, -0.316 eV/at., while H-B8As8 and H-B8Sb8 show unstable formation ener-

gies relative to their standard states. Hence, stability in these crystalline structures

proceeds as H-B8N8 > H-B8P8 > H-B8As8 > H-B8Sb8.

The formation of each combination of boron paired with a pnictogen yields

a series of semiconducting crystals, whose bandgaps vary across the UV to IR, Ta-

ble 5.1. However, only H-B8N8 has a direct bandgap at the Γ point (Fig. 5.2) ,

whereas H-B8P8 onwards possess an indirect bandgap where the conduction band

edge is highlighted with a red dot along the Z-P high symmetry direction. From

the PDOS, we see a notable presence of p-manifold of states contributed from the

lower atomic number pnictogens, Fig. 5.3a, yet this contribution diminishes to higher
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Table 5.1. Bulk boron haeckelite pnictogen crystals. For each material we show the
boron-pnictogen bond length d(B − PN) [Å] enumerated 1 - 3 for the c-axes,

ab-plane, and diagonal bonds respectively, bandgap energy Eg [eV], charge transfer
from boron to the pnictogen ∆q [e/at.], cohesive energy ECoh [eV/at.], and the

formation energy Ef [eV/at.].

Material d(B − PN) Eg ∆q ECoh Ef
H-B8N8 1.561, 1.612, 1.511 4.809 2.12 -5.319 -0.998
H-B8P8 1.981, 1.989, 1.938 1.200 0.41 -5.194 -0.316

H-B8As8 2.095, 2.110, 2.054 1.178 0.05 -4.538 0.159
H-B8Sb8 2.297, 2.315, 2.255 0.890 -0.49 -4.028 0.534

atomic number pnictogens, Fig. 5.3d. This can be attributed to the charge transfer

previously discussed to which less charge is captured by the pnictogen elements as

one proceeds to higher atomic number (Table 5.1). Moreover, a reversal occurs with

H-B8Sb8, thus boron quantal states contribute to a greater extent near the Fermi

energy. This suggests that the overall chemical bonding within these bulk crystals

begins polar bonding with H-B8N8/H-B8P8 , covalent bonding H-B8As8, and polar-

covalent bonding for H-B8Sb8. The ground state electronic structure indicates a

weakening of the overall bonding as the splitting of valence and conduction bands

lessens, hence the bandgap lowers, as shown in Fig 5.2. It is interesting to note that

there is a sudden drop in bandgap going from H-B8N8 to H-B8P8, where H-B8N8

exhibits insulating character while H-B8P8 forms an optical semiconductor with a

bandgap difference of 3.609 eV. This conspicuous lowering of the band edges can be

understood from the charge transfer between boron and pnictogen elements. Further-

more, this disparity emerges from atomic (Pauli) electronegativities of the elements

themselves, which underscores the trends discussed here. Thus, the greater the differ-

ence in electronegativity between boron and pnictogen atoms results in shorter bond

lengths, and greater electrostatic stabilization between ions. Indeed, this is apparent

from the ground state charge density of each crystal displayed in Fig. 5.4. We see

regions of the bulk crystal with larger concentrations of charge (red) versus depriva-

tion of charge (blue). For H-B8N8 there is immoderate localization around nitrogen

105



Figure 5.2. Dispersion curves of bulk boron haeckelite structures. (a) H-B8N8, (b)
H-B8P8, (c) H-B8As8, and (d) H-B8Sb8. The red dot indicates the conduction band
extrema for indirect bandgap materials.

centers, whereas proceeding down pnictogen congeners to antimony there is greater

delocalization of charge. Transitioning to H-B8P8, we can see that the strong localiza-

tion of charge around the pnictogen has lessened. This is evidenced by lesser charge

transfer, Table 5.1. For H-B8As8 (Fig. 5.4c), we predict lesser polarization of charge

density around the pnictogen centers as high density regions become more covalent in

this bulk haeckelite material. Hence proceeding down group-V, the elemental proper-

ties like electronegativity weaken. Consequently, the binding of electrons around the

pnictogen centers decreases, lowering the bandgap. However, once we reach H-B8Sb8

the reversal in charge transfer can be clearly seen in Fig. 5.4d, where the charge

is redistributed onto the boron centers. This preserves the bandgap trend, hence

this material remains semiconducting. These bulk haeckelite crystals will serve as a

starting point for the formation of the ultrathin nanosheets of the boron series.
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(a)

(b)

(c)

(d)

Figure 5.3. Projected density of states of bulk boron haeckelite structures. (a) H-
B8N8, (b) H-B8P8, (c) H-B8As8, and (d) H-B8Sb8. The blue vertical line indicates
the Fermi energy, εF .
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(a) (b)

(c) (d)

Figure 5.4. Isosurfaces of bulk haeckelite boron pnictogen crystals. (a) H-B8N8, (b)
H-B8P8, (c) H-B8As8, and (d) H-B8Sb8. The charge density is projected onto the
local potential to render the color map. Here red regions depict greater amounts of
charge (e) per unit volume (Å3).

5.4.1.2 Haeckelite Boron Nanosheets.

We begin our discussion of boron haeckelite ultrathin nanosheets with the

structural and thermodynamic results shown in Fig. 5.5 and Table 5.2. From opti-

mization within density functional theory, we find that H-B4N4 and H-B4P4 haeckelite

nanosheets remain true two-dimensional crystalline lattices with space group symme-

try P4/mbm (D5
4h). For H-B4N4 we predict the shortest bond lengths forming a sp2

hybridized haeckelite network of alternating bond lengths of 1.405 Å and 1.478 Å.

Moreover, H-B4P4 also obtains similar sp2 hybridization of 1.818 Å and 1.890 Å (Ta-

ble 5.2). For these two cases, the longer bond is found to form in the smaller square

ring, whereas the shorter bond forms a portion of the eight membered ring, Fig 5.5.

Because of the strong electronegativity differences among these pnictogens (N,P) the

cohesive energies per atom are quite stable; H-B4N4 is -6.778 eV/at. and H-B4P4 is

-4.710 eV/at. Moreover, the formation energy change to create the two-dimensional

films are small to moderate (Table 5.2). It is important to note that h-BN has a

reported cohesive energy of approximately -7.1 eV/at.,231 which we have found as
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well applying the computational setup reported above. For H-B4N4 we find the for-

mation energy, tabulated from Eqn. 5.2, to be 0.050 eV/at., and it increases to 0.482

eV/at. for the H-B4P4 nanosheet. This increase in the thermodynamic figures-of-

merit can be attributed to the amount of charge transfer between boron and nitrogen

or phosphorus. Here we see for H-B4N4 the greatest exchange of electrons at 2.20

e/at., whereas its ultrathin counterpart H-B4P4 obtains lesser charge transfer at 0.68

e/at. (Table 5.2). The chemical ramification of proceeding from nitrogen to phos-

phorus leads to the elemental reduction in electronegativity and an increase in ionic

radius. Similar to bulk haeckelite boron crystals, the electrostatic interaction weak-

ens in keeping with the elemental properties of the two congeners. Consequently, the

strength of attraction between boron and phosphorus weakens making the change in

formation energy larger, and thus a discernible decrease in charge transfer. Hence,

the potential energy of attraction lowers as well, which increases the bond lengths in

H-B4P4. This behavior extends to higher atomic number ultrathin films of H-B4As4

and H-B4Sb4, Table 5.2.

Table 5.2. Boron haeckelite pnictide nanosheets. The ‘B’ subscript under the
material heading indicates buckled cases. For each material we show the

boron-pnictogen bond length d(B − PN) [Å], bandgap energy Eg [eV], charge
transfer from boron to pnictogen ∆ q [e/at.], cohesive energy ECoh [eV/at.], and the

change in formation energy to form the nanosheet relative to bulk ∆Ef [eV/at.].

Material d(B − PN) Eg ∆q ECoh ∆Ef
H-B4N4 1.405, 1.478 4.077 (4.081) 2.20 -6.778 0.050
H-B4P4 1.818, 1.890 0.790 (0.791) 0.68 -4.710 0.482

H-B4As4 1.916, 1.999 0.703 (0.702) 0.23 -3.962 0.800
HB-B4As4 2.031, 2.014 1.032 0.05 -4.163 0.372
H-B4Sb4 2.115, 2.204 0.361 (0.361) -0.36 -3.252 1.886
HB-B4Sb4 2.167, 2.343 Metallic -0.41 -3.659 0.369

As shown in Fig. 5.5, the H-B4As4 and H-B4Sb4 nanosheets can form two

possible configurations – planar (D5
4h) and buckled ultrathin crystals. The buckled
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(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

Figure 5.5. Planar (4,8)-tessellation of boron pnictide nanosheets and buckled struc-
tures. (a) H-B4N4, (b) H-B4P4, (c) H-B4As4, (d) H-B4Sb4, (e) & (f) HB-B4As4, and
(g) & (h) HB-B4Sb4. Note that HB-B4Sb4 forms a boron-boron bond connecting the
vertices of the tetragonal ring.

ultrathin films, Fig. 5.5e- 5.5h, form corrugations arising from the formation of trig-

onal pyramidal geometry around both arsenic and antimony, while boron adopts a

quasi-trigonal planar geometry within these nanosheets, whose symmetry becomes

P-421m (D3
2d). This lowering of symmetry in the buckled HB-B4As4 and HB-B4Sb4

decreases the overall energy of the nanosheet, hence the cohesive energy per atom

for H-B4As4 is -3.962 eV/at. and HB-B4As4 is -4.163 eV/at. We find H-B4Sb4 to

be -3.252 eV/at. and HB-B4Sb4 is -3.659 eV/at. The lowering of the cohesive en-

ergy can be understood as mitigating increasing ring strain of the square ring while

accommodating the larger pnictogen congeners arsenic and antimony. In the buck-

led HB-B4As4 (Figs. 5.5e & 5.5f), we observe bond lengths of 2.031 Å and 2.014

Å, Table 5.2. Moreover, the bonding in HB-B4As4 suggests the formation of a sp3

bonding network, whereas H-B4As4 nanosheet forms an sp2 network with the unsat-

urated 1.916 Å and saturated bond of 1.999 Å, where, like H-B4N4 and H-B4P4, the

unsaturated bond forms a portion of the eight-membered ring and the longer bond
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forms the square ring (Table 5.2). A similar pattern occurs for the ultrathin film H-

B4Sb4; however, for the HB-B4Sb4 structure, an unusual bonding network forms, as

shown in Figs. 5.5g & 5.5h. Surprisingly, upon buckling around the tetragonal rings,

HB-B4Sb4 forms a boron-boron bond. The bond length is found to be 1.631 Å. This

distance suggests that the nature of the bond is unsaturated. Hence, when buckling

H-B4Sb4 occurs around the square ring, the charge redistributes among the boron

atoms and increases the amount of charge transfer rising from -0.36 e/at. to -0.41

e/at. Because of the apparent lowering of the cohesive energy for these cases, the

overall change in the energy of formation of the two-dimensional haeckelite nanosheet

lowers dramatically, Table 5.2. For H-B4As4 and HB-B4As4, the formation energy

lowers by 0.428 eV/at. Furthermore, as mentioned above, the preference of bonding

network transforms from sp2 to sp3. Likewise, the H-B4Sb4 and HB-B4Sb4 formation

energy change lowers significantly by 1.517 eV/at. The large difference in the change

in formation energy proceeding from 3D to 2D between these two materials can be

understood to derive from the need to allow antimony to form a distorted trigonal

pyramidal geometry. However, because of the competing differences in electronega-

tivity, the loss of charge increases in this structural configuration. Together these two

effects permit the unexpected formation of the boron-boron bond to form to which

HB-B4Sb4 seemingly enhances its stability. The ground electronic properties and

charge density presented below will underscore the thermodynamics discussed here.

We now turn to the ground state electronic properties of boron haeckelite

nanosheets shown in Figs. 5.6 & 5.7. In all planar cases, Fig. 5.6a- 5.6d, we observe

the formation of intrinsic indirect bandgap semiconductors, whose gap energies span

across the ultraviolet to the infrared. Interestingly, we observe a pair of bandgap

extrema in these planar haeckelite crystals, where the band edges form along Γ-

X and M-Γ high symmetry lines (Fig. 5.6a - 5.6d). The largest bandgap recorded

occurs for H-B4N4 at 4.077 eV. Moreover, the projected density of states for the
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Figure 5.6. Dispersion curves of boron pnictide nanosheets. (a) H-B4N4, (b) H-B4P4,
(c) H-B4As4, (d) H-B4Sb4, (e) HB-B4As4, and (f) HB-B4Sb4. The band extrema are
indicated with blue (valence band maximum) and red (conduction band minimum)
dots. The highlighted red band and blue band mark frontier states as a function of
crystal wavevector, k. The horizontal blue line denotes the Fermi energy.
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planar H-B4N4 possesses distinct van Hove singularities at the band edges, which

arise from the pz states of nitrogen in the valence band and boron in the conduction

band, Fig. 5.7a. In the case of H-B4P4 we observe bandgap contraction to 0.790

eV. Further, we see in the PDOS of this material the same arrangement of quantal

states near the Fermi energy as that of H-B4N4, Fig. 5.7b. The bandgap energies

decrease subsequently with increasing atomic number of larger mass congeners for

the planar cases (Table 5.2). For H-B4As4 and H-B4Sb4, the bandgap contraction

continues to 0.703 eV and 0.361 eV, respectively. Furthermore, the PDOS depicts

similar juxtaposition of quantum states, which follows closely the electronic trends

of lighter pnictogen congeners. Hence, we see similar van Hove singularities at the

band edges reminiscent of two-dimensional character for all of these planar haeckelite

structures. Consequently, these critical points often show up in optical spectra as

strong absorption peaks at the gap energy. Moreover, this doubling of band extrema

suggest the possibility of interesting light-matter interactions should these materials

be synthesized later in planar form.

We observe a departure of the bandgap trend seen in the planar boron haeck-

elite materials for the buckled configuration. For buckled HB-B4As4 (Fig. 5.6e), the

bandgap increases to 1.032 eV. Furthermore, the paired extrema in the planar H-

B4As4, Fig. 5.6c, is eliminated and a band extremum forms instead only along M-Γ.

Because of the formation of the trigonal pyramidal geometry in HB-B4As4, we observe

additional mixing in the px and py manifold of states among boron and arsenic valence

electrons. This additional mixing of p-states leads to the formation of antibonding

states around 1.5 eV above the Fermi energy, Fig. 5.7e. For HB-B4Sb4 we predict

the formation of a metal in the buckled configuration, Fig. 5.6f. Thus, H-B4Sb4 may

form two phases upon deformation of the ultrathin crystal lattice. Within density

functional theory we observe the formation of additional bands near the Fermi energy,

Fig. 5.6f. These bands can be attributed to the formation of the boron-boron bond
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(d)

(e)
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Figure 5.7. Projected density of states of boron pnictide nanosheets. (a) H-B4N4,
(b) H-B4P4, (c) H-B4As4, (d) H-B4Sb4, (e) Hb-B4As4, and (f) HB-B4Sb4. The Fermi
energy is displayed as the blue vertical line at zero energy.

and nonbonding electrons around the antimony element resulting from this configura-

tional change. This reordering, the presence of px and py orbitals at the Fermi energy,

of quantal states can be understood as mixing the p-manifold in the distorted trigonal

pyramidal geometry as overlapping among these states accumulates. Hence, charge

transfer increases slightly in HB-B4Sb4. Consequently, a metallic phase emerges in

this haeckelite ultrathin film. However, we will see that the ground state electronic

density realizes these physical and electronic properties.

We finish our discussion with the boron series of haeckelite thin films by not-

ing the ground state charge densities of each film displayed in Fig. 5.8. From above

we can see the emergence of our DFT predictions. For H-B4N4 there is extreme
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Figure 5.8. Crossectional slices of (001) in-plane charge density of the planar boron
haeckelites (a)-(d) and (110) slices of the buckled nanosheets charge density (e)-(f).
(a) H-B4N4, (b) H-B4P4, (c) H-B4As4, (d) H-B4Sb4, (e) HB-B4As4 and (f) HB-B4Sb4.
Note the unit of charge is in absolute atomic units, e Bohr−3.
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charge localization suggesting a polar material, as expected from differences in elec-

tronegativity and charge transfer between boron and nitrogen. Thus, H-B4N4 can be

characterized as a wide bandgap intrinsic semiconductor. Continuing with H-B4P4

we observe an immediate change in the distribution of charge density among the ele-

ments forming this material. Here H-B4P4 shows polarization between the boron and

phosphorus, but some reorganization leads to lesser abstraction of charge from the

boron element. Thus, H-B4P4 presents a polar-covalent sp2 material with a lowering

bandgap and lesser charge transfer between boron and phosphorus. Moreover, H-

B4As4 shows similar charge delocalization between boron and arsenic elements as the

overall elemental properties touched upon already vary only slightly. Hence, H-B4As4

bandgap lowers slightly and the amount of charge transfer varies little as well, form-

ing an indirect bandgap semiconductor similar to H-B4P4. Additionally, the planar

H-B4Sb4 cross-sectional charge density displays the charge transfer reversal already

alluded too above, with charge localization appearing over the boron atoms, Fig 5.8d.

Corresponding to this reversal of charge transfer, the subsequent properties discussed

above become apparent, Table 5.2, forming a small indirect bandgap semiconductor.

Finally, buckled haeckelite HB-B4As4 and HB-B4Sb4 have an interesting arrangement

of electron charge density, where we can see the former, Fig. 5.8e, does not have ap-

preciable charge density localized between boron atoms in the center of the figure,

while the latter, Fig 5.8f, shows a hot spot of concentrated electron density. A conse-

quence of this charge localization between the boron elements within the tetragonal

ring induces very little charge localization between antimony and boron (Fig. 5.8f).

Therefore, the electrons in this material are weakly bound and constitute a metallic

phase. However, HB-B4As4 shows greater charge build up between the boron and

lone pair formation pointing axial or orthogonal to the material located on the arsenic

elements to which the material remains semiconducting and of a sp3 bonding network.
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Hence, bandgap expansion occurs for HB-B4As4, while a metallic phase forms in HB-

B4Sb4. However, the boron-boron bond that forms in HB-B4Sb4, though a chemical

peculiarity, vitiates this material in fact. First, this material forms a metallic ground

state, hence the conduction band is accessible to valence electrons under ambient con-

ditions. Second, because of the strong localization of electron charge density between

vertices boron elements, weak bonding forms between boron and antimony. With the

ratio of bonding types being three B-Sb to one B-B, the predominant bonding within

this material is overall weak, Fig. 5.8f. Therefore, this material will likely decay un-

der thermally driven agitation because of the charge inhomogeneity and accessible

conduction states for HB-B4Sb4. Consequently, HB-B4Sb4 is unlikely to form in the

buckled state. However, it is clear the lighter mass pnictogen congeners will likely

form, and, in particular, H-B4N4 > H-B4P4 > HB-B4As4 > H-B4As4 being the ar-

rangement of stability predicted within the boron series. We exclude H-B4Sb4 and

HB-B4Sb4 because of likely instabilities associated with their formation. Moreover,

only H-B4N4 and H-B4P4 will likely form true one-atom thick ultrathin films as no

buckling was observed, while H-B4As4 does obtain a competing buckled ground state

configuration.

5.4.2 Aluminum Series

5.4.2.1 Bulk Aluminum Pnictogen Crystals.

The aluminum haeckelite bulk crystals display different electronic ground state

and structural properties contrasted against the boron bulk haeckelite series. Within

the bulk aluminum series (Fig. 5.9), we observe the first few crystals having the same

symmetry as that of the boron series, I4cm (C10
4v ). Thus, this metastable crystal has

some structural regularity as seen in the bulk boron haeckelite crystals; however, this

is the only similarity shared between these inorganic crystals. As expected, the bond

lengths elongate as the counter ion, aluminum, increases in ionic radius. For H-Al8N8
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we observe an approximately 0.3 Å increase in bond length from interchanging the

boron for aluminum. Further, H-Al8P8 and H-Al8As8 bond lengths increase by 0.4

Å compared to the bulk boron crystals discussed above. Interestingly, within these

crystals we observe greater charge transfer between the aluminum and pnictogen

congeners, as shown in Table 5.3. In H-Al8N8 we observe the greatest charge transfer

of 2.36 e/at., which is expected as the greatest electronegativity arises between these

two combinations of elements. Thus, H-Al8N8 has the lowest cohesive energy at -

5.646 eV/at. and the lowest formation energy of -1.255 eV/at. (Table 5.3). Similar

ground state trends become apparent for both H-Al8P8 and H-Al4As4. Because the

underlying differences in elemental properties become more moderate, the charge

transfer from aluminum to each pnictogen congener decreases slightly to 2.04 and

1.89 for H-Al8P8 and H-Al8As8, respectively. Hence for H-Al8P8, we predict a rise

in cohesive energy per atom to -4.042 eV, and consequently an increase in formation

energy to -0.603 eV/at. Additionally, for H-Al8As8 the cohesive energy increases to

-3.646 eV/at., while the formation energy is found to be -0.390 eV/at. Taking both

the cohesive energy and formation energy into account, the aluminum bulk haeckelite

structures discussed thus far show reasonable thermodynamic stability. Moreover,

due to the increase charge transfer within this group, it is apparent this quantity

serves to enhance the stability in these crystals.

Table 5.3. Bulk aluminum haeckelite pnictogen crystals. For each material we show
the aluminum-pnictogen bond length d(Al− PN) [Å], where we have enumerated as

was done for the boron series, bandgap energy Eg [eV], charge transfer from
aluminum to pnictogen ∆q [e/at.], cohesive energy ECoh [eV/at.], and the formation

energy Ef [eV/at.]. Note, H-Al8Sb8 is discussed within the body of the text.

Material d(Al − PN) Eg ∆q ECoh Ef
H-Al8N8 1.904, 1.945, 1.844 3.29 2.36 -5.646 -1.255
H-Al8P8 2.383, 2.403, 2.355 2.00 2.04 -4.042 -0.603

H-Al8As8 2.456, 2.501, 2.482 1.46 1.89 -3.646 -0.390
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(a) (b) (c)

Figure 5.9. Bulk aluminum haeckelite ground state crystal structures. (a) H-Al8N8,
(b) H-Al8P8, and (c) H-Al8As8.

We now turn to discuss the H-Al8Sb8 bulk haeckelite crystal structural and

thermodynamic properties, which merits special attention as this crystal presented

an unexpected bifurcation from observations made thus far. Within semilocal density

functional theory, our optimization of this crystal lattice resulted in an all together

different structure shown in Fig. 5.10. The overall symmetry of this inorganic crys-

tal was found to be body-centered orthorhombic with space group Ibam (D26
2h). The

interlayer bond length was found to be 2.860 Å (label 4). The distorted tetragonal

ring bond lengths, label 1 and 2, were found to be 2.773 Å and 2.921 Å, while the

bond length within the octagonal ring, label 3, was found to be 2.857 Å (Fig. 5.10d).

As compared to the lower atomic number congeners above, H-Al8Sb8 presents the

longest bond lengths among the bulk haeckelite aluminum crystals. However, unlike

H-Al8N8 to H-Al8As8 the coordination number changes from four to five. Conse-

quently, the lattice forms into thin film arrangements of aluminum and antimony,

and the local geometry switches from tetrahedral to square pyramidal, which is dis-

played for aluminum polyhedra in Fig. 5.10c. Interestingly, H-Al8Sb8 assembles into

layers resembling the thin film H-Al4Sb4 to be discussed later. The cohesive energy
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Figure 5.10. Bulk aluminum antimonide crystal structure. (a) (100) crystallographic
view and (b) (010) crystallographic view. (c) A single thin layer of of H-Al4Sb4

forming the entire crystal structure. (d) Polyhedra of aluminum within the unit cell
displaying the unique local five coordinate square pyramidal geometry. An expanded
cell is displayed in the supplemental of this bulk crystal, Fig.S3.

per atom increases to -3.042 eV/at., and the formation energy was predicted to be

-0.293 eV/at. Hence, this combination of elements will likely present a more stable

crystal than H-B8Sb8. This is driven by charge transfer from aluminum to antimony

of 1.09 e/at., whereas we observed the opposite charge transfer event in H-B8Sb8.

This underscores the importance of charge transfer on thermodynamic stability for

such inorganic crystals of the (4,8)-tessellation, which will be driven, in part, by

charge localization over pnictogen centers.

The ground state electronic properties of the bulk aluminum haeckelite crys-

tals will now be discussed. We observe decreasing bandgap energies for the bulk

aluminum haeckelite series (Table 5.3). However, unlike the bulk boron haeckelite

crystals, the bulk aluminum haeckelite crystals possess a direct bandgap at Γ points,
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Figure 5.11. Bulk aluminum pnictogen dispersion curves. (a) H-Al8N8, (b) H-Al8P8,
(c) H-Al8As8, and (d) H-Al8Sb8.

as shown in Fig. 5.11. Bandgaps extend from the UV to the IR, with H-Al8N8 ob-

taining a gap energy of 3.29 eV and H-Al8P8 and H-Al8As8 yielding 2.00 eV and

1.46 eV, respectively. In contradistinction to these bulk aluminum haeckelite crys-

tals, H-Al8Sb8 forms a metallic phase (Fig. 5.11d). Interestingly, H-B8Sb8 remains a

semiconductor, while H-Al8Sb8 becomes a metal and alters its ground state configu-

ration. From the projected density of states (Fig. 5.12), we observe a strengthening of

pz and px + py states near the Fermi energy for lighter mass pnictogen elements. For

instance, H-Al8N8 shows large contributions of p-manifold electrons near the Fermi

energy relative to the aluminum quantal states. Moreover, the prominence of the

pnictogen p-manifold electrons, shown as red and green lines, diminishes as charge

transfer lessens, Table 5.3. Consequently, for the least amount of charge transfer

within the bulk aluminum haeckelite crytals, H-Al8Sb8, we see the smallest contribu-

tion of p-manifold states per eV, Fig. 5.12d. In fact, the provenance of the dispersion
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Figure 5.12. Projected density of states of bulk haeckelite aluminum crystals. (a)
H-Al8N8, (b) H-Al8P8, (c) H-Al8As8, and (d) H-Al8Sb8. The vertical blue line marks
the Fermi energy.
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curves and projected density of states can be traced to the ground state electron den-

sity resulting from electron transfer, shown in Fig. 5.13. Similar to the bulk boron

haeckelite electronic ground state, we observe the impact of the underlying elemental

properties composing the bulk aluminum haeckelite crystals. For H-Al8N8 we observe

the largest bandgap since the overall electronegativity differences are largest, thus this

material presents polar bonding with a moderate bandgap, Fig. 5.13a. Continuing

to H-Al8P8, the band edges contract as the elemental properties weaken between

aluminum and phosphorus, and this periodic trend continues to H-Al8As8. Once

H-Al8Sb8 is reached (Fig. 5.13d), we observe a more covalent environment as the

antimony atoms withhold less electron density than the lighter pnictogen congeners.

The electron density is found to center around the antimony element, but because

of the strength of the shielding of electrons from antimony and the electrostatic at-

traction provided by aluminum, the electron density appears to be free like in the

interstitial regions of the crystal. Hence, the metallic phase is supported within this

unique inorganic crystal.

5.4.2.2 Haeckelite Aluminum Nanosheets.

In this section, we turn to the final haeckelite nanosheets forming the aluminum

series of the (4,8)-tessellation motif. We first consider the thermodynamic stability

of such ultrathin nanosheets, which are derived from the previously discussed bulk

aluminum crystals. The optimized haeckelite aluminum nanosheets within semilocal

density functional theory are displayed in Fig. 5.14. Panels a-d display thin films

with P4/mbm (D5
4h) symmetry, like the (4,8)-tessellated boron haeckelite nanosheets

discussed in Fig. 5.5. Furthermore, we see similar bonding trends as a function of

pnictogen, although perturbed by the presence of the larger aluminum atom, Ta-

ble 5.4. In particular, we predict H-Al4N4 to have the shortest bond lengths of 1.763

Å and 1.832 Å forming a sp2 haeckelite nanosheet. Moreover, for the other planar

aluminum structures (Fig. 5.14b-d), we observe a similar bonding pattern, suggesting
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(a) (b)

(c) (d)

Figure 5.13. Isosurfaces of bulk aluminum haeckelite crystals. (a) H-Al8N8, (b) H-
Al8P8, (c) H-Al8As8, and (d) H-Al8Sb8. Red regions are volumes of higher electron
charge density whereas lighter colored regions display lesser electron charge density.
For these bulk crystals, electron charge density tends to form over the pnictogen
centers.

(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 5.14. Planar and buckled (4,8)-tessellation of aluminum pnictide nanosheets.
(a) H-Al4N4, (b) H-Al4P4, (c) H-Al4As4, (d) H-Al4Sb4, (e-f) HB-Al4P4, (g-h) HB-
Al4As4, and (i-j) HB-Al4Sb4.
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that these cases too form sp2 hybridized nanosheets with bond elongation escalating

with larger pnictogen atomic number. Unlike the boron haeckelite nanosheets, how-

ever, we observe extreme differences in the electron transfer manifest in these planar

aluminum (4,8)-nanosheets, Table 5.4. For H-Al4N4 we observe the most dramatic

charge transfer of 3.00 e/at. determined from Bader analysis. Hence, the forma-

tion of this nanosheet leads to greater or complete abstraction of aluminum valence

charge to nitrogen. For H-Al4P4 we observe lesser abstraction (although greater than

that observed in H-B4P4) at 1.99 e/at. These amounts decrease to 1.86 and 1.55

e/at. for H-Al4As4 and H-Al4Sb4, respectively. As shown in Table 5.4, we observe

a general increase in the cohesive energy with atomic number for these planar ul-

trathin nanosheets, ranging from -5.087 eV/at. for H-Al4N4 to -2.651 eV/at. for

H-Al4Sb4. This suggests that heavier congeners are less stable than the lighter alu-

minum haeckelite nanosheets. Thus, the change in formation energy per atom for

each aluminum haeckelite nanosheet generally increases within the planar structures.

For H-Al4N4 and H-Al4P4, we observe similar energies of formation to produce the

two-dimensional ultrathin film at 0.563 eV/at. and 0.565 eV/at. This figure-of-merit

decreases slightly for H-Al4As4 to 0.558 eV/at., while H-Al4Sb4 was found to be 0.768

eV/at. The lower formation energy per atom to form H-Al4As4 likely occurs as alu-

minum and arsenic share similar ionic radii. The increase in the change of formation

energy per atom, Table 5.4, can be accounted for by the increase in the stabilization

of the bulk aluminum haeckelite crystal discussed in the previous section. As noted

previously, the formation energy in the bulk haeckelite aluminum solids lowers, es-

pecially compared to the bulk boron haeckelite solids. Hence, the capriciousness in

forming the two-dimensional one-atom thick aluminum nanosheets, Fig. 5.14a-d, be-

comes apparent; the formation energy per bulk aluminum crystal increases relative to

aluminum nanosheets. Moreover, because of the charge transfer manifest in the bulk

aluminum crystals, we can expect stronger bonding formed from this greater charge
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disparity, which will further irritate their formation into planar haeckelite thin films.

However, a consequence of charge localization around the pnictogen congeners within

the planar motif is that the electrostatic attraction between ions increases, which

promotes their stability in the planar configuration. Yet the buckled configurations

of these haeckelite ultrathin films show greater stabilization similar to that observed

with the buckled boron nanosheets.

Table 5.4. Aluminum haeckelite pnictide nanosheets thermodynamics stability. The
‘B’ subscript under the material heading expresses buckled cases. For each material
we show the aluminum-pnictogen bond length d(Al − PN) [Å], bandgap energy Eg
[eV], charge transfer from aluminum to pnictogen ∆q [e/at.], cohesive energy ECoh
[eV/at.], and the change in formation energy to form the nanosheet relative to bulk

∆Ef [eV/at.].

Material d(Al − PN) Eg ∆q ECoh ∆Ef
H-Al4N4 1.763, 1.832 2.857 3.00 -5.087 0.563
H-Al4P4 2.251, 2.286 2.148 1.99 -3.479 0.565
HB-Al4P4 2.285, 2.331 2.327 1.94 -3.577 0.465
H-Al4As4 2.338, 2.378 1.106 1.86 -3.090 0.558
HB-Al4As4 2.395, 2.445 2.028 1.76 -3.250 0.395
H-Al4Sb4 2.550, 2.591 0.388 1.55 -2.651 0.768
HB-Al4Sb4 2.627, 2.665 1.552 1.40 -2.856 0.561

Along with the formation of planar structures, a number of buckled alu-

minum nanosheets form, as shown in Fig. 5.14e-j. The symmetry of the buckled

aluminum nanosheets was found to be P-421m (D3
2d). Interestingly, for the alu-

minum nanosheets, we observe an addition to the buckled group (compared to the

boron series), HB-Al4P4. The buckled aluminum haeckelite nanosheets display a

trigonal pyramidal geometry surrounding each pnictogen congener, while aluminum

forms a quasi-trigonal planar geometry like we have observed for the buckled boron

nanosheets. Again the buckling occurs within the tetragonal ring system compos-

ing the nanosheet to alleviate ring strain. Moreover, upon relaxation, the formation

of corrugations becomes pronounced, while obeying the local geometries around the
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Figure 5.15. Dispersion curves of ground state haeckelite aluminum pnictide
nanosheets. (a) H-Al4N4, (b) H-Al4P4, (c) H-Al4As4, (d) H-Al4Sb4, (e) HB-Al4P4,
(f) HB-Al4As4, and (g) HB-Al4Sb4. The blue dots on the subfigures mark the band
extrema of the valence band maximum.
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elements composing each nanosheet. Consequently, we observe interesting bonding

patterns within this series. For HB-Al4P4 we observe the shortest bond length in-

creasing by approximately 0.034 Å and the longest increasing 0.045 Å compared to

the planar polytype, Table 5.4. However, we observe the heavier aluminum haeckelite

nanosheets HB-Al4As4 and HB-Al4Sb4 to have moderate bond elongation of 0.057 Å

and 0.067 Å, and 0.077 Å and 0.074 Å compared to the planar configuration, respec-

tively. Aside from the bonding within the buckled aluminum nanosheets, the charge

transfer diminishes slightly compared to the planar ones (Table 5.4). For HB-Al4P4

the charge transfer between aluminum and phosphorus lessens by 0.05 e/at. com-

pared to the planar nanosheet. Analogously, HB-Al4As4 charge transfer reduces by

0.1 e/at. and HB-Al4Sb4 decreases by 0.15 e/at. These differences in charge transfer

within the buckled aluminum series of haeckelite nanosheets are followed by lower

cohesive energies, contrasted against the planar aluminum ultrathin nanosheets dis-

cussed previously. The cohesive energy for HB-Al4P4 lowers by 0.097 eV/at. relative

to the planar configuration, while for the heavier buckled HB-Al4As4 and HB-Al4Sb4,

we observe decreases of 0.16 and 0.20 eV/at. These buckled structures alleviate the

strain within the tetragonal ring. Since these structures are composed of eight mem-

ber rings as well, their buckling accesses the configurational landscape that is possible

with greater ring sizes. In fact, HB-Al4As4 attains the lowest change in formation

energy per atom forming this buckled nanosheet at 0.395 eV/at. And for HB-Al4P4

the change in formation energy creating the buckled configuration is predicted to be

0.465 eV/at., while HB-Al4Sb4 is found to be 0.561 eV/at. Consequently, these buck-

led nanosheets have correspondingly greater thermodynamic stability as shown by

their lower change in formation energy to create the buckled aluminum nanosheets

and decreased cohesive energy , Table 5.4. These structural and thermodynamic

trends will be reflected in the ground state electronic structures for both planar and

buckled haeckelite aluminum nanosheets.
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The ground state electronic structures of the planar aluminum haeckelite

are presented in Fig. 5.15a-d. In the aluminum haeckelite nanosheets, we observe

the formation of intrinsic indirect bandgap semiconductors similar to the boron

nanosheets discussed above. Unlike the (4,8)-boron nanosheets, the aluminum ul-

trathin nanosheets support only a single set of band extrema, which are found to

occur along M-Γ direction. Moreover, bandgap trends observed for the aluminum

haeckelite nanosheets decreases in a similar fashion as the boron haeckelite nanosheets

and extend over the visible and IR. The largest bandgap observed in the aluminum

nanosheet series is 2.857 eV for H-Al4N4, Table 5.4. This is to be expected, as we have

already noted that this inorganic thin film forms a polar material to which the great-

est charge transfer occurs. Furthermore, the projected density of states for H-Al4N4,

Fig. 5.16a, shows sharp van Hove singularities near the Fermi energy originating from

nitrogen valence pz state. The significant formation of pz states can be attributed

to the large charge transfer from aluminum and the reduction of dimensionality to

a two-dimensional thin film. However, unlike the planar boron haeckelite structures

discussed previously, we do not predict the formation of a conduction band van Hove

singularity. In fact, around 3 eV we see the incipient formation of conduction band

states that gradually rise upward instead of a sharp critical feature in the atomic

PDOS (Fig. 5.16a). Further, with H-Al4P4 the bandgap lowers to 2.148 eV, and we

observe the similar pz channel forming near the Fermi energy, which is, again, driven

by the charge transfer from aluminum elements and reducing the dimensionality of

the material. And like H-Al4N4 we see no notable critical point at the conduction

band edge of the PDOS, Fig. 5.16b. Hence, the optical response to external elec-

tromagnetic stimuli will lessen compared to boron haeckelite nanosheets. Within

the latter heavier pnictogen elements arsenic and antimony, we observe band further

contraction at Γ to 1.106 eV and 0.388 eV, respectively. Additionally, the PDOS

trends observed for lighter mass pnictogens extend to the heavier ones; we observe
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van Hove singularities near the Fermi energy in the valence band extremum and a

gradual increase in the DOS near the conduction band minimum for both materials.

Hence these aluminum nanosheets should display weaker light matter interactions

contrasted against the boron haeckelite nanosheets that support these critical fea-

tures in the density of states. An apparent chemical trend emerges within this series

that, as noted already, can be understood from the differences in elemental properties

between aluminum and the pnictogen congeners. Hence, the largest differences in

electronegativity emerge within this series, and the electrostatic attraction between

ions forming the aluminum thin films increases. Consequently, the bandgap within

the planar aluminum nanosheets overall have larger bandgaps than the boron versions

(with the exception of H-B4N4). Thus, these materials exhibit polar sp2 hybridized

nanosheets with properties unique and separate from the boron planar nanosheets.

These ground state material properties are an emblematic feature for the planar cases;

however, the bandgaps open larger when the planar polytype buckles, as discussed

below.

In the buckled cases, Fig. 5.15e-g, we observe band extrema lying along the M-

Γ direction as well, although the conduction band minimum for HB-Al4Sb4 switches

from Γ to M. Note that the valence band maximum along Γ-X is close to the recipro-

cal direction M-Γ; however, strictly speaking this is a local maximum. For HB-Al4P4,

we observe a change in the bandgap, increasing approximately 0.18 eV relative to

the planar configuration bandgaps, Table 5.4. The bandgap expansion for heavier

HB-Al4As4 and HB-Al4Sb4 increases by 0.92 eV and 1.16 eV, respectively. As noted

above, the buckled configuration forms such that the pnictogen becomes quasi-trigonal

pyramidal and the aluminum becomes trigonal planar. This distortion around the

square ring alters the interaction of quantal states between the aluminum and pnicto-

gen elements such that the entire p-manifold is found around the Fermi energy as seen

in the projected density of states (Fig. 5.16e-g). In fact, we can see that the px + py
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Figure 5.16. Projected density of states of aluminum pnictide nanosheets. (a) H-
Al4N4, (b) H-Al4P4, (c) H-Al4As4, (d) H-Al4Sb4, (e) HB-Al4P4, (f) HB-Al4As4, and
(g) HB-Al4Sb4. (a)-(d) are planar aluminum pnictide nanosheet PDOS, and (e)-(g)
are the buckled aluminum pnictide nanosheet PDOS. The vertical blue line marks
the Fermi energy at zero energy.
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states grow in prominence near the Fermi energy, thus mixing of these orbital states

forces open a larger bandgap within the buckled polytype. Hence, within the buckled

aluminum nanosheets greater mixing of p-manifold electrons slightly lowers charge

transfer from aluminum to the pnictogen elements. This quantum interaction forms

the sp3 hybridized buckled motif, lowering the energy and raising the bandgap of

these aluminum haeckelite nanosheets compared to the planar versions. Incidentally,

within the bandstructures of the buckled aluminum haeckelite nanosheets, Fig. 5.14e-

g, the lowest conduction band and highest valence band show moderately smooth

dispersion across the Brillouin zone. This could lead to improved light-matter in-

teractions for those bands that track similarly between the valence and conduction

states. However, because of the appreciable increase in charge transfer (relative to

the boron nanosheets) within these buckled aluminum nanosheets, their absorption

will likely be hyperchromic in the absorption spectrum and lower in intensity. This

conjecture will hold true for the planar aluminum nanosheets as well. These electronic

grounds states can be realized by observing the pseudo-charge density slices of each

nanosheet.

Cross-sections of the ground state charge densities reveal the underlying elec-

tronic and structural properties of each aluminum haeckelite nanosheet, Fig. 5.17.

The elemental properties are conspicuous within the planar aluminum series. For

H-Al4N4, we observe the most disparate organization of ground state charge density

(Fig. 5.17a). Most of the charge is found localized over the nitrogen element, and

thus, this material forms a stable polar sp2 two-dimensional crystal. Upon substitut-

ing phosphorus for nitrogen, the degree of charge localization reduces (Fig. 5.17b),

but we can still see that the electrons localize heavily around the pnictide. Hence,

the charge transfer from the aluminum element to phosphorus supports the mate-

rial having a modest bandgap, as would be expected for a polar-covalent material.
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Figure 5.17. Ground state electronic charge density cross-sections of aluminum haeck-
elite nanosheets presented as in Fig. 5.8. (a) H-Al4N4, (b) H-Al4P4, (c) H-Al4As4,
(d) H-Al4Sb4, (e) HB-Al4P4, (f) HB-Al4As4 , and (g) HB-Al4Sb4.
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Proceeding to the heavier planar nanosheets, Fig. 5.17c-d, we observe a gradual re-

duction in the charge localization around the arsenic and antimony atoms, where

the most concentrated charge regions begin to spread closer to the aluminum ions.

The organization of electron density is similar to that of phosphorus, which suggests

these planar aluminum nanosheets are polar and sp2-unsaturated. Consequently, the

gap structure within the bandstructures stays open, and the energy gap within the

planar aluminum nanosheets generally remains larger than that of the boron struc-

tures. Therefore, as alluded to above, the elemental properties are more dissimilar

within the aluminum series to which we observe the greatest polarization of charge

density, larger bandgaps, and similar thin-film formation energies. However, as shown

in Fig. 5.17e-g, when the planar nanosheets buckle, the ground state charge density

reorganizes around the pnictogen congeners. Interestingly, the buckled configuration

charge density shows only a diminutive redistribution of charge around the pnicto-

gen, where there appears to be appreciable charge density axially fixed away from the

nanosheet. These are the locations of lone-pairs formed in the buckled configuration

(Fig. 5.17e-g). This suggests the sp3 character of the buckled motif for the alu-

minum haeckelite nanosheets. Moreover, these lone-pairs could certainly be involved

in cooperative chemical transformations serving as a nucleophilic source for surface-

absorbate reactions. Conversely, the aluminum atoms could serve as electrophiles

due to their deprivation of charge density. For HB-Al4Sb4, we note the aluminum-

aluminum bond doesn’t form in the nanosheet (recall boron-boron did). The absence

of this unusual bonding feature can be understood in terms of the polarization of

charge density in the ground state around the antimony atom. The electronegativity

difference between aluminum and antimony favors the latter element, which reduces

diagonal charge density build-up between the vertice alumina on the tetragonal ring.
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5.5 Conclusions

In this article, we have elucidated the thermodynamic and ground state elec-

tronic properties of bulk and ultrathin haeckelite nanostructures composed of boron/aluminum

− group V elements. Additionally, we have observed the formation of an unexpected

metallic five-coordinate aluminum antimonide crystal, H-Al8Sb8. We have shown that

these bulk haeckelite crystals could form metastable structures to which the ultra-

thin film may be mechanically formed. Hence, the stability of forming the unique

(4,8)-tessellation can be achieved for those ultrathin films with low change in for-

mation energy relative to bulk, or low cohesive energies. H-B4N4 shows the greatest

promise of forming based on these criteria, but we put forward that H-B4P4, H-B4As4,

HB-B4As4, and most of the aluminum haeckelite nanosheets with the exception of

H-Al4Sb4 could be formed; the latter are likely to be refractory and adopt various

configurations at ambient conditions. In particular, the existence of buckled config-

urations within both the boron and aluminum series suggests that those particular

nanosheets will likely form deviations from planarity should experimental synthesis

be attempted. Thus, such suspended thin films may likely form buckled configu-

rations upon interfacial interaction with substrates. Furthermore, in order to form

such materials a combination of synthetic strategies may be necessary. For example,

a combination of on-surface synthesis and encapsulation of an inert thin film over

a substrate to form a nanoreactor would be most efficacious.14 Conseqently, with

the observations made herein, only H-B4N4, H-B4P4, and H-Al4N4 will remain truly

two-dimensional, as no buckling within these nanosheets was found due to appre-

ciable charge transfer and strong polarized bonds. Moreover, should their synthesis

be achieved, these ultrathin nanosheets would likely exhibit the electronic properties

of an indirect bandgap semiconductor, but with larger bandgaps as the presence of

exact-exchange interactions was not accounted for. Hence, the presence of the optical

gaps could lead to their use as a photoactive material in light-driven applications
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spanning a broad range of photon energies. And due to the stability of the aforemen-

tioned haeckelite nanomaterials, with the variation of their bandgaps, it is possible

that they may find utility as photovoltaics or light-emitting diodes. Moreover, many

physical aspects concerning these novel haeckelite nanomaterials were not discussed

within this article, e.g., multilayer polymorphs, excitonic effects, phonon spectra, p

heterostructures, etc. Thus, we hope this fundamental article will invigorate scientific

inquiry into the experimental synthesis and theoretical elucidation of the haeckelite

bulk and ultrathin nanosheets, as this is an open question at present.

5.6 Supplemental Information

θ1 

θ2 

θ3 

θ4 

Figure 5.18. Angles listed in Table S1 for all haeckelite nanosheets and bulk haeckelite
crystals.
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Table 5.5. Haeckelite crystal structure data for all materials presented within the
main text. All lattice constants are given in angstrom, Å. α, β, and γ refer to

crystal cell angles (degrees) of bulk haeckelite crystals.

Material a b c θ1 θ2 θ3 θ4 α β γ
H-B8N8 5.013 5.013 4.229 − − − − 90.00 90.00 90.00
H-B8P8 6.303 6.303 5.322 − − − − 90.00 90.00 90.00

H-B8As8 6.689 6.689 5.625 − − − − 90.00 90.00 90.00
H-B8Sb8 7.352 7.352 6.150 − − − − 90.00 90.00 90.00
H-B4N4 4.938 4.938 − 95.74 84.26 132.13 134.87 − − −
H-B4P4 6.350 6.350 − 89.53 90.47 135.24 134.77 − − −

H-B4As4 6.707 6.707 − 91.51 88.49 134.25 135.76 − − −
HB-B4As4 5.784 5.784 − 102.94 63.52 127.54 109.11 − − −
H-B4Sb4 7.398 7.398 − 92.57 87.43 133.71 136.29 − − −

HB-B4Sb4 6.264 6.264 − 102.36 49.81 125.53 110.31 − − −
H-Al8N8 6.167 6.167 5.006 − − − − 90.00 90.00 90.00
H-Al8P4 7.649 7.648 6.375 − − − − 90.00 90.00 90.00

H-Al8As8 7.961 7.960 6.646 − − − − 90.00 90.00 90.00
H-Al8Sb8 6.754 11.099 5.376 − − − − 90.00 90.00 90.00
H-Al4N4 6.154 6.154 − 93.78 86.22 133.11 136.89 − − −
H-Al4P4 7.749 7.750 − 95.46 85.54 132.27 137.73 − − −

HB-Al4P4 6.843 6.844 − 95.08 74.07 130.82 110.63 − − −
H-Al4As4 8.057 8.057 − 95.64 84.36 132.18 137.81 − − −

HB-Al4As4 6.925 6.925 − 95.46 71.19 130.30 105.76 − − −
H-Al4Sb4 8.782 8.782 − 95.85 84.15 132.08 137.92 − − −

HB-Al4Sb4 7.296 7.295 − 97.48 67.14 129.06 101.87 − − −

137



(a) (b)

Figure 5.19. Bulk H-B8N8 shown in an expanded 2x2x2 cell along (a) (100) and
(b) (001) crystallogrphic directions. This cell is a representative model of all bulk
boron and aluminum haeckelite cyrstals, except for the bulk H-Al8Sb8. Note the
color scheme of the elements for all figures in the supplemental is the same as that
displayed in the manuscript.
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(a)

(b)

(c)

Figure 5.20. Bulk H-Al8Sb8 displayed in an expanded 2x2x2 cell along (a) (100), (b)
(010), and (c) (001) crystallographic directions. We can see in this cell the unique
bonding pattern accompanied with five coordinate alumina and antimony elements.
Note the color scheme of the elements for all figures in the supplemental is the same
as that displayed in the manuscript.
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CHAPTER SIX

Exceptional Optical Response of Archimedean Boron and Group-V Ultrathin
Nanosheets

This chapter published as: Paul A. Brown and Kevin L. Shuford. J. Phys. Chem. C
2017,121, 44, 24489-24494

6.1 Abstract

The ascendency of ultrathin films have emerged as a boon for 21st-century nan-

otechnologies that rely on flexibility, tunable properties, and active surface area. In

this article we explore uncharted configurations with Archimedean (4,8)-tessellations

that exhibit exceptional light-matter interactions captured with time-dependent den-

sity functional theory. We find that planar monolayers of haeckelite boron-pnictogen

binary materials possess strong interband absorbance and absorption coefficients that

rival existing ultrathin films. These observables were found to occur in the ultravio-

let for the boron-nitride nanosheet and in the infrared region of the electromagnetic

spectrum for heavier pnictogens, suggesting a route for photocapture of high density

solar photons. Moreover, we find the buckled haeckelite boron arsenide supports a

similar, yet slightly decreased, optical response that is blue-shifted from its planar

configuration. The strong optical response of these ultrathin films emerges from their

unique bandstructures, localization of π-electrons in the ground state, Van Hove sin-

gularities at band extrema, and complementary elemental properties. Consequently,

the (4,8) haeckelite motif demonstrates that many two-dimensional films with dis-

tinctly different lattice tessellations from that of established ultrathin materials could

have a significant impact on the field.
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6.2 Introduction

Since the first isolation of graphene in 2004, the field of ultrathin film research

has grown rapidly with new discoveries every year.6,7,229,260 Most of the scientific

vigor has concentrated on a number of hexagonal ultrathin films – such as transition

metal dichalcogenides (TMDCs), boron-nitride, and graphene – whose designer het-

erostructures have been fabricated to form an array of novel device architectures.229,260

These proof-of-concept devices have displayed exceptional light-matter interactions

surpassing established technologies.260 For instance, heterostructures composed of a

GaTe/MoS2 device boasted a 60% external quantum efficiency displaying efficient

carrier separation.261 Also, because of its low density of states and low optical ab-

sorption coefficient, graphene-based optoelectronic devices have been assembled with

GaS, InSe, TMDCs, black phosphorus and others.262–266 With the ability to tune

light-matter interactions with local gating, number of layers, and material flexibility,

such single junction devices hold a great deal of promise for emerging nanotech-

nologies of the 21st-century – in particular photovoltaics, light-emitting diodes, and

field-effect tunneling transistors.260 However, much of the scientific research has been

focused on the aforementioned subgroup of ultrathin films, while a vast ocean of con-

figurationally distinct nanomaterials, whose properties may be more efficacious than

existing ultrathin films, have yet to be explored in great detail.

In this article we focus on the optical response of a new class of ultrathin film

– the Archimedean haeckelite nanosheets, whose constituents are composed of binary,

boron pnictogen combinations. Archimedean haeckelite nanosheets are semiregular

polygonal structures that form from four to eight membered fused polynuclear ring

structures.250,267–274 Such materials display an interesting array of intrinsic indirect

semiconducting and metallic behavior. In particular, the boron series of haeckelite

nanosheets were found to have double extrema in their bandstructure.272 This for-

tuitous bandstructure forms from hybridization of s- and p-electrons of the boron
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and pnictogen elements within a (4,8)-tessellated configuration, yielding one-atom

thick planar sp2 hybridized crystalline nanosheets. The haeckelite boron-pnictogen

ultrathin films display strong light matter interactions that arise from their unique

bandstructures. Consequently, these particular structures have tremendous optical

response even though haeckelite crystals are technically indirect bandgap semicon-

ductors, albeit very close to a direct bandgap. More importantly, we predict strong

optical response in the infrared region for heavier pnictogen elements, where optoelec-

tronic applications are most critical estimated from the well known Shockley-Queisser

limit.275 And we will show that these materials exhibit annular valence and conduc-

tion band extrema that are responsible for their exceptional optical response. Thus,

such configurationally distinct materials may have a real impact in both extended

theoretical investigations and experimental strategies for synthesis and elucidation of

fundamental properties.

6.3 Theoretical Methods

The Archimedean boron haeckelite series was studied within density functional

theory using the Vienna ab initio simulation package (VASP) (vasp.5.4.1).114 First,

the haeckelite boron pnictogen monolayers were optimized with the semilocal Perdew-

Burke-Ernzerhof (PBE) functional following the procedure reported elsewhere.272 We

study the optical response by computing the complex dielectric functions with a

screened hybrid corrected exchange-correlation functional of Heyd-Scuseria-Ernzerhof

(HSE06) to correct the gap structure (within 15-16 % of the experimental bandgap)

and then introduce these orbitally-corrected Kohn-Sham states into time-dependent

Hartree-Fock to capture electron-hole contributions in the spectra.47,52,53,276,277 Paier

et al. have shown that excitonic features can be described well with this approach

to within 3% of the expected optical response compared to experiment.276 The com-

plex dielectric functions were computed on a Monkhorst-Pack grid sampling of 18 x

18 x 1 with default cutoff. A Gaussian smearing function was applied with a finite
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temperature smearing width of 0.01 eV for the partial occupancies.216 The band-

structures and projected density of states were computed with this approach. We

compute the electron-hole interaction within time-dependent Hartree-Fock including

seven valence and eight virtual states explicitly, while increasing the number of bands

to ninety six total bands for all spectra.276,278 Each spectra presented below was com-

puted on a fine grid of 5000 points up to 10 eV in photon energy. The complex

dielectric response is captured via a Dyson expansion over irreducible polarizability,

where the dynamically screened bare Coulomb potential is approximated through the

sum over Coulomb and effective frequency dependent nonlocal exchange-correlation

kernel.276,278 From this computational approach, the excitonic features can be indi-

rectly captured for semiconducting materials rather than resorting to computing the

more laborious Bethe-Salpeter equation.276,278

The absorbance in this article is determined from the following expression

A(E) = 1− e−pα(E)∆z, (6.1)

where ∆z is the thickness of a material (taken to be the unit cell thickness) and p

is the number of passes of light (p is one for first pass absorption).103 Here α is the

absorption coefficient given as

α(E) =
ω

cn
ε2(E), (6.2)

where E is the photon energy, c the speed of light, n is the refractive index taken to

be unity for vacuum, and ε2(E) is the imaginary portion of the frequency-dependent

complex dielectric function.103
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Figure 6.1. Hybrid band structure, PDOS, and optical response of H-BN and H-BP.
(a) & (e) HSE06 band structure and projected density of states, (b) & (f) ultrathin
film optimized structures, (c) & (g) absorbance spectrum from Eqn. 6.1, and (d) &
(h) absorption coefficient from Eqn. 6.2 for H-BN and H-BP respectively.

6.4 Results and Discussion

Figure 6.1a-c shows the result of our computational approach for H-BN (haeck-

elite boron nitride). The overall cohesive energy of monolayer of H-BN was found to

be -6.78 eV with a formation energy change relative to bulk at 0.050 eV.272 For H-

BN we observe a bandgap of approximately 5.44 eV, which is 0.56 eV lower than its

hexagonal counterpart h-BN.262 Moreover, the bandstructure of H-BN displays two

extrema along the M−Γ and Γ−X directions, Fig. 6.1a. A conspicuous sharp peak

emerges in the absorbance spectrum (Fig. 6.1c), which corresponds to the fundamen-

tal gap for H-BN, and can be attributed to the interband transition from the double

extrema. A second peak emerges from the X15v,16v −→ X15c,16c interband transition

around 6.2 eV. In the PDOS for H-BN, the formation of Van Hove singularities (VHs)

ensures a strong optical response observed in the absorbance spectrum. These VHs

are characterized by sharp peaks in the PDOS, Fig. 6.1a & 6.1e, and are responsible

for a build up of the joint density of states. Located near the Fermi energy, the pnic-

togen contributes the majority of states per eV (purple line), while at the conduction

band extrema the boron element (green line) forms the majority of empty states per
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eV. Thus, computed absorbance displays a strong absorption around the bandgap

energy of nearly 18.5% and a maximum absorption coefficient of 1.14 x 106 cm−1.

Compared to other computed absorption coefficients,279 such as those for MoS2 of

1-1.5 x 106 cm−1, our values suggest comparable photoresponsivity at the onset of

absorption in H-BN.

Replacing the pnictogen element nitrogen with phosphorus results in an en-

tirely different yet strong absorption that shifts from the ultraviolet to infrared,

Fig. 6.1e-h. Moreover, the cohesive energy in the monolayer rises to -4.71 eV with a

change in formation energy relative to bulk at 0.48 eV.272 Substituting a phosphorus

into the haeckelite lattice results in a lowering of the bandgap to approximately 1.25

eV (Fig. 6.1e). Moreover, the double extrema still form two valleys of well defined

parabolicity, and again we see the VHs observed in H-BN appear at the band extrema

for H-BP. Hence, interband transitions from the valence band edge to the conduction

band yield a strong peak at the fundamental gap in the absorbance spectrum for

H-BP, Fig. 6.1g. Furthermore, a shoulder appears at about 2 eV and extends across

the entire visible region of the electromagnetic spectrum. This peak emerges from a

transition between X15v,16v −→ X15c,16c as was observed for H-BN. These observations

are intrinsic to the planar (4,8)-tessellation of boron and group-V elements. More-

over, proceeding from the onset of absorption, we see the absorbance extends into

the deep infrared and across the visible, Fig. 6.1g. Consequently, H-BP demonstrates

powerful optical response in a region critical to photovoltaic devices. From the ab-

sorbance spectrum, we see the strongest absorbance around the fundamental bandgap

approaching 13.47% with an optical absorption coefficient of 0.80 x 106 cm−1, which

is competitive with TMDCs.279 It is interesting to note that these haeckelite struc-

tures are less dense per unit cell than TMDCs (TMDCs are 4 times more dense per

unit cell). Hence, within the infrared region of the electromagnetic spectrum, H-BP

exhibits a strong optical response compared to existing thin films. Moreover, these
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Archimedean nanosheets may be layered to tune the bandgap of the material. This

approach can mitigate atmospheric scattering in the IR allowing for better control of

free carrier formation from absorption of solar photons.

In order to estimate the maximum short circuit photocurrent resulting from

solar emission, the absorbed photon flux, Jmaxabs , is determined as

Jmaxabs = e

∫ ∞
Eg

dE A(E) · Jph(E), (6.3)

where A(E) is the absorbance of each haeckelite nanosheet (Eqn. 6.1), Jph is the

incident photon flux (photons/cm2·s·eV), where we introduce AM 1.5G solar spectrum

for Jph, E is the photon energy, and e converts the photon flux to current density per

photon energy (mA/cm2·eV).279 The absorbed photon flux for each material indicates

the upper limit of short-circuit electrical current density, Jmaxabs (mA/cm2), available for

conversion of photons to free carriers as electrical current in a photovoltaic device.279

It is important to note that the maximum photocurrent determined from Eqn. 6.3

represents the maximum current under ideal conditions, and does not capture the

influence of carrier scattering on the fate of free carriers resultant from excitation.

From Table 6.1 we see that H-BP has a notable photocurrent of 2.53 mA/cm2, which

is quite large compared against established materials like silicon. However, this value

is less than that reported for TMDCs like MoS2 at 3.9 mA/cm2 or even larger 4.6

mA/cm2 for MoSe2.279 The lower photocurrent reported here can be attributed to the

peak position of H-BP being coincident with a dip in the solar irradiance around 950

nm. Hence, H-BP photocurrent is limited by a lower incident photon flux, Jph(E),

from notable atmospheric losses. However, as noted above, the optical gap of two-

dimensional materials can be tuned by adding more layers, hence the optical response

of H-BP could be red shifted to better align with incident solar spectral irradiance.

For the H-BAs monolayer, we found two configurations to be stable, the pla-

nar and buckled geometries shown in Fig. 6.2b & 6.2f. The planar and buckled
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Table 6.1. Hybrid corrected (HSE06) bandgaps of haeckelite monolayers and
maximum absorbed photocurrent, Jmaxabs , under AM1.5G solar illumination assessed
from Eqn. 6.3. Included below are established materials employed as active layers

for photocurrent generation.

Material Eg[eV ] Jmaxabs (mA/cm2)
H-BN 5.44 −
H-BP 1.25 2.53
H-BAs 1.15 2.49

HB-BAs 1.96 0.61
Si 1.11 0.1a

P3HT 1.95 0.2a

GaAs 1.42 0.3a

a Jmaxabs determined from literature absorption coefficients at 1 nm thickness (see
Ref [ 279 ]).

Figure 6.2. Hybrid band structure, PDOS, and optical response of H-BAs. (a) &
(e) are the HSE06 band structures and projected density of states, (b) & (f) opti-
mized structures of H-BAs and HB-BAs, (c) & (g) absorbance spectra computed from
Eqn. 6.1, and (d) & (h) absorption coefficients determined from Eqn. 6.2. We have
added the s-channel to highlight the presence of s-electrons apparent in HB-BAs.
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haeckelite boron arsenide monolayers were found to have cohesive energies of -3.96

eV and -4.16 eV with the change in formation energy relative to bulk at 0.80 eV

and 0.37 eV, respectively.272 In planar H-BAs the double extrema remain present,

and the fundamental gap lowers to approximately 1.15 eV. Thus, the salient optical

trends observed within a planar configuration continues when phosphorus is substi-

tuted with the larger arsenic element. Furthermore, the formation of VHs can be

observed in the PDOS (Fig. 6.2a; purple line marks states contributed by As, green

line denotes states contributed by B), supporting strong optical response around 1.15

eV in the infrared. The global line shape of the absorbance resembles H-BP but with

a slight decrease at the fundamental gap. Moreover, planar H-BAs exhibits strong

optical absorbance of approximately 12.5% and absorption coefficient of 0.75 x 106

cm−1 (Fig. 6.2c,d). Consistent with this moderate change in the optical constants,

the maximum open circuit photocurrent was found to be 2.49 mA/cm2, Table 6.1.

Thus, within the planar configuration H-BAs displays slightly reduced yet strong

infrared absorbance. However, upon buckling, H-BAs forms the HB-BAs structure,

where the local geometries around each elemental constituent begin to resemble sp3

hybridization. Consequently, the bandstructure is altered with an increased gap of

0.8 eV, Fig. 6.2e. Further, the HB-BAs bandgap structure becomes increasingly in-

direct. This is driven by mixing additional p-state as well as s-state contributions to

the valence band edge near the Fermi energy. Notice in the PDOS (Fig. 6.2e) the

red and blue lines marking (px, py)-states approaching the Fermi level. This causes

the HB-BAs dielectric response to weaken and display a strong polarization shift to

higher photon energy. The shift from infrared to visible is evident in the absorbance

spectrum (Fig. 6.2g). HB-BAs displays sizable response in the visible region near 2.38

eV, where the absorbance of HB-BA rises to approximately 8.5% with an absorption

coefficient of 0.48 x 106 cm−1. This strong polarization emerges from interband tran-

sitions along M−Γ (π → π∗), where the valence band edge tracks the conduction
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band edge closely resulting in a build up of joint density of states. More absorbance

appears at higher ultraviolet energies resulting from greater sp3 hybridization and σ

→ π∗ transitions (not observable here). Further, we can see in Fig. 6.2e that the ap-

pearance of s-state contributions from both elements near the Fermi energy becomes

more pronounced compared to the planar configuration H-BAs. Because of the re-

duction of the optical constants for HB-BAs the maximum open circuit photocurrent

lowered by 1.88 mA/cm2 to 0.61 mA/cm2. Nevertheless, the maximum photocurrent

for HB-BAs remains above existing photoactive materials listed in Table 6.1, even

though it forms a buckled configuration. We shall see that the optical response of the

planar Archimedean nanosheets can be attributed to a unique band-edge topology.

To better understand how indirect semiconductor haeckelite nanosheets can

have such strong light-matter interactions, we further examined their electronic prop-

erties rendered in three dimensions. As a representative case for planar configurations,

Fig. 6.3 displays the results for H-BP. From this illustration we can see the source of

the enhanced light-matter response. For planar haeckelite monolayers, annuli-shaped

extrema form in both the valence and conduction band. This topology extends across

the entire Brillouin zone. The high symmetry points mark the line integration used

to construct the bandstructures, Fig. 6.3c-d. Moving from Γ to X we can see a

rise in the VBM or dip in the CBM. Continuing from X to M the dispersion rises

along the high symmetry (100)-crystallographic face. Finally, moving from M to Γ

we observe the second rise in the VBM or dip in the CBM. This pattern is reflected

in the bandstructures presented above. Consequently, the opportunity for optical

transitions to occur improves dramatically, as there exist greater numbers of allowed

interband transitions via the selection rule kv'kc, ensuring conservation of momen-

tum. Hence, these π→ π∗ transitions occur all along the band edges of both the VBM

and CBM (arrows Fig. 6.3b). Therefore, the unique band topology could be critical

to enhancing light-matter interactions for emerging ultrathin films. This electronic
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Figure 6.3. Reduced zone illustration of three-dimensional bands of H-BP monolayer.
(a) Projection of H-BP valence band maximum (VBM) and conduction band min-
imum (CBM), (b) Optical interband transitions shown as arrows between VBM to
CBM along an annulus geometry, (c) CBM of H-BP and (d) VBM of H-BP with high
symmetry points labeled.
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behavior, acute in the Archimedean structures presented here, has been observed for

group IV-VI materials, albeit with less symmetry.280 The symmetry of the bands can

be attributed to the centrosymmetrism of the planar haeckelite materials. Moreover,

because of the inversion symmetry of the planar haeckelite boron pnictogen mono-

layers, these structures display effectively equal bandgaps at multiple points in the

Brillouin zone. Interestingly, in relation to reports elsewhere,280 the band characters

within these haeckelite monolayers bear similarities to group IV-VI materials in that

each anion contributes to a large density of states (hence large effective mass) to the

top-most valence band, and each cation contributes a large density of states to the

bottom-most conduction band. Accordingly, the planar haeckelite nanosheets joint

density of states is sizeable, which supports an increased propensity of optical exci-

tation across the double bandgap, and thus, greater absorption coefficients for each

monolayer nanosheet.

6.5 Conclusions

In conclusion, we have shown that the optical response of haeckelite boron

pnictogen binary materials is exceptionally strong. For H-BN we observed a strong

UV-absorber that is enhanced with respect to its h-BN counterpart.260 Moreover,

substituting phosphorus results in infrared absorption, which was found to be quite

strong. We also observed, within the planar configuration, substituting arsenic re-

sults in little change in the overall optical response; however, buckling leads to altered

electronic and optical properties. This was attributed to the change in hybridiza-

tion around the Fermi energy and the diminution of the double extrema observed

in the planar configurations. Hence, the buckled geometries present reduced opti-

cal response relative to planar nanosheets but still larger than established materials.

Therefore, these configurationally distinct monolayer materials exhibit competitive

light-matter interactions within the (4,8)-tessellation. The combination of comple-

mentary elements of the periodic table, localization (conjugation) in the ground state,
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Van Hove singularities at the band edges, and the formation of symmetric annuli in

the bandstructure promotes strong optical response. Hence, the optical response of

these unique ultrathin films suggest the possibility of an unexplored and vast configu-

rational space under confined conditions that could result in powerful new electronic

materials currently just beyond the experimental horizon.281

6.6 Supplemental Information

Below we have included additional figures to highlight the resulting ground

state planar configurations versus the nonplanar corrugated structure, see Ref. [17]

of the main text. In Fig. 6.4, we show all of the resulting optimized structures where

the central square ring was plucked above the plane of the nanosheet. This particular

structural deformation was chosen as the smaller square ring likely contains high ring

strain. Consonant with the high ring strain of the square ring, the octagonal ring

likely has greater configurational plasticity, hence the choice is complementary in both

energetics and configurationally accessible entropy. However, the resulting configura-

tions, Fig 6.4(b), 6.4(d), & 6.4(f), displayed planar structures with the exception of

HB-BAs. Furthermore, a 2x2-supercell of H-BP was distorted again by forcing phos-

phorus to obtain a trigonal pyramidal geometry, Fig. 6.5(a), since H-BP is similar to

H-BAs in terms of chemical bonding. However, upon relaxation the planar structure

reformed.

152



Figure 6.4. Displayed are the originally perturbed structures (upper panels) of mono-
layer haeckelite materials presented in the main text, and the resulting optimized
ground state structures (lower panels). Each structure was distorted around the
square ring where there is likely a source of high ring strain in an effort to uncover
addional low energy configurations. (a)-(b) H-BN, (c)-(d) H-BP, and (e)-(f) HB-BAs.

Figure 6.5. An alternative distortion was applied to monolayer of H-BP after op-
timization in Ref [17] of the main article to check planarity. (a) displays a trigonal
pyramidal distortion around the phosphorus elements as the initial configuration, and
(b) shows the final optimized planar structure reported in the main article.
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CHAPTER SEVEN

Strain-Induced Semimetal-to-Semiconductor Transition and Indirect-to-Direct Band
Gap Transition in Monolayer 1T-TiS2

This chapter published as: Chengyong Xu; Paul A. Brown; and Kevin L. Shuford.
RSC Adv., 2015,5, 83876-83879

7.1 Abstract

We have investigated the effect of uniform plane strain on the electronic prop-

erties of monolayer 1T-TiS2 using first-principles calculations. In the absence of

strain, we find monolayer TiS2 is a semimetal, with a small overlap of the valence

band maximum and the conduction band minimum. The band overlap increases un-

der compression; however under tensile, monolayer 1T-TiS2 experiences a transition

from a semimetal to a semiconductor as a band gap emerges. Moreover, the electronic

properties change from an indirect to a direct band gap upon application of greater

tensile strain. Thus one can modulate the properties of monolayer TiS2 by applying

the appropriate strain, thereby providing a route towards control in optoelectronic

devices.

7.2 Introduction

Transition metal disulfides crystallize in layered forms. Within each layer,

metal and sulfur atoms are held together by strong bonding interactions such that

the metal atomic plane is sandwiched between two sulfur atomic planes. Normal to

the planes, the individual layers are bound by weak van der Waals forces. These

layers can be separated to form two-dimensional crystals composed of one to sev-

eral layers by various synthetic routes.282–284 Among the transition metal sulfides,

TiS2 is of particular interest due to its intriguing electronic, structural, and optical

properties.285,286 Moreover, these properties facilitate a synergistic coupling to other
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materials that has been reported to improve electro- and photocatalytic activity of

hydrogen evolution reactions.287,288

It is well known that strain can modulate the band structure of low dimen-

sional materials. For example, monolayer MoX2 (X = S, Se, and Te) experiences an

indirect-to-direct band gap transition and a semiconductor-to-metal transition un-

der mechanical strain due to the relocation of the conduction band minimum.289 In

this letter, we present a density functional theory investigation on monolayer TiS2

under strain and report equally drastic changes to its electronic properties. Upon

increasing tensile strain, the material evolves from a semimetal into a small band gap

semiconductor. Concurrently, we observe a transition in the band gap from indirect

to direct (and then back to indirect). This provides a way to tune the electronic

properties of monolayer TiS2 in a precise fashion by controlling the extent of strain

on the monolayer.

Figure 7.1. Schematic structure of 1T- and 2H-TiS2. The 1T phase is 0.142 eV/atom
lower in energy.
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7.3 Computational Methods

The energy and electronic properties of monolayer TiS2 were calculated using

VASP290 with the projector augmented wave pseudopotentials291 and GGA-PBE292

exchange-correlational functionals. The kinetic energy cutoff was set to 400 eV in

the plane-wave basis set. The primary unit cell of monolayer TiS2 was constructed

with 20 Å of vacuum to eliminate possible image interactions. All layered structures

were relaxed on a well-converged 25×25×1 Monkhorst-Pack293 k -point grid until the

Hellmann-Feynmann forces on every ion falls under 0.001 eV/Å. Strain on the mono-

layer was simulated by scaling the atomic positions of the relaxed structure by the

appropriate factors along the lattice vector directions a1 and a2. The system was then

allowed to relax again within the scaled unit cell. Calculations of the electronic prop-

erties followed on a 41×41×1 k -point grid. Bader analysis was used to quantify the

charge transfer between atoms.294 Calculations on bulk TiS2 were also performed and

found to be in good agreement with previous reports (see Supplemental Information

for description and band structure).

We begin by presenting the properties of unstrained monolayer TiS2. It con-

sists of three atomic layers, where the titanium layer is sandwiched between two sulfur

layers. TiS2 favors the 1T structure, as opposed to the 2H structure (see Fig. 7.1).

We have compared the energies of monolayer TiS2 in the 2H and 1T phases, and find

1T-TiS2 is 0.142 eV per atom lower in energy. All results from this point forward are

on the 1-T phase. Figures 7.2c and 7.3b show the band structure and density of states

(DOS) of monolayer TiS2. The primary feature is the Fermi energy (EF ) crosses the

valence and conduction bands. The valence band maximum (VBM) is located at Γ

0.109 eV above EF , while the conduction band minimum (CBM) is located at M

0.104 eV above EF . As observed from the relative position of the VBM and CBM,

there is an energetic overlap of 5 meV suggesting the semimetallic nature of mono-

layer TiS2. The angular moment resolved DOS of monolayer TiS2 can be divided into
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four main groups with respect to their energies. The first group between -13.6 and

-11.9 eV mainly stems from the s states of sulfur and has a sharp peak at -11.91 eV.

These states lie far below EF and have little influence on the properties of monolayer

TiS2. The second group lies between -5.2 eV and EF , and consists primarily of S-p

states and to a lesser extent Ti-d. The third group is located between EF and 1.8 eV,

including hybridization between mainly Ti-d states with some S-p states. The second

and third groups meet at EF , where an inversion of their primary character occurs.

The fourth group lies between 2.6 and 3.9 eV, and the hybridization is similar to that

of the third group.
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Figure 7.2. Band structures of monolayer 1T-TiS2 under strain. Panels (a)-(e) corre-
spond to strains of -10%, -4%, 0%, +4%, and +12%, respectively. The Fermi energy
is denoted by a horizontal dashed line at zero energy. The I ′ and I points in the first
Brillouin zone marked by dotted lines are not points with high symmetry.

Since the DOS and energy overlap at EF is quite small (Figs. 7.2c and 7.3b),

a slight disturbance in the structure may alter the electronic properties substan-

tially. Indeed, strain on other two-dimensional materials – such as graphene,295 2H-

MoS2,296,297 and ZrS2,298 – can adjust the relative position of the valence and conduc-

tion band edges. We have calculated the case of compression (negative strain) and

tensile (positive strain) of monolayer TiS2. Under slight compression (-4%, Fig. 7.2b),

the VBM at Γ is shifted up while the CBM at M is shifted down with respect to EF .
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Figure 7.3. Density of states of monolayer 1T-TiS2 under strain. Panels (a), (b), and
(c) are under -4%, 0%, and +4% strain, respectively. The insets show the DOS near
EF .
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The corresponding DOS at -4% strain is not altered in hybridization components,

but the four groups are broadened energetically. Most notably, the second and third

groups expand into each other’s energy range near EF . As a result, the overlap of

conduction and valence bands is enlarged, making monolayer TiS2 more semimetallic.

Increasing compression further shifts the the lowest conduction band at the Γ point

down. As a consequence, the conduction and valence bands at Γ get closer as com-

pression increases and finally converge energetically when compression is -8%. At this

point, the material can be understood as a metal, as part of the original conduction

and valence bands are degenerate (Fig. 7.2a)

We have investigated the geometric variations and charge transfer in strained

monolayer TiS2 to further understand the effects of strain on this material. The

results are presented in Table 7.1. Under compression, the distance between Ti and

S atoms is shortened while fewer electrons are transferred from Ti to S, implying

covalent bonding is increasing more rapidly than ionic attraction. Compared to zero

strain, there is a redistribution of electrons from S3p states towards Ti4d, which is

shown in the DOS as an expansion of the third group (mainly Ti4d state) into the

range of the second group (largely S3p state). As a consequence, the second group and

third group in the DOS merge into each other. In the corresponding band structure,

this is manifested as more overlap of valence and conduction bands.

When a positive strain, or tensile, is applied to monolayer TiS2, the VBM and

CBM are shifted away from each other energetically as shown in Fig. 7.2d,e. The band

structure for +4% strain displays the features of an indirect band gap semiconductor.

In this case, the VBM and CBM are still located at Γ and M points, respectively;

however, the energetic overlap has disappeared because the conduction bands are

shifted upward. The corresponding DOS (Fig. 7.3c) is again very similar to the others

in component and hybridization. However under +4% strain, the energy distribution

of each of the four groups is narrower and the overall range is condensed. Also,
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Table 7.1. The effect of strain on the geometry and band gap of monolayer 1T-TiS2.
The complete data set is provided in the Supporting Information. Negative

(Positive) strain means compression (tensile). dT i−S is the bond length between
nearest Ti and S atoms, hS−S represents the interlayer height between upper and

lower S atomic planes, and CT means charge transfer from Ti to S atoms. Negative
band gap indicates overlapping of valence and conduction bands. VB-CB denotes

the transition point from valence to conduction bands, and Ind/Dir refers to
whether the transition of VB-CB is indirect or direct.

strain (%) dT i−S (Å) hS−S (Å) CT (e) band gap (eV) VB-CB Ind/Dir
-10 2.368 3.150 1.528 — — —
-8 2.378 3.091 1.566 — — —
-4 2.400 2.968 1.639 -0.521 Γ-M Ind
0 2.427 2.851 1.702 -0.005 Γ-M Ind

+4 2.459 2.737 1.741 0.401 Γ-M Ind
+6 2.476 2.677 1.752 0.567 Γ-Γ Dir
+9 2.500 2.581 1.769 0.641 Γ-Γ Dir
+10 2.508 2.547 1.771 0.601 I-Γ Ind
+15 2.548 2.354 1.778 0.431 I-Γ Ind
+20 2.586 2.125 1.768 0.389 I-Γ Ind

the second and third groups are now separated from each other, and the conduction

band no longer crosses EF . So we see an energy gap emerges, and a semimetal-to-

semiconductor transition occurs under tensile. As shown in Fig. 7.2d, the Γ and

M points of the lowest conduction band are shifted upward at different rates in

response to strain, with Γ shifting slower than M . Consequently, the CBM moves

from M to Γ as the tensile strain reaches +6%, resulting in a direct band gap of

0.567 eV. Therefore, the semiconductor type changes from an indirect to direct band

gap. Tensile also disproportionately affects the energetics of the valence bands. As

the strain increases from 0%, two new points I ′ (about 39% from Γ to M) and I

(about 34% from Γ to K) are shifted upward in energy rapidly, with I being higher.

When strain reaches +10%, the I point exceeds the Γ point to become the VBM,

while the CBM remains at the Γ point. Consequently, monolayer TiS2 changes from

a direct band gap (Γ→ Γ) to an indirect gap (I → Γ), as shown in Fig. 7.2e for +12%

strain. To summarize the effect of strain, we find monolayer TiS2 is a semimetal under
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compression, an indirect semiconductor when strain is between 0 and +6% as well as

above +10%, and a direct semiconductor when strain is in the range from +6% to

+10%.

Contrary to compression, TiS2 under tensile strain has extended Ti-S bonds

and more electron transfer (Table 7.1), suggesting ionic attraction plays a more im-

portant role. In this way, electrons are localized around atoms to a greater degree and

become less itinerant. Therefore, the separation between the valence and conduction

bands is enlarged. The energetic overlap is removed and a band gap appears. The

band gap increases with strain until it reaches a maximum of 0.641 eV at +9% tensile.

This is accompanied by an increase in charge transfer. Beyond this strain the band

gap decreases, and charge transfer oscillates slightly while generally trending down.

When strain is larger than +16%, the band gap remains almost constant in the range

between 0.383 eV and 0.389 eV.

7.4 Conclusions

In summary, we have investigated the effect of strain on the electronic prop-

erties of monolayer 1T-TiS2. We find the monolayer is a semimetal in the absence of

strain. The semimetallic nature increases with compression and is accompanied by

more overlap of the valence and conduction bands. Under tensile, however, the en-

ergetic overlap is removed and a semimetal-to-semiconductor transition occurs. The

transition between valence and conduction bands is a Γ-Γ direct one when strain is

between +6% and +10%. Outside of this range of tensile strain, an indirect transi-

tion is predicted. The change of electronic properties with respect to strain can be

explained from the geometry and charge transfer. These results establish the relation-

ship between the properties of 1T-TiS2 and strain, which may find utility in future

electronic devices.
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7.5 Supplemental Information
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Figure 7.4. Band structure and DOS of bulk 1T-TiS2.
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Table 7.2. The effect of partial strain on the geometric and band gap of monolayer
1T-TiS2. The complete data are listed in Supporting Information. Negative

(Positive) strain means compression (tensile). dT i−S is the bond length between
nearest Ti and S atoms, hS−S represents the interlayer height between upper and

lower S atomic planes, and CT means charge transfer from Ti to S atom. Negative
band gap suggests overlapping of valence and conduction bands. VB-CB denotes

the transition point from valence to conduction bands, and Ind/Dir refers to
whether the transition of VB-CB is indirect or direct.

strain (%) dT i−S (Å) hS−S (Å) CT (e) bandgap (eV) VB-CB Ind/Dir
-10 2.368 3.150 1.528 — — —
-9 2.373 3.120 1.546 — — —
-8 2.378 3.091 1.566 — — —
-7 2.382 3.058 1.608 -1.004 Γ-M Ind
-6 2.387 3.024 1.613 -0.833 Γ-M Ind
-5 2.394 2.999 1.626 -0.670 Γ-M Ind
-4 2.400 2.968 1.639 -0.521 Γ-M Ind
-3 2.407 2.939 1.656 -0.379 Γ-M Ind
-2 2.413 2.909 1.673 -0.246 Γ-M Ind
-1 2.420 2.879 1.685 -0.121 Γ-M Ind
0 2.427 2.851 1.702 -0.005 Γ-M Ind

+1 2.435 2.822 1.721 0.106 Γ-M Ind
+2 2.443 2.794 1.732 0.211 Γ-M Ind
+3 2.451 2.766 1.742 0.309 Γ-M Ind
+4 2.459 2.737 1.741 0.401 Γ-M Ind
+5 2.467 2.708 1.746 0.487 Γ-M Ind
+6 2.476 2.677 1.752 0.567 Γ-Γ Dir
+7 2.484 2.646 1.759 0.594 Γ-Γ Dir
+8 2.492 2.614 1.762 0.618 Γ-Γ Dir
+9 2.500 2.581 1.769 0.641 Γ-Γ Dir
+10 2.508 2.547 1.771 0.601 I-Γ Ind
+11 2.516 2.511 1.779 0.550 I-Γ Ind
+12 2.524 2.474 1.777 0.507 I-Γ Ind
+13 2.532 2.436 1.777 0.470 I-Γ Ind
+14 2.540 2.396 1.779 0.440 I-Γ Ind
+15 2.548 2.354 1.778 0.431 I-Γ Ind
+16 2.555 2.311 1.775 0.400 I-Γ Ind
+17 2.563 2.267 1.778 0.389 I-Γ Ind
+18 2.571 2.222 1.773 0.383 I-Γ Ind
+19 2.578 2.174 1.771 0.384 I-Γ Ind
+20 2.586 2.125 1.768 0.389 I-Γ Ind
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CHAPTER EIGHT

Conclusion and Future Work

Figure 8.1. The quantum-materials pursuit. This figure contains the crucial in-
ternal degrees of freedom (inner pentagon) for tuning the material properties. The
outer-pentagon displays the desired material response properties utilized by mankind.
Adapted from Ref[29].

Ultrathin films are an extreme form of matter, wherefore along a single crystal-

lographic direction all of the material is found. This body of research extends across

existing and theorized ultrathin films, where advanced computational techniques pro-

vide the essential quantum picture of the electronic ground and excited state material

properties. From the preceding chapters it is clearly demonstrated that the tuning
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of material properties can generate entirely new material properties not supported

in the original crystal. Furthermore, leveraging the degrees-of-freedom, e.g., spin,

charge, orbital, lattice, and topology for a crystalline system provides an expedient

path forward for fabricating new materials out of old materials. The extreme changes

in the electronic properties of the ultrathin films discussed in previous chapters is

possible because of the paucity of electrons that can be accommodated in the two-

dimensional plane. Therefore, the sensitivity to intrinsic or extrinsic dopants, lattice

tessellations, and mechanical deformations make it possible to alter ultrathin films

dramatically to meet the societal demands of the 21st-century. This manuscript forms

a portion of a new epoch, the Quantum age, Figure 8.1. This age will be marked

by many discoveries of new ultrathin films, which will beckon new nanotechnologies

that could be coupled with existing technologies to bolster performance. Moreover,

controlling the degrees-of-freedom of materials, such as ultrathin films, could make

the possibility of materials on demand a reality.

Figure 8.2. Janus transition metal dichalcogenides. Newly synthesized heteroleptic
TMDs feature a permanent dipole moment offering the possibility of piezoelectric
properties or strong Förster energy resonance transfer opening new possibilities for
this group of ultrathin films.
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The current and future directions of research in ultrathin films will continue to

surround nanometer control of layer thickness and composition, Figure 8.1. Further-

more, most ultrathin films typically feature a hexagonal crystal, which is likely rooted

in nature’s preference to crystallize in a hexagonal form in two-dimensions.120,299

However, this dissertation envisions a larger notion expounded in Chapter 5 and

Chapter 6, and inspires two grand questions: what is configurationally and chem-

ically accessible in two-dimensions? In other words, what structural complexity is

possible in two-dimensions? And what is the chemical and physical taxonomy of

two-dimensional ultrathin films? The former question points to the deep connection

between the lattice and the orchestration of fermionic states. The latter question

points to the categorification of material properties rooted in the first question, that

is, the structure-function relationship. The first question addresses all possible two-

dimensional tessellations that may be formed, if not already found in nature, then

synthetically. From the group of configurationally distinct ultrathin films, the sec-

ond question addresses their material properties, and; hence, classifies the potential

application of novel nanosheets. However, this reductionist approach will likely face

challenges. For one, condensed matter is non-reductionist, in that, it is difficult to

presume that the sum of the parts of microscopic matter form the whole. Conse-

quently, divesting patterns from the staggering data formed from the above questions

will inevitably be difficult. Nevertheless, an understanding of material behavior in

two-dimensions as a function of element and lattice could offer some insight and

countless discoveries. For instance, a recent synthesis of a Cairo pentagonal PdSe2

nanosheet was achieved, where the nanosheet forms regular pentagons as the major

structural motif.28 Furthermore, a combined experimental and theoretical study may

in fact have already discovered a (4,8)-tessellated bulk crystal of ZnO (Figure 5 in

cited article).300 These results point to the potential of increased complexity where
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regular, semi-regular, and irregular polygonal motifs could become the norm. There-

fore, the two posed questions above will inevitably be explored as a new direction

of scientific inquiry as the branch grows from the seminal trunk, the isolation and

discovery of graphene back in 2004.6

Most recently, research on Janus (two-faced sentinel that guards the state in

times of conflict) TMDs has been pursued. In Figure 8.2 a series of Janus TMDs and

their bandstructures are presented. Interestingly, these heteroleptic TMDs feature,

with a molybdenum metal ion, a MoXY stoichiometry with two different chalcogens

populating opposite faces.301–306 To date only MoSSe has been successfully synthe-

sized and characterized. These TMD nanosheets carry a permanent dipole moment

resulting from disproportionate electronegativity between the sulfur and selenium

atoms bound to molybdenum metal ion, Figure 8.2. Interestingly, the overall hexago-

nal structures is retained, even at high preparation temperatures, where each variant

of Janus TMD forms a direct gap semiconducting nanosheet (MoSSe and MoSeTe)

or an indirect gap semiconductor (MoSTe). Moreover, h-MoSSe was found to have

an equilibrium lattice constant of 3.24 Å, which is within less than 1 % error of the

experimental lattice constant of 3.23 Å.301 Interestingly, that lattice constant pre-

diction was made with GGA PBE, which is impressive considering a 4d element is

present. Because of the presence of a permanent dipole moment in Janus TMDs,

these ultrathin films could fine useful applications as a piezoelectric material used in

sensing applications for example. Moreover, because the dipole is fixed within the

nanosheet, alignment with additional layers could result in ultrafast resonant energy

transfer or charge transfer to a tandem material, such as silicon for photovoltaics.

These heteroleptic ultrathin films will likely inspire new variants utilizing the durable

TMD itself to diversify the new Janus family of ultrathin films.

Similar to the chalcogen based TMDs, highlighted above, the transition metal

dipnictides (TMPs) could also form a fruitful direction of research. Only MoN2 has
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Figure 8.3. Newly theorized Janus transition metal dipnito-chalcogenides (h-MoPX,
X=P,S,Se) featuring a phosphorus ligand. (a) displays the spin-orbit ground state
bandstructures of each nanosheet (Fermi energy is set to zero, red line). All of the
h-MoPX form ferromagnetic ground states. (b) projected density of states of each
h-MoPX, and (c) equilibrium ground state structures of h-MoPX. Interestingly, each
nanosheet h-MoPX features a magnetization and dipole moment, which suggest these
ultrathin films are possibly multiferroic or half-metallicity.

been realized recently, suggesting that subsequent pnictogens might be fabricated in

the near future.307 In this respect the author has already theorized MoP2, Figure

8.3, and the newly transition metal pnicto-chalcogenides (TMPDs). Each nanosheet

supports a net magnetization (magnetic dipole) and polarization (electric dipole) sug-

gesting that the Janus TMPDs are multiferroic or half-metallic nanosheets. In Figure

8.4, the spin-orbit charge density differences show clearly that the net magnetization

results from the dz2 orbital on the Mo-atom for MoP2, but p − d coupling appears

in the Janus TMPDs. In fact, from the projected density of states the dz2 orbital

mixes with additional d-manifold states deforming the orbital (Figure 8.3(b)), where

the mixing is mediated by enhanced coupling to chalcogen p-orbitals polarizing Mo

d-orbitals. Hence, the magnetic ground state is synergistically established permit-

ting phosphorus pz-angular momentum to grow in prominence at the Fermi energy,

see Figure 8.3(b). Furthermore, a general trend emerges where the magnetization
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Figure 8.4. Spin-orbit charge density differences for h-MoPX ultrathin films. (a)
h-MoP2, (b) h-MoPS, and (c) h-MoPSe. Note the color of phosphorus is dark orange,
yellow is sulfur, orange is selenium, and molybdenum light blue as above. Here the
p-d magnetism between the phosphorus atom and molybdenum dz2 can be readily
seen (b) & (c). Note the perturbation of the Mo dz2 in the presence of phosphorus
and chalcogen atoms, yet in MoP2 dz2 is unperturbed with the homoleptic TMP seen
in (a). Note the appearance of a cross-layer P-P bond. This is mostly rendering, but
some weak density can be observed in the charge density difference.
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tends to rise slightly proceeding to the heavier selenium element, where phosphorus-

molybdenum orbital angular momenta become more prominent at the Fermi energy.

Further analysis of heteroleptic ultrathin films is an open question, but comparing

the Janus TMDs and Janus TMPDs, the small change in element can have have a

significant impact on the ground state electronic properties. These ultrathin films,

like the haeckelites, are ahead of their time, but all of the ultrathin films discussed

herein carry potentially important material properties useful to society. In order to

address the challenges highlighted in the introduction, scientist will be forced to trek

an intellectual landscape never before explored. This exploration, of sorts, may just

unmask the imperceptibility of emergent phenomena replete in nature and lead to

new expansions in civilization as a whole.
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APPENDIX A

The Local-Spin Density Approximation & Generalized Gradient Approximation

Typically, approximations to the many-body problem based on the density

are formed with the inclusion of spin, or spin-densities. Within the main text the

formulations presented are spin-compensated, but the more general case treats each

spin-fermion separately, and, in fact, better approximations can be obtained using

spin-uncompensated Kohn-Sham equations, so this has become standard practice.

We define the spin-generalized case for the local spin density approximation (LSDA),

which is equivalent to the LDA, but the density becomes n(r) = n↑(r)+n↓(r) and we

include the relative spin-polarization, ζ(r) =
n↑(r)−n↓(r)

n(r)
. The spin-densities take the

form, nσ(r) = n(r)
2

(1 + σζ(r)), where σ =↑, ↓.308,309 The effect of spin on the terms

forming the Kohn-Sham equation (Equation 2.30) forms the well known spin-scaling

relations for the noninteracting kinetic energy,

TS[n↑, n↓] =
1

2
(T unpolS [2n↑] + T unpolS [2n↓]), (A.1)

where the polarized noninteracting Kohn-Sham kinetic energy is the sum of unpo-

larized noninteracting kinetic energy of each spin contribution.308,309 Likewise, the

exchange energy per particle has the same form,

EX [n↑, n↓] =
1

2
(Eunpol

X [2n↑] + Eunpol
X [2n↓]), (A.2)

hence the spin-polarized exchange energy is a sum of each exchange energy spin-

density.308,309 Using the relative spin-polarization and spin-densities above and using
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the UEG exchange energy we have

εX [n, ζ] = εunpolX [n]
((1 + ζ4/3) + (1− ζ4/3)

2

)
, (A.3)

therefore the LSDA for the exchange energy takes the form,

ELSDA
X [n] = −CX

∫
d3rn(r)4/3

((1 + ζ4/3) + (1− ζ4/3)

2

)
. (A.4)

The correlation energy for LSDA is given in Appendix B. The combination of ELSDA
X [n]

and Perdew-Zunger or Vosko-Wilkes-Nusair correlation permits a general formula-

tion of spin-density functional theory in common use. The correlation energy can be

interpolated over the relative spin-polarization between paramagnetic (P) and ferro-

magnetic (F) ground states,

ELSDA
C [n] =

∫
d3rn(r)εUEG,iC (rS), (A.5)

which is the spin-correlation energy given in Appendix B.308 Consequently, the exchange-

correlation energy per particle includes a functional dependence on the spin-polarization,

ζ(r), hence EXC [n](r) 7→ EXC [n, ζ](r). This dependence is also included in the GGA

formulation.

The generalized gradient approximation employed in this text utilizes PBE

functional.85 The correlation energy employed for PBE was adapted from the PW91

GGA earlier using the ansatz,

EPBE
C [n↑, n↓] =

∫
d3rn(r)[εUEGC [rS, ζ] +H(rS, ζ, tS)], (A.6)

which contains the contribution of the UEG correlation and an additional term chosen

to obey certain constraints on the correlation energy whilst adhering to constraints
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obeyed within LSD,

H(rS, ζ, tS) = c0φ
2ln
{

1 +
βMB

c0

t2S

[ 1 + At2S
1 + At2S + (At2S)2

]}
, (A.7)

where tS = |∇n|
2φkSn

is a reduced density gradient including Thomas-Fermi screening,

kS, A = βMD

c0
(e−ε

LDA
C (rS ,ζ)/c0φ

3 − 1)−1, the spin-scaling factor φ(ζ) = [(1 + ζ)2/3 +

(1 − ζ)2/3]/2, and βMD = 0.066725.2,40,85 This form of H is chosen to obey sev-

eral gradient conditions or limits, which include the slowly varying limit for t → 0,

rapidly varying limit t → ∞, and uniform scaling to the high density limit.85 In

the slowly varying limit t → 0, H → c0φ
3ln
{

1 + βMD

c0
t2S

}
→ βMDφ

3t2S, which

matches the leading order term in the GEA.40 The rapidly varying limit t → ∞,

H → c0φ
3ln
{
e−ε

LDA
C (rS ,ζ)/c0φ

3
}
→ −εLDAC (rS, ζ), where the LDA correlation is recov-

ered insuring the non-positivity of correlation. And the uniform scaling for rS → 0 at

constant s(r), H → c0φ
3ln(t2) → −c0φ

3ln(rS) which cancels the leading singularity

in the correlation of the UEG, see Appendix B Equation B1. Because Equation 2.81

retains these limits, PBE-correlation obeys similar constraints within LDA.82 The

exchange energy per electron in PBE this has the following form,

EPBE
X [n] =

∫
d3rn(r)eUEGX (n(r))FX(n, s(r), ζ), (A.8)

where eUEGX (n(r)) = −3e2kF
4π

and the enhancement factor in PBE-exchange is,

FX(n, s(r)) = 1 + κ− κ

1 + µs2/κ
, (A.9)

here κ = 0.804, µ = 0.21951, and s is the density gradient. This form of exchange

obeys the spin-scaling relation Equation 2.29, recovers LSDA linear response, and

obeys the Lieb-Oxford bound (shown in Chapter 2).85 In the above expression, Equa-

tions A.7-A.9 are supplied to Equation 2.44 of Chapter 2.
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APPENDIX B

The Correlation Energy

As noted in the text of Chapter 2.2.3, the correlation energy per particle EC [n]

is only true unknown term in the Kohn-Sham equations, Equations 2.17-2.18-2.34.

Here we will expand upon the discussion of the correlation potential and provide

some insight into the approximated/parameterized correlation potential commonly

employed in DFT.

The correlation energy is known in two limits, that is the high density (rS → 0)

and low density (rS →∞) limits.310,311 The Wigner-Seitz radius, rS = (3/4π)1/3n(r)−1/3,

is the average spherical distance between electrons.40 In the high density limit the

correlation energy per electron

εC [rS] = c0ln(rS)− c1 + c2rSln(rS)− c3rS + ..., (B.1)

determined from perturbation expansion of the uniform electron gas.310 Here the

coefficients were found to be c0 = 0.031091 and c1 = 0.046644.40 In the low density

regime the correlation energy per electron was found to be,

εC [rS] = −d0

rS
+

d1

r
3/2
S

+ ..., (B.2)

which is determined from the zero-point vibrational energy and Madelung electro-

static energies of the uniform electron gas.40,311 Here d0 ≈ 0.896 and d1 ≈ 1.325.311,312

Both of these two expressions have enabled for interpolations between them to de-

rive new εC [n]. Two notable parameterizations for the correlation energy are the

Perdew-Zunger and Vosko-Wilkes-Nusair correlation energies. In the Perdew-Zunger

parameterization the correlation energy was fitted to highly accurate quantum Monte
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Carlo data,

εC [rS] =
{ γi(1 + βi1

√
rS + βi2rS)−1 ∀rS ≥ 1

Ailn(rS) +Bi + CirSln(rS) +DirS ∀rS < 1

, where the constants appearing in the expression are found in Ref[42]. Note, i = P, F ,

for paramagnetic and ferromagnetic spin-polarized ground states. From the Perdew-

Zunger correlation energy, the potential energy for Equation 2.34 can be approxi-

mated via, vic[n] = εiC [n] + n(r)∂rS
∂n

∂εiC [rS ]

∂rS
, permitting full solution to the Kohn-Sham

equations. Another parameterization was provided by Vosko, Wilkes, and Nusair,

where their approximation to the correlation energy followed a similar approach to

Perdew-Zunger, and took the form,

εC [rS] =
A

2

[
ln

x

X(x)
+

2b

Q
arctan

( Q

2x+ b

)
− bx0

X(x0)

[
ln

(x− x0)2

X(x)
+

2(b+ 2x0)

Q
arctan

( Q

2x+ b

)]]
,

(B.3)

where x =
√
rS, X(x) = x2 +bx+c, Q = (4c−b)1/2, A = 0.0621814, b = 13.07020,c =

42.7198,c = 42.7198,and x0 = −0.0409286.67,79 This expression can be inserted into

the same expression as the Perdew-Zunger for the effective Kohn-Sham potential

energy to fully solve Equation 2.34. Hence, ultimately the correlation energy is an

approximated quantity interpolated on a spin-polarized ground state of a UEG.
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APPENDIX C

Adiabatic Connection

The adiabatic connection theorem provides an elegant way of turning on the

exchange-correlation within a many-body system. This can be accomplished with the

aid of the Hellmann-Feynman theorem for the expectation of the total energy,

εn(λ) =
〈ψn(λ)|ĤKS|ψn(λ)〉
〈ψn(λ)|ψn(λ)〉

, (C.1)

where the parameter λ ∈ [0, 1], which will be passed to the electron-electron in-

teraction. Applying the Hellmann-Feynman theorem to Equation 2.1 results in the

expression,

εn(1)− εn(0) =

∫ 1

0

dλ
〈ψn(λ)|∂ĤKS

∂λ
|ψn(λ)〉

〈ψn(λ)|ψn(λ)〉
. (C.2)

Including the parameter λ into the Kohn-Sham Hamiltonian via the Levy-Lieb con-

strained search formula, FKS[n] = inf |ψ〉∈G〈ψ|Ĥe,kin + λVee|ψ〉. The expressions for

the λ-dependent energy will be useful for constructing the adiabatic connection theo-

rem for the Kohn-Sham Hamiltonian, and; furthermore, we will see that approxima-

tions to the exchange-correlation energy will rest on approximations of the exchange-

correlation hole.

As noted in Chapter 1, the Levy-Lieb functional is related to the Hohenberg-

Kohn functional via, FLL[n] = T [n] + UH [n] + ẼXC [n]. Note that I have added a

tilde over the exchange-correlation energy to suggest that this is exact, whereas in

the Kohn-Sham functional of the Levy-Lieb functional will contain the approximate

exchange-correlation energy per particle. Hence, FLL[n] = TS[n] +EXC [n]. Equating
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the two expressions and solving for the exchange-correlation energy,

EXC [n] = FLL[n]− TS[n]− 1

2

e2

4πε0

∑
σσ′

∫ ∫
d3rd3r′

nσ(r)nσ′(r′)

|r − r′|
, (C.3)

where the last term is the Hartree energy. As mentioned above, the Levy-Lieb func-

tional will contain a interaction parameter, λ, where the electron-electron interaction

will be gradually switched on. Hence, F λ
LL[n] = inf |Ψ〉∈G〈Ψλ[n]|TS[n] +λVee[n]|Ψλ[n]〉.

In this form of the Levy-Lieb functional the functional dependence of the many-body

wavefunction depends on the density as required by the Hohenberg-Kohn theorems of

Chapter 1. However, to ensure conservation of electron density a Lagrange-multiplier

is added to the Levy-Lieb functional, which takes on the form,

EXC [n] = F λ
LL[n] +

∫
d3r(vλ(ri)−

Eλ
N

)〈Ψλ[n]|n̂|Ψλ[n]〉 − UH [n], (C.4)

where the variation of F λ
LL[n] leads to an eigenvalue expression of the form,

Hλ|Ψλ〉 = (TS[n] + λVee[n] +
∑
i

vλ(ri)) = Eλ|Ψλ〉. (C.5)

The vλ(ri) counteracts the electron-electron potential energy of the electrons, such

that, when the interaction is scaled to zero, λ = 0, the Vee[n] term vanishes and

the single-particle potential energy dominates ensuring electron density conserva-

tion. With Equation C.5 in hand we can apply the Hellmann-Feynman theorem to

determine the exchange-correlation energy per electron in terms of the interaction

parameter, λ. Therefore,

∂Eλ
∂λ

= 〈Ψλ[n]|∂Hλ

∂λ
|Ψλ[n]〉

= 〈Ψλ[n]|Vee[n]|Ψλ[n]〉+

∫
d3rn(r)vλ(r), (C.6)
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and noting that Eλ = F λ
LL[n] + 〈Ψλ[n]|

∑
i vλ(ri)|Ψλ[n]〉, it follows,

∂F λ
LL[n]

∂λ
= 〈Ψλ[n]|Vee[n]|Ψλ[n]〉. (C.7)

Equation C.7 can be implemented into the expression C.3 we have

EXC [n] =

∫ 1

0

dλ〈Ψλ[n]|Vee[n]|Ψλ[n]〉 − UH [n]. (C.8)

This expression can be simplified further by expanding the pair-spin density, Chapter

1, and canceling the Hartree energy that follows, where the final expression leads to

a simple expression for the exchange-correlation energy per particle scaled over the

interaction parameter, λ,

EXC [n] =
1

2

e2

4πε0

∫ 1

0

dλ

∫ ∫
d3rd3r′

nσ(r)nλXC(r, r′)

|r − r′|
, (C.9)

where the exchange-correlation hole has the form, nλXC(r, r′) = [gλσσ′(r, r′)− 1]nσ′(r′),

as alluded to in Chapter 1. This expression is shown in Equation 2.37 of Chapter

1. Equation C.9 is a simpler form for the exchange-correlation energy, and generally

forms the starting point for approximations applied to this term to solve the Kohn-

Sham field equations. In fact, Equation C.9 has a spherical dependence, u = |r− r′|,

on the exchange-correlation hole density, as an approximation of course, which takes

a simpler form,

EXC [n] =
1

2

e2

4πε0

∑
σσ′

∫
d3rn(r)

∫
du4π

nSAσσ′(u)

u

=
1

2

e2

4πε0

∫
du
〈nXC(u)〉

u
. (C.10)

Here we have moved the integration over space into the spherical average of the

exchange-correlation hole, 〈nXC(u)〉. The 4π results from integration over all spherical
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space, and now any approximation that is made to EXC [n] must simply capture

the spherical dependence of the exchange and correlation hole densities at average

spherical distances, u.
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APPENDIX D

Collaborations

Complementing this body of work is also a series of collaborations that have not

been explicitly included. These collaborative projects were completed and published

elsewhere with Dr. Caleb D. Martin’s group with his counsel. Furthermore, an

earlier collaboration with the Chambliss group for the comparison of computed and

experimental molecular cross-sections was conducted. These projects were essential,

for they have provided the opportunity to interface with the experimentalist and their

observations.

Additional Works:

• Barnard, Jonathan; Brown, Paul A.; Shuford, Kevin L.; Martin, Caleb D. Angew.

Chem. Int. Ed. 2015, 54, 12083-12086

• Brown, Paul A.; Martin, Caleb D.; Shuford, Kevin L. under revision 2018
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