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Dusty plasma as a system containing both plasmas and dust particles. Dusty

plasma systems are found throught out the industy and the space, for example, dust

are found in plasma etching and in TOKAMAKs, as well as Saturn rings. Thus,

the study of dusty plasma helps to understand many systems in reality. In this dis-

sertation, the interaction of dust particles in a plasma sheath has been studied to

determined the nature of the non-linear interaction. Theoretical model for describing

the nonlinear dust interaction has been established and used to explain experimen-

tal observations. This dissertation is arranged in the following way. In chapter one,

a background introduction of dusty plasmas is provided. In chapter two, a theo-

retical model describing the motion of two coupled dust particles considering non-

linear particle-particle interaction is established, and a perturbation method is used

to analytically solve this model. In chapter three, experiments measuring amplitude-

frequency responses are introduced and the nonlinear interaction is studied based

on the model established in chapter two. In chapter four, the model established in

chapter two is extended to a higher degree of freedom, which explains the ‘inter-

nal resonance’ that is observed for the first time in dusty plasma. In chapter five,



iia Bayesian optimization-based automatic method for response analysis of a single

dust particle is proposed. In chapter six, a quick estimation method is proposed for

measuring the charge of dust particles in the plasma sheath.
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CHAPTER ONE

Introduction to Dusty Plasmas

Complex plasmas are systems that contain both weakly ionized gas (plasma) and

charged micron-sized particles (dust). The name ’complex plasmas’ comes from anal-

ogy to ’complex liquids’, i.e., the class of soft matter systems in liquid form. Complex

plasmas have received significant attention since the 1990’s when the crystallization

of micron-sized particles was observed in a weakly ionized plasma. Thomas et al. [5]

observed a hexagonal crystal structure of 7 µm melamine formaldehyde (MF) dust

particles levitating in a weakly ionized radio frequency (RF) discharged argon plasma.

At the same time, Chu et al. [6] reported the observation of face centered cubic (FCC),

body centered cubic (BCC), as well as hexagonal structures of SiO2 particles of 10

µm diameter in a similar RF argon discharge, with stable structure achieved by con-

trolling the plasma conditions such as the rf power.

As the dominant component in the system of a complex plasma in terms of the

energy and momentum transport, micron-sized dust particles can self-assemble to

form gaseous, liquid and solid states, analogous to the properties of matter. As such,

complex plasmas are sometimes regarded as a ’soft matter’, a term that was first

introduced by Pierre-Gilles de Gennes [7] to refer to a class of systems that can be

structurally altered by thermal or mechanical stress. Complex plasmas satisfy all the

criteria of a ’soft matter’ in that they exhibit macroscopic softness, have metastable

states, and have an equilibrium structure depending on external conditions [8]. In

this case, complex plasmas are good platforms to study the behaviors of soft matter,

due to the fact that the size of the dust particles are in the optically visible region

and characteristic dynamical time scales are on the order of milliseconds. Such long

time scales allow the study of dust particles in a complex plasma to be carried out to

the fully resolved kinetic level. This makes complex plasma also suitable for research
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on fundamental dynamic phenomena, e.g., linear and nonlinear dynamics, and self-

assembling dynamics, since micron-sized dust particles are strongly coupled to each

other.

1.1 Charging Process

Micron-sized dust particles immersed in plasmas will become negatively charged

(in the absence of emission processes). This is an important and fundamental process

in complex plasmas since the interaction of the dust particles is mainly determined

by the charge of the dust particles. In a gaseous discharge plasma, electrons have

a larger thermal velocity than the ions. In a typical laboratory complex plasma

environment (e.g., in a Gaseous Electronics Conference (GEC) RF reference cell) the

electron temperature Te is in a range between 3 eV to 6 eV , which is two orders of

magnitude larger than the ion temperature Ti. As such, when an initially uncharged

micron-sized particle is placed into a plasma, there will be more electrons than ions

colliding with the surface of the dust particle, resulting in an excessive electron flux to

the particle surface. As such, negative charges start to be accumulated on the surface

of the dust particle and as the dust particle becomes negatively charged, electrons

tend to be repelled while ions are attracted to the particle surface. This will finally

lead to a stochastic balance between the electron flux and ion flux, in which case the

charge on the dust particle reaches an equilibrium state.

One of the most widely used theoretical models to describe and calculate the

charge of dust particles in plasmas is the Orbit Motion Limited (OML) approximation

[9, 10]. In OML theory, there is a pre-assumption that the dust particle size is much

smaller than the Debye length (i.e., the scale over which mobile charge carriers screen

out electric fields), and the Debye length is much smaller than both the collisional

mean free path between the neutral atoms and the electrons, and the collisional mean

free path between the neutral atom and the ions, i.e., a ⌧ �D ⌧ �mean [11] where a

is the radius of the dust particles, �D is the Debye length and �mean is the collisional
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mean free path. This assumption indicates two facts. The first is that each dust

particle can be considered as isolated such that the electron and ion fluxes near the

particle’s surface are not disturbed by the other dust particles. The second fact is that

the plasma considered in the OML theory is a collisionless plasma where the electrons

and ions do not experience any collisions before they collide with the dust particle

surface. Another assumption is that any possible e↵ective potential barrier existing

for ions in a negative central potential field is ignored to simplify the model [3]. Even

though this potential barrier for ions exists in most dusty plasma situations, it has

a small e↵ect (or is negligible) when the dust particle size is small compared to the

Debye length, i.e., a
�D

! 0.

Consider an electron moving in the central potential field �(r) (�(r) < 0) of a

dust particle with an initial velocity v (the velocity infinitely far away from the dust

particle). The energy of the electron is conserved, which can be expanded by

E =
1

2
mev

2 =
1

2
me(v

2
r + v

2
✓)� e�(r), (1.1)

where me is the mass of the electron, vr is the radial velocity and v✓ is the angular

velocity, r is the radial distance of electron away from the dust particle and e is

the positive elementary charge. The conservation of angular momentum requires

mev✓r = mevp where p is the impact parameter. As such, Eq. 1.1 becomes

1

2
mev

2 =
1

2
me[v

2
r +

(pv)2

r2
]� e�(r), (1.2)

By dividing both sides of Eq. 1.2 by 1
2mev

2, Eq. 1.2 becomes

1 =
v
2
r

v2
+

p
2

r2
� 2e�(r)

mev
2
. (1.3)

From Eq. 1.3, an electron’s motion is restricted to an area where the e↵ective potential

�eff =
p
2

r2
� 2e�(r)

mev
2

(1.4)

is less than or equal to 1, i.e., �eff  1. Electrons which have a radial distance less

than or equal to the radius of the dust particle where they have zero radial velocity,
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can be collected by the dust particle and contribute to the accumulated charge. As

such, the cross section for electron collection is

�(v) = ⇡p
2
max = ⇡a

2[1 +
2e�(a)

mev
2
], (1.5)

where pmax is the maximum distance (maximum impact factor) from which electrons

can be collected by the dust particle. With the cross section determined, the electron

flux to the dust particle can be derived as

Ie = �ene

Z
�(v)vf(v)d3v, (1.6)

where ne is the electron number density, and f(v) is the electron velocity distribution

function. Considering a Maxwellian velocity distribution for electrons in plasma, Eq.

1.6 becomes

Ie = �ene

Z
⇡a

2[1 +
2e�(a)

mev
2
]

ve
� v2

2v2
Te

q
(2⇡v2Te

)3
d
3
v, (1.7)

where vTe =
q

Te
me

is the electron thermal velocity. By integrating Eq. 1.7, the electron

flux colliding onto the dust particle can be approximated as

Ie = �e
p
8⇡nevTee

e�(a)
Te . (1.8)

On the other hand, ions moving in the central field potential �(r) of a dust particle

experience an attractive potential energy e�(r). For an attractive potential (i.e.,

e�(r) < 0), there is the possibility that there could be a potential barrier that reflects

the ions. For a repulsive potential, the potential energy has the constraint 2e�(a)
mev2

� �1

(see Eq. 1.5) to ensure a positive impact parameter. However, this constraint is not

necessary for an attractive potential in that the impact factor is always positive,

independent of the value of the dust particle surface potential �(a). In this case, it is

possible that the surface potential �(a) can take values making the e↵ective potential

�effect > 1 which results in a potential barrier, reflecting some ions. Lampe et al [12]
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studied the e↵ect of this potential barrier for ions in a central Yukawa potential field

and pointed out that the OML assumption of the absence of a potential barrier is

valid for small dust particles a
�D

<< 1. In this case, the cross section for ions collected

by the dust particle is

�(v) = ⇡p
2
max = ⇡a

2(1� 2Ze�(a)

miv
2

), (1.9)

where Z is the ion charge number and mi is the mass of ion. Correspondingly, the

ion flux to the dust particle assuming a Maxwellian velocity distribution for the ions

yields

Ii = Zeni

Z
⇡a

2(1� 2Ze�(a)

miv
2

)
ve

(� v2

2v2
Ti

)

q
(2⇡v2Ti

)3
d
3
v, (1.10)

where ni is the ion number density and vTi =
q

Ti
mi

is the ion thermal velocity. By

integrating Eq. 1.10 and keeping the first two terms in the Taylor expansion of the

surface potential, the ion flux can be approximated as

Ii = Ze
p
8⇡a2nivTi(1�

Ze�(a)

Ti
). (1.11)

The total charge accumulated on the dust particle can be estimated at a stationary

state where the total electron and ion flux colliding onto the dust particle is zero,

Ii + Ie = 0, (1.12)

allowing the surface potential of the dust particle �(a) to be calculated. The dust

particle charge can be estimated (assuming the dust is a spherical capacitor) as Q0 =

a�(a). Meanwhile, the charge fluctuation on the dust particle is governed by

Q̇ = Ii + Ie. (1.13)

By defining the charging frequency ⌦ch = �d(Ii+Ie)
dQ |Q0 as the relaxation frequency for

small deviations of the charge from the stationary value [8], this inverse charging time
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can be calculated as

⌦ch =
(1 + Qe

aTe
)a

p
2⇡�Di

⌦pi, (1.14)

where �Di =
q

Ti
4⇡e2ni

is the Debye length for ions and ⌦pi =
vTi
�Di

is the ion plasma

frequency. The charging process (i.e., the accumulated charge on the dust particle

surface as a function of charging time) can be characterized by the solution to Eq.

1.13. As an example, the charging process in an argon discharge with an electron-

ion temperature ratio Te
Ti

= 50 is plotted in Fig. 1.1 [1], where the y-axis is the

Figure 1.1: The particle is initially uncharged. The horizontal dashed line corresponds to
the stationary value of the charge [1].

dimensionless charge z = |Qe|
aTe

and the x-axis is the dimensionless time t⌦ch.

In the OML approximation, the surface potential of the dust particle is found to

be determined by two main factors. The first is the electron-ion temperature ratio Te
Ti
.

Usually this electron-ion temperature ratio in a laboratory GEC rf reference cell is on

the order of 102. The second factor is the electron-ion mass ratio me
mi

. This factor is

determined by the type of gas and has a magnitude on the order of 10�4. Fig. 1.2 [1]

shows the dimensionless stationary charge on dust particles z = |Qe|
aTe

as a function of
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Figure 1.2: Dimensionless charge z = |Qe|
aTe

of an isolated spherical particle as a function of
electron-to-ion temperature ratio for isotropic plasmas of di↵erent gases. [1].

the electron-ion temperature ratio Te
Ti

for di↵erent types of gas discharge. As shown,

the dust charge has a negative correlation to the electron-ion temperature ratio Te
Ti

but a positive correlation to the ion-electron mass ratio mi
me

.

In addition to the collection of electrons and ions from a plasma, there are also

other possible charging mechanisms for dust grains. For example, excessive elec-

trons can be emitted from the dust particle surface due to thermionic, photoelectric,

and secondary electron emission processes. There processes can result in positively

charged grains. Studies of these charging mechanisms can be found in [11, 13–19].

In anisotropic plasmas, the motion of electrons and ions are subject to forces due

to other electromagnetic fields. For example, in a plasma generated in a laboratory

GEC RF reference cell, the electrons and ions are accelerated in the sheath electric

field. This will change the charging mechanism since electrons and ions are now

drifting relative to the dust particles. Usually, due to the electrons’ high thermal

speed, the electron drift relative to the dust particles is negligible. However, the ion

drift cannot be ignored. To account for the e↵ect of the ion drift, an appropriate
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ion velocity distribution is required to be used in Eq. 1.10 to find the total ion flux,

for example, a shifted Maxwellian velocity distribution 1q
(2⇡v2Ti

)3
e

� (v�v0)2

2v2
Ti where v’ is

the drift speed for ions. In a GEC RF reference cell, the charge on dust particles

levitated in the plasma sheath is estimated to be Q ⇡ 103e� 104e, depending on the

plasma pressure and power. A simple method to experimentally estimate the charge

on a dust particle levitated in the sheath of a GEC RF reference cell is described in

chapter five.

1.2 Plasma Sheath

In a laboratory GEC RF reference cell, the operating gas is discharged between two

electrodes. Similar charging e↵ects cause any plasma facing surface to be negatively

charged, thus electrodes in a GEC RF reference cell will also be negatively charged due

to excessive electron collisions. As the electron density decreases when approaching

an electrode (or absorbing wall), a positive space charge region is generated in front

of each electrode. This positive space charge region connecting the plasma bulk and

an electrode (or absorbing wall) is known as the plasma sheath.

To investigate the formation of the plasma sheath (assuming a one dimensional

sheath), the following dimensionless quantities are introduced [2]

y =
miv

2
z

2kTe
,

� = � e�

kTe
,

ne,i =
Ne,i

N0
,

⇠ =
z

�D
,

(1.15)

where y represents the kinetic energy of an ion miv2z
2 at a distance z from the absorbing

wall, normalized to the electron thermal energy kTe, � is the ion potential energy e�

normalized to the electron thermal energy, Ne and Ni are respectively the electron

and ion densities inside the plasma sheath normalized by the density of the plasma

bulk N0, and ⇠ is the distance z from the absorbing wall normalized by the Debye
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length. With these quantities defined, the plasma sheath can be described by the

following four conditions:

1) conservation of ion number

ni
p
y =

p
y0, (1.16)

where y0 is the normalized ion kinetic energy at the sheath edge (the interface between

the plasma bulk region and the plasma sheath region).

2) conservation of energy for ions

y = y0 + �, (1.17)

3) electrons are assumed to follow the Maxwellian-Boltzmann distribution

ne = e
��

, (1.18)

and 4) Poisson’s equation

d
2
�

d⇠2
= ni � ne. (1.19)

Combining Eq. 1.16 and Eq. 1.17, the ion density in the plasma sheath can be

expressed as

ni = (1 +
�

y0
)�

1
2 . (1.20)

Substituting Eq. 1.18 and Eq. 1.20 into Eq. 1.19, Poisson’s equation now becomes

d
2
�

d⇠2
= (1 +

�

y0
)�

1
2 � e

��
. (1.21)

This second order ODE can be reduced to a first order ODE by multiplying by d�
d⇠

and then integrating

Z 0

�1

d�

d⇠

d
2
�

d⇠2
d⇠ =

Z 0

�1
[(1 +

�

y0
)�

1
2 � e

��]
d�

d⇠
d⇠. (1.22)
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which yields

1

2
(
d�

d⇠
)2 � 1

2
(
d�

d⇠
)2|�1 = 2y0

r
1 +

�

y0
� 2y0

r
1 +

�

y0
|�1 + e

�� � e
��|�1. (1.23)

Considering the boundary conditions � = 0 and d�
d⇠ = 0 in the plasma bulk where

⇠ = �1, Poisson’s equation Eq. 1.19 can now be reduced to

(
d�

d⇠
)2 = 4y0

r
1 +

�

y0
� 4y0 + 2e�� � 2, (1.24)

which needs to be solved numerically. Using a Taylor expansion of the right hand side

of Eq. 1.24 with respect to the normalized potential �, one finds that at the sheath

edge, � = 0. Eq. 1.24 can then be expanded as

(
d�

d⇠
)2 = (1� 1

2y0
)�2 + o(�3), (1.25)

which gives the criteria for the formation of the plasma sheath. The plasma sheath

can only be formed if (1 � 1
2y0

) is non-negative (or y0 � 1
2), otherwise, Eq. 1.24 will

result in a potential of imaginary value which has no physical meaning. This criteria

means that in order to form a plasma sheath, the ion velocity at the sheath edge has

to be greater than a threshold velocity

v0 �
r

kTe

mi
, (1.26)

known as the ‘Bohm velocity’ [20].

The criteria for a sheath formation Eq. 1.26 raises another point. In the plasma

bulk, the thermal energy of electrons is usually much larger than the thermal energy

of ions, as the electron temperature is much larger than the ion temperature Te � Ti.

In order for the ions in the bulk to be accelerated to the Bohm velocity there should

exist a transition region where an electric field exists. At the same time, the transition

region should conserve the property of the plasma bulk, in that this region is charge

neutral, i.e., ne ⇡ ni, otherwise, this region would have no di↵erence from the plasma

sheath. This transition region where ions are accelerated to the Bohm velocity is

called the ‘pre-sheath’ [21].
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To study the mechanism which accelerates the ions in pre-sheath, an extension

scale L is introduced according to Riemann [2] as L � �D = ✏L where ✏ is a smallness

parameter, and the pre-sheath mechanism will be studied at the scale of L, or ✏⇠, as

x =
z

L
= ✏⇠, (1.27)

while the sheath mechanism is considered at the scale of ⇠. As such, the potential in

the pre-sheath region can be described by Poisson’s equation as

✏
2d

2
�

dx2
= ni(�, x)� ne(�). (1.28)

It can be seen from Eq. 1.28 that at the asymptotic limit where ✏! 0, the right hand

side of Eq. 1.28 also goes to zero indicating the quasi-neutrality of the pre-sheath, i.e.,

ne ⇡ ni. Fig. 1.3 (from Riemann [2]) shows the potential � as a function of distance

from the absorbing wall at di↵erent length scales. As shown, for small but finite

✏ (Fig. 1.3a), the potential � is flat at distances far away from the absorbing wall

(pre-sheath region) and it becomes steeper as the distance approaches the absorbing

wall (sheath region). In the asymptotic limit that ✏ goes to 0, the pre-sheath scale

has to be distinguished from the sheath scale. Fig. 1.3b shows the potential � on

the pre-sheath scale where the sheath region is squeezed into an infinitely thin layer,

while on the sheath scale (Fig. 1.3c), the pre-sheath is treated as infinitely remote [2].

Based on the quasi-neutral property of the plasma pre-sheath, the mechanism of the

pre-sheath formation can be discussed. The quasi-neutral property ni = ne results in

the condition

jip
y
= e

�
, (1.29)

where ji =
q

( mi
2kTe

) Ji
N0

is the ion current. By take the logarithm and di↵erentiating

both sides of Eq. 1.29 with respect to spacial displacement x, this yields

1

2y

dy

dx
� d�

dx
=

1

ji

dji

dx
. (1.30)
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Figure 1.3: Potential variation in front of a negatively charged absorbing wall at a) small but
finite ✏; b) pre-sheath scale at asymptotic limit as ✏ goes to 0; c) sheath scale at asymptotic
limit as ✏ goes to 0 [2].
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Since we know that the pre-sheath is the region where ions are accelerated to the

Bohm velocity, the ion velocity in the pre-sheath region must be less than the Bohm

velocity, i.e., v0 <
q

kTe
mi

or y <
1
2 . As such, Eq. 1.30 can be expressed by the following

inequality

dy

dx
� d�

dx
<

1

ji

dji

dx
, (1.31)

which means that the ions can be accelerated to the Bohm velocity in any of the

following situations:

1) The ion current density increases approaching the absorbing wall, dji
dx > 0.

2) The energy of ions is dissipated in the pre-sheath dy
dx <

d�
dx .

3) A combination of both of the previous conditions listed above.

Thus, according to Riemann, the pre-sheath can be divided into the follow cate-

gories based on its formation mechanisms:

a) Geometric pre-sheath with current concentration dji
dx > 0 where the extension

scale L is the curvature radius.

b) Collisional pre-sheath with ion friction where dy
dx <

d�
dx and the extension scale

L is the ion mean free path.

c) Ionizing pre-sheath with current increase dji
dx > 0 and mean ion retardation

dy
dx <

d�
dx where the extension scale L is the ionization length.

Besides these pre-sheath mechanisms, there is another type of per-sheath men-

tioned by Riemann

d) The magnetic pre-sheath where kinetic energy y perpendicular to the absorbing

wall is converted into parallel kinetic energy. In this case, the extension scale L is the

ion gyro-radius.

Due to the di↵erence of the electron and ion densities, the potential is not constant

in the plasma sheath region, which means an electric field exists in the plasma sheath

region. In a laboratory GEC RF reference cell, this electric field provides negatively

charged dust particles with an upward electrostatic force to balance gravity. As such,
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dust particles can levitate in the plasma sheath region in GEC RF reference cells.

Therefore, it is natural and necessary for us to understand how dust particles interact

with each other inside the plasma sheath region.

1.3 Dust Particle Interaction

In an isotropic plasma, the potential field around an isolated spherical dust particle

is known to be a screened Coulomb or Yukawa potential �(r) = Q
4⇡✏0r

e
� r

�D when the

particle size is much smaller than the linearized Debye length, ��2
D = �

�2
Di + �

�2
De,

and electrons and ions around the dust particle are assumed to obey a Maxwellian-

Boltzmann distribution.

On the other hand, as in an anisotropic plasma, dust particles in a GEC RF

reference cell are levitated in plasma sheath region where ion flow exists. As it passes

a dust particle, the ion flow is altered by the charged dust and ions are concentrated in

a region downstream of the dust particle. This perturbation of the ion stream density

is known as the wake e↵ect and the region where ions re-concentrated is called the

ion focus. Fig. 1.4 shows a sketch of the ion wake e↵ect where the positive charged

region downstream the dust particle is the ion focusing. Even though there is not yet

a deterministic conclusion about the exact location of the ion focus, this location is

found to be dependent on many parameters, such as the velocity of the ion flow, the

electron to ion temperature ratio, and the size of the grain [22].

Based on linear response theory, the electrostatic potential around a dust particle

in ion flow is determined by

�(r) =

Z
Q

8⇡3✏0k
2✏(k,! � kzvi)

e
ik·r

dk, (1.32)

where k with k = |k| is the wave number vector of the ion acoustic wave, ✏(k,!�kzvi)

is the anisotropic plasma permittivity with respect to a Doppler shifted frequency

! � kzvi. Here kz is the wave number along the direction of the ion flow and vi is

the velocity of the ion flow. With di↵erent assumptions for the permittivity of the
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Figure 1.4. Sketch for ions streaming around a dust particle.

anisotropic plasma ✏(k,! � kzvi), the electrostatic potential yields di↵erent forms.

For example, based on Vladimirov and Nambu’s model [23], the anisotropic plasma

permittivity takes the form

1

✏(k,! � kzvi)
=

k
2
�
2
De

1 + k2�2De

+
k
2
�
2
De!

2
s

(1 + k2�2De)[(! � kzVi)2 � !2
s ]
, (1.33)

where !s = kvBp
1+k2�2

De

is the frequency of the ion flow oscillation with vB being the

Bohm velocity. The first term in the right hand side of Eq. 1.33 corresponds to the

permittivity of the Yukawa potential 1
✏(k,!) =

k2�2
De

1+k2�2
De
. By applying Eq. 1.33 into Eq.

1.32, the electrostatic potential along the direction of the ion flow behind the dust

particle is approximated as [23]:

�(r) =
Q

4⇡✏0r
+

2Qcos(r�De

p
M2 � 1)

4⇡✏0r(1�M�2)
, (1.34)

where M = vi
vB

is the mach number. Notice that this approximation was made

under the assumption of supersonic ion flow M > 1. One important feature of

the electrostatic potential (or wake potential) is that the potential oscillates behind

the dust particle. As illustrated in Eq. 1.34, the second term in the right hand

side is proportional to cos(r�De

p
M2 � 1) which yields an oscillating property and
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there exists an attractive potential at positions where the electrostatic potential takes

positive values.

This wake potential has also been profiled numerically. For example, Lampe

et al. [3] derived a spatially resolved wake potential based on a more complicated

anisotropic plasma permittivity as

✏(k,! � kzvi) = 1 +
1

k2�2De

�
!
2
p

k2

Z
k@fi0(v)/@v

kzvi � ! � ivin
dv, (1.35)

where fi0(v) is the shifted Maxwellian distribution function for ions which takes the

form fi0(v) = n0(
mi
2⇡Ti

)e
mi(v�vi)

2

2Ti . In this model, both ion-neutral collisions (with vin

the collision frequency) and Landau damping (in terms of the shifted Maxwellian

distribution for ions) are considered. Fig. 1.5 shows the contour plot of this wake

potential with a mach number M = 1.5 and the electron-ion temperature ratio Te
Ti

=

25.

Figure 1.5: Potential contour of a negative dust grain in a plasma of flowing ion. The dust
particle is at the origin. Solid and dashed curves indicate respectively negative and positive
potential [3].

Again, an oscillating wake potential is predicted and a maximum attractive po-

tential (positive potential) is observed at a position about two Debye lengths behind

the dust particle.
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In the situation that the ion velocity is subsonic M < 1, the electrostatic po-

tential Eq. 1.32 can be derived within the Bhatnagar-Gross-Krook (BGK) approach

for the ion-neutral collision integral [24, 25]. In the case of small collisionality (i.e.,

small ratio of the ion-neutral collision frequency to the ion plasma frequency) [8], the

corresponding wake potential can be approximated as [26]

�(r, ✓) = Q[
e
� r

�D

r
� 2

r
2

⇡

M�
2
D

r3
cos✓ � (2� ⇡

2
)
M

2
�
2
D

r3
(3cos2✓ � 1)] + o(

M
2

r3
), (1.36)

where ✓ is the angle between r and vi. From Eq. 1.36, it can also be inferred that an

attractive interaction is possible in a certain solid angle along the ion flow when the

wake potential has a positive value.

Since the potential behind the dust particle in the presence of ion flow is perturbed

by the wake e↵ect, the particle-particle interaction becomes complicated when one of

the dust particles is in the wake region (downstream region) of another dust particle.

The particle-particle interaction also becomes non-reciprocal due to the wake e↵ect,

i.e., the interaction from the downstream particle to the upstream particle is not iden-

tical to the interaction from the upstream particle to the down stream particle. The

downstream particle experiences a repulsive interaction from the upstream particle

(for example, the part of the Yukawa repulsion in Eq. 1.34 and Eq. 1.36), but at

the same time it also experiences a possible attractive interaction from the upstream

particle (for example, at the position where the rest parts in Eq. 1.34 and Eq. 1.36

are positive). However, the upstream particle only feels the repulsion from the down-

stream particle, and it is hardly a↵ected by the wake e↵ect created by itself. This

seems to be a violation of Newton’s third law since the interaction is non-reciprocal

when only considering the dust particles. To reconcile this contradiction, this system

should be considered as an open system where the ion flow brings energy in [27]. For

an open system, it is not necessary for Newton’s third law to hold.

Due to this non-reciprocal interaction (mainly the attractive wake potential), dust

particles can be formed into a self-aligned chain structure. The simplest example of a
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self-aligned chain structure is a chain that only involves two dust particles, i.e., a dust

pair structure. Fig. 1.6 shows the ‘Schweigert’ model of the dust pair structure [4,27].

In this model, the e↵ect of the wake potential has been modeled by a positively

charged image particle located at the wake focal point (point charge model).

Figure 1.6: ‘Schweigert’ model for a dust pair with the wake e↵ect modeled as an image
positively charged point charge located downstream of a dust particle [4].

As shown, the downstream particle is repelled by the upstream particle (blue

interaction) but attracted by the image point charge which represents the ion wake

e↵ect (red interaction).

The simplest way to study the particles’ motion under this pair structure is to

approximate the interaction linearly. Assuming that the interaction is a function of

the particle-particle interspacing, the interaction along the direction of the ion flow

can approximated by the linear term in the Taylor expansion of the exact interaction

force which has the form of k(x1 � x2) where x1, x2 are the displacements of the

upstream and downstream particle away from the equilibrium position and k is the
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first derivative of the interaction force with respect to the inter-particle spacing.

This assumption is valid in the point charge model because the position of the point

charge moves with the upstream particle such that the interaction from the point

charge to the downstream particle also depends on the particle-particle spacing, but

only di↵ers by a constant. The non-reciprocity in the particle-particle interaction can

be illustrated by the di↵erence in values k can take for upstream and downstream

interactions. Carstensen et al. [28] measured the constant k for the linear interaction

approximation from the resonance curves of particles’ motion under small excitations

and revealed the non-reciprocity through a parameter defined as the ratio of the

linear constants for upstream and downstream interactions k21
k12

. Based on the same

model with a linear approximation of the interaction, Jung et al. [29] investigated

the de-charging of the downstream particle in the ion wake by introducing a heavier

downstream dust particle of a di↵erent material from the upstream dust particle.

The heavier particles are made of di↵erent material so that plasma etching on these

particles are di↵erent from those placed upstream, which allows a continues spacial

probe of the downstream ion wake.

Even though this linear model of particle-particle interaction succeeds in revealing

the non-reciprocal property of the particle-particle interaction under the influence of

the ion wake, it fails to explain any phenomenon that takes place in the nonlinear

regime, such as nonlinear mode coupling or internal resonance. In order to study the

nonlinear behavior of dust particles in the plasma sheath, it is necessary to extend

the linear interaction model to models including higher order nonlinearities.
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CHAPTER TWO

Theory

As mentioned in chapter one, due to higher electron thermal velocity (resulting in

a larger electron flux as compared to the ion flux to the particle surface), dust particles

are in general negatively charged when located inside the plasma sheath region, or

even the pre-sheath region. In both cases, ions are accelerated to the Bohm velocity

(vB =
q

kTe
mi

, where k, Te, mi are the Boltzmann constant, electron temperature and

ion mass respectively) satisfying the ‘Bohm criterion’ for the formation of the sheath

[20,30–32]. In the plasma sheath region of an absorbing wall, due to the electrostatic

field produced by the accumulated electrons on the absorbing wall, the immersed dust

particles will experience a repulsive electrostatic force. In a configuration where the

absorbing wall is perpendicular to gravity, the electrostatic force experienced by the

dust particle will then be balanced by gravity, in which case dust particles can be

levitated inside the plasma sheath.

In the vicinity of the dust levitation position, the sheath potential can be approx-

imated by a parabolic potential [33]. By ignoring the charge fluctuations induced

by the variation of the particle levitation position, the dust particles can then be

considered as being confined inside a parabolic potential well � = 1
2m!

2
x
2, where m,

!
2, and x are respectively the mass of the dust particle, the background confinement

strength and the displacement of the dust particle from its levitation position.

For the case of two dust particles forming a pair structure aligned with the ion

flow, and the particle-particle interaction becomes asymmetric due to the influence

of the ion wake field formed behind the upstream dust particle [27, 34–38]. This is

known as the non-reciprocal particle-particle interaction. One method for describing

the dynamics of such a particle pair system is to model the paired dust particles as two
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coupled oscillators with non-identical coupling constants (in order to properly model

the non-reciprocal particle-particle interaction) confined inside the plasma sheath.

2.1 A Linear System of Coupled Oscillators with Non-reciprocal Interaction

The simplest model of a particle pair system assumes a linear model of coupled

oscillators. Considering a one dimensional situation where the coupled oscillators are

restricted to move with only one degree of freedom (say in the x -direction), the linear

model describing this system assuming a non-reciprocal particle-particle interaction

is:

ẍ1 + !
2
1x1 + k1(x1 � x2) = 0,

ẍ2 + !
2
2x2 + k2(x2 � x1) = 0,

(2.1)

where !2
1 and !2

2 are the background restoring confinements at the dust equilibrium

levitation positions and k1 and k2 are the coupling constants normalized by the mass

of the oscillators. Di↵erent from the case of a typical coupled oscillator, where the

coupling constant is shared, k1 and k2 are not necessarily identical in order to properly

represent the non-reciprocal particle-particle interaction. In this simplest system,

damping from neutral drag is ignored and no external excitations are considered.

In order to derive the eigen-modes (as well as eigen-frequencies) of this system,

one needs to calculate the determinant of the following dynamical matrix
2

64
�!2

± + !
2
1 + k1, �k1

�k2, �!2
± + !

2
2 + k2

3

75 .

By equating the determinant with zero, the eigen-frequencies are found to be

!
2
+ =

(!2
1 + k1 + !

2
2 + k2) +

p
(!2

1 + k1 � !2
2 � k2)2 + 4k1k2

2
,

!
2
� =

(!2
1 + k1 + !

2
2 + k2)�

p
(!2

1 + k1 � !2
2 � k2)2 + 4k1k2

2
,

(2.2)
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and the ratio of the amplitude of the corresponding eigen-modes are:

(
x1

x2
)+ = ↵+ =

k1

�!2
+ + !2

1 + k1
=

�!2
+ + !

2
2 + k2

k2
,

(
x1

x2
)� = ↵� =

k1

�!2
� + !2

1 + k1
=

�!2
� + !

2
2 + k2

k2
.

(2.3)

Thus, the equations of motion (2.1) for this system can be decoupled as

ẍ+ + !
2
+x+ = 0,

ẍ� + !
2
�x� = 0,

(2.4)

by introducing the eigen-mode basis

x+ = x1 � ↵�x2,

x� = x1 � ↵+x2.

(2.5)

2.2 Coupled Oscillators with Frictional Damping

Unfortunately, dust particles are rarely in a vacuum environment. As such, col-

lisions with neutral gas particles provide an additional neutral drag force exerted on

the dust particles, which makes it a damped system. Taking frictional damping (i.e.,

velocity dependent damping) into consideration, a system of coupled oscillators acting

under a non-reciprocal interaction without external driving can be described as

ẍ1 + µẋ1 + !
2
1x1 + k1(x1 � x2) = 0,

ẍ2 + µẋ2 + !
2
2x2 + k2(x2 � x1) = 0,

(2.6)

where µ is the damping coe�cient. To solve this system, if one applying the same

method used above before for the linear system (Eq. 2.1) (i.e., calculating the eigen-

frequencies directly from the matrix of dynamics), a biquadratic determinant en-

countered and ! becomes a complex value. To avoid this complexity, the equations

of motion described in Eq. 2.6 are instead approached using a linear eigen-basis.

According to the transformation shown in Eq. 2.5, the equations of motion in the x±

basis can be derived by subtracting (↵⌥⇥ Eq. 2.6b) from (Eq. 2.6a):

(ẍ1 � ↵�ẍ2) + µ(ẋ1 � ↵�ẋ2) + (!2
1x1 � ↵�!

2
2x2) + (k1 + ↵�k2)(x1 � x2) = 0,

(ẍ1 � ↵+ẍ2) + µ(ẋ1 � ↵+ẋ2) + (!2
1x1 � ↵+!

2
2x2) + (k1 + ↵+k2)(x1 � x2) = 0.

(2.7)
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Allowing Eq. 2.5, the original coordinates x1 and x2 can now be represented by

x+ and x� as:

x1 =
↵+x+ � ↵�x�

↵+ � ↵�
,

x2 =
x+ � x�

↵+ � ↵�
.

(2.8)

Replacing x1 and x2 with x+ and x�, Eq. 2.7 now takes the form

ẍ+ + µẋ+ + [
(!2

1 + k1 + ↵�k2)↵+ � (↵�!
2
2 + k1 + ↵�k2)

↵+ � ↵�
]x+

+ [
(↵�!

2
2 + k1 + ↵�k2)� ↵�(!2

1 + k1 + ↵�k2)

↵+ � ↵�
]x� = 0,

ẍ� + µẋ� + [
(↵+!

2
2 + k1 + ↵+k2)� ↵�(!2

1 + k1 + ↵+k2)

↵+ � ↵�
]x�

+ [
↵+(!2

1 + k1 + ↵+k2)� (↵+!
2
2 + k1 + ↵+k2)

↵+ � ↵�
]x+ = 0.

(2.9)

Employing Eq. 2.3, it can be easily verified that

[
(!2

1 + k1 + ↵�k2)↵+ � (↵�!
2
2 + k1 + ↵�k2)

↵+ � ↵�
] = !

2
+,

[
(↵+!

2
2 + k1 + ↵+k2)� ↵�(!2

1 + k1 + ↵+k2)

↵+ � ↵�
] = !

2
�,

[
(↵�!

2
2 + k1 + ↵�k2)� ↵�(!2

1 + k1 + ↵�k2)

↵+ � ↵�
] = 0,

[
↵+(!2

1 + k1 + ↵+k2)� (↵+!
2
2 + k1 + ↵+k2)

↵+ � ↵�
] = 0,

(2.10)

Thus, the original coupled equations of motion (Eq. 2.6) can be reduced to

ẍ+ + µẋ+ + !
2
+x+ = 0,

ẍ� + µẋ� + !
2
�x� = 0,

(2.11)

where in the decoupled basis each oscillator has its own resonance frequency corre-

sponding to one of the eigen-frequencies of the linear system without damping (Eq.

2.1). The solution to Eq. 2.11 yields the simple form (underdamping presumed)

x+ = A+e
(�µ

2+i
q

w2
+�µ2

4 )t + C.C.,

x� = A�e
(�µ

2+i
q

w2
��µ2

4 )t + C.C.,

(2.12)
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where A+ and A� are constants determined by the initial conditions and C.C. stands

for complex conjugate. Due to frictional damping, the solutions now yield a decay-

ing oscillation with the oscillation resonance frequencies modified by the damping

coe�cient
q
!2
± � µ2

4 . In cases where the damping is small compared to the linear

resonance frequencies (i.e., µ2

4 << !
2
±), this modification of the resonance frequencies

can be ignored.

2.3 Coupled Oscillators with Frictional Damping and External Driving

To this point, the equations of motion describing the coupled oscillators have all

been assumed to be homogenous, i.e., no external driving force is applied to the

oscillators. Provided an initial perturbation, the oscillators respond freely. However,

in the presence of a continuous external driving mechanism, the overall oscillator

behavior will be dominated by the external driving force. As a representative example,

we will assume a sinusoidal driving force. For an external sinusoidal driving force

applied to both oscillators simultaneously and synchronized at time t = 0, i.e., there

is no phase di↵erence between the driving signal applied to either oscillator, the

equations of motion are

ẍ1 + µẋ1 + !
2
1x1 + k1(x1 � x2) = F1e

i⌦t + C.C.,

ẍ2 + µẋ2 + !
2
2x2 + k2(x2 � x1) = F2e

i⌦t + C.C.,

(2.13)

where F1, F2 are the amplitudes of the sinusoidal driving signal normalized by the

mass (having units of acceleration) and ⌦ is the frequency of the driving signal.

Following the same approach as in Eq. 2.7, Eq. 2.13 can be decoupled into the x+

and x� basis as

ẍ+ + µẋ+ + !
2
+x+ = F+e

i⌦t + C.C.,

ẍ� + µẋ� + !
2
�x� = F�e

i⌦t + C.C.,

(2.14)
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where F+ and F� are driving amplitudes appearing in decoupled coordinates as F+ =

F1 � ↵�F2 and F� = F1 � ↵+F2. The solution to Eq. 2.14 has the following form:

x+ =
F+

[(!2
+ � ⌦2)2 + (µ⌦)2]

1
2

e
i[⌦t+arctg( �µ⌦

!2
+�⌦2 )]

+ A+e
(�µ

2+i
q

w2
+�µ2

4 )t + C.C.,

x� =
F�

[(!2
� � ⌦2)2 + (µ⌦)2]

1
2

e
i[⌦t+arctg( �µ⌦

!2
��⌦2 )]

+ A�e
(�µ

2+i
q

w2
��µ2

4 )t + C.C.

(2.15)

This solution has two parts. The first represents the response to the external driv-

ing signal and has identical oscillation frequencies but shifted phases (i.e., � =

arctg( �µ⌦
!2
+�⌦2 )) with respect to the external driving signal. The relationship between

the amplitude of this response and the driving frequency, i.e., F+

[(!2
±�⌦2)2+(µ⌦)2]

1
2
and

F�

[(!2
±�⌦2)2+(µ⌦)2]

1
2
quantifies the response of the system to a stimulus and is known as

the theoretical amplitude-frequency response. The second part of this solution is the

general solution corresponding to homogenous equations of motion (Eq. 2.11) which

decay at large times, t.

2.4 Coupled Oscillators with Nonlinear and Non-reciprocal Interaction

So far, all of the systems discussed have been limited to the linear regime, i.e.,

all the forces (except the neutral drag force) have been linear in displacement (x1

or x2). However, forces are not always linear in nature. For example, if the particle

position is dependent on the charge fluctuation or the sheath potential deviates from a

parabolic profile, the background restoring force will no longer necessarily be linear in

displacement [39–41]. This is of particular importance for the non-reciprocal particle-

particle interaction created by the ion wake, since a linear approximation of the

resulting particle-particle interaction force does not precisely describe the essence of

the fundamental physics involved.

Therefore, the non-reciprocal particle-particle interaction will be studied in the

nonlinear regime and considered to second order in displacement in the equations of

motion for coupled oscillators. By considering the interaction forces to second order

in displacement, the equations of motion for the coupled oscillators under external
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excitations are

ẍ1 + µẋ1 + !
2
1x1 + k1(x1 � x2) + k

0
1(x1 � x2)

2 = F1e
i⌦t + C.C.,

ẍ2 + µẋ2 + !
2
2x2 + k2(x2 � x1) + k

0
2(x2 � x1)

2 = F2e
i⌦t + C.C.,

(2.16)

where k
0
1 and k

0
2 are the coe�cients for the nonlinear parts of the particle-particle

interaction. Following the same approach as in Eq. 2.7, Eq. 2.16 can be decoupled

into the x+ and x� basis as

ẍ+ + µẋ+ + !
2
+x+ + g1(C1x+ � C2x�)

2 = F+e
i⌦t + C.C.,

ẍ� + µẋ� + !
2
�x� + g2(C1x+ � C2x�)

2 = F�e
i⌦t + C.C.,

(2.17)

where g1, g2, C1 ,C2, F+ and F� are now transformed in the following manner,

g1 =
k
0
1 � (↵�)k0

2

[(↵+)� (↵�)]2
,

g2 =
k
0
1 � (↵+)k0

2

[(↵+)� (↵�)]2
,

(2.18)

C1 = ↵+ � 1,

C2 = ↵� � 1,
(2.19)

F+ = F1 � (↵�)F2,

F� = F1 � (↵+)F2.

(2.20)

As shown in Eq. 2.17, even though the decoupling process successfully eliminates

coupling in the linear regime, it fails to decouple the nonlinear terms. Since Eq.

2.17 involves nonlinear (quadratic) terms and these nonlinear terms are coupled, it is

unfeasible (if not impossible) to derive a set of analytical solutions. However, these

nonlinear equations of motion can still be attacked by applying the multiple-scale

perturbation method.

2.5 Multiple-Scale Perturbation Theory

The multiple-scale perturbation method seeks to determine uniformly valid ap-

proximation solutions to a perturbed system by introducing new fast scale and slow

26



scale variables which can be solved independently within their own scale domain.

These newly introduced fast and slow scale variables lead to secular terms that must

be eliminated in order to compensate for the extra degree of freedom introduced and

to remain self-consistent. This is known as determining the solvability conditions. As

a type of perturbation method, the multiple-scale method benefits from wide appli-

cation and is mathematically supported by both coordinate transforms and invariant

manifolds.

Returning to the problem of coupled oscillators with nonlinear and non-reciprocal

interaction, Eq. 2.17 must now be rewritten in terms of a small dimensionless param-

eter ✏ determining perturbations of the system under which the multiple-scale method

is applicable. Since the system in question is driven by an external excitation, it must

be attacked across di↵erent regions in terms of the frequency of external excitation

so that resonances can be treated in a reasonable manner.

We first consider the situation where the external excitation frequency is close

to the resonance frequency of the ‘plus’ eigen-mode, i.e., ⌦ ⇡ !+. In this case, the

‘plus’ eigen-mode resonates in phase with the external excitation, while the ‘minus’

eigen-mode does not (assuming !+ is far away from !�, thus ⌦ 6⇡ !�). Eq. 2.17 may

be rewritten in this region as

ẍ+ + ✏µẋ+ + !
2
+x+ + g1(C1x+ � C2x�)

2 = (✏2F+)e
i⌦t + C.C.,

ẍ� + ✏µẋ� + !
2
�x� + g2(C1x+ � C2x�)

2 = (✏F�)e
i⌦t + C.C..

(2.21)

The basic guideline for determining ✏ is to ensure that both damping and nonlin-

earities appear on the same order of ✏ [42]. Moreover, for oscillators resonating to

external excitation, the external drive should also be on the same order of ✏ (as the

damping and nonlinearities) ensuring that the resonant oscillator will have a bounded

oscillation amplitude. (For o↵-resonant oscillators, this is not necessary.) As we shall

show, the selection of ✏µ, (✏2F+) and (✏F�) employed here meets all the afore men-
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tioned requirements for an external excitation resonating with the ‘plus’ eigen-mode

when suitable test solutions are considered.

We introduce our test solutions as

x+(t0, t1; ✏) = ✏x+1(t0, t1) + ✏
2
x+2(t0, t1) + ...,

x�(t0, t1; ✏) = ✏x�1(t0, t1) + ✏
2
x�2(t0, t1) + ...,

(2.22)

where t0 = t is the ‘fast’ time (linear) and t1 = ✏t is the ‘slow’ time (nonlinear). In

this case, test solutions only need to be retained to second order in ✏ since this system

contains only quadratic nonlinearities. Since t0 (the fast time) is independent of the

slow time (t1), the time derivative operator now yields @
@t =

@
@t0

+ ✏ @
@t1

, and the second

derivative operator yields @2

@t2 = @2

@t20
+ 2✏ @2

@t0@t1
+ ✏

2 @2

@t21
. Employing the test solutions

shown in Eq. 2.22 in Eq. 2.21 and applying the new derivative operators, we come

up with the following equations

✏
@
2
x+1

@t20

+ ✏
2@

2
x+2

@t20

+ 2✏2
@
2
x+1

@t0@t1
+ 2✏3

@
2
x+2

@t0@t1
+ ✏

3@
2
x+1

@t21

+ ✏
4@

2
x+2

@t21

+ ✏
2
µ
@x+1

@t0
+ ✏

3
µ
@x+2

@t0
+ ✏

3
µ
@x+1

@t1
+ ✏

4
µ
@x+2

@t1
+ ✏!

2
+x+1 + ✏

2
!
2
+x+2

+ g1(✏C1x+1 + ✏
2
C1x+2 � ✏C2x�1 � ✏

2
C2x�2)

2 = ✏
2
F+e

i⌦t + C.C.,

(2.23)

✏
@
2
x�1

@t20

+ ✏
2@

2
x�2

@t20

+ 2✏2
@
2
x�1

@t0@t1
+ 2✏3

@
2
x�2

@t0@t1
+ ✏

3@
2
x�1

@t21

+ ✏
4@

2
x�2

@t21

+ ✏
2
µ
@x�1

@t0
+ ✏

3
µ
@x�2

@t0
+ ✏

3
µ
@x�1

@t1
+ ✏

4
µ
@x�2

@t1
+ ✏!

2
�x�1 + ✏

2
!
2
�x�2

+ g2(✏C1x+1 + ✏
2
C1x+2 � ✏C2x�1 � ✏

2
C2x�2)

2 = ✏F�e
i⌦t + C.C..

(2.24)
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Eqs. 2.23 and 2.24 can be simplified by dropping higher order approximations and

only keeping terms to O(✏2) as

✏(
@
2
x+1

@t20

+ !
2
+x+1) + ✏

2[2
@
2
x+1

@t0@t1
+
@
2
x+1

@t21

+
@
2
x+2

@t20

+ µ
@
2
x+1

@t20

+ !
2
+x+2 + g1(C1x+1 � C2x�1)

2 � F+e
i⌦t] = 0, (2.25)

✏(
@
2
x�1

@t20

+ !
2
�x�1 � F�e

i⌦t) + ✏
2[2

@
2
x�1

@t0@t1
+
@
2
x�1

@t21

+
@
2
x�2

@t20

+ µ
@
2
x�1

@t20

+ !
2
�x�2 + g2(C1x+1 � C2x�1)

2] = 0.

(2.26)

(From now on, the complex conjugate C.C. will be ignored for simplicity. However,

the external excitation forces as well as the test solutions x+ and x� will always

be understood to be accompanied by their complex conjugate components unless

specifically clarified.) Eq. 2.25 and Eq. 2.26 are valid for any ✏ if and only if the

terms associated with ✏ and ✏
2 are respectively zero, which results in equations of

motion to di↵erent scales (or to di↵erent orders of ✏).

The equations of motion to first order in ✏ now take the form,

@
2
x+1

@t20

+ !
2
+x+1 = 0, (2.27)

@
2
x�1

@t20

+ !
2
�x�1 = F�e

i⌦t
, (2.28)

where it is important to note that t0 = t, thus F�e
i⌦t = F�e

i⌦t0 . It is now clear from

Eq. 2.27 why F+ is accompanied by ✏2. If F+ has the same order as F� (i.e., ✏F+e
i⌦t),

F+e
i⌦t would appear in the right hand side of Eq. 2.27. However, since the external

excitation frequency ⌦ is close to the resonance frequency !+ of the ‘plus’ mode, x+1

yields a resonant solution as x+1(t0, t1) / t0e
i⌦t0 which is unbounded when time t0

becomes large. Since this is not the case for o↵-resonant cases, the solution of Eq.

2.28 yields x�1(t0, t1) / e
i⌦t0 which is bounded in time t0.
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The solutions to the equations of motion to first order in ✏ are

x+1(t0, t1) = A(t1)e
i!+t0 , (2.29)

x�1(t0, t1) =
F�

�⌦2 + !2
�
e
i⌦t0 +B(t1)e

i!�t0 , (2.30)

where A(t1) and B(t1) are functions of the slow time t1 which must be solved using

the solvability conditions.

The equations of motion to second order in ✏ take the form,

@
2
x+2

@t20

+ !
2
+x+2 = �2

@
2
x+1

@t0@t1
� µ

@x+1

@t0
� g1(C1x+1 � C2x�1)

2 + F+e
i⌦t

, (2.31)

@
2
x�2

@t20

+ !
2
�x�2 = �2

@
2
x�1

@t0@t1
� µ

@x�1

@t0
� g2(C1x+1 � C2x�1)

2
. (2.32)

It is in this order that the damping and nonlinearities (as well as the external ex-

citation term for the ‘plus’ mode) exist. By inserting the first order approximation

solutions Eq. 2.29 and Eq. 2.30 into the right hand side of Eq. 2.31 and Eq. 2.32,

we achieve

@
2
x+2

@t20

+ !
2
+x+2 =� 2i!+

@A

@t1
e
i!+t0 � µi!+Ae

i!+t0 + F+e
i(!+t0+�t1)

� g1[C
2
1A

2
e
i2!+t0 + C

2
2B

2
e
i2!�t0 + C

2
2(

F�

�⌦2 + !2
�
)2ei2(!+t0+�t1)

� 2C1C2ABe
i(!+�!�)t0 � 2C1C2A(

F�

�⌦2 + !2
�
)ei(2!+t0+�t1)

+ 2C2
2B(

F�

�⌦2 + !2
�
)ei(!+t0+!�t0+�t1) � 2C1C2AB

⇤
e
i(!+t0�!�t0)

� 2C1C2A(
F�

�⌦2 + !2
�
)e�i�t1 + 2C2

2B
⇤(

F�

�⌦2 + !2
�
)ei(!+t0�!�t0+�t1)

+ C
2
1AA

⇤ + C
2
2BB

⇤ + C
2
2(

F�

�⌦2 + !2
�
)2] + C.C.,

(2.33)
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@
2
x�2

@t20

+ !
2
�x�2 =� 2i!�

@B

@t1
e
i!�t0 � µi!�Be

i!�t0 + i⌦(
F�

�⌦2 + !2
�
)ei(!+t0+�t1)

� g2[C
2
1A

2
e
i2!+t0 + C

2
2B

2
e
i2!�t0 + C

2
2(

F�

�⌦2 + !2
�
)2ei2(!+t0+�t1)

� 2C1C2ABe
i(!+�!�)t0 � 2C1C2A(

F�

�⌦2 + !2
�
)ei(2!+t0+�t1)

+ 2C2
2B(

F�

�⌦2 + !2
�
)ei(!+t0+!�t0+�t1) � 2C1C2AB

⇤
e
i(!+t0�!�t0)

� 2C1C2A(
F�

�⌦2 + !2
�
)e�i�t1 + 2C2

2B
⇤(

F�

�⌦2 + !2
�
)ei(!+t0�!�t0+�t1)

+ C
2
1AA

⇤ + C
2
2BB

⇤ + C
2
2(

F�

�⌦2 + !2
�
)2] + C.C.,

(2.34)

where A
⇤ and B

⇤ are the complex conjugates of A and B. By writing the external

excitation frequency explicitly as ⌦ = !+ + ✏�, the corresponding exponential term

e
i⌦t0 yields ei⌦t0 = e

i(!++✏�)t0 = e
i(!+t0+�t1) (notice that t1 = ✏t = ✏t0), which allows us

to find and eliminate the secular terms.

In this case, these secular terms lead to unbounded growth in solutions (in a

similar manner as the external excitation terms for a resonating oscillator). In Eq.

2.33, the secular term is the term associated with e
i!+t0 , while in Eq. 2.34, it is the

term associated with e
i!�t0 . Eliminating both (by forcing them to zero) in Eq. 2.33

and Eq. 2.34, the solvability conditions are identified as

�2i!+
@A

@t1
� µi!+A+ F+e

i�t1 = 0, (2.35)

�2i!�
@B

@t1
� µi!�B = 0, (2.36)

which can be easily solved for A and B as

A(t1) =
F+

i!+(µ+ i2�)
e
i�t1 + Ce

�µ
2 t1 , (2.37)

B(t1) = C
0
e
�µ

2 t1 , (2.38)

31



where C and C
0 are constants that can be determined using the initial conditions.

Inserting A(t1) and B(t1) into x+1(t0, t1) and x�1(t0, t1) and deriving the solutions

x+(t0, t1; ✏) and x�(t0, t1; ✏) to first order of approximation yields:

x+(t0, t1; ✏) =✏
�F+

!+(µ2 + 4�2)
1
2

e
iarctg( µ

2� )e
i(�t1+!+t0) + ✏Ce

(�µ
2 t1+i!+t0)

=
�(✏2F+)

!+[(✏µ)2 + 4(✏�)2)]
1
2

e
iarctg( ✏µ

2✏� )e
i(�t1+!+t0) + ✏Ce

(�µ
2 t1+i!+t0),

(2.39)

x�(t0, t1; ✏) =✏(
F�

�⌦2 + !2
�
)ei⌦t0 + ✏C

0
e
(�µ

2 t1+i!�t0)

=
(✏F�)

�⌦2 + !2
�
e
i⌦t0 + ✏C

0
e
(�µ

2 t1+i!�t0).

(2.40)

Noting that ⌦ = !+ + ✏�, t1 = ✏t and t0 = t, Eq. 2.39 and Eq. 2.40 can now be

written in the time t scale as

x+(t) =
�(✏2F+)

!+[(✏µ)2 + 4(⌦� !+)2)]
1
2

e
i[⌦t+arctg( ✏µ

2(⌦�!+) )] + ✏Ce
(� ✏µ

2 t+i!+t)
, (2.41)

x�(t) =
(✏F�)

�⌦2 + !2
�
e
i⌦t + ✏C

0
e
(� ✏µ

2 t+i!�t)
. (2.42)

Hence, we have now derived the solutions to the equations of motion Eq. 2.17 to

first order of approximation. This is adequate for describing the motion of coupled

oscillators when the ‘plus’ mode is in resonance with the external excitation. It is

important, however, to mention that the parameters µ, F+ and F� in Eq. 2.17 are

now represented respectively by ✏µ, ✏2F+ and ✏F� in the solutions given by Eq. 2.41

and Eq. 2.42. In other words, ✏µ is now understood to be the damping (neutral drag)

coe�cient, and ✏
2
F+, ✏F� are understood to be the external excitation amplitudes

transferred into the decoupled ‘plus’ and ‘minus’ basis. Also, after a long time (i.e.,

for large t) ✏Ce
(� ✏µ

2 t+i!+t) and ✏C 0
e
(� ✏µ

2 t+i!�t) in the right hand side of Eq. 2.41 and

Eq. 2.42 will finally decay completely. Therefore, only those parts responding to the

external excitation will be left.
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The situation for an external excitation resonating in the ‘minus’ mode is similar.

In this case, the equations of motion become

ẍ+ + ✏µẋ+ + !
2
+x+ + g1(C1x+ � C2x�)

2 = (✏F+)e
i⌦t

,

ẍ� + ✏µẋ� + !
2
�x� + g2(C1x+ � C2x�)

2 = (✏2F�)e
i⌦t

,

(2.43)

where F� is connected to ✏2, since it is now the ‘minus’ mode resonating with the

external excitation. Following the same approach as before and considering excitation

frequencies close to the ‘minus’ mode resonance frequency (i.e., ⌦ = !� + ✏�), the

solutions to first order of approximation are

x+(t) =
(✏F+)

�⌦2 + !2
+

e
i⌦t + ✏Ce

(� ✏µ
2 t+i!+t)

, (2.44)

x�(t) =
�(✏2F�)

!�[(✏µ)2 + 4(⌦� !�)2)]
1
2

e
i[⌦t+arctg( ✏µ

2(⌦�!+) )] + ✏C
0
e
(� ✏µ

2 t+i!�t)
, (2.45)

where ✏µ, ✏F+ and ✏2F� are understood to be the damping (neutral drag) coe�cient,

and the excitation amplitudes have been transferred into the decoupled basis.

It is also interesting to explore the equations of motion Eq. 2.17 when neither

mode is resonating with the external excitation. In this case, particular emphasis will

be placed on situations where the excitation frequency is not close to either the ‘plus’

mode or ‘minus’ mode resonance frequency, but is instead close to half of the ‘plus’

mode resonance frequency or half of the ‘minus’ mode resonance frequency.

We first discuss the case where the excitation frequency is close to half of the

‘plus’ mode resonance frequency, i.e., ⌦ ⇡ 1
2!+. The equations of motion for this case

(ordered in ✏) are

ẍ+ + ✏µẋ+ + !
2
+x+ + g1(C1x+ � C2x�)

2 = (✏F+)e
i⌦t

,

ẍ� + ✏µẋ� + !
2
�x� + g2(C1x+ � C2x�)

2 = (✏F�)e
i⌦t

.

(2.46)

In Eq. 2.46, both of the external excitation terms (✏F+)ei⌦t and (✏F�)ei⌦t are ordered

in such a way that they do not appear at the same order of ✏ as do the damping and
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nonlinearities when considering possible test solutions. (This will be shown below.)

It is important to note that since none of the modes now resonate with the external

excitation, it is not necessary to order the excitation terms to the same order of ✏ as

damping and nonlinearities.

Following a similar approach as above, we introduce Eq. 2.22 as test solutions

and insert them into Eq. 2.46. Keeping terms up to O(✏2), we have

✏(
@
2
x+1

@t20

+ !
2
+x+1 � F+e

i⌦t) + ✏
2[2

@
2
x+1

@t0@t1
+
@
2
x+1

@t21

+
@
2
x+2

@t20

+ µ
@
2
x+1

@t20

+ !
2
+x+2 + g1(C1x+1 � C2x�1)

2 = 0, (2.47)

✏(
@
2
x�1

@t20

+ !
2
�x�1 � F�e

i⌦t) + ✏
2[2

@
2
x�1

@t0@t1
+
@
2
x�1

@t21

+
@
2
x�2

@t20

+ µ
@
2
x�1

@t20

+ !
2
�x�2 + g2(C1x+1 � C2x�1)

2] = 0.

(2.48)

Equating all terms associated with ✏ and ✏2 to zero, we obtain equations of motion

to first and second order of ✏.

The equations of motion to the first order of ✏ yield

@
2
x+1

@t20

+ !
2
+x+1 = F+e

i⌦t
, (2.49)

@
2
x�1

@t20

+ !
2
�x�1 = F�e

i⌦t
, (2.50)

which have the solution

x+1(t0, t1) =
F+

�⌦2 + !2
+

e
i⌦t0 + A(t1)e

i!+t0 , (2.51)

x�1(t0, t1) =
F�

�⌦2 + !2
�
e
i⌦t0 +B(t1)e

i!�t0 , (2.52)

where again A(t1) and B(t1) are functions of slow time t1 that can be determined by

eliminating the secular terms. Solutions to the first order of approximation inserted
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into the equations of motion to the second order of ✏ yield

@
2
x+2

@t20

+ !
2
+x+2 = �2

@
2
x+1

@t0@t1
� µ

@x+1

@t0
� g1(C1x+1 � C2x�1)

2
, (2.53)

@
2
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2
�x�2 = �2

@
2
x�1

@t0@t1
� µ

@x�1

@t0
� g2(C1x+1 � C2x�1)

2
, (2.54)

identifying the secular terms. Substituting Eq. 2.51 and Eq. 2.52 into Eq. 2.53 and

Eq. 2.54, we achieve

@
2
x+2

@t20

+ !
2
+x+2 =� 2i!+

@A

@t1
e
i!+t0 � µi!+Ae

i!+t0 � µi
⌦F+

�⌦2 + !2
+

e
i( 12!+t0+

1
2 �t1)

� g1{C2
1A

2
e
i2!+t0 + C

2
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2
e
i2!�t0

+ [C1(
F+

�⌦2 + !2
+

)� C2(
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�⌦2 + !2
�
)]2ei(!+t0+�t1)

+ 2[C2
1A(

F+

�⌦2 + !2
+

)� C1C2A(
F�

�⌦2 + !2
�
)]ei(

3
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1
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(2.55)
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� 2C1C2(
F+
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F�

�⌦2 + !2
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)}+ C.C.,

(2.56)

where we write explicitly the excitation frequency close to half of the ‘plus’ mode

resonance frequency as ⌦ = 1
2!+ + 1

2✏� and consider the slow time t1 = ✏t0 and fast

time t0 = t. In this case, the secular term in Eq. 2.55 is the term associated with

e
±i!+t0 (i.e., the part oscillating at the resonance frequency of the ‘plus’ mode !+),

while the secular term in Eq. 2.56 is the term associated with e
±i!�t0 (i.e., the part

oscillating at the resonance frequency of the ‘minus’ mode !�).

However, unlike the situation in Eq. 2.33 and Eq. 2.34, it is not easy to identify the

secular terms (i.e., those associated with e
±i!+t0 and e

±i!�t0) in Eq. 2.55 and Eq. 2.56

because there are addition and subtraction calculations between fractional multiplica-

tion of !+ and !� involved which might result in additional secular components. As a

representative example, the term [2C2
2B( F�

�⌦2+!2
�
)�2C1C2B( F+

�⌦2+!2
+
)]ei[(!�+ 1

2!+)t0+
1
2 �t1]

in Eq. 2.55 will become a secular component if (!� + 1
2!+) ⇡ !+ which is pos-

sible if the resonance frequency of the ‘minus’ mode is close to half of the reso-
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nance frequency of the ‘plus’ mode: !� ⇡ 1
2!+. Similarly, the term in Eq. 2.56

2[C2
1A(

F+

�⌦2+!2
+
)�C1C2A(

F�
�⌦2+!2

�
)]e�i( 12!+t0+

1
2 �t1) will become a secular component as

well under this condition since now 1
2!+ is approximately equal to !�. When rela-

tionships of the sort !� ⇡ 1
2!+ hold in the system, we say that the system is tuned to

an internal resonance state where the ‘plus’ mode resonates with the ‘minus’ mode in

the nonlinear regime. It is clear that for the present system with quadratic nonlinear-

ities !� ⇡ 1
2!+, this is the only condition that can generate new secular components.

For some complex systems, the triggering of an internal resonance is not limited to

just the condition of a 1:2 relationship (i.e., !� : !+ ⇡ 1 : 2), but may occur due to

any fractional relationship between resonance frequencies of system modes. In this

case, additional secular components can possibly trigger an internal resonance. For

instance, in a system with cubic nonlinearities, a 1:3 relationship between resonance

frequencies of di↵erent modes becomes a typical condition for the system to be tuned

into an internal resonance state.

For the case at hand, we ignore all internal resonances and assume that the res-

onance frequency of the ‘minus’ mode is far from the ‘plus’ mode, i.e., !� 6⇡ 1
2!+.

Under these assumptions, we can eliminate the secular terms in Eq. 2.55 and Eq.

2.56 in the following way,

�2i!+
@A

@t1
� µi!+A� g1[C1(

F+

�⌦2 + !2
+

)� C2(
F�

�⌦2 + !2
�
)]2ei�t1 = 0, (2.57)

�2i!�
@B

@t1
� µi!�B = 0. (2.58)

These equations yield straight-forward solutions as

A(t1) =
g1[C1(

F+

�⌦2+!2
+
)� C2(

F�
�⌦2+!2

�
)]2

�2i� � µ
e
i�t1 + Ce

�µ
2 t1 , (2.59)

B(t1) = C
0
e
�µ

2 t1 , (2.60)
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where C and C
0 are again initial condition dependent constants. Using Eq. 2.59 and

Eq. 2.60 in Eq. 2.51 and Eq. 2.52, solutions to the first order of approximation are

x+(t0, t1; ✏) =
✏F+

�⌦2 + !2
+

e
i⌦t0 + ✏

g1[C1(
F+

�⌦2+!2
+
)� C2(

F�
�⌦2+!2

�
)]2

!+(µ2 + (2�)2)
1
2

e
i[!+t0+�t1+arctg( µ

2� )]

+ ✏Ce
�µ

2 t1+i!+t0 ,

(2.61)

x�(t0, t1, ✏) =
✏F�

�⌦2 + !2
�
e
i⌦t0 + ✏C

0
e
�µ

2 t1+i!�t0 . (2.62)

Again, considering ⌦ = 1
2!+ + 1

2✏�, t1 = ✏t and t0 = t, Eq. 2.61 and Eq. 2.62 can be

written in the original time scale as

x+(t) =
(✏F+)

�⌦2 + !2
+

e
i⌦t +

g1[C1(
✏F+

�⌦2+!2
+
)� C2(
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1
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e
i[2⌦t+arctg( ✏µ

4⌦�2!+
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+ ✏Ce
� (✏µ)
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(2.63)

x�(t) =
(✏F�)

�⌦2 + !2
�
e
i⌦t + ✏C

0
e
� ✏µ

2 t+i!�t
, (2.64)

where ✏µ, ✏F+ and ✏F� are understood to be the damping coe�cient and the external

excitation amplitude in the decoupled basis. Similar to the situation where modes

directly resonate with the excitation (Eq. 2.41 and Eq. 2.42, or Eq. 2.44 and Eq.

2.45), the parts oscillating at the mode resonance frequencies will normally decay at

large time t leaving terms that respond only to the external excitation. However, the

situation here is a bit di↵erent. As can be seen in Eq. 2.63, besides the term oscillating

at exactly the external excitation frequency (✏F+)
�⌦2+!2

+
e
i⌦t, there is also another term

oscillating at twice the external excitation frequency

g1[C1(
✏F+

�⌦2+!2
+
)� C2(

✏F�
�⌦2+!2

�
)]2

!+[(✏µ)2 + 4(2⌦� !+)2]
1
2

e
i[2⌦t+arctg( ✏µ

4⌦�2!+
)]

(with a shifted phase ✓ = arctg( ✏µ
4⌦�2!+

)). This term is a secondary response to the

excitation and is called the ‘super-harmonic response’. It is important to point out
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that the secondary response appears in the solution to the first order of approximation

(instead of a higher order approximation), which means that this secondary response

is not trivial. It is, in fact, at least as significant as the primary response (i.e., the

term oscillating at the exact excitation frequency) and should be detectable. This

significant secondary response is a direct consequence of the quadratic nonlinearities

inherent in the system.

For the case where the excitation frequency is close to the resonance frequency of

the ‘minus’ mode, the above remains the same until we reach Eq. 2.56, where the

secular terms need to be eliminated. For this case, the excitation frequency can be

written explicitly as ⌦ = 1
2!� + 1

2✏� with the understanding that there is no internal

resonance being considered !� 6⇡ 1
2!+. The corresponding solvability conditions are

�2i!+
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� µi!+A = 0, (2.65)
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with solutions

A(t1) = Ce
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2 t1 , (2.67)
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The solutions to the equations of motion Eq. 2.46 to the first order of approximation

are correspondingly:
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(2.70)
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where ✏µ, ✏F+ and ✏F� are again the damping coe�cient and the amplitudes of the

external excitation in the decoupled coordinates.

To summarize, in this chapter we have derived the solutions for a system of cou-

pled driven oscillators with non-reciprocal and nonlinear (quadratic nonlinearities)

interaction (Eq. 2.16). Depending on the frequency of the excitation term, the so-

lutions take di↵erent forms, i.e., in the primary excitation region, the solutions have

the form shown in Eq. 2.61 and Eq. 2.62, while in the secondary region, the solutions

take the forms given in Eq. 2.69 and Eq. 2.70. These solutions will now be used to

describe the response behaviors of vertically aligned dust particle pairs levitated in

the plasma sheath region to reveal the intrinsic nonlinearities in this particle-particle

interaction.

40



CHAPTER THREE

Nonlinear Non-reciprocal Grain-Grain Interactions in the Direction of Ion Flow

This chapter mainly focuses on the experimental study of nonlinear interactions

between grains aligned in the direction of the ion flow. (The detailed content of mea-

suring the nonlinear grain-grain interaction in the direction of the ion flow is pub-

lished in ‘Nonlinear response of vertical paired structure in complex plasma’ by Ding

et. al [43]). Compared to the grain-grain interactions in the direction perpendicular

to the ion flow, the interactions along the ion flow are much more asymmetric. The

obvious reason is that the upstream and downstream particles are influenced by the

streaming ions to a very di↵erent extent. When passing upstream particles, stream-

ing ions are deflected and will be re-concentrated downstream as the ion wake. This

makes the downstream particles much more vulnerable to e↵ects caused by the ion

wake. In the experiment, we focused on vertically aligned dust pairs (parallel to the

ion flow), which is the simplest structure that still involves grain-grain interactions.

3.1 Experimental Equipment

The experiment was conducted in a modified Gaseous Electronic Conference (GEC)

RF reference cell at the Center for Astrophysics, Space Physics, and Engineering Re-

search (CASPER) at Baylor university. A GEC RF reference cell is a type of parallel

plate, capacitively-coupled, RF plasma reactor that is suitable for studies of basic

discharge phenomena, investigation of industrial-type plasmas, and theoretical mod-

eling [44]. GEC reference cells were developed in response to the problem that plasma

properties are strongly a↵ected by the geometry of the discharge camber, preventing

a meaningful comparison of research from di↵erent plasma systems. As a standard

reference system, data obtained from a GEC RF reference cell are comparable to each

other regardless of where the experiment is conducted in the world [45].
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Fig. 3.1 shows one of the modified GEC RF reference cells (Cell 1) built at

CASPER. The main vacuum chamber is highlighted by the yellow box (a) in Fig. 3.1.

There is an upper electrode and a lower electrode mounted inside the chamber, and

several monitoring windows were created around the chamber to enable visualization

of the inside of the chamber. The region enclosed by the blue box (b) is the vacuum

pumping system. This allows the chamber system to be pumped to a high vacuum

of 10�6 Torr when it is not running. The red boxes (d) highlight the gas injection

system. The lowest gas pressure without loss of the plasma ignition for this system is

around 10 mTorr. The illumination laser (with wavelength 660 nm) and the camera

(for recording of dust particles trajectories) are highlighted by the white (c) and the

green (e) boxes respectively, and they are controlled by the controller (purple box)

(f).

Figure 3.1: Modified GEC RF reference cell built at CASPER (the Cell 1). a) main chamber,
b) vacuum pumping system, c) laser, d) gas injection system, e) camera and f) laser and
camera controller.
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Fig. 3.2 shows the electronic system for this modified GEC RF reference cell.

The blue box (a) encloses the oscilloscopes for monitoring the forward and backward

(reflected) RF signals as well as the peak to peak voltage and DC bias on the lower

electrode. The purple box (b) marks the power supply for the illumination lasers.

The orange box (c) indicates the RF signal generator which is used to provide RF

signals to ignite gas discharge, and this generator is coupled to the power amplifier

indicated by the white box (g). The green box (d) shows a regular signal function

generator which can provide desired functions according to the experiment design.

The yellow box (f) designates the DC power supply which controls the voltage on the

DC bias. The RF power can be controlled either remotely or locally by the controller

boxes (e, h).

A sketch of the main parts of the modified GEC RF reference cell is shown in Fig.

3.3.

3.2 Experiment

Melamine Formaldehyde (MF) particles with a diameter of 8.89 ± 0.09 µm were

used as dust particles and were dropped into the chamber using the dust shaker

mounted above the top electrode. Dust particles were directly dropped into a glass

box of size of 20 mm ⇥ 18 mm ⇥ 18 mm (height ⇥ length ⇥ width) placed on the lower

electrode, which provides strong horizontal confinement facilitating the formation of

vertical chain (pair) structures. Initially, a dust cloud was formed and levitated in

the box. However, by carefully reducing the plasma power, the dust particles can

be dropped onto the lower electrode in a controlled fashion, leaving a single chain

structure at low plasma power. Once there were only two particles left, i.e., a vertical

dust pair structure was formed, the plasma power was raised to the desired value

for the experiment. The plasma power and pressure were kept constant in each

experimental trial.
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Figure 3.2: The electronic devices for the modified GEC RF reference cell built at CASPER.
a) oscilloscopes, b) laser power supply, c) RF signal generator, d) signal function genera-
tor, e) variable passive attenuator, f) DC power supply, g) power amplifier and h) remote
controller for the RF power.

Figure 3.3. The sketch for the modified GEC RF reference cell built at CASPER.
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A function generator coupled to the lower electrode through an 20 dB attenuator

was employed to provide a sinusoidal driving force with adjustable frequency and

amplitude to the dust pair. To study the response of the dust pair to the external

excitation, a continuous frequency scan of the excitation signal was made to track the

particles’ motion at each excitation frequency. In order to obtain a full response curve

that was useful for the purpose of studying the nonlinear grain-grain interaction, the

frequency scan was designed to cover the natural resonance frequency of the sloshing

and breathing modes (for measuring the primary responses) and half of the natural

resonance frequency of the sloshing and breathing mode (for measuring the secondary,

or super-harmonic, responses). Usually, a scan from 0 Hz to 50 Hz is enough to

cover all the resonance frequencies of interest. As such, during each experimental

measurement of the response curves, the excitation frequency was scanned over a

desired region, but the excitation amplitude was fixed.

The motion of the particles was recorded by the side-mounted high speed camera

working at a frame rate of 500 frames per second. As an example, Fig. 3.4 shows

the particles’ positions for a complete external excitation cycle (i.e., in one complete

period T of the excitation). Depending on the external excitation frequency and the

frame rate of the high speed camera, the total number of frames that can be retrieved

in one excitation period is

Nframes =
fcamera

fexcitation
, (3.1)

where fcamera is the frame rate of the high speed camera and fexcitation is the fre-

quency of the external excitation. For the example in Fig. 3.4, there are around 27

consecutive pictures taken in one excitation period at an excitation frequency of 18

Hz and a camera frame rate of 500 fps. In order to accurately retrieve information

about the particles’ periodic motion, this number of consecutive pictures taken in

one period has to be large enough (at least 9 consecutive pictures) to provide a good

resolution of the oscillating behavior. The exact position of each particle in a series of
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Figure 3.4: One complete period T of the motion of the externally driven dust pair. Ex-
periment conditions: pressure at 40 mTorr, plasma power at 9.82 Watt, external sinusoidal
excitation amplitude at 1 Volt and excitation frequency at 18 Hz. This excitation frequency
is close to the sloshing mode resonance frequency.
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consecutive pictures can be extracted using any standard particle tracking technique

(‘ParticleTracker’ package in ‘ImageJ’ is used as the technique for particle tracking

in our lab). As such, the particles’ motion as a function of time can be retrieved for

further study.

3.3 Scanning Mode Spectra

As illustrated in chapter two, this type of vertically aligned dust pair can be

modeled as two coupled oscillators confined in the plasma sheath region. One direct

experimental method of measuring the resonance frequency of each coupled mode is

measuring the mode spectra.

In the classical normal mode spectra method [46–49], the Brownian motion of each

particle around its equilibrium position is recorded as ~ri(t), where i is the particle

index. Based on this thermal fluctuation, each particle velocity is obtained as

~vi(t) = [~ri(t)� ~ri(t� 1))]⇥ fcamera, (3.2)

where fcamera is the frame rate of the high speed camera. Then the particle velocities

are projected onto the normal mode vectors and are summed over the particles for

each normal mode as follows,

vl(t) =
NX

i=1

~vi(t) · ~ei,l, (3.3)

where l is the index of the normal vector, N is the total number of particles, and ~ei,l

is the ith component of the lth normal vector which can be theoretically derived from

the Hessian matrix of the total energy of the system. Finally, the mode spectra (i.e.,

the spectra power density,) can be calculated as,

Sl(!) =
2

T
|
Z T

0

vl(t)e
�i!t

dt|2. (3.4)

From the mode spectra, the energy distribution is mapped as a function of frequency

for each normal mode, and the frequency with the greatest energy concentration is
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assumed to be the resonance frequency of the mode. This method is not limited

by the number of particles in the system as long as the normal mode vectors can

be exactly retrieved. This has been successfully applied to 2D dust crystal lattice

with tens to hundreds of dust particles. This method heavily relies on the fact that

the system yields orthogonal normal modes, so it is reasonable to apply to the 2D

structure where the ion wake has a symmetric e↵ect. However, for our vertically

aligned pair structure, the particle-particle interaction is strongly perturbed by the

ion wake and is non-reciprocal. Thus there are no longer orthogonal normal modes,

which makes the classical normal mode spectra method unsuitable here.

To deal with the situation of non-reciprocal interactions, and more importantly

to exactly measure the perturbed mode, we have extended the normal mode spectra

method to accommodate the non-orthogonal mode analysis for a vertically aligned

dust pair, using a method we call the ‘Scanning Mode Spectra’ [50].

In the ‘Scanning Mode Spectra’ (or SMS), we obtain the particle velocities in

the same way as in the classical normal mode spectra method. But, rather than

projecting the velocities onto theoretically calculated normal modes, we try all the

possible modes. For example, the classical normal modes for two coupled oscillators

are the antisymmetric mode (where both oscillators move in phase) and the symmetric

mode (where both oscillators move 180 degrees out of phase). (Identical confinement

and reciprocal interactions are assumed for simplicity.) These modes can be written

generally as

⌘i =

2

64
x1(t)

x2(t)

3

75 = c

2

64
a

b

3

75ei!it+�i , (3.5)

with a = b for the antisymmetric mode and a = �b for the symmetric mode. In the

classical normal mode spectra method, we only project the particle velocities onto

these two modes and obtain the spectra power density. However, in the Scanning
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Mode Spectra method, we explore all the possible combination of a and b by setting

a = cos( ),

b = sin( ),
(3.6)

where  is the polarization angle. By scanning  from 0 to ⇡, we are able to retrieve

all the possible modes, and the particle velocities are then projected onto all of these

modes to get a continuous spectra power density map.

Figure 3.5: Scanning mode spectra for the particles’ thermal motion.The sloshing mode
frequency !� is approximately 18.5 Hz with polarization angle  � = 0.89. The breathing
mode frequency !+ is approximately 32 Hz with polarization angle  + = 1.91. Decoupling
parameters can be determined by taking the cotangent of the polarizations, a� = cot( �)
and a+ = cot( +).

As an example [43], the SMS for the vertical thermal motion of the particle pair

is shown in Fig. 3.5 where the plasma power is 9.82 W, pressure 40 mTorr, and the

scanning step for the polarization angle is� = 0.01⇡. Two maximum intensity spots

in the SMS indicated by black circles mark the information of the exact mode found

for the particle pair. From the definition of the polarization angle (Eq. 3.6), it is easy

to tell that a mode is sloshing-like (particles move in phase) when the polarization

angle is less than ⇡
2 , while it is breathing-like (particles move out of phase) when the

polarization angle is greater than ⇡
2 . Thus, this first mode is a sloshing mode with a

resonance frequency of !� = 18.5 Hz. The polarization angle  � = 0.89 of this mode
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obviously deviates from that of a classical antisymmetric mode  antisymmetric = ⇡
4 .

The second mode is a breathing mode with a resonance frequency of !+ = 32 Hz

and a polarization angle of  + = 1.91. Again, this polarization angle is di↵erent

from the polarization angle for a classical symmetric mode  symmetric =
3⇡
4 . With the

polarization angle measured, the decoupling parameters ↵� and ↵+ (see Eq. 2.3) are

in turned calculated to be ↵� = cotan( �) = 0.81 and ↵+ = cotan( +) = �0.35,

which will be used for the later decoupling process.

Notice that, in this chapter, the study of nonlinear behavior is restricted to only

the vertical direction, thus all the analysis, e.g., the SMS, are conducted by only

analyzing the particle motion in the vertical direction. The SMS can be obtained

in the same way for horizontal thermal motion and this will be discussed in a later

chapter where the interaction between the vertical and the horizontal motion are

considered.

The limitation of this method is clear in that it would become troublesome when

the number of particles increases, i.e., the degrees of freedom increase. For a pair

system with two degrees of freedom, the whole mode space can be easily explored in

polar coordinates by the polar angle  . For a system with three degrees of freedom,

the whole mode space can still be explored in spherical coordinates by assigning a

polar angle  and an azimuthal angle � where the displacement of each particle in the

mode is sin( )cos(�), sin( )sin(�) and cos( ), respectively. However, as the number

of degrees of freedom goes beyond three, not only does the calculation of mode space

become extremely complicated, but the visualization of the spectra map (more than

three dimensions) becomes impossible. Thus, the SMS method has a good application

for our system of two degrees of freedom, and would have a potential application for a

three-particle system. For systems with higher degrees of freedom, the SMS method

needs further modifications.
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3.4 Decoupling Particles Motion

The particle motion is strongly coupled in that the motion of each particle contains

the components of both of the modes simultaneously. Fig. 3.6 shows the typical

motion of the particles with excitation in the vertical direction for both upstream and

downstream particles. Fig. 3.7 shows the corresponding Fast Fourier Transformation

(FFT) spectra.

Figure 3.6: The time series of the original particles’ motion in the vertical direction being
driven by a 5 Hz external sinusoidal excitation. The motion of the upstream particle is
shown in (a) and the motion of the downstream particle is shown in (b).

The FFT shows clearly that there is a cluster of peaks at around 18 Hz (enclosed

by the red oval) and a cluster of peaks at around 32 Hz (enclosed by the green oval)

corresponding to the sloshing and the breathing mode respectively. Due to this strong

coupling, studying the nonlinear behavior directly in the original coordinates would

be complicated.

However, as illustrated in chapter two, the particles’ motion can be theoretically

decoupled by conducting the transformation using Eq. 2.5. Applying the same ap-

proach, the time series of the particles’ motion recorded from the experiment can also
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Figure 3.7: The Fast Fourier Transformation (FFT) spectra for the particles’ motion in
Fig. 3.6. The FFT for the upstream particle is shown in (a) and that for the downstream
particle is shown in (b). The sloshing mode components are highlighted by the red oval,
while the breathing mode components are highlighted by the green oval. There are also
peaks appearing at 5 Hz and 10 Hz which are responses to the external excitation. The
peak appearing at 30 Hz is considered as system noise that persists through the whole
experiment.

be transferred into the decoupled coordinates by applying the transformation:

x+(t) = x1(t)� ↵�x2(t),

x�(t) = x1(t)� ↵+x2(t),
(3.7)

where ↵� and ↵+ are the decoupling parameters measured from the SMS.

Fig. 3.8 shows the particles motion transferred into the new coordinates, i.e., x+

coordinate and x� coordinate. To verify that the sloshing mode is indeed decoupled

from the breathing mode, the FFT spectra are again measured in those two coordi-

nates and are shown in Fig. 3.9. As shown, in the sloshing mode coordinate, i.e.,

the x� coordinate (Fig. 3.9a), the breathing mode components (the cluster of peaks

evident at 32 Hz) has been eliminated and only the sloshing mode components remain

(the cluster of peaks at 18 Hz). Similarly, in the breathing mode coordinate, i.e., the

x+ coordinate (Fig. 3.9b), the sloshing mode component has been eliminated and the

only the breathing mode components are left. The di↵erences are highlighted by the
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red and green ovals. Therefore, the validity of the proposed decoupling process has

been also confirmed by the experiments.

Figure 3.8: The oscillation motion in the decoupled sloshing and breathing coordinates
by conducting the transformation in Eq. 3.7. The upper panel shows the motion in the
sloshing mode coordinate (x�) and the lower panel shows the motion in the breathing mode
coordinate (x+).

It is worthy to mention that traditional decoupling coordinates that have been

widely used in a variety of fields are the center of mass coordinate and the relative

displacement coordinate. A comparison between the proposed decoupling coordinates

to these traditional decoupling coordinates is illustrated here. The traditional center

of mass coordinate is xcom(t) = x1(t) + x2(t), which is nothing but a perfect sloshing

coordinate (a di↵erence of a factor of 1
2 is ignored) with ↵+ = �1 in Eq. 3.7. Likewise,

the traditional relative coordinate is xrelative(t) = x1(t) � x2(t), which is a perfect

breathing coordinate (a di↵erence of a factor of 1
2 is ignored) with ↵� = �1 in Eq.

3.7. The FFT spectra of the particles’ motion in these two traditional decoupling

coordinates are also measured and are shown in Fig. 3.10.
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Figure 3.9: The corresponding FFTs for the oscillation motion in the decoupled coordinates
in Fig. 3.8. a) the FFT for the motion in the sloshing mode coordinate. b) the FFT for the
motion in the breathing mode coordinate. The sloshing and breathing mode components
are highlighted by the red and green ovals, respectively.

Figure 3.10: The FFTs for the traditional decoupling coordinates a) the center of mass
coordinate and b) the relative coordinate. The undesired breathing mode components and
sloshing mode components are highlighted by the green and red circles respectively.
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Although these coordinates does an overall good job in decoupling the modes,

there is still considerable response at the sloshing frequency for the relative coor-

dinate (highlighted by the red circle), and considerable response at the breathing

frequency for the center of mass coordinate (highlighted by the green circle). Since

the traditional decoupling coordinates are originally designed for decoupling orthog-

onal normal modes with reciprocal coupling (interactions), their failure in completely

decoupling non-orthogonal modes resulting from the non-reciprocal coupling is not

unanticipated. As such, in order to achieve a more reliable decoupled motion for a

dust pair with non-reciprocal interactions, the newly introduced sloshing and breath-

ing coordinates are preferable.

3.5 Measuring the Amplitude-Frequency Response Curves from Experiment

One of the most fundamental methods used to study the nonlinear behavior is to

analyze the amplitude-frequency response curves in response to an external excitation.

The amplitude-frequency responses have already been theoretically derived in chapter

two as the amplitudes of the response at desired frequencies. For example, (✏F+)
�⌦2+!2

+

in Eq. 2.63 is the amplitude for the response at exactly the excitation frequency,

which is also known as the primary response, and
g1[C1(

✏F+
�⌦2+!2

+
)�C2(

✏F�
�⌦2+!2

�
)]2

!+[(✏µ)2+4(2⌦�!+)2]
1
2

in Eq.

2.63 is the amplitude for the response at twice the excitation frequency, known as

the secondary response (or more precisely, the super-harmonic response). As there

should be a response at half of the excitation frequency, it will be designated as the

sub-harmonic response, which we shall see in a later chapter where the interaction

between the vertical and horizontal motion is considered.

In the experiment, the amplitude-frequency responses can either be directly mea-

sured in the original x1 and x2 coordinates, or be measured in the decoupled x� and

x+ coordinates. Since our theoretical responses are derived in the decoupled coor-

dinates, the experimental amplitude-response curves will also be measured in those

coordinates.
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To experimentally measure the amplitude-frequency responses, the particles’ mo-

tion has to first be transformed into the decoupled sloshing mode coordinate and

breathing mode coordinate. Then, the FFT spectra is calculated for the motion in

each of these coordinates. Fig. 3.11 shows exactly the same FFT spectra as in Fig.

3.9, but on a logarithmic scale.

Figure 3.11: FFT spectra for oscillation motion in the decoupled coordinates with y axis in
logarithm scale. The particle pair was driven by an external sinusoidal excitation at 5 Hz.

As shown by the red and green rectangles, there are strong peaks at 5 Hz and

relatively weak peaks at 10 Hz. Since the frequency of the external sinusoidal exci-

tation is 5 Hz, the height of the 5 Hz peak is measured to be the primary response

amplitude and the height of the 10 Hz peak is measured to be the super-harmonic

response amplitude for an excitation at 5 Hz. It is obvious in these logarithmic plots

that the primary responses are larger than the super-harmonic responses by several

orders of magnitude. This is because the super-harmonic responses are caused by the

nonlinearities of the system, and the nonlinear e↵ects are usually small compared to

the linear e↵ects. Small as the super-harmonic responses be, they are still detectable

and can be clearly distinguished from the noise in the FFT spectra. This is promis-
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ing for us to be able to study the nonlinearities in terms of the amplitude-frequency

responses for dust pair in our GEC reference cell.

So far, we have showed an example of measuring responses at a specific excitation

frequency. To obtain a continuous amplitude-frequency response curve, we need to

drive the dust particle pair at many di↵erent excitation frequencies, and measure the

corresponding response amplitude as a function of the excitation frequency.

It is important to mention here that the resolution of the FFT spectra should be

greater than the resolution of the amplitude-frequency response curve,

�fexcitation >=
fcamera

Nframes
, (3.8)

where �fexcitation is the step of the scanning of the external excitation frequency,

fcamera is the frame rate of the camera and Nframes is the total number of frame

taken by the camera. For example, if we measure an amplitude-frequency response

curve by varying the excitation frequency every 0.1 Hz with a frame rate fixed at

500 fps, then at least 5000 frames are required. Otherwise, the measurement of

response from the FFT spectra would be less reliable. In addition, to ensure that the

amplitude-frequency response curve covers the frequency region of interest, the frame

rate of the camera has to be at least twice as large as the frequency of interest, since

the FFT spectra is always ‘mirrored’. For example, if we want to measure a response

at 100 Hz (the height of the peak appearing at 100 Hz in the FFT spectra), the frame

rate of the camera has to be larger than 200 fps.

3.6 Measuring the Coe�cients of the Nonlinear Grain-Grain Interactions

(This work has been published in ‘Nonlinear response of vertical paired structure

in complex plasma’, Ding et al., Plasma Physics and Controlled Fusion [43].)

As explained in chapter two, the vertically aligned dust pair in the plasma sheath

can be modeled as two coupled oscillators. If the grain-grain interaction were non-

reciprocal and were considered in the nonlinear regime, the equations of motion will
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be described as Eq. 2.16. To better explain the model, a scheme of the model is

shown in Fig. 3.12.

Figure 3.12: Scheme of the model for a vertically aligned dust particle pair in the
plasma sheath region. The dust particles are trapped in parabolic potential wells � =
1
2m1(2)!

2
1(2)x

2
1(2). The subscripts 1 and 2 correspond to the upstream and downstream dust

particle. The variation of the particle-particle interaction force due to the deviation from
the equilibrium position is determined by �F1(2) = �m1(2)[k1(2)(x1(2)�x2(1))+k01(2)(x1(2)�
x2(1))

2], where k1(2) and k01(2) are related to the first and second derivative of the interac-

tion force at the equilibrium inter-particle distance R0 through k1(2) = F 0
1(2)(R0)/m1(2) and

k01(2) = F 00
1(2)(R0)/2m1(2). Here, the interaction force is not presumed to have any particular

form.

The dust particles are separated by R0 at the equilibrium positions (dashed circles)

and are confined in parabolic potential wells � = 1
2m1(2)!

2
1(2)x

2
1(2) where !2

1(2) are

known as the confinements due to the electrostatic forces in the plasma sheath and

x1(2) are the displacements for the upstream and downstream dust particles. As the

dust particles move away from the equilibrium positions (solid circles), the real time

particle-particle spacing becomes R = R0 + x1 � x2 where the positive x direction

is upward. Since the particle-particle interaction forces are functions of particle-

particle spacing, any change in the particle-particle spacing will change the interaction
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forces. Under the assumption that the inter-particle spacing has a small fluctuation

around the equilibrium value R0, i.e., x1 � x2 is small, which is valid in the entire

experiment of scanning external excitation frequencies, the interaction forces can be

Taylor expanded around the interaction forces at equilibrium F1(2)(R0) as F1(2)(R0)+

�F1(2) where �F1(2) contain the first and the second derivatives (any higher order

derivatives are ignored) of the interaction force at equilibrium as:

�F1(2) = �[F 0
1(2)(R0)(x1(2) � x2(1)) + F

00
1(2)(R0)(x1(2) � x2(1))

2]. (3.9)

Comparing Eq. 3.9 to the model Eq. 2.16, we find that k1, k2 and k
0
1, k

0
2 are nothing

but the first and second derivatives of the interaction forces normalized by the particle

mass as:

k1 = F
0
1(R0)/m1,

k2 = F
0
2(R0)/m2,

k
0
1 = F

00
1 (R0)/2m1,

k
0
2 = F

00
2 (R0)/2m2.

(3.10)

As such, the quadratic nonlinear parts of the interaction forces (or the second deriva-

tives of the interaction forces) can be determined by the measurements of k0
1 and

k
0
2.

To measure k0
1 and k

0
2, we need first to measure the experimental primary response

curves in the decoupled sloshing and breathing mode coordinates and to fit them to

the theoretical responses derived in Eq. 2.41 and Eq. 2.44. To be more specific,

the response curve at excitation frequencies around the resonance frequency of the

breathing mode needs to be measured in the breathing mode coordinate and will be

fitted to the response terms �(✏2F+)

!+[(✏µ)2+4(⌦�!+)2)]
1
2
in Eq. 2.41. Likewise, for the response

curve at excitation frequencies around the resonance frequency of the sloshing mode,

it needs to be measured in the sloshing mode coordinate and will be fitted to the re-

sponse terms �(✏2F�)

!�[(✏µ)2+4(⌦�!�)2)]
1
2
in Eq. 2.44. By performing these fits, the excitation
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amplitudes in the decoupled coordinates ✏2F+, ✏2F�, the drag coe�cient ✏µ and the

resonance frequencies of each mode !+, !� can be measured.

It is noticed that even though the representation of the excitation amplitudes are

di↵erent in di↵erent regions of interests, the exact value of the excitation amplitudes

should be consistent over all regions. For example, in the primary breathing re-

gions (i.e., excitation frequencies are around the resonance frequency of the breathing

mode), the excitation amplitude in the breathing coordinate is represented as ✏2F+

and that in the sloshing coordinate is represented as ✏F� (see Eq. 2.21). While in

the primary sloshing regions, the excitation amplitude in the breathing coordinate is

represented as ✏F+ and that in the sloshing coordinate is represented as ✏2F� (see

Eq. 2.43). In spite of the di↵erence in the representations, the excitation amplitudes

in the decoupled coordinates should be consistent, i.e., the value of ✏2F+ measured

in the primary breathing mode coordinate is equal to the value of ✏F+ measured in

the primary sloshing mode coordinate, since the amplitude of the excitation signal is

was fixed during the entire frequency scan. Similarly, the value of ✏F� measured in

the primary breathing mode coordinate is equal to the value of ✏2F� measured in the

primary sloshing mode coordinate and this value is understood to be the amplitude

of the excitation signal in the sloshing coordinate. Since we are fitting the breathing

mode response curve in the primary breathing region and the sloshing mode response

curve in the primary sloshing region, the amplitude of the excitation in the decoupled

coordinates are represented by ✏
2
F+ and ✏

2
F�. For convenience, we introduce two

new parameters F ⇤
+ and F

⇤
� as the excitation amplitudes in the decoupled coordinates

regardless of the region of interest for the frequency.

Fig. 3.13 shows the example fits of the experimental sloshing and breathing re-

sponse curve to the theoretical ones in the primary sloshing and breathing regions,

respectively, at a plasma power of 9.82 Watt and a pressure of 40 mTorr.
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Figure 3.13: Primary response curves for (a) sloshing coordinate and (b) breathing coordi-
nate. The points are experimental data while the lines are fits to the theoretical solution.

These fits yield a drag coe�cient of ✏µ = 7.7 s
�1 within the primary sloshing

region and ✏µ = 9.0 s
�1 for the primary breathing region, in agreement with the

value of ✏µ = 8.5 ± 0.9 s
�1. The resonance frequency for the breathing and the

sloshing mode are 31.4 Hz and 18.5 Hz agreeing with the measurements from the

Scanning Mode Spectrum Fig. 3.5. The absolute values for the amplitude in the

decoupled coordinates |F ⇤
+| = |✏2f+| and |F ⇤

�| = |✏2f�| are determined to be |F ⇤
+| =

0.67⇥ 105µms
�2 and |F ⇤

�| = 3.34⇥ 105µms
�2, respectively.

Before we move forward to measuring k0
1 and k

0
2, we need to figure out whether the

excitation in the decoupled coordinates are in phase or out of phase, i.e., whether F ⇤
+

and F
⇤
� are of the same sign or of di↵erent signs. The determination of the relative

phase between the decoupled breathing and sloshing excitation is important not only

because that we need this relative phase in the following fits for the secondary regions,

but also that this can be used to determine the relative amplitude of the original

excitation on the upstream and downstream dust particle.
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To determine the relative phase of the excitations in the decoupled coordinates,

we look at the equations of motion only in the linear regime as in Eq. 2.14

ẍ1 + µẋ1 + !
2
1x1 + k1(x1 � x2) = F1e

i⌦t + C.C.,

ẍ2 + µẋ2 + !
2
2x2 + k2(x2 � x1) = F2e

i⌦t + C.C..

(3.11)

Instead of in the decoupled coordinates as illustrated in chapter two, these equations

of motion can also be directly solved in the original x1 and x2 coordinates (thanks

to the linearity of these equations). If we define a parameter R = x1
x2

as the ratio

between the response amplitudes of the upstream and downstream particle, we can

derive R by solving Eq. 3.11 as

R =
{[F1(�⌦2 + k2 + !

2
2) + k1F2][F2(�⌦2 + k1 + !

2
1) + k2F1] + µ

2⌦2
F1F2}

[F2(�⌦2 + k1 + !2
1) + k2F1]2 + (µ⌦F2)2

+iµ⌦
{F1[F2(�⌦2 + k1 + !

2
1) + k2F1]� F2[F1(�⌦2 + k2 + !

2
2) + k1F2]}

[F2(�⌦2 + k1 + !2
1) + k2F1]2 + (µ⌦F2)2

.

(3.12)

For simplification we drop the damping terms in Eq.3.12 (µ = 0). This can be

justified since the damping is of the same order of magnitude as the nonlinear force

contribution. Therefore, neglecting the damping does not qualitatively a↵ect the

result. By doing so, the amplitude ratio now reduces to

R =
⌘(�⌦2 + k2 + !

2
2) + k1

(�⌦2 + k1 + !2
1) + ⌘k2

, (3.13)

where ⌘ = F1
F2

is the relative amplitude of the excitation amplitudes in the original

coordinates. Depending on the value of ⌘, the region of excitation frequencies where

the upstream particle has a larger oscillation motion than the downstream particle

has, i.e., R > 1 (or x1 > x2), can be very di↵erent. This theoretical excitation

frequency region ⌦2 where R > 1 is also found to depend on the parameters !1, !2,

k1 and k2 as

⌘ > 1 :

⌦2 2 (�1, k1 + !
2
1 + ⌘k2) [ (

!
2
1 � ⌘!

2
2

1� ⌘
,+1),!2

1 � !
2
2  1� ⌘

⌘
(k1 + ⌘k2),

⌦2 2 (�1,
!
2
1 � ⌘!

2
2

1� ⌘
) [ (k1 + !

2
1 + ⌘k2,+1),!2

1 � !
2
2 >

1� ⌘

⌘
(k1 + ⌘k2),
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1 > ⌘ > 0 :

⌦2 2 (
!
2
1 � ⌘!

2
2

1� ⌘
, k1 + ⌘k2 + !

2
1),!

2
1 � !

2
2  1� ⌘

⌘
(k1 + ⌘k2),

⌦2 2 (k1 + ⌘k2 + !
2
1,
!
2
1 � ⌘!

2
2

1� ⌘
),!2

1 � !
2
2 >

1� ⌘

⌘
(k1 + ⌘k2),

⌘ = 1 :

⌦2 2 (�1, k1 + ⌘k2 + !
2
1),!1 � !2 < 0,

⌦2 2 (k1 + ⌘k2 + !
2
1,+1),!1 � !2 > 0.

The relative phase of the excitation in the decoupled coordinates can now be deter-

mined by matching the experimental frequency region where R > 1 to the theoretical

region, such that the correct relative phase will give the right theoretical frequency

region that is consistent with the experimental observation. For example, if the ex-

citation in decoupled coordinates from Fig. 3.13 is out of phase (i.e., F ⇤
+ and F

⇤
� are

of opposite signs), the excitation ratio in the original coordinates ⌘ = F1
F2

= 0.62 can

be calculated through Eq. 2.20 since we have already found |F ⇤
+| = 0.67⇥ 105µms

�2

and |F ⇤
�| = 3.34 ⇥ 105µms

�2, and is confirmed to be less than 1. While for the

in-phase decoupled excitation (i.e., F ⇤
+ and F

⇤
� are of the same sign), the excitation

ratio ⌘ = F1
F2

= 1.1 is greater than 1. By considering the parameters !1, !2, k1 and

k2 that can be measured from the Scanning Mode Spectra, it is found that !2
1 �!

2
2 is

less than 1�⌘
⌘ (k1 + ⌘k2) for the out of phase decoupled excitations, in which case the

frequency region where R > 1 is

⌦2 2 (
!
2
1 � ⌘!

2
2

1� ⌘
, k1 + ⌘k2 + !

2
1), (3.14)

corresponding to ⌦ 2 (24 Hz, 30 Hz) for the same data set in Fig. 3.13. On the other

hand, for the in phase decoupled excitations, !2
1 � !

2
2 is greater than 1�⌘

⌘ (k1 + ⌘k2)

leading to the frequency region where R > 1 being given by

⌦2 2 (�1,
!
2
1 � ⌘!

2
2

1� ⌘
) [ (k1 + !

2
1 + ⌘k2,+1), (3.15)
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corresponding to ⌦ 2 (34 Hz, +1) since the excitation frequency is always a positive

value.

To determine the correct relative phase, we need the oscillation amplitudes for

both the upstream and downstream particles. Fig. 3.14 shows the oscillation ampli-

tudes for both dust particles under the same plasma conditions as those in Fig. 3.13.

Figure 3.14: Experimental measurement of the oscillation amplitudes (primary responses)
for both the upstream (blue solid line) and downstream particle (red dashed line).

It is obvious that the oscillation amplitude for the upstream particle (blue solid

line) is greater than that for the downstream particle (red dashed line) when the

excitation frequency is greater than 34 Hz, which is consistent with the situation that

the excitations in the decoupled coordinates are in phase. Therefore, the excitations

in the decoupled coordinates are found to be in phase by employing this method

and excitation amplitudes in the original x1 and x2 coordinates are correspondingly

found to be ⌘ = 1.1, indicating that the external excitation on the upstream particle

is slightly greater than that of the downstream particle at a plasma power of 9.82

Watts and a pressure of 40 mTorr.

64



Noticed that in this method for determining the relative phase of the excitations

in the decoupled coordinates, the nonlinearities are not considered and we derived

the frequency region where R > 1 simply based on the linear mode of two coupled

oscillators. This simplification is valid when the excitation amplitude is small such

that the nonlinearities have little e↵ect on the oscillation amplitudes. The maximum

oscillation amplitude that appears at the sloshing resonance in this experiment is

less than 250 µm, which is estimated to be approximately 2% of the total sheath

width. The sheath edge is estimated to be at the plasma glow maxima. As such, the

excitation amplitude can be considered as small enough that the simplification as a

linear model for determining the relative phase of the decoupled excitation is valid

(see the simulation section for more details).

With F
⇤
+ and F

⇤
� now determined, the experimentally measured super-harmonic

response curves can be fitted to the theoretically derived super-harmonic responses

to measure the nonlinear coe�cient for the interactions k
0
1 and k

0
2. For example, in

the secondary breathing region (i.e., the excitation frequencies are close to half of

the resonance frequency of the breathing mode), the experimentally measured super-

harmonic breathing response curve is fitted to
g1[C1(

✏F+
�⌦2+!2

+
)�C2(

✏F�
�⌦2+!2

�
)]2

!+[(✏µ)2+4(2⌦�!+)2]
1
2

in Eq. 2.63

where ✏F+ and ✏F� are understood to be the excitations in the decoupled coordinates

F
⇤
+ and F

⇤
� in the secondary breathing region.

Similarly, in the secondary sloshing region (i.e., the excitation frequencies are close

to half of the resonance frequency of the sloshing mode) the experimentally measured

super-harmonic sloshing response curve is fitted to
g2[C1(

✏F+
�⌦2+!2

+
)�C2(

✏F�
�⌦2+!2

�
)]2

!�[(✏µ)2+4(2⌦�!�)2]
1
2

in Eq.

2.70. The corresponding super-harmonic response fits are shown in Fig. 3.15.

From these fits, g1 and g2 can be measured and the nonlinear coe�cients k
0
1, k

0
2

can be in turn determined through Eq. 2.18. For the data set used in Fig. 3.15, the

corresponding nonlinear coe�cients k
0
1, k

0
2 are equal to -253.4 µm

�1
s
�2 and -364.6

µm
�1
s
�2, respectively.
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Figure 3.15: Fits for the measured secondary responses a) in the sloshing coordinate at
1
2!� and b) breathing coordinate at 1

2!+ to the analytical response curves. The points
show experimental data while the solid lines are fits using Eq. 2.63 and Eq. 2.70. The
error-bars are due to the measurement uncertainty caused by the resolution of the camera
which is 9 µm per pixel.

At this point, the coe�cients of the nonlinear grain-grain interactions have been

successfully measured. However, as can be seen in Fig. 3.15, the super-harmonic re-

sponses have the magnitudes of several micron-meters which are very small compared

to the magnitudes of primary responses. As such, the reliability of this measurements

on the small super-harmonic responses need to clarified and will be discussed in the

next section.

3.7 Error and Linearity of the Measurement of the Super-Harmonic Responses

In the measurement of the nonlinear grain-grain interaction, the magnitude of the

measured super-harmonic responses are several micrometers, which is smaller than

the camera resolution (9 µm per pixel). The smallest response measured is around

0.5 µm, which is comparable to the wavelength (660 nm) of the illumination laser.

As such, it is necessary to illustrate the validity and the linearity of the measurement

for responses at the sub-pixel level.

A calibration was made for the measurement of secondary responses and primary

responses at varying external excitation amplitudes at a plasma power of 9.82 Watts
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and a pressure of 40 mTorr, and is shown in Fig. 3.16 with dots as the response

measurements and the blue lines as the linear fit lines.

Figure 3.16: Calibration for a) the secondary response measurement and b) the primary
response measurement.

As can be seen in Fig. 3.16a, for measurements greater than 1 µm (solid dots),

there is a very good linear correlation (R2 = 0.9903) between the measured responses

and the amplitude of the external excitation signal. However, for those measurements

less than 1 µm (open dots), the response become less linear with respect to the

signal amplitude (especially those measurements below 0.5 µm). On the other hand,

for large measurements (the primary responses in Fig. 3.16b), there is always a

perfect linear correlation (R2 = 1) between the response measurements and the signal

amplitude. Therefore, this measurement of the responses at the sub-pixel level can be

considered as a linear measurement of the true response (which is linear with respect

to the amplitude of the real excitation signal) as long as the measurements are above

1 µm.

We have verified that this is a linear measurement of the true response above 1

µm, and now we need to explain why this measurement of response is not limited by
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the resolution of the camera and can capture the information at the sub-pixel level,

which is beyond the resolution of the camera. As mentioned before, the responses

are measured from the spectra of the Fourier transformation. This can be considered

as a measurement of a collective oscillation pattern over a large number of periods

rather than a single measurement of the exact oscillation displacement (which is of

course restricted by the resolution of the camera). Notice that the frame rate here is

500 fps, corresponding to a period of 0.002 second, which is an order of magnitude

less than the particle oscillation period. In this case, the overall oscillation pattern

can be retrieved to a good accuracy. As long as the peaks in the FFT spectra can

be clearly distinguished from the background noise, the responses can be measured

beyond the resolution of the camera.

In spite of the ability to measure responses beyond the resolution of the camera,

the uncertainty induced by the camera resolution needs additional attention, espe-

cially when the magnitude of the measurement is smaller than the camera resolution.

The camera resolution cannot be simply used as the uncertainty of the measurement

of the response since the responses are not measured in the space domain (directly

from the particle oscillation displacement) but in the frequency domain (FFT spec-

tra). In this case, we estimate the uncertainty of the measurement by conducting the

following numerical experiment.

For each excitation frequency ⌦, we assume that the true oscillation is represented

by the summation of the measured primary response component and the measured

super-harmonic response component as

x(t) = Psin(2⇡⌦t) + Ssin(4⇡⌦t). (3.16)

The camera resolution comes in as an uncertainty by adding a random variable to Eq.

3.16 obeying a Gaussian distribution with zero mean and a standard deviation that

equals to the camera resolution. In this case, the oscillation motion can be simulated
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at the same sampling rate as the frame rate of the camera as

x(t) = Psin(2⇡⌦t) + Ssin(4⇡⌦t) +N (t), (3.17)

where N (t) ⇠ N (µ, �2) is the Gaussian distributed random variable with µ = 0

and � equal to the camera resolution, and t = [0 : 0.002 : 10] is the time span

of 10 seconds in increments of 0.002 second, consistent with the frame rate of the

camera (500 fps). We then measure the super-harmonic response from the simulated

oscillation motion by employing the same method as for the real experimental data

and record the measurement as one trial. We repeat this process 500 times and

measure the standard error for the super-harmonic response for the combined 500

simulation trials. This standard error is considered as the uncertainty induced by

the camera resolution for the experimentally measured super-harmonic response at

an excitation frequency ⌦. For the primary response, the uncertainty induced by the

camera resolution is negligible since the magnitude of the response is much larger

than the camera resolution.
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CHAPTER FOUR

Dust Particle Pair Modeled as Two Dimensional Nonlinearly Coupled Oscillators

So far we have studied a vertically aligned dust particle pair and modeled this as

coupled oscillators moving in the vertical direction. However, a more realistic model

would be to allow the dust particles to move both in the vertical and horizontal

directions, which will be discussed in this chapter. Due to the geometrical symmetry

of the system in the horizontal direction, the preferred axis for the horizontal direction

is chosen as the axis along which the dust particles actually move. As such, the dust

particle comprising the pair are modeled as two dimensional coupled oscillators with

four degrees of freedom (i.e., each dust particle has two degrees of freedom). In this

case, the particles’ vertical motion can a↵ect their horizontal motion, and vice versa.

By allowing this type of interaction (considered to be in the nonlinear regime) between

the vertical and horizontal motion, interesting phenomenon can be examined, such as

the internal resonance which was first observed in dusty plasmas by Ding et al. [51].

4.1 Theoretical Model of Two Dimensional Nonlinearly Coupled Oscillators

To establish a two dimensional model for the dust particle pair, we first need to

establish the particle-particle interaction forces. We assumed the particle-particle in-

teraction forces are pure functions of the particle-particle spacing, and the interaction

force from the downstream particle to the upstream particle is not identical to that

from the upstream particle to the downstream particle due to the non-reciprocity

of the system. As such, the interaction force from the downstream particle to the

upstream particle will be denoted as Fdu(d) (where d is the real time particle-particle

spacing), while the upstream particle to the downstream particle is denoted as Fud(d)

and Fdu(d) 6= Fud(d).
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Fig. 4.1 shows the scheme of the model. The horizontal deviation of the upstream

(downstream) particle is x1(2), while the vertical deviation of the upstream (down-

stream) particle is y1(2) with R is the inter-particle spacing at equilibrium.

Figure 4.1. Scheme of the model for two-dimensional coupled oscillators.

We first look at the interaction force from the downstream particle to the upstream

particle. By projecting this interaction force Fdu(d) onto the horizontal and vertical

directions, we can write the horizontal component as F
x
du(d) = Fdu(d)

x1�x2
d and the

vertical component as F
y
du(d) = Fdu(d)

R+y1�y2
d , where the real time particle-particle

spacing is d =
p

(x1 � x2)2 + (y1 � y2 +R)2. For convenience, we denote X = x1�x2

and Y = y1 � y2, and the horizontal component and the vertical component take the
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form:

F
x
du(d) = Fdu(

p
X2 + (R + Y )2)

Xp
X2 + (R + Y )2

,

F
y
du(d) = Fdu(

p
X2 + (R + Y )2)

R + Yp
X2 + (R + Y )2

.

(4.1)

A multi-variable Taylor expansion can be conducted to expand these components to

the quadratic terms at the equilibriums. The necessary derivatives that will be used

in the Taylor expansion for the horizontal component F x
du are:

@F
x
du

@X
=F

0
du

X
2

[X2 + (R + Y )2]
+ Fdu

1

[X2 + (R + Y )2]
1
2

� Fdu
X

2

[X2 + (R + Y )2]
3
2

,

@
2
F

x
du

@X2
=F

00
du

X
3

[X2 + (R + Y )2]
3
2

+ F
0
du{

X

[X2 + (R + Y )2]
� 3X3

[X2 + (R + Y )2]2
}

+ Fdu{
3X3

[X2 + (R + Y )2]
5
2

� 3X

[X2 + (R + Y )2]
3
2

},

@F
x
du

@Y
=F

0
du

X(R + Y )
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X(R + Y )

[X2 + (R + Y )2]
3
2
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@
2
F

x
du

@Y 2
=F

00
du

X(R + Y )2

[X2 + (R + Y )2]
3
2

+ F
0
du{

X

[X2 + (R + Y )2]
� 3X(R + Y )2

[X2 + (R + Y )2]2

� Fdu{
X

[X2 + (R + Y )2]
3
2

+
3X(R + Y )2

[X2 + (R + Y )2]
5
2

}

,
@
2
F

x
du

@X@Y
=F

00
du

X
2(R + Y )

[X2 + (R + Y )2]
3
2

+ F
0
du{

(R + Y )

[X2 + (R + Y )2]
� 3X2(R + Y )
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+ Fdu{
3X2(R + Y )
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5
2
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3
2

},

(4.2)
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while those for the vertical component are:

@F
y
du

@X
=F

0
du

X(R + Y )

[X2 + (R + Y )2]
� Fdu

X(R + Y )
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3
2

,

@
2
F
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du

@X2
=F

00
du

X
2(R + Y )
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2

+ F
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(4.3)

where F 0
du and F

00
du are the first and second derivative of the force Fdu(d) with respect

to inter-particle spacing d. The corresponding Taylor expansion at the equilibrium

point that (X = Y = 0) for the horizontal interaction force yields:

F
x
du(d) =F

x
du|(0,0) +

@F
x
du

@X
|(0,0)X +

@F
x
du

@Y
|(0,0)Y +

1

2

@
2
F

x
du

@X2
|(0,0)X2 +

1

2

@
2
F

x
du

@Y 2
|(0,0)Y 2

+
@
2
F

x
du

@X@Y
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=
Fdu(R)

R
(x1 � x2) + (

F
0
du(R)

R
� Fdu(R)

R2
)(x1 � x2)(y1 � y2),

(4.4)
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while the Taylor expansion of the vertical interaction force yields:

F
y
du(d) =F

y
du|(0,0) +

@F
y
du

@X
|(0,0)X +

@F
y
du
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2
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1
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du(R)

R
� Fdu(R)
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2
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1
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Fdu(R)00(y1 � y2)

2
.

(4.5)

As can be seen, due to the geometry of the vertical pair system, the horizontal com-

ponent of the interaction force is di↵erent from the vertical component such that

for the horizontal component the quadratic term is the mixed derivative (
F 0
du(R)

R �
Fdu(R)

R2 )(x1 � x2)(y1 � y2), while for the vertical component, the quadratic terms are

the self derivatives 1
2 [

F 0
du(R)

R � Fdu(R)
R2 ](x1 � x2)2 and 1

2Fdu(R)00(y1 � y2)2.

The interaction force from the upstream particle to the downstream particle can

be derived in the same way. In this case, the horizontal component of this interaction

force F
x
ud(d) takes the form

F
x
ud(d) =

Fud(R)

R
(x2 � x1) + (

Fud(R)

R2
� F

0
ud(R)

R
)(x2 � x1)(y2 � y1), (4.6)

and the vertical component F y
ud(d) is

F
y
ud(d) =� Fud(R) + F

0
ud(R)(y2 � y1) +

1

2
[
Fud(R)

R2
� F

0
ud(R)

R
](x2 � x1)

2

� 1

2
Fud(R)00(y2 � y1)

2
.

(4.7)
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As such, the equations of motion for two dimensional coupled oscillators under

vertical excitation can be derived as

ẍ1 + µẋ1 + !
2
x1x1 + kx1(x1 � x2) +M1(x1 � x2)(y1 � y2) = 0,

ẍ2 + µẋ2 + !
2
x2x2 + kx2(x2 � x1) +M2(x2 � x1)(y2 � y1) = 0,

ÿ1 + µẏ1 + !
2
y1y1 + ky1(y1 � y2) + L1(x1 � x2)

2 +G1(y1 � y2)
2 = F1e

i⌦t + C.C.,

ÿ2 + µẏ2 + !
2
y2y2 + ky2(y2 � y1) + L2(x2 � x1)

2 +G2(y2 � y1)
2 = F2e

i⌦t + C.C.,

(4.8)

where !2
x1, !

2
x2 are the horizontal confinements, !2

y1, !
2
y2 are the vertical confinements

and F1, F2 are the amplitude of the external excitation. And other parameters are

connected to the particle-particle interaction forces through the following relation-

ships:

kx1 =� Fdu(R)

R
,

kx2 =� Fud(R)

R
,

ky1 =� F
0
du(R),

ky2 =� F
0
ud(R),

M1 =
Fdu(R)

R2
� F

0
du(R)

R
,

M2 =� (
Fud(R)

R2
� F

0
ud(R)

R
),

L1 =
1

2
[
Fdu(R)

R2
� F

0
du(R)

R
],

L2 =� 1

2
[
Fud(R)

R2
� F

0
ud(R)

R
],

G1 =� 1

2
F

00
du(R),

G2 =
1

2
F

00
ud(R).

(4.9)

In order to solve these equations of motion, we first transfer them into decoupled

coordinates as we did before. Now, not only vertical direction but also the horizontal
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direction yields two modes, where we denote the polarization of the high frequency

and low frequency mode in the horizontal direction ↵+ and ↵�, respectively. The

polarization of the high frequency and low frequency mode in the vertical direction

are denoted as �+ and ��, respectively. For now, we will avoid using sloshing or

breathing modes since it is not always the case that there is a sloshing and a breathing

mode, particularly for modes in the horizontal direction. Instead, we will use high

frequency and low frequency modes to represent coupled modes in general. In this

case, the decoupled coordinates are

x+ =x1 � ↵�x2,

x� =x1 � ↵+x2,

y+ =y1 � ��y2,

y� =y1 � �+y2.

(4.10)

The corresponding equations of motion in decoupled coordinates yield:

ẍ+ + µẋ+ + !
2
x+x+ +M+(c1x+ + c2x�)(c3y+ + c4y�) = 0,

ẍ� + µẋ� + !
2
x�x� +M�(c1x+ + c2x�)(c3y+ + c4y�) = 0,

ÿ+ + µẏ+ + !
2
y+y+ + L+(c1x+ + c2x�)

2 +G+(c3y+ + c4y�)
2 = F+e

i⌦t + C.C.,

ÿ� + µẏ� + !
2
y�y� + L�(c1x+ + c2x�)

2 +G�(c3y+ + c4y�)
2 = F�e

i⌦t + C.C.,

(4.11)

where !x+, !x�, !y+ and !y� are the resonance frequencies of the horizontal high

frequency mode, the horizontal low frequency mode, the vertical high frequency mode

and the vertical low frequency mode, respectively. All other parameters in the model
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can be transferred through the following relationships:

M+ =M1 � ↵�M2,

M� =M1 � ↵+M2,

L+ =L1 � ��L2,

L� =L1 � �+L2,

G+ =G1 � ��G2,

G� =G1 � �+G2,

F+ =F1 � ��F2,

F� =F1 � �+F2,

(4.12)

and

c1 =
↵+ � 1

↵+ � ↵�
,

c2 =
1� ↵�

↵+ � ↵�
,

c3 =
�+ � 1

�+ � ��
,

c4 =
1� ��

�+ � ��
.

(4.13)

With the equations of motion decoupled in the linear regime, we are now able to

further attack them employing the multiple scale method. Here, we only look at the

region where the external excitation is resonating at the vertical high frequency mode

y+ (i.e., the frequency of the external excitation is close to the resonance frequency of

the vertical high frequency mode ⌦ ⇡ !y+ + ✏�1). As we shall see later, the internal

resonance can be observed in this frequency region. Following the same approach

as in chapter two, we accompany parameters with ✏ such that the excitation for the

on-resonant oscillator will be appearing at the same order of ✏ as the nonlinearities
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and the neutral drag. As such, Eq. 4.11 can be rewritten as

ẍ+ + ✏µẋ+ + !
2
x+x+ +M+(c1x+ + c2x�)(c3y+ + c4y�) = 0,

ẍ� + ✏µẋ� + !
2
x�x� +M�(c1x+ + c2x�)(c3y+ + c4y�) = 0,

ÿ+ + ✏µẏ+ + !
2
y+y+ + L+(c1x+ + c2x�)

2 +G+(c3y+ + c4y�)
2 = ✏

2
F+e

i⌦t + C.C.,

ÿ� + ✏µẏ� + !
2
y�y� + L�(c1x+ + c2x�)

2 +G�(c3y+ + c4y�)
2 = ✏F�e

i⌦t + C.C.,

(4.14)

where ✏µ is understood to be the drag coe�cient and ✏
2
F+, ✏F� are understood to

be the amplitudes in the high frequency and low frequency decoupled coordinates,

respectively. Notice that this ordering is valid only when the excitation frequency is

close to the resonance frequency of the high frequency mode in the vertical direction,

i.e., ⌦ ⇡ !y+ + ✏�1. The complex conjugate C.C. will be hidden from now on for

convenience.

As before, we introduce test solutions of the form

x+(t0, t1; ✏) = ✏x+1(t0, t1) + ✏
2
x+2(t0, t1) + ...,

x�(t0, t1; ✏) = ✏x�1(t0, t1) + ✏
2
x�2(t0, t1) + ...,

y+(t0, t1; ✏) = ✏y+1(t0, t1) + ✏
2
y+2(t0, t1) + ...,

y�(t0, t1; ✏) = ✏y�1(t0, t1) + ✏
2
y�2(t0, t1) + ...,

(4.15)

where t0 = t and t1 = ✏t. Substituting Eq. 4.15 into Eq. 4.14 and keeping only terms

to second order of ✏, yields

✏
@
2
x+1

@t20

+ ✏
2@

2
x+2

@t20

+ 2✏2
@
2
x+1

@t0@t1
+ ✏

2
µ
@x+1

@t0
+ ✏!

2
x+x+1 + ✏

2
!
2
x+x+2

+ ✏
2
M+[(c1x+1 + c2x�1)(c3y+1 + c4y�1)] = 0, (4.16)
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@t20

+ ✏
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2
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x�1
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+ ✏

2
µ
@x�1

@t0
+ ✏!

2
x�x�1 + ✏

2
!
2
x�x�2

+ ✏
2
M�[(c1x+1 + c2x�1)(c3y+1 + c4y�1)] = 0, (4.17)
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(4.18)
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i⌦t

.

(4.19)

By equating Eq. 4.16 at the order of ✏, we derive the equations of motion to first

order of approximation as

@
2
x+1

@t20

+ !
2
x+x+1 = 0,

@
2
x�1

@t20

+ !
2
x�x�1 = 0,

@
2
y+1

@t20

+ !
2
y+y+1 = 0,

@
2
y�1

@t20

+ !
2
y�y�1 = F�e

i⌦t
,

(4.20)

with the solution to first order of approximation being

x+1(t0, t1) = A1(t1)e
i!x+t0 ,

x�1(t0, t1) = A2(t1)e
i!x�t0 ,

y+1(t0, t1) = A3(t1)e
i!y+t0 ,

y�1(t0, t1) = A4(t1)e
i!y�t0 + (

F�

�⌦2 + !2
y�

)ei⌦t0 ,

(4.21)

where A1(t1), A2(t1), A3(t1) and A4(t1) are functions of slow time t1, that will be

solved using the solvability conditions.
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The equations of motion to second order of ✏ yield
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2
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(4.22)

Inserting Eq. 4.18 into Eq. 4.19, we achieve
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x+x+2 =� 2i!x+

@A1
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i!x+t0 � µi!x+A1e
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i(!x+�!y�)t0 + c2c3A2Ā3e

i(!x��!y+)t0
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i(�!x++⌦)t0

+ c2c4Ā2Be
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(4.23)
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(4.24)
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(4.25)
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(4.26)

where B = ( F�
�⌦2+!2

y�
) (see Eq. 4.21). At this point, we consider a possible com-

mensurable relationship (i.e., when the resonance frequency of one mode is multiple

times the resonance frequency of the other mode) between the high frequency modes

in both directions as !y+ = 2!x+ � ✏�2, which means that the resonance frequency

of the high frequency mode in the vertical direction is close to twice the resonance

frequency of the high frequency mode in the horizontal direction. The primary reason

we consider this commensurable relationship is to derive a theoretical guideline for

investigation of the possible internal resonance. Assuming !y+ = 2!x+ � ✏�2, we are

able to eliminate the secular terms in Eq. 4.23-4.26. Eliminating these secular terms,

we arrive at

�2i!x+
@A1

@t1
� µi!x+A1 �M+[c1c3Ā1A3e

�i�2t1 + c1c4Ā1Be
i(�1��2)t1 ] = 0, (4.27)

�2i!x�
@A2

@t1
� µi!x�A2 = 0, (4.28)

�2i!y+
@A3

@t1
� µi!y+A3 � L+c

2
1A

2
1e

i�2t1 + F+e
i�1t1 = 0, (4.29)

�2i!y�
@A4

@t1
� µi!y�A4 = 0. (4.30)
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It is obvious that Eq. 4.28 and Eq. 4.30 are isolated (i.e., there are no coupling

terms) and are of simple form yielding decay solutions

A2 = Ce
�µ

2 t1 ,

A4 = C
0
e
�µ

2 t1 ,

(4.31)

where C and C
0 are constants determined by initial conditions.

On the other side, the existence of couplings makes it complicated to solve Eq.

4.27 and Eq. 4.29. Here, we introduce test solutions

A1 = a1(t1)e
i✓1(t1),

A3 = a3(t1)e
i✓3(t1),

(4.32)

where a1, a3, ✓1 and ✓3 are all functions of slow time t1. By plugging Eq. 4.32 into

Eq. 4.27 and Eq. 4.29, we have

0 =� 2i!x+(
@a1

@t1
+ i

@✓1

@t1
a1)� µi!x+a1 � (M+c1c3)a1a3e

i(✓3�2✓1��2t1)

� (M+c1c4)a1Be
i(�1t1��2t1�2✓1), (4.33)

and

0 =� 2i!y+(
@a3

@t1
+ i
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@t1
a3)� µi!y+a3 � (L+c

2
1)a

2
1e

i(2✓1�✓3+�2t1) + F+e
i(�1t1�✓3).

(4.34)

Separating the real and imaginary parts, we have

0 =2!x+
@✓1

@t1
a1 � (M+c1c3)a1a3cos(✓3 � 2✓1 � �2t1)

� (M+c1c4)a1Bcos(�1t1 � �2t1 � 2✓1),

0 =� 2!x+
@a1

@t1
� µ!x+a1 � (M+c1c3)a1a3sin(✓3 � 2✓1 � �2t1)

� (M+c1c4)a1Bsin(�1t1 � �2t1 � 2✓1),

(4.35)
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and

0 =2!y+
@✓3

@t1
a3 � (L+c

2
1)a

2
1cos(2✓1 � ✓3 + �2t1)

+ F+cos(�1t1 � ✓3),

0 =� 2!y+
@a3

@t1
� µ!y+a3 � (L+c

2
1)a

2
1sin(2✓1 � ✓3 + �2t1)

+ F+sin(�1t1 � ✓3).

(4.36)

We can solve Eq. 4.35 and Eq. 4.36 for steady state solutions by introducing two

new parameters

�1 = ✓3 � 2✓1 � �2t1,

�2 = �1t1 � �2t1 � 2✓1.
(4.37)

In order to obtain steady state solutions to Eq. 4.35 and Eq. 4.36, the derivatives of

the parameters with respect to slow time t1 need to be zero

@�1

@t1
= 0,

@�2

@t1
= 0,

@a1

@t1
= 0,

@a3

@t1
= 0.

(4.38)

As such, Eq. 4.35 and Eq. 4.36 now become

0 =!x+(�1 � �2)a1 � (M+c1c3)a1a3cos(�1)� (M+c1c4)a1Bcos(�2),

0 =� µ!x+a1 � (M+c1c3)a1a3sin(�1)� (M+c1c4)a1Bsin(�2),
(4.39)

and

0 =2!y+�1a3 � (L+c
2
1)a

2
1cos(�1) + F+cos(�2 � �1),

0 =� µ!y+a3 + (L+c
2
1)a

2
1sin(�1) + F+sin(�2 � �1).

(4.40)

The solutions to Eq. 4.39 and Eq. 4.40 can be divided into two categories, depending

on whether a1 is zero or not (a1 = 0 or a1 6= 0).
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When a1 is zero (a1 = 0), Eq. 4.40 will be reduced to

0 =2!y+�1a3 + F+cos(�2 � �1),

0 =� µ!y+a3 + F+sin(�2 � �1),
(4.41)

in which case, the solutions of the steady state responses (a1 and a3) yield

a1 =0,

a3 =(
F+

4!2
y+�

2
1 + µ2!2

y+

)
1
2 .

(4.42)

On the other hand, when a1 is not equal to zero (a1 6= 0), the steady state

responses (a1 and a3) are described by the following set of equations

0 =!x+(�1 � �2)� (M+c1c3)a3cos(�1)� (M+c1c4)Bcos(�2),

0 =� µ!x+ � (M+c1c3)a3sin(�1)� (M+c1c4)Bsin(�2),

0 =2!y+�1a3 � (L+c
2
1)a

2
1cos(�1) + F+cos(�2 � �1),

0 =� µ!y+a3 + (L+c
2
1)a

2
1sin(�1) + F+sin(�2 � �1).

(4.43)

The solutions to the set of equations above are not in simple closed analytical form.

Thus, the steady state responses a1 and a3 in Eq. 4.43 have to be solved using

numerical methods. When the commensurable relationship is considered, the steady

state responses under internal resonance switch between the solutions given in Eq.

4.42 and the solution governed by the set of equations shown in Eq. 4.43. It is

also important to note that in Eq. 4.21, A1(t1) is the response at !x+ which is the

resonance frequency of the horizontal high frequency mode. In this case, the response

a1 is understood to be the ’sub-harmonic’ response since the excitation is around

twice the resonance frequency of the horizontal high frequency mode, i.e., ⌦ ⇡ 2!x+.

4.2 Internal Resonances as a Phenomena of Nonlinear Dynamics

With these theoretical results in hands, we are now able to study the internal

resonance phenomena first reported in dusty plasmas by Ding et al. [51].

85



Internal resonance as a phenomena of nonlinear dynamics, is a type of resonance

created by nonlinear mode coupling in systems having multiple degrees of freedom.

There is a wide application of internal resonance in various fields, such as mechanical

energy harvesters [52–54], frequency stabilization [55], and nanomechanical systems

[56,57]. A system exhibits internal resonance whenever the natural frequency of any

two modes satisfies a commensurable relation. In this case, there is a specific ratio

(1:2, 1:3, etc) between the frequencies of the coupled modes, or there are specific

equality relations among the resonance frequencies of more than two modes, e.g.,

the resonance frequency of one mode equals the sum of the resonance frequencies

of two other modes [58]. Internal resonance can exist for cases with and without

external excitations. In the presence of external excitations, the energy in the primary

mode that is driven externally increases with increasing excitation amplitude until a

saturation point is reached. Beyond this point, any additional energy is channeled

to the secondary mode which is commensurate with the excited mode [59]. In the

absence of external excitations, the energy oscillates between the two commensurate

modes (with dissipation occuring in the presence of damping), resulting in a system

that is continuously switching between the two modes.

4.3 Internal Resonances Observed in Dusty Plasma

(Portion of this work have been published in ’Nonlinear mode coupling and internal

resonance observed in a dusty plasma’, Ding et al., New Journal of Physics [51].)

Internal resonance for a vertically aligned dust pair system has been observed

employing the same experimental setup as the one described in chapter three, Fig.

3.1 and Fig. 3.2. The only di↵erences is that in addition to the side mounted high

speed camera, there is a second camera mounted on the top of the cell in order to

track the horizontal motion of the dust particles (Fig. 4.2).
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Figure 4.2: Sketch of the modified GEC RF reference cell with an additional high speed
camera mounted on the top.

For a vertically aligned dust particle pair in plasma, the particle-particle interac-

tion is non-reciprocal as discussed before. This non-reciprocity in the particle-particle

interaction drives modes occurring in the horizontal direction to become two sloshing

modes, while modes occurring in the vertically direction remain as both the sloshing

and breathing type. For convenience, we will call the high frequency and low fre-

quency mode in the horizontal direction, the S2 mode and the S1 mode, and the high

frequency and low frequency mode in the vertical direction the B mode and the S

mode.

To trigger the internal resonance in this pair system, a commensurable relation

must be satisfied between the di↵erent modes, i.e., mode resonance frequencies have

to be of a specific ratio. In order to determine this, we measured the resonance

frequencies of each of the S1, S2, S and B mode under di↵erent plasma conditions.

Fig. 4.3 shows the measured frequency for each of these modes at varying plasma

powers and operating pressures.
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Figure 4.3: Mode frequencies as functions of plasma power at varying pressures a) 40 mTorr,
b) 80 mTorr, c) 120 mTorr. Dark blue and light blue lines represent the vertical B and
S modes, while dark green and light green lines show the horizontal S2 and S1 modes,
respectively. The dashed blue line indicates 1

2 of the frequency of the vertical B mode.

As shown in Fig. 4.3a and Fig. 4.3b, the frequency of the horizontal S2 mode

(dark green line) is approximately equal to half that observed for the vertical breathing

mode (dashed line) for low pressures (i.e., typically lower than 100 mTorr). At higher

pressures (Fig. 4.3c), the S2 mode frequency is significantly less than half that of the

breathing mode frequency. This indicates that a 1: 2 commensurable relationship

between the horizontal S2 mode and the vertical B mode frequency exists for low

pressures.

In order to examine the nonlinear mode coupling and internal resonance, an ex-

ternal sinusoidal voltage of varying amplitude and frequency was applied to the lower

electrode providing a vertical excitation to the particle pair.

Fig. 4.4a-c shows the particles’ horizontal motion (side view) under excitation (am-

plitude of 1.5 V) at frequencies of 13.8 Hz, 14.0 Hz and 15.2 Hz (which are close to

the B mode resonance frequency), under a plasma power of 2.45 W and pressure of

40 mTorr. The corresponding side-view and top-view trajectories of the upstream

particle are shown in Fig. 4.4d-f and Fig. 4.4g-i, respectively.
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Figure 4.4: Particles’ horizontal motion (side view) under a 1.5 V external sinusoidal exci-
tation at a) 13.8 Hz, b)14.0 Hz and c) 15.2 Hz with the blue line for the upstream particle
and red line for the downstream particle. d-f) Corresponding trajectories of both parti-
cles recorded from the side view camera. g-i) Corresponding trajectories of the upstream
particle recorded from the top view camera.

As shown, the particles exhibit primarily random thermal fluctuations at 13.8 Hz

and 15.2 Hz (Fig. 4.4a and Fig. 4.4c). However, at a driving frequency of 14.0 Hz, a

sloshing type horizontal motion having an amplitude of approximately 20 µm and 40

µm was excited for the upstream and downstream particle, respectively (Fig. 4.4b).

This clearly shows that the horizontal motion observed is created through vertical

excitation as a result of the onset of an internal resonance at a frequency of 14.0 Hz,

which is equal to the frequency of the B mode and twice that of the S2 mode at this

pressure and power as shown in Fig. 4.3a.

To illustrate the energy distribution and determine the coupling modes, the Power

Spectra Density (PSD) averaged for the horizontal motion over the two particles is

shown in Fig. 4.5. As can be seen, at an excitation frequency of 14.0 Hz (dark blue

line) a significant energy boost is observed centered around 7.1 Hz, the frequency of

the S2 mode, with no significant increase in the vicinity of the S1 mode frequency

(⇠5.0 Hz). This indicates that energy has been transferred into the S2 mode which is

coupled to the B mode through the 1:2 commensurable relationship. It is important
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to note that this mode coupling between the S2 and the B mode is not in the linear

regime. This is a typical nonlinear mode coupling since the resonance frequencies of

the modes are not identical.

Figure 4.5: The Power Spectra Density (PSD) averaged for the horizontal motion over two
dust particles. The dark blue line shows the PSD for a saturated excitation (1.5 V) at a
frequency of 14 Hz. The light blue line shows the unsaturated excitation (0.8 V) at the
same frequency. The PSD of a saturated excitation (1.5 V) at an o↵-resonance excitation
frequency of 13.8 Hz is shown by the green line.

Such an energy transfer can only be triggered under an external excitation with

a large enough amplitude (i.e., saturated excitation). The light blue line in Fig.

4.5 shows the averaged PSD for the same experimental conditions but at a driving

voltage of 0.8 V. With this unsaturated excitation, no energy boost is observed in the

S2 mode.

The excitation saturation can be illustrated by experimentally measuring the

amplitude-frequency response following the method described in chapter three. In

this method, particle motions are transferred into the coordinate of each mode em-

ploying linear combinations of the original particle trajectories.
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Figure 4.6: Experimentally measured frequency response curves for a) primary B mode and
b) sub-harmonic S2 mode. The dark line indicates saturated excitation at 1.5 V, while the
light line shows the unsaturated response at 0.8 V.

A Fourier transformation is then implemented on the time series of motion in

the new coordinates corresponding to each mode. Primary responses for the B mode

are then measured from the amplitude of the FFT spectrum (of the motion in B

mode coordinate) at the excitation frequency, while sub-harmonic responses for the

S2 mode are determined using the amplitude of the FFT spectrum (of the motion in

the S2 mode coordinate) at half the excitation frequency.

The experimentally measured amplitude-frequency responses of the primary B

mode and the sub-harmonic S2 mode under a plasma power of 2.45 W and a pressure

of 40 mTorr are shown in Fig. 4.6. As can be seen, at an unsaturated excitation

amplitude of 0.8 V (light lines), the primary breathing response curve is smooth,

showing a single peak unperturbed by internal resonances. Correspondingly, the

sub-harmonic S2 mode does not show any excitation. For a saturated excitation

(1.5 V, dark lines), internal resonance is triggered. Due to this internal resonance,

the primary breathing response (dark line in Fig. 4.6a) decreases while the sub-

harmonic S2 response (light line in Fig. 4.6b) increases over the frequency range from

approximately 13.8 Hz to 15.2 Hz, indicating an energy transfer from the B to the
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S2 mode. As predicted, there is no sign of such an energy transfer channel existing

between the horizontal S2 mode and the vertical B mode for pressures higher than

120 mTorr, where the 1:2 commensurable relation is no longer satisfied.

These experimentally measured amplitude-frequency responses are consistent with

the theoretically predicted responses in the presence of the 1:2 commensurable rela-

tion (internal resonance triggered) as derived in Eqs. 4.43, where the steady state

a1 and a3 are respectively the secondary response of the S2 mode and the primary

response of the B mode. On the other hand, the theoretically predicted responses

without the presence of internal resonance have the same form as Eqs. 4.42 with Fig.

4.7 showing the theoretically predicted amplitude-frequency response curves. The

numerical solutions of Eqs. 4.43, in which the S2 and B modes are assumed to be

commensurable, are shown by the solid lines for both saturated response (dark lines)

and unsaturated response for a lower excitation amplitude of 0.8 V (light lines). As

shown, the energy transfer from the B to the S2 mode is observed over the same

frequency range as experimentally (Fig. 4.6). The excitation of the S2 mode and the

depression of the B mode are also successfully predicted. Without the assumption

of the commensurate relationship, the solution to Eqs. 4.42, shown in red, shows no

energy transfer from the B to the S2 mode.

In this chapter, we studied the internal resonance for dust particle pairs in plas-

mas. Under low plasma pressures, these two modes can become 1:2 commensurable,

in which case the horizontal S2 mode is found to be excited by vertical driving at

su�ciently large driving amplitude for frequencies at the resonance frequency of the

B mode. Both the PSD and the amplitude-frequency response curves obtained exper-

imentally from particle motion show clear energy transfer from the B mode to the S2

mode. The 1:2 internal resonance was theoretically illustrated by solving the model

employing a multiple scale perturbation method. The theoretical response curves

were then calculated for the onset of internal resonance and show excellent agree-
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Figure 4.7: The theoretical response curves for a) the primary B mode, and b) the sub-
harmonic S2 mode. The dark blue lines and red dashed lines show the responses under
a saturated excitation with and without the assumption that the S2 and the B mode are
1:2 commensurable. The light blue lines are the response curves under an unsaturated
excitation.

ment with experimental results. This observation of internal resonance as a result of

nonlinear mode coupling reveals the intrinsic nonlinearities of the interaction of dust

particles in plasmas. This result also shows the capability for dusty plasmas to act

as platforms for the study of the nonlinear dynamics of liquids and solids at a fully

resolved kinetic level.
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CHAPTER FIVE

An Automatic Response Analysis Method Based on Bayesian Optimization

This chapter presents a novel method for analyzing the amplitude frquency re-

sponse. The main advantage of this method is that no prior knowledge of the plasma

environment is needed to solve the equations of motion for the dust particle embedded

in the plasma. As a simple example, the method is applied to a single dust particle

levitated in the plasma sheath in a modified GEC rf reference cell.

5.1 Simulation of the Amplitude-Frequency Response

The motion of a single dust particle levitated in the plasma sheath under a vertical

sinusoidal excitation can be modeled as a confined forced oscillator (see chapter two),

ẍ+ µẋ+ !
2
x+ ↵x

2 + �x
3 = Fexp(i⌦t) + c.c., (5.1)

where again µ is the neutral drag coe�cient, ⌦ is the frequency of the sinusoidal exci-

tation, F is the amplitude (in units of acceleration) of the excitation, and c.c. stands

for the complex conjugate. Usually, the e↵ective restoring force experienced by a par-

ticle (from the equilibrium position) is approximated as linear in displacement �!2
x

(where ! is considered to be the natural resonance frequency) under the assumption

that the particle is levitating in a region with a perfect parabolic sheath potential.

However, this linear approximation is invalid given realistic situations, such as charge

fluctuations, or oscillations of the dust particle large enough that the sheath potential

is intrinsically no longer parabolic. In this case, the restoring force must be extended

to the nonlinear regime as �!2
x � ↵x

2 � �x
3 where terms higher than O(x3) are

ignored for simplicity. Di↵erent from the case of two coupled dust particles, there is

no coupled motion in this equation of motion. Thus, the nonlinearities in this equa-

tion of motion are completely due to the characteristics of the restoring force (i.e.,
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determined by the electric field of the sheath and the charge of the dust particle) as

experienced by the dust particle in the levitation position.

If all the parameters characterizing the particle’s motion in Eq. 5.1 are known, an

amplitude-frequency response can be simulated by numerically solving this equation

of motion. Given a set of parameters {µ,!,↵, �, F} and an excitation frequency ⌦,

the particle’s motion x(t) as a function of time can be simulated by employing the

velocity Verlet algorithm. The particle displacement is first updated based on its

displacement, velocity, and acceleration at the current time step as

x(t+ dt) = x(t) + v(t)dt+
a(t)

2
(dt)2, (5.2)

and the velocity then updated as

v(t+ dt) = v(t) +
a(t+ dt) + a(t)

2
dt, (5.3)

where dt is the time step of the simulation, v(t) is the velocity at time t and a(t) is

the acceleration normalized by the particle mass at time t which is determined by

Eq. 5.1 as

a(t) = �µv(t)� !
2
x(t)� ↵x

2(t)� �x
3(t) + 2Fcos(⌦t). (5.4)

With the correct parameters {µ,!,↵, �, F}, the simulated particle’s motion x(t) will

converge to a consistent oscillating motion governed by the excitation frequency ⌦.

Following the same approach as we did for the experimental data (see chapter three),

the primary and secondary responses can then be simulated by conducting an FFT

analysis of the simulated particle’s motion x(t) and ensuring the corresponding pri-

mary and secondary peaks. Finally, by conducting the simlation under a series of

consecutive excitation frequencies ⌦, complete amplitude-frequency response curves

(either primary or secondary) can be simulated according to the given parameters

{µ,!,↵, �, F}.
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By matching these simulated response curves to those directly measured from

experiment, we can easily identify the parameters {µ⇤
,!

⇤
,↵

⇤
, �

⇤
, F

⇤}. These pa-

rameters correctly characterize the plasma and the environmental properties in the

position where the dust particle levitates. In order to find parameters that result

in simulated response curves matching the experimental ones, the parameter space

{µ,!,↵, �, F} has to be searched. For each combination of parameters, an entire re-

sponse curve needs to be simulated which involves the process of numerically solving

the equation of motion Eq. 5.1 hundreds of times (depending on the frequency range

of interest). In this case, a random search of the parameter space requires tremendous

computational power, which is extremely ine�cient, if not infeasible. The alterna-

tive presented here employs a Bayesian optimization-based method of searching the

parameter space for the correct parameters characterizing the plasma properties.

However, before moving on to the Bayesian optimization, we must first define

a measure quantifing the distance between the simulated response curves and the

experimentally measured ones, i.e., dtermining the similarity between a simulated

response curve and an experimentally measured curve. We define this measure to be

a function L : ✓ = {µ,!,↵, �, F} 7! R measuring the L2 norm between the simulated

and the experimentally measured response curves (normalized by the experimentally

measured responses) as

L(✓) =
NX

i=1

(
re(⌦i)� rs(⌦i, ✓)

re(⌦i)
)2, (5.5)

where re(⌦i) and rs(⌦i) are the experimentally measured and the simulated response

at the excitation frequency ⌦i respectively, and the summation is conducted over

the range of excitation frequencies. Notice that L(✓) is not unique. Any function

that measures the distance between the simulated and the experimentally measured

repsonse curves should serve the purpose. However, it is important to note that

di↵erent forms of the function L(✓) may result in di↵erent performance metrics during

the process of optimization.
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With the di↵erence function L(✓) defined, the problem can now be specified as:

Find ✓⇤ = {µ⇤
,!

⇤
, a

⇤
, b

⇤
, F

⇤} subject to

{µ⇤
,!

⇤
, a

⇤
, b

⇤
, F

⇤} = argmin
{µ,!,↵,�,F}

(L({µ,!, a, b, F})), (5.6)

(✓⇤ = argmin
✓

(L(✓))). (5.7)

Notice that it is possible that the simulation of the particle’s motion x(t) may not

converge under some combinations of the parameters. Those parameter combinations

correspond to situations where either the parameters have no physical meaning or are

not suitable for describing the environment in the plasma sheath. In these cases, the

distance function L(✓) should be set to some large value (e.g., 1 ⇥ 105) in order to

allow the optimization process to be continued.

5.2 Bayesian Optimization

As discussed before, a random search of the parameter space to find the optimal

parameters that minimize the distance function is extremely expensive. Thus, the

distance function is minimized here by searching the parameter space in a Bayesian

manner (also known as Bayesian optimization, which has been applied in machine

learning, especially in deep learning, for fine tuning neural networks). First, we in-

troduce a surrogate function f modeling the distribution of the value of the distance

function L at each parameter combination ✓. This surrogate function can be under-

stood to be an approximation of the real distance function L, where this approxima-

tion will be continuously updated becoming more accurate as more information about

the distance function is observed (i.e., more simulations of the distance function have

been conducted). We shall see later that an e�cient minimization of the distance

function can be achieved by searching the parameter space (with a guide of which

parameter to simulate next) to maximize the expected improvement defined on the

surrogate function.
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There are di↵erent ways of modeling the surrogate function. Here, we use a

generative model, the Tree-structured Parzen Estimator (TPE) [60] to characterize

the surrogate function, i.e., to model the distribution of the values of the surrogate

function at a specific parameter combination ✓ = {µ,!, a, b, F} conditioned on all

observed data

D1:t = {✓1:t, L(✓1:t)}, (5.8)

where each of the data points consists of a pair of a parameter combination ✓ and

the corresponding distance function L(✓) from the simulation. Each time a new data

point is observed (simulated), it is stored to a data pool D1:t that contains all the

data observed (simulated) up to time t. According to the Bayes rule, the distribution

of the values of the surrogate function at ✓ conditioned on D1:t yields

p(f |✓;D1:t) =
p(✓|f ;D1:t)p(f ;D1:t)

p(✓;D1:t)
, (5.9)

where the likelihood p(✓|f ;D1:t) is modeled by the Parzen density estimators as

p(✓|f ;D1:t) =

8
>><

>>:

l(✓), if f < f
⇤

g(✓), if f � f
⇤
.

(5.10)

The likelihood function has two parts. If the value of the surrogate function is less than

a threshold f
⇤, the likelihood will be governed by the Parzen density estimator l(✓),

otherwise the likelihood will be governed by g(✓). Here, the Parzen density estimators

l(✓) and g(✓) are nonparametric estimators that employ a Gaussian Mixture centered

at each data point from the subset of the data pool with f < f
⇤ and f � f

⇤,

respectively. They can be quantified as

l(✓) = C1⌃i2{f<f⇤}e
� 1

2 (✓�✓i)T⌃�1(✓�✓i), (5.11)

g(✓) = C2⌃i2{f�f⇤}e
� 1

2 (✓�✓i)T⌃�1(✓�✓i), (5.12)

where C1, C2 are normalization factors and ⌃ is a uniformly assigned covariance

matrix.
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Once the likelihood is modeled, the corresponding marginal distribution at ✓ given

the observed data set D1:t (the denominator of Eq. 5.9) can be calculated as the

expectation of the likelihood function

p(✓;D1:t) =

Z 1

�1
p(✓|f ;D1:t)p(f ;D1:t)df

=(l(✓)� g(✓))

Z f⇤

�1
p(f ;D1:t)df + g(✓).

(5.13)

As such, we can derive the posterior distribution of the surrogate function in terms

of the Parzen density estimators by substituting Eq. 5.10 and Eq. 5.13 into Eq. 5.9,

which yields

p(f |✓;D1:t) =

8
>><

>>:

l(✓)p(f ;D1:t)

(l(✓)�g(✓))
R f⇤
�1 p(f ;D1:t)df+g(✓)

, if f < f
⇤

g(✓)p(f ;D1:t)

(l(✓)�g(✓))
R f⇤
�1 p(f ;D1:t)df+g(✓)

, if f � f
⇤
,

(5.14)

where the prior distribution of the surrogate function p(f ;D1:t) is still undetermined.

However, as shown later, the exact form of this prior distribution is irrelavant in the

process of maximizing the expected improvement in order to find the next simulation.

Although the distribution of f is assumed to approximate the real distance func-

tion L up to observed data D1:t, it is still not known how well this approximation of

the surrogate function correlates to the real distance function L. The idea of Bayesian

inference is that the posterior distribution of f becomes closer to the real distance

function L if it is updated when more information about the distance function is

revealed. Specifically, information about the distance function is revealed in terms of

the data (paired as {✓, L(✓)}) from simulation. As new data points {✓t+1, L(✓t+1)}

are simulated, they are added to the observed data pool, which is updated to D1:t+1.

The posterior distribution is then updated accordingly based on D1:t+1 and eventu-

ally resembles the behavior of the real distance function. An exterme argument for

this Bayesian inference would be that if every point on the distance function were

simulated (although this is impossible for a continuous function) and after updating
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the posterior distribution with the last simulated point, the posterior distribution

function should be identical to the distance function itself.

One big di↵erence between the Bayesian optimization and the random search of

the parameter space is the manner in which each explores the parameter space, i.e.,

chooses the next parameter combination to simulate. Unlike the random search, the

Bayesian optimization chooses the next parameter combination with the goal that it

will maximize the expected improvement [61] defined as

EI(✓) = E[max(f ⇤
t � f, 0)], (5.15)

where f
⇤
t (which is also the threshold in Eq. 5.10) defines the best optimization (the

lowest value) of the distance function L with the observation of data D1:t. As such,

the next parameter combination to be simulated is

✓t+1 =argmax
✓

Z 1

�1
max(f ⇤ � f, 0)p(f |✓;D1:t)df

=argmax
✓

R f⇤

�1(f ⇤ � f)p(f ;D1:t)df
g(✓)
l(✓) (1�

R f⇤

�1 p(f ;D1:t)df) +
R f⇤

�1 p(f ;D1:t)df

=argmax
✓

l(✓)

g(✓)
,

(5.16)

where the second equation is derived by substituting the posterior Eq. 5.14. Ex-

amining the results, it becomes clear that the exact form of the prior distribution

of the surrogate function is irrelevant. As long as the cumulative distribution of

the prior
R f⇤

�1 p(f ;D1:t)df is strictly less than 1 (which is indeed the case since the

prior is a probability measure), the expected improvement is maximized where l(✓)
g(✓)

is maximized, which does not depend on the form of the prior distribution of the

surrogate function p(f ;D1:t). This is also the reason that the third equation holds in

Eq. 5.16. Therefore, the next parameter combination is chosen such that it maximize

the quotient of the Parzen density estimators l(✓)
g(✓) .

Using Bayeisan optimization, the parameter combination that minimizes the dis-

tance between the simulated response curves and the experimentally measured re-

sponse curves (i.e., minimizes the distance function L) for a dust particle levitated in
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the plasma sheath can be found e�ciently, despite the expensive computational cost

of each simulation.

5.3 Response Analysis Based On Bayesian Optimization

There is still one problem which needs to be solved before a Bayesian optimiza-

tion can be successfully conducted. As discussed in previous chapters, the primary

response is mainly (but not exclusively) governed by the linear parts of Eq. 5.1 while

the secondary response is mainly (but not exclusively) governed by the nonlinear parts

of Eq. 5.1. In other words, the secondary response (as a nonlinear response) is very

sensitive to the higher order nonlinear terms, i.e., ↵x2 and �x
3, while the primary

response is more sensitive to the linear terms. In this case, the correct parameter

combination that reveals the true plasma condition must be determined employing

both the primary and secondary responses. As such, it is necessary to minimize the

distance functions for both the primary and secondary responses simultaneously. A

simple way of achieving this is to minimize a weighted sum of these two di↵erence

functions. Here, we use a weight sum

Lt = Lp(✓) + 0.05Ls(✓), (5.17)

where Lp(✓) and Ls(✓) are the distance functions for the primary and the secondary

responses, respectively. This weighted sum is designed in such a way that the distance

function for the secondary response is less weighted by considering the fact that the

match of the simulated primary (linear) response curve to the experimentally mea-

sured one is more important than that of a secondary (nonlinear) response. The

Bayesian optimization is conducted for this weighted sum of the distance functions.

Fig. 5.1 shows the Bayesian optimized simulated response curves for a single particle

levitated in the plasma sheath in a GEC rf reference cell at a plasma power of 1.68

Watts and a pressure of 40 mTorr, with Fig. 5.1a showing the primary response and

Fig. 5.1b the secondary response. The particle motion is excited using a driving
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amplitude of 1 V and 1.5 V and is plotted in solid and dashed curves, respectively.

As shown, the optimized response curves (red curves showing the simulated response

according to the model Eq. 5.1) closely resemble the experimentally measured re-

sponses curves (black) in both the primary and secondary region.

Figure 5.1: a) The primary experimentally measured response curve (in black), the primary
Bayesian optimized response curve (in red) and the primary Bayesian optimized response
curve based on model Eq. 5.34 (in blue). b) The secondary (super-harmonic) experimentally
measured response curve (in black), the secondary (super-harmonic) Bayesian optimized
response curve (in red) and the secondary (super-harmonic) Bayesian optimized response
curve based on model Eq. 5.34 (in blue).

The corresponding optimized parameters are calculated as the average of the opti-

mized parameters for five di↵erent trials and shown in Table. 5.1 with the coe�cients

of variation shown in parentheses. Notice that the sign of the coe�cient of the

quadratic nonlinearity ↵ determines only the particle’s shift direction, which has no

e↵ect on the measurement of the response curves. Despite the randomness involved in

the parameter search, this optimization converges to a consistent result as evidenced

by the low coe�cients of variance. The relatively high coe�cient of variance observed

for the parameter � (the coe�cient of the cubic nonlinearity) is due to the fact that

the response curves are less sensitive to the nonlinearities of higher order which results
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in a higher fluctuation of the measurement of the coe�cient of the cubic nonlinearity

�.

Fig. 5.2 shows the loss value (the value of the di↵erence function) as a function

of the number of iterations for the single dust particle excited at both 1 V (a) and

1.5 V (b) excitations, each of which has five independent trails. As shown, the loss

values show a rapid drop after the first several iterations and converge after a few

hundreds of iterations. This indicates the high e�ciency of the presented Bayesian

optimization method in exploitating the parameter space for the correct parameter

combination. (However, in order to boost the accuracy and ensure a wide exploration

of the parameter space, a large number of iterations are conducted.) The higher

convergency loss value observed for the single dust particle under the 1.5 V excitation

(⇡ 4.3 ⇥ 10�3) than under the 1 V excitation (⇡ 2.2 ⇥ 10�3) can be attributed to

an increase in the di�culty of (exactly) capturing the spring softening phenomenon

(i.e., the nonlinear phenomenon that causes the primary resonance peak to be ‘bent’

in the low frequency direction) as the excitation amplitude becomes larger (see Fig.

5.1a).

For comparison, these parameters were also measured by analytically solving

the equation of motion given in Eq. 5.1 employing the multiple-scale perturbation

method [42] and then fitting the experimentally measured response curves to these

approximation solutions.

We first consider the situation in which the excitation frequency is approximately

equal to the resonance frequency, i.e., ⌦ ⇡ ! and re-order each term in Eq. 5.1 using

a dimensionless small value ✏ as described in chapter two. In this case, the equation

of motion Eq. 5.1 becomes

ẍ+ ✏
2
µẋ+ !

2
x+ ↵x

2 + �x
3 = ✏

3
Fexp(i⌦t) + c.c., (5.18)
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Figure 5.2: The loss (value of the di↵erence function) as a function of the number of
iterations for a dust particle excited under an excitation amplitude of a) 1 V and b) 1.5 V.
Colors denote the five independent trials.
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with an excitation frequency ⌦ = ! + ✏
2
�. A test solution is introduced

x(t0, t1, t2; ✏) = ✏x0(t0, t1, t2) + ✏
2
x1(t0, t1, t2) + ✏

3
x2(t0, t1, t2), (5.19)

where t1 = ✏t0 and t2 = ✏
2
t0 are the ‘slow’ times. Di↵erent from previous cases where

only one ‘slow’ time is introduced, here two ‘slow’ times are used due to the cubic

nonlinearities involved in Eq. 5.1 (as compared to Eq. 2.21 and Eq. 4.8 where the

highest nonlinearities are quadratic in nature).

Substitution of the test solution in Eq. 5.34 and decomposing the equations of

motion according to order of approximation, the equation of motion to first order of

✏ is now given by

@
2
x0

@t20

+ !
2
x0 = 0, (5.20)

with the solution

x0(t0, t1, t2) = A(t1, t2)e
i!t0 + C.C., (5.21)

where the amplitude A(t1, t2) is dependent on the ‘slow’ times t1 and t2. The equation

of motion to second order of ✏ yields

@
2
x1

@t20

+ !
2
x1 = �2

@
2
x0

@t0@t1
� ↵x

2
0. (5.22)

Substitution of this into the solution for the first order of approximation (Eq. 5.21),

the secular term in this order can now be eliminated by setting @2x0
@t0@t1

= 0, indicating

that the amplitude A(t1, t2) is actually independent of the ‘slow’ time t1. Thus, the

solution to first order of approximation is

x0(t0, t1, t2) = A(t2)e
i!t0 + C.C.. (5.23)

Consequently, the solution to second order of approximation can be derived as

x1(t1, t2) =
↵

3!2
[A(t2)

2
e
2i!t0 + Ā(t2)e

�2i!t1 � 3A(t2)Ā(t2)] + C.C.. (5.24)

105



This order of approximation still does not produce a solution for the amplitude A(t2),

requiring investigation of the next higher order. The equation of motion to third order

of approximation in ✏ has the form

@
2
x2

@t20

+ !
2
x2 =� 2

@
2
x1

@t0@t1
� 2

@
2
x0

@t0@t2
� @

2
x0

@t21

� µ
@x0

@t0
� 2↵x0x1 � �x

3
0

+ Fe
i(!t0+�t2) + C.C..

(5.25)

Substituting Eq. 5.23 and Eq. 5.24 into Eq. 5.25 and eliminating the secular term, the

amplitude A(t2) can now be derived with the result found to satisfy the relationship

2i!
@A(t2)

@t2
+ µA(t2) + (3� � 10↵

3!2
)A(t2)

2
Ā(t2)�

1

2
Fe

i�t2 = 0. (5.26)

Solving Eq. 5.26, the steady state solution for the amplitude A can now be determined

as

F
2

4!2
= (

Aµ

2
)2 + [(

9�!2 � 10↵2

24!3
)A3 � (⌦� !)A]2. (5.27)

Fitting the experimentally measured primary response curve to this relationship,

9�!2 � 10↵2 can be measured and if either ↵ or � can be determined, the other

can be calculated.

The secondary responses can be examined to determine ↵. Considering an exci-

tation frequency approximately half that of the resonance frequency 2⌦ = !+ ✏�, the

equations of motion can be decomposed into di↵erent orders of ✏ in a similar manner.

The equation of motion to first order of ✏ yields

@
2
x0

@t20

+ !
2
x0 = Fe

i⌦t0 + C.C., (5.28)

with a solution to first order of approximation of

x0(t0, t1) = B(t1)e
i!t0 +

F

2(!2 � ⌦2)
e
i⌦t0 + C.C., (5.29)

where the amplitude B(t1) depends on the ‘slow’ time t1 and will be determined by

eliminating the secular term in the equation of motion to second order of approxima-

tion. The equation of motion to the second order of approximation has the form

@
2
x1

@t20

+ !
2
x1 = �2

@
2
x0

@t0@t1
� 2µ

@x0

@t0
↵x

2
0. (5.30)
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Substituting Eq. 5.29 into Eq. 5.30 and eliminating the secular term, yields

2i!
@B(t1)

@t1
+ i!µB(t1) + ↵[

F

2(!2 � ⌦2)
]2ei�t1 = 0. (5.31)

Consequently the amplitude B(t1) can be found as

B(t1) = ce
�µt1 +

i↵[ F
2(!2�⌦2) ]

2

!(µ+ 2i�)
e
i�t1 , (5.32)

where the first part decays after a long time. Thus, the steady state solution to first

order of approximation for an excitation close to half the resonance frequency has the

form

x(t0) =
F

!2 � ⌦2
cos(⌦t0)�

↵F
2

4!(!2 � ⌦2)2[µ4
2 + (2⌦� !)2]

1
2

sin(2⌦t0 � �), (5.33)

where � = actg(4⌦�2!
µ ) is a shifted phase which is dependent on the excitation fre-

quency. The experimentally measured secondary response curve can now be fitted

to the term ↵F 2

4!(!2�⌦2)2[µ4
2+(2⌦�!)2]

1
2
to measure the parameter denoting the quadratic

nonlinearities ↵, and the parameter characterizing the cubic nonlinearities can be

determined accordingly from Eq. 5.27.

The parameters measured using the multiple-scale approximation are shown in

Table. 5.1. As shown, the parameters measured using the Bayesian optimization are

consistent with those measured from the multiple-scale perturbation with low percent

di↵erences (less than 10 %), except for the value of � under 1.5 V excitation (with

57.6 % di↵erence).

Due to the limitation of the perturbation method, extending the model (Eq. 5.1)

to higher order of nonlinearities and deriving the corresponding approximation solu-

tions is tedious. However, in the Bayesian optimization method, this would be quite

simple. As a representative example, the model is extended here to an additional

nonlinearity of higher order,

ẍ+ µẋ+ !
2
x+ ↵x

2 + �x
3 + �x

4 = Fexp(i⌦t) + C.C.. (5.34)
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By applying the Bayesian method, the optimized parameters are determined (Model

2 in Table. 5.1) with the corresponding response curves shown in Fig. 5.1 (blue

curves). Fig. 5.3 shows the loss value (the value of the distance) as a function of the

number of iterations for the single dust particle excited at both 1 V (a) and 1.5 V (b)

based on the new model (Eq. 5.34). Again, each of the Bayesian optimizations has

five independent trials.

Figure 5.3: The loss (value of the di↵erence function) as a function of the number of
iterations for a dust particle excited under an excitation amplitude of a) 1 V and b) 1.5 V
based on the model provided in Eq. 5.34. Color denotes the five independent trials.

By considering nonlinearities to the fourth order, the value of the di↵erence func-

tion can be further reduced (Fig. 5.3), i.e., the di↵erence function reaches 1.6⇥ 10�3
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for 1 V excitation and 2.3 ⇥ 10�3 for 1.5 V excitation, indicating a better match

between the simulated response curves and the experimentally measured ones. This

can be seen in Fig. 5.1a, where the primary response curves for a model considering

nonlinearities to fourth order (blue curves) more accurately reproduces the spring

softening behavior. By introducing nonlinearities to the fourth order, the measured

drag coe�cient µ, excitation amplitude F and the coe�cient of the quadratic non-

linearity ↵ also become closer to the values calculated employing the perturbation

approach. However, the coe�cient of the cubic nonlinearities � has a large deviation

as can be seen in table. 5.1. Considering the condition characterizing the spring

softening e↵ect (seen from Eq. 5.27)

9�!2 � 10↵2
< 0, (5.35)

the critical value of � for the existence of the spring softening phenomenon can be

derived as � < �c ⇡ 8.1 ⇥ 10�4, as the measured values for the coe�cient of the

quadratic nonlinearity ↵ are consistent in both models (Eq. 5.1 and Eq. 5.34).

Notice that the condition Eq. 5.35 is derived only to the first order of approximation.

The existence of the spring softening phenomenon with a value of � violating this

condition indicates that in order to correctly determine the coe�cient of the cubic

nonlinearities, modification of higher order nonlinearities (at least one order higher)

should not be ignored.
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CHAPTER SIX

A Quick Method to Determine the Dust Charge based on Vertical Pair Interaction

6.1 New Method for Estimating Charge

A quick but naive method of measuring the charge of dust particles levitated in

the plasma sheath region is to measure and to compare the levitation position of the

upstream dust particle in a vertical pair structure and a single particle structure,

respectively.

In the experiment, we first form a vertical dust pair at a desired plasma condition

(e.g., plasma pressure and plasma power) at which we want to estimate the charge

of the dust particle. As an example, the left picture in Fig. 6.1 shows the side-view

picture of a dust pair at a plasma pressure of 40 mTorr and a plasma power of 9.8

Watts. Then we kick o↵ the downstream particle by a verti-laser pulse. The single

remaining particle is shown in the picture on the right in Fig. 6.1.

Figure 6.1: A particle pair structure and a single particle levitated in the plasma sheath at
a plasma pressure of 40 mTorr and a plasma power of 9.8 Watts.
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As shown, when the downstream particle is kicked o↵ by a laser pulse, the up-

stream particle moves down due to the loss of the repulsive interaction force from

the downstream particle. Based on this observation, we can roughly but very quickly

estimate the charge on the dust particle by measuring the distance d that the up-

stream particle moves down after removing the downstream particle, the inter-particle

spacing R and the vertical restoring confinement !0 at the position where the single

particle levitates.

Figure 6.2: Sketch of the transition from a vertical paired structure to a single particle
structure.

Considering a small displacement of the upstream particle d and ignoring any non-

linear parts of the restoring potential, the repulsive interaction from the downstream

particle to the upstream particle is equal to the restoring force component induced

by the displacement of the upstream particle as shown in Fig. 6.2, yielding

Fdu = m!
2
0d, (5.1)

where the Fdu is the interaction force from downstream particle to the upstream

particle, and the mass of the dust particle m = 4
3⇡r

3
MF⇢MF where the radius of the
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Melamine Formaldehyde (MF) particle is rMF = 8.89±0.09 µm and the mass density

of the MF particle is ⇢MF = 1.51 g/cm
3. If we assume that the interaction force

from the downstream particle to the upstream particle has the form of Coulomb force

(since the upstream particle are barely a↵ected the ion wake) the force balance in Eq.

5.1 becomes

Q1Q2

4⇡✏0R2
= m!

2
0d, (5.2)

where Q1 and Q2 are the charge of the upstream and downstream particle respectively,

and ✏0 is the vacuum electric permittivity. Usually, the charge of the downstream

particle is reduced due to the e↵ect of the ion wake. In this case, the charge of the

downstream particle can be written as Q2 = ⇠Q1 where ⇠ is the de-charging factor,

and the charge of the upstream particle Q1 can be derived as

Q1 =

s
4⇡✏0md

⇠
!0R. (5.3)

Note that this interaction force from the downstream particle to the upstream particle

Fdu is not necessarily in the form of a Coulomb interaction. It can also be approxi-

mated by other forms, for example the Yukawa interaction force. As long the as the

Debye length of the Yukawa interaction is known, the dust charge can be calculated

in the same manner.

Here we measure the levitation positions for both the dust pair and the single

particle (by removing the downstream particle) at di↵erent plasma powers (from 4.5

W to 9.8 W) at a plasma pressure of 40 mTorr. The results are shown in Fig. 6.3.

As shown, the levitation positions decrease as plasma power increases (for plasma

powers higher than 4.5 W), and the drop in position of the upstream particle after

the removal of the downstream particle is consistent for all the plasma powers and is

clearly observed.
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Figure 6.3: The levitation position of the dust pair and the corresponding upstream particle
(with the removal of the downstream particle) at varying plasma powers at 40 mTorr.

Based on this measurement of levitation positions, the inter-particle spacing R

and the displacement of the upstream particle d can be in turn measured for varying

plasma powers and are shown in Fig. 6.4.

Figure 6.4: The inter-particle spacing (blue line) and the displacement of the upstream
particle (after a laser is used to kick out the downstream particle, red line) at a plasma
pressure of 40 mTorr.

The corresponding vertical restoring confinement is shown in Fig. 6.5. As the

plasma power increases, the inter-particle spacing decreases while there is no clear

displacement change for the upstream particle observed. The vertical restoring con-
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finement at the position where the single particle structure levitates increases with

the increase in plasma power.

Figure 6.5: The vertical restoring confinement measured at the levitation position of the
single particle structure at a plasma pressure of 40 mTorr.

Figure 6.6: The charge of the dust particle calculated from Eq. 5.3 with the de-charging
e↵ect ignored.

Based on these measurement, the charge of the dust particle can be calculated

by employing Eq. 5.3 and the results are shown in Fig. 6.6. Notice that in this

calculation the de-charging e↵ect is ignored for simplicity, i.e., ⇠ = 1 in Eq. 5.3. As

shown in Fig. 6.6, the charge on the dust particle changes little with the increase of
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the plasma power. The averaged charge calculated at a plasma pressure of 40 mTorr

is around 1.34⇥ 104 e
� with a fluctuation of less than 10%.

6.2 Validation of Charge Measuring Method

To validate the charge measured by this new method, the calculated charge is

compared to the charge measured by a di↵erent method, the mode spectra method.

In the mode spectra method, a three-particle triangular structure needs to be

formed in a single plane (single layer structure). As an example, Fig. 6.7 shows this

single layer structure recorded from a top-view camera at a plasma pressure at 40

mTorr and a plasma power at 9.8 W.

Figure 6.7. Top-view of the three particles structure in a single layer.

There is one major di↵erence between the single layer structure and the vertical

chain structures, which is one focus of this dissertation: for vertical chain struc-

tures, due to the e↵ect of the ion wake, there is a strong non-reciprocity in the

particle-particle interactions, i.e., the upstream and downstream interaction are not

symmetric. However, this non-reciprocal property of the particle-particle interaction

becomes less important for dust particles in a single layer (particles levitate at the

same height in the plasma sheath). Especially for a triangle structure in a single

layer, the in-plane particle-particle interaction can be regarded as reciprocal due to

the geometric symmetry of this structure. In this case, the theoretical normal modes
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can be derived as the eigen-modes of the dynamic matrix

M↵�,ij =
@
2
E

@r↵,i@r�,j
, (5.4)

where ↵, � are the coordinates subscripts (i.e., x and y coordinates) and i, j are

subscripts indicating the particle. E is the total energy of the system and is defined

as (considering an Yukawa type in-plane particle-particle interaction)

E =
1

2
!
2
x0

N=3X

i=1

x
2
i +

1

2
!
2
y0

N=3X

i=1

y
2
i +

Q
2

4⇡✏0

N=3X

j>i

1

Rij
e
�

Rij
�D , (5.5)

where !x0, !y0 are the in-plane restoring confinement in the x and y direction, re-

spectively. Q is the charge of the dust particle, �D is the Debye length and Rij is the

inter-particle spacing between particles i and j.

The charge of the dust particle Q and the Debye length �D can be simultaneously

determined by matching the theoretical mode spectra to the experimental one, which

can be obtained from the top-view trajectories of the thermal motion of this three-

particle structure in a manner similar to that described in chapter three. A match of

the theoretical and experimental mode spectra is plotted in Fig. 6.8 where the red dots

are the the theoretical normal modes and the yellow stripes are the experimentally

measured mode spectra.

The charge of the dust particle is measured to be 1.22⇥104 e and the Debye length

is measured to be 306 µm. The charge estimated from the new quick determination

method di↵ers by less than 9% from the charge measured from the traditional mode

spectra method, which is acceptable considering the possible slight variance of the

experimental conditions in these two sets of experiment.
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Figure 6.8: A match of the theoretical normal modes (red dots) to the experimental mode
spectra (yellow stripes) using a dust charge of 1.22⇥ 104 e and a Debye length of 306 µm.
The plasma pressure is 40 mTorr and the plasma power is 9.8 W.
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CHAPTER SEVEN

Summary

In this dissertation, the grain-grain interaction were examined in the nonlinear

regime by applying nonlinear amplitude-frequency response analysis.

In chapter one, a brief introduction of dusty plasmas was given, including the dust

grain charging process, the formation and the properties of the plasma sheath, as well

as the grain-grain interactions inside the plasma sheath.

In chapter two, the oscillation model for describing coupled dust pair motions

with the consideration of non-reciporcal grain-grain interactions due to the existence

of the ion wake was established. Also, a multiple-scale perturbation solution to the

nonlinear coupled equations of motion is provided by first decoupling all the linear

components.

In chapter three, the experiment equipment (the modified GEC reference cell)

was introduced and all the details for measuring the nonlinear amplitude-frequency

responses from the experiment were explained. Combined with the theoretical guid-

ance derived from chapter two, the nonlinear part of the grain-grain interaction has

been characterized.

In chapter four, the coupled oscillator model was extended to include all the hori-

zontal degree of freedoms, and the corresponding multiple-scale perturbation solutions

were derived. An nonlinear phenomenon, internal resonance, has been reported for

the first time in dusty plasma, which is well explained by the extended theoretical

model.

In chapter five, a noval machine-learning based framework for solving nonlinear

amplitude-frequency response analysis in dusty plasma was proposed. The proposed

Bayesian optimization framework can be applied to more general case of physics prob-

lems where physics quantities can be determined by optimizing simulations (especially
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computational expensive simulations) to the experimental results in an e�cient man-

ner.

In chapter six, a noval method to estimate the dust charge was proposed by mea-

suring the levitation position changes for upstream dust particles with and without

downstream particles. The estimation consists with the results measured from the

mode spectrum method.

In the future, the current nonlinear repsonse analysis can be extended to fit a

more general topological structure of dust particles (e.g., long chains, monolayers,

crystal balls). This can be done by exploring the analytical solution to the corre-

sponding dynamic equations of motion. To simplify the derivation of the analytical

solution, a new coordinate basis that decouples the linear parts of the corresponding

equations needs to be defined. In addition, the proposed machine learning framework

of nonlinear response analysis in chapter five can be easily extended to investigate

long particle chains. This will allow a measurement of the grain-grain interaction

at di↵erent positions within the chain, which helps characterize the downstream ion

wake.
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