
ABSTRACT 
 

Transcriptional Landscape of Human Blood Monocyte and Dendritic Cell Subsets  
at Steady State and Upon Vaccination 

 
Yuanyuan Wang, Ph.D. 

Mentors: A. Karolina Palucka, M.D., Ph.D. 
     Gerlinde Obermoser, M.D. 

 
 

Influenza virus remains a major global public health concern that causes annual 

epidemics and occasional pandemics.  The best way to prevent infection is by 

vaccination.  Vaccines work through the generation of protective antibodies against 

hemagglutinin.  Whereas a majority of people respond to vaccination by generating 

neutralizing antibodies, some vulnerable populations fail to respond including young 

children, the elderly and immunocompromised people.  The reasons for this lack of 

response to influenza vaccination are under intense study.  Ideally, the adaptive immune 

response to influenza vaccine should include helper CD4+ T cells that can help B cells 

produce antibodies and CD8+ T cells that can eliminate infected cells.  These responses 

are elicited and regulated by antigen presenting cells (APCs) such as dendritic cells 

(DCs). DCs capture antigens and present them to T and B lymphocytes leading to 

generation of cellular and humoral immunity.  This study aims to identify a 

transcriptional signature of APCs to predict vaccine responsiveness.  Using systems 

biology approaches, we examined transcriptional profiles of APCs, including monocyte 



and DC subpopulations, in order to identify signatures in vaccination response.  We 

measured the transcriptional profiles of APCs at steady state, post vaccination, and 

potential correlation with development of immune response defined by antibody titers.  

We determined that the early innate immune response to the influenza vaccination peaks 

at day one after vaccine administration with a prominent type I interferon (IFN) signature 

contributed by monocytes and CD1c+ DCs. We found that monocytes and CD2+ pDCs 

were the main contributors to global transcriptional changes.  Finally, we established 

transcriptional signatures at baseline that correlated with the magnitude of serological 

response to vaccination.  Thus, this dissertation offers a proof-of-concept that 

transcriptional profiles of APCs at baseline might enable the identification of people who 

do not respond to influenza vaccination and therefore are at greater risk for infection. 

Larger studies are needed to confirm these pilot observations; however this work 

provides a framework for evaluating strategies aimed at the improvement of vaccination 

outcomes, such as the combination of vaccine with additional adjuvants. 
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CHAPTER ONE 
 

Introduction 
 
 

Influenza and Influenza Vaccine 
 

Influenza remains a global health threat due to its pandemic potential.  

Vaccination is the most effective method to prevent diseases and severe outcomes caused 

by influenza infection (Fiore et al., 2009). 

 
Influenza Remains a Clinical Threat 
 

Influenza is a viral infection that causes acute respiratory diseases (World Health 

Organization, 2014).  In the United States, seasonal influenza epidemics account for 

>200,000 hospitalizations and about 36,000 deaths annually (Thompson et al., 2009; 

Thompson et al., 2004).  Globally, it is still a major public challenge causing about 3 to 5 

million cases of severe illness and about 250,000 to 500,000 deaths yearly (World Health 

Organization, 2014).  1918 influenza pandemic virus caused severe pneumonia and 

resulted in >500,000 deaths in the United States and over 50 million deaths on a global 

scale (Taubenberger and Morens, 2008).  The 2009 influenza H1N1 pandemic virus was 

more pathogenic compared with seasonal influenza viruses and it accounted for about 22 

million cases of infection, about 98,000 H1N1-related hospitalizations, and 10,000 2009 

H1N1-related deaths in the United States (CDC, 2010). 

 
Current Influenza Vaccines 
 

Vaccination is an important strategy to prevent influenza epidemics and 

pandemics (Fiore et al., 2009).  In the United States, three types of influenza vaccines are 
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commercially available: the most widely used unadjuvanted injectable trivalent 

inactivated influenza vaccines (TIV) for eligible individuals aged ≥ 6 month, an 

intranasal live attenuated influenza vaccine (LAIV) for eligible individuals aged 2-49 

years (Ambrose et al., 2011), and a recently approved recombinant HA protein subunits 

adult vaccine (Treanor et al., 2011) The seasonal flu vaccines are constituted with the two 

influenza A strains (H3N2 and H1N1) and one B virus strain.  For 2014-15, U.S.-licensed 

influenza vaccines are quadrivalent containing two viral strains of influenza A and B, 

respectively (Grohskopf et al., 2014).  Currently licensed vaccines are updated for each 

new influenza season to counter the threat of the antigenic drift in HA.  The World 

Health Organization (WHO) predicts the virus strains that will circulate in the new 

coming season and this provides the instruction for vaccine production every year 

(Schotsaert and Garcia-Sastre, 2014).  

 
Challenges of Vaccination Against Influenza 
 

Successful vaccination against influenza results in generating neutralizing 

antibody targeting HA that is the main surface antigen of influenza virus (Clements et al., 

1986).  One of the challenges in the current vaccination is that different populations have 

variable efficacy (Wong and Webby, 2013).  The majority of healthy children and adults 

generate robust antibody responses after influenza vaccination (La Montagne et al., 1983; 

Neuzil et al., 2001). However, the most vulnerable segment of the population, such as 

young children, the elderly and immunocompromised individuals, generally benefits less 

from active immunization (Thompson et al., 2004).  In 2008, seasonal influenza viruses 

were responsible for 90 million new infections globally in children younger than 5 years 

of age (Nair et al., 2011).  In the elderly, influenza caused increased morbidity and 
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mortality because that an aging immune system reduces their ability to control infections 

(Reber et al., 2012).  In young healthy adults, there is still a proportion of individuals that 

respond poorly to influenza vaccination with very low levels of antibody titers (Nakaya et 

al., 2011).  The immunological mechanisms that underlie the different outcomes of 

vaccination still need to be identified. 

 
Roles of Antigen Presenting Cells in Immunity 

The mammalian immune system comprises two import aspects: innate and 

adaptive immunity.  The innate immune system consists of cells and proteins that are 

present and ready to mobilize and fight microbes at the site of infection.  On the other 

hand, the adaptive immune system takes action against pathogens that are able to evade 

or overcome innate immune defenses by generating a diverse repertoire of pathogen-

specific antigen receptors on T and B lymphocytes to neutralize or eliminate pathogens 

(Schenten and Medzhitov, 2011).  A key player involved in the initiation of effective 

immune responses after vaccination are antigen presenting cells (APCs) (Palucka et al., 

2010).  Dendritic cells are professional APCs crucial for linking innate and adaptive 

immune responses (Banchereau and Steinman, 1998).  Their precursors, monocytes, are 

also professional APCs that express proinflammatory cytokine proteins, MHC class II 

and costimulatory molecules upon activation (Iwasaki and Akashi, 2007; Lauvau et al., 

2014; Manz et al., 2001; Traver et al., 2000). 

 
Biology Functions of Dendritic Cells  
 
 

Pathogen recognition.  Dendritic cells can recognize diverse microbes or vaccine 

antigens and initiate innate immune response to set the stage for an effective adaptive 
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immune response (Palucka et al., 2007; Palucka et al., 2010).  At steady-state, DCs are 

immature and unable to stimulate T cells but are well equipped to capture and process 

antigens (Banchereau and Steinman, 1998).  They play a major role in tolerance by 

circulating through tissues and capturing self-antigens and innocuous environmental 

proteins (Steinman et al., 2003).  During inflammation and infection, immature DCs are 

triggered by pathogen-derived activation signals to migrate to the draining lymph node, 

where they become mature and highly efficient at presenting antigens and stimulating T 

cells (Palucka et al., 2010; Real et al., 2004).  DCs detect a limited set of conserved 

molecular patterns that are associated with microbes, called pathogen-associated 

molecular patterns (PAMPs).  PAMPs are recognized through pattern recognition 

receptors (PRRs) which include toll-like receptors (TLRs), C-type lectin receptors 

(CLRs) and nucleotide oligomerization domain-like receptors (NLRs) (Akira and Takeda, 

2004; Geijtenbeek and Gringhuis, 2009; Krishnaswamy et al., 2013). 

 
Presenting antigen.  There are two classical antigen presentation pathways: major 

histocompatibility complex (MHC) class I and class II presentation.  MHC class I 

molecules present peptides primarily derived from endogenous proteins in the cytosol. 

These proteins are degraded into peptides by the proteasome and then transported through 

the transporters of antigen-processing (TAP) molecules into the endoplasmic reticulum 

for loading on MHC class I molecules (Joffre et al., 2012).  MHC class II molecules 

present proteins through an endocytic route.  Their peptide cargo is loaded in endosomal 

compartments via proteolytic degradation.  These peptides are derived from both 

exogenous material that is from the extracellular environment, and endogenous 

components (Villadangos and Schnorrer, 2007).  DCs have both functional MHC class I 
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and MHC class II presentation pathways.  They can also process exogenous antigens into 

the MHC class I pathway.  This ability, known as cross-presentation, is essential for the 

initiation of CD8+ T cell responses (Heath and Carbone., 2001; Joffre et al., 2012).  

 
Initiating adaptive immunity.  DCs are efficient stimulators of T and B 

lymphocytes.  After exposure to pathogens, tissue-resident DCs capture the antigens and 

become activated.  Activated DCs migrate to secondary lymphoid organs via chemokine 

receptors (e.g., CCR7) where they interact with T cells to initiate the selection and 

expansion of antigen-specific T cells and simultaneously they become terminally mature  

  

Figure 1. Dendritic cells (DCs) play an important role in initiating the immune response to 
vaccination. DCs can recognize and capture foreign antigens (vaccines) in the tissue.  Activated 
DCs migrate toward secondary lymphoid organs and present antigens to T lymphocytes via 
classical MHC class I and class II or non-classical CD1 molecules, which results in the selection 
and expansion of antigen-specific T cells. Activated T cells migrate to the infection sites and 
eliminate pathogens or infected cells.  DCs and T cells activate B cells that further differentiate 
into plasma cells which secrete antibodies against the pathogen.  Antigens can also drain into the 
adjacent lymph node and be captured by lymph node-resident DCs directly. 
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(Palucka et al., 2010).  Mature DCs can induce different CD4+ T helper cell subsets: TH1, 

TH2, TH17 or regulatory T cells (Tregs).  Additionally, activated DCs can induce naïve 

CD4+ T cells to become IL-21-producing follicular helper T (Tfh)-like cells through IL-

12 (Schmitt et al., 2009).  Furthermore, DCs and T cells drive B cells to differentiate into 

plasma cells secreting antibodies against the pathogen (Palucka et al., 2007; Palucka et 

al., 2010) (Figure 1). 

 
Human Dendritic Cell Subsets 
 
 

DC subsets. Dendritic cells (DCs) comprise heterogeneous populations of rare 

leukocytes found in all tissues.  Different DC subsets are equipped with distinct receptors 

for antigen uptake and signaling, and undergo different pathways of antigen processing 

and presentation (Steinman, 2007).  Human blood-circulating DCs can be divided into 

two major subsets: plasmacytoid DCs (pDCs) and classical DCs (cDCs). cDCs can be 

further divided into CD1c+ (BDCA1+) and CD141+ (BDCA3+) cDCs.  CD2 can be used 

to distinguish pDCs into CD2+ and CD2- subsets (Andrzej Dzionek, 2000; Boltjes and 

van Wijk, 2014; Matsui et al., 2009) (Figure 2).  In the blood at the steady state, DCs 

constitute 0.25-0.84% of peripheral blood leukocytes and 0.6-1.69% of mononuclear cells 

(MNCs) in healthy adults (Haller Hasskamp et al., 2005).  The total blood DCs are 

comprised of 5-10% CD141+ cDCs and equal parts of CD1c+ cDCs and pDCs 

(MacDonald et al., 2002).  The skin contains a much higher frequency of CD1c+ cDCs, 

which constitute about 12%-28% of CD45+ MNCs.  The frequencies of CD141+ cDCs 

(~0.2-0.5% of MNCs) are both higher in liver and lung compared to frequencies observed 

in the blood (Haniffa et al., 2012).  Skin tissues contain the highest percentage (~0.8-

1.8% of MNCs) of CD141+ cDCs (Haniffa et al., 2012). 
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Figure 2. DC and monocyte subset in the blood. Monocyte and dendritic cell populations in 
human peripheral blood in steady-state conditions.  The expression of markers commonly used to 
identify and discern these populations are indicated.  The frequencies of monocyte and DC 
subsets are specified (Boltjes and van Wijk, 2014).  

 
Different patterns in antigen recognition and presentation.  DCs are efficient in 

recognizing distinct pathogens and induce distinct innate responses to trigger the immune 

system. Many of the markers used to divide DCs into distinct subsets are receptors 

involved in pathogen recognition and antigen presentation, those important in initiating 

immune responses (Steinman, 2008) suggesting a division of labors between various DC 
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subsets.  pDCs express and secrete large amounts of type I interferons in response to viral 

or self-nucleic acids through TLR7- and/or TLR9-dependent pathways (Barrat et al., 

2005; Boonstra et al., 2002; Boule et al., 2004; Christensen et al., 2006; Kadowaki et al., 

2000; Lande et al., 2007).  The two cDC subsets are different in TLR expression pattern 

and responsiveness.  CD141+ cDCs are characterized by high expression of TLR3 and 

TLR10 and low expression of other TLRs, but lack the expression of TLR4, 5, 7 and 9.  

In contrast, CD1c+ cDCs express TLR4, 5 and 7 (Hemont et al., 2013; Jongbloed et al., 

2010).  Stimulation of two cDC subsets with TLR3 agonist (poly I:C) showed that 

CD141+ cDCs have a more restricted response by secreting CXCL-10 (IP-10), CCL5, 

IFN-b and IFN-λ, a type III IFN with anti-viral properties compared to CD1c+ cDCs 

(Hemont et al., 2013; Jongbloed et al., 2010; Lauterbach et al., 2010).  The expression of 

CLRs also varied in distinct cDC subsets.  CLEC9A was shown to be restricted to 

CD141+ cDCs (Jongbloed et al., 2010) CD1c+ cDCs showed higher frequency for 

CD206/MRC1, DCIR and CD301/CLECSF14, whereas CD141+ cDCs had a higher 

surface expression of Dectin-1, Dectin-2, CD209/DC-SIGN, CD207/Langerin and 

CD280/MRC2 (Lundberg et al., 2014).   

 
DC subsets initiate different adaptive immune responses.  Previous studies have 

shown that distinct cDC subsets can induce T cell polarization via different mechanisms 

(Hemont et al., 2013).  These differences may be caused by differential TLR and 

cytokine/chemokine expression profiles.  CD141+ cDCs were found to be more efficient 

to promote TH1 response upon poly I:C activation and induce the highest percentage of 

IFN-γ-producing T cells (Hemont et al., 2013).  Blood DCs are not able to induce 

efficient TH2 polarization (Segura et al., 2012); however, they can drive a strong TH2 
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response under the influence of TSLP (Ito et al., 2005).  Whereas blood/lung CD1c+ 

cDCs are more efficient in inducing IL-17 production by autologous CD4+ T cells 

comparing with CD141+ cDCs or CD14+ DCs/monocytes (Kelly et al., 2014), CD141+ 

cDCs  are more efficient in inducing IL-4/IL-13 producing TH2 cells in response to  live-

attenuated influenza virus (Yu et al., 2014).  Human CD141+ DCs, comparable to their 

counterpart of mouse CD8α+ DCs, can produce IL-12 and cross-present antigens to CD8+ 

T effector cells when activated by poly I:C (Bachem et al., 2010; Haniffa et al., 2012; 

Jongbloed et al., 2010).  However, a recent study compared the capacities of CD1c+, 

CD141+ cDCs and pDCs in priming cytotoxic T cells.  CD1c+ cDCs were surprisingly the 

only human DC that secreted high amounts of IL-12p70 with a combination of TLR 

(LPS+R484) stimulation (Nizzoli et al., 2013).  Function studies on pDC subsets showed 

that both subsets express IFN-α, granzyme B and trail but CD2+ pDCs uniquely 

expressed IL12p40 and CD80 under the activation.  Therefore, CD2+ pDCs have more 

potential in initiating T cell immune responses (Matsui et al., 2009).  Formal studies 

indicated that DC subsets use different machineries in antigen presentation responding to 

different TLR stimulations, which leads to initiating different adaptive immune 

responses.  

 
Human Monocyte Subsets 

 
 
Monocyte subsets.  Human monocytes can be divided into three different subsets 

based on the expression of CD14 and CD16 (FcγRIII): classical CD14+CD16-, 

intermediate CD14+CD16+ and non-classical CD14dimCD16+ monocytes (Figure 2; 

modified from (Boltjes and van Wijk, 2014).  Monocytes constitute about 20-40% of 

blood peripheral MNCs (de Almeida et al., 2000).  Eighty-five percent of total circulating 
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monocytes are classical monocytes with 5% intermediate and 10% non-classical 

monocytes (Boltjes and van Wijk, 2014; Passlick et al., 1989; Zawada et al., 2011; 

Ziegler-Heitbrock, 2007) (Figure 2). 

 
Different functions of monocyte subsets.  Monocytes are derived from progenitors 

in the bone marrow and migrate to peripheral tissues via the bloodstream (Shi and Pamer, 

2011).  They are equipped with a wide array of scavenger and pattern recognition 

receptors which enable them effectively to control and clear viral, bacterial, fungal and 

protozoal infections (Boltjes and van Wijk, 2014).  The stimulation of TLR receptors in 

monocyte subsets showed that all TLR agonists trigger a rapid expansion of blood 

monocytes whereas only R-848 (TLR7/8-L) and CPG-ODN (TLR9-L) can induce a rapid 

and transient increase in CD16+ (intermediate and non-classical) monocytes (Kwissa et 

al., 2012).  Initially, monocytes were thought to circulate in the blood for a few days 

before entering tissues where they differentiated into macrophages and DCs, however 

they were also found to play critical roles in pathogen defense and driving inflammatory 

diseases (Boltjes and van Wijk, 2014). 

Like DCs, distinct monocyte subsets exhibit different functional characteristics.  

Classical CD14+CD16- monocytes can be rapidly recruited to tissues in response to 

inflammation.   CD16-positive (CD14+CD16+ and CD14dimCD16+) monocytes are likely 

to carry effector functions related to antigen processing and presentation with DC and 

macrophage-like characteristics.  Gene ontology (GO) analysis indicates that intermediate 

CD14+CD16+ monocytes have diverse immunological functions related to inflammation 

and monocyte activation (e.g., TGFB1, AIF1, PTPN6), and angiogenesis (e.g., TIE2, 

CD105) (Zawada et al., 2011).  In contrast, non-classical CD14dimCD16+ monocytes can 
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produce TNFα, IL-1β and CCL3 in response to viruses and immune complexes 

containing nucleic acids following the TRL7-TLR8-MyD88-MEK pathway (Cros et al., 

2010).   

 
Transcriptional Programs in DC and Monocyte Subsets 

 
With recent advances in technology and methodology, it is now possible to study 

the human immune system on a systems level.  Technologies such as genome-wide 

expression analysis enable the simultaneous assessment of thousands of genes in 

heterogeneous tissue or in an isolated cell population (Chaussabel et al., 2010).   

 
Approaches to Study Transcriptomes  

 
Understanding the transcriptome is essential for studying the molecular 

constituents of cells and tissues and interpreting the functional elements of the genome.  

Various technologies, including real-time PCR, Nanostring, hybridization and sequence-

based approaches, have been developed to analyze the transcriptome (Chaussabel et al., 

2010; Wang et al., 2009).  Real-time PCR is used as a gold standard for measuring gene 

expression but it is limited by the numbers of genes that can be simultaneously tested 

(Chaussabel et al., 2010).  Nanostring can detect the abundance of up to 500 transcripts 

with high sensitivity (Geiss et al., 2008).  On the other hand, microarray and RNA-Seq 

both can measure the abundance of transcripts on a genome wide scale.  Microarray, a 

typical hybridization-based approach, is high throughput and relatively inexpensive.  

However, it relies on existing knowledge about genome sequence and also suffers from 

high background levels by cross-hybridization (Okoniewski and Miller, 2006; Royce et 

al., 2007).  In contrast to microarray, RNA-Seq has several advantages including the 

ability to detect (a) novel transcripts, (b) low abundant transcripts, (c) non-coding  and 
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small RNAs, (d) alternatively spliced isoforms (Table 1) (Wang et al., 2009).  In addition, 

RNA-Seq has relatively low noise compared to microarray, has a high levels of accuracy 

for quantifying expression levels and is highly reproducible for both biological and 

technical replicates (Nagalakshmi et al., 2008).  

Table 1. Advantages of RNA-Seq compared with microarray (Wang et al., 2009). 

Technology Tiling microarray RNA-Seq 
Technology specifications 
Principle Hybridization High-throughput 

sequencing 
Resolution From several to 100 bp Single base 
Throughput High High 
Reliance on genomic sequence Yes In some cases 
Background noise High Low 
Application 
Simultaneously map transcribed regions and 
gene expression 

Yes Yes 

Dynamic range to quantify gene expression 
level 

Up to a few-hundredfold >8,000-fold 

Ability to distinguish different isoforms Limited Yes 
Ability to distinguish allelic expression Limited Yes 
Practical issues 
Required amount of RNA High Low 
Cost for mapping transcriptomes of large 
genomes 

High Relatively low 

 
 
Transcriptional Profiling of DC Subsets 

Miller and colleagues have identified cell type specific transcriptional programs 

by analyzing DC subsets, macrophage DC precursors and common DC precursors in vivo 

across the entire murine immune system (Miller et al., 2012).  Distinct DC populations 

were isolated from lymphoid tissues, secondary lymphoid tissues and nonlymphoid 

tissues.  This study identified both known and unknown potential regulators that control 

DC lineages in vivo.  They also predicted the regulators that maintained DC functional 
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diversity in tissues.  Core gene sets were identified to compose cDC and pDC signatures.  

Several transcription factors have been identified to control DC development.  For 

instance, zinc-finger protein Ikaros 25 was identified to be responsible for the 

differentiation of pDCs and cDCs.  Moreover, transcription factors including E2-2 

(encode by Tcf4), Spi-B and IRF8 were identified to control pDC differentiation.  Bcl-6 

was found to control the development of cDCs but not of pDCs in the spleen.  Unique 

gene signatures were characterized for distinct tissue DC clusters as well (Miller et al., 

2012).  Our group recently published the data analyzing transcriptional signatures of APC 

subsets in human.  The transcriptional programs of human DC subsets were established 

by characterizing the responses of human APCs to pathogens, innate receptor ligands and 

vaccines (Banchereau et al., 2014).  A modular framework with 204 transcript clusters 

was built by stimulating monocyte-derived DCs with different pathogens.  The 

framework was further used to determine the specialization of APC subsets in response to 

13 different vaccines.  The data showed that different vaccines activated distinct APC 

subsets.  Monocyte-derived DCs, monocytes and CD1c+ blood DCs become activated by 

culturing with Fluzone, Pneumovax and Gardasil, respectively (Banchereau et al., 2014).  

In addition, transcriptional profiles of CD1c+ and CD141+ DCs purified from human 

blood and lungs and from humanized mouse spleens and lungs were also investigated 

(Yu et al., 2013).  CD1c+ DCs over-expressed genes involved in TGF-β1 activation 

including furin, MMP-9 (matrix metalloproteinase 9), CD36 and PLAUR.  This 

observation, based on transcriptional profiling, led to investigation on their biological 

functions.  We demonstrated that lung-tissue-resident CD1c+ DCs, but not CD141+ DCs, 

were able to drive CD103 expression on CD8+ T cells via TGF-β1 and promoted CD8+ T 

cell accumulation in lung epithelia in vitro and in vivo (Yu et al., 2013).   
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Transcriptional Profiling of Monocyte Subsets 
 

Classification of monocyte heterogeneity was based on CD14 and CD16 surface 

markers (Ziegler-Heitbrock et al., 2010).  Transcription profiles of CD16+ and CD16- 

monocytes were analyzed using microarray.  CD16+ monocytes were found to have a 

more macrophage (CSF1R/CD115, MafB, CD97, C3aR) and DC (SIGLEC10, CD43, 

RARA)-like transcription program. CD16- monocytes overexpressed transcripts for 

myeloid (CD14, MNDA, TREM1, CD1d, C1qR/CD93) and granulocyte markers (FPR1, 

GCSFR/CD114, S100A8-9/12).  These distinct transcriptional programs also suggest that 

CD16+ and CD16- monocyte give rise to functionally distinct DC and macrophage in vivo 

(Ancuta et al., 2009).  In another study, all three human monocyte subsets and mouse 

blood monocytes Gr1+ and Gr1- were analyzed using microarray. Gene expression 

analysis indicated that CD14+CD16- CD14+CD16+, and CD14dimCD16+ subsets 

segregated in independent clusters.  Transcription profiling revealed the similarities 

between human CD14dimCD16+ monocytes and mouse patrolling Gr1dim monocytes.  In 

contrast, both CD14+CD16-  and CD14+CD16+ cells are similar to mouse Gr1+  

inflammatory monocytes (Cros et al., 2010).  Zawada and his colleagues used 

SuperSAGE sequencing to analyze transcriptional profiles of all three human monocyte 

subsets (Zawada et al., 2011).  A specific gene set was identified for each monocyte 

subset.  The differences between CD14+CD16+ and CD14dimCD16+ monocytes were 

analyzed extensively since no previous studies had focused on this subject.  Differentially 

expressed genes were defined between the two subsets and functional annotations of 

present genes were analyzed based on GO categorization as well. GO enrichment 

analysis revealed diverse immunologic functions of CD14+CD16+ monocytes including 

antigen processing and presentation  (CD74, HLA-DR, IFI30, CTSB), inflammation and 
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monocyte activation (TGFB1, AIF1and PTPN6), and angiogenesis (TIE2 and CD105).  

In contrast, CD14dimCD16+ monocytes were more abundant in gene expression related to 

MHC I–restricted processes (HLA-B, B2M), migration and transendothelial motility 

(LSP1, LYN, CFL1, MYL6), and  cell-cycle progression (CDKN1C, STK10) (Zawada et 

al., 2011).   

 
Using Systems Biology Approaches to Study Immune Responses to Vaccination 

Vaccination not only protects individuals from illnesses caused by pathogens but 

also provides a good opportunity to study human immune response that leads to 

protective immunity.  Inactivated influenza vaccination offers a model to study immune 

responses to an inactivated immunogen. Studies with these and other vaccines are 

beginning to reunite the estranged fields of immunology and vaccinology, yielding 

unexpected insights about mechanisms of viral immunity (Pulendran et al., 2013). 

Blood acts as a pipeline of the immune system since it carries the immune cells 

flowing throughout the body (Chaussabel et al., 2010).  Profiling blood transcript 

abundance on a systems scale has been successfully implemented to investigate vaccine 

responses in human.  System biology approach has been employed because it gives an 

unbiased and comprehensive view of the immune system (Nakaya et al., 2011; 

Obermoser et al., 2013; Querec et al., 2009).  Vaccination not only protects individuals 

from illnesses caused by influenza but also provides excellent strategies for learning 

human immunity by perturbing the immune system in vivo (Pulendran et al., 2013).  

Thus this system biology approach has been used to identify global biomarkers to predict 

adaptive immune responses induced by various vaccines (Li et al., 2014; Nakaya et al., 

2011). 
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Live attenuated yellow fever vaccine (YF-17D) is one of the most successful 

vaccines ever developed and it has been used to study human innate and adaptive 

responses. System studies with YF-17D were used to identify early molecular signatures 

of vaccination that could be explored to predict immunogenicity such as the development 

of antigen-specific CD8+ T cells and neutralizing antibody response (Gaucher et al., 

2008; Querec et al., 2009).  Nakaya and his colleagues have employed a system biology 

approach to study healthy donors‟ immune responses for both TIV and LAIV.  The 

expression of kinase CaMKIV at day 3 postvaccination was discovered to be inversely 

correlated with later antibody titers from the TIV group (Nakaya et al., 2011). Similar 

approaches were used by other groups to study immune responses to seasonal influenza, 

pneumococcal and meningococcal vaccines (Li et al., 2014; Nakaya et al., 2011; 

Obermoser et al., 2013; Tsang et al., 2014). 

Previous studies have focused on global immune responses to vaccination by 

analyzing transcriptomes of whole blood or peripheral blood mononuclear cell (PBMCs) 

(Li et al., 2014; Nakaya et al., 2011; Obermoser et al., 2013; Tsang et al., 2014).  Roles of 

APCs in vaccination still need to be further investigated.  Due to the rarity of these cells 

in the circulation and difficulties acquiring human tissue, it presents substantial 

challenges to the study of monocyte and DC subsets in human.   We here employed 

transcription profiling as a tool to study monocyte and DC subsets in vivo.  We used a 

systems biology approach to investigate circulating monocyte and DC subsets in the 

steady state and upon influenza vaccination.  We further identified their transcriptional 

signatures at baseline that correlate with serologic response after vaccination.  
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CHAPTER TWO 
 

Objectives 
 
 

Influenza vaccines are designed to initiate protective immunity by generating 

neutralizing antibody against viral HA.  However, vaccination outcome varies among 

individuals.  APCs are critical in eliciting this adaptive immune response.  

Transcriptional profiling of whole blood allows us to identify the status of the immune 

system (Chaussabel et al., 2010).  However, transcriptional profiling of the vaccine 

response in whole blood or PBMC cannot easily provide insight into the changes in 

individual cell populations, in particular when the populations are rare. As important 

initiators of the immune response, the specialization of each APC subset in response to 

vaccination requires investigation. Here we employed RNA-Seq for genome-wide 

transcriptional profiling to investigate three subsets of monocytes, CD14+CD16-, 

CD14+CD16+, and CD14dimCD16+ monocytes as well as four blood DC subsets, CD1c+ 

DCs and CD141+ (BDCA3+) cDCs, and CD2+ and CD2- pDCs at steady state and their 

transcriptional changes after TIV vaccination in healthy volunteers. 

 
Aim 1: Study Transcriptional Profiles of Whole Blood and Major Cellular Sources at 

Baseline and in Response to Influenza Vaccination 
 
a) Study Global Responses to Influenza Vaccination in the Whole Blood 
 
b) Identify Major Cellular Sources of Early Innate Transcriptional Responses 
 

To gain a comprehensive view of the immune system upon vaccination, we first 

investigated the global responses induced by the vaccination in whole blood.  Besides 

influenza vaccine, we also studied the transcriptional changes elicited by non-live 
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pneumococcal vaccine (Pneumovax23®) in healthy individuals.  Furthermore, we studied 

the kinetics of the immune response to influenza vaccination by analyzing changes in 

blood transcript abundance at different days and within hours after the vaccine 

administration.  Moreover, we investigated contributions of major immune cell 

populations to the global responses elicited by influenza vaccination. 

 
Aim2:  Study Transcriptional Response of APC Subsets to Influenza Vaccination  

 
a) Establish Transcriptional Signature of Monocyte and DC Subsets at the Steady State 
 
b) Study Transcriptional Responses of APC Subsets Upon Vaccination 
 

Distinct cell populations may play different roles in response to vaccination.   

Besides monocyte subsets, we expanded our investigation to blood DC subsets.  Because 

of the rarity of certain APCs in the circulation, the overall contribution to the blood 

transcriptome is very small.  Therefore, we isolated APCs from the blood to study their 

transcriptional profiles.  Before we investigated their responses to the vaccination, we 

first studied their transcriptional signatures in the steady state. 

 
Aim 3: Investigate Correlations between Steady State Transcriptional Signatures of APCs 

and Serological Response to Vaccination 
  

There is variability in serological response to seasonal influenza vaccination in 

healthy adults, with some individuals showing very low antibody response.  We 

hypothesized that the baseline transcriptional signature of APCs contributes to this.  We 

sorted APC subsets at baseline, investigated their transcriptomes using RNA-Seq and 

applied correlation analysis with serology response to influenza vaccination. 
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CHAPTER THREE 

Materials and Methods 

Healthy Donors and Samples 

A series of studies with healthy adult volunteers were conducted between 2009 

and 2012 to collect whole blood or apheresis samples for the study of transcriptional 

response to influenza vaccination (Table 2). All protocols were approved by the 

Institutional Review Board at Baylor Research Institute (Dallas, TX). 

Table 2. Overview of studies. 

Study Title Whole blood and 
isolated leukocytes study 
2009 

Apheresis study 2010 Small blood draw sorted 
APCs 2012 

IRB # 009-179 & 009-282 010-305 011-221 
Subjects Healthy adults (30) Healthy adults (6) Healthy adults (26) 
Vaccine 2009/10 TIV 2010/11 TIV 2012/13 TIV 
Sample  Whole blood (venous 

and finger stick) and 
bead isolated leukocytes 

Apheresis sample and 
FACS isolated 
myeloid APCs 

PBMC FACS isolated 
APCs 

Assay Microarray RNA-Seq RNA-Seq 

Whole Blood and Isolated Leukocytes Study 2009 

Healthy adults, aged 18 to 64 years, were enrolled to receive a single 

intramuscular dose of 2009 influenza vaccine (Fluzone®, Sanofi Pasteur, PA; Table 3),  

23-valent pneumococcal vaccine (Pneumovax23®) or placebo (saline) (n=6 subjects per 

group).  Exclusion criteria were pregnancy, active allergy symptoms, or vaccinations 

within the previous 2 months.  Blood samples were collected by venipuncture at days 0 

(prior to vaccination), 1, 3, 7, 10, 14, 21 and 28 (Figure 3).  In an independent cohort, 

capillary blood samples from 6 donors of each treatment were collected in customized 
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baby tempus tubes via finger stick at hours 0, 1.5, 3, 6, 9, 12, 15, 24, 36, and 48, for 

whole-genome transcriptional profiling using microarray (Figure 4). 

Table 3. Compositions of trivalent inactivated seasonal influenza vaccines. 

2009 Fluzone® 2010 Fluzone® 2012 Fluzone® 
A/Brisbane/59/2007 (H1N1) A/California/07/2009 

(H1N1) 
A/California/07/2009 

(H1N1) 
A/Uruguay/716/2007 

(H3N2) (an 
A/Brisbane/10/2007-like) 

A/Victoria/210/2009 (an 
A/Perth/16/2009– like virus) 

(H3N2) 

A/Victoria/361/2011 
(H3N2) 

B/Brisbane/60/2008 B/Brisbane/60/2008 B/Texas/6/2011 
(a B/Wisconsin/1/2010-like 

virus) 

In a third, independent cohort, 6 healthy adults received the influenza vaccine.  

Whole blood samples were collected in Tempus blood RNA tubes (Life Technologies, 

Carlsbad, CA) at day 0 prior, days 1 and 28 post vaccination.  At day 0 and day 1 after 

vaccination, freshly ficolled PBMC were used for sequential isolation of white blood cell 

subsets.  Neutrophils were first separated from mononuclear cells by Ficoll gradient 

centrifugation, followed by hypotonic lysis of red blood cells in KHCO3 and NH4Cl and 

finally purified by negative selection by using the EasySep Human Neutrophil 

Enrichment Kit (StemCell, Vancouver, Canada); monocytes (CD14+) and T lymphocytes 

positive for the CD4 and CD8 antigen were sequentially isolated from PBMC using 

Dynabeads (Invitrogen, Carlsbad, CA) according to the manufacturer‟s instructions.  

Blood and isolated leukocytes samples were prepared for microarray analysis (for study 

design see Figure 6).  The purities of neutrophils, CD4+ and CD8+ T cells were analyzed 

using flow cytometry on an LSRII (BD, San Jose, CA).  A cocktail of antibodies have 

been used to identify possible cellular contaminants:  CD15-FITC, CD8-PE, HLA-DR-

PerCP-Cy5.5 (BD), CD19-ECD (Beckman Coulter, Pasadena, CA ), CD123-PC5, CD56-

https://www.google.com/search?rlz=1C1CHFX_enUS502US502&espv=2&biw=1366&bih=624&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-9GuRaiSL_N-PXgdL-Hla7v5v3dwJAFQmsKhhAAAA&sa=X&ei=Fe8YVPePK8aG8gHBo4E4&ved=0CKIBEJsTKAMwEg
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PC7 (BD), CD16-APC (Invitrogen), CD3-AF700, CD14-APC-Cy7 (BD), CD4-Pacific 

Blue and CD45-Pacific Orange (Invitrogen).  The gating strategy for purity checking was 

shown in Figure 7.  

 
Apheresis Study 2010 
 

Six healthy adult volunteers, aged 35 to 61 years, were recruited in the study, 

following the same exclusion and inclusion criteria as in the 2009 flu season study. At 

day 0, one dose of 2010 Fluzone® (Table 3) was administered intramuscularly to the 

volunteers. The six volunteers were randomly and evenly divided into two study groups 

receiving a single body volume leukapheresis either at day 1 or day 3 as early time points 

and underwent an additional apheresis at steady state, approximately 60 days later. The 

collection of apheresis products was set to collect mononuclear cells and sample was 

separated into two parts for the isolation of blood cDC subsets and monocyte subsets. 

 
DC purification.  Leukapheresis samples were collected and enriched for 

dendritic cells by negative depletion of CD3, CD9, CD14, CD16, CD19, CD34, CD56, 

CD66b and glycophorin A using magnetic beads with a Human Pan-DC Pre-Enrichment 

Kit (StemCell Technologies) for dendritic cells.  Enriched DCs were stained with the 

following antibodies: Lin 1-FITC (CD3, CD8, CD14, CD16, CD19, CD20, CD56 and 

NKp46), CD11c-Pacific Blue, CD303 (BDCA2) -PE (all from BD), CD1c-PE-Cy7 

(BioLegend, San Diego, CA), BDCA-3(CD141)-APC (Miltenyi Biotec, San Diego, CA), 

HLA-DR-Pacific Orange (Invitrogen),  and CD2-ECD (Beckman Coulter, CA).  cDCs 

were sorted using flow cytometry by first gating on singlets for exclusion of doublets and 

then gating on Lin-HLA-DR+CD11c+ cells and further separated by the differential 

expression of CD1c and CD141 (Figure 9).    



22 

 
Monocyte purification.  Monocytes were enriched by negative selection using 

magnetic beads (Dynabeads® Pan Mouse IgG, Life technologies) and by adding  the 

antibody cocktail including CD19, CD56 and CD66b mAbs (Beckman Coulter, Brea, 

CA) and Glycophorin A tetramer (StemCell Technologies)  in a customized kit.  Enriched 

monocytes were stained with CD14-PE-Cy7 (BioLegend, San Diego, CA), CD16-PE, 

HLR-DR-Pacific Blue, CD19-APC, CD20-APC, CD56-APC, CD3-APC, CD8-APC and 

NKp46-APC (all from BD, San Diego, CA).  Monocytes were isolated by gating on 

dump- (CD3, CD8, CD19, CD20, CD56 and NKp46) HLA-DR+CD14+ monocytes and 

separated based on CD16 expression into three subsets: CD14+CD16-, CD14+CD16+, and 

CD14dimCD16+ monocytes (Cros et al., 2010) (Figure 9).  Cells were sorted on a custom 

BD Fluorescence-activated cell sorting (FACS) Aria II high speed cell sorter.  Purified 

cells were lysed in QIAzol (Qiagen, Valencia, CA) for RNA sequencing analysis. 

 
Small Blood Draw Sorted Myeloid APCs 2012 
 

26 healthy donors were recruited to receive 2012-2013 seasonal influenza vaccine 

(Fluzone®).  A 60 ml blood draw was collected from each individual at day 0 prior to 

influenza vaccination.  5 million freshly ficolled PBMCs were stained with the following 

antibodies: Lin-1-FITC, CD66b-FITC, CD8-FITC, CD11c-V450, CD14-APC-H7 (all 

from BD), CD41-FITC, NKp46 (R&D systems, Minneapolis, MN), HLA-DR-Pacific 

Orange (Invitrogen), BDCA-2-APC and BDCA3-PE (Miltenyi Biotec, San Diego, CA) 

and CD62P-FITC and CD1c-PC7 (BioLegend).  Serum of healthy donors was also 

collected at day 0 prior to influenza vaccination and 28 days later for serology (Figure 

30).  Four cell populations were sorted from the blood samples at day 0 including CD1c+ 
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and CD141+ cDCs, CD14+ monocytes and BDCA2+ pDCs for RNA-Seq analysis (Figure 

30; Figure 31).   

 
Genome-wide Transcription Analysis 

 
 
Microarray Assay  
 

Total RNA was either isolated from whole-blood lysate in Tempus tubes 

(Ovcharenko et al., 2005) followed by depletion of globin messenger RNA (Whitley et 

al., 2005) or extracted from isolated leukocytes using Qiagen RNeasy® Micro Kit 

(Qiagen).  All samples passing quality control were then amplified and labeled using the 

Illumina TotalPrep-96 RNA amplification kit.  Amplified RNA was hybridized to 

Illumina HT-12 V3 beadchips (48,803 probes) and scanned on an Illumina Beadstation 

500.  Illumina‟s BeadStudio version 2 software was used to generate signal-intensity 

values from the scans. After background subtraction, the average normalization 

recommended by BeadStudio 2.0 software (Illumina, San Diego, CA) was used to rescale 

the difference in overall intensity to the median average intensity for all samples across 

multiple arrays and chips.  For modular analysis, a set of 260 transcriptional modules was 

used as a pre-existing framework for the analysis of this data set.  The approach used for 

the construction of such framework was previously described by our group (Chaussabel 

et al., 2008).  A modular framework was constructed based on coordinately expressed 

gene sets from a data-drive process of recapitulating fluctuation in blood transcript 

abundance measured across a wide range of diseases (Chaussabel et al., 2008).  

Following the transformation of gene level data into module level activity scores 

(calculated by proportion of significant transcripts for each module), both unsupervised 

and supervised analyses of the complete data set were conducted. 
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RNA-Seq Sample Preparation and Sequencing 
 

Isolated total RNA was run on a NanoDrop 8000 (Thermo Scientific) and a 

Bioanalyzer 2100 Nano Chip (Agilent Technologies, Inc.) to check RNA quantity and 

quality. Sequencing libraries for whole transcriptome analysis were prepared using 

Illumina® TruSeq™ RNA Sample Preparation V2 kit (Illumina, San Diego, CA).  

Twelve 6-base index sequences were used to prepare barcoded libraries (twelve barcodes 

per lane) for multiplexing (RNA Adapter Indexes, Illumina).  Libraries were quantified 

using Qubit™ dsDNA HS Assay Kits (Life technology, Carlsbad, CA).  The quality of 

libraries was checked on a 2100 Bioanalyzer using a DNA-1000 chip (Agilent 

Technologies, Inc.).  TruSeq™ PE Cluster Kits v2 (Illumina Inc.) were used for cluster 

generation on an Illumina cBOT™ instrument following the manufacturer‟s 

protocol. Single indexed libraries were loaded into each lane of flow cells.  Sequencing 

was performed on an Illumina HiSeq®2000 instrument (Illumina) by the manufacturer‟s 

protocol.  Multiplexed paired-end read runs were carried out with a total of 2x50 cycles 

per run and 7 cycles for the index sequences. 

 
Bioinformatics and Statistics 
 

Background-subtracted microarray data were obtained from Illumina‟s 

GenomeStudio software.  Expression values less than 10 were set to 10, log (base 2) 

transformed, and quantile normalized. Microarray derived variables were analyzed by 

using linear mixed models (LMMs), which included time as a categorical variable with a 

first-order autoregressive residual covariance matrix. Specific contrasts were used to test 

for differences between postvaccination and both prevaccination time points.  When 

applicable, differences between the two prevaccination time points were also tested as a 
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control. A FDR of 0.10 was used to adjust for multiple testing (Benjamini and Hochberg, 

1995).  The number and proportion of differentially expressed probes (both up and down-

regulated) was determined per module and time point comparison. Modules containing a 

proportion of probes greater than an FDR of 0.10 were considered active at the specified 

time point and further investigated. Statistical analyses of microarray data was performed 

by using SAS software (v9.2), JMP (v8), and JMP/Genomics (v4.0) (each from SAS 

Institute, NC).  Heatmaps were generated using GeneSpring (Agilent Technologies, 

v12.6).   

Besides the application of microarray, we also employed RNA-Seq technology to 

analyze myeloid cell subsets from the 2010-2011 and 2012-2013 influenza seasons.  All 

primary analysis of RNA-Seq was processed using CASAVA pipeline (Illumina, San 

Diego, CA., v1.8.2).  Sequences were aligned with TopHat2 (Kim et al., 2013), 

duplicates were removed using Picard (picard.sourceforge.net/) and counts were 

generated using HTSeq (Anders et al., 2014) using the annotations from Gencode 

V19 (Harrow et al., 2012). Genes identified as globins, rRNAs, and pseudogenes 

were removed.  The alignment files were converted to BAM format by using SAMtools 

(Li et al., 2009).  Differential expression analysis was performed using edgeR 

(Robinson et al., 2010) and a p-value cutoff of 0.05 and a fold change cutoff of 5 for 

comparing monocyte and DC subsets at steady state and cutoff of 1.5 for comparing 

vaccine responses at early time points with steady state for each APC cell subset.  

Pre-processed data was further analyzed by using GeneSpring (Agilent Technologies).  

One-way ANOVA with Benjamini Hochberg multiple testing correction was used for 

comparison of three or more groups. Statistical comparisons between two groups were 

approached using paired t-test.  Heat maps were generated by using hierarchical 
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clustering with Pearson distance metric and linkage rule as centroid.  Downstream 

regulatory effects and upstream regulator analysis for each APC cell subset at steady state 

was performed by using Ingenuity Pathway Analysis (Qiagen, Redwood City, CA).   

Correlation analysis of gene expression at baseline and serological parameters was 

accomplished by using JMP/Genomics (v7.0) (SAS Institute, NC).  GESA (Broad 

Institute, MA) was also used to analyze baseline transcriptional signatures for 2012 

cohort. 

 
Influenza Hemagglutinin Inhibition and Virus Neutralization Assays 

 
All virus strains corresponding to the influenza virus vaccine compositions for the 

2009-10, 2010-2011 and 2012-2013 influenza seasons were propagated in 8 day old 

specific pathogen-free embryonated hen‟s eggs (Charles River, North Franklin, 

Connecticut, USA).  Hemagglutinin Inhibition (HI) assays were performed as previously 

described for the detection of neutralizing antibodies (Wang et al., 2006).  Briefly, two-

fold serial dilutions of human sera were mixed and preincubated in 96-well V-bottom 

microtiter plates for 30 min at room temperature with the indicated influenza virus 

vaccine strain.  The HI assays were developed by adding 0.5% suspension of turkey red 

blood cells (Lampire Biological Laboratories, Pipersville, PA) and incubating the assays 

until the red blood cells pelleted in control wells containing only saline. Neutralizing 

antibody titers were determined as the reciprocal value of the highest dilution that 

displayed no hemagglutinating activity.  Virus Neutralization Assays (VNA) were 
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performed with the same influenza virus vaccine strains.  To conduct the assay, two-fold 

dilutions of the serum were mixed with the influenza vaccine virus strains and incubated 

for 45 min at 37°C.  Madin-Darby canine kidney cells (cell line) were added in the virus-

antibody mixtures and incubated for 45 min at 37°C.  The neutralization titer is expressed 

as the reciprocal of the highest dilution at which virus infection is blocked (Steel et al., 

2009). 
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CHAPTER FOUR 
 

Results 
 
 

We first investigated the early innate immune responses to influenza vaccination 

in whole blood and four major types of leukocytes.  Next, we studied the transcriptional 

profiles of APC subsets at both steady state and early time points after influenza 

vaccination.  Furthermore, we applied correlation analysis of baseline transcriptional 

profiles of APC subsets with serologic responses to identify the potential predictive 

transcripts for later vaccination outcomes. 

 
Global Responses of Whole Blood and Responses of Major Cellular Components to 

Influenza Vaccination  
 
We wanted to investigate the transcriptional response of APCs to the stimulation 

in vivo by studying immune responses to influenza vaccination.  To this end, we first 

wanted to gain an overview of transcriptional changes in whole blood following influenza 

vaccination. 

 
The Global Innate Immune Response Peaks at Day 1 
 

First, we investigated the global immune responses to vaccination from whole 

blood.  Besides influenza vaccine, we also included another widely used vaccine, 23-

valent pneumococcal vaccine, to learn if there was a difference of immune responses to 

two vaccines.  Pneumovax23® comprises polysaccharide extracts from the 23 most 

common disease-causing serotypes of Pneumococcus pneumonia.  Healthy donors  were 

recruited and randomly assigned to three study groups receiving either 2009-2010 
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seasonal influenza vaccine (Fluzone®), 23-valent pneumococcal vaccine 

(Pneumovax23®), or saline injection (n= 6 subjects per group) (Figure 3).  Blood 

samples were collected by venipuncture at days 0, 1, 3, 7, 10, 14, 21 and 28 (see methods 

section).  Vaccine responses were assessed through the analysis of global changes in 

transcript abundance in whole blood samples.  A modular repertoire analysis was 

conducted.  Modules were developed based on co-expressed gene sets associated with a 

particular cell type, biological pathway, or processed from 239 PBMC patient samples 

with eight different diseases (Chaussabel et al., 2008)(Chaussabel et al., 

2008)(Chaussabel et al., 2008)(Chaussabel et al., 2008)(Chaussabel et al., 

2008)(Chaussabel et al., 2008).  A module is considered to be „„responsive‟‟ to 

vaccination when the proportion of significant transcripts is greater than what could be 

expected by chance (FDR = 0.10).  Out of 62 modules, 17 and 14 were responsive at day 

1 in the influenza vaccine and pneumococcal vaccine groups, respectively. Subsequently, 

changes in transcripts abundance were detected for a single module at day 7 and day 21 

in the influenza vaccine group, and for 3 modules and 1 module at day 7 and day 10 in 

the pneumococcal vaccine group (Figure 3A). We further mapped responsive modules on 

a grid for both vaccine groups at day 1 and day 7.  We observed the influenza vaccine 

produced an IFN-inducible transcriptional signature whereas myeloid- and inflammation-

related gene transcripts were enriched in pneumococcal vaccine group at day 1 after 

vaccination. Thus, we observed that the early innate immune responses peak at day 1 

followed by a smaller peak at day 7 caused by the adaptive immune responses in both 

vaccine groups but with different magnitudes of transcriptional responses. 
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Figure 8. IFN responses in whole blood and isolated leukocyte populations from healthy donors. 
Cumulative fold changes normalized to baseline day 0 for each gene within module 1.2 were 
calculated and plotted for each donor from blood and isolated leukocyte samples (upper panel).  
The up-regulation of genes from module 1.2 was also visualized using heat maps (lower panel). 
 
 

First, we validated previous observations from finger prick study in venous blood 

samples.  We analyzed expression levels of genes forming interferon annotated module 

M1.2 from whole blood samples. For each donor, gene expression values at day 1 were 

normalized to their corresponding baseline value.  Cumulative fold changes were 

calculated for each gene within module 1.2.  Our analysis shows that the gene expression 

level of IFN-inducible genes was elevated on day 1 and diminished by day 28 when 

compared with baseline day 0 (Figure 8).  Next, we analyzed the IFN signature from 

isolated leukocytes after influenza vaccination.  The analysis revealed differences in the 

expression levels for IFN-inducible transcripts in neutrophils and monocytes following 

influenza vaccination while CD4+ and CD8+ cells showed only a mild IFN signature 

(Figure 8).  To summarize, a systems immunology approach was employed to investigate 

immune responses to influenza and pneumococcal vaccines. These two non-live vaccines 
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showed different quality of transcriptional responses at early time points after 

vaccination.  The innate response, measured within hours in the peripheral blood, was 

dominated by an interferon transcriptional signature after influenza vaccination.  We 

discovered this interferon signature in the blood was dominated by gene expression 

change in by neutrophils and monocytes. 

 
Transcriptional Profiles of Monocytes and Dendritic Cell Subsets in the Steady State and 

Upon Influenza Vaccination 
 

To understand the contributions of APCs in immune responses to vaccination, we 

first needed to characterize those cells in the steady state.  Both monocytes and DCs 

comprise heterogeneous populations.  We employed RNA-Seq technology and 

established the transcriptional profiles of distinct subsets of monocytes, cDCs and pDCs 

at the steady state.   

 
Transcriptional Profiles of Human Monocyte and DC Subsets at Steady State 
 

Seven monocyte and DC subsets from 6 healthy volunteers at the steady state 

were investigated in the 2010 apheresis study (Table 5).  CD14+CD16-, CD14+CD16+ 

and CD14dimCD16+ monocytes; CD1c+ and CD141+ cDCs; and CD2+ and CD2- pDCs 

were isolated by FACS (Figure 9).  Monocytes were isolated by gating on dump channel- 

HLA-DR+  population and separated based on CD14 and CD16 expression into three 

subsets: CD14+CD16-, CD14+CD16+, and CD14dimCD16+ monocytes (Figure 9A).  A 

similar approach was taken for sorting DCs.  CD11c expression is found on cDCs and 

monocytes while BDCA2 is exclusively expressed on pDCs.  CD11chigh cells were gated 

and further separated into CD1c+ and CD141+ cDC subsets.  BDCA2high cells were gated 

and CD2 was used to further separate pDCs into two subsets (Figure 9B).  After the sort, 
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we reran the FACS for the purified cells to check the purity.  The purities of sorted 

monocyte and DC subpopulations were ≥ 95% (Table 6). 

Table 5.  Demographic information of six healthy volunteers in 2010 apheresis study. 

Donor ID Age (yr) Gender Race Ethnicity 
1005 48 Female African American Not Latino 
1006 43 Female Caucasian Latino 
1014 61 Male Caucasian Not Latino 
1008 48 Female Caucasian Not Latino 
1009 56 Male Caucasian Not Latino 
1010 35 Male Caucasian Not Latino 
 

 
 

Figure 9. Human monocyte and DC subsets in the blood. Monocytes were isolated by gating on 
dump- HLA-DR+CD14+ monocytes and separated based on CD16 expression into three subsets.  
Enriched human blood DCs were gated on Lin-HLA-DR+ cells and further separated into cDCs 
and pDCs by differential expression of CD11c and BDCA2.  cDCs were further divided into two 
subsets using CD1c and CD141.  pDCs were further separated into two subsets by differential 
expression of CD2.  1 representative example of 12 sorting experiments is shown. 
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Table 6. Purity of sorted myeloid cell populations. 

Donors Cell subsets Purity (%) 
 Day 1 Day 3 Day 60 
1005 CD14

+
CD16

-
 monocytes 100   100 

CD14
+
CD16

+
 monocytes 99.6   99 

CD14
dim

CD16
+
 monocytes 100   99.4 

CD1c
+
 cDCs 98.7   100 

CD141
+
 cDCs 100   100 

CD2
+
 pDCs 99.5   99 

CD2
-
 pDCs 99   99.7 

1006 CD14
+
CD16

-
 monocytes 100   99.8 

CD14
+
CD16

+
 monocytes 98.8   99.5 

CD14
dim

CD16
+
 monocytes 99.8   100 

CD1c
+
 cDCs 100   100 

CD141
+
 cDCs 100   99.7 

CD2
+
 pDCs 100   99.7 

CD2
-
 pDCs 99.6   100 

1014 CD14
+
CD16

-
 monocytes 99.6   100 

CD14
+
CD16

+
 monocytes 98.3   99.1 

CD14
dim

CD16
+
 monocytes 99.8   99.8 

CD1c
+
 cDCs 100   100 

CD141
+
 cDCs 100   100 

CD2
+
 pDCs 99.4   100 

CD2
-
 pDCs 100   100 

1008 CD14
+
CD16

-
 monocytes   100 100 

CD14
+
CD16

+
 monocytes   99.3 98.6 

CD14
dim

CD16
+
 monocytes   99.8 99.2 

CD1c
+
 cDCs   100 100 

CD141
+
 cDCs   99.4 98.4 

CD2
+
 pDCs   96.5 99.6 

CD2
-
 pDCs   99.6 100 

1009 CD14
+
CD16

-
 monocytes   99.9 100 

CD14
+
CD16

+
 monocytes   100 95.5 

CD14
dim

CD16
+
 monocytes   99.6 99.7 

CD1c
+
 cDCs   100 100 

CD141
+
 cDCs   100 99.2 

CD2
+
 pDCs   100 98.9 

CD2
-
 pDCs   100 100 

1010 CD14
+
CD16

-
 monocytes   99.9 100 

CD14
+
CD16

+
 monocytes   98.8 99.8 

CD14
dim

CD16
+
 monocytes   99.3 99.8 

CD1c
+
 cDCs   99.2 100 

CD141
+
 cDCs   100 100 

CD2
+
 pDCs   100 99.2 

CD2
-
 pDCs   99.8 100 
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2008).  PCA three-dimensional scatter plot represented the differential gene expression 

patterns of DC and monocyte subsets.  Three axes represented three principal 

components with a variance of 37%, 16.2% and 7.4%, respectively.  In the PCA, CD1c+ 

cDCs, CD141+ cDCs and CD14+CD16- monocytes clustered independently.  

CD14+CD16+ and CD14dimCD16+ monocytes were grouped closer to each other 

compared to other cell subpopulations. CD2+ and CD2- pDCs also clustered closer 

together compared to the other cell subsets (Figure 10A).  15,671 genes with raw counts 

≥ 30 in at least one sample were identified as highly expressed genes. Hierarchical 

clustering unsupervised analysis was performed to analyze the clustering of different 

monocyte and DC subsets in the steady state using Pearson distance metric and centroid 

linkage rule.  The read counts per million of highly expressed genes were log2 

transformed (LogCPM) and plotted on a heat map.  Four blood DC subsets and three 

monocyte subsets were segregated in independent clusters.  Among three monocyte 

subsets, CD14+CD16+ and CD14dimCD16+ monocytes were closer to each other compared 

with CD14+CD16- monocytes (Figure 10B).  cDC and pDC subsets were segregated into 

two subgroups.  Two subsets of cDCs clustered separately while two subsets of pDCs 

were close to each other (Figure 10B).  This finding further confirmed the result from 

PCA.   

In order to have an overview of similarities of all investigated APC subsets, we 

used a correlation matrix (Pearson correlation) to describe the relationships across all the 

subsets.  Each square represented the correlation between any two APC subsets in the 

steady state (Figure 11).  Correlation analysis led to similar conclusions given by PCA 

and hierarchical clustering analysis.  
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Common and Unique Transcriptional Signatures in Myeloid APC Subsets 
 

As discussed above, monocytes are the circulating precursors of DCs in vivo 

(Auffray et al., 2009).  To understand their relationships on the molecular level, we first 

analyzed the transcriptional signature in monocyte, CD1c+ and CD141+ cDC subsets at 

the steady state.  We identified their common and unique transcripts by overlapping 

highly expressed genes with raw counts ≥ 30 in at least 80%  of donors for each subset 

using a venn diagram (Figure 15A).  8,791 transcripts were found commonly expressed 

in all monocyte and cDC subsets which formed the core gene set of myeloid APCs.  

Subsequently, unique transcripts were identified for each APC subets:  260 transcripts in 

CD14+CD16- monocytes, 37 transcripts in CD14+CD16+ monocytes, 66 transcripts in 

CD14dimCD16+ monocytes, 93 transcripts in CD1c+ cDCs and 432 transcripts in CD141+ 

cDCs.  We further analyzed the top five unique genes with highest expression levels 

(logcpm) in each cell subset.  Significant enrichment of Linc00937 (lincRNA), CLEC4D 

(C-type lectin), March1 (E3 ubiquitin-protein ligase), VNN3 (amidohydrolase) and 

NRG1(neuregulin) was found in CD14+CD16- monocytes (Figure 16B).  We also 

identified uniquely expressed genes in CD14+CD16+ monocytes including RRAD 

(calmodulin binding and GTP binding), OR2B11 (olfactory receptors ), MICALL2 (cell 

adherence; regulates E-cadherin), DNAAF1 ( Cilium-specific), and GNLY (granulysin) 

(Figure 16B).  Top unique transcripts in CD14dimCD16+ monocytes were identified 

comprising RET (Receptor Tyrosine Kinase), FCRL1 (Immunoglobulin superfamily), 

MEG3 (lincRNA), LYPD2 (LY6/PLAUR domain containing 2) and ACY3 (acylase) 

(Figure 16B).  Furthermore, top unique transcripts in CD1c+ cDCs including Fc receptor 

FCER1A, CD1E (antigen presentation; DC maturation), CD2 (LFA-3 receptor), ENHO 

(glucose homestasis), and GRIP1 (Glutamate Receptor-Interacting) (Figure 16B). Finally, 
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we analyzed the top unique transcripts in CD141+ cDCs.  Besides previously identified 

markers XCR1 and CLEC9A (Bachem et al., 2010; Haniffa et al., 2012), we also found 

CADM1 (cell adhesion molecule), IDO1 (indoleamine 2, 3-dioxygenase 1) and CLNK 

(immunoreceptor signaling) to be significantly enriched (Figure 16B). 

 
Common and Unique Transcriptional Signatures in Monocyte Subsets 
 

Next, we wanted to focus on the transcriptional programs in monocyte subsets.  

We first identified the common and unique transcripts for all the monocyte subsets in the 

steady state by overlapping highly expressed genes (same definition as above) for each 

subset using a venn diagram (Figure 16A).  9,437 transcripts constitute the core gene set 

of monocytes which were abundant in all three subsets.  In addition, 563 transcripts were 

identified as unique genes in CD14+CD16- monocytes identified as unique genes for 

CD14+CD16+ and CD14dimCD16+ monocytes, respectively (Figure 16A).  In order to 

capture the most representative features in each monocyte subset, we identified top 10 

unique transcripts with highest abundance (logcpm) for each subset (Figure 16B).  Beside 

previously identified unique markers in myeloid APCs, CD14+CD16- monocytes also 

uniquely expressed high levels of CCR2 (chemokine receptor), ADAM19 (disintergrin 

and metalloprotease-family; DC maturation marker), CES1(carboxylesterase), 

ALOX5AP (Lipoxygenases antivating protein), and STEAP4 (TNFα –induced protein) 

(Figure 16B).  We also identified additional uniquely expressed genes in CD14+CD16+ 

monocytes mainly including LYPD3 (LY6/PLAUR domain containing 3), GFRA2 

(Neurturin Receptor Alpha), and ADRA2B (Adrenergic Receptor) (Figure 16B).  Finally, 

additional top unique transcripts in CD14dimCD16+ monocytes comprised RP11-

1008C21.1 (lincRNA) and other function genes of unknown function (Figure 16B).   





47 

explored different family molecules using GO by which  is widely recognized as the 

premier tool for the functional annotation of molecular aspects of cellular systems 

(Lovering et al., 2008).  We focused on the major biological roles of APCS and analyzed 

the gene expression of pathogen recognition receptors (PRRs) (GO: 0002221), Ag 

processing and presentation (GO: 0019882), inflammasomes (GO: 0044546, GO: 

0072557, GO:0072558, GO:0072559, GO:0097169, GO:1900225, GO:1900226 and 

GO:1900227) and chemotaxis (GO:0006935) in three monocyte subsets.  An ANOVA 

test (FDR=0.05) with Benjamini Hochberg multiple testing correction and a fold change 

≥5x was applied to the selected family molecules.  Among the transcription factors, 

RNASE2, ID1 and CD36 were over-expressed in CD14+CD16- monocytes.  BATF3 and 

E2F1 were over-expressed in CD14dimCD16+ monocytes.  CD14+CD16- monocytes 

showed upregulation of genes including CD1 family molecues, CD36 and FCGR1A 

involved in antigen processing and presentation while there were very few such 

transcripts overexpressed in intermediate and non-classical monocytes.  Among the 

pathogen recognition receptors, CD14+CD16- monocytes were found to over-express 

CD14, CD36, ITGAM (CD11B), and SCARB1 while  DUSP4 and IRAK2 were found to 

be over abundant in CD14+CD16+ monocytes.   CD14+CD16- monocytes and 

CD14dimCD16+ monocytes have comparable numbers of over-expressed chemotaxis 

genes (Figure 17).  The expression of inflammasome genes was found to be similar in 

three monocyte subsets (data not shown).   
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Figure 17. Human blood monocyte subsets show differences in trancriptomic signatures at the 
steady state. Heat maps representing relative gene expression of transcriptional factors, antigen 
processing and presentation, pathogen recognition receptors (PRRs), and chemotaxis.  Paired t-
test (FDR=0.05) with Benjamini Hochberg multiple testing correction plus a 5-fold change.  Each 
gene expression was normalized to the median of all samples from monocytes. 
 
 
Common and Unique Transcriptional Signatures in DC Subsets 
 

The similar analysis approach to that employed above was also used to study DC 

subsets in the steady state.  We investigated their transcriptional features by comparing 

two cDC subsets and two pDC subsets, respectively. 
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Two subsets of cDCs.  We first identified common and unique genes expressed by 

each cDC subset.  The core gene set of cDCs comprised 9,491 transcripts (Figure 18A).  

519 and 690 genes were identified as uniquely expressed genes for CD1c+ and CD141+ 

cDCs, respectively (Figure 18A).  Abundant unique genes in CD1c+ cDCs included 

FCER1A and FCGR2C of Fc receptors, CLEC10A, CD1D (antigen-presenting 

glycoprotein), transcriptional factor ZEB2, SIRPA (ligand of CD47), CD163 

(macrophage-associated antigen), and CD300E (surface protein on myeloid cells). 

Subsequently, we determined top unique transcripts significantly enriched in CD141+ 

cDCs including previously introduced XCR1 and CLEC9A, CADM1 (cell adhesion 

molecule), IDO1 (indoleamine 2, 3-dioxygenase 1), TACSTD2 (an EpCAM-like 

molecule) and DBN1 (drebrin) (Figure 18B).  Furthermore, we addressed the extent of 

differential gene expression between cDC subsets and pDC subsets pre-selected family 

molecules.  We first analyzed the expression of transcription factors (TFs) in two cDC 

subsets.  IRF4, PRDM1 and RNASE2 were highly expressed in CD1c+ cDCs while IRF8 

and BATF3 were found to be over abundant in CD141+ cDCs (Figure 19).  CD1c+ cDCs  

were found to over-express genes related to pathogen recognition except RAB33A and 

MHC class II molecule, HLA-DOB, which were more abundant in CD141+ cDCs.  As for 

inflammasome related molecules, AIM2 was over-expressed in CD141+ cDCs while 

CAPS1 and 5 were highly expressed in CD1c+ cDCs.  Finally, significant enrichment for 

genes related to chemotaxis was found in CD1c+ cDCs (Figure 19). 
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Figure 19. Human blood cDC subsets show different trancriptomic signatures at the steady state. 
Heat maps representing relative gene expression of transcriptional factors, antigen processing and 
presentation, pathogen recognition receptors (PRRs), inflammasomes and chemotaxis.  Paired t-
test (FDR=0.05) with Benjamini Hochberg multiple testing correction plus a 5-fold change.  Each 
gene expression was normalized to the median of all samples from cDCs. 
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Top unique transcripts in CD2+ pDCs mainly included SIGLEC1 (endocytosis), 

ADAM33 (disintegrin family), CD5 (scavenger receptor activity), ALOX5 

(inflammation) and previously introduced CLEC10A.  Finally, top unique transcripts in 

CD2- pDCs were identified including HIST1H2BG (broad antiviral activity), FBXL15 

(ubiquitination mediator), MAP1LC3B2 (ubiquitin-like modifier), and JOSD2 

(deubiquitinating enzyme). 

To summarize, we analyzed transcriptional signatures of monocyte and DC 

subsets using RNA-Seq.  Core gene signatures of myeloid APCs, monocytes, cDCs and 

pDCs were assessed. We also identified top unique genes which represented most 

significant transcriptional features in individual cell subsets. 

 
Transcriptional Responses of Monocyte and DC Subsets to Influenza Vaccination 
Monocyte from the 2010 Apheresis Study 

 
After identifying neutrophils and monocytes as major cellular sources of the 

innate IFN signature in response to influenza vaccination, we wished to understand 

whether distinct monocyte and DC subsets respond differently to influenza vaccination.  

We investigated transcription changes of monocyte and DC subsets at early time points, 

day1 and day 3, after flu vaccination.  To this end, six healthy adult volunteers were 

recruited in the study and were randomly and evenly divided into two groups.  They were 

vaccinated with TIV from 2010-2011 season (Fluzone®) (Table 3) with different H1N1 

and H3N2 strains compared to previous season  at day 0 and received a single body 

volume leukapheresis either at day 1 or day 3 and an additional apheresis at the steady 

state (day 60) (Figure 21). 
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molecules HLA-DRB5 (MHC-II) and HLA-H (MHC-I), C-type lectins CLEC12B and 

CLEC1B, and IL1RAP.  The up-regulated molecules included CAMKK1, IL1B and IFN-

related genes IRF2BPL and ISG15.  Among 53 DEGs in CD2- pDCs on day 1 as 

compared to day 60, GZMH (granzyme H) was found to be up-regulated. Two common 

transcripts were identified including upregulation of MIR17H and downregulation of 

MRPS36 (Figure 28).  On day 3, the numbers of transcripts with changes in pDC subsets 

were both significantly reduced.  Most of these transcripts‟ biological functions still need 

to be annotated (Figure 29). 

To summarize, an interferon signature after influenza vaccination was discovered 

at day 1 in monocytes, CD1c+ DCs and CD2+ pDCs but not in CD141+ DCs.  Most 

transcriptional changes elicited by vaccination were shown in monocytes and CD2+ 

pDCs at day 1. The majority of transcripts with changes caused by vaccination are 

specific for each APC subset 

 
Correlations between Baseline Transcriptional Signatures of APCs and Antibody 

Responses After Influenza Vaccination 
 

Next, we wanted to study the biological significance of transcriptional profiles in 

blood APCs.  We investigated the correlations between baseline transcriptional signatures 

of four blood APC populations and serological responses to influenza vaccination.   

 
Study Design and Sample Selection Criteria 
 
For the 2012 flu study, 26 healthy donors were recruited in the study.  A 5 ml blood draw 

was collected from each individual at day 0 prior to influenza vaccination.  Serum of 

healthy donors was also collected at day 0 and day 28 which is the peak of humoral 
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Table 7. Serologic responses of the 2012 small blood draw study. Virus-specific baseline and day 
28 titers, fold change of each viral strain and best fold change among three strains are listed. 

 

 
Hemagglutination Inhibition (HI) assay and Viral Neutralization (VN) assay were 

conducted at both day 0 and day 28 to measure antibody mediated viral inhibition.  22 

serological parameters were analyzed and summarized (Table 7) including baseline and 

day 28 titers for each viral strain, fold change of day 28 titer divided by day 0 titer for 

each viral strain, maximum fold change (best fold change) among three viral strains and 

the corresponding baseline titer (HI/VN base) from both HI and VN assays.  

Transcriptional profiles of all sorted cell populations at baseline were analyzed using 

RNA-Seq.  To assure sample and data quality, we checked for gene transcripts of lineage 

specific cell surface markers expressed on T, B, and NK cells to identify cellular 

contaminants.  We identified CD141+ cDCs and BDCA2+ pDCs sorts with high 

expression of CD56 and CD3, indicating contamination with NK cells and T cells during 
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011_221_017 Day 0 6 403 40 96 806 80 16 2 2 6 16 7.9 403.2 50.4 403.2 806.3 100.8 50.8 2 2 7.9 50.8

011_221_029 Day 0 25 8 25 157.5 644.8 157.5 6.3 80.6 6.3 8 80.6 100.8 7.9 5 1280 640 160 12.7 80.6 32 7.9 80.6

011_221_030 Day 0 101 806 202 161.6 806 161.6 1.6 1 0.8 101 1.6 403.2 806.3 201.6 1016 806.3 160 2.5 1 0.8 403.2 2.5

011_221_018 Day 0 320 640 13 416 832 208 1.3 1.3 16 13 16 806.3 640 50.4 1280 806.3 127 1.6 1.3 2.5 50.4 2.5

011_221_019 Day 0 32 1280 5 102.4 1664 25 3.2 1.3 5 5 5 50.4 1280 5 403.2 1613 12.6 8 1.3 2.5 50.4 8

011_221_022 Day 0 320 101 5 640 404 101 2 4 20.2 5 20.2 1016 100.8 15.9 2032 403.2 127 2 4 8 15.9 8

011_221_025 Day 0 160 160 6 400 2032 1219 2.5 12.7 203.2 6 203.2 201.6 160 5 1016 2032 4064 5 12.7 812.7 5 812.7

011_221_031 Day 0 6 101 320 24 202 256 4 2 0.8 6 4 10 100.8 160 40 201.6 254 4 2 1.6 10 4

011_221_034 Day 0 20 13 13 320 330.2 131.3 16 25.4 10.1 13 25.4 20 12.6 15.9 806.3 320 254 40.3 25.4 16 20 40.3

011_221_036 Day 0 25 320 160 50 416 256 2 1.3 1.6 25 2 50.4 320 201.6 160 403.2 254 3.2 1.3 1.3 50.4 3.2

011_221_037 Day 0 202 160 80 323.2 640 160 1.6 4 2 160 4 254 160 80 640 640 254 2.5 4 3.2 160 4

011_221_040 Day 0 50 40 5 160 200 50.5 3.2 5 10.1 5 10.1 100.8 40 5 508 201.6 63.5 5 5 12.7 5 12.7

011_221_020 Day 0 202 320 63 404 416 50.4 2 1.3 0.8 202 2 160 320 50.4 1280 403.2 63.5 8 1.3 1.3 160 8

011_221_046 Day 0 160 202 25 512 262.6 100 3.2 1.3 4 25 4 403.2 508 127 1613 320 403.2 4 0.6 3.2 403.2 4

011_221_047 Day 0 13 25 5 52 62.5 5 4 2.5 1 13 4 50.4 10 5 100.8 25.2 10 2 2.5 2 10 2.5

011_221_048 Day 0 5 8 5 508 101.6 25 101.6 12.7 5 5 101.6 15.9 5 20 3225 50.4 127 203.2 10.1 6.3 15.9 203.2

011_221_049 Day 0 254 202 40 254 202 52 1 1 1.3 40 1.3 1280 127 127 1613 160 201.6 1.3 1.3 1.6 127 1.6

011_221_050 Day 0 8 8 32 512 406.4 51.2 64 50.8 1.6 8 64 40 10 100.8 3225 40 320 80.6 4 3.2 40 80.6

011_221_051 Day 0 32 5 5 64 160 5 2 32 1 5 32 63.5 6.3 10 254 160 63.5 4 25.4 6.3 6.3 25.4

011_221_052 Day 0 5 50 5 20 100 80 4 2 16 5 16 5 40 20 160 80 508 32 2 25.4 5 32

011_221_053 Day 0 5 5 5 5 5 5 1 1 1 5 1 6.3 7.9 6.3 25.2 15.9 7.9 4 2 1.3 6.3 4

011_221_055 Day 0 20 10 5 160 320 80 8 32 16 10 32 80 10 15.9 1280 403.2 160 16 40.3 10.1 10 40.3

011_221_056 Day 0 32 10 5 256 254 5 8 25.4 1 10 25.4 201.6 20 5 1280 50.4 80 6.3 2.5 16 5 16

011_221_057 Day 0 20 40 25 64 52 40 3.2 1.3 1.6 20 3.2 80 25.2 63.5 320 31.7 127 4 1.3 2 80 4

011_221_058 Day 0 20 5 5 2032 1280 5 101.6 256 1 5 256 50.4 5 5 5120 1016 7.9 101.6 203.2 1.6 5 203.2

011_221_024 Day 0 320 5 5 320 201.5 5 1 40.3 1 5 40.3 806.3 5 5 1280 201.6 5 1.6 40.3 1 5 40.3
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the sort (data not shown).  Therefore, we took a strategy to pre-filter the transcripts for 

downstream analysis. 

 
 
Gene Selection Criteria 
 

The RNA purity of samples with low cell counts might be impacted by cellular 

contaminants during the sorts and DNA contamination.  To overcome this challenge, we 

focused on analyzing genes of  CD14+ monocytes, CD1c+ and C141+ cDCs, and BDCA2+ 

pDCs that were expressed in 2010 apheresis sorted cell subsets (only day 60 steady state 

samples).  If a transcript had a count ≥ 30 in ≥80% of donors for an individual cell 

population, this gene was considered to be present.   

For CD14+ monocytes, there were 9,667 genes identified as present genes from 

2010 apheresis sorted cells and 8,979 genes were identified as present from 2012 small 

Apheresis (2010) Small blood draw 
(2012) 

Apheresis (2010) Small blood draw (2012) 

 
Figure 32. Commonly expressed genes of CD14+ monocytes sorted from 2010 apheresis and 
2012 small blood draws.  Line graphs showed genes present in CD14+ monocytes for each year 
of study.  Common genes are at the intersection venn diagram. 
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blood draw sorted cells.  We overlapped the gene sets from the two studies by a venn 

diagram and found 5,879 common genes for CD14+ monocytes ( 

Figure 32).  The same strategy was applied to other APC subsets.  9,133 common 

transcripts were identified for CD1c+ cDCs; 715 common transcripts were identified for 

CD141+ cDCs; and 7,508 transcripts were identified for BDCA2+ pDCs.  The 

downstream analysis only focused on those common transcripts for each cell subset. 

 
Early Molecular Signatures Correlate with Antibody Responses 
 

To identify early molecular signatures corresponding with antibody response, we 

performed correlation analysis between gene expressions at baseline and all 22 

serological parameters for each APC subset.  Spearman correlation was used to calculate 

coefficient factor between each transcript and serological parameter.  P-value, correlation 

(R) and R2 were calculated.  Transcripts were filtered by requiring raw p-value ≤ 0.05 

and R-square ≥ 0.3 with any serological parameter.  The Number of transcripts passed the 

filter was summarized by each serological parameter for individual APC subset (Figure 

33).   

The largest numbers of transcripts that correlated with the serology was found in 

BDCA2+ pDCs.  There were about 150 transcripts that correlated with fold change (day 

28/ day 0) of B strain using VN assay (Fold _B_VN) in BDCA2+ pDCs.  Fold change of 

titers in B stains (Fold_B_VN) was also found to be the top serological parameter in 

CD14+ monocytes and CD1c+ cDCs as compared to the fold changes in other strains.  

Therefore, we focused on investigating these transcripts that correlated with 

“Fold_B_VN” in each APC subset. 
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Table 9. Top genes ranked by correlation (R) with antibody response in CD1c+ cDCs. 
 

 
 
 

Table 10. Top genes ranked by correlation (R) with antibody response in CD141+ cDCs. 
 

 

SYMBOL TYPE pValue
Spearman 
Correlation Rsquare

COPG1 protein_coding 9.465E-05 0.69 0.48
INPP5D protein_coding 0.000117 0.68 0.47
ADD1 protein_coding 0.0002811 0.66 0.43
CTSB protein_coding 0.0003132 0.65 0.42
SPPL3 protein_coding 0.0003552 0.65 0.42
GABARAP protein_coding 0.00045 0.64 0.41
CD300A protein_coding 0.0005122 0.63 0.4
IMP4 protein_coding 0.0007139 0.62 0.39
ITGAL protein_coding 0.0008789 0.61 0.38
FAM120AOS protein_coding 0.0015251 0.59 0.35
TLN1 protein_coding 0.0017293 0.58 0.34
FBXW2 protein_coding 0.0017977 0.58 0.34
RABGAP1 protein_coding 0.0018257 0.58 0.34
TBC1D5 protein_coding 0.0018685 0.58 0.34
ARFGAP2 protein_coding 0.0018685 0.58 0.34
PIK3CD protein_coding 0.0020953 0.58 0.33
GPI protein_coding 0.0022256 0.57 0.33
POLR2L protein_coding 0.0023628 0.57 0.32
UBXN1 protein_coding 0.0025633 0.57 0.32
RXRB protein_coding 0.0026591 0.56 0.32
ACTR1A protein_coding 0.0027781 0.56 0.32
MLF2 protein_coding 0.0029865 0.56 0.31
SAE1 protein_coding 0.0030081 0.56 0.31
SERINC3 protein_coding 0.0031179 0.56 0.31
PHC2 protein_coding 0.0031179 0.56 0.31
KIAA0232 protein_coding 0.0031628 0.56 0.31
HIP1 protein_coding 0.0034437 0.55 0.3
WDR73 protein_coding 0.003468 0.55 0.3
NRBP1 protein_coding 0.0035419 0.55 0.3
TBL1X protein_coding 0.0035919 0.55 0.3
RIN3 protein_coding 0.0035919 0.55 0.3
TRIM36 protein_coding 0.0036937 -0.55 0.3
HACE1 protein_coding 0.003798 -0.55 0.3
GLTSCR1L protein_coding 0.0028393 -0.56 0.32
RAB40B protein_coding 0.0030298 -0.56 0.31
PAQR3 protein_coding 0.0021596 -0.57 0.33
PAFAH2 protein_coding 0.0020953 -0.58 0.33
MRPL47 protein_coding 0.0008789 -0.61 0.38

SYMBOL TYPE With pValue
Spearman 
Correlation Rsquare

PSMA2.2 protein_coding Fold_B_VN 0.0020314 0.66 0.44
EEF2 protein_coding Fold_B_VN 0.0044641 0.62 0.39
SRRM2 protein_coding Fold_B_VN 0.0070343 0.6 0.36
PCNP protein_coding Fold_B_VN 0.0104045 0.57 0.33
MACF1 protein_coding Fold_B_VN 0.0122706 0.56 0.32
GNB1 protein_coding Fold_B_VN 0.0143966 -0.55 0.3
SECISBP2 protein_coding Fold_B_VN 0.0033 -0.64 0.41
DOCK5 protein_coding Fold_B_VN 0.0012223 -0.68 0.47
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Table 11. Top genes ranked by correlation (R) with antibody response in BDCA2+ pDCs. 
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Among the transcripts correlated with “Fold_B_VN” in CD14+ monocytes, there 

were MHC class I molecule HLA-B and proteasome PSMA1that were involved in MHC 

class I antigen process pathway.  Clathrin, CLTA, also had a positive correlation with the 

fold change of B strain which mediated endocytosis by forming clathrin-coated vesicles.  

Fas (TNFRSF6) associated factor 1, FAF1, negatively correlated and it was identified as 

a negative regulator of an NFKB signaling pathway (Table 8).  The same analytical 

approach was applied to study CD1c+ cDCs.  Positive correlation included immune-

related genes involved in inflammation, activation of leukocytes, adhesion of DCs and 

movement of neutrophils such as CD300A, INPP5D, ITGAL, PIK3CD and TLN1 (Table 

9).  For CD141+ cDCs, many genes function still needed to be annotated (Table 10).  

 
 

Figure 34. IPA network analysis of transcripts correlated with “Fold_B_VN”  in BDCA2+ pDCs. 
Top network function involves immune-cell trafficking. 
 

Finally, we investigated the transcripts that correlated with “Fold_B_VN” in 

BDCA2+ pDCs (Table 11).  IPA network analysis was applied and the top functions of 

the correlated transcripts were identified as cell movement and immune- cell trafficking 

(Figure 34).   Although type I IFN did not show direct correlation relationship with 
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investigated serological parameter, IFNAR and IFNA has been shown as the central 

nodes for FCER1A, PSMB8, RNF213 and LGMN (Figure 34).   

To interpret our gene expression data on a global view, we employed Gene Set 

Enrichment Analysis (GSEA) which is a powerful analytical method to evaluate 

cumulative changes in the expression of gene sets defined based on prior biological 

knowledge.  We pre-ranked our gene list based on the Spearman correlation R with  

“Fold_B_VN” for each APC subset and calculated a normalized enrichment score (NES) 

for each gene set adopted from individual blood modules.  The NES reflected how often 

members of that gene set occur at the top (positive correlation) or bottom (negative 

correlation) of the pre-ranked gene list.  Then we created a module map based on the 

NES for all APC subsets.  We observed that many inflammation-related modules 

including M3.2, M4.6, M5.1 and M5.7 were enriched in pre-ranked gene list in CD14+ 

monocytes.  It implies that transcripts with high ranking of correlation R overlapped with 

genes from inflammation modules.  Monocyte module M4.14 was enriched in CD14+ 

monocytes which confirmed our analysis strategy.  Additionally, there were also modules 

related to mitochondrial respiration/stress and protein synthesis were enriched in CD14+ 

monocytes.  In CD1c+ cDCs, inflammation module M7.1 and interferon module M5.12 

were enriched from our pre-ranked data set.  In BDCA2+ pDCs, inflammation module 

M5.7 and a few modules related to mitochondrial respiration/stress and protein synthesis 

were also enriched (Figure 35). 
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Figure 35. GSEA of transcripts correlated with Fold_B_VN using blood module gene sets.  
Transcripts were pre-ranked based on correlation R with Fold_B_VN for each APC subsets. Each 
gene set comprised genes from one blood module.  GSEA was performed and the module map 
was generated using NES.  Red dots represented positive NES and blue dots represented negative 
NES. 
 

To summarize, we analyzed the correlation between gene expression of APC 

subsets at baseline and all available serological information.  We identified large number 

of transcripts correlated with fold change of titers against B strain using VN assay across 

three investigated APC subsets.  GSEA analysis showed inflammation-related modules 

were enriched in CD14+ monocytes. An IFN-related module M5.12 was enriched in 

CD1c+ cDCs and one inflammation module was enriched in CD1c+ cDCs and BDCA2+ 

pDCs, respectively. 
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CHAPTER FIVE 
 

Discussion 
 
 

Vaccination, the most successful preventive measure against infectious diseases, 

relies on the presentation of vaccine antigens to T and B cells by antigen-presenting cells 

(APCs). This process leads to the generation of protective immune responses mediated by 

antibodies produced by B cells and by cytotoxic molecules (granzyme and perforin) 

produced by CD8+ T cells. Many vaccines induce protective immunity via antibodies. 

However, not everybody can mount protective immune response to vaccines, as for 

example to influenza vaccine. The reasons underlying human variation in response to 

vaccination remain unclear. Systems biology approaches have been used to determine 

signatures that can be used to predict vaccine-induced immunity in humans, but whether 

there is a 'universal signature' that can be used to predict antibody responses to any 

vaccine is unknown. 

Herein, we have applied microarray and RNAseq technologies to profile the 

transcripts of whole blood and blood cells subsets in order to understand their potential 

links with vaccine response. We have first established the global signatures of antibody 

responses to influenza vaccine and differentiated those from response to pneumococcal 

vaccine. We have then analyzed in-depth the transcriptional landscape of APCs in the 

context of influenza vaccination and finally, attempted to assess potential correlations 

between the status of APCs at baseline and vaccine responses. In the course of these 

studies, we have employed two technologies to assess the transcriptome, which we will 

discuss later. 
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Transcriptional Responses to Vaccination in Blood and Major Leukocytes  
 

Our studies comparing transcriptional profiles in the blood in response to 

vaccination revealed that both seasonal influenza and pneumococcal vaccines induce 

rapid transcriptional changes already at day 1, consistent with the activation of innate 

immunity. Indeed, kinetic studies showed early innate immune responses already within 

hours after influenza vaccination (Obermoser et al., 2013).  The two vaccines elicited 

quantitatively and qualitatively different transcriptional responses. Thus, in the influenza 

vaccine group the profiles were dominated by IFN-inducible transcripts whereas in the 

pneumococcal vaccine group they were mainly inflammation-related.  IFN signature in 

vaccination is important since it is has been suggested to be linked with vaccination 

outcomes.  Indeed, Bucasas at al., observed up-regulation of interferon signaling genes 

like STAT1 and IRF9 in whole blood on day 1 after influenza vaccination which also 

correlated to the magnitude of serological response (Bucasas et al., 2011).  In another 

study, a signature of IFN-related genes in PBMC on day 3 after flu vaccination was 

reported to correlate with serological response (Nakaya et al., 2011).  In another project 

in human immunology project consortium (HIPC) program, Dr. Ramillo‟s group 

published that IFN signature was detected 7 days in the blood after the administration of 

live attenuated influenza vaccine (LAIV) in children (<5 years old) during 2011-2012 flu 

season. In their study, they also identified an IFN signature at day 1 in children who 

received TIV (inactivated vaccine) injection which was in line with our observation (Cao 

et al., 2014).  2011-2012 seasonal influenza vaccine consists of the same virus strains as 

in the 2010-2011 season, where we conducted our 2010 apheresis sorted APC studies.  

There are significant kinetic differences in IFN response in live vaccine and inactivated 

vaccine groups.  In the live vaccine group, the virus needs time to establish replication in 
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the nasal mucosa which causes, probably with other factors, the delayed IFN signature 

observed in the blood.  Thus, our results corroborate earlier studies.  Furthermore, we 

have identified neutrophils and monocytes as the main cellular source of the day 1 

influenza vaccine interferon signature in the blood. 

 
Transcriptional Responses to Vaccination in Apheresis Sorted DC and Monocyte Subsets  
 

After analyzing immune responses to vaccination from the blood and major 

leukocytes, we wished to expand our study to the subsets of monocytes and DCs.  DCs 

are at a central position of initiating and regulating immune responses (Banchereau and 

Steinman, 1998). Although several subsets of human DCs have been identified, their 

roles in response to influenza vaccination have not been fully elucidated.  Similarly, 

monocytes, the circulating precursors of DCs, have been classified into 3 major subsets 

but whether distinct monocyte subsets possess different functional specializations still 

remains a question. Due to the low frequency of CD141+ cDCs in the circulation, 

previous studies have characterized transcriptional profiles of blood cDCs by either 

focusing on CD1c+ cDCs only or only using microarrays (Segura et al., 2013; 

Watchmaker et al., 2014).  Leukapheresis provided us with the opportunity to collect 

large amounts of white blood cells and to sort multiple cell populations from an 

individual.  Monocytes are considered as a systemic reservoir of myeloid precursors for 

the regeneration of tissue macrophages and DCs (Geissmann et al., 2003; Randolph et al., 

1999; Serbina and Pamer, 2006).  Whole-genome array analysis represents an approach 

to better understand the functions of monocytes based on sorted subsets, using mice or 

other model systems (Auffray et al., 2007).  Here, with the benefits of advancing 
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technology, we used RNA-Seq (Wold and Myers, 2008) to characterize monocytes and 

DCs in the steady state and early time points after influenza vaccination. 

We systematically compared transcriptional profiles of the three sorted monocyte 

subsets and two DC subsets, CD1c+ and CD141+ DCs.  We identified common and 

unique transcripts of all five myeloid APC subsets, or among monocyte or DC subsets.  

For example, in the analysis of the three monocyte subsets, we found CLEC4D and 

CCR2 were uniquely expressed in CD14+CD16- monocytes which is consistent with the 

results in previous studies (Wong et al., 2011).  CCR2, the receptor for monocyte 

chemoattractant protein-1 (MCP-1), mediates monocyte recruitment into inflamed tissues 

and its expression is upregulated by proinflammatory cytokines such as TNF (Sierra-

Filardi et al., 2014).  In addition, we also observed other unique genes enriched in 

CD14+CD16- monocytes including a unique expression of long non-coding (LINC) RNA 

LINC00937 in CD14+CD16- monocytes that was not detected by microarray (Wong et 

al., 2011).  In CD14+CD16+ monocytes, uniquely expressed genes included LYPD3 (also 

known as C4.4A), which belongs to the Ly6 family.  LYPD3 supports cell migration by 

binding laminins 1 and 5 (Paret et al., 2005).   Another unique transcript found in 

CD14+CD16+ monocytes was GNLY, which is known as granulysin.  Granulysin 

primarily was found to be expressed in cytotoxic T lymphocytes and NK cells, 

coexpressed in cytolytic granules with perforin and granzymes, and released via receptor-

mediated granule exocytosis involved in killing tumors and microbes (Hanson et al., 

1999; Kaspar et al., 2001; Stenger et al., 1998).  Additionally, using recombinant 

granulysin, a more recent study demonstrated that this cytolytic feature is driven by its 9 

kDa isoform whereas its 15 kDa isoform activates immature monocyte-derived DCs to 

differentiate into mature phenotype (Clayberger et al., 2012).  Our result indicated that 
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CD14+CD16+ monocytes might be another cellular source of granulysin in vivo and/or 

they might be directly involved in DC differentiation.  Recent work revealed that 

CD14dimCD16+ monocytes are bona fide monocytes responding to a broad range of 

microbes by secreting proinflammatory cytokines TNFα, IL-1β, and CCL3 (Cros et al., 

2010; Wong et al., 2011).  Our transcriptome analysis revealed that CD14+CD16- 

overexpressed RNASE2, CD36, and TFEC, which are also over-expressed in CD1c+ cDC 

compared to CD141+ cDCs. These results suggest a relationship of CD1c+ cDCs and 

CD14+CD16- monocytes.  In our analysis of family molecules, CD14+CD16+ monocytes 

presented an intermediate phenotype between the classical and non-classical monocytes, 

which is in line with other molecular studies (Wong et al., 2011; Zawada et al., 2011).   

Transcriptional programs of dendritic cell subsets have been investigated in the 

mouse system, human monocyte-derived DCs in vitro, and in human using microarray 

analysis (Banchereau et al., 2014; Miller et al., 2012; Segura et al., 2013).  Our study 

used RNA-Seq to further analyze transcriptional profiles of all subsets of DCs found in 

human blood gathering more information from the transcriptome.  Unique transcripts of 

CD1c+ DCs included FCER1A which was also identified to be expressed in CD1c+ DCs 

and facilitated IgE clearance as reported by another study (Greer et al., 2014).  In 

addition, unique transcripts of CD1c+ DCs included FCGR2C (Fcγ receptor IIC), 

scavenger receptor cystein-rich superfamily member CD163, and CD300e which 

appoints CD1c+ DCs  with a phagocytic feature (Fabriek et al., 2005; Gasiorowski et al., 

2013; Guilliams et al., 2014).  Transcription factor ZEB2, identified as a unique transcript 

in CD1c+ DCs in our study has been previously reported to facilitate Langerhans cell 

(LC) mobilization associating with N-cadherin (Konradi et al., 2014).  In CD141+ DCs, 

unique transcripts in our results are consistent with previously identified makers, XCR1, 
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CLEC9A and CADM1, accepted as common CD141+ DC markers across species 

(Bachem et al., 2010; Dutertre et al., 2014; Jongbloed et al., 2010).  We also identified 

additional unique transcripts including ECE1 and TACSTD2.  ECE1 was previously 

reported to be associated with transforming growth factor-beta (TGF-β1) signaling in 

hepatic stellate cells after liver injury (Khimji et al., 2008).  TACSTD, an EpCAM-Like 

Molecule, is a marker for human TGF-β1-dependent epidermal LCs during development 

(Eisenwort et al., 2011).  In the analysis of pre-selected family molecules, we found that 

the two cDC subsets showed very different expression patterns of transcription factors in 

the steady state.  In addition to BATF3 and IRF8, which were previously implicated in 

CD141+ cDCs development (Helft et al., 2010), our analysis revealed conserved 

expression of IRF4, PRDM1, RNASE2 in CD1c+ cDCs.  In mouse CD11b+ DCs, the 

counterpart of human CD1c+ cDC, IRF4 but not IRF8, plays a key role in promoting the 

expression of genes encoding for MHC class II pathway components and antigen 

processing and presentation molecules (Vander Lugt et al., 2014).  PRDM1 (encoding 

Blimp-1) has been identified to have a selective role in the specification of human and 

mouse intestinal DC subsets.  CD103 (integrin αE) and Sirpα (CD172a; a receptor for the 

signal-regulatory protein CD47) have been identified as conserved markers that defined 

three major subpopulations of conventional CD11c+ DCs in the human gut mucosa 

(Watchmaker et al., 2014).  PRDM1 was found to be highly expressed in both human 

CD103+Sirpα+ DCs and mouse CD103+CD11b+ DCs (Watchmaker et al., 2014); 

however, its functional role in dendritic cells still needs further investigation.  RNASE2 

(RNase A Family, 2) encodes eosinophil-derived neurotoxin (EDN), which is predicted 

to act as a transcription factor due to the presence of promiscuous InterPro DNA-binding 

domains (Hunter et al., 2009).  RNASE2 was also described to possess antiviral 
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functions.  Furthermore, RNASE2 was reported to be selectively chemotactic for 

dendritic cells but not for other type of leukocytes (Yang et al., 2003).  Our result 

suggested that RNASE2 can be used as a marker to differentiate CD1c+ from CD141+ 

blood cDCs.  High expression of RNASE2 in CD1c+ cDCs suggests a possible role in 

antiviral immunity.  By comparing expression levels of antigen presentation genes and 

PRRs, our results also indicate that CD1c+ cDCs are more proficient at antigen 

processing and presentation, and recognizing a wide range of pathogens.  We also 

investigated the difference of transcriptional profiles between CD2+ and CD2- pDC 

subsets in the steady state.   CD5 was found to be over-expressed in CD2+ pDCs.  CD5 is 

thus a potential marker to divide CD2+ pDCs into CD2+CD5+ and CD2+CD5- pDC 

subsets.  CD2+CD5+ pDCs show a more mature phenotype with increased expression of 

CD80 and CD86 and therefore are more prone to participate in antigen presenting cell 

functions (Zhang et al., 2013).  We also observed the unique expression of CLEC10A in 

CD2+ pDCs.  Three unique transcripts in CD2- pDCs, FBXL15, MAP1LC3B2 and 

JOSD2, are involved in ubiquitination (Cui et al., 2011; Seki et al., 2013). 

To summarize, our in-depth studies of DC and monocyte subset transcriptional 

profiles using RNAseq provide a resource by cataloging differentially expressed genes.  

These differences are key to the functional specialization of these cell subsets. 

Next, we investigated the early immune responses triggered by influenza 

vaccination in various APC subsets.  In the 2010-2011 flu season, we expanded our study 

and investigated transcriptional changes of all subsets at day 1 and day 3 after vaccination 

in six healthy donors.  An interferon signature after influenza vaccination was found at 

day 1 in monocytes subsets, CD1c+ DCs and CD2+ pDCs but not in CD141+ DCs. This 

result confirmed our previous observation in monocytes isolated from healthy donors one 
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day after vaccination (Obermoser et al., 2013).  Furthermore, it also aligned with a recent 

work published by our group that CD14+ monocytes, blood CD1c+ but not CD141+ DCs 

responded to in vitro stimulation of TIV with an IFN signature (Banchereau et al., 2014).  

Moreover, we compared transcriptional changes at day 1 and day 3 for each monocyte 

subset in response to influenza vaccination.  Most transcriptional changes were found in 

CD14+CD16- and CD14+CD16+ monocytes on day 1.  Chemokines are involved in 

various processes of monocyte recruitment including monocyte arrest and migration.  

CXCL3 (also called macrophage inflammatory protein-2-beta (MIP2b) acts as an arrest 

chemokine for monocyte adhesion on vascular cell adhesion molecule (VCAM)-1 under 

flow in the presence of P-selectin (Smith et al., 2005).  The observed down-regulation of 

CXCL3 and CCL20 in our study may reflect that CD14+CD16- monocytes are released 

from blood, migrating to the tissue.  As discussed earlier, transcription factor analysis 

showed a closer relationship between CD14+CD16- monocytes and CD1c+ cDCs.  Down-

regulation of CLEC10A in CD14+CD16- monocytes at day 1 may indicate that this 

monocyte subset is involved in DC differentiation after vaccination.  For CD14+CD16+ 

monocytes, we observed the up-regulation of ITGB7 (Integrin, Beta 7), IL31-RA, HLA-

DOA and Fcγ receptor I at day 1.  ITGB7 was identified as a marker for moDC 

maturation in a previous study (Aguilera-Montilla et al., 2013).  IL31-RA is expressed in 

monocytes and macrophages and can bind IL-31 to induce pro-inflammatory effects 

(Kasraie et al., 2010).  In human monocytes, FcγRI targets antigens to the MHC class II-

rich late endosomes and leads to enhanced antigen processing and presentation to CD4+ T 

cells (Guilliams et al., 2014).  CD14+CD16+ monocytes expressed high levels of MHC-II 

molecules in the steady state (Wong et al., 2011).  Along with up-regulation of HLA-

DOA, CD14+CD16+ monocytes probably present flu antigen via the MHC-class II 
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pathway.  Besides up-regulated ISGs, biological functions of many transcripts that are 

changing in response to flu vaccination in CD14dimCD16+ monocytes are not yet 

annotated.   We also identified the common and unique transcripts with changes elicited 

by vaccination in monocyte subsets on day 1.  The majority of transcripts with changes 

were unique to different monocyte subsets.  Only one transcript, ANKRD22, was found 

to be upregulated in all three monocyte subsets.  ANKRDD22 was identified as an IFNγ-

inducible gene in macrophages (Venner et al., 2014).  It might be a key molecule 

involved in IFN response to vaccination in monocytes.  STAT 1 was found to be 

upregulated in both CD16+ monocyte subsets.  STAT1 and STAT2 proteins were 

identified as critical mediators of type I and type III IFN signaling that are essential 

components of the cellular antiviral response and adaptive immunity (Au-Yeung et al., 

2013).  

In cDCs, we discovered there were more genes with transcriptional changes 

elicited by influenza vaccination at day 1 in CD1c+ while CD141+ DC showed more 

differentially expressed genes on day 3 compared to the steady state.  In CD1c+ cDCs at 

day 1, components of the complement system (C1QA and C1QB), E3 Ubiquitin-Protein 

Ligase (TRIM69), chemokine and chemokine receptors (CXCL9 and CCR1) and 

cytokines (IL-15 and IL-15RA) were all up-regulated.  Our result showed the increased 

migration potentials of CD1c+ cDCs after the vaccination.   A previous study showed that 

IL-15Rα expression on mouse DCs is critical for NK cell activation via IL-15 trans-

presentation to IL-2Rβ / γc receptors on NK cells (Koka et al., 2004).  Our results may 

implicate CD1c+ cDCs involvement in NK cell activation upon influenza vaccination.  

We also observed the up-regulation of IDO1 and IDO2 (Indoleamine 2,3-Dioxygenase) at 

day 1.  IDO1 is a DC maturation marker and is also related to T cell stimulatory activity 
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(Aguilera-Montilla et al., 2013).  In CD141+ cDCs at day 1, the inflammatory marker 

tumor necrosis factor (TNF) was up-regulated, which may reflect that CD141+ cDCs 

initiated inflammatory responses to influenza vaccination.  In addition, there are many 

other genes with transcriptional changes without annotation such as “RP11” family 

genes.  There were only two transcripts, CTD-2653D5 and NPM1P24, upregulated in 

both cDC subsets after vaccination at day 1.  However, their functions have not been 

described.  On day 3, transcription factor CEBPB was up-regulated in CD1c+ cDCs.  

Previous studies showed that  CEBPB regulates (trans-) differentiation and determines 

myeloid cell fate in the mouse (Stoilova et al., 2013).  For CD141+ cDCs, TNF, IRF4 and 

GBP4 were found to be up-regulated.  IRF4 has been identified to have a regulatory role 

in DCs by which it modulates IL-10 and IL-33 cytokine production to specifically 

promote Th2 differentiation and inflammation (Williams et al., 2013). Our result may 

indicate that CD141+ cDCs are prone to induce Th2 responses at day 3 in response to 

vaccination. This is in line with our recent publication demonstrating that CD141+ DCs 

but not CD1c+ DCs induce Th2 response via OX40L expression after LAIV stimulation 

(Yu et al., 2014).   

CD2+ pDCs show the biggest number of transcripts changing in response to 

influenza vaccination on day 1 within all investigated APC subsets.  IFN-related genes 

(IRF2BPL and ISG15) and pro-inflammatory cytokine (IL-1β) were over-abundant but 

most transcripts were down-regulated.  Down-regulated genes included C-type lectins 

(CLEC12B and CLEC1B), as well as MHC-I (HLA-H) and MHC-II molecules (HLA-

DRB5), which may indicate that CD2+ pDCs migrate to the tissue for antigen detection 

and presentation.  CD2+ pDCs seem to have more potential in antigen presentation with 

higher expression of costimulatory molecule CD80 upon activation as compared to CD2- 
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pDCs (Matsui et al., 2009).  On the other hand, we observed the upregulation of 

granzyme H (GZMH) in CD2- pDCs.  Although no literature has focused on roles of 

GZMH in pDCs, our observation may provide another candidate to further study the 

killing mechanism of pDCs (Matsui et al., 2009).  Two common transcripts with changes 

on day 1 were found in pDC subsets: upregulation of MIR17HG and downregulation of 

MRPS36.  MIR17HG, affiliated with the class of lincRNAs, is a host gene for the 

MIR17-92 cluster comprising at least six microRNAs which may be involved in cell 

proliferation and differentiation (Park et al., 2014).  On day 3, the numbers of transcripts 

changing in response to influenza vaccination were significantly reduced. 

To summarize, our study provided new insights by defining the response of blood 

monocyte and DC subsets during the early immune responses to influenza vaccination in 

vivo.  We were able to sort many rare APC cell populations from multiple time points 

post vaccination from healthy human subjects.  However, we were limited in the numbers 

of healthy subjects that we were able to recruit in terms of the cost, timeline and logistics.  

Further validation of our results is needed, for example by investigating a larger cohort of 

healthy donors or using humanized mouse models (Yu et al., 2013).  

 
Correlation between Baseline Signatures of APCs and Serologic Response 

 
Finally, we wanted to address the question if serological response to influenza 

vaccination correlates with baseline transcriptional profiles in blood APCs.  In order to 

scale up the numbers of donors needed for such a study, we used small blood draws (~ 5 

mL of whole blood/ 5 M PBMC), instead of bead enriched apheresis sample like in the 

aforementioned studies. Because of technical challenges in sorting small cell numbers as 
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discussed in the results section, we focused our analysis only on genes present both in the 

small blood draw and the apheresis study.   

Next, we investigated baseline molecular signatures that correlated with later 

antibody responses.  The classical way of analyzing serology data is to define the high 

and low responders using the maximum fold change of titers among three viral strains as 

proposed by the FDA standard. The FDA defined seroconversion as an HAI titer of 1:40 

or more and a minimum 4-fold increase of antibody titer after vaccination (Food and 

Drug Administration, 2007). Alternatively, the highest titer fold change, irrespective of 

strain, can be investigated (Nakaya et al., 2011).  We took another approach by 

correlating all transcripts that were common with apheresis sorted APCs with all 

available serology information.  In this way, we were able to determine if baseline 

transcriptional signatures correlated well with response to an individual viral strain in the 

vaccine. 

Our analysis strategy helped us to identify fold change of antibody titers against 

the B influenza virus vaccine strain (as detected by viral neutralization assay) as the top 

serological parameter correlating with the highest numbers of transcripts at baseline. One 

possible explanation for this is that the 2012 influenza vaccine consists of 

B/Texas/6/2011 (a /Wisconsin/1/2010-like virus) which is a relatively novel vaccine 

strain regarding the formulation of influenza vaccines over the past ten years.  The H1N1 

and H3N2 viral strains have been included in the previous years.  Indeed, most donors in 

our study did not have protective antibody titers (1:40) at baseline for the B strain, but 

many had titers of 1:40 or higher for the H1N1 and H3N2 strain. It is a well-known 

phenomenon that donors with pre-existing antibody titers yield a smaller fold-change in 

antibody titers in response to vaccination compared to subjects without pre-existing 
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antibody titers (“ceiling effect”). Thus in our study donors showed a higher magnitude of 

antibody response to vaccination in response to B strain compared to H1N1 and H3N2 

vaccine strain. Consequently, the dynamic range of serological response was highest in 

response to B strain, and provided us the opportunity for detailed correlation analysis 

between baseline transcriptional signatures of APCs and fold change of titers against B 

strain detected by VN assay. 

We determined that BDCA2+ pDCs showed the largest number of correlates.  

FAF1 is a Fas (TNFRSF6) associated factor is a negative regulator of an NFKB signaling 

pathway (Kinoshita et al., 2006).  FAF1 showed negative correlation with “Fold_B_VN” 

in CD14+ monocytes and this implied that donors with an inflammation signature at 

baseline can mount a bigger antibody response to vaccination with the B strain.  In 

CD1c+ cDCs, we identified genes correlating with the B strain antibody response were 

involved in several biological functions including inflammation and neutrophil 

movement.  TLN1 along with FERMT3 were identified to be required for integrin 

activation.  TLN1 is necessary for inducing LFA-1 extension which corresponds to 

intermediate affinity and induces neutrophils rolling (Lefort et al., 2012).  However, its 

functional role in dendritic cells still needs to be investigated.  CD141+ cDCs had very 

few common genes with apheresis sorted DCs and also few genes correlated with 

serological parameters.  The correlated transcripts from BDCA2+ pDCs were involved in 

immune-cell trafficking.  pDCs are well known type I IFN secreting cells which plays an 

important role in protecting against viral infection (Gilliet et al., 2008; Mathan et al., 

2013).  Our result did not show a direct correlation of IFN genes with serology, but some 

interferon-inducible genes were positively correlated.  Finally, we combined GSEA and 

modular analysis to interpret our data.  Many inflammation and mitochondria annotated 
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modules in CD14+ monocytes correlated with fold change of titers against B strain.  

Besides the inflammation module, CD1c+ cDCs also showed an IFN module correlating 

with antibody response to B strain. Interestingly, CD1c+ cDCs were also the main DC 

subset contributing to IFN signature on day 1 after vaccination.  BDCA2+ pDCs showed 

positive correlation of both inflammation and mitochondria modules. Thus, our 

exploratory proof-of-concept analysis suggests that transcriptional profiling of blood 

APCs might offer prediction of immune response to vaccination. These findings will 

need to be validated in large-scale studies.  

Our results also provide a strategy to tailor influenza vaccine adjuvants to impact 

specific APC subsets for better vaccination outcomes.  Monocytes might be a key cell 

population to be considered for targeting since we observed an inflammation signature of 

monocytes at baseline correlating with later serologic response.  We also observed the 

IFN signature in all monocyte subsets at day 1 in response to flu vaccination.  IFN 

signature has been shown previously to be associated with antibody responses (Bucasas 

et al., 2011; Cao et al., 2014; Nakaya et al., 2011).  A previous study has shown that 

CD14dim monocytes patrol and sense virus and nucleic acids via TLR7/8 receptors (Cros 

et al., 2010).  In a non-human primate study, TLR 7/8 and TLR9 ligand induce rapid 

expansion of monocytes, specifically elicit the activation of peripheral DCs, and promote 

the cytokine production correlating with chemokine and type-I IFN-inducible gene 

expression in the blood.  Also injection of CpG-ODN (TLR9) mediated a sustainable 

inflammatory response in the blood (Kwissa et al., 2012).  Targeting TLR7/8 and TLR9 

receptors in monocytes might be an excellent way to induce both inflammation and 

interferon response, both of which are associated with inducing stronger serological 

response to seasonal influenza vaccination. 
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The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most 

effective vaccines available which has been attributed to its capacity to activate multiple 

DC subsets via TLRs 2, 7, 8, and 9, induce a pro-inflammatory cytokine profile, and 

thereby stimulate polyvalent immune responses (Querec et al., 2006).  Dr. Pulendran‟s 

group also showed that immunization of mice with synthetic nanoparticles containing 

antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in 

antigen-specific, neutralizing antibodies compared to immunization with nanoparticles 

containing antigens plus a single TLR ligand. Antibody responses were dependent on 

direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. 

Immunization protected completely against lethal avian and swine influenza virus strains 

in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus 

macaques (Kasturi et al., 2011). 

Overall, our results provide a comprehensive comparative analysis of the 

transcriptional landscape of monocyte and blood subsets from human peripheral blood at 

the steady state and early time points after influenza vaccination.  Furthermore, we 

provided a framework and tools for future studies to investigate the immune response to 

vaccines which may open up new avenues of improved vaccine design.  
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CHAPTER SIX 

Conclusions 

From this study, we had the following conclusions: 

 Early innate immune response to the influenza vaccination peaks at day 1 with a

prominent IFN signature followed by a smaller peak at day 7 caused by adaptive

immune responses from whole blood samples.

 The major cellular sources contributing to this IFN signature at day 1 are

neutrophils, monocytes, CD1c+ cDCs and CD2+ pDCs.

 Monocytes and CD2+ pDCs are the main contributors to global transcriptional

changes occurring at day 1 after vaccination.

 Inflammation signature of APCs and an interferon signature in CD1c+ cDCs at

baseline are correlated with specific serology response.
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