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We develop the stability theory for two classes of dynamic equations evolving on

a time domain that is non-uniform and stochastic. In particular, we examine the

mean-square exponential stability and almost sure exponential stability of linear,

time invariant systems and of linear, time-varying systems, where the variation in

time is only due to the local time step.

With the stability theory in hand, we apply our results to control systems

evolving on stochastic, non-uniform time domains. We design stabilizing closed-loop

feedback controllers, observers, observer-based closed-loop feedback controllers, and

optimal closed-loop feedback controllers.
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CHAPTER ONE

Introduction

From cruise-control systems to rocket dynamics, control theory forms a foun-

dation for our modern society. Much of control theory relies on updates to the

system occurring at uniform, predictable moments in time. As control systems be-

come distributed over large scales or become controlled by low-speed devices, the

uniformity and predictability of the underlying time domain cannot be guaranteed.

In this dissertation, we develop a stability theory for linear systems evolving on non-

uniform and random time domains. In order to study such systems, we utilize and

develop the theory of dynamic equations on time scales, a recent theory which unifies

and extends continuous and discrete analysis. Many of the results will consider the

case where the time scale is generated in a stochastic manner, allowing us to study

uncertainty in the time domain.

The dissertation is organized as follows. In Chapter Two, we introduce back-

ground material necessary to understand the rest of the dissertation. In particular,

we will introduce the theory of dynamic equations on time scales, focusing on the

existence and uniqueness of solutions to the first-order, linear dynamic equation on

time scales, which generalizes the exponential function. Next, we will introduce the

concept of stochastic time scales and their relation with standard time scales. Then,

we will review the various notions of stability used in both the deterministic and

stochastic setting. Finally, we will introduce concepts, models, and results from

control theory that we study later in the work.

In Chapter Three, we develop stability theory for both linear time invariant

and the linear µ-varying systems evolving on stochastic time scales. Utilizing both

direct and indirect methods, we completely classify the notions of exponential sta-
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bility almost surely and of mean-square exponential stability for both classes of

dynamic equations. We show that the mean-square exponential stability of both

classes of dynamic equations is equivalent to a positive definite solution of an as-

sociated matrix Lyapunov equation, generalizing known results on R and Z. In

the linear µ-varying case, the matrix Lyapunov equation cannot be solved directly.

Therefore, we provide sufficient conditions for a solution to the Lyapunov equation

using a fixed point theorem of Ran and Reurings [38].

In Chapter Four, we apply the stability theory of Chapter Three to the two

main design problems in control engineering: the observer problem and the controller

problem. We begin with the design of a novel time scale observer and apply it to

the problem of estimating battery state-of-charge. This observer, however, requires

knowledge of the duration of a future time step, making it unsuitable for state

feedback. We attempt to fix this issue by designing an observer which does not

require future knowledge of the time step. Using the corollary to the fixed point

theorem of Ran and Reurings, we find a sufficient condition that guarantees the

effectiveness of the observer. Next, we switch our focus to the controller problem. We

provide a theorem which produces the control law of both the linear time invariant

control system as well as the linear µ-varying control system which minimizes a

quadratic cost functional involving the state and the controls. For both classes of

control systems, the optimal control is obtained by solving an associated Riccati

matrix equation, generalizing celebrated results on R and Z.

In Chapter Five, we use the results concerning stability theory on stochastic

time scales to arrive at results for deterministic time scales. Inspired by the geometric

relationship between the region of mean-square exponential stability and exponential

stability almost surely in the linear time invariant case on stochastic time scales, we

give a formula for the largest Hilger circle contained in the region of exponential

stability for the linear time invariant case on deterministic time scales. This formula

2



resolves an open question recently posed by Doan et al. [17]. Finally, we discuss how

the optimal control theory of stochastic time scales can be applied and interpreted

on deterministic time scales.
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CHAPTER TWO

Preliminaries

2.1 Time Scales Preliminaries

Stefan Hilger developed the theory of Dynamic Equations on Time Scales in

his 1988 dissertation [25]. He successfully unified the theory of difference equations

and differential equations by showing they are special classes of a broader theory. A

time scale, which we denote by T, is an arbitrary closed subset of the real numbers.

If T = R, the theory yields calculus and differential equations. If T = Z, the theory

yields difference calculus and difference equations. The power of the theory lies in the

arbitrary choice of the time scale; one could choose a mixture of discrete points and

closed intervals for the time scale, even a Cantor ternary set, and the theory would

describe how to analyze dynamic equations defined on the time scale. Especially

since the book by Bohner and Peterson [7], the field has grown substantially and

supports an active community of researchers examining many areas of mathematics

with a time scales viewpoint. In this section, we introduce the background necessary

for this thesis.

For a point t ∈ T, the forward jump operator, σ(t), is defined as the point

immediately to the right of t, in the sense that

σ(t) = inf{s ∈ T | s > t}.

The graininess is the distance between points defined as

µ(t) := σ(t)− t.

When T = R, σ(t) = t and µ(t) = 0, whereas when T = Z, σ(t) = t+1 and µ(t) = 1.

We can classify whether a given point t ∈ T is behaving as a continuous or discrete

point.
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Definition 2.1. An element t ∈ T is called right-dense if µ(t) = t and right-scattered

if µ(t) > t. A time scale is purely discrete if µ(t) > 0 for all t ∈ T.

The time scale or Hilger derivative of a function x(t) on T is defined as

x∆(t) :=
x(σ(t))− x(t)

µ(t)
,

and is interpreted in the limit as µ → 0+ when µ(t) = 0. When T = R, x∆(t) =

d
dt
x(t), while when T = Z, x∆(t) = x(t + 1)− x(t) = ∆x(t), where ∆ is the forward

difference operator.

The Hilger integral can be viewed as the antiderivative or Cauchy integral in

the sense that, if y(t) = x∆(t), then for s, t ∈ T,∫ t

τ=s

y(τ)∆τ = x(t)− x(s).

For each γ > 0, define the Hilger Circle by

Hγ :=

{
z ∈ C

∣∣∣∣ |1 + zµ(t)| < 1, z 6= −1

γ

}
(2.1)

Note that Hγ is a disc of radius 1/µ(t) contained in the left half–plane tangent to

the imaginary axis. We interpret H0 as the open left-half complex plane. We note

that the misnomer Hilger circle is prominent in the literature, despite the fact that

the Hilger circle is a disc.

The Hilger circle is extremely important for defining the generalization of the

exponential function to time scales. In order to define the time scale exponential

function, we study the first order initial value problems

x∆ = λ(t)x; x(t0) = x0, (2.2)

where λ : T→ C, and

x∆ = λx; x(t0) = x0, (2.3)

where λ ∈ C. In order to obtain existence and uniqueness results for (2.2) and (2.3),

we require a generalization of the complex plane and some conditions on λ. First,
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we examine the generalization of the complex plane. Given t ∈ T with µ(t) > 0,

we can map the complex plane into the set Cµ(t) := C\{1/µ(t)}, called the Hilger

complex plane as follows.

First, define

Zµ(t) :=

{
z ∈ C

∣∣∣∣− π

µ(t)
≤ Im(z) ≤ π

µ(t)

}
.

Next, define the cylinder transformation ξµ(t) : Cµ(t) → Zµ(t) by

ξµ(t)(z) :=
1

µ(t)
Log(1 + zµ(t)),

where Log is the principal logarithm. The inverse cylinder transformation is then

given by

ξ−1
µ(t)(z) =

ezµ(t) − 1

µ(t)
. (2.4)

In the limiting case where µ(t) = 0, we define C0 := C, and ξ0(z) := z. The effect

of the cylinder transformation is shown in Figure 2.1

The Hilger real axis Rµ(t), the Hilger alternating axis Aµ(t), and the Hilger

imaginary circle Hµ(t) are defined as follows:

Rµ(t) :=

{
z ∈ Cµ(t)

∣∣∣∣ z ∈ R and z > − 1

µ(t)

}
,

Aµ(t) :=

{
z ∈ Cµ(t)

∣∣∣∣ z ∈ R and z < − 1

µ(t)

}
,

Hµ(t) :=

{
z ∈ Cµ(t)

∣∣∣∣ ∣∣∣∣z +
1

µ(t)

∣∣∣∣ =
1

µ(t)

}
.

When µ(t) = 0, we define R0 = R, A0 = ∅ and H0 = I, the imaginary axis. Note that

the boundary of the Hilger circle Hµ(t) is the Hilger imaginary circle Hµ(t). Within

Hilger’s complex plane, we can now discuss the Hilger real part and Hilger imaginary

part of a complex number z. The Hilger real part of z ∈ C, Reµ(t)(z), is given by

Reµ(t)(z) := lim
s↓µ(t)

|1 + sz| − 1

s
,
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Re z

Im z

−1/µ(t)

Hµ(t)
ξµ(t)

ξ−1
µ(t)

Re z

Im z

Figure 2.1. The effect of the cylinder transformation ξµ(t) and its inverse ξ−1
µ(t).

and the Hilger imaginary part of z ∈ C, Imµ(t)(z), is given by

Imµ(t)(z) := lim
s↓µ(t)

Arg(1 + sz)

s
,

where Arg(z) is the principal argument of z. Note that Re0(z) = Re(z) and Im0(z) =

Im(z). Finally, we define the Hilger purely imaginary number
◦
ıω, with −π/µ(t) ≤

ω ≤ π/µ(t), by

◦
ıω :=

eiωµ(t) − 1

µ(t)
.

The Hilger complex plane is shown in Figure 2.2

As we continue towards the uniqueness of solutions to (2.2), we require two

additional definitions.

Definition 2.2. Let T be a time scale. A function f : T → R is rd-continuous

provided it is continuous at right-dense points in T and its left-sided limits exist

(and are finite) at left-dense points in T. If A : T → Rn×n is a matrix valued

function, then we say A is rd-continuous provided A is entry-wise rd-continuous.

Definition 2.3. Let T be a time scale, then λ(t) is said to be regressive if λ(t) 6= − 1
µ(t)

for all t ∈ T for which µ(t) 6= 0 and positively regressive if λ(t) is regressive and

contained on the Hilger real axis Rµ(t) for all t ∈ T. Furthermore, λ(t) is said to

be uniformly regressive if there exists a γ > 0 for which 1/γ ≥ |1 + µ(t)λ(t)| for all

t ∈ T.
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Re z

Im z

z

θ

Reµ(t)(z)

◦
ı Imµ(t)(z)

−1/µ(t)

θ = Imµ(t)(z)

Figure 2.2. The Hilger complex plane.

When λ(t) ≡ λ is constant, the definition of regressivity requires that λ is not

the center of any Hilger circle Hµ(t) for all t ∈ T. Uniform regressivity implies λ is

bounded away from every possible Hilger circle center.

Theorem 2.1. Let T be a time scale and suppose that λ(t) is rd-continuous and

regressive. Then there exists a unique solution to the initial value problem (2.2) with

x0 = 1, denoted Φλ(t, t0). When λ(t) ≡ λ, then Φλ(t, t0) := eλ(t, t0), which we call

the time scale exponential function.

The time scale exponential function generalizes the standard exponential func-

tion. When T = R, λ is rd-continuous and regressive, and eλ(t, t0) = eλ(t−t0). When

T = Z, as long as λ 6= −1, eλ(t, t0) = (1 + λ)t−t0 . The behavior of the time sale

exponential can be very irregular, depending on the time scale. For example, we see

that when T = Z, the exponential function can be oscillatory if λ is real valued with

λ < −1.

In this work, we will also be interested in first order systems of dynamic

equations of the form

x∆ = A(t)x; x(t0) = x0, (2.5)
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where A : T→ Rn×n and

x∆ = Ax; x(t0) = x0, (2.6)

where A ∈ Rn×n. Just as in the scalar case, we will require additional conditions to

guarantee the existence and uniqueness of (2.5) and (2.6).

Definition 2.4. Let T be a time scale. A matrix A : T → Cn×n is (uniformly)

regressive if and only if each eigenvalue λ(t) is (uniformly) regressive. Equivalently,

a matrix is regressive if and only if In + µ(t)A(t) is invertible for all t ∈ T.

Theorem 2.2. Let T be given and suppose that A(t) is rd-continuous and uniformly

regressive. Then there exists a unique solution to the matrix initial value problem

(2.5) with x(t0) = I, which is given by the time scale transition matrix, denoted

ΦA(t, t0). When A(t) ≡ A, this is known as the time scale matrix exponential,

denoted eA(t, t0).

For a purely discrete time scale, the function µ(t) completely classifies the

time scale. We can therefore generate time scales by generating a sequence of grain-

inesses stochastically. In this work, we consider time scales which are stochastically

generated as follows.

Definition 2.5. Let t0 ∈ R and {µi}∞i=0 be a sequence of random variables with range

(0,∞). A stochastic time scale with initial time t0 generated by {µi}∞i=0 is the set

T̃ := {t0} ∪

{
t0 +

n∑
i=0

µi | n ∈ N0

}
.

If the set of random variables {µ} ∪ {µi}∞i=0 consists of independent, identically

distributed random variables, we call the resulting stochastic time scale an i.i.d.

stochastic time scale generated by µ.

Note that the realization of any stochastic time scale is an unbounded above,

purely discrete time scale. Now we show how to define the solution of (2.2) on a

stochastic time scale.
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Definition 2.6. Let T̃ be a stochastically generated time scale with initial time t0

generated by {µi}∞i=0 and let ti = t0 +
∑i−1

i=0 µi. Let λ : R → C. Assume that

λ(ti) 6= −1/µi almost surely. Suppose the sequence {x(ti)}∞i=1 satisfies

x(ti) = (1 + λ(ti−1)µi−1)x(ti−1); x(t0) = 1. (2.7)

Define Φ̃λ(ti, t0) := x(ti). If λ(t) ≡ λ is constant, denote x(ti) = ẽλ(ti, t0) and call

ẽλ(ti, t0) the stochastic time scale exponential. We say that ẽλ(ti, t0)x0 is the solution

of (2.2) on the stochastic time scale T̃

Note that Φ̃λ(ti, t0)x0 solves (2.2) on any realization of the stochastic time

scale T̃. Moreover, the function λ is rd-continuous and regressive almost surely. This

definition is therefore a natural extension of the time scales exponential function.

We now make the same extension for the matrix case.

Definition 2.7. Let T̃ be a stochastically generated time scale with initial time t0

generated by {µi}∞i=0 and let ti = t0 +
∑i−1

i=0 µi. Let A : R → Cn×n. Assume that

I + µiA(ti) is invertible almost surely. Suppose the random sequence of matrices

{x(ti)}∞i=1 satisfies

x(ti) = (I + A(ti−1)µi−1)x(ti−1); x(t0) = I. (2.8)

Then we denote x(ti) = Φ̃A(ti, t0) and call Φ̃A(ti, t0) the stochastic time scale tran-

sition matrix. If A(t) ≡ A is constant, we denote x(ti) = ẽA(ti, t0) and call ẽA(ti, t0)

the stochastic time scale matrix exponential. We say that Φ̃A(ti, t0)x0 is the solution

of (2.5) on the stochastic time scale T̃

2.2 Stability Theory

In systems and control theory, fundamental questions revolve around the sta-

bility of the matrix exponential function when T = R and T = Z. In the follow-

ing section, we introduce various notions of stability in both the deterministic and

10



stochastic sense. We then review some classical approaches to stability theory via

both direct and indirect methods.

2.2.1 Deterministic Notions of Stability

The notion of stability is vague and very broad. We now define precisely the

notions of stability that will appear in this work.

Definition 2.8. The equilibrium x(t) ≡ 0 of a linear dynamic system (2.5) is Lyapunov

stable if for every ε > 0 there exists a δ(ε) > 0 such that if ‖x(t0)‖ < δ, then

‖x(t)‖ < ε for every t > t0. The equilibrium is globally Lyapunov stable if there

exists a finite constant γ > 0 such that for any initial conditions t0 and x(t0) the

corresponding solution of (2.5) satisfies ‖x(t)‖ ≤ γ‖x(t0)‖.

Definition 2.9. The equilibrium x(t) ≡ 0 of the linear dynamic system (2.5) is asymp-

totically stable if it is Lyapunov stable and there exists a δ > 0 such that if ‖x(t)‖ < δ,

then limt→∞ ‖x(t)‖ = 0. Furthermore, the equilibrium is globally asymptotically sta-

ble if it is globally Lyapunov stable and given any δ > 0 there exists a T > 0

such that for any initial conditions t0 and x(t0) the corresponding solution satisfies

‖x(t)‖ ≤ δ‖x(t0)‖, t ≥ t0 + T.

Definition 2.10. The equilibrium x(t) ≡ 0 of the linear dynamic system (2.5) is

exponentially stable if for every t0, there exists K(t0) ≥ 1 and α > 0 such that

‖ΦA(t, t0)‖ ≤ Ke−α(t−t0), t ≥ t0.

Definition 2.11. The equilibrium x(t) ≡ 0 of the linear dynamic system (2.5) is

uniformly exponentially stable if K can be chosen independently of t0 in the definition

of exponential stability.

Throughout, we abuse semantics and say that the dynamic equation is stable,

rather than saying that the equilibrium is stable.
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We now present theorems which help us ascertain the stability properties of

(2.3), (2.2) and (2.5).

Pötzsche et al. [33] took a direct approach by computing the solution of (2.3)

and (2.5) in the case that A(t) ≡ A in order to classify stability properties. Their

results relate the stability of first order, linear time invariant systems of dynamic

equations on time scales to a region of the complex plane, which we define next.

Definition 2.12. Let T be a time scale unbounded above. Then for any t0 ∈ T, define

SC :=

{
λ ∈ C | lim sup

T→∞

∫ T
t0

lims↓µ(t)
ln |1+λs|

s
∆t

T − t0

}
,

and

SR := {λ ∈ R | ∀λ ∈ T,∃T ∈ T with T > t such that 1 + µ(T )λ = 0}.

Finally, define the region of exponential stability for T by

S := SC ∪ SR.

The name “region of exponential stability” is appropriate, as the following

theorem shows.

Theorem 2.3 ([33]). Let T be a time scale unbounded above and λ ∈ C. The scalar

dynamic equation (2.3) is exponentially stable if and only if λ ∈ S.

The above theorem can be generalized for scalar, linear time varying dynamic

equations where the time dependence occurs only via the graininess, that is, dynamic

equations of the form

x∆ = λ(µ(t))x; x(t0) = x0. (2.9)

Lemma 2.1. Let T be a time scale which is unbounded above and let λ : [0,∞)→ C.

The scalar dynamic equation (2.9) is exponentially stable if and only if one of the

following conditions is satisfied:
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(1) lim sup
T→∞

1

T − t0

∫ T

t0

lim
s→µ(t)

ln |1 + λ(s)s|
s

∆t < 0.

(2) for all T ∈ T, there exists t ∈ T with t > T such that 1 + µ(t)λ(µ(t)) = 0.

Proof. Follow the proof of Theorem 2.3 in Pötzsche et al. [33]. No step in the proof

relies explicitly on λ(µ(t)) being a constant.

Theorem 2.3 extends to (2.6) using eigenvalues, but it requires an additional

assumption.

Theorem 2.4 ([33]). Let T be a time scale unbounded above and let A ∈ Rn×n be

regressive. Then the following hold:

(1) If (2.6) is exponentially stable, then spec(A) ⊂ SC.

(2) If spec(A) ⊂ SC and each eigenvalue of A is uniformly regressive, then (2.6)

is exponentially stable.

Alternatively, we can drop the regressivity of A and the uniform regressivity

assumption on the eigenvalues of A by imposing a condition on the geometric and

algebraic multiplicities on the eigenvalues of A.

Theorem 2.5 ([33]). Let T be a time scale unbounded above and let A ∈ Rn×n. Then

the following hold

(1) If (2.6) is exponentially stable, then spec(A) ⊂ SC.

(2) Suppose spec(A) ⊂ S, µ(t) is bounded above, and for all eigenvalues λ with

unequal geometric and algebraic multiplicities, the scalar system (2.3) is

uniformly exponentially stable. Then (2.6) is exponentially stable.

The last theorem shows the importance of uniform exponential stability for

showing the exponential stability of (2.5).
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The paper by Pötzsche et al. raised two issues which are still guiding current

research. The first issue is, unlike the cases where T = R or T = hZ, h > 0, on a

general time scale the notion of exponential stability is not equivalent to the other

varieties of stability, such as uniform exponential stability [16]. The second issue is

that the region of exponential stability is in general difficult to compute.

In research regarding the first issue, in a recent paper, Doan et al. [17] focused

on properties of the region of uniform exponential stability in order to prove results

concerning the stability radii of positive systems on time scales. In particular, they

focused on the “ball of uniform exponential stability,” the largest circle contained

in the region of stability which is tangent to the origin. While both the region of

uniform exponential stability and the ball of uniform exponential stability had useful

theoretical properties, they could only be calculated in some very special cases; no

general description or formula for these regions was given. In particular, they posed

as an open question the radius of the ball of uniform exponential stability when the

time scale consists of repeated Cantor sets. We will offer a solution to this open

problem in Chapter Five by providing a formula for the radius of the ball of uniform

exponential stability under a mild condition on the time scale.

To get around the computational difficulties of the region of exponential sta-

bility, Gard and Hoffacker [20] found that Hµmax ⊂ S, where µmax = supt∈T{µ(t)}.

While this region is a subset of the region of exponential stability, in many cases

this disc is a small portion of the entire region of exponential stability.

In contrast to the direct method of Pötzsche et al., we can analyze stability

using an indirect method where the explicit solution of the dynamic equation is not

necessary. The indirect method we will discuss here is Lyapunov’s Second Method,

introduced in his 1892 thesis, and its generalization to time scales. Heuristically,

Lyapunov’s method relies on a generalized energy function. If the energy never

increases in time, then the solution must remain bounded. If the energy is always
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decreasing, then the system must reach equilibrium. We now formally introduce the

notion of Lyapunov functions and state Lyapunov’s theorem for time scales.

Definition 2.13. A functional V : Rn → R is called a Lyapunov function for the

system x∆ = A(t)x, if

(1) V (x(t)) ≥ 0 with equality if and only if x(t) = 0.

(2) V ∆(x(t)) ≤ 0, where the ∆-differentiation is with respect to t.

Theorem 2.6 ([30]). The equilibrium x(t) ≡ 0 of x∆ = A(t)x is Lyapunov stable if

there exists an associated Lyapunov function. Furthermore, if V ∆(x(t)) < 0 then

the equilibrium is globally asymptotically stable.

We can analyze the stablity of (2.6) using Lyapunov’s method, even though

an indirect method is not absolutely necessary. We search for quadratic Lyapunov

functions, that is, functions of the form

V (x(t)) = xT (t)Px(t),

where P is a symmetric, positive definite matrix. This approach leads to the follow-

ing condition.

Theorem 2.7 ([18]). The equilibrium x(t) ≡ 0 of x∆ = Ax is globally asymptotically

stable if there exists P > 0 such that

ATP + PA+ µ(t)ATPA < 0, (TSALI)

where the inequalities are interpreted in the sign-definiteness sense. We call this

inequality the time scale algebraic Lyapunov inequality (TSALI).

When T = R, this condition is equivalent to the existence of a solution P > 0

to the continuous algebraic Lyapunov equation (CALE)

ATP + PA = −M ; M > 0. (CALE)
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Similarly, on when T = Z, the existence of a quadratic Lyapunov function is equiv-

alent to the existence of a positive definite solution to the matrix equation, called

the discrete algebraic Lyapuonov equation (DALE), given by

ATP + PA+ ATPA = −M ; M > 0. (DALE)

Additionally, each equation can be solved if and only if the eigenvalues of A are

in the respective regions of exponential stability S. Therefore, on R and Z, global

asymptotic stability is equivalent to exponential stability for x∆ = Ax. This result is

not true for a general time scale, as (TSALI) can only be solved if spec(A) ⊂ Hµmax .

2.2.2 Stochastic Notions of Stability

In this section, we consider notions of stability on a stochastic time scale. We

will be especially concerned with linear time-varying systems of dynamic equations

of the form

x∆ = A(µ)x; x(t0) = x0, (2.10)

where A : R→ Rn×n.

Definition 2.14. Let T̃ be a stochastically generated time scale with initial time t0

generated by {µi}∞i=0 and let A : R → Rn×n. Let ti = t0 +
∑i−1

i=0 µi. We say the

equilibrium x(ti) ≡ 0 of (2.10) is exponentially stable almost surely if and only if

with probability one there exists a constant α > 0 such that for every ti ∈ T̃ there

exists a K := K(ti) ≥ 1 with∣∣∣Φ̃A◦µ(tk, ti)
∣∣∣ ≤ Ke−α(Tk−Ti), for k ≥ i.

We can arrive at an entirely different notion of stability if we regard each point

in the sample path as a random variable and define the norm of each point in the

sample path to be the L2 norm in the underlying probability space Ω, that is, we

use the norm ‖x(tn)‖Ω := E
[
xT (tn)x(tn)

]
, where E denotes expectation.
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Definition 2.15. The zero solution of (2.5) on T̃ is called mean-square stable, if for all

ε > 0, there exists a δ > 0 such that for each initial condition x0 ∈ Rn with ‖x0‖ < δ

and all m ∈ N, we have ‖Φ̃A(tm, t0)x0‖Ω < ε. If there is no dependence on δ, we call

the zero solution globally mean-square stable. If in addition, ‖Φ̃A(tm, t0)x0‖Ω → 0

as m → ∞ for sufficiently small ‖x0‖, then the zero solution is called mean-square

asymptotically stable. If the convergence is exponential, the zero solution is called

mean-square exponentially stable.

Definition 2.16. The zero solution of (2.5) on T̃ is called second moment (exponen-

tially, asymptotically) stable if the corresponding property in Definition 2.15 above

holds, when ‖Φ̃A(tn, t0)x0‖Ω is replaced by

‖E[Φ̃A(tm, t0)x0x
T
0 Φ̃T

A(tm, t0)]‖Rn×n ,

where ‖ · ‖Rn×n is the induced matrix norm from the vector 2-norm.

These two notions of stability can be used interchangeably, as the next lemma

shows.

Lemma 2.2 (Damm [13]). Second moment stability and mean-square stability are

equivalent.

In the later part of the dissertation, we restrict ourselves to i.i.d stochastic

time scales. In this case, {Φ̃A◦µ(tn, t0)}∞n=1 forms a Markov chain. The following two

key theorems due to Kushner establish a Lyapunov-like theorem for this case. These

theorems will lead us to a notion similar to Lyapunov stability.

Definition 2.17. LetM := {Xn}∞n=0 be a sequence of random variables with outputs

in the state space S. We say M is a Markov chain provided

Pr[Xn = s | Xn−1 = sn−1, . . . , X0 = s0] = Pr[Xn = s | Xn−1 = sn],

where Pr[· | ·] represents conditional probability and s, sm ∈ S for 0 ≤ m ≤ n− 1.
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Less formally, a Markov chain is a sequence of independent random variables

whose next value is conditionally independent of the past values, given the present

value.

Theorem 2.8 (Kushner [29]). Let {xn} be a Markov Chain on a state space S. Sup-

pose there exists nonnegative V such that

Ex[V (x1)]− V (x) = −k(x),

where Ex is the expectation given that the Markov chain has initial state x and where

k(x) ≥ 0 on Qλ := {x | V (x) < λ}. Then

Pr
x

[
sup

0≤n<∞
V (xn) ≥ λ

]
≤ V (x)

λ
.

Therefore,

• Solution paths stay in Qλ with probability at least 1− V (x)/λ.

• k(xn)→ 0 for all paths remaining in Qλ.

• There is some random v ≥ 0 such that V (xn)→ v ≥ 0 with probability one.

Theorem 2.9 (Kushner [29]). Let V (x) ≥ 0 and Ex[V (x1)] − V (x) ≤ −αV (x) for

some 0 < α < 1. Then

• Ex[V (xn)] ≤ (1− α)nV (x);

• V (xn)→ 0 with probability one;

• Px

[
supN≤n<∞ V (xn) ≥ λ

]
≤ (1−α)N

λ
V (x).

Definition 2.18. If there exists a V (xn) ≥ 0 satisfying the conditions of Theorem

2.8 for xn = Φ̃A◦µ(tn, t0)x0 on an i.i.d. stochastic time scale, we say that the zero

solution of (2.10) is asymptotically stable in the sense of Kushner. If such a V exists

satisfying the conditions of Theorem 2.9, we say that the zero solution of (2.10) is

exponentially stable in the sense of Kushner.
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In Chapter Three, we will show that, for i.i.d stochastic time scales, mean-

square exponential stability is equivalent to exponential stability in the sense of

Kushner.

2.3 Control Theory

We now introduce the necessary background from control theory.

2.3.1 Linear System Model

Many physical systems of interest to engineers can be approximated by the

continuous time linear time invariant system model

ẋ = Ax+Bu (2.11)

y = Cx+Du, (2.12)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m, are constant matrices.

x : R → Rn is called the state vector, y : R → Rn is called the output vector and

u : R → Rm is called the control vector. Also commonly considered is the discrete

time linear time invariant system model

∆x = Ax+Bu (2.13)

y = Cx+Du, (2.14)

where A,B,C,D, x, u are as before. Two primary goals of control theory are:

(1) Controller Problem: Can we choose u(t) so that the state x(t) has a desired

property (such as stability).

(2) Observer Problem: If we cannot directly measure the state x, can we esti-

mate or reconstruct x using only the information contained in the output

y.
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We will only discuss relevant results for equations (2.13) and (2.11). A vast

theory exists for more general control systems, such as linear time-varying and non-

linear systems [3].

2.3.1.1 Controllability We now introduce a fundamental concept in control

theory essential for determining if we can solve the controller problem.

Definition 2.19. A linear system is said to be controllable at t0 if it is possible to

find u(t) defined over t0 ≤ t ≤ t1 <∞ so that x(t1) = 0. If this is true for all initial

times t0 and all initial states x(t0), the system is said to be completely controllable.

For the linear time invariant systems under consideration, the following rank

condition determines controllability.

Theorem 2.10. The systems (2.11) and (2.13) are completely controllable if and only

if the n×mn controllability matrix

C :=
(
B | AB | A2B | · · · | An−1B

)
has rank n.

If the condition in Theorem 2.10 holds, we call the pair (A,B) controllable.

Controllability is an essential feature of systems which we want to stabilize. Notice

that if we use state-feedback, that is, controls of the form u(t) = Kx(t), K ∈ Rm×n,

then the system dynamics of (2.11) and (2.13) are given by

ẋ = (A+BK)x

and

∆x = (A+BK)x,

respectively. Therefore, if spec(A + BK) ⊂ C− in the continuous case or spec(A +

BK) ⊂ H1 in the discrete case, then the system will be exponentially stable. When
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the pair (A,B) is controllable, we can position the eigenvalues of A+BK arbitrarily

(up to complex conjugates) through judicious choice of K, as the next lemma shows.

Lemma 2.3 ([9, 3]). Let Γ be a set of n complex numbers such that if λ ∈ Γ, then

λ ∈ Γ. There exists K ∈ Rm×n such that spec(A+ BK) = Γ for any admissible set

Γ if and only if the pair (A,B) is controllable.

In certain cases, we can achieve our control goals even if the pair (A,B) is

not controllable. To see this, we introduce the Kalman controller canonical form of

(2.11) and (2.13).

Lemma 2.4 ([9, 3]). The linear system (2.11) can be written, via the orthogonal

transformation Tx =

(
T1 T2

)
x =

(
w1 w2

)T
= w, as

˙w1

w2

 =

T T1 AT1 T T1 AT2

0 T T2 AT2


w1

w2

+

T T1 B
0

u

y =

(
CT1 CT2

)
w +Du,

where the pair (T T1 AT1, T
T
1 B) is controllable.

Similarly, the linear system (2.13) can be written, via the same transformation,

∆

w1

w2

 =

T T1 AT1 T T1 AT2

0 T T2 AT2


w1

w2

+

T T1 B
0

u

y =

(
CT1 CT2

)
w +Du,

where the pair (T T1 AT1, T
T
1 B) is controllable.

Notice that the dynamics of w2 are given by

ẇ2 = T T2 AT2w2.

Therefore the trajectory of w2 is independent of the control u and decoupled from

w1. We see that as long the eigenvalues of T T2 AT2 are in the correct stability region,
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stability can be achieved by using Lemma 2.3 for the dynamics of w1. This leads to

the definition of stabilizability.

Definition 2.20. The continuous time linear system (2.11) is said to be stabilizable if

spec(T T2 AT2) ∈ C−. The discrete time linear system (2.13) is said to be stabilizable

if spec(T T2 AT2) ∈ H1.

2.3.1.2 Observability We now introduce a condition similar to controllability

helps us determine whether we can solve the observer problem.

Definition 2.21. A linear system is said to be observable at t0 if x(t0) can be deter-

mined from the output function y(t) defined over t0 ≤ t ≤ t1 < ∞. If this is true

for all t0 and x(t0), the system is said to be completely observable.

For the linear time invariant systems under consideration, the following rank

condition determines observability.

Theorem 2.11. The systems (2.11) and (2.13) are completely observable if and only

if the mn× n observability matrix

O :=



C

CA

CA2

...

CAn−1


has rank n.

If the condition in Theorem 2.11 holds, we call the pair (A,C) observable.

Observability is a fundamental concept for systems that we want to estimate, as the

following construction shows. Suppose we guess the state x̂ with the system model

˙̂x = Ax̂+Bu+H(y − ŷ);
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ŷ = Cx̂+Du,

where H ∈ Rn×p is some constant matrix which we can design. Then the error

ε := x− x̂ has the dynamics

ε̇ = (A−HC)ε.

A similar design holds in discrete time. Therefore, if spec(A − HC) ⊂ C− in the

continuous case, or spec(A − HC) ⊂ H1 in the discrete case, then the system will

be exponentially stable. When the pair (A,C) is observable, we can position the

eigenvalues of A − HC arbitrarily (up to complex conjugates) through judicious

choice of H, as the next lemma shows.

Lemma 2.5 ([9, 3]). Let Γ be a set of n complex numbers such that if λ ∈ Γ, then

λ ∈ Γ. There exists H ∈ Rn×p such that spec(A −HC) = Γ for any admissible set

Γ if and only if the pair (A,C) is observable.

In certain cases, we can achieve our estimation goals even if the pair (A,C) is

not observable. To see this, we introduce an analogous Kalman observable canonical

form of (2.11) and (2.13) for the observer case.

Lemma 2.6 ([9, 3]). The continuous linear system (2.11) can be written, via the

orthogonal transformation V x =

(
V1 V2

)
x =

(
v1 v2

)T
= v, as

˙v1

v2

 =

V T
1 AV1 0

V T
2 AV1 V T

2 AV2


v1

v2

+

V T
1 B

V T
2 B

u

y =

(
CV1 0

)v1

v2

+Du,

where the pair (V T
1 AV1, CV1) is observable.
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Similarly, the discrete time linear system (2.13) can be written, via the same

transformation,

∆

v1

v2

 =

V T
1 AV1 0

V T
2 AV1 V T

2 AV2


v1

v2

+

V T
1 B

V T
2 B

u

y =

(
CV1 0

)v1

v2

+Du,

where the pair (V T
1 AV1, CV1) is observable.

Notice that the states v2 do not contribute to the output y. Moreover, v2 does

not contribute to y via v1, as the dynamics of v1 are independent of v2. We will

not be able to observe estimate v2, so if the dynamics of v2 are not stable, we will

not be able to estimate the state v. If the dynamics of v2 are stable, we know the

destination of the v2, and can therefore estimate the state v.

Definition 2.22. The linear system (2.11) is said to be detectable if spec(V T
2 AV2) ∈

C−. The linear system (2.13) is said to be detectable if spec(V T
2 AV2) ∈ H1.

2.3.2 Discretizing onto a Time Scale

We will be interested in generalizing (2.11) and (2.13) to time scales. Here, we

introduce a generalization which is useful in practical applications such as real-world

engineering problems. We consider the system dynamics

ẋ = Ax+Bu+ Fwt (2.15)

y = Cx+Du,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and F ∈ Rn×l are constant

matrices and wt is an orthogonal increments process [10] with E[wt] = 0 and

E[wsw
T
t ] = I min{t, s}. Similarly, the discrete LTI system model is given by

∆x = Ax+Bu+ Fw, x(t0) = x0,
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y = Cx+Du.

When encountering these two models, it is tempting to simply study the time scale

LTI control system

x∆ = Ax+Bu+ Fw

y = Cx+Du.

While this approach is perfectly acceptable from a mathematical perspective, in this

subsection, we argue that the simplistic approach given above does not suffice if one

wishes to study practical control systems. We will derive the time scales control

system that, while more mathematically difficult to work with, provides a usable

model for applications. In this way, both theorists and practitioners benefit: the

theorists discover new questions to ask and the engineers receive accurate models.

Let us consider the control system (2.15). Suppose we wish to control the

system using a piecewise constant function which can only change values at a discrete

set of points denoted T := {tk}∞k=0. It is well known [3] that the solution of (2.15) is

given by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ +

∫ t

t0

eA(t−τ)Cdwτ , (2.16)

where the last integral is a Weiner integral [15].

Now, as u(t) = u(tk) on [tk, tk+1), we can write for any t ∈ [tk, tk+1],

x(t) = eA(t−t0)x(tk) +

∫ t

tk

eA(t−τ)dτBu(tk) +

∫ t

tk

eA(t−τ)Cdwτ .

Therefore,

x∆(tk) =
x(tk+1)− x(tk)

µ(tk)

=
eA(tk+1−tk)x(tk) +

∫ tk+1

tk
eA(tk+1−τ)dτBu(tk) +

∫ tk+1

tk
eA(tk+1−τ)Cdwτ − x(tk)

µ(tk)

=
(eAµk − I)

µ(tk)
x(tk) +

A−1(eAµk − I)B

µ(tk)
u(tk) +

∫ tk+1

tk
eA(tk+1−τ)Cdwτ

µ(tk)
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:= A(µ(tk))x(tk) + B(µ(tk))u(tk) +

∫ tk+1

tk

eA(tk+1−τ)C

µ(tk)
dwτ .

The last term above [15] is a random variable with

E

[∫ tk+1

tk

eA(tk+1−τ)C

µ(tk)
dwτ

]
= 0,

and

Cov

[∫ tk+1

tk

eA(tk+1−τ)C

µ(tk)
dwτ

]
=

1

µ(tk)2

∫ tk+1

tk

eA(tk+1−τ)CCT eA
T (tk+1−τ)dτ

=
1

µ(tk)2

∫ µ(tk)

0

eAτCCT eA
T τdτ,

where Cov denotes the variance-covariance matrix of a random vector. Since most

of the modeling we do will involve only the first and second moments, a model which

agrees with the current model up to the first and second moments is given by

x∆ = A(µ)x+ B(µ)u+ C(µ)w,

where w is a random variable with E[w] = 0,E[wwT ] = I and

C(µ) =
1

µ

√∫ µ

0

eAτCCT eAT τdτ .

Note that

E[C(µ)w] = 0,

and

Cov[C(µ)w] = E[C(µ)wwTCT (µ)]

= C(µ)E[wwT ]CT (µ) = C(µ)2

=
1

µ(tk)2

∫ µ(tk)

0

eAτCCT eA
T τdτ.

In the case where A is not invertible, we can still define B(µ) via the convergent

power series

expc(X) :=
∞∑
n=1

Xn−1

n!
. (2.17)
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Therefore, in general, we have

A(µ(t)) = expc(Aµ(t))A

and

B(µ) = expc(Aµ(t))B.

In conclusion, this derivation shows that in order to understand the behavior

of the continuous time linear system (2.15) which updates only on points in the time

scale T, we should study the time scale control system

x∆ = A(µ)x+ B(µ)u+ C(µ)w, t ∈ T

2.3.3 Optimal Control Theory

When studying the controller problem, especially time varying or nonlinear

systems, one of the largest difficulties is finding valid control laws. The contribu-

tions to optimal control theory by Kalman [27], perhaps one of the most important

developments in control theory during the twentieth century, helped to alliviate this

problem. The usefulness of the theory was not due to the fact that the control was

optimal with respect to some criterion, as the criterion was somewhat arbitrary, but

that the engineer could now obtain a stabilizing control relatively easily. The most

well-known optimal control theory is the classic infinite horizon linear quadratic reg-

ulator (LQR), a theory that develops a control which minimizes the quadratic cost

function over either a finite or an infinite time frame. In continuous time, the finite

horizon cost functional is given by

Jfc (x, u, T ) :=

∫ T

t0

xT (t)Qx(t) + uT (t)Ru(t)dt+ xT (T )Qfx(T ), (2.18)

where Q,Qf ≥ 0 and R > 0. The continuous time infinite horizon cost functional is

given by

Jc(x, u) :=

∫ ∞
t0

xT (t)Qx(t) + uT (t)Ru(t)dt. (2.19)
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Similarly, in discrete time, the finite horizon cost functional is given by

Jfd (x, u,N) :=
N−1∑
n=0

xT (n)Qx(n) + uT (n)Ru(n) + xT (N)Qfx(N), (2.20)

and the infinite horizon cost functional is given by

Jd(x, u) :=
∞∑
n=0

xT (n)Qx(n) + uT (n)Ru(n). (2.21)

Just as the stability of the LTI system (2.6) on R and Z is connected to the

existence of a solution to an associated Lyapunov matrix equation, the design of

optimal controllers in the finite horizon and infinite horizon LQR case for (2.6) on

R and Z is connected to the solution of an associated Riccati matrix equation.

On R, the finite horizon problem is approached by solving the continuous

differential Riccati equation

V̇ = Q+ ATV + V A− V BR−1BTV ; V (T ) = Qf . (CDRE)

The infinite horizon problem involves the solution of the continuous algebraic Riccati

equation (CARE), given by

V = Q+ V + ATV + V A− V BR−1BTV. (CARE)

On Z, the finite horizon problem is approached by solving the discrete difference

Riccati equation

−∆Vj =Q+ ATVj+1 + Vj+1A+ ATVj+1A (DDRE)

− (I + A)T Vj+1B
(
R +BTVj+1B

)−1
BTVj+1 (I + A) ; VN = Qf .

The infinite horizon problem involves the solution of the discrete algebraic Riccati

equation (DARE), given by

V = Q+ (I + A)TV (I + A)− (I + A)TV B(R +BTV B)−1BTV (I + A). (DARE)

Both (CDRE) and (DDRE) are backward dynamic equations. In both contin-

uous and discrete time, the solution of the infinite horizon problem is achieved by
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solving for the initial value of V in (CDRE) and (DDRE), respectively, and taking

the limit as T →∞.

In the continuous time case, the state-feedback control

u∗(t) = R−1BTV x(t),

where V is the unique positive definite solution of (CARE), minimizes the infinite

horizon cost functional (2.19) and the total cost is given by Jc(x, u
∗) = xT0 V x0.

Similarly, in the discrete time case, the state-feedback control

u∗(t) = (R +BTV B)−1BTV (I + A)x(t),

where V is the unique positive definite solution of (DARE), minimizes the infinite

horizon cost functional (2.21) and the total cost is given by Jd(x, u
∗) = xT0 V x0.

On a general µ-varying systems, finding a suitable stabilizing control has been

a difficult and open problem. In Chapter Four, we will develop an optimal con-

trol theory for µ-varying and LTI systems on stochastic time scales and generalize

(CDRE), (CARE), (DDRE), and (DARE) in order to find stabilizing control laws.
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CHAPTER THREE

Stability Theory on Stochastic Time Scales

3.1 Direct Method: Exponential Stability Almost Surely

In this section, we generalize the direct method of Pötzsche et al. [33] to

stochastic time scales. This yields an easily verifiable condition for almost sure

exponential stability of scalar dynamic equations on stochastic time scales. We

present only the scalar case here for ease of exposition. We begin with a lemma,

which is a modest generalization of Theorem 2.3.

Theorem 3.1. Let T̃ be an i.i.d stochastic time scale generated by µ and let λ :

(0,∞) → C. Assume λ(µ) 6= −1/µ almost surely. Let ti = t0 +
∑i−1

i=0 µi. Then the

scalar dynamic equation (2.9) is exponentially stable almost surely on T̃ if and only

if

E[ln |1 + λ(µ)µ|] < 0.

Proof. If E[ln |1 + λ(µ)µ|] < 0, then by the Strong Law of Large Numbers [28],

lim sup
n→∞

∑n
i=0 ln |1 + λ(µi)µi|

n
= lim

n→∞

∑n
i=0 ln |1 + λ(µi)µi|

n
= E[ln |1 + λ(µ)µ|] < 0

almost surely. This implies

lim sup
n→∞

1

n

n∑
i=0

ln |1 + λ(µi)µi| < 0

almost surely, or equivalently,

0 > lim sup
n→∞

1

n

n−1∑
i=0

ln |1 + λ(µi)µi|

= lim sup
n→∞

∑n−1
i=0 µi
n

1

tn − t0

n−1∑
i=0

ln |1 + λ(µi)µi|

= E[µ] lim sup
n→∞

1

tn − t0

∫ tn

t0

ln |1 + λ(µi)µi|
µi

∆t
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almost surely. Hence,

lim sup
n→∞

1

tn − t0

∫ tn

t0

ln |1 + λ(µi)µi|
µi

∆t

almost surely. Thus by Lemma 2.1, the dynamic equation (2.9) is exponentially

stable almost surely.

On the other hand, first note for all t > t0, 1 + µ(t)λ(µ(t)) 6= 0 almost surely

since P [1 + λ(µi)µi = 0] = 0, i ∈ N0, thus the second condition of Lemma 2.1 does

not hold.

If E[ln |1 + λ(µ)µ|] ≥ 0, then by the Strong Law of Large Numbers,

lim sup
n→∞

∑n
i=0 ln |1 + λ(µi)µi|

n
= lim

n→∞

∑n
i=0 ln |1 + λ(µi)µi|

n
= E[ln |1 + λ(µ)µ|] ≥ 0

almost surely. The above implies

0 ≤ lim sup
n→∞

1

n

n−1∑
i=0

ln |1 + λ(µi)µi|

= lim sup
n→∞

∑n−1
i=0 µi
n

1

tn − t0

n−1∑
i=0

ln |1 + λ(µi)µi|

= E[µ] lim sup
n→∞

1

tn − t0

∫ tn

t0

ln |1 + λ(µi)µi|
µi

∆t

almost surely. Therefore,

lim sup
n→∞

1

tn − t0

∫ tn

t0

ln |1 + λ(µi)µi|
µi

∆t

almost surely. Thus by Lemma 2.1, the dynamic equation (2.9) is not exponentially

stable almost surely.

Remark 3.1. If M is an a continuous random variable which admits a probability

density function f : D → [0,∞) with support D, the condition E[ln |1 +λ(µ)µ|] < 0

becomes ∫
D

f(µ) ln |1 + λ(µ)µ|dµ < 0.
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We note that the above gives a straightfowardly checkable test for whether a given

function λ makes (2.9) exponentially stable. The function space of all such functions

λ is quite complicated. We can, however, study certain classes of functions within

the space. Letting λ(µ(t)) = ezµ(t)−1
µ(t)

, i.e., the inverse cylinder transformation defined

in (2.4), we find

E[ln |1 + λ(µ)µ|] = E

[
ln

∣∣∣∣1 +
ezµ − 1

µ
µ

∣∣∣∣] = Re(z)E[µ] < 0

if and only if Re(z) < 0 and µ has finite mean. This agrees with our intuition, as the

region of exponential stability for the equation ẋ = zx on R is {z ∈ C | Re(z) < 0}.

Remark 3.2. If µ is a discrete random variable with finitely many possible val-

ues µ1, µ2, . . . , µn with a probability mass function g : D → [0,∞), the condition

E[ln |1 + λ(µ)µ|] < 0 becomes

n∑
i=1

f(µi) ln |1 + λ(µi)µi| < 0,

or, equivalently,
n∏
i=1

|1 + λ(µi)µi|f(µi) < 1. (3.1)

In the special case where λ(µ) is constant, then (3.1) agrees with the result of

Davis et al. [14] where the asymptotic weights are given by dk = f(µk). This work

gives a broader interpretation of their concept of asymptotic equivalence class as the

set of all time scales which are distributed the same in the tail.

Remark 3.3. In the proof of Proposition 6 of Pötzsche et al. [33], a formula for a

suitable α in the bounding exponential function Ke−αt is given by, in our case,

α = − lim sup
n→∞

∑n
i=0 ln |1 + λ(µi)µi|

tn − t0

= − lim sup
n→∞

n∑n−1
i=0 µi

∑n
i=0 ln |1 + λ(µi)µi|

n

= −E[ln |1 + λ(µ)µ|]
E[µ]

> 0.
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Remark 3.4. We can view the solution of the deterministic equation (2.9) on a

stochastic time scale as the solution of the stochastic equation xn+1 = (1+λ(µn)µn)xn

on the deterministic time scale Z. The problem of stability of stochastic systems has

been studied in [6]. It is known that the stochastic difference equation xn+1 = anxn,

where {an} is a sequence of ergodic scalar random variables is exponentially stable

almost surely if and only if E[ln |an|] < 0. This result matches our result, as the

sequence of random variables {1 + λ(µn)µn} is a sequence of independent random

variables, and hence is a sequence of ergodic random variables.

Corollary 3.1. Let {µi}∞i=0 be states at step i of an ergodic Markov chain with finitely

many states µ1, µ2, . . . µn, all of which are nonzero. Let λ ∈ C such that |1+λµk| 6= 0

for 1 ≤ k ≤ n. Let T̃ be a stochastically generated time scale with initial time t0 gen-

erated by {µi}∞i=0. Define π to be the unique stationary discrete distribution associ-

ated with the Markov chain. Then the scalar dynamic equation (2.3) is exponentially

stable almost surely on T̃ if and only if

n∑
i=1

π(µi) ln |1 + λµi| < 0.

Corollary 3.2. Let {µi}∞i=0 be a sequence of nonnegative independent random variables

and let T̃ be a stochastically generated time scale with initial time t0 generated by

{µi}∞i=0. Assume, for λ : [0,∞)→ C,

∞∑
k=0

1

(k + 1)2
var[ln |1 + λ(µk)µk|] <∞.

Assume further that Pr[µi = 0] = 0 and Pr[1 + λ(µi)µi = 0] = 0 for i ∈ N0. Then

the scalar dynamic equation (2.3) is exponentially stable almost surely on T̃ if and

only if

lim
n→∞

E

[∑n
i=0 ln |1 + λ(µi)µi|

n+ 1

]
< 0.

Proof. Use Kolmogorov’s Strong Law of Large Numbers [28] and follow the proof of

Theorem 1.
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The next proof requires a corollary to the Borel-Cantelli Lemma, which we

state here

Lemma 3.1 ([28]). Let {Xn}∞n=0 be a sequence of random variables and let a ∈ R be

such that
∞∑
n=0

P [Xn ≥ a] <∞.

Then

lim sup
n→∞

Xn < a.

We can now prove the following corollary.

Corollary 3.3. Let {µi}∞i=0 be a sequence of nonnegative random variables and let

λ : [0,∞)→ C such that

∞∑
n=0

Pr

[
n∑
k=0

ln |1 + λ(µi)µi| ≥ 0

]
=
∞∑
n=0

Pr

[∑n
k=0 ln |1 + λ(µi)µi|

n+ 1
≥ 0

]
<∞. (3.2)

Assume further that Pr[µi = 0] = 0 and Pr[1 +λ(µi)µi = 0] = 0 for i ∈ N0. Let T̃ be

a stochastically generated time scale with initial time t0 generated by {µi}∞i=0. Then

the scalar dynamic equation (2.3) is exponentially stable almost surely on T̃.

Proof. Condition (3.2) yields, by Lemma 3.1, that

lim sup
n→∞

∑n
k=0 ln |1 + λ(µk)µk|

n+ 1
< 0

almost surely. With this, we proceed as in the second part of the proof of Theo-

rem 3.1.

In the case where λ(µ) ≡ λ, we can consider the region of the complex plane

where the condition in Theorem 3.1 holds.

Definition 3.1. The region S̃ of almost sure exponential stability for the scalar dy-

namic equation x∆ = λx on a stochastically generated time scale generated by

independent, identically distributed random variables is defined to be

S̃ := {λ ∈ C | E[ln |1 + λµ|] < 0}.
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3.2 Examples

We now examine the behavior of (2.3) on a stochastically generated stochastic

time scale denoted T̃Γ which is generated by independently identically distributed

random variables taken from a Gamma Distribution with shape parameter 2 and

rate parameter 2, whose probability density function we call f . Notice that such

a stochastically generated time scale falls under the scope of Theorem 3.1, and by

Remark 3.2, given λ ∈ C, (2.3) is exponentially stable on TΓ if and only if∫ ∞
0

f(µ) ln |1 + λµ|dµ < 0.

The stability region S̃ is shown in Figure 3.1.

We choose two values of λ, λ1 = 1 + .25i and λ2 = −2 + .67i and generate

six realizations of the time scale using each λi, i = 1, 2. The results are shown in

Figure 3.2 and Figure 3.3 along with the theoretical decay rate as in a Remark 3.3.

Note that the solution of (2.3) with λ = λ1 decays fairly regularly and does

not require an extremely large multiplier on the bounding exponential. The solution

of (2.3) with λ = λ2, on the other hand, is very irregular in its behavior, having

swings on the order of magnitude of x as large as 1020 in Figure 3.3. Amazingly

(2.3) is exponentially stable by Theorem 3.1, but it has a very slow decay rate and

does not decay at each time step.

We note that this analysis informs use about deterministic time scales. If we

know the frequency with which different graininesses appear in the tail of the time

scale, similar results hold. To see this, we consider

T1,2 = {0, 1, 3, 4, 6, . . . , k, k + 1, k + 3, k + 4, . . .},

which is a time scale where the graininess alternates between 1 and 2. Thus we can

think of this as a particular instance of a time scale generated by a random variable
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Figure 3.1. The region of stability for the stochastically generated time scale TΓ.
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Figure 3.2: ln |x(t)| (dots) and the theoretical decay rate (line) with λ1 = −1 + .25i on six
different time scales generated from the gamma distribution with shape parameter 2 and
rate parameter 2.
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Figure 3.3: ln(|x(t)|) for λ2 = −2 + .67i on six different time scales generated from the
gamma distribution with shape parameter 2 and rate parameter 2.

with probability mass function

f(t) =


1/2 if t = 1,

1/2 if t = 2.

.

The condition on λ for stability of (2.3) on T1,2 is

2∑
i=1

f(i) ln |1 + λi| < 0.

Solutions of (2.3) for λ satisfying the above condition is shown in Figure 3.4 with

along with the theoretical decay rate which we mentioned in Remark 3.3. We will

expand upon this observation in Chapter Five, where we discuss how the theory of

stochastic time scales informs the theory of general time scales.

3.2.1 Decay Analysis

The example that showed the exponential stability of (2.3) with λ = λ2 on

TΓ should give us some concern with this framework. After all, in applications we

would not call a system with a state variable whose magnitude reached 1020 “stable”!

We now consider how to analyze the probability that the state variable will have a
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Figure 3.4: The solution of (2.3) on T1,2 for λ = −.9 + .4i along with the predicted decay
rate.

magnitude below a certain tolerance τ > 0. We will see in Section 3.3 that we can

also tackle this problem by considering a different kind of stability, mainly mean

square exponential stability. Throughout this section we will denote the conditional

probability of an event A given another event B by Pr[A;B].

Let {x(tk)}∞k=0 be the solution of (2.3) with initial condition x(t0) = k where

|k| = 1 on an i.i.d. time scale T̃ generated by µ. Note

Pr[|x(t0)| < τ ] =


0 if τ ≤ 1,

1 if τ > 1.

For the sake of the simplicity, assume further that the µ is a continuous random

variable which admits a probability distribution function f with support (0,∞). To

find the probability that the magnitude of the state variable is beneath the tolerance

after one step, write λ = x+ iy and calculate

Pr[|x(t1)| < τ ] = Pr[|x(t0)(λµ0 + 1)| < τ ]

= Pr[|x(t0)||(x+ iy)µ0 + 1| < τ ]

= Pr[(µ0x+ 1)2 + µ2
0y

2 < τ 2]

38



= Pr[µ2
0(x2 + y2) + 2µ0x+ (1− τ 2) < 0]

= Pr[µ2
0|λ|2 + 2µ0 Re(λ) + (1− τ 2) < 0]

= Pr[c1(τ) < µ0 < c2(τ)]

=

∫ c2(τ)

c1(τ)

f(µ)dµ,

where

c1(τ) =
−Re(λ)−

√
(Re(λ))2 − |λ|2(1− τ 2)

|λ|2

and

c2(τ) =
−Re(λ) +

√
(Re(λ))2 − |λ|2(1− τ 2)

|λ|2

are obtained via the quadratic formula with the assumption ci(τ) = 0 if the equations

above yield imaginary or negative numbers, i = 1, 2. Note that if τ ≥ 1 then c1(τ)

and c2(τ) are real–valued. This is not necessarily the case if τ < 1, since the solution

cannot decay arbitrarily fast. The smallest factor the solution can decay by is τ̂ such

that Re(λ)2 − |λ|2(1− τ̂ 2) = 0.

Since T̃ is an i.i.d. time scale, the method above shows the probability that

the solution grows by a factor bounded by τ on any single time step. By letting

τ = 1, we obtain the probability that the solution will not grow the next time step,

p := Pr[|x(t1)| < 1] = P [|x(tk)| < c; |x(tk−1)| = c] (3.3)

for any c > 0. This can be a very useful design parameter, as we would like to

choose λ so that the probability of decay in the state variable is sufficiently large (or

one), ensuring “local stability.” The design parameter p may be more convenient

than calculating the probability that the magnitude of the state variable is beneath

a tolerance at tk, as it involves k integrations, as we now show.

Note that

Pr[|x(t1)| < τ ] =

∫ c2(τ)

c1(τ)

f(µ)dµ := F (τ)
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where F (τ) is increasing as c2(τ) is increasing and c1(τ) is decreasing and f(µ) ≥ 0

for µ ≥ 0. Thus F (τ) is a CDF for the random variable |x(T1)|. Note

F ′(τ) = f(c2(τ))c′2(τ)− f(c1(τ))c′1(τ)

=
τ(f(c2(τ)) + f(c1(τ)))√
(Re(λ))2 − |λ|2(1− τ 2)

:= h(τ)

is therefore a PDF for |x(t1)|. Now, by the Law of Total Probability [32],

Pr[|x(t2)| < τ ] =

∫ ∞
0

h(l) Pr[|x(T2)| < τ ; |x(T1)| = l]dl

=

∫ ∞
0

h(l) Pr[|1 + λM1| < τ/l]dl

=

∫ ∞
0

h(l) Pr[|1 + λM0| < τ/l]dl

=

∫ ∞
0

h(l)

∫ τ/l

0

h(µ)dµdl

=

∫ ∞
0

∫ τ

0

h(l)h
(µ
l

) 1

l
dµdl

=

∫ τ

0

∫ ∞
0

h(l)h
(µ
l

) 1

l
dldµ,

so k(τ) :=
∫∞

0
h(l)h

(
τ
l

)
1
l
dl is a probability distribution function for the random

variable |x(t2)|.

By induction it is easy to show

Pr[|x(tk)| < τ ]

=

∫ τ

0

∫ ∞
0

. . .

∫ ∞
0︸ ︷︷ ︸

k−1 times

h(s1)h

(
s2

s1

)
· · ·h

(
µ

sk−1

)
1

s1s2 · · · sk−1

ds1 . . . dsk−1dµ.

Rather than calculate the above integral, we may use the parameter p in (3.3),

an easy–to–calculate number that yields important information about tendency of

the system to decay. On one hand, choosing the pole λ such that p is near one helps

ensure the magnitude of the state variable will not become extremely large. On the

other hand, this choice of λ may yield a slow decay rate. The “best” performance
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is obtained by balancing the p and the decay rate α according to some metric. For

example, we may wish to maximize the decay rate subject to p > c with 0 ≤ c < 1.

Instead of building an optimization algorithm for this problem, we simply plot both

p and α as a function of λ. Such a plot is shown in Figure 3.5 for TΓ.

The balance of two opposing criteria is a theme within control theory. We

will do a more in-depth analysis of the pole-placement problem in Chapter Four via

optimal control theory.

We note that the value of p is constant along any Hilger circle since

p =

∫ −2 Re(λ)/|λ|2

0

f(µ)dµ = F

(
−2 Re(λ)

|λ|2

)
,

where F is the cumulative probability distribution of the random variable µ. For

every λ on the boundary of Hγ, −2 Re(λ)/|λ|2 = γ. Therefore the contour plot of p

as a function of λ consists of Hilger circles! If the support of the distribution of the

graininess is bounded by µmax ∈ (0,∞) and λ ∈ Hµmax , then −2 Re(λ)/|λ|2 > µmax.

Thus,

p ≥ F (µmax) = 1,

so p = 1. This shows that if λ is in the smallest possible Hilger circle Hµmax ,

then the solution will decay at each step with probability one. This behavior helps

explain why we can only find deterministic time scale Lyapunov functions by solving

(TSALI) if and only if the eigenvalues of the system matrix lie in Hµmax . We will

see in the next section that stochastic Lyapunov functions remove this constraint.

Remark 3.5. Recall from Section 2.2 that the smallest Hilger circle is contained in

the region of exponential stability. In general, the Hilger circle corresponding to a

probability of decay β < 1 is not contained in the region of stability. To see this,

Consider a time scale generated by the probability mass function

f(µ) =


β if µ = 1,

1− β if µ = 2.
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Figure 3.5: All figures are for the stochastically generated time scale TΓ. Top Left: Contour
plot of the decay rate α in the region of stability. Top Right: Contour plot of p in the
left–half complex plane. Bottom: Contour plot of p in the left–half complex plane with
the decay rate α in the region of stability overlaid.
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Then the probability β contour is a Hilger circle of radius one, but the region of

exponential stability is strictly contained in the Hilger circle of radius one.

3.3 Indirect Method: Mean Square Exponential Stability

The direct method just described classifies exponential stability almost surely.

As we saw, this brand of stability does not always lead to desirable qualitative

behavior. In this section, rather than appeal to a decay analysis, as in the previous

section, we will instead explore other types of stability. We now move from scalar

dynamic equations to systems of dynamic equations.

Since solutions of the vector dynamic equation

x∆ = A(µ(t))x

on an i.i.d stochastic time scale generated by µ form a Markov chain, the study of

dynamic equations on stochastic time scales can be viewed as the study of stability

theory of Markov chains. For the remainder of this dissertation, we refer to an i.i.d.

stochastic time scale generated by µ simply as a stochastic time scale and denote

this by T̃.

3.3.1 Quadratic Stochastic Lyapunov Functions

We choose to search for quadratic Lyapunov functions, i.e. where V is of the

form

V (x) = xTPx,

and P = P T > 0. We immediately have V (0) = 0 and V (x) > 0 for x 6= 0. Let x

be a solution of the stochastic dynamic equation (2.10) on the stochastic time scale

generated by {µn} with initial point t0. Then,

x(tn+1) = (I + A(µn)µn)x(tn).

In particular, for x(t0) = x0, x(t1) = x1, and µ0 = µ,

x1 = (I + A(µ)µ)x0.
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Thus,

Ex0 [V (x(t1))]− V (x0) =Ex0 [x(t1)TPx(t1)]− xT0 Px0

=Ex0 [((I + A(µ)µ)x0))TP (I + A(µ)µ)x0)]− xT0 Px0

=xT0 E[µAT (µ)P + µPA(µ) + µ2AT (µ)PA(µ)]x0.

Hence, the hypotheses in Theorems 2.8 and 2.9 are satisfied provided the stochastic

time scale algebraic Lyapunov equation

E[µAT (µ)P + µPA(µ) + µ2AT (µ)PA(µ)] = −M, M > 0 (µ-STSALE)

admits a positive definite solution P (M = αP in Theorem 2.9).

When A(µ) ≡ A, (µ-STSALE) becomes

E[µ]ATP + E[µ]PA+ E[µ2]ATPA = −M. (STSALE)

The left-hand side of (STSALE) in this case is reminiscent of (TSALI). An impor-

tant difference between (STSALE) and (TSALI) is that (STSALE) does not depend

on µ, since µ integrates out in the expected value calculation. Due to the time

varying nature of µ in the TSALI, theorists only know there is a solution to TSALI

if spec(A) ⊂ Hµmax , where µmax = lim supt→∞ µ(t). We will see that solutions of

STSALE exist for spec(A) in a larger region of the complex plane than Hµmax .

3.3.2 Mean-Square Stability

We now introduce some technical lemmas before arriving at the main result

in this section. We will show that the existence of a quadratic stochastic time scale

Lyapunov function turns out to be equivalent to mean-square exponential stability.

Lemma 3.2. Let u, v be a random vectors with E[u],E[v],Cov(u, v) < ∞, where

Cov(u, v) is the cross-covariance matrix of u and v with entries [Cov(u, v)]ij =

cov(ui, vj), where cov denotes scalar covarience. Let X be a random matrix such

44



that the entries of u and v are independent of the entries of X. Then

E[uTXv] = tr[E[X]Cov(u, v)] + E[u]TE[X]E[v].

Proof. By direct calculation, we see

E[uTXv] = E

[
n∑
i=1

n∑
j=1

uiXijvj

]

=
n∑
i=1

n∑
j=1

E[Xijuivj]

=
n∑
i=1

n∑
j=1

E[Xij]E[uivj]

=
n∑
i=1

n∑
j=1

E[X]ij(cov(ui, vj) + E[ui]E[vj]

=
n∑
i=1

n∑
j=1

E[X]ijCov(u, v)ij + E[ui]E[X]ijE[vj]

=
n∑
i=1

n∑
j=1

E[X]ijCov(u, v)ji + E[u]TE[X]E[v]

=
n∑
i=1

(E[X]Cov(u, v))ii + E[u]TE[X]E[v]

= tr(E[X]Cov(u, v)) + E[u]TE[X]E[v].

Corollary 3.4. Let X, Y be random matrices such that the entries of X and the entries

of Y are independent of each other. Then

E[XTY X] = E[XTE[Y ]X].

Proof. Let Xi be the ith column of X and consider

[E[XTY X]− E[XTE[Y ]X]]ij =[E[XTY X −XTE[Y ]X]]ij

=[E[XT (Y − E[Y ])X]]ij

=E[XT
i (Y − E[Y ])Xj]
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=tr(E[Y − E[Y ]]Cov(Xi, Xj))

+ E[Xi]
TE[Y − E[Y ]]E[Xj]

=tr(0 Cov(Xi, Xj)) + E[Xi]
T0E[Xj]

=0.

The result follows.

The following theorem shows that certain essential Lyapunov stability results

for dynamic equations on R and Z carry over to this more general stochastic time

scales setting. Here, we link the concept of mean-square stability with the existence

of a solution of (µ-STSALE).

Theorem 3.2. Let T̃ be a stochastic time scale. Define the operator

SA(µ)(P ) := E[(µA(µ))TP + P (µA(µ)) + (µA(µ))TP (µA(µ))].

Then the adjoint of SA(µ)(P ) is given by

S∗A(µ)(P ) = E[(µA(µ))P + P (µA(µ))T + (µA(µ))P (µA(µ))T ].

The following are equivalent:

(i) x∆ = A(µ)x is globally asymptotically mean-square stable.

(ii) x∆ = A(µ)x is globally exponentially mean-square stable.

(iii) spec(SA(µ)) ⊂ H1.

(iv) There exists P > 0 such that SA(µ)(P ) < 0.

(v) For all M > 0, there exists P > 0 such that SA(µ)(P ) = −M .

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii):
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Define X(n) = E[x(tn)xT (tn)]. Then

∆X(n) = X(n+ 1)−X(n)

= E[(I + µA(µ))x(tn)xT (tn)(I + µA(µ))T ]−X(n)

= E[(I + µA(µ))X(n)(I + µA(µ))T ]−X(n)

= E[µA(µ)X(n) + µX(n)AT (µ) + µ2A(µ)X(n)AT (µ)]

= S∗A(µ)(X(n)).

Therefore, the linear difference equation above is globally (asymptotically, exponen-

tially) mean-square stable iff

spec(S∗A(µ)) = spec(SA(µ)) ⊂ H1.

(iv) =⇒ (ii):

Let x0 ∈ Rn be given. Let c1, c2, c3 > 0 such that c1I ≤ P ≤ c2I and

E[(µA(µ))TP + P (µA(µ)) + (µA(µ))TP (µA(µ))] < −c3I with c3/c2 < 1. Then

∆E[xT (tn)Px(tn)] =E[xT (tn+1)Px(tn+1)]− E[xT (tn)Px(tn)]

=E[xT (tn)(I + µA(µ))TP (I + µA(µ))x(tn)− xT (tn)Px(tn)]

=E[xT (tn)[(µA(µ))TP + P (µA(µ)) + (µA(µ))TP (µA(µ))]x(tn)]

≤E[xT (tn)(−c3I)x(tn)]

≤c3

c2

E[xT (tn)(−c2I)x(tn)]

≤− c3

c2

E[xT (tn)Px(tn)].

Therefore, by the Gronwall inequality,

E[xT (tn)Px(tn)] ≤
(

1− c3

c2

)n
xT (t0)Px(t0).

So,

E[‖x(tn)‖2] =
1

c1

E[xT (tn)(c1I)x(tn)]
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≤ 1

c1

E[xT (tn)Px(tn)]

≤ 1

c1

(
1− c3

c2

)n
xT (t0)Px(t0)

≤ 1

c1

(
1− c3

c2

)n
xT (t0)(c2I)x(t0)

=
c2

c1

(
1− c3

c2

)n
‖x(t0)‖2.

(ii) =⇒ (v):

Let M > 0 be given. Denote Φ̃AT ◦µ(t, t0), the transition matrix of x∆ =

AT (µ)x, by Φ(t). Define

P :=
∞∑
n=0

E[Φ(tn)MΦT (tn)] = M +
∞∑
n=1

E[Φ(tn)MΦT (tn)] > 0.

Note that the sum converges by the assumption of mean-square exponential stability.

Setting X(n) := E[Φ(tn)MΦT (tn)],

∆X(n) = E[(I + µAT (µ)Φ(tn)MΦT (tn)(I + µA(µ))]− E[Φ(tn)MΦT (tn)]

= E[(I + µAT (µ)X(n)(I + µA(µ))]−X(n)

= E[µAT (µ)X(n) + µX(n)A(µ) + µ2AT (µ)X(n)A(µ)]

= SA(µ)(X(n)).

Thus,

SA(µ)(P ) = E

[
µAT (µ)

∞∑
n=0

X(n) + µ
∞∑
n=0

X(n)A(µ) + µ2AT (µ)
∞∑
n=0

X(n)A(µ)

]

=
∞∑
n=0

E[µAT (µ)X(n) + µX(n)A(µ) + µ2AT (µ)X(n)A(µ)]

=
∞∑
n=0

SA(µ)(X(n))

=
∞∑
n=0

∆X(n)

= −X(0)
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= −M.

In the theory of stochastic dynamic systems, mean-square asymptotic stability

implies almost sure (or stochastic) asymptotic stability, but the converse is not true

[13]. In the LTI case, we can explore the relationship between these two stability

concepts from a geometric viewpoint. To do this, we require the following corollary

to Theorem 3.2.

Corollary 3.5. Let T̃ be a stochastic time scale generated by µ. Let A ∈ Rn×n be

given. Consider the dynamic equation on T̃

x∆ = Ax, x(t0) = x0. (3.4)

Define the operator

SA(P ) := E[µ]ATP + E[µ]PA+ E[µ2]ATPA.

The following are equivalent:

(i) The system (3.4) on T̃ is globally asymptotically mean-square stable.

(ii) The system (3.4) on T̃ is globally exponentially mean-square stable.

(iii) spec(SA) ⊂ H1

(iv) There exists P > 0 such that SA(P ) < 0.

(v) ∀ M > 0, ∃ P > 0 such that SA(P ) = −M .

(vi) spec(A) ⊂ HE[µ2]/E[µ].
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Proof. It remains to show (v) ⇐⇒ (vi). Multiplying the equation in (v) by

E[µ2]/(E[µ])2, we get

E[µ2]

E[µ]
ATP +

E[µ2]

E[µ]
PA+

(
E[µ2]

E[µ]

)2

ATPA = − E[µ2]

(E[µ])2
M := −L,

where L > 0. Factoring yields

−P +

(
I +

E[µ2]

E[µ]
A

)T
P

(
I +

E[µ2]

E[µ]
A

)
= −L,

which we recognize as a discrete Lyapunov or Stein equation [37]. This has a solution

if and only if

spec

(
I +

E[µ2]

E[µ]
A

)
⊂ B1,

the unit ball, which is equivalent to spec(A) ⊂ HE[µ2]/E[µ].

It is worth noting that the preceding proof relied on the fact that (STSALE)

can be written in the form of a Stein equation. This fact makes solving (STSALE)

easy via modern computer algebra systems. Unfortunately, solving (µ-STSALE) is

not as simple, as it cannot be written as a Stein equation. We can, however, write

(µ-STSALE) as a linearly perturbed Stein equation [2] of the form

ATP + PA+ ATPA+ Π1(P ) = −M,

where Π1 is a positive linear operator. We will explore this structure more in the

next section.

Next, we show that the region of mean-square exponential stability HE[µ2]/E[µ]

is the osculating circle at the origin of the region of almost sure exponential stability

S̃.

3.3.3 Geometry of Solutions to (STSALE) in the LTI Case

Since mean square exponential stability implies stochastic stability, we expect

HE[µ2]/E[µ] ⊂ S̃. Next we show this is indeed the case.
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Lemma 3.3. Let T̃ be a stochastic time scale generated by µ. Then HE[µ2]/E[µ] ⊂ S̃.

Proof. Let λ ∈ HE[µ2]/E[µ]. Then 2 Re(λ) + E[µ2]/E[µ]|λ|2 < 0. Therefore,

E[ln |1 + λµ|] =
1

2
E[ln(1 + 2 Re(λ)µ+ |λ|2µ2)]

≤ 1

2
E[2 Re(λ)µ+ |λ|2µ2]

< 0,

where we used the inequality ln(1 + x) ≤ x for all x > −1.

Now we explore the relationship betweenHE[µ2]/E[µ] and S̃ in more depth. Note

that the boundary of S̃ is given by

{λ ∈ C | E[ln |1 + λµ|] = 0} =

{
x+ iy ∈ C | E

[
1

2
ln[(1 + µx)2 + (µy)2]

]
= 0

}
.

Therefore, the boundary of S̃ is described by the implicit equation

g(x, y) := E

[
1

2
ln[(1 + µx)2 + (µy)2]

]
= 0.

Its curvature can be computed with the aid of the following theorem.

Theorem 3.3 (Grey [22]). The curvature for a two-dimensional curve given implicitly

by g(x, y) = 0 is given by

κ =
gxxg

2
y − gxygxgy − gyxgxgy + gyyg

2
x

(g2
x + g2

y)
3/2

.

Lemma 3.4. Consider the implicitly defined curve

g(x, y) = E

[
1

2
ln[(1 + µx)2 + (µy)2]

]
= 0.

Suppose we can write

E[g(µ)] =

∫ M

0

fµ(m)g(m) dm,

where g : (0,∞) → R, M > 0, fµ is the probability distribution function of the

random variable µ, and the above integral is with respect to some appropriate mea-

sure (counting measure for discrete distributions, Lebesgue measure for continuous).
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Suppose further that E[µ],E[µ2] < ∞. Then the curvature κ of g at the origin is

given by

κ =
E[µ2]

E[µ]
.

Proof. Let h(x, y,m) := 1
2

ln[(1 + mx)2 + (my)2]. Note that g(0, 0) = 0, so the

origin is on the implicit curve and that g(x, y) is defined on the open neighborhood

B−1/(2M)(0, 0).

A standard application of Lebesgue’s Dominated Convergence Theorem yields

gx(0, 0) =

∫ M

0

fµ(m)hx(0, 0,m) dm =

∫ M

0

2fµ(m)mdm = 2E[µ],

gxx(0, 0) =

∫ M

0

fµ(m)hxx(0, 0,m)dm =

∫ M

0

−2fµ(m)m2dm = −2E[µ2],

gy(0, 0) =

∫ M

0

fµ(m)hy(0, 0,m)dm = 0,

gyy(0, 0) =

∫ M

0

fµ(m)hyy(0, 0,m)dm =

∫ M

0

2fµ(m)m2dm = 2E[µ2],

gxy(0, 0) =

∫ M

0

fµ(m)hxy(0, 0,m)dm = 0 = gyx(0, 0).

Hence, by Theorem 3.3,

κ =
8E[µ2] (E[µ])2(

[2E[µ]]2
)3/2

=
E[µ2]

E[µ]
.

Since the circle HE[µ2]/E[µ] is tangent to the boundary of S̃ at the origin and

the two share curvature at the origin, we will refer to HE[µ2]/E[µ] as the osculating

circle of the boundary S̃ at the origin and write

Hosc := HE[µ2]/E[µ]. (3.5)

Geometrically, Hosc is the “best” circular approximation of the region of ex-

ponential stability S̃ at the origin in the sense that Hosc ⊂ S̃ and that Hosc and S̃

share tangents and have the same curvature at the origin.

It is easy to see Hmin ⊂ Hosc, so in the case of stochastic time scales, we are

able to work with a larger region of existence of solutions to Lyapunov functions.
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3.3.4 Examples

Next, we look at two useful examples which illustrate these concepts.

3.3.4.1 Probability Distribution with Bounded Support We consider the stochas-

tic dynamic initial value problem

x∆ = Ax =


−1.2 1 0

−1 −3.2 0

0.3 0.3 −1.9

x, x(0) = x0,

on a stochastic time scale Tβ with initial value 0 and generated by µ with a beta

distribution with shape parameters 1 and 1/3. That is,

fµ(m) =
1

3(1−m)2/3
, 0 < m < 1.

Then E[µ] = 3/4 and E[µ2] = 9/14. Note Hmin = H1, Hosc = H6/7. The re-

lationship between S̃,Hmin, and Hosc is shown in Figure 3.6. Then spec(A) =

{−2.2,−2.2,−1.9} ⊂ Hosc, but spec(A) 6⊂ Hmin. We found a P > 0 such that

E[µ]ATP + E[µ]PA+ E[µ2]ATPA < −0.16P.

Therefore, Theorem 2.9 applies, so

• Ex[V (xn)] ≤ (0.84)nV (x0);

• V (xn)→ 0 with probability one;

• Prx[supN≤n<∞ V (xn) ≥ λ] ≤ V (x0)(.84)N/λ.

The first of these results is illustrated by examining sample paths, plotting V (x(t))

and V (x0)(.84)N , and seeing that V (x0)(.84)N eventually is an upper bound for

V (x(t)). It is therefore empirically an upper bound for the average sample path.

The result of four such realizations is shown in Figure 3.7.
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Figure 3.6: The largest region is S̃, the region of exponential stability. The smallest region
is Hmin, which is the Hilger circle corresponding to the largest possible graininess. The
region Hosc satisfies Hmin ⊂ Hosc ⊂ S̃ and hence expands the previously known region
for Lyapunov-based stability arguments in the LTI case. We see Hosc is the best circular
approximation to S̃ at the origin.
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Figure 3.7: ln(V (x(t)) versus t along with the upper bound of the average sample path for
six realizations of the stochastic time scale Tβ.
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3.3.4.2 Probability Distribution with Infinite Support We now consider the

stochastic dynamic initial value problem

x∆ = Ax =


−0.5 −0.1 −0.3

0.3 −0.1 0.3

0.1 0.1 −0.1

x, x(0) = x0,

on a stochastic time scale with initial value 0 and generated by µ which is exponen-

tially distributed with rate parameter 1/2. That is,

fµ(m) =
e−m/2

2
, m > 0.

Then E[µ] = 2 and E[µ2] = 8. Hence Hosc = H4 and Hmin = ∅ since µ is an

unbounded random variable. See Figure 3.8. Then spec(A) = {−0.4,−0.2,−0.1} ⊂

Hosc, but spec(A) 6⊂ Hmin = ∅. There exists a P > 0 such that

E[µ]ATP + E[µ]PA+ E[µ2]ATPA < −0.31P.

Therefore, Theorem 2.9 applies, so

• Ex[V (xn)] ≤ (.69)nV (x0);

• V (xn)→ 0 with probability one;

• Px[supN≤n<∞ V (xn) ≥ λ] ≤ V (x0)(.69)N/λ.

Again, by plotting V (x(t)) and V (x0)(.69)N and seeing that V (x0)(.69)N is an even-

tual upper bound for V (x(t)), we illustrate the first of these results empirically. The

result of four realizations is shown in Figure 3.9.

3.3.5 µ-Varying Case

We now shift our attention to dynamic equations of the form

x∆ = A(µ(t)), x(t0) = x0, (3.6)
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Figure 3.8: The largest region is S̃, the region of exponential stability. Contained within
S̃ is Hosc. In this case, Hmin = ∅, and as such, previous Lyapunov theory on time scales
would be unable to analyze this example.
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Figure 3.9: ln(V (x(t)) versus t along with the upper bound of the average sample path for
six realizations of the stochastic time scale TΓ.
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on a stochastically generated time scale, where A : [0,∞) → Rn×n. Letting Â :=

E[µA(µ)], (STSALE) can be rewritten as

ÂTP + PÂ+ E[(µA(µ))TP (µA(µ))] = −M. (3.7)

The next lemma provides a more useful formulation of (3.7).

Lemma 3.5. Let u, v ∈ Rn be random variables such that E[u],E[v],Cov(u, v) < ∞,

where Cov(u, v) is the cross-covariance matrix of u and v, and let P ∈ Rn×n be a

nonrandom matrix. Then

E[uTPv] =E[uT ]PE[v] + E[(u− E[u])TP (v − E[v])].

Proof. Note that

E[uTPv] =E

(uT vT
)0 P

0 0


u
v




=E


(u− E[u])

(v − E[v])


T 0 P

0 0


u− E[u]

v − E[v]

+

E[u]

E[v]


T 0 P

0 0


u
v


+

(u− E[u])

(v − E[v])


T 0 P

0 0


E[u]

E[v]




=E


(u− E[u])

(v − E[v])


T 0 P

0 0


u− E[u]

v − E[v]




+

E[u]

E[v]


T 0 P

0 0


E[u]

E[v]


=E[(u− E[u])TP (v − E[v])] + E[uT ]PE[v].

By Lemma 3.5, we can rewrite (3.7) as

ÂTP + PÂ+ ÂTPÂ = −(Π1(P ) +M), M > 0, (3.8)
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where

Π1(P ) := E[(µA(µ)− Â)TP (µA(µ)− Â)].

Note that Π1 is a positive, linear operator. Equation (3.8) has the form of a Stein

equation, but with a term that depends on P on the right hand side. We find the

implicit solution of (3.8) given by

P =
∞∑
j=0

((Â+ I)T )j(Π1(P ) +M)(Â+ I)j.

Let Hn×n denote the space of Hermitian n × n matrices equipped with the trace

norm and consider the operator T : Hn×n → Hn×n given by

T (X) :=
∞∑
j=0

((Â+ I)T )j(Π1(X) +M)(Â+ I)j

=
∞∑
j=0

((Â+ I)T )jΠ1(X)(Â+ I)j +R, (3.9)

where

R :=
∞∑
j=0

((Â+ I)T )jM(Â+ I)j > 0.

A solution of (3.8) is therefore a fixed point of T . We will use the following fixed

point theorem of Ran and Reurings for operators on partially ordered complete

metric spaces applied to Hn×n with the trace norm.

Theorem 3.4 (Ran and Reurings [38]). Let L be a partially ordered set such that

every pair x, y ∈ L has a lower bound and an upper bound. Furthermore, let d be a

metric on L such that (L, d) is a complete metric space. If T is a continuous, order

preserving map from L into L such that

(1) there exists 0 < c < 1 such that d(T (x), T (y)) ≤ d(x, y), for all x ≥ y,

(2) there exists x0 ∈ L such that x0 ≤ T (x0),

then T has a unique fixed point x̂. Moreover, for every x ∈ L, limn→∞ T
n(x) = x̂.

60



The calculations necessary to prove that the operator T in (3.9) has a fixed

point require some technical lemmas, which we now present.

Lemma 3.6. Let A =
∑∞

k=0Ak, where Ak ∈ Rn×n. Then

tr

(
∞∑
k=0

Ak

)
= tr(A) =

∞∑
k=0

tr(Ak).

Proof. Let ε > 0. Since A =
∑∞

k=0 Ak, there exists N ∈ N such that∥∥∥∥∥
m∑
k=0

Ak − A

∥∥∥∥∥
1

< ε/n for all m ≥ N.

In particular, for each 1 ≤ i, j ≤ n,∣∣∣∣∣
m∑
k=0

[Ak]ij − [A]ij

∣∣∣∣∣ < ε/n for all m ≥ N.

Then ∣∣∣∣∣
m∑
k=0

tr(Ak)− tr(A)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=0

n∑
i=1

[Ak]ii −
n∑
i=1

[A]ii

∣∣∣∣∣
=

∣∣∣∣∣
m∑
k=0

n∑
i=1

([Ak]ii − [A]ii)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

m∑
k=0

([Ak]ii − [A]ii)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣
m∑
k=0

[Ak]ii − [A]ii

∣∣∣∣∣
<

n∑
i=1

ε

n

=ε.

Lemma 3.7. Let A ∈ Rn×n with ρ(A) < 1. Then for X, Y ∈ Rn×n,

∞∑
j=0

(AT )jXAj −
∞∑
j=0

(AT )jY Aj =
∞∑
j=0

(AT )j(X − Y )Aj.
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Proof. Let ε > 0. As
∑∞

j=0(AT )jXAj,
∑∞

j=0(AT )jY Aj, and
∑∞

j=0(AT )j(X − Y )Aj

all converge, there exists N ∈ N such that for all m ≥ N ,∥∥∥∥∥
∞∑
j=0

(AT )jXAj −
m∑
j=0

(AT )jXAj

∥∥∥∥∥ < ε/3,∥∥∥∥∥
∞∑
j=0

(AT )jY Aj −
m∑
j=0

(AT )jY Aj

∥∥∥∥∥ < ε/3,∥∥∥∥∥
∞∑
j=0

(AT )j(X − Y )Aj −
m∑
j=0

(AT )j(X − Y )Aj

∥∥∥∥∥ < ε/3.

Thus, ∥∥∥∥∥
∞∑
j=0

(AT )jXAj −
∞∑
j=0

(AT )jXAj −
∞∑
j=0

(AT )j(X − Y )Aj

∥∥∥∥∥
=

∥∥∥∥∥
∞∑

j=m+1

(AT )jXAj −
∞∑

j=m+1

(AT )jY Aj −
∞∑

j=m+1

(AT )j(X − Y )Aj

∥∥∥∥∥
≤

∥∥∥∥∥
∞∑

j=m+1

(AT )jXAj

∥∥∥∥∥+

∥∥∥∥∥
∞∑

j=m+1

(AT )jY Aj

∥∥∥∥∥+

∥∥∥∥∥
∞∑

j=m+1

(AT )j(X − Y )Aj

∥∥∥∥∥
=ε.

Lemma 3.8. Suppose ρ(A) < 1, where ρ(A) is the spectral radius of A. Then the

operator

S(X) =
∞∑
j=0

(AT )jXAj

is continuous.

Lemma 3.9. Let A ∈ Rn×n with ρ(A) < 1. Then the operator S : Hn×n → Hn×n

given by

S(X) :=
∞∑
j=0

(AT )jXAj

is order preserving

Proof. This follows since X−Y ≥ 0 implies (AT )j(X−Y )Aj ≥ 0 for all j ∈ N0.
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Lemma 3.10 (Ran and Reurings [38]). Let A ≥ 0 and B ≥ 0 be n×n matrices. Then

0 ≤ tr(AB) ≤ ‖A‖tr(B) where ‖ · ‖ is the spectral norm.

With the technical lemmas in hand, we are now in a position to prove our

main result, which gives sufficient conditions for solutions of (2.10) to be mean-

square exponentially stable. A crucial step of the result relies on the application of

the fixed point theorem of Ran and Reurings.

Theorem 3.5. The zero solution of (2.10) is mean-square exponentially stable pro-

vided spec(Â) ⊂ H1 and∥∥∥∥∥
∞∑
j=0

(Â+ I)j((Â+ I)T )j

∥∥∥∥∥
∥∥∥∥∥

n∑
k=1

var([µA(µ)]k)

∥∥∥∥∥ = α < 1,

where [µA(µ)]k denotes the kth column of A(µ) and ‖ · ‖ is the spectral norm.

Proof. Consider the operator T : Hn×n → Hn×n defined by

T (X) :=
∞∑
j=0

((Â+ I)T )j(Pi1(X) +M)(Â+ I)j

=
∞∑
j=0

((Â+ I)T )jE[(µA(µ)− Â)TX(µA(µ)− Â)](Â+ I)j +R.

It suffices to show that T has a fixed point X̂ such that X̂ > 0. Once the existence

of a fixed point X̂ is established, the fact that X̂ > 0 follows from the conclusion of

Theorem 3.4 since T maps positive definite matrices into the set {Z ∈ Hn×n | Z ≥

R > 0}. We now show such a fixed point exists.

The complete metric space (Hn×n, ‖ · ‖tr) is partially ordered by the relation

X ≥ Y if and only if X − Y is positive semidefinite. Every pair X, Y ∈ Hn×n

has a lower and upper bound. Condition 2 from Theorem 3.4 is satisfied since

0 ≤ T (0) = R. The operator T is well defined because spec(Â) ⊂ H1.

Since T is continuous and order preserving, it remains to show Condition 1

from Theorem 3.4 holds. To this end, let Y ≥ X. Then

‖T (Y )− T (X)‖tr
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= tr(T (Y )− T (X))

= tr

(
∞∑
j=0

((Â+ I)T )jE[(µA(µ)− Â)T (Y −X)(µA(µ)− Â)](Â+ I)j

)

=
∞∑
j=0

tr
(

((Â+ I)T )jE[(µA(µ)− Â)T (Y −X)(µA(µ)− Â)](Â+ I)j
)

=
∞∑
j=0

tr((Â+ I)j((Â+ I)T )jE[(µA(µ)− Â)T (Y −X)(µA(µ)− Â)])

= tr

(
∞∑
j=0

(Â+ I)j((Â+ I)T )jE[(µA(µ)− Â)T (Y −X)(µA(µ)− Â)]

)

≤

∥∥∥∥∥
∞∑
j=0

(Â+ I)j((Â+ I)T )j

∥∥∥∥∥ tr(E[(µA(µ)− Â)T (Y −X)(µA(µ)− Â)])

=

∥∥∥∥∥
∞∑
j=0

(Â+ I)j((Â+ I)T )j

∥∥∥∥∥
n∑
i=1

tr(cov([µA(µ)]i, [µA(µ)]i)(Y −X))

=

∥∥∥∥∥
∞∑
j=0

(Â+ I)j((Â+ I)T )j

∥∥∥∥∥ tr

(
n∑
i=1

var([µA(µ)]i)(Y −X)

)

≤

∥∥∥∥∥
∞∑
j=0

(Â+ I)j((Â+ I)T )j

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

var([µA(µ)]i)

∥∥∥∥∥ tr(Y −X)

= αtr(Y −X)

= α‖Y −X‖tr,

where we have used Lemma 3.2 as well as the invariance of trace under cyclic per-

mutations.

With the sufficient condition for stability that Theorem 3.5 provides, we can

answer questions concerning the control theory of µ-varying dynamic equations. We

will do this in Section 4.2
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CHAPTER FOUR

Control Theory Applications of Stochastic Time Scales Stability Theory

In this chapter, we will apply the results from Chapter Three to the observer

and controller problems. We begin with a novel time scales-based observer design

which relies on the results of Section 3.1. Later, we will develop an observer design

more which is more suitable for use in state-feedback applications by appealing to

the results in Section 3.3.5. Finally, we will focus on the controller problem by

developing optimal control theories for the control models of interest to us in this

work.

4.1 Observer Design for Battery State-of-Charge Estimation

The apparently straightforward question of how to accurately estimate the

amount of charge remaining in a battery has long presented an engineering chal-

lenge. Unlike a fuel tank with a level gauge, it is impractical to directly measure

charge in typical battery. Indirect methods are under investigation, though many

will be difficult to practically and cost-effectively implement. The problem of State-

of-Charge (SOC) estimation is gaining importance, however, as batteries play an

increasingly prominent role in the automotive and energy industries, for example

[4, 10, 23, 39, 41, 42]. With small consumer applications such as cell phones and

laptops, there is a wide margin for error in SOC estimation. But with applications in

aerospace, transportation, and energy, which require much larger and heavier batter-

ies, oversizing a battery bank comes with a sizable economic penalty, and erroneous

estimates of battery charge can be extremely problematic. The two most commonly

used methods for SOC estimation are Coulomb counting (the direct integration of

battery current to obtain charge) and open circuit voltage (VOC) correlation (using

a known correlation between VOC and SOC). Coulomb counting suffers from the
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problem of unbounded estimation error, stemming from current measurement error

that is always present to one degree or another.

SOC = Qmax

∫ t

0

(I(τ) + b)dτ = Qmax

∫ t

0

I(τ)dτ − bt

The equation above, where Qmax is the maximum battery charge capacity, I is the

battery current, and b is the average current measurement bias, shows that Coulomb

counting estimates will eventually be overtaken by unbounded error bt.

Open circuit voltage correlation requires either that all loads be removed from

the battery periodically, or that VOC be estimated. Also, many batteries have very

“flat” SOC vs. VOC curves, so that small errors in VOC estimation lead to large

errors in SOC estimation. One promising approach combines both methods, using

a battery model observer to reconstruct an estimate of the SOC. The problem in-

troduced by the observer is that it requires battery power to operate itself. The

microprocessor updating the observer states requires power to perform computa-

tion, A/D conversion, and communication with the outside world. To ensure that

the observer remains stable and operates as expected, updates are performed at a

sufficiently high, uniform sampling rate. In this section, we show that an observer

designed around the theory of dynamic equations on time scales can drastically re-

duce the update rate relative to traditional observer design, and therefore reduce

the parasitic power requirements of the observer circuitry.

This section investigates systems on different time scales, i.e., we have a dy-

namical system in continuous time (the battery) and another on a discrete time scale

(the observer). Context will usually clarify when a variable belongs to one class or

the other, but for further clarification we henceforth denote the independent time

variables τ ∈ R and t ∈ T.

66



Time (seconds)

Voltage (V)

SOC (Ah)

V
ol

ta
ge

an
d

C
h
ar

ge

Figure 4.1: An illustration of the battery voltage transient response, excited by a discharge
current stair-step of {0, 2.3, 3.6, 6.9, 9.2} Amps, followed by a charging sequence of the same
magnitude. The SOC is also shown.

4.1.1 Battery Model

For this work, we study the 2.3 Ah Lithium-ion battery studied by Codeca, et

al. [11], with a nominal terminal voltage of 3.3V. The model consists of an SOC-

dependent voltage source in series with two RC tank circuits that closely approximate

the transient response of the batterys terminal voltage to step changes in current.

Figure 4.1 illustrates the voltage transient response. An LTI state space model of

the battery can be easily derived, after linearly approximating the batterys VOC vs

SOC curve (which is a very good approximation for SOC values between 20% and

80%), in the standard form

ẋ(τ) = Ax(τ) +Bu(τ), A ∈ R3×3, B ∈ R3×1,

y(τ) = Cx(τ) +Du(τ), C ∈ R1×3, D ∈ R, (4.1)

where x : R → R3, and y, u : R → R. State vector x represents the cumulative

discharge, the voltage across the first RC tank and the voltage across the 2nd RC
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tank. Input u is the battery current, and output y is the terminal voltage offset.

Henceforth, positive current u > 0 represents a discharging battery. The correspond-

ing battery variables of interest are: terminal voltage V = y + 3.3; battery current

I = u; and, given as a percentage, state of charge SOC = (2.3 − x1)/2.3 . It is

noteworthy that the presence of a charge integrator in the model means that A has

one zero eigenvalue.

4.1.2 Observer Design

Henceforth, we will assume that T is a discrete time scale. Next, we note that

no discrete-time model will mirror its continuous-time cousin unless the continuous-

time input u(τ) remains constant in between sample points (which will rarely occur).

Thus, we define the sample-and-hold error εt(τ) such that

u(τ) = u(t) + εt(τ); t ∈ T; τ ∈ [t, σ(t)); εt(t) = 0.

Using sample-and-hold discretization as in Section 2.3.2, the continuous model of

(4.1) can be written

x∆(t) = A(µ(t))x(t) + B(µ(t))u(t) +
1

µ(t)

∫ σ(t)

t

εt(τ)eA(t−τ)Bdτ,

y(t) = Cx(t) +Du(t),

with x, y, u : T→ Rn.

If a time scale T with constant graininess is chosen, then A and B become

constant matrices and the problem boils down to standard discrete-time observer

design. However, the following design leverages the idea of allowing the time scale

to have widely varying graininess.

The proposed observer dynamics are

x̂∆(t) = A(µ(t))x̂(t) + B(µ(t))u(t) +H(µ(t))[y(t)− ŷ(t)],

ŷ(t) = Cx̂(t) +Du(t),
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where x̂ is the estimated state, ŷ is the estimated output, and

H(µ(t)) := expc(Aµ(t))H

for some feedback gain matrix H. Then the error dynamics of the system are

e∆(t) = expc(Aµ(t))(A−HC)e(t) +
1

µ(t)

∫ σ(t)

t

ε(τ)eA(t−τ)Bdτ, (4.2)

where e = x− x̂.

At this point the analysis begs the question, what is the appropriate time

scale T on which to discretize? One possibility is suggested by the hardware design:

A common component in the design of SOC estimator circuitry is the Coulomb

counter, a low-power device that integrates current and issues an interrupt pulse to

a microprocessor every time the integral equals a predetermined quantum of charge,

say, q Coulombs. This device, by its very nature, creates a time scale in which

the graininess is inversely proportional to the magnitude of the current. However,

such a time scale has two drawbacks: On one hand, a high constant current draw

would produce a rapid observer update rate (small graininess), even though voltage

transients may have settled long ago, sacrificing observer efficiency. On the other

hand, large but rapid current fluctuations would not transfer much charge, but would

invoke significant voltage transients that could be missed by the observer, sacrificing

accuracy. Intuitively, for the observer to exhibit both stability and accuracy, it ought

to be updated when the battery current changes “too much.” We propose the system

illustrated in Figure 4.2. In this design, a new point σ(t) ∈ T is generated whenever

the battery current changes by more than amount β relative to the last point t ∈ T.

Thus, the time scale consists of points chosen to bound the sample-and-hold error,

i.e.

T =

{
{t0 < t1 < t2...} | sup

τ∈[tk,tk+1)

|u(τ)− u(tk)| = β for all k ∈ N0

}
. (4.3)
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Figure 4.2: The proposed battery observer system, illustrating how the time scale is cre-
ated. The switches represent sample-and-hold converters.

A graphical illustration of the time scale appears in Figure 4.3. While a com-

plete error analysis is beyond the present scope, it is clear that small β values reduce

the norm of the second term of (4.2), yielding error dynamics that are closely ap-

proximated by the first order time scale dynamic system

e∆(t) = expc(Aµ(t))(A−HC)e(t). (4.4)

Using the tools of the previous chapter, we are able to analyze the stability of

(4.4) using either Theorem 3.1 or Theorem 3.5. We will apply Theorem 3.1 to this

problem and apply Theorem 3.5 to the more challenging problem of observer-based

feedback control in the next section.

Proceeding using Theorem 3.1, we can determine the stability of (4.2). Assum-

ing that µ(t) for t ∈ T forms an independent, identically distributed sequence with

probability density function f(µ), the error dynamics will be exponentially stable

about the origin if and only if

E[ln |1 + µλ(µ)|] =

∫ ∞
0

f(µ) ln |1 + µλ(µ)|dµ < 0, (4.5)
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Figure 4.3. An illustration of how points in T are generated.

where λ(µ) is any eigenvalue of expc(Aµ)(A−HC). We close this section with some

comments.

First, from (4.5), it is evident that we need Re(λ) < 0, implying that A−HC

must be stable in the continuous-time sense (i.e., real-negative eigenvalues), which

means that (A,C) must be observable or at least detectable. If the continuous time

observer cannot be stabilized, the time scales observer cannot either.

Next, even given that (A,C) is observable, we can obtain from (4.2) an upper

limit, which represents the maximum step size (or sampling interval) beyond which

(4.2) would be unstable if the observer sampled at a constant rate. In this case,

µ(t) ≡ h is a constant, and the question is what value of h is “too big”. The

answer is, the h = hmax corresponding to the smallest Hilger circle that encloses the

eigenvalues of expc(Ahmax)(A−HC). For the observer design of this chapter, that

value is approximately hmax = 162, meaning that the observer will destabilize with

updates further apart than 162 seconds. (This may seem large, but consider the time
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constants involved.) The time scale T = hmaxZ would produce extremely inaccurate

results in general, because εt(τ) could grow arbitrarily large over τ ∈ [t, t + hmax).

However, a time scale generated according to (4.3) and satisfying criterion (4.5) may

actually admit graininess larger than hmax, as long as such occurrences are relatively

rare. This is a noteworthy result.

4.1.3 Examples

A series of examples are illustrated in Figures 4.4 through 4.9. For all of the

examples, β = 200 mA.

1) Figure 4.4 illustrates that observer, in the absence of measurement error,

tracks the continuous model precisely. Note that the time scale model only updates

when the battery current changes.

2) Figure 4.5 shows that the time scale model will stabilize even when µ(t) >

hmax for some t as long as (4.5) holds. In this case, the distribution f(µ) is evenly

split between µ = 91 and µ = 182, and all eigenvalues λ have

E[ln |1 + µλ(µ)|] =
1

2
ln |1 + 91λ(91)|+ 1

2
ln |1 + 182λ(182)| < 0.

3) Figure 4.6 verifies that µ(t) > hmax for all t yields instability.

4) There are two kinds of errors that frequently plague SOC estimates: un-

known initial conditions, and measurement bias. Figure 4.7 shows that the observer

converges to the correct SOC given incorrect initial conditions.

5) Figure 4.8 illustrates that, in the presence of measurement bias so that

u(t) = I(t) + b, the observer is more accurate than Coulomb counting alone. This

figure also shows the system response to a non-periodic random current draw.

6) Figure 4.9 shows a graininess histogram, illustrating again that µ(t) > hmax

will not disrupt the stability or accuracy of the observer, as predicted by the criterion

in (4.5), if such an occurrence is statistically limited.
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Figure 4.4: A discharge test. Top: the true SOC is the continuous blue line. The observed,
discretized SOC is the red dots. The time scale T is shown along the time axis. Bottom: a
plot of the current draw from the battery. (Note the periodic charge and discharge cycles.)
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Figure 4.5: In this example, one half of the time steps are greater than hmax, yet the time
scale observer remains stable and tracks the SOC accurately.
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Figure 4.6: A time scale with µ(t) > hmax cannot be stabilized. In this figure, µ(t) = 170.
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Figure 4.7. The time scale observer corrects for erroneous initial conditions.
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Figure 4.8: Top: The true SOC, in blue, from a random current draw. The top of the
shaded area is the estimated SOC via Coulumb counting in the presence of measurement
bias. The red dots show that the time scale observer can mitigate the effects of bias.
Bottom: A random battery current waveform, normally distributed with mean 2.3 and
variance 3.
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Figure 4.9: The histogram for the example in Figure 4.8 shows one occurrence of graininess
significantly larger than hmax, which had no adverse effect on observer stability or accuracy
since it is statistically rare.

4.1.4 Future Work on the Model

This section proposes a novel design for a battery state-of-charge estimator

based on the theory of dynamic equations on time scales. We show that a time

scale-based state observer can accurately estimate the state of charge in the presence

of initial condition uncertainty and measurement bias. Furthermore, by creating a

time scale with graininess that ranges over two orders of magnitude, the observer

can function with drastically fewer updates than would be required by traditional

observer designs, thereby helping to lower the parasitic power costs of the observer

itself.

Future work on this problem involves improving the model to include the ac-

tual (nonlinear) VOC vs. SOC curve. Also, while the simulated examples in this

section suggest that the design has promise, an embedded instantiation would pose

additional challenges including the design of a low power circuit to implement (4.3),
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and the calculation of the expc(·) function in (2.17). Further investigation will be

required to know the limits of this design, e.g. how long can it maintain a reason-

ably accurate SOC estimate before requiring a reset. Lastly, utilizing the stability

criterion of (4.5) requires knowledge of the graininess statistical distribution, which

depends on the battery current statistics. Battery current demand statistics would

have to be determined experimentally in any given application.

One of the biggest problems of this observer design is that we cannot recover

the state instantly for use in feedback control, for the observer depends on the

graininess. The next section solves this problem.

4.2 Observer-Based Feedback Control

Beyond the efficient estimate of battery state of charge in batteries with flat

voltage versus state of charge curves discussed in the previous section, a promising

potential application of time scales theory discussed in the literature is in the arena

of networked or distributed control systems where the sampling times are determined

via network traffic [26].

In both of these applications, the sampling times form a time scale, and the

sampling times are often random and nonuniformly spaced. These both create obsta-

cles in the analysis of the design objective. We can work around the nonuniformity

using time scales theory, but the randomness has been difficult to overcome. In fact,

both of these applications have been studied with the assumption that the time

scale, or at least some portion of it, was known a priori. Jackson et al. [26] assumed

that the time scale was known in some future window and used this information

to construct a time-varying stabilizing controller. In the previous section on the

battery observer, we designed the observer gain matrix to vary with the graininess.

This was only possible, however, with the assumption that the state estimate was

not required in real time.
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The theory developed in this dissertation allow us to leverage stochastic time

scales to address some of these issues. We relax the condition that we know the

time scale in some future window, instead assuming that we know the first and

second order statistics of the distance between sampling points. This will allow us

to build observers whose output can be used in state-feedback without explicit a

priori knowledge of the step sizes.

We consider the state space model

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m,

y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m.

We discretize onto a time scale as in Section 2.3.2 to obtain

x∆(t) = A(µ(t))x(t) + B(µ(t))Kx̂(t),

y(t) = Cx(t) +DKx̂(t), t ∈ T̃.

The question now is how to design the observer to acquire the state estimate

x̂(t). Unlike the observer in the previous section, we cannot design the observer as

a function of µ, because doing so would require explicit knowledge of the next time

step, which is impossible since µ is a random variable. To overcome this, we propose

the observer design

x̂(tk+1) = x̂(tk) + Âx̂(tk) + B̂u(tk) +H(y(tk)− ŷ(tk)),

ŷ(tk) = Cx̂(tk) +Du(tk). (4.6)

Since we are using state feedback of the form u(tk) = Kx̂(tk), (4.6) is equivalent

to the stochastic time scale µ-varying dynamic equation

x̂∆ =
1

µ
Âx̂+

1

µ
B̂Kx̂+

1

µ
HC(y − ŷ),

ŷ = Cx̂+DKx̂.
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To compute the error dynamics, let ε := x− x̂. Then,

ε∆ =A(µ)x+ B(µ)Kx̂− 1

µ
Âx̂− 1

µ
B̂Kx̂− 1

µ
H(Cx+DKx̂− (Cx̂+DKx̂))

=A(µ)x+ B(µ)K(x− ε)− 1

µ
Â(x− ε)− 1

µ
B̂K(x− ε)− 1

µ
HCε

=

[
(A(µ)− 1

µ
Â) + (B(µ)− 1

µ
B̂)K

]
x+

[(
1

µ
B̂ − B(µ)

)
K +

1

µ
Â− 1

µ
HC

]
ε.

The last line shows how the error dynamics depend on both x and ε. Since we also

have, from our state dynamics,

x∆ = A(µ)x+ B(µ)Kx̂ = [A(µ) + B(µ)K]x− B(µ)Kε,

together these yield the coupled systemx
ε


∆

= L(µ)

x
ε

 , (4.7)

where

L(µ) =

 A(µ) + B(µ)K −B(µ)K

(A(µ)− 1
µ
Â) + (B(µ)− 1

µ
B̂)K

(
1
µ
B̂ − B(µ)

)
K + 1

µ
(Â−HC)

 .

In elementary control books [3, 24], we find similar dynamics, with the exception

that the system matrix is block upper triangular, which implies that we can design

the observer and controller separately. Although we cannot transform (4.7) into such

a form, we can choose Â and B̂ such that the system is block upper triangular “on

average,” then estimate how close the system behaves to a block upper triangular

system by examining covariances.

To illustrate this, if we take Â := E[µA(µ)] and B̂ := E[µB(µ)], then

E[µL(µ)] =

Â+ B̂K −B̂K

0 Â−HC

 := L (4.8)

is block upper triangular. A sufficient condition for the stability of (4.7) for the

aformentioned choices of Â and B̂ is that L(µ) satisfies the associated STSALE:

LTP + PL+ LTPL+ E[(µL(µ)− L)TP (µL(µ)− L)] = −M. (4.9)
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This leads to the following corollary to Theorem 3.5.

Corollary 4.1. The coupled error and state dynamics (4.7) are mean-square exponen-

tially stable provided there exist H,K such that spec(Â+B̂K) ⊂ H1, spec(Â−HC) ⊂

H1, and ∥∥∥∥∥
∞∑
j=0

(L+ I)j((L+ I)T )j

∥∥∥∥∥
∥∥∥∥∥

2n∑
k=1

var([µL(µ)]k)

∥∥∥∥∥ = α < 1. (4.10)

Proof. By Theorem 3.5, there is a solution to (4.9) provided (4.10) holds and

spec(L) = spec(Â+ B̂K) ∪ spec(Â−HC) ⊂ H1.

The conditions spec(Â+ B̂K) ⊂ H1 and spec(Â−HC) ⊂ H1 hold for appro-

priate choices of K and H provided (Â, B̂) is controllable (stabilizable) and (Â, C)

is observable (detectable) [3, 24].

4.3 Optimal Control Theory

The primary drawback of Corollary 4.1 is that proper gain matrices H and K

are difficult to find. In this section, we develop an optimal control theory which can

help greatly in the search for suitable gain matrices.

We consider the stochastic time scale Linear µ-Varying (LµV) control system

on a stochastic time scale T̃ generated by µ

x∆ = A(µ)x+ B(µ)u.

Our goal is to minimize

E[J(x, u)] := E

[
xTNQ

fxN +
N−1∑
j=0

µjx
T (tj)Qx(tj) + µju

T (tj)Ru(tj)

]

where R,Q > 0 and tj is the jth point in the time scale. Note that we do not specify

an ending time, but we do specify how many times the system updates.
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We can view this problem as a discrete stochastic optimal control problem [5]

with the following characteristics:

Dynamics: xj+1 = (I + µA(µ))xj + µB(µ)uj,

Cost Rate: c(x, u) = E[µ]xTQx+ E[µ]uTRu,

We can approach this stochastic optimal control problem via Bellman’s equation

[5]. Bellman’s equation is a necessary, but not sufficient, condition for optimality.

The equation arises from a stochastic generalization of Bellman’s optimality prin-

ciple, which states that any optimal trajectory must be also be optimal over its

sub-trajectories. The stochastic version of Bellman’s equation seeks a scalar-valued

function v(x) called the “value function” or the “cost–to–go function.” This function

measures the expected cost of the optimal policy starting from a state x. The value

function is unique if it exists and satisfies the equation

v(x) = min
u∈U(x)

{c(x, u) + E[v(((I + µA(µ))x+ µB(µ)u)]}.

The optimal policy u∗(x) then satisfies

u∗(x) = arg min
u∈U(x)

{c(x, u) + E[v(((I + µA(µ))x+ µB(µ)u)]}.

Although we do not know the form of v(x), we use the ansatz

v(x, j) = xTVjx, Vj = V T
j > 0

with the boundary condition

VN = Qf .

The Bellman equation now reads

xTVjx = min
u
{E[µ]xTQx+ E[µ]uTRu

+ E[((I + µA(µ))x+ µB(µ)u)TVj+1((I + µA(µ))x+ µB(µ)u)}.
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The right-hand side of the above equation is quadratic in u, and hence we can use

basic matrix analysis to minimize the quantity in the bracket. Taking the derivative

and setting it equal to zero yields

2E[µ]Ru+ 2E[(µB(µ))TVj+1(I + µA(µ))]x+ 2E[(µB(µ))TVj+1(µB(µ))]u = 0.

Thus, the quantity u which minimizes the RHS is given by

u = −(E[µ]R + E[(µB(µ))TVj+1(µB(µ))])−1E[(µB(µ))TVj+1(I + µA(µ))]x

since the Hessian of the quantity in the minimization is a positive definite matrix.

Using this value of u as the achieved minimum of the RHS of the Bellman

equation, we arrive at the matrix equation which we call the µ-varying stochastic

time scale dynamic Riccati equation:

Vj =E[µ]Q+ E[(I + µA(µ))TVj+1(I + µA(µ))] (µ-STSDRE)

−E[(I + µA(µ))TVj+1(µB(µ))]

×(E[µ]R + E[(µB(µ))TVj+1(µB(µ))])−1E[(µB(µ))TVj+1(I + µA(µ))]; VN = Qf

In the LTI case, the same derivation applies, and we arrive at the matrix equation

which we call the stochastic time scale dynamic Riccati equation:

−Vj+1 − Vj
E[µ]

=Q+ ATVj+1 + Vj+1A+
E[µ2]

E[µ]
ATVj+1A (STSDRE)

−
(
I +

E[µ2]

E[µ]
A

)T
Vj+1B

×
(
R +

E[µ2]

E[µ]
BTVj+1B

)−1

BTVj+1

(
I +

E[µ2]

E[µ]
A

)
; VN = Qf .

The forms of (µ-STSDRE) and (STSDRE) generalize and extend (CDRE) and

(DDRE). In a similar approach to the the continuous and discrete cases, we will

use the solution of (µ-STSDRE) to solve the quadratic cost, infinite horizon control

problem on stochastic time scales.
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4.4 Infinite Horizon

Bellman’s equation is a necessary but not sufficient condition for optimality.

Therefore, the previous work does not necessarily yield an optimal control law.

Moreover, our primary interest in this dissertation is control problems with infinite

time horizons. The following theorem fixes these two issues, using the solution of

the finite-horizon problem to guarantee an optimal control for the infinite horizon

case.

Theorem 4.1. Suppose that there exists K ∈ Rm×n such that x∆ = (A(µ) + B(µ)K)

is mean-square asymptotically stable. Also suppose Q > 0 and R ≥ 0. Define Vk(N)

to be the solution of (µ-STSDRE) with Qf = 0 with a horizon of N at j = k. Then

(i) limN→∞ V0(N) = V exists.

(ii) V is a positive definite solution of the µ-varying stochastic time scale algebraic

Riccati equation:

V =E[µ]Q+ E[(I + µA(µ))TV (I + µA(µ))] (µ-STSARE)

−E[(I + µA(µ))TV (µB(µ))]

×(E[µ]R + E[(µB(µ))TV (µB(µ))])−1E[(µB(µ))TV (I + µA(µ))].

(iii) x∆ = [A(µ) + B(µ)K]x, with

K = (E[µ]R + E[(µB(µ))TV (µB(µ))])−1E[(µB(µ))TV (I + µA(µ))],

is mean-square exponentially stable.

(iv) The optimal control law for x∆ = A(µ)x+ B(µ)u with cost functional

E[J∞(x0, u)] = E

[
∞∑
j=0

µjx
T (tj)Qx(tj) + µju

T (tj)Ru(tj)

]

is given by u∗(t) = Kx(t) with expected costs E[J∞(x0, u
∗)] = xT0 V x0.
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Proof. We first show infu E[J∞(x0, u)] < ∞. Since there exists K ∈ Rm×n such

that x∆ = (A(µ)+B(µ)K)x is mean-square asymptotically stable, it is mean-square

exponentially stable by Theorem 3.2. Therefore, for u = Kx,

E[J∞(x0, u)] = E

[
∞∑
j=0

µjx
T (tj)(Q+KTRK)x(tj)

]

≤ λmax(Q+KTRK)
∞∑
j=0

E[µjx
T (tj)x(tj)]

= E[µ]λmax(Q+KTRK)
∞∑
j=0

E[xT (tj)x(tj)]

<∞,

where the last inequality is by the definition of mean square exponential stability.

Note we interchange expectation and summation via Tonelli’s Theorem and used

the independence of µj and xT (tj)x(tj).

We now show limN→∞ V0(N) exists. Let ε > 0 and choose u∗ such that

E[J∞(x0, u
∗)] = infu E[J∞(x0, u)] + ε. Let JN(x0, u) be the cost functional for the

finite horizon problem with Qf = 0 and horizon N . Then

xT0 V0(N)x0 = min
u

E[JN(x0, u)]

≤
N−1∑
j=0

E[µjx
T (tj)Qx(tj) + µju

∗T (tj)Ru
∗(tj)]

≤
∞∑
j=0

E[µjx
T (tj)Qx(tj) + µju

∗T (tj)Ru
∗(tj)]

= inf
u

E[J∞(x0, u)] + ε.

Therefore {V0(N)} has an upper bound. Now choose u∗N+1 such that

E[JN+1(x0, u
∗
N+1)] = min

u
E[JN+1(x0, u)].

Then

xT0 V0(N)x0 = min
u

E[JN(x0, u)]
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≤
N−1∑
j=0

E[µjx
T (tj)Qx(tj) + µju

∗T
N+1(tj)Ru

∗
N+1(tj)]

≤
N∑
j=0

E[µjx
T (tj)Qx(tj) + µju

∗T
N+1(tj)Ru

∗
N+1(tj)]

= min
u

E[JN+1(x0, u)]

= xT0 V0(N + 1)x0.

Since this holds for any choice of x0, we see {V0(N)} is an increasing sequence with

an upper bound. Therefore, limN→∞ V0(N) := V exists. This proves (i).

Note that since {V0(N)} is an increasing sequence of positive definite matrices,

V > 0. To see V satisfies (µ-STSARE), note that V0(N) = V1(N + 1). This is

because the minimal expected cost over N updates starting from x(t0) = χ is given

by χTV0(N)χ, and the minimal expected cost from the second state of a system

x(t1) = χ over the next N updates is given by χTV1(N + 1)χ. But because V0(N)

satisfies the µSTSDRE in the horizon N case, taking the limit as N → ∞ of the

µSTSDRE shows V satisfies µSTSARE. This proves (ii).

Consider K = (E[µ]R + E[(µB(µ))TV (µB(µ))])−1E[(µB(µ))TV (I + µA(µ))]].

Define I + µA(µ) + µB(µ)K := C(µ). Then

V =E[µQ+ (I + µA(µ))TV (I + µA(µ))] + E[(I + µA(µ))TV (µB(µ))]K

=E[µQ+ (I + µA(µ) + µB(µ)K)TV (I + µA(µ) + µB(µ)K)]

+ E[(I + µA(µ))TV (µB(µ))]K −KTE[(µB(µ))TV (I + µA(µ))]

− E[(I + µA(µ))TV (µB(µ))]K −KTE[(µB(µ))TV (µB(µ))]K

=E[µQ+ CT (µ)V C(µ)]−KT [E[(µB(µ))TV (I + µA(µ)) + (µB(µ))TV (µB(µ))K]]

=E[µQ+ CT (µ)V C(µ)]

−KT [E[(µB(µ))TV (I + µA(µ))] + E[µR + (µB(µ))TV (µB(µ))]K − E[µ]RK]

=E[µQ+ CT (µ)V C(µ)] + E[µ]KTRK
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=E[(I + µA(µ) + µB(µ)K)TV (I + µA(µ) + µB(µ)K)] + E[µ](Q+KTRK).

Hence

E[(µA(µ) + µB(µ)K)TV + V (µA(µ) + µB(µ)K)

+ (µA(µ) + µB(µ)K)TV (µA(µ) + µB(µ)K)]

=− E[µ](Q+KTRK).

Now, V > 0 and E[µ](Q + KTRK) > 0, so we see that x∆ = (A(µ) + B(µ)K)x is

mean-square exponentially stable. This proves (iii).

To show (iv), first note that because

0 ≤ inf
u
JN(x0, u) = xT0 V0(N)x0 ≤ inf

u
J∞(x0, u) + ε

for all ε > 0, we have

xT0 V x0 ≤ J∞(x0, u) + ε for all ε > 0.

We will now show infu J∞(x0, u) ≤ xT0 V x0. To see this, first note for choices of u

which are mean-square exponentially stable (of which there is at least one),

E[J∞(x0, u)] + E

[
∞∑
j=0

xT (tj+1)V x(tj+1)− xT (tj)V x(tj)

]
= E[J∞(x0, u)]− xT0 V x0.

On the other hand, using completion of squares and the definition of K,

E[J∞(x0, u)] + E

[
∞∑
j=0

xT (tj+1)V x(tj+1)− xT (tj)V x(tj)

]

=
∞∑
j=0

E[µxTQx+ µuTRu+ (xT (I + µA(µ))T

+ uT (µB(µ))T )V ((I + µA(µ))x+ (µB(µ))u)− xTV x]

=
∞∑
j=0

E[µxTQx+ µuTRu

+ xT (I + µA(µ))TV (I + µA(µ))x+ uT (µB(µ))TV (I + µA(µ))x
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+ xT (I + µA(µ))TV (µB(µ))u+ uT (µB(µ))TV (µB(µ))u]

=
∞∑
j=0

E[(u−Kx)TE[µR + ((µB(µ))TV (µB(µ))](u−Kx)]

+ E[xT (E[µQ− V + (I + µA(µ))TV (I + µA(µ))]

− E[(I + µA(µ))TV (µB(µ))]E[µR + (µB(µ))TV (µB(µ))]−1

× E[(µB(µ))TV (I + µA(µ))]x]

=
∞∑
j=0

E[(u−Kx)TE[µR + ((µB(µ))TV (µB(µ))](u−Kx)].

Hence,

E[J∞(x0, Kx)] = xT0 V x0,

so

inf
u

E[J∞(x0, u)] ≤ xT0 V x0.

Therefore,

inf
u

E[J∞(x0, u)] ≤ xT0 V x0 ≤ inf
u

E[J∞(x0, u)] + ε for all ε > 0,

and thus

inf
u

E[J∞(x0, u)] = xT0 V x0.

Since the minimal cost is achieved for the choice u = Kx, we see u = Kx is the

optimal control. This proves (iv).

In the LTI case, we arrive at the following corollary.

Corollary 4.2. Suppose that the pair (A,B) is controllable. Also suppose Q > 0 and

R ≥ 0. Define Vk(N) to be the solution of (STSDRE) with Qf = 0 at a horizon of

N at j = k. Then

(i) limN→∞ V0(N) = V exists.
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(ii) V is a positive definite solution of the stochastic time scale algebraic Riccati

equation:

0 =Q+ ATV + V A+
E[µ2]

E[µ]
ATV A (STSARE)

−
(
I +

E[µ2]

E[µ]
A

)T
V B

(
R +

E[µ2]

E[µ]
BTV B

)−1

BTV

(
I +

E[µ2]

E[µ]
A

)
.

(iii) The system

x∆ =

[
A−B

(
R +

E[µ2]

E[µ]
BTV B

)−1

BTV

(
I +

E[µ2]

E[µ]
A

)]
x := [A+BK]x

is mean-square exponentially stable.

(iv) The optimal control law for x∆ = Ax+Bu with cost functional

E[J∞(x0, u)] = E

[
∞∑
j=0

µjx
T (tj)Qx(tj) + µju

T (tj)Ru(tj)

]

is given by u∗(t) = Kx(t) with expected costs E[J∞(x0, u
∗)] = xT0 V x0.

We note that (STSARE) can be transformed into (DARE) by multiplying

(STSARE) by E[µ2]/E[µ] and making the transformations

Q̃ =
E[µ2]

E[µ]
Q, Ã = (I +

E[µ2]

E[µ]
A) R̃ =

E[µ]

E[µ2]
R B̃ = B.

This can be useful when using a solver in a computer algebra system. Just as

we cannot transform (µ-STSALE) into the form of (DALE), we cannot transform

(µ-STSARE) into the form of (DARE). We can, however, write (µ-STSARE) in the

form of a linearly perturbed Riccati equation [19, 40, 2] of the form

V =Q+ (I + A)TV (I + A) + Π1(V )

+ [(I + A)TV B + Π12(V )][R +BTV B + Π2(V )]−1[(I + A)TV B + Π12(V )]T ,

where

Π(V ) :=

Π1(V ) Π12(V )

ΠT
12(V ) Π2(V )


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is a positive linear operator. Linearly perturbed Riccati equations first appeared

in the stochastic control literature in 1968 [40], and they continue to be an area of

research within the field [19, 2]. Our analysis gives a novel and natural example of

how an equation of this form emerges. In future work, we will explore leveraging

the theory of linearly perturbed Riccati equations to study (µ-STSARE) further.

Finally, we remark that if we use the Bellman equation approach in the LTI

case when the time scale is not stochastic, we arrive at the dynamic equation

−V ∆ =Q+ ATV σ + V σA+ µ(t)ATV σA

− (I + µ(t)A)TV σB(R + µ(t)BTV σB)−1BTV σ(I + µ(t)A),

which matches the result of Wintz [8]. He did not, however, demonstrate stability

with Lyapunov techniques or obtain a steady-state solution in the infinite horizon

case. A major contribution of this work and the stochastic time scale approach is

that we can accomplish both of these goals through Theorem 4.1 and Corollary 4.2.
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CHAPTER FIVE

Insights From Stochastic Time Scales

The study of stochastic time scales informs us about theorems about deter-

ministic time scales. In this chapter, we explore these connections.

5.1 Uniform Exponential Stability

The theory of stochastic time scales not only explores new classes of proba-

bilistically generated time scales, it also sheds light on general, deterministic time

scales. In particular, in this section, we show that the relation between HE[µ2]/E[µ]

and S̃ holds for general time scales. Define

δ(T) := lim sup
T→∞

∫ T
t0
µ(t)∆t

T − t0
. (5.1)

This turns out to be an important constant for understanding how stochastic time

scales inform us about general time scales. We will show that Hδ(T) is always a

subset of the region of exponential stability. Moreover, we will show the geometric

importance of this region by showing Hδ(T) is the best circular approximation of

S at the origin in the sense that osculating circle at the origin of the region of

exponential stability. Next, we will demonstrate the power and ease of computing

Hδ(T) versus computing the region of exponential stability. Finally, we will focus

on uniform exponential stability and show that Hδ(T) is the osculating circle to the

region of uniform exponential stability under a mild condition, which we call mean-

stationary, on the time scale.

5.1.1 Properties of Hδ(T)

We will begin by showing Hδ(T) is always contained in S(T). We begin with a

lemma which helps us determine when a complex number is in the disc Hδ(T).
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Lemma 5.1. Let γ > 0. λ ∈ Hγ if and only if

2 Re(λ) + |λ|2γ < 0.

Proof. An equivalent form of (2.1) isHγ = {λ ∈ C : |λ+1/γ|2 < (1/γ)2}. Expanding

the modulus and letting λ = x + iy, we have (x + 1/γ)2 + y2 < (1/γ)2. This is

equivalent to x2 + y2 + 2x/γ = |λ|2 + 2 Re(λ)/γ < 0, which holds if and only if

2 Re(λ) + |λ|2γ < 0.

From this point onward, we will assume the time scale is known and write

δ := δ(T) and S(T) := S.

Theorem 5.1. Hδ ⊂ S.

Proof. Let λ ∈ Hδ. Then 2 Re(λ)+ |λ|2δ < 0. Let λ = x+ iy and recall ln(1+x) ≤ x

for all x > −1. Then

2 lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↓µ(t)

ln |1 + λs|
s

∆t

= lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↓µ(t)

ln |1 + λs|2

s
∆t

= lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↓µ(t)

ln[(1 + sx)2 + (sy)2]

s
∆t

= lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↓µ(t)

ln[1 + 2sx+ (sx)2 + (sy)2]

s
∆t

≤ lim sup
T→∞

1

T − t0

∫ T

t0

lim
s↓µ(t)

2sx+ (sx)2 + (sy)2

s
∆t

= lim sup
T→∞

1

T − t0

∫ T

t0

[
2x+ µ(t)(x2 + y2)

]
∆t

=2 Re(λ) + |λ|2 lim sup
T→∞

1

T − t0

∫ T

t0

µ(t)∆t

=2 Re(λ) + |λ|2δ

<0.
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Since Hδ ⊂ S, we know Hδ is a circular approximation to the region at the

origin. We claim Hδ is the best circular approximation to S at the origin, i.e. Hδ

is the osculating circle to S at the origin. The proof of that fact requires several

inequalities which are themselves interesting. We present these inequalities next in

a sequence of three lemmas.

Lemma 5.2. Let 0 ≤ µmin ≤ µ ≤ µmax. Let µmin < γ < µmax. Then for λ ∈ ∂Hγ,

1−
(

Re(λ)

|λ|

)2

≤ |1 + λµ|2 ≤ |1 + λµmax|2.

Proof. The quadratic function in µ given by

|1 + λµ|2 = 1 + 2 Re(λ)µ+ |λ|2µ2 (5.2)

is minimized at µ = −Re(λ)/|λ|2 and attains the minimum value

m(λ) := 1− (Re(λ)/|λ|)2. (5.3)

The function (5.2) is maximized at either µ = µmax or µ = µmin. Since λ ∈ Hµmin

and λ /∈ Hµmax , |1 + λµmin|2 < 1 while |1 + λµmax|2 > 1. Therefore, (5.2) attains the

maximum value

M(λ) := |1 + λµmax|2. (5.4)

The proof of our main result relies on the behavior of a linear function in the

variable Re(λ). The following lemma helps us write all expressions involving λ in

terms of Re(λ).

Lemma 5.3. If λ ∈ ∂Hγ, then

|λ|2 = −2

γ
Re(λ). (5.5)

Proof. The result follows from noticing the similarity of the two triangles in Figure

5.1. The largest triangle is a right triangle by Thales’ theorem.
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α

Figure 5.1. The relation between |λ|2 and Re(λ) when λ ∈ Hγ .

Finally, we require the following equality.

Lemma 5.4. Let 0 ≤ µmin < γ < µmax and let λ ∈ ∂Hγ. Then

m(λ)−M(λ) =
(2µmax − γ)2

2γ
Re(λ).

Proof.

m(λ)−M(λ) =

[
1−

(
Re(λ)

|λ|

)2
]
−
(
1 + 2 Re(λ)µmax + |λ|2µ2

max

)
= −Re(λ)2

|λ|2
− 2 Re(λ)µmax − |λ|2µmax

=
Re(λ)2

2
γ

Re(λ)
− 2 Re(λ)µmax +

2

γ
Re(λ)µmax

= Re(λ)

(
γ

2
− 2µmax +

2

γ
µ2

max

)
= Re(λ)

(
γ2 − 4γµmax + 4µ2

max

2γ

)
= Re(λ)

(2µmax − γ)2

2γ

With these lemmas in hand, we are prepared to classify the osculating circle

to the region of stability S.
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Theorem 5.2. Hδ is the osculating circle of S at the origin.

Proof. Let µmin < γ < δ ≤ µmax and λ ∈ (∂Hγ − {(0, 0)}) ∩ Rε, where Rε is the

open square with side length 2ε centered at the origin, and

0 < ε <

(
1− δ

γ

)
(

1− µmax

γ

) [
2µmax

(
1− δ

γ

)
+ (2µmax−γ)2

2γ

] . (5.6)

This implies Re(λ) ∈ (−ε, 0). We will argue that the the integral which defines SC

when evaluated at λ is positive. This will show that Hγ cannot be the osculating

circle to S at the origin.

In the following inequalities, we make use of Lemma 2. Note that∫ T

t0

ln |1 + λµ(t)|
µ(t)

∆t

≥
∫ T

t0

2 Re(λ) + |λ|2µ(t)

|1 + λµ(t)|2
∆t

=

∫
µ(t)<γ
t0≤t<T

−︷ ︸︸ ︷
2 Re(λ) + |λ|2µ(t)

|1 + λµ(t)|2
∆t+

∫
µ(t)>γ
t0≤t<T

+︷ ︸︸ ︷
2 Re(λ) + |λ|2µ(t)

|1 + λµ(t)|2
∆t

≥
∫

µ(t)<γ
t0≤t<T

2 Re(λ) + |λ|2µ(t)

m(λ)
∆t+

∫
µ(t)>γ
t0≤t<T

2 Re(λ) + |λ|2µ(t)

M(λ)
∆t

=

∫ T

t0

2 Re(λ) + |λ|2µ(t)

m(λ)
∆t+

∫
µ(t)>γ
t0≤t<T

2 Re(λ) + |λ|2µ(t)

M(λ)
− 2 Re(λ) + |λ|2µ(t)

m(λ)
∆t

=
M(λ)

m(λ)M(λ)

∫ T

t0

2 Re(λ) + |λ|2µ(t)∆t+

−︷ ︸︸ ︷
m(λ)−M(λ)

m(λ)M(λ)

∫
µ(t)>γ
t0≤t<T

2 Re(λ) + |λ|2µ(t)∆t

≥ M(λ)

m(λ)M(λ)

∫ T

t0

2 Re(λ) + |λ|2µ(t)∆t+
m(λ)−M(λ)

m(λ)M(λ)

∫
µ(t)>γ
t0≤t<T

2 Re(λ) + |λ|2µmax∆t

≥ M(λ)

m(λ)M(λ)

∫ T

t0

2 Re(λ) + |λ|2µ(t)∆t+
m(λ)−M(λ)

m(λ)M(λ)

∫ T

t0

2 Re(λ) + |λ|2µmax∆t

=
M(λ)

∫ T
t0

2 Re(λ) + |λ|2µ(t)∆t+ (m(λ)−M(λ))
∫ T
t0

2 Re(λ) + |λ|2µmax∆t

m(λ)M(λ)
.
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Dividing by T − t0 and applying the limsup to both sides, we obtain,

lim sup
T→∞

∫ T
t0

ln |1+λµ(t)|2
µ(t)

T − t0
∆t

≥M(λ)(2 Re(λ) + |λ|2δ) + (m(λ)−M(λ))(2 Re(λ) + |λ|2µmax)

m(λ)M(λ)
, (5.7)

which we will show is positive for all prescribed λ. Since m(λ)M(λ) > 0, (5.7) is

postive if and only if

M(λ)(2 Re(λ) + |λ|2δ) + (m(λ)−M(λ))(2 Re(λ) + |λ|2µmax) > 0.

Using Lemmas 5.3 and 5.4 as well as (5.3) and (5.4),

M(λ)(2 Re(λ) + |λ|2δ) + (m(λ)−M(λ))(2 Re(λ) + |λ|2µmax)

=(1 + 2 Re(λ)µmax + |λ|2µ2
max)(2 Re(λ) + |λ|2δ)

+ Re(λ)
(2µmax − γ)2

2γ
(2 Re(λ) + |λ|2µmax)

=

(
1 + 2 Re(λ)µmax −

2

γ
Re(λ)µ2

max

)(
2 Re(λ)− 2

γ
Re(λ)δ

)
+ Re(λ)

(2µmax − γ)2

2γ

(
2 Re(λ) +−2

γ
Re(λ)µmax

)
> 0,

which is equivalent to(
1 + 2 Re(λ)µmax −

2

γ
Re(λ)µ2

max

)(
1− δ

γ

)
+

(2µmax − γ)2

2γ

(
Re(λ) +−1

γ
Re(λ)µmax

)
< 0.

The LHS can be written as(
1− δ

γ

)
+ Re(λ)

(
1− µmax

γ

)[
2µmax

(
1− δ

γ

)
+

(2µmax − γ)2

2γ

]
(5.8)

which is a linear function in Re(λ). Since 1−δ/γ < 0, it follows that (5.8) is negative

for Re(λ) ∈ (−ε, 0).
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5.1.2 Examples

5.1.2.1 P [a, b] Let T = P [a, b], the pulse time scale, which is the repeated

pattern of a continuous interval of length a followed by a gap of length b. Since T is

periodic with period a+ b,

δ =
1

a+ b

∫ a+b

0

µ(t)∆t =
1

a+ b

(∫ a

0

0dt+ b2

)
=

b2

b+ a
.

The stability region S for P[a,b], along with the osculating circle Hδ is shown in

Figure 5.2 for various values of a and b.

5.1.2.2 Tn.p.1,2 Define Tn.p.1,2 := {tn}∞n=0 with t0 = 0 and

{µ(tn)}∞n=0 = {1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, . . .}.

Note that the the graininesses of 1 and 2 occur equally often as n → ∞, but the

time scale is not periodic. Working from (5.1), since

∫ tN
t0
µ(t)∆t

tN − t0
=

∑N
n=0 µ(tn)2∑N
n=0 µ(tn)


= 5/3, N = k(k + 1),

< 5/3, otherwise,

we conclude δ = 5/3 on Tn.p.1,2

5.1.2.3 Repeated Cantor Sets Doan et al. [17] gave an example of the oscu-

lating circle at the origin of the region of exponential stability when T consists of

repeated copies of the Cantor ternary set. They conjectured the osculating circle

has a radius of 7, but left the proof as an interesting open problem. The methods

outlined here enable us to show analytically that indeed the osculating circle has a

radius of 7.

As T is periodic with period 1,

δ =

∫ 1

0

µ(t)∆t.
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Figure 5.2: The region of exponential stability, Hδ, and Hµmax for P[a,b] with various values
of a and b. Top: a = 1/5 and b = 3/4; Middle: a = 3/10 and b = 1; Bottom: a = 6/10
and b = 7/10.
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Since the Cantor ternary set has 2n gaps of length 3−(n+1), we see the curvature of

the osculating circle is

δ =

∫ 1

0

µ(t)∆t =
∞∑
n=0

2n

3n+1

1

3n+1
=

1

9

∞∑
n=0

(
2

9

)n
=

1

9

(
1

1− 2/9

)
=

1

7
.

Thus, the osculating circle of S at the origin has curvature 1/7 and hence has a

radius of 7. The geometry of the stability regions is shown in Figure 5.3.

5.1.2.4 The Bounded Graininess Assumption is Neccesary With this exam-

ple, we show that the bounded graininess assumption is necessary for the conclusion

of Theorem 5.2.

Define T =
⋃∞
n=0

[
n(n+1)(2n+1)

6
, n(n+1)(2n+1)

6
+ n2 + n

]
and

f(T ) :=
1

T

∫ T

0

µ(t)∆t.

For each n ∈ N, f(n(n + 1)(2n + 1)/6) = 1, whereas f(T ) ≤ 1 for every T ∈ T.

Therefore, δ = lim supT→∞ f(T ) = 1. The structure of the time scale as well as select

values of F are shown in Figure 5.4. Moreover, it is easy to check that S = C−.

Therefore, if the time scale has unbounded graininess, then Hδ is not neccesarily the

osculating circle of S at the origin.

5.1.3 Uniform Exponential Stability

A survey of the literature reveals that little is known about the region of

uniform exponential stability US in general. The region is known for special classes

of time scales, such as periodic time scales [17]. Doan et al. [17] showed that Hµmax

is always a subset of US. Since Hδ satisfies

Hµmax ⊂ Hδ ⊂ S,

it is tempting to conjecture that Hδ is the region of uniform exponential stability.

This is not the case, as the following example demonstrates.
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Figure 5.3. S, Hδ and Hµmax for the Cantor ternary set.

T :
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· · ·

F (T ) : 1
1
3 1

5
11 1
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14
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Figure 5.4. The time scale in Section 5.1.2.4 along with f(T ) at select time scales points.

Example 1. Consider once more T = Tn.p.1,2 . We already showed δ = 5/3 for

this time scale. However, H5/3 6⊂ US. To verify this, consider x∆ = −11/10x. Now,

−11/10 ∈ Hδ but, given M > 0, we can choose an initial point tk such that tk

proceeds N > ln(M)/ ln(12/10) points of graininess 2. Then

|e−11/10(tk+N , tk)| = |(1 + 2(−11/10))|N |x(tk)|

= (12/10)N |x(tk)|

> M |x(tk)|,

and hence x∆ = −11/10x is not uniformly exponentially stable on T even though

−11/10 ∈ Hδ.
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This last example naturally leads us to ask: under what conditions is Hδ a

subset of the region of uniform exponential stability? The last example certainly

shows that long strings of graininesses greater than δ can destroy uniform exponential

stability. Arbitrarily large graininesses in the tail of the time scale have the same

effect. The next condition rules out these types of examples.

Definition 5.1. A time scale T is mean-stationary provided there exists K ≥ 0 such

that for any u, v ∈ T, ∫ v

u

(µ(t)− δ)∆t ≤ K.

Intuitively, this condition means that no matter where we look in the time

scale, the time scale average value of the graininess in a window is within a fixed

number of the true average. Arbitrarily large graininesses in the tail or arbitrarily

long sequences of graininesses above δ violate the condition. Both of these conditions

can cause the local average value of µ to be arbitrarily larger than the global average

value of µ, δ.

The next lemma shows the definition of mean-stationarity can be cast in terms

of rates of convergence.

Lemma 5.5. T is mean-stationary if and only if∫ T
t0
µ(t)∆t

T − t0
− δ = O

(
1

T − t0

)
as T →∞,

where δ is as in (5.1).

The next result reveals that in fact a broad class of time scales is mean-

stationary.

Lemma 5.6. Let T be a periodic time scale. Then T is mean-stationary.

Proof. Let T be periodic with period T . Let u, v ∈ T with u ≤ v. Since T is periodic,

by [33, Lemma 9 (ii)]

δ =
1

T

∫ u+T

u

µ(t)∆t.
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Let

K = max
r≤s≤r+T,
r,s∈T

∫ s

r

µ(t)∆t = max
u≤s≤u+T

s∈T

∫ s

u

µ(t)∆t.

Write v = u+ kT +R with R < T using the division algorithm. Then∫ v

u

(µ(t)− δ)∆t =

∫ u+kT

u

(µ(t)− δ)∆t+

∫ v

u+kT

(µ(t)− δ)∆t

=

∫ u+kT

u

µ(t)∆t− δkT +

∫ v

u+kT

(µ(t)− δ)∆t

=0 +

∫ v

u+kT

(µ(t)− δ)∆t

≤K.

In Doan et al. [17], the authors show that if T is periodic, then S = US.

Therefore, when T is periodic, Hδ ⊂ US. The next result extends this by showing

that Hδ ⊂ US if T is mean-stationary.

Theorem 5.3. Let T be mean-stationary. Then Hδ ⊂ US. Therefore, Hδ is the

osculating circle to the region of uniform exponential stability at the origin.

Proof. Let λ = x+ iy ∈ Hδ. Then α := x+ |λ|2δ/2 < 0. Since T is mean-stationary,

there exists K ≥ 0 such that for any t, t0 ∈ T,
∫ t
t0

(µ(t)− δ)∆t ≤ K. Then

|eλ(t, t0)| ≤ exp

(∫ t

t0

lim
s→µ(t)+

ln((1 + sx)2 + (sy)2)

2s
∆t

)
≤ exp

(∫ t

t0

x+ |λ|2µ(t)/2∆t

)
= exp

(
(x+ |λ|2δ/2)(t− t0)

)
exp

(
|λ|2

2

∫ t

t0

(µ(t)− δ)∆t
)

= exp (α(t− t0)) exp
(
K|λ|2/2

)
.

Of course, the last result is of no use if the class of mean-stationary time scales

coincides with the class of periodic time scales. This final example shows this is not

the case.
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5.1.4 A Mean-Stationary, Non-Periodic Time Scale

Define the time scale T = {0, t1, t2, . . .} in the following way:

µ(0) = 1; µ(t2n) = µ(tn); µ(t2n+1) = 3− µ(tn).

The sequence of graininesses begins

{µ(tn)} = {1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, . . .}.

The generating laws for the time scale define a sequence of graininesses equal to the

celebrated Thue-Morse sequence on the symbols 1 and 2. The Thue-Morse sequence

is not periodic, and therefore the time scale is not periodic. It is easy to show that

δ = 5/3 and that
∫ v
u
µ(t) − δ∆t ≤ 4/3 for every u, v ∈ T with u < v. Therefore, T

is mean-stationary, but not periodic.

5.2 “Optimal” Control on Deterministic Time Scales

Using Corollary 4.2, we are able to find a constant feedback control law that

stabilizes the system and that minimizes the expected cost functional. The ubiquity

of the constant E[µ2]/E[µ] in (STSARE) leads us to conjecture that solving the

equation

0 = Q+ATV +V A+δATV A−(I+δA)TV B(R+δBTV B)−1BTV (I+δA) (TSARE)

will yield a feedback gain K = −(R+ δBTV B)−1BTV (I + δA) which will minimize

the cost functional

J(x, u) = lim sup
T→∞

∫ T

t0

xT (t)Qx(t) + uT (t)Ru(t)∆t. (5.9)

Indeed, as the solution V of (STSARE) yields an optimal control K which stabilizes

x∆ = (A+BK)x in the mean-square sense, it follows that

spec(A+BK) ⊂ HE[µ2]/E[µ].
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Similarly, the solution V of (TSARE) yields the control law gain matrix

K = −(R + δBTV B)−1BTV (I + δA).

Since all we have done is replace E[µ2]/E[µ] by δ, we must have spec(A+BK) ⊂ Hδ.

Therefore, as long as the time scale is mean stationary or if A + BK is uniformly

regressive, then K is a stabilizing feedback.

While the control Kx generated by solving (TSARE) indeed stabilizes the

system, it does not, in general, minimize the cost functional (5.9).

Our interpretation of stochastic time scales helps us reconcile why solving

(TSARE) does not yield an optimal control with respect to (5.9). For a fixed dynamic

equation x∆ = Ax + Bu, and fixed Q and R, there are infinitely many time scales

which have the same average graininess δ. For each of these time scales, the feedback

gain K generated from solving (TSARE) will be the same, yet for each time scale,

the corresponding system will evolve in a different manner. We can view the choice

of K from solving (TSARE) as a reasonable (but not optimal) choice to work across

every time scale with the same average graininess δ.
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