
ABSTRACT

Neural Circuit Building Blocks For Showing Stochastic Resonance Using Custom

Integrated Circuits

Nathaniel Brown

Director: Scott Koziol, Ph.D.

Research has been done on various neural circuits, and the next step in
many cases is creating a physical implementation. Programmable technologies
such as the Field Programmable Analog Array (FPAA) combined with helper tools
can allow circuit construction at high or low levels of detail, partly bridging the gap
between simulation and implementation. This thesis combines previous research
on silicon neurons with generating stochastic random numbers, targeting how it
may be applied to stochastic resonance and implemented on an FPAA. Particular
focus is given to converting a noise amplifier into a form with adjustable variance.
Documenting the process of designing circuits for a hardware realization on the
FPAA will provide guidance for similar work in the future and make it easier to
build up to testing the theory of stochastic resonance.
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CHAPTER ONE

Introduction

Motivation

Analog circuit design can be a time-consuming process. Simulation work may

be divorced from realization, and although it may not be expected to catch ev-

ery problem before the first implementation, shortening the feedback loop greatly

accelerates the timeline. Abstraction is also invaluable, as the appropriate level al-

lows the circuit designer to focus on circuit design, rather than extraneous details.

In Figure 1, the response of a silicon neuron to a noisy input is shown. It

comes from research examining stochastic resonance, in a simulation environment.

The goal is to show the components required to reproduce these results on a pro-

grammable physical system, as shown in Figure 2. This thesis will show how to use

the Field Programmable Analog Array (FPAA) design tools to create circuits that

can be used as building blocks for the stochastic resonance system. The primary

contribution of this thesis toward the building blocks is presenting simulation re-

sults for adjusting the mean and variance of a noise source.

Figure 1: Target output to show stochastic resonance. Figure generated by author of [1].

Thesis Overview

The thesis is broken up into several chapters: background, selected circuits with

some simulation and experimental results, and a conclusion. This builds up to
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(a) Noise amplifying circuit. Image re-
produced from Figure 3 in [10]

(b) Structure of FPAA. Image repro-
duced from Figure 2 in [8]. © 2016 IEEE

(c) Silicon neuron. Noise would be applied to synapse gate voltage.
Image reproduced from Figure 2.12 in [1].

Figure 2: Components required to achieve the circuit response in Figure 1. The CABs are
where most of the configurable hardware is located. The noise amplifier is used to add
non-trivial amounts of noise to a sinusoidal input which is given to the silicon neuron.

a feasible circuit as suggested in the motivation section, which will connect the

different circuits under consideration to the idea of stochastic resonance.

The circuits treated are a basic envelope detector circuit, to verify circuit de-

sign approaches used, a stochastic random number generator (modified for noise

output), and silicon neuron.
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CHAPTER TWO

Background

Neuromorphic Computing

The research in this thesis is in the area of neuromorphic computing. This is a

broad area, which can be loosely equated to bio-inspired computing. As a field, it is

relatively new, originating at CalTech with Carver Mead. Neuromorphic systems,

as defined by Mead in 1990, are based on the principles discernable in the ner-

vous system [2]. His work, applying the subthreshold operating region of CMOS

transistors to neural style computation [13, p. 3], is foundational to this thesis.

Figure 3: Mahowald Retina Pixel. Image reproduced from Figure 2 in [2]. © 1990 IEEE

Neuromorphic systems should not be expected to match biological ones in ev-

ery way. The silicon retina created by Mahowald is made up of several pixels, pic-

tured in Figure 3, that each compare illumination to the illumination of their neigh-

bors [2]. A biological retina has several layers with many different components,

including rods and cones, horizontal cells, bipolar cells, and ganglion cells [13,

pp. 38-39]. This highly interconnected network is modeled by a hexagonal array

of pixels connected by resistors [2]. This network is a computing element, which
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automatically adjusts the gain to allow visual processing under a wide range of

illuminations [2].

Address Event Representation (AER), proposed in 1991, is a protocol where

data is encoded as a series of events with information about where the event was

generated, the address [13]. In the context of a retina, local memory complements

local computation, enabling use of AER. Only when a pixel detects that its value is

changing does it send an event to the central processor. This leads to construction

of images where most of the data is concentrated in active regions of the field of

view, as shown in Figure 4 [3].

Figure 4: Images from Temporal Contrast Vision Sensor, reproduced from Figure 11 in [3].
© 2008 IEEE

Stochastic Computing

Stochastic Computing (SC), proposed in the 1960s, has been slow to gain trac-

tion as conventional digital technology has advanced [4]. It is a paradigm where

probabilistic methods are used for computation [14]. While it may not be a main-

stream technology, it is valuable because of its concern with power consumption

and error tolerance [4]. In fact, recent advances into stochastic computing design

methodologies mean that stochastic computing may be making a comeback [15].

Alaghi and Hayes define stochastic numbers as being ones that are represented

by a bitstream, where each bit is unweighted and the value is the sum of the bits

divided by the length of the bitstream [4]. These stochastic numbers can be viewed
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as probabilities, where the number 0.5 represents a one in two chance of an event

happening [4].

When a number is represented by a bitstream, certain operations become easier

and some harder. Multiplication turns out to be an easy operation, accomplished

by using a single AND gate with two inputs [4]. As seen in Figure 5, the ordering

of the bits can affect the accuracy of the result. 4
8
∗ 6

8
should be 3

8
, but it could be as

small as 2
8

or as big as 4
8
. If 4

8
is represented as 11110000, multiplying it by 11111100

yields 4
8

and multiplying it by 00111111 yields 2
8

While SC outputs initially have low precision, over time, as the output bit-

stream increases in length, it has an increasing level of accuracy. A change in the

bit ordering of an input to the stochastic multiplier circuit could change the correct

answer away from 3
8

as shown in Figure 5. A bit flip in a longer bitstream would

have less effect [4]. Compare this to a bit flip in a traditional number, which could

cause 0.011 to change to 0.111, changing the value from 3
8

to 7
8

[4].

Figure 5: Multiplying two bitstreams together using an AND gate. The order of the bits in
the 4

8 stream determines the output result. Image modeled after Figure 1 in [4].

Generating stochastic numbers is a critical part of being able to use them. As

seen in Figure 5, a stochastic circuit can be an AND gate, which would give zero as

an output if multiplying two bitstreams together that are inverses of each other. SC

works better when the bitstreams are long and randomly ordered, or at least that
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any two bitstreams being operated on are uncorrelated [4]. Theoretically, random

noise is well-handled by SC paradigms.

Later it will be seen how random noise used to generate stochastic numbers

can be modified for other purposes.

Stochastic Resonance

Stochastic resonance (SR) in this thesis refers to ”noise-enhanced signal process-

ing” [5]. Typically, noise is thought of as a bad thing, for as the authors of [5] point

out, communications engineers spend a lot of time trying to eliminate all effects of

noise. Evidently, not all systems can utilize a form of SR without redesign.

Figure 6: Performance using SR increases up to a point with increasing noise. Image re-
produces from Figure 2 in [5].

A simple way to consider implementing SR is to add white noise to a periodic

signal [5]. When adding noise to a system, it is expected that there is a point where

too much noise would be added, and this is shown in Figure 6.

Could SR lead to more power-efficient systems? It is postulated that biolog-

ical systems make use of SR [5], and this coupled with the low power usage of

biological systems, suggests that this may be feasible.
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FPAA Compared to FPGA

The circuits in this paper are intended to be synthesized onto an FPAA, which

is similar to a Field Programmable Gate Array (FPGA), as the hardware is pro-

grammable through a software interface. FPAAs and FPGAs share a lot common

goals, such as prototyping and enabling circuit implementations without fabrica-

tion, but differ at the most basic level. In an FPGA, the basic building blocks (i.e.

primitives) are digital, such as NAND gates, but in an FPAA, the building blocks

include both digital and analog components, such as transistors and amplifiers.

Therefore, FPGAs are well-suited to problems that can be reduced to logic prob-

lems, while FPAAs excel at tasks such as signal processing, but can also be used as

general-purpose logic devices.

A picture of an FPAA is in Figure 7. There are fixed elements on the left side of

the diagram, but the main feature is the array of A and D components. In the array

of A’s and D’s, each A stands for a Computational Analog Block (CAB), while each

D stands for a Configurable Logic Block (CLB). CLBs and CABs are shown in detail

in Figure 8.

An FPGA is predominantly composed of an array of CLBs. At first glance,

FPGAs seem to lack features, but in fact the opposite is true, as FPGAs as a device

class have had a lot of development and optimization. Programmable logic devices

such as FPGAs, along with their hardware programming and run-time mapping,

have a chapter in [6], with Figure 11.29 specifically discussing Xilinx FPGAs.

A CLB typically contains basic gates and multiplexers (muxes), which can be

used to create logical expressions from inputs, as shown in Figure 8a. An similar

treatment of a CLB is given in Figure 11.13 in [6]. Sequential logic elements, such as

D flip-flops, may be created with the addition of extra components [6]. The CLB is

commonly controlled by on chip RAM, where the memory locations control select

lines for the muxes and routing switches [6].

7



Figure 7: FPAA composition. Image reproduced from Figure 2 in [7]

A CAB has a similar structure, with components including operation transcon-

ductance amplifiers (OTAs), transistors, capacitors, and switches [8]. Layout of

a CAB is shown in Figure 8b. Routing is accomplished using floating gates (FGs).

An FG is a transistor with a capacitor on the gate, which allows a gate voltage to be

set and stored without the need to refresh it. FGs can be set all the way on or with

a specific bias, in which case electrons are placed on the gate using short bursts of

current, until the bias is achieved [16]. FGs are suitable as on switches, conducting

approximately 10−4A, off switches, conducting less than 10−10A, as well as variable

resistors or rough current sources [10].

FPAAs offer large power savings, as illustrated by a word classifier in [8] which

offers a 1000x improvement in equivalent multiply-accumulate (MAC) operations.

The filter can be implemented with several transistors and capacitors, with the out-

put signal passed on either to another block or off the chip. The classifier identifies

words based off of frequency content and requires only 23 µW to run [8].
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(a) CLB Example

(b) CAB Example

Figure 8: CLB and CAB examples reproduced from Figure 2 in [8]. © 2016 IEEE.

FPAA Design Tools

How does one program an FPAA? This is a harder question than it might seem

at first. While digital hardware-software co-design (i.e. for FPGAs) is a researched

topic, the current tools are not adequate for analog co-design [7]. The work done in

this area since before 1994 [17] has produced an impressive variety of marketable

FPGAs. The tools introduced in [7] are an initial step towards building frameworks

and standards that enable design abstraction to make configurable analog circuits

more accessible.

The FPAA toolset allows circuit design at a high level, where the circuit de-

signer does not need to know how to implement each individual block [7]. Ab-

straction allows for block reuse, which leads to greater consistency within and
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Figure 9: FPAA computational blocks inside routing fabric. Image reproduced from Figure
2 in [8]. © 2016 IEEE

across different circuits. Graphical components belong to one of two broad cate-

gories, Level 1 or Level 2 [7]. Level 1 blocks keep a systems designer from being

distracted by minor details such as bus size [7]. Level 2 blocks are at the circuit

design level, and a network of these may be converted into a Level 1 block [7].

The current version of the FPAA toolset is created with Scilab and Xcos, all

open source software [7]. The toolset is packaged in an Ubuntu virtual machine

(VM) [7]. Circuits can be created in Xcos’ graphical editor, from which the circuit

is compiled through x2c [7]. The process, including accounting for different board

layouts, is shown in Figure 10.

The version of the toolset used in this work is based on MATLAB Simulink.

Specific blocks can be placed in a Simulink model file (.mdl), converted to a SPICE

netlist using a ”Sim2spice” tool, and converted to a switch list (.prg) using GRASPER.

Switch lists in the .prg format are ready for direct programming to the FPAA [18].

10



Figure 10: Path from block diagram to FPAA. Image reproduced from Figure 2 in [7]

MATLAB Software and Voltage Follower Test Circuit

This section shows how to implement a very simple circuit using software de-

veloped on top of MATLAB. Screen captures are included of the software in use.

The software toolset comes in a directory as shown in Figure 11. Once this is

saved on computer, set the working directory of MATLAB to the ”Matlab code”

subdirectory. (Detailed instructions are found in the file ”fpaa setup.pdf” in the

usb drivers subdirectory in Figure 11).

For full functionality, run this on a Windows machine.

Figure 11: MATLAB FPAA Toolset Directory
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When starting up MATLAB, it will run the file startup.m in the Matlab code

directory, providing the user with access to the front page of the FPAA toolset.

When starting MATLAB two windows should open, the FPAA Simulink and

RASP design dialogs. The FPAA Simulink dialog, as shown in Figure 12, offers

easy access to libraries for Simulink. Clicking items will open the corresponding

Simulink library. The RASP design dialog, in Figure 13 is where most of the work

will take place after a circuit is assembled.

Figure 12: The FPAA simulink dialog and CAB Elements library. The elements used in
the voltage follower circuit are boxed. Elements from the Analog Signal Processing library
will be used in other circuits.

In order to open an existing file, first use the ”Choose Simulink” button to select

a .mdl file, then click the ”Open Simulink” button. To compile a circuit, make sure

it is saved, then click ”Compile Simulink”. The file does not need to be open for

compilation, but it does need to be selected, as at the top of the RASP design dialog

in Figure 13.

A successful compilation results in command line output like that in Figure 13.

The file otaFollowerTest.mdl has now been used to generate otaFollowerTest flattened.prg,

12



Figure 13: The RASP design dialog, voltage follower .mdl file, .prg file, and command line
compile output. The four buttons used in this section are boxed.

which is shown to the right of the voltage follower block diagram in Figure 13. The

five lines shown in the .prg file will be used to program the FPAA.

It is possible to view the .prg file using the Routing Analysis Tool (RAT) [19],

which is accessed through the ”View Routing” button. Input a RASP version on

the command line, and a blank plot will come up as in Figure 14. Select ”Low

Detail” or ”High Detail”, then select ”Plot / Refresh” to view the routing.

Additional treatment of the Simulink, SPICE, GRASPER, and RAT workflow is

given in [19]
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CHAPTER THREE

Selected Circuits

The following circuits are selected as different building blocks for stochastic sys-

tems and neural networks, as well as to illustrate use of the different elements in a

Computational Analog Block (CAB).

Envelope Detector

This envelope detector is selected to show some of the building blocks available

on the FPAA, as well as open a discussion on how to design or simulate circuits

taking into account these unique components. This circuit uses a comparator to

charge or discharge a capacitor, tracking the lower bound (minimum envelope) of

a reference voltage. The key attribute of this circuit is that the charging rate (when

voltage is too low) should be slower than the discharge rate (when the voltage is

too high), resulting in an output that forms an ”envelope”. Ideally, if a signal is

bounded by an upper and a lower function, the envelope detector will output the

lower function.

Both the charging rate and discharging rate are limited to certain frequencies.

Observe in Figure 15 how there is a constant rate of change of voltage up to a point

based on different circuit and input parameters. There is some amount of error

inherent to the process, as the first subfigure shows and discharge rate is more

than able to keep up track the signal when it lowers as can be seen in the second

subfigure.

The charging rate is configurable based upon an applied voltage, while dis-

charging is fixed by a single transistor with the gate attached to the output of the

comparator. However, both are affected by the capacitor, so a capacitance value
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Figure 15: Work from [9] showing an envelope detector with an adjustable charge rate and
output of minimum envelope for several frequencies of sinusoid. Images reproduced from
Figures 7 and 8 in [9]. © 2007 IEEE

could be selected so that the circuit can track a certain range of frequencies just by

adjusting transistor gate voltages. As CABs have multiple capacitors, one possible

method of setting a larger capacitor value is to connect them in parallel. In [9], tests

are shown for the minimum envelope detector with the input frequency ranging

between 100 and 800 Hz, suggesting that it is simple for an FPAA to work with

frequencies in that range.

Figure 16: Minimum envelope detector circuit as a Simulink model

The circuit in Figure 16 is intended to be a faithful representation of the circuit

in Figure 15. The circuit include several analog components from the CAB: one

op-amp as a comparator, another op amp as a voltage follower, a capacitor, and

16



several transistors. One floating gate transistor (FG) is used to connect the input

to the capacitor for charging, and a pFET and nFET are also used for charging and

discharging.

Figure 17: Minimum envelope detector circuit as developed in LTSpice

Figure 18: Configurable components within the envelope detector. From left to right, the
capacitor, floating gate, and OTA.

This circuit shows a couple possible levels of abstraction offered by the FPAA.

Once the structure is determined as in Figure 16, there remains to be set fixed

bias current values for the OTA and FG, as well as externally the applied voltage.
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Figure 18 shows how a capacitor’s capacitance can be modified and FG and OTA

bias currents may be set. Supposing that the design requires a specific bias current

(i.e. the charging rate may be linked to it), then this eliminates extra calculations

for setting the applied voltage. On the other hand, sometimes a voltage may fit

more naturally into calculations. Care should be taken not to complicate circuit

design by use of the FPAA.

Figure 17 shows a simulation model of the envelope detector circuit. In or-

der to gain a realistic expectation, specifically of what the output of the Simulink

model would look like on the FPAA, simulation needs to be done with a realistic

VDD, here selected to be 3.3V, and a small capacitor (on the order of 500fF, which

is the base capacitor value on the FPAA), as well as a circuit element to serve a

similar function as the FG (on switch with limited current throughput). These are

accounted for in the circuit in Figure 17. Open loop op amps do not simulate very

well, so closed loop op amps are used with appropriate gains. Note that a buffer

amplifier has to be used to prevent feedback from the comparator back into the

capacitor.

The circuit also has some of its design dictated by the use of the FGs. It is

required in the Simulink model to use a FG as a short circuit, although, as this is

not assumed to be a zero resistance element, it is placed above the capacitor so that

it inhibits charging rather than discharging. The implementation of this circuit in

[9] shows FGs in a cascode configuration, which gives a fairly steady current for a

wide range of input voltages. To simply approximate both the cascode and FG a

single transistor is used in the SPICE simulation, set with a gate voltage for a small

(order of 100pA) saturation current.

Figure 17 shows the Simulated circuit in LTSpice where VDD is set to 3.3V,

the capacitor is 500fF, both op amps are ideal with positive and negative voltages

(note that the FPAA would not have a negative supply voltage), and a pFET (in
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place of the upper pFet/FG combination) biased to allow 20pA or 40pA of current

in saturation. The result of this circuit is shown in Figure 19. Higher frequency

components would be filtered out.

(a) Minimum envelope detector response to 75 Hz signal with input bi-
ased at 20pA.

(b) Minimum envelope detector response to 75 Hz signal with input bi-
ased at 40pA.

(c) Minimum envelope detector response to signal with 75 Hz and 1kHz
components. Input biased at 40pA.

Figure 19: Simulated op amp, contrast to responses in Figure 15

19



Stochastic Random Number Generator

One way to generate random bits is to compare random voltages to a set value.

For normally distributed noise with a mean of 0, comparing the voltage difference

to 0 on a comparator should result in a 50% chance of an output of 1.

This process is well-documented in [10]. The rms noise level for a 500fF ca-

pacitor is about 100µV, which must go through multiple amplifiers before being

compared to a reference value on the order of a volt. An overview of this is shown

in Figure 20, where every time the output is sampled counts as a trial. The quickest

the output changes for this circuit is 208ps, which is enough to keep pace with any

rate of consumption of random bit values [10].

Figure 20: Circuit to run a Bernoulli trial and noise from transistor [10]. Images reproduced
from Figures 1 and 3 in [10].

Simulating this requires use of an explicit noise source, while synthesis and test-

ing require characterizing the circuit to determine which reference voltages map to

which probabilities. Tests in [10] show that for the implemented Bernoulli proba-
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bility circuit, a probability select voltage of 0.1V corresponds to a 100% probability

of outputting a 1, with 1.4V corresponding to a 50% chance of a 1, as shown in

Figure 21. The probability distribution should be symmetric, so reference voltages

greater than 2.8V should have a 0% chance of outputting a 1.

Figure 21: Experimental results for probability select mapping, reproduced from Figure 10
in [10].

Data from a series of Bernoulli trials can be used to create different probability

functions, such as exponential distributions [10]. This could be done over multiple

clock cycles or, using several circuits as inputs to a priority encoder, just two clock

cycles [10].

If a noise source is required, but not a stochastic number, the circuit in Figure

20 could be modified so the output is amplified noise instead of a discrete 1 or

0. This could be useful for the Wijekoon neuron in the following section, if noise

needs to be on the order of volts instead of microvolts or millivolts. However, some

care must be taken to properly set the noise level, as simply amplifying it will also

amplify the variance of the noise (see Figure 25).

The Bernoulli trial circuit in Figure 22 is composed of a noise source and a series

of amplifiers, to match the diagram in Figure 20. The third amplifier needs to have
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a high gain, likely different from that of the other two amplifiers, in order for its

output to be only high or low. Note that here OTAs are used as amplifiers, and

these have a bias current which sets the open-loop gain.

Figure 22: Bernoulli trial circuit. The comparator at the end is boxed.

Figure 23 shows the portion of the Bernoulli trial circuit in which noise is am-

plified. A more useful version will use a summing op-amp to modify the mean

of the noise output to a useful value such as 2 volts. For conducting a range of

tests with different noise variances, the noise amplitude needs to be adjustable. It

is assumed that the OTAs can be used as the op amp in a closed-loop amplifier. If

this is not the case, a different approach would need to be used to vary the noise.

Figure 23: Bernoulli trial circuit modified to output noise by the removal of the boxed
comparator.

As simulating this circuit is not straightforward, the OTAs are replaced with

closed loop ideal amplifiers and the different parameters are adjusted. It is as-

22



sumed that the initial noise is biased at half of the supply voltage, so the task is to

scale the noise and offset it as desired.

Figure 24: Noise amplifier circuit for simulation. Both amplifiers have a gain of A.

Simulation results from the circuit in Figure 24 are shown in Figures 25 and 26.

When applying this noise to the silicon neuron in the following section, it needs

to have a mean of 2V (or put another way, noise with a mean of zero is added to

two volts). In order to change the variance of the noise, the gains of the op amps

may be changed. Changing the offset comes from a minute change on the second

op amp’s non-inverting input.

Modifying voltage inputs is realistic on the FPAA. Modifying resistors is not

directly done on the FPAA, but similar results can be achieved by biasing the

FGs with different currents. Therefore, although the circuits appear different, they

should have the same adjustment capabilities.

It is posited that the Bernoulli trial circuit from [10] as shown has a high vari-

ance similar to that in Figure 26. If the circuit in Figure 23 is unable to accommo-

date generating the range of variances shown, then a closed-loop form using FGs

as resistors may be a viable solution.
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Figure 25: Noise output for gains A=10 and A=20. V3 in the circuit is set to 1.682 and 1.666
respectively. V1 and V2 are both set to 1.65V.

Wijekoon Neuron

In [11], Wijekoon and Dudek present a silicon neuron with configurable behav-

ior on a variety of levels. By tweaking just four voltage parameters on the neuron,

an input signal on the order of 0.1µA produces different kinds of spike behavior:

fast, regular, chattering, and intrinsic are some of the patterns identified. Spiking

patterns are shown in their Figure 15 in [11].

An implementation of the silicon neuron for the FPAA is shown in Figure 27.

When a more sophisticated, biologically accurate, model of neurons is required

for a prototyped project, this model is a good choice. The basic circuit contains

14 MOSFETs [11], so a single neuron would likely take up two CABs on an FPAA

based on the components in Figure 8b, unless the op-amps can be utilized effec-

tively or the routing fabric used as in [9]. Despite the possibility of taking up more

space, this model is highly suited to the FPAA because of the FPAA’s high config-

urability,

This neuron circuit, once combined with extra circuitry to set the four voltages

and potentially accept a voltage input, requires the most elements out of any of
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Figure 26: Noise output for A=50. V3 in the circuit is set to 1.6575. V1 and V2 are both set to
1.65V.

the circuits outlined in this chapter. Experiments on increasing the sensitivity to

inputs by adding noise to certain voltages would require additional overhead. This

overhead opens the door to determining if enough power is saved to make up for

the power required to harness noise.

Once able to load the Wijekoon neuron onto an FPAA, it should be relatively

easy to design a system of neurons without worrying about how the individual

parameters will affect system performance. The parameters used in a working

neuron circuit are Vc = 0, Vth = 0.2, Vbias = 2, and Vd = 2. All of these are shown in

Figure 27.

Any one of the noisy inputs from Figures 25 and 26 can be applied to Vd in the

neuron. To tie this in to the discussion of SR, noise may enhance processing or

not to different degrees in different locations. Figure 28 shows noise on the input,

although in [1] a different location, Vd, was settled on for application of noise.

Corresponding to Figure 28, tests on an FPAA implementation produced the

responses in Figure 29. Input comes in the form of a voltage drop at the external

test input, which is shown in Figure 27. The input is attached to a pFET, which

increases current when the gate voltage is lowered.
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Supposing that Vd is required to be a constant value while the circuit is in op-

eration, this means that a noise amplifier circuit like that in Figure 24 would not

need to be modified once configured, whereas adding noise to the input requires

some accommodations for another varying signal.
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Figure 28: Baylor Neuromorphic & Robotic Systems Lab diagram showing response to
noisy voltage inputs with different variances. Generated by the author of [1]
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(a) Experimental results for a constant input generated by a step input dropping from 2.4V
to 1.8V.

(b) Experimental results for a sinusoidal input between 2.4V and 1.8V. Similar to Figure 28,
with no noise.

Figure 29: Hardware results from an FPAA: Data gathered from applying an external input
to the neuron model in Figure 27, to the ”External Test Input” location.

29



CHAPTER FOUR

Conclusion

Summary

The intention of this thesis was to examine how the FPAA and associated de-

sign tools have application to the theory of stochastic resonance, which intersects

with both neuromorphic and stochastic computing. Recent research suggests that

some circuits, such as the Wijekoon neuron, have the capacity to perform better

with varying voltage inputs. Building blocks for tying this research into that of

harnessing noise inherent to transistors and capacitors was shown [10].

Several circuits were examined to evaluate the complexity of the task, and it

turned out that small capacitors, open loop OTAs, and FGs are hard to simulate

(see [20] for FG models), but that, as discussed in the section on the stochastic ran-

dom number generator, there are simple circuits that with some characterization

of components should meet the requirement of adjustable noise.

Discussion

Creating analog circuits requires some artistic talent and design frameworks

like that for the FPAA should reduce overall user time required as well as the time

between prototypes. It does however still require significant care to understand

what the goal of the circuit is and how the FPAA architecture can actually be used

to properly achieve that goal. The best components for simulation may not be

the best for synthesizing the circuit. This is not a barrier to using the FPAA for

research, and in fact forces the researcher to have a thorough understanding of the

task at hand.
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In this test of the theory of stochastic resonance, it turns out that useful amplify-

ing of noise requires multiple OTAs, which adds transistors to analog circuits that

utilize noise. This extra space is a small cost when compared to noise-generation

approaches such as manually attaching a waveform generator to the circuit. It also

has the benefit of being programmable on the FPAA, so in this context there is no

need to decide ahead of time if a dedicated IC component for noise generation

is required. In many neuromorphic systems, power constraints are vital, so there

may be room to evaluate the possibility of using a single noise amplifier to serve

multiple locations in a circuit.
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