
ABSTRACT

Numerical Modeling, Uncertainty Analyses, and Machine Learning for Decision
Support in the Geosciences

Bulbul Ahmmed, Ph.D.

Co-mentor: Scott C. James, Ph.D.
Co-mentor: John A. Dunbar, Ph.D.

My first paper shows the importance of numerical modeling and post-calibration

uncertainty analyses for making decision to monitor waste transport at a naval waste

repository site in Texas. For this, MODFLOW and MODPATH were used to simulate

hydraulic head and particle/tracer travel times. Later, linear and nonlinear uncertain-

ties were quantified for model parameters (hydraulic conductivities) and prediction

of particle travel times along with identifiability and observation worth. Parameter

uncertainties were reduced by up to 92%; a total of 19 parameters were at least mod-

erately identifiable (>10%); travel-time uncertainties were reduced up to 92%. An

observations-worth analysis found that 11 additional measurements at targeted loca-

tions could reduce travel-time uncertainties by factors from 1.04 to 4.3 over existing

data. Finally, nonlinear uncertainty analyses predicted that conservative tracers ex-

ited the flow system within a year. My second paper explains a module for PFLOTRAN,

PFLOTRAN–SIP, which was built to efficiently simulate waste remediation activities.

PFLOTRAN–SIP coupled PFLOTRAN and E4D. PFLOTRAN solves coupled flow and solute

transport process models to estimate solute concentrations, which were used with

Archie’s Law to compute bulk electrical conductivities at near-zero frequency. These

bulk electrical conductivities were modified using the Cole-Cole equation to account



for frequency dependence. Using the estimated frequency-dependent bulk conduc-

tivities, E4D simulates the real and complex electrical potential signals for selected

frequencies for spectral impedance polarization. The PFLOTRAN-SIP framework was

demonstrated through a synthetic tracer-transport model simulating tracer concen-

tration and electrical impedances for four frequencies. My third paper compares 20

machine learning (ML) models to predict reactive-mixing phenomena in subsurface

porous media. The 20 ML emulators included linear methods, Bayesian methods,

ensemble learning methods, and a multilayer perceptron (MLP). The ML emulators

were trained to classify the state of mixing and predict three quantities of interest

(QoIs) characterizing species production and decay. Linear classifiers and regressors

failed; however, ensemble methods (classifiers and regressors) and the MLP accurately

classified the state of reactive mixing and the QoIs. Computationally, trained ML em-

ulators were ≈ 105 times faster than the high-fidelity numerical simulations. These

three works either support or expedite decision making process in the geosciences.



Numerical Modeling, Uncertainty Analyses, and Machine Learning for Decision 
Support in the Geosciences

by

Bulbul Ahmmed, B.S., M.S.

A Dissertation

Approved by the Department of Geosciences

Steven Driese, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Scott C. James, Ph.D., Co-mentor

John A. Dunbar, Ph.D., Co-mentor

Jay Pulliam, Ph.D.

Peter Allen, Ph.D.

Ron Morgan, Ph.D.

Accepted by the Graduate School
August 2020

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2020 by Bulbul Ahmmed

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

DEDICATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER ONE
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER TWO
Manuscript 1: NWIRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER THREE
Manuscript 2: PFLOTRAN-SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
PFLOTRAN-SIP: Process Models and Coupling Framework . . . . . . . . . . . . 37
PFLOTRAN Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
PFLOTRAN-SIP Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Petrophysical Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Mesh Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Numerical Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
SIP Inversion of Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

CHAPTER FOUR
Manuscript 3: ML to Reactive-transport Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Governing Equations for Reactive Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



Machine Learning Emulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
ML Emulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

CHAPTER FIVE
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

APPENDIX A
NWIRP .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

APPENDIX B
Manuscript: ML to reactive-transport data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Greek Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Linear Emulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Ensemble ML Emulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

BIBLIOGRAPHY .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vi



LIST OF FIGURES

Figure 2.1. Study location including streams, 43 observation wells (open
circles), 99 hydraulic conductivity measurements (blue
triangles), 77 pilot points (filled circles), and particle-release
locations (green squares) with associated NWIRP administrative
designations G, H, L, M, and S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.2. Flow hydrograph from an unnamed spring in the study area
near McGregor, Texas with no contribution from surface runoff
(Clark, 2000, Fig. 2). Flow was measured with a wire and a
pressure transducer data logger. The sharp peak in discharge
indicates an increase in saturated thickness and gradient due to
recharge and water rising into the upper, more conductive layer. . . . 11

Figure 2.3. Hydraulic heads in eight observation wells near administrative
area M demonstrating the correlation with precipitation.
Precipitation data: (Waco Regional Airport, 2016). . . . . . . . . . . . . . . . . . . 12

Figure 2.4. (a) Schematics of the model domain with undulating layers and
streams. (b) Cross sections during dry seasons, contaminants
travel slower in the less-fractured, lower layer and during the wet
season, they travel faster in the more fractured, upper layer.. . . . . . . . 12

Figure 2.5. Picture of the fractured formation in the study area (scale is
0.5m2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.6. Cross-plot of measured and calibrated heads. . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.7. Reductions in pre-calibration uncertainties for the (a) upper-
and (b) lower-layer pilot points upon application of the
observation data set (43 head measurements). . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.8. The 20 most identifiable parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.9. Normalized observation worth of (a) monitoring wells (b) plus
11 hypothetical wells, symbol color and size indicate the
observation worth; and (c) uncertainty reductions in travel times
due to the existing wells (gray) and as augmented by 11
hypothetical wells (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Figure 2.10. Variances of pilot point, log10 (k), for the (a) upper and
(b) lower layers for the pre-calibration (black) and NSMC (red)
parameter realizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.11. PDFs of highly identifiable parameters ku5 and ku45 (top row),
moderately identifiable parameters ku39 and ku67 (middle row),
and minimally identifiable parameters kl37 and kl41 (bottom row). . . 27

Figure 2.12. PDFs of particle travel times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.13. Particle paths for 250 realizations with background color a
representative hydraulic conductivity distribution. . . . . . . . . . . . . . . . . . . . 30

Figure 3.1. Peer and child process model class of PFLOTRAN (redrawn from
reference (Johnson, Hammond, & Chen, 2017)). . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.2. Steps involved in coupling fluid flow, solute transport, and SIP
process models in the PFLOTRAN-SIP framework; further details
are available (Johnson & Thomle, 2017; Lichtner et al., 2015).. . . . . . 55

Figure 3.3. Schematic of interpolation of state variables (e.g., solute
concentration) on the PFLOTRAN mesh (cube) on to E4D mesh
(tetrahedron), redrawn from (Johnson et al., 2017).. . . . . . . . . . . . . . . . . . 55

Figure 3.4. Schematic of the initial boundary value problem. . . . . . . . . . . . . . . . . . . . . 56

Figure 3.5. Spatial distribution of tracer concentrations after one year. . . . . . . . . . 56

Figure 3.6. Slices of simulated real (top) and complex (bottom) electrical
potentials/impedances at y = 250m for a single
electrode-measurement configuration after one year. . . . . . . . . . . . . . . . . . 57

Figure 3.7. Simulated and estimated frequency-dependent electrical
conductivities at y = 250m after one year (a)-(d) True-electrical
conductivities from the PFLOTRAN-SIP framework, (e)-(h)
estimated bulk-real conductivities from SIP inversion, and
(i)-(l) estimated bulk complex electrical conductivities from SIP
inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 3.8. Distribution of (a) tracer concentration where I and V represents
current and potential electrodes, respectively, (b) real potential,
(c) complex potential, and (d) phase shift along the y-axis at
x = 250m and z = −425m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



Figure 4.1. Schematic of the initial boundary value problem. L, hp
i (x, t), c0

A,
and c0

B are the length of the domain, diffusive flux on the
boundary for ith chemical species, initial concentration of species
A, and initial concentration of species B, respectively. Species A
and B were initially on the left and right sides of the domain,
respectively. Initial concentrations of A and B were 1.0 and
mixing commenced for t > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.2. Concentration of product C at times t = 0.1, 0.5, and 1.0. Other
input parameters were αL

αT
= 103 (high anisotropy), v0 = 1,

T = 0.1, and Dm = 10−3. Increased κfL increases C production,
especially at later times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.3. Concentration of product C at times t = 0.1, 0.5, and 1.0. Other
input parameters were αL

αT
= 100 (medium anisotropy), v0 = 1,

T = 0.1, and Dm = 10−3. Lower anisotropy increased C
production than higher anisotropy in Fig. 4.2. . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.4. Concentration of product C at times t = 0.1, 0.5, and 1.0. Other
input parameters were αL

αT
= 10 (low anisotropy), v0 = 1,

T = 0.1, and Dm = 10−3. At low anisotropy, production of C
increased. During late times (e.g., t = 0.5 and 1.0), diffusion
dominates C production while κfL and αL

αT
minimally affect C

production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.5. Confusion matrices classifying the degree of mixing for the RF
(left) and MLP (right) emulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.6. This figure shows the true (markers) and RF emulator
predictions (solid curves) of average concentrations, squared of
average concentrations, and degree of mixing (a)–(c) of species
A; (d)–(f) of species B, and (g)–(i) of species C. . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.7. This figure shows the true (markers) and GBM emulator
predictions (solid curves) of average concentrations, squared of
average concentrations, and degree of mixing (a)–(c) of species
A; (d)–(f) of species B, and (g)–(i) of species C. . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.8. This figure shows the true (markers) and ANN emulator
predictions (solid curves) of average concentrations, squared of
average concentrations, and degree of mixing (a)–(c) of species
A; (d)–(f) of species B, and (g)–(i) of species C. . . . . . . . . . . . . . . . . . . . . . 89

ix



LIST OF TABLES

Table 2.1. Median travel times for the 882 pre-calibration and NSMC
parameter fields used for particle tracking.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 4.1. Summary of training and testing data partitions used in ML
emulator development and testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 4.2. Hyperparameters and tunable parameters for generalized linear
ML emulators, logistic regression, and KR with the best
parameters in bold numbers and text in type-writer font. . . . . . . . . . . . . 73

Table 4.3. Hyperparameters and tunable parameters for Bayesian emulators
where bold numbers and text in type-writer font parameters were
best suited parameters. Exponential sine squared(
K (x, x

′
) = σ2exp

(
−2sin2

(
π|x− x′ |/p

)
/l2
))

is parameterized
by a length-scale parameter (l) >0 and a periodicity (p) >0. . . . . . . . . 73

Table 4.4. Hyperparameters and tunable parameters for ensemble ML
emulators with the best parameters in bold numbers and text in
type-writer font. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.5. Hyperparameters and tunable parameters for MLP emulator with
the best parameters in bold numbers and text in type-writer font. . . 74

Table 4.6. Performance metrics of ML emulators on training and test
datasets for classifying the mixing state (i.e., degree of mixing) of
the reaction-diffusion system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 4.7. Performance metrics of linear and Bayesian ML emulators
(regressors). Note, GP and KR failed to converge even on 1% of
training data because of a memory leak due to storage of a dense
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 4.8. Performance metrics of ensemble and MLP emulators. . . . . . . . . . . . . . . . 82

Table A.1. Locations and measurement of hydraulic conductivity (hk). . . . . . . . . . . 95

Table A.2. Locations and average heads of observations. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table A.3. hk of pilot point (PP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



ACKNOWLEDGMENTS

At first, I thank my advisors to whom I am very much indebted, Drs. Scott

C. James and John A. Dunbar. Their mentorship, motivation, wisdom comments on

various processes helped me to accomplish such a great journey of my life. I also

would like to thank my dissertation committee members, Drs. Peter Allen, Jay Pul-

liam, and Ron Morgan. I am indebted to Drs. Maruti K. Mudunuru, Satish Karra,

and Hari Viswanathan of Los Alamos National Laboratory (LANL). I would like to

give them special thanks for supporting me at LANL. I would like to thank Dr. Joe

Yelderman for allowing me to participate in his fieldwork and shared his impressive

geological knowledge with humor. Junayed Mahid and Joseph Thangraj helped me

to collect core samples and I thank them for cooperating with me. I am also thankful

to Tim Johnson and Hunter A. Knox of Pacific Northwest National Laboratory. I

thank the Geological Society of America, the American Association Petroleum Ge-

ologist, and the Department of Geosciences at Baylor University for providing me

funds for my research. I am indebted to Baylor graduate school for providing funds to

attend professional and scientific conferences. I also thank Science Graduate Student

Research (SCGSR) and Mickey Leland Energy Fellowship (MLEF) programs by the

Department of Energy for providing me the fellowships. I appreciate Sandia and Los

Alamos National Laboratories for hosting me during the summer of 2017 and 2018,

respectively. I am very grateful to my loving parents who always bless me and my

wife, Afroja Akter, who supports and encourages me in every minute. Finally, I ac-

knowledge my ultimate source of inspiration, my son, Arno Ahmmed, who inspires

me to fight every second.

xi



DEDICATION

To all COVID-19 fighters who won or lost the battle and the front-line workers who
helped both to win the battle!

xii



CHAPTER ONE

Introduction

This dissertation is based on three manuscripts, each with a different applica-

tion. This dissertation shows the importance of numerical models, uncertainty quan-

tification (UQ), and machine learning (ML) for solving real world problems. The

first manuscript (NWIRP) shows the importance of numerical modeling and post-

calibration uncertainty analyses for supporting decision making regarding remedi-

ation activities. The second manuscript (PFLOTRAN-SIP) describes a code that

coupled flow, reactive transport, and spectral impedance polarization (SIP) to sim-

ulate tracer flow, transport, and their electrical properties at different frequencies.

The third manuscript (ML to reactive transport data) compared 20 machine learning

models trained on reactive-transport data to predict species production and decay

and to classify the degree of mixing. The first study applied numerical modeling

and post-calibration uncertainty analyses to support remedial decision making of a

contaminant geologic site. The study area is the Naval Weapons Industrial Reserve

Plant (NWIRP), which occupies about 40 km2 in southwest McGregor, Texas on a

topographic divide underlain by a shallow groundwater system within fractured lime-

stone bedrock. The NWIRP began manufacturing explosives in 1980 (Hare, 2000;

T. L. Moore & McSpadden, 2009) and stored chemical waste in the vicinity of NWIRP.

In 1998, several hazardous chemicals including ammonium perchlorate were discov-

ered in lakes and streams surrounding the plant (Craig & Burdick, 2007; Ensafe

Inc., 1999) above standard level defying estimates from groundwater velocities that

suggested the contamination should not have entered streams and migrated offsite

(Clark, 2000). The primary goal of this work was to predict tracer (a surrogate of

hazardous chemicals) travel times and quantify uncertainty reduction of parameters

1



and predictions. To this end, a numerical groundwater model of the NWIRP site was

developed to simulate hydraulic heads and to estimate tracer travel times.

Numerical modeling is a tool to simulate a real system that supports decision

maker to make informed decision. However, often, numerical models fail to capture a

complete physics of a system. To make a model useful, a comprehensive model interro-

gation is required. A comprehensive model interrogation consists of model calibration

with existing data, predictive linear uncertainty analyses of parameters and predic-

tions, estimating identifiabilities, quantifying data/observation worth, and nonlinear

uncertainty analyses.

Model calibration process optimizes model parameters with existing data (here

43 hydraulic head measurements). Parameters represent site characteristics that were

154 hydraulic conductivities,Kn, and two horizontal anisotropies in this study. Predic-

tive linear uncertainty reduction was calculated based on the pre- and post-calibration

parameter uncertainties, where pre-calibration parameter variances (uncertainties)

are specified according to measurements and expert judgment while post-calibration

uncertainties are revealed through the calibration process. Identifiability is a metric

indicating the level to which the calibration dataset constrains a parameter’s value.

Observation worth calculates how much a datum reduces uncertainties in parameters

and predictions.

Moreover, nonlinear uncertainty analyses were accomplished through the Null-

space Monte Carlo (NSMC) technique, which generated probability distributions of

calibrated parameters and commensurate travel-time predictions (C. Moore, 2006;

M. Tonkin & Doherty, 2009; M. Tonkin, Doherty, & Moore, 2007). The NSMC tech-

nique uses subspace approaches like singular value decomposition (C. Moore & Do-

herty, 2005) to identify only those model parameters informed by the observation

dataset (C. Moore & Doherty, 2006). This facilitates inversion of over-parametrized

models by only calibrating those variables about which the dataset has information

2



while relegating the rest to their user-preferred initial guesses through Tikhonov reg-

ularization (M. J. Tonkin & Doherty, 2005).

Using preceding techniques, this study addressed following questions: (1). How

well can the groundwater flow model be calibrated using existing hydraulic-head mea-

surements? (2). How well can the calibration-parameter values be identified? (3). How

well can uncertainties in parameters and predictions be quantified? (4). Where should

monitoring wells be drilled to minimize predictive uncertainty? (5). What are the es-

timated tracer travel times with nonlinear uncertainty bounds? This study was sub-

mitted as: Bulbul Ahmmed, Scott C. James, Joe Yelderman, (2020): Post-calibration

Uncertainty Analysis for Travel Times at the Naval Weapons Industrial Reserve Plant

to the Journal of Groundwater Monitoring & Remediation for publication and cur-

rently its under review. Each author contributed to this manuscript. Bulbul Ahmmed

ran models, quantified uncertainties, prepared manuscript; Scott C. James reviewed

model runs and uncertainty quantifications, and critically reviewed the manuscript;

Joe Yelderman provided necessary data and insights about the local geology.

The second paper, PFLOTRAN-SIP, describes a code that coupled PFLOTRAN-SIP

and E4D. PFLOTRAN is a massively parallel flow and reactive-transport simulator while

E4D is a parallel code that simulates and inverts electrical resistivities at different fre-

quencies. PFLOTRAN-SIP simulates flow, reactive-transport, and frequency-dependent

electrical resistivities or SIP for subsurface media. The subsurface is dynamic due to

natural and anthropogenic activities that alter porosity, permeability, fluid saturation,

and geochemical properties over time (Council, 2000). Various geophysical techniques

including seismic (deep or near-surface seismic) and potential-based methods (elec-

tromagnetic, magnetic, electrical resistivity tomography [ERT], and SIP) characterize

changes in the subsurface (Kearey, Brooks, & Hill, 2013; Revil et al., 2011; Snieder

et al., 2007). Among these, ERT and SIP map the distribution of bulk electrical

conductivity (i.e., the reciprocal of resistivity) due to changes in fluid flow, tempera-
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ture, deformation, and reactive transport (Byrdina, Rucker, Zimmer, Friedel, & Ser-

fling, 2012; Carpenter, 2017; Gresse et al., 2017; Kaselow & Shapiro, 2004; Robinson,

Johnson, & Slater, 2015). Because structural, topological, and geochemical properties

(e.g., pore structures, fracture networks, electron donor, etc.) influence bulk electrical

conductivity (Revil et al., 2011; Snieder et al., 2007), ERT and SIP are applied in

environmental and energy industries to characterize subsurface interactions. Hence,

coupling ERT and/or SIP process models to flow and reactive-transport models can

enhance interrogation of engineered subsurface systems.

SIP is a comprehensive method to extract subsurface polarization signals (e.g., flow,

deformation, reactive transport, etc.) (Johnson et al., 2017). Detecting contami-

nants or chemical reactions in a system, a numerical inversion of SIP data is re-

quired (Vaudelet, Revil, Schmutz, Franceschi, & Bègassat, 2011). Flow and reactive-

transport models can aid in constraining the inversion process of SIP data. To fa-

cilitate contaminant detection, this work coupled flow and reactive-transport simu-

lator PFLOTRAN and geoelectrical simulator E4D to include SIP in a framework called

PFLOTRAN-SIP. Here, in a porous medium with polarization properties, PFLOTRAN-SIP

was demonstrated with a representative tracer-transport model to provide more infor-

mation than the ERT model. This study was submitted as: This chapter was published

as: B. Ahmmed, M. K. Mudunuru, S. Karra, S. C. James, H. S. Viswanathan, J. A.

Dunbar, (2019): PFLOTRAN-SIP: A PFLOTRAN Module for Simulating Spectral-

Induced Polarization of Electrical Impedance Data to arXiv:1909.02125 and to the

Journal of Computers & Geosciences for publication. Currently, it is published on

arXiv:1909.02125 and under review to the Journal of Computers & Geosciences.

Each author contributed to this manuscript. Bulbul Ahmmed ran models and pre-

pared manuscript; M. K. Mudunuru and S. Karra wrote the code, Scott C. James

reviewed model runs and critically reviewed the manuscript; H. S. Viswanathan and

J. A. Dunbar provided necessary data and insights about the system.
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The third paper applied ML emulators to predict reactive-transport outcomes

and state of reaction. Reactive-transport simulation is a critical component for mak-

ing decision related to applications such as CO2 sequestration, spill distribution,

algal-bloom forecasting, etc (Ahmmed, 2015; Lagneau, Regnault, & Descostes, 2019;

Lichtner, Steefel, & Oelkers, 2019; Molins & Knabner, 2019; Sin & Corvisier, 2019).

Reactive-transport simulation computes species precipitation/dissolution (QoIs), which

are critical to remediation activities. For QoIs, nonlinear partial differential equations

are solved using high-fidelity numerical methods (e.g., finite-difference, -element,or

-volume methods) that can take hours to days (for ≈ O(106) − O(109) degrees-of-

freedom) on state-of-the-art, high-performance computing machines. Such computa-

tion times preclude real-time predictions, which can be critical to decision making

for remediation activities. Hence, alternative faster approaches are needed and ma-

chine learning (ML)-based emulators show promise (Hulbert et al., 2019; Srinivasan

et al., 2018; Valls et al., 2018; Viswanathan et al., 2018; Wu, Lin, Zhou, & Delorey,

2018). To make faster predictions, this study built and compared 20 ML emulators

to predict reactive-transport QoIs. The ML emulators were trained and tested using

data from high-fidelity, finite-element numerical simulations, which explicitly reflect

the underlying reaction-diffusion physics in anisotropic porous media.

Given appropriate and sufficient data, ML models can successfully detect, quan-

tify, and predict different types of phenomena in the geosciences (Bergen, Johnson,

Maarten, & Beroza, 2019; Reichstein et al., 2019). ML has been successfully ap-

plied in remote sensing (Mesa, Reichstein, Mahecha, Kraft, & Denzler, 2018; Valls et

al., 2018), ocean wave forecasting (James, Zhang, & O’Donncha, 2018; O’Donncha,

Zhang, Chen, & James, 2018, 2019), seismology (Hulbert et al., 2019; Leduc et al.,

2017; M.-Zook & Ruppert, 2017; Reynen & Audet, 2017; Wu et al., 2018; Yuan et

al., 2019), hydrogeology (Barzegar, Moghaddam, Deo, Fijani, & Tziritis, 2018; Srini-

vasan et al., 2018; Viswanathan et al., 2018), and geochemistry (Cracknell, Reading,
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& McNeill, 2014; Galiano, Castillo, Olmo, & Rivas, 2015; Kirkwood, Cave, Beamish,

Grebby, & Ferreira, 2016; Oonk & Spijker, 2015; Zuo, 2017). ML emulators, surrogate

models, or reduced-order models can be fast, reliable, and robust when trained on

large datasets (Bergen et al., 2019; Reichstein et al., 2019; Salah, 2018).

ML models are classified as supervised and unsupervised algorithms (Knox,

2018; Müller & Guido, 2016). Supervised ML models learn relationship/function from

data instead of solving specified functions/equations. Supervised ML models are con-

structed using training data (e.g., features and labels), which include inputs and out-

puts either from field data, experimental data, high-fidelity numerical simulations,

or any combination of these (Brunton & Kutz, 2019; Salah, 2018). The supervised

ML algorithm is designed to generalize to predict unseen data. Supervised ML can be

used for classification and/or regression. For example, detecting spam emails, identify-

ing tumors, and finding fraudulent activity on credit cards are classification problems

while predicting a stock value is a regression problem. On the other hand, an unsuper-

vised ML model is suitable for analyzing hidden properties in data. In unsupervised

ML, only input (or features) are known and no labels are provided. For example, topic

identification in a blog and clustering customers into groups with similar preference

are accomplished with unsupervised ML.

This study only applied supervised ML models to reactive-transport data to

predict QoIs and to classify the state of reactive transport. The 20 ML emulators

included a linear classifier, two Bayesian classifiers, an ensemble classifier, an MLP

classifier, seven linear regressors, six ensemble regressors, and an MLP regressor. Em-

ulator performance was assessed according to training and testing scores, training

times, and R2 scores on the QoIs from a blind dataset. The blind dataset included

six realizations that were not presented to the algorithms during training and testing

phases. This chapter was submitted as: B. Ahmmed, M. K. Mudunuru, S. Karra,

S. C. James, V. V. Vesselinov, (2020): A Comparative Study of Machine Learning
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Models for Predicting the State of Reactive Mixing to arXiv:2002.11511v1 and to

the Journal of Computational Physics for publication. Currently, it is published as

arXiv:2002.11511v1 and under review to the the Journal of Computational Physics.

Each author contributed to this manuscript. Bulbul Ahmmed ran machine learning

models and prepared manuscript; M. K. Mudunuru and S. Karra ran numerical sim-

ulations to generate data and assisted to write the manuscript, S. C. James reviewed

results and critically reviewed the manuscript; V.V. Vesselinov assisted to write the

code and critically reviewed the manuscript.
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CHAPTER TWO

Manuscript 1: NWIRP

This chapter was submitted to the Journal of Groundwater Monitoring & 
Remediation as: Bulbul Ahmmed, Scott C. James, Joe Yelderman, (2020):

Post-calibration Uncertainty Analysis for Travel Times at the Naval Weapons 
Industrial Reserve Plant.

Abstract

The Naval Weapons Industrial Reserve Plant (NWIRP) in McGregor, Texas 

began manufacturing explosives in 1980 and several hazardous chemicals were discov-

ered in lakes and streams surrounding the plant in 1998. This research demonstrates 

the importance of using a numerical study to support remedial decision making by 

investigating post-calibration linear and Null-space Monte Carlo (NSMC) nonlinear 

uncertainty analyses. Based on MODFLOW and MODPATH models, which simulated 

hydraulic heads and tracer travel times at the site, the following measures were quanti-

fied: parameter uncertainties, parameter identifiabilities, observation worth, and pre-

dictive uncertainties. Parameter uncertainties were reduced by up to 92%; a total of 

19 parameters were at least moderately identifiable (>10%); travel-time uncertainties 

were reduced up to 92%. An observations-worth analysis found that additional data 

(11 more measurements) could reduce travel-time uncertainties by factors from 1.04 

to 4.3 over existing data if collected at targeted locations. Finally, travel-time predic-

tions and post-calibration parameter distributions were generated using the NSMC 

technique. NSMC predicted that conservative tracers exited the flow system within a 

year, which agrees well with field data.
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Introduction

The Naval Weapons Industrial Reserve Plant (NWIRP) occupies about 40 km2

in southwest McGregor, Texas on a topographic divide underlain by a shallow ground-

water system within fractured limestone bedrock (Figure 2.1). The NWIRP began

manufacturing explosives in 1980 (Hare, 2000; T. L. Moore & McSpadden, 2009)

and several hazardous chemicals including ammonium perchlorate were discovered

in lakes and streams surrounding the plant in 1998 (Craig & Burdick, 2007; En-

safe Inc., 1999) defying estimates from groundwater velocities that suggested the

contamination should not have entered streams and migrated offsite (Clark, 2000).

However, those estimates did not consider the increased fluxes and hydraulic heads

affecting groundwater flow velocities during storm periods. Ensafe (1999) (Ensafe

Inc., 1999) estimated groundwater flux in Georgetown Limestone at 2m/year using

average gradients, hydraulic conductivity from slug-test data, and porosity while as-

suming homogeneous and steady groundwater velocities throughout the area. But

groundwater in Georgetown Limestone also flows through more conductive features

when the water table rises during storm periods. Such recharge also increases ground-

water velocity. The Georgetown Limestone, similar to other fractured carbonates like

the Austin Chalk, exists as an upper, highly fractured and unsaturated zone overlying

a low-permeability, moderately fractured zone (Ashworth & Hopkins, 1995; Barquest,

1989; Bingham, 1993; Chowdhury, Osting, Furdan, & Mathews, 2010; Mace, 1998).

The highly fractured upper layer facilitates fast fluid flow during storms. Although

no study was performed on variance of flux but an inference can be drawn from Fig-

ure 2.2 about the variability of the flow rate. As shown in Figure 2.2, the hydrograph

from an unnamed spring, the mean flow rate from May through September, 1999

was 3.3 L/s with a spike to 18.7 L/s in July. The sharp response of the flow rate to

the recharge event reflects the water table entering the upper, highly fractured layer,

which was then quickly drained. Although the shallow groundwater is not used locally,
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the streams flow into two major water supply reservoirs in the region (Lake Belton

and Lake Waco).
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Figure 2.1: Study location including streams, 43 observation wells (open circles), 99 hy-
draulic conductivity measurements (blue triangles), 77 pilot points (filled circles), and
particle-release locations (green squares) with associated NWIRP administrative des-
ignations G, H, L, M, and S.

Recharge from precipitation significantly increases lateral flow through the George-

town Limestone when the water table rises into the upper, highly fractured zone. The

water table is sensitive to recharge (storms) as shown in Figure 2.3. A rising water

table can mobilize dissolved perchlorate such that it enters the upper zone where it

is more easily transported off site. Even though some dissolved perchlorate is trans-

ported off site, the source persists as residual perchlorate in the lower fractured zone

awaiting remobilization during the next storm (see Figure 2.4).

Tracer (or contaminant) transport times from the NWIRP to surrounding streams,

rivers, and lakes are the primary concern for stakeholders. Clark (2000) (Clark, 2000)

built a piecewise-homogeneous MODFLOW model of the NWIRP, which was up-

dated here to a pilot-point-based, heterogeneous MODFLOW model to predict flow
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Figure 2.2: Flow hydrograph from an unnamed spring in the study area near McGre-
gor, Texas with no contribution from surface runoff (Clark, 2000, Fig. 2). Flow was
measured with a wire and a pressure transducer data logger. The sharp peak in dis-
charge indicates an increase in saturated thickness and gradient due to recharge and
water rising into the upper, more conductive layer.

fields while MODPATH estimated tracer transport times. MODFLOW is a ground-

water modeling tools developed by United States Geological Survey and MODPATH

(Pollock, 2016)is a particle-tracking code that uses boundary conditions, hydraulic

heads, and parameters from MODFLOW to simulate flow streamlines. The concep-

tual model included the upper and lower fractured layers, topography, and heteroge-

neous hydraulic conductivities. The predictions of interest were the times for tracers

from NWIRP administrative areas to exit the model domain as discharge to streams.

Predictions were conditioned through calibration against measured water levels. Un-

certainties in these predictions were quantified and the most important parameters

and observations identified. Moreover, the Null-space Monte Carlo (NSMC) nonlin-

ear uncertainty analysis technique was used to generate probability distributions of

calibrated parameters and commensurate travel-time predictions (C. Moore, 2006;

M. Tonkin & Doherty, 2009; M. Tonkin et al., 2007). Briefly, the NSMC technique
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Figure 2.3: Hydraulic heads in eight observation wells near administrative area M
demonstrating the correlation with precipitation. Precipitation data: (Waco Regional
Airport, 2016).
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Figure 2.4: (a) Schematics of the model domain with undulating layers and streams.
(b) Cross sections during dry seasons, contaminants travel slower in the less-fractured,
lower layer and during the wet season, they travel faster in the more fractured, upper
layer.
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uses subspace approaches like singular value decomposition (C. Moore & Doherty,

2005) to identify only those model parameters informed by the observation dataset

(C. Moore & Doherty, 2006). This facilitates inversion of over-parametrized models by

only calibrating those variables about which the dataset has information while rele-

gating the rest to their user-preferred initial guesses through Tikhonov regularization

(M. J. Tonkin & Doherty, 2005).

Theoretical Background

The level of parametrization of an environmental model should be commensu-

rate with the quality and quantity of data used in its calibration to ensure confidence

in the range of predictive possibilities (Hunt, Doherty, & Tonkin, 2007; C. Moore

& Doherty, 2006). Calibration is constrained by the information content of the cal-

ibration data set (plus expert judgment) and linear predictive uncertainty can be

assessed even before a calibration exercise. Parameter uncertainty and identifiability

along with observation worth can be quantified (Doherty, 2016; James, Doherty, &

Eddebbarh, 2009). Post-calibration, the NSMC method facilitates a nonlinear assess-

ment of parameter and prediction uncertainties (Doherty, 2016), but even with the

use of super parameters (linear combinations of estimable parameters) to reduce the

number of model calls, the approach can still be computationally intensive.

Predictive uncertainty analyses can be undertaken with a calibrated model us-

ing methods based on the propagation of variance (Doherty, 2016), which acknowl-

edges that historic observation can be replicated with many non-unique parameter

combinations. Predictive uncertainty reduction is calculated based on the pre- and

post-calibration parameter uncertainties, where pre-calibration parameter variances

(uncertainties) are specified according to measurements and expert judgment while

post-calibration uncertainties are revealed through the calibration process. In ad-

dition, each parameter contributes to uncertainty in model predictions. Reduction

13



in predictive uncertainty is predicated upon enhanced knowledge of the parameter

space. Parameter uncertainty can be divided into solution- and null-space compo-

nents. Solution-space uncertainty, usually the smaller of the two, is due to uncer-

tainty in the calibration data (i.e., measurement error). Null-space uncertainty is due

to shortcomings in the data or model that preclude precise identification of the pa-

rameter (i.e., many parameter combinations can calibrate the model about equally

well). The mathematical process of distinguishing solution- from null-space uncer-

tainty is achieved through singular value decomposition (SVD), which is conducted

with straightforward mathematical vector and matrix manipulations (Doherty, 2016;

James et al., 2009).

Measurement errors (observation noise) can never be eliminated and these im-

pact predictive uncertainties. The calibration process minimizes the weighted-sum-

of-squares differences, the objective function, between site observations and their cor-

responding model predictions. Both quantitative (observation noise, measurement

accuracy, number of measurements comprising an observation, etc.) and qualitative

(expert judgment) metrics should be used to specify weights in the objective function.

Identifiability is a metric indicating the calibration data’s ability to constrain

a model parameter (Doherty & Hunt, 2009). Quantitatively, it is the direction cosine

between a parameter and its projection onto solution-space uncertainty. Identifiability

can be used in both model design and implementation to assess whether a model

needs more calibration data to reduce parameter uncertainty while also quantifying

the uncertainties in predictions that depend specifically upon that parameter.

Observation worth is quantified based on the reduction in uncertainty in a

parameter or prediction that is accrued through the acquisition of that datum (Lotti

& Doherty, 2016). Reduction in these uncertainties below their pre-calibration level

is a measure of the worth of an observation (or observation group) with respect to

that parameter or prediction.
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The NSMC technique generates multiple, unique parameter fields that satisfy

both the model-to-measurement misfit (i.e., a sufficiently low objective function) and

parameter-reality constraints (i. e., parameters cannot be assigned unrealistic val-

ues) and it quantifies post-calibration parameter and prediction uncertainties (Welter,

White, Hunt, & Doherty, 2015). It generates a suite of equally likely and realistic pa-

rameter fields that are used to make predictions. Generating parameter fields involves

three steps: (1) generating random parameter fields according to pre-calibration un-

certainty, (2) perturbing pre-calibrated parameters by adding null-space uncertainty,

and (3) a brief model calibration (usually three optimizations) using fewer parame-

ters or (super parameters), which are linear combinations of those parameters that

have their pre-calibration uncertainty reduced by more than an insignificant amount.

Uncertainty in a prediction can thereby be assessed through construction of an empir-

ical probability density function (PDF) assembled by running the model using each

NSMC parameter field realization to generate PDFs of predictions.

Methods

Conceptual Model

The conceptual model was built using four digital elevation maps (DEMs) from

the Texas Natural Resources Information System website (TNRIS, 1999) to create

the model topography. GIS (ESRI, 1996) and SURFER (Golden Software, 1997) were

used to mosaic and grid the DEM data (Clark, 2000). The conceptual model also

included local rivers, streams, creeks, and spring as shown in Figure 2.4 (a). The model

comprised two 4-m-thick layers representing the upper, weathered layer and the lower,

less-permeable limestone. The NWIRP model domain and terrain-following layers

were adjusted according to the topographic elevation (see Figure 2.4 (a)). The top of

the upper model layer corresponded to the water level, which was initially assumed

2m below the land surface. The bottom of the model was established uniformly 10m
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below surface (Gburek, Folmar, & Urban, 1999; Verma, Rao, & Rao, 1980). Average

precipitation from 1960 to 2015 was 2.7× 10−8 m/s. A base-flow study conducted in

a nearby similar geologic setting indicated that 7% of total precipitation infiltrated

to the aquifer (Cannata, 1988; Myrick, 1989), so recharge was 1.8× 10−9 m/s.

Model Development

Because the rock is densely fractured (Figure 2.5), it was approximated as an

equivalent porous medium. Therefore, this effort started by developing MODFLOW

and MODPATH models of the NWIRP site (Figure 2.1), calibrating to available

data, assessing observation worth and parameter identifiability, as well as quantifying

uncertainties in parameters and tracer travel-time predictions. Next, results from the

NSMC approach were used to generate PDFs of pilot points (hydraulic conductivities)

and travel times. The model had two layers, 126 columns, and 97 rows with 100 ×

100m2 cells. Recharge through precipitation was specified at the top of the model

while the lateral sides along with the bottom of the model were specified as no-flow

boundaries. Because all streams in the domain are gaining reaches, there was no need

to specify streambed properties distinct from the hydraulic conductivities. No-flow

boundaries can affect results near the edges of the model, so the NWIRP regions of

interest were always at least 1.5 km from the model edges. The model was executed

with MODFLOW-NWT (Niswonger, Panday, & Motomu, 2011), which admits the

drying and re-wetting nonlinearities of an unconfined aquifer (J. Hughes, Langevin,

Chartier, & White, 2012; Niswonger et al., 2011). Single particles were released at

the midpoint of each layer from the five administrative areas and tracked until they

exited the model domain at streams.

Parameters

Groundwater flow is fundamentally governed by the distribution of hydraulic

conductivities. In conventional calibration methods, property uniformity or pilot-
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Figure 2.5: Picture of the fractured formation in the study area (scale is 0.5m2).

point distributions are used as the basis for spatial parameter distribution (Doherty,

2003). In the absence of data, piecewise-homogeneous zones are often specified. If ge-

ologic zones are not piecewise-uniform, pilot points are distributed throughout such

zones. Pilot-point property values were estimated during this calibration exercise and

the hydraulic conductivities at model cells were assigned according to a kriging al-

gorithm (Doherty, 2003). Pilot points facilitate a smooth but realistic distribution of

hydraulic properties over a geologic unit, which cannot be achieved using piecewise-

uniform methods. The upper model layer had only a single hydraulic conductivity

measurement, but one parameter over such a large region would give false confidence

in the solution because it would yield unrealistic homogeneity (Parker, 1977). Instead,

a total of 77 pilot points (Figure 2.1) were used in each layer such that hydraulic con-

ductivity fields were developed with heterogeneity commensurate with the informa-

tion available in the observation data set. The initial value of the horizontal hydraulic

conductivity in the upper layer, ku, was 3.048× 10−3 m/s for all 77 pilot points with

a 1.5% porosity (Cannata, 1988). Just like the upper layer, a pilot-point-based het-
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erogeneous distribution of hydraulic conductivities were also assigned to the lower

layer. Ensafe (1999) (Ensafe Inc., 1999) conducted 99 slug tests measuring horizontal

hydraulic conductivities in the lower layer, kl, ranging from 10−8 to 10−4 m/s with

mean 10−7 m/s. These hydraulic-conductivity measurements were used in an expo-

nential variogram with specified range and sill (variance) (Deutsch & Journel, 1992).

The range and variance of log of hydraulic-conductivity measurements were 700m

and 1.52, respectively, and using the 99 measured hydraulic conductivities, they were

kriged (interpolated) onto each model cells. The vertical anisotropies and porosity of

the lower layer were specified as one tenth of horizontal hydraulic conductivities and

0.5% (Cannata, 1988), respectively.

The calculated range and sill were used to generate kriging factors for pilot

points in the lower layer using the PPK2FAC utility in the PEST suit. Later, these

factors were used to interpolate k onto the model grid using the FAC2REAL utility in

the PEST suit. Because of exposure to weathering and erosional process, the upper

layer is more heterogeneous even though it comprises similar rock types, so a larger

variance is appropriate. Thus, a variance of 3.04 (twice that of the lower layer) was

assigned to the upper layer with the same 700-m range as the lower layer. Parameter

uncertainties and observation worth were calculated based on propagation of variance.

Initially, a pre-calibration covariance matrix was calculated for the pilot points using

the PPCOV (Doherty, 2016). The diagonal elements of the covariance matrix were the

variance while off-diagonal elements were non-zero numbers based on 99 measured

hydraulic conductivities and their geospatial characteristics. Later, this covariance

matrix was used to generate pre-calibration pilot point realizations.

A total of 156 parameters were adjusted during calibration. Parameters were

subdivided into three groups: (1) 77 pilot-point-based horizontal hydraulic conduc-

tivities for the upper (ku1–ku77), (2) and lower (kl1–kl77) layers, and (3) horizon-

tal anisotropies for the upper, hu, and lower, hl, layers. Each hydraulic conductiv-
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ity was assigned a pre-calibration lognormal probability distribution with mean of

3.048× 10−3 m/s and 10−7 m/s for the upper and lower layers, respectively.

Calibration Data and Predictions of Interest

Because of model complexity and under-determinacy, regularization was used

during calibration (Doherty, 2016) to reduce bias and to decrease the required number

of model calls. A total of 156 log-transformed regularized parameters were calibrated.

The calibration was performed against 43 steady-state heads (average water levels if

multiple measurements were available) at the monitoring wells indicated with open

circles in Figure 2.1. Each observation was assumed equally important (equal weight).

Predictions of interest were travel times for 10 particles released at the midpoints

of the upper and lower layers in the five administrative hazardous storage sites in

Figure 2.1 (T. L. Moore & McSpadden, 2009). Travel times for the particles were

simulated and their uncertainties were quantified.

Calibration and NSMC

The work flow for calibration and uncertainty analyses was: (1) parametrization

and calibration of the NWIRPMODFLOWmodel; (2) parameter identifiabilities were

calculated along with observation worth; (3) the effects of additional monitoring wells

on travel-time predictions and observation worth were estimated; (4) uncertainties in

travel-time predictions were then explored upon consideration of the new hypothetical

observations; and (5) post-calibration uncertainties of pilot points and particle travel

times were assessed using the NSMC technique.

Calibration estimated 156 parameters (154 pilot points and two horizontal

anisotropies) with only 43 observations, which made this an ill-posed problem; not all

parameters could be uniquely estimated (Moeck, Molson, & Schirmer, 2019; C. Moore

& Doherty, 2005). Using SVD, it was determined that 25 unique linear combinations

of parameters (super parameters) could be reasonably identified. In other words, the
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modeler presents all parameters (here 113 more than could possibly be identified

by the 43 data points) to the calibration and PEST’s subspace-regularization capa-

bilities determine which parameters can be uniquely identified by the dataset and

focuses only on those. Here, the dataset informed 25 parameters, which can be speci-

fied as linear combinations if there are strong correlations between some of them. For

over-parametrized models, an NSMC analysis affords a more accurate, nonlinear as-

sessment of predictive uncertainty. The NSMC approach was executed in three steps.

First, the RANDPAR utility in the PEST suite generated a total of 1,000 pilot-point

realizations (the mean of each pilot point stabilized by 1,000 realizations) using a log-

normal distribution with mean (from pump tests) and the pre-calibration covariance

matrix. Second, each pre-calibrated parameter realization was perturbed by adding

null-space uncertainty using the PNULPAR utility in the PEST suite. PNULPAR calcu-

lated the orthogonal differences between calibrated parameters and those produced

with RANDPAR. Then, these differences were added to each realization of calibrated pa-

rameters to generate 1,000 realizations of calibrated parameters with perturbations

in the null space. For each of these null-space-projected parameter-field realization,

three iterations of a PEST calibration were undertaken (NOPTMAX = 3) using 25 su-

per parameters. Each resulted in a calibration-constrained parameter-field realization

(NSMC realization) with a corresponding objective function value, Φ, which indicated

how closely the simulated heads from that model run matched their corresponding

observation. Only those NSMC realizations with objective functions less than 150%

of the calibrated objective function were retained to form distributions of parameters

and corresponding particle transport times.
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Results

Post-calibration Linear Uncertainty Analyses

Figure 2.6 compares measured (y axis) and calibrated (x axis) heads. There was

a slight bias toward underprediction (-0.1m) while the mean absolute error was 0.7m

and the root-mean-squared error was 0.8m, all of which indicated a well-calibrated

model.
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Figure 2.6: Cross-plot of measured and calibrated heads.

The linear uncertainty analysis identified reductions in parameter uncertainty

(i.e., pilot-point hydraulic conductivities, so parameter uncertainty always refers to

the reduction in the a priori hydraulic conductivity variance while prediction uncer-

tainty refers to reduction in particle travel times realized through the reductions in

hydraulic-conductivity uncertainty) subject to the information content in the cali-

bration dataset. These post-calibration parameter uncertainties reflect the degrees to

which the observations reduced the pre-calibration parameter uncertainties as indi-

cated in Figure 2.7. The size and color of the circles indicate the percent reduction in

pre-calibration uncertainty upon application of the observation data set. Pilot-point

uncertainty reductions ranged from 0.4 to 92% with greater reductions nearer to ob-

servation wells in the upper layer (Figure 2.7a). The Central (CR), Station Creek
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(SCR), and East Regions (ER) of the model, indicated on Figure 2.1, contain 36,

six, and one observation well(s), respectively. In the upper layer, observation wells

in the CR significantly informed the six nearby pilot points by reducing their uncer-

tainties from 15 to 92%. Similarly, the six wells in the SCR decreased uncertainties

in four nearby pilot points from 25 to 90% while the single well in the ER notably

decreased uncertainty in the nearest pilot point by 50%. Uncertainty reduction for

pilot points in the lower layer ranged from 0.3 to 30%. Observation wells in the CR

reduced uncertainties from 1 to 30%; the uncertainty reductions were relatively lower

in this layer because of their smaller (by half) variances 1.52 (1.78 × 10−10 m2s–2).

The observation wells in SCR informed three nearby pilot points and reduced their

uncertainties by >10% (Figure 2.7b). All told, uncertainty reductions for 120 of the

pilot points were <10%, typically for pilot points distant from observation wells. Over-

all, given that there were 43 unequally distributed monitoring wells and low initial

uncertainties in the lower-layer pilot points, it was not surprising that only 36 pilot

points had their uncertainties reduced by >10%. Moreover, this is in accord with the

25 super-parameters.
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Figure 2.8: The 20 most identifiable parameters.

Parameter identifiability apportions parameter uncertainties into solution and

null spaces. An identifiability of zero means that the data set says nothing about that

parameter while an identifiability of one means that uncertainty in that parameter is

solely due to measurement error. Of the 156 parameters, seven had high (>0.5), 12

moderate (0.1–0.5), and 137 low (<0.1) identifiabilities (Figure 2.8).

Initial travel-time variances were calculated by running the 1,000 uncalibrated

hydraulic-conductivity-field realizations and these uncertainties were reduced by up to

92% (i.e., standard deviation in travel times reduced from 3.15 to 0.25 years) when the

model was run with the calibrated hydraulic-conductivity-field realizations (discussed

below in the NSMC section). Later, an observation-worth analysis was performed to

assess the contribution of monitoring wells toward reducing travel-time uncertain-

ties. Normalized contributions to uncertainty reduction from each monitoring well

are indicated in Figure 2.9(a). The contributions of observations toward decreasing

travel-time uncertainties depended upon the degree to which parameters were con-

strained along the particle paths and the proximity of the observations to the particle

paths. Monitoring wells in the SCR reduced uncertainties for particles released at M
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and L while one monitoring well in the CR reduced uncertainties for particles released

at H and one monitoring well in the ER reduced uncertainties for particles from S.

Particles released at G did not travel through a region with monitoring wells, so

their uncertainties were not reduced. Overall, only four monitoring wells (large open

circles in Figure 2.9(a)) significantly contributed to decreasing travel-time uncertain-

ties indicating that the existing monitoring well network does not effectively inform

contaminant transport times.

Additional targeted well installations would greatly reduce travel-time uncer-

tainties. To this end, an observation-worth analysis was performed by adding 11

hypothetical monitoring wells (Figure 2.9(b)). The analysis was conducted by placing

wells at every third model cell throughout the model domain and selecting optimal

locations. The 11 hypothetical wells yielding the greatest reductions in uncertainty

were “installed” down gradient of particles released at administrative area M and H

and in the vicinity of hazardous-materials storage sites L, G, and S where no wells

exist. The normalized contributions of monitoring plus hypothetical wells in reducing

travel-time uncertainties are indicated in Figure 2.9(b). Because the 11 hypothetical

wells were optimally located, they significantly reduced travel-time uncertainties. In-

terestingly, upon adding the 11 hypothetical wells, the contribution of an existing well

toward reducing travel-time uncertainty greatly increased (largest red circle) because

it gained important gradient information.

Post-calibration sensitivities of travel-time predictions to observations were cal-

culated and the degree to which observations reduced uncertainties in travel times

are indicated in Figure 2.9(c). Mu and Ml had six nearby monitoring wells and these

particles traveled through a well-constrained region of the model and happened to

have the shortest travel distances; hence uncertainties were notably reduced by the

existing wells. The addition of the 11 hypothetical wells further constrained parame-

ters (and corresponding predictions) such that travel-time uncertainties for particles
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released at H, G, L, and S decreased by factors from 1.04 to 4.3 (red bars) compared

to the existing well network.
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ical wells, symbol color and size indicate the observation worth; and (c) uncertainty
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hypothetical wells (red).

NSMC

Of the 1,000 parameter-field realizations generated, 882 had objective func-

tions less than 1.5 times the calibrated (minimum) objective function after three

optimization iterations of a NSMC calibration. These calibration-constrained NSMC

realizations and the corresponding 882 realizations from RANDPAR were used to com-
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pute parameter variances to assess the decreases in uncertainty due to the information

content in the calibration data set. Figure 2.10 compares variances of pre-calibration

and calibration-constrained parameter distributions. NSMC reduced uncertainties, at

least slightly, for the majority of parameters near existing monitoring wells. For both

layers, NSMC reduced notably uncertainties for highly and moderately identifiable

parameters (see Figure 2.10 (a)–(b)).
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Figure 2.10: Variances of pilot point, log10 (k), for the (a) upper and (b) lower layers
for the pre-calibration (black) and NSMC (red) parameter realizations.

Parameter realizations were also used to generate PDFs and Figure 2.11 pro-

vides six examples. For highly identifiable parameters (e.g., ku5 and ku45) in the top
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Figure 2.11: PDFs of highly identifiable parameters ku5 and ku45 (top row), moder-
ately identifiable parameters ku39 and ku67 (middle row), and minimally identifiable
parameters kl37 and kl41 (bottom row).

row of Figure 2.11, distributions were significantly narrower for NSMC than from

pre-calibration reflecting the information obtained from the null-space projection

and three additional optimization iterations. Distributions of the moderately iden-

tifiable parameters (e.g., ku39 and ku67) in the middle row of Figure 2.11 were also

narrower than their pre-calibration equivalents. Finally, the three optimization iter-

ations slightly reduced uncertainties for minimally identifiable parameters (e.g., kl37
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and kl41) in the bottom row of Figure 2.11, because those parameters were not in-

formed by existing monitoring wells.

The field data from the monitoring wells were collected by a third party and the

model was created after the investigation was finished to try to show how contaminates

may have migrated off-site and to demonstrate the need to incorporate the NSMC

technique earlier in the monitoring process. There were no opportunities to collect

additional data nor drill new wells.

Travel times for particles to reach exit points at surrounding streams were calcu-

lated for each of the 882 pre-calibration and NSMC calibration-constrained pilot-point

parameter fields and Figure 2.12 shows distributions of log-transformed travel times.

Figure 2.13 shows 250 of 889 particle tracks released from each administrative des-

ignation with a representative hydraulic conductivity field. A particle’s travel time

depended on distance traveled and hydraulic conductivities along its path. Passing

through even a single low-hydraulic-conductivity cells significantly decreased that par-

ticle’s travel time. The combination of one or more low-hydraulic conductivities along

a particle’s path in conjunction with lognormally distributed hydraulic conductivities

(long tails toward low values) yielded some realizations with exceptionally long travel

times, hence it was more appropriate to compare median travel times (Table 2.1).

Particles released at the same location for pre-calibration and NSMC parameter

realizations had similar path lengths in both layers, but median travel times in the

upper layer were significantly shorter than those through the lower layer. Consistent

with the conceptual model, hydraulic conductivity ranges were two to six order of

magnitude higher in the upper layer than the lower layer resulting in the travel-time

disparities. However, all simulations indicated that particles released in the upper

layer reached surrounding streams within a year (consistent with site observations)

while particles released in the lower layer took one to five orders of magnitude longer.
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Figure 2.12: PDFs of particle travel times.

Although travel times through the lower layer were longer when using pre-

calibration parameter realizations than their NSMC counterparts, there was no con-

sistent trend for the upper layer. Nevertheless, corresponding travel-time uncertainties

(variances of log-transformed travel times) always decreased from pre-calibration to

NSMC (visually evident in Figure 2.12), which is consistent with the decreases in
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Table 2.1: Median travel times for the 882 pre-calibration and NSMC parameter
fields used for particle tracking.

Particle Pre-calibration NSMC
[yr] [yr]

Gu 0.29 ↑ 0.65
Gl 5.51 ↑ 6.65
Hu 0.14 ↓ 0.12
Hl 39.01 ↑ 166.34
Lu 0.11 = 0.11
Ll 109.92 ↑ 303.23
Mu 0.03 ↑ 0.04
Ml 54.67 ↑ 122.98
Su 0.13 ↓ 0.12
Sl 0.96 ↑ 2.36

parameter variances (see Figure 2.10). Although the NSMC travel times through the

lower layer indicated that there may be more time to remediate the contamination

than might have been initially expected, the short travel times through the upper

layer offered no such consolation.
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Conclusions

Based on MODFLOW and MODPATH simulations of the NWIRP site, cali-

bration and model interrogation quantified: parameter and predictive uncertainties,

parameter identifiabilities, and observation worth for both existing and hypotheti-

cal monitoring wells. Using a linear analysis, pre-calibration parameter uncertainties

were reduced up to 92% and 36 of 156 parameters exceeded a 10% reduction when

constrained by the calibration data set. An identifiability study revealed that seven

parameters were highly identifiable (>0.5) while 12 parameters had identifiabilities

between 0.1 and 0.5. Travel-time uncertainties were reduced up to 92%. Using a non-

linear analysis, pre-calibration travel-time uncertainties were reduced by >50% for

two particles released at site M and between 5 and 40% for the remaining sites. An

observation-worth analysis showed that the existing monitoring well network does not

strongly constrain travel times. Targeted data collection, especially at the locations

shown in Figure 2.5, could reduce travel-time uncertainties for all particles by factors

from 1.04 to 4.3.

This study generated pre- and post-calibration parameter distributions along

with corresponding travel-time PDFs. The decreases in width of these distributions

(variances) reflected the information content in the calibration data set. This study

also predicted travel times for conservative tracers to reach nearby streams and re-

vealed that conservative tracers exited the flow system through the more conductive

upper layer within a year.

Any seriously contaminated site like NWIRP should undergo a rapid and de-

tailed modeling study before further data collection and, of course, before making

remediation decisions. For example, the authority collected clustered water-level mea-

surements, which could have been optimized if a comprehensive study was conducted

before drilling wells. In addition, no base-flow data were collected even though a sin-

gle base-flow measurement significantly improves uncertainty quantification (Hunt,
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Fienen, & White, 2019). This study also demonstrated that if a contaminant reached

the upper layer (for example during storm events that raise the water table), it will

travel much faster to surrounding streams. The predictive-uncertainty and observation-

worth analyses determined the most important parameters and observations con-

tributing to the greatest decreases in predicted travel-time uncertainties. Ultimately,

the 43 poorly distributed water-level measurements over such a large model do-

main and the absence of base-flow data were notable shortcomings. This analysis

can support decision making by identifying where additional wells should be located

to achieve the greatest reductions in predictive uncertainty.

Looking to the future, transient modeling would be appropriate for this system,

but it could not be undertaken because of a lack of water-level time-series data.

Although beyond the scope of this study, it would be reasonable to use these calibrated

parameters in a transient model to assess other aspects of contaminant transport

subject to storm or flood events.
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CHAPTER THREE

Manuscript 2: PFLOTRAN-SIP

This chapter was submitted to arXiv as: B. Ahmmed, M. K. Mudunuru, S. Karra,
S. C. James, H. S. Viswanathan, J. A. Dunbar, (2019): PFLOTRAN-SIP: A

PFLOTRAN Module for Simulating Spectral-Induced Polarization of Electrical 
Impedance Data, arXiv:1909.02125.

Abstract

Spectral induced polarization (SIP) is a non-intrusive geophysical method that 

is widely used to detect sulfide minerals, clay minerals, metallic objects, municipal 

wastes, hydrocarbons, and salinity intrusion. However, SIP is a static method that 

cannot measure the dynamics of flow and solute/species transport in the subsurface. 

To capture these dynamics, the data collected with the SIP technique need to be cou-

pled with fluid flow and reactive-transport models. To my knowledge, currently, there 

is no simulator in the open-source literature that couples fluid flow, solute transport, 

and SIP process models to analyze geoelectrical signatures in a large-scale system. 

A massively parallel simulation framework (PFLOTRAN-SIP) was built to couple SIP 

data to fluid flow and solute transport processes. This framework, PFLOTRAN-E4D, cou-

ples PFLOTRAN (a massively parallel multi-physics simulator for subsurface flow and 

transport) and E4D (a massively parallel geoelectrical simulator), without sacrificing 

computational performance. PFLOTRAN solves the coupled flow and solute transport 

process models to estimate solute concentrations, which were used in Archie’s model 

to compute bulk electrical conductivities at near-zero frequency. These bulk electri-

cal conductivities were modified using the Cole-Cole model to account for frequency 

dependence. Using the estimated frequency-dependent bulk conductivities, E4D simu-

lated the real and complex electrical potential signals for selected frequencies for SIP.

33



The PFLOTRAN-SIP framework was demonstrated through a synthetic tracer-transport

model simulating tracer concentration and electrical impedances for four frequencies.

Later, SIP inversion estimated bulk electrical conductivities by matching electrical

impedances for each specified frequency. The estimated bulk electrical conductivi-

ties were consistent with the simulated tracer concentrations from the PFLOTRAN-SIP

forward model. This framework is useful for practitioners of environmental hydrogeo-

physics and biogeophysics to monitor chemical, nuclear, and tracer transport sites as

well as to detect sulfide minerals, metallic objects, municipal wastes, hydrocarbons,

and salinity intrusion.

Introduction

Engineered subsurface systems are dynamic due to natural and anthropogenic

activities that alter porosity, permeability, fluid saturation, and geochemical prop-

erties over time (Council, 2000). Geophysical techniques such as seismic (deep or

near-surface seismic) and potential-based methods (electromagnetic, magnetic, elec-

trical resistivity tomography [ERT], spectral induced polarization [SIP]) character-

ize changes in the subsurface (Kearey et al., 2013; Revil et al., 2011; Snieder et al.,

2007). Among these, ERT and SIP map the distribution of bulk electrical conductivity

(i.e., the reciprocal of resistivity) due to changes in subsurface fluid flow, temperature,

deformation, and reactive transport (Byrdina et al., 2012; Carpenter, 2017; Gresse et

al., 2017; Kaselow & Shapiro, 2004; Robinson et al., 2015). Because structural, topo-

logical, and geochemical properties (e.g., pore structures, fracture networks, electron

donor, etc.) influence bulk electrical conductivity (Revil et al., 2011; Snieder et al.,

2007), ERT and SIP are applied in environmental and energy industries to character-

ize subsurface interactions. Hence, coupling ERT and/or SIP process models to flow

and reactive-transport process models can enhance the interrogation of engineered

subsurface systems.
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ERT’s data-collection component measures the electric potentials resulting from

an applied direct current (DC), while the data-processing component inverts these

measured potentials to map the spatial distribution of bulk electrical conductivity

(Byrdina et al., 2012; Revil et al., 2011; Revil, Finizola, Sortino, & Ripepe, 2004).

Because ERT injects DC (near-zero frequency), it cannot interrogate the polariza-

tion features of geologic materials, heavy metals, and induced-polarization minerals

(e.g., clay minerals, hydrothermal-alteration products, pyrite, finely disseminated sul-

fide minerals, etc.) (He, Jiang, Liu, & Cui, 2005; Revil et al., 2011; Yan, Xiang, Li,

Liu, & Wang, 2014). However, by injecting alternating currents (AC), the induced

polarization (IP) method can measure “chargeability” in the time domain or “phase

shift” in the frequency domain, which is the phase angle (phase lag) between the

applied current and induced voltage of polarized geologic materials (Sumner, 1976;

Vaudelet, Revil, Schmutz, Franceschi, & Bègassat, 2011). The IP method measures

the energy storage capacity of certain minerals and can be used to detect hydro-

carbons (Luo & Zhang, 1998), contaminant plumes (Morgan et al., 1999; Olhoeft,

1986; Vanhala, 1997), municipal waste, green waste (agricultural and biodegradable

wastes) (Aristodemou & Thomas-Betts, 2000), sulfide minerals (Butler, 2005; Yan

et al., 2014), and hydrothermal products (Butler, 2005; Yan et al., 2014). IP is a

single- or double-frequency method that generally fails to distinguish between a true

IP response (e.g., polarized geologic materials) and noise (e.g., electromagnetic inter-

ference) (Butler, 2005; Luo & Zhang, 1998). The SIP method extends IP to measure

geoelectrical signatures across a range of user-specified frequencies to facilitate com-

prehensive data collection to identify sources of a true IP response. It also has the

potential to characterize subsurface structures and processes (Luo & Zhang, 1998).

SIP is a comprehensive but static method to extract subsurface polarization

signals. It cannot measure evolving dynamics of subsurface processes (e.g., flow, defor-

mation, reactive transport, etc.) (Johnson et al., 2017). Moreover, it cannot detect all
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contaminants or chemical reactions occurring in a system (Vaudelet, Revil, Schmutz,

Franceschi, & Bègassat, 2011). However, these shortcomings can be overcome by cou-

pling the SIP method with flow and reactive-transport models. Specifically, the pro-

cess models related to fluid flow and reactive-transport simulate the spatio-temporal

distribution of conducting fluids in rocks, fluid content in the pores, and fluid chem-

istry. The concentration of chemical species is transferred to the SIP method, which

simulates electrical potentials due to polarization. The electrical conductivity from

the SIP method contains information on the spatial distribution of conducting flu-

ids and fluid chemistry. In addition, the SIP method inverts for frequency-dependent

electrical conductivity based on measured/simulated electrical-impedance and phase-

shift data, which facilitates detection, extraction, and understanding of the evolution

of hydrogeophysical and biogeophysical signatures at both lab and field scales (Atek-

wana & Slater, 2009; Kenma, Vandenborght, Kulessa, & Vereecken, 2002; Mellage et

al., 2018; Slater et al., 2002).

Software to model and invert geoelectrical data include: Res2Dinv (Loke, 2019;

Loke, Acworth, & Dahlin, 2003; Loke & Barker, 1996), Aarhusinv (Fiandaca, Ramm,

Binley, Christiansen, & Auken, 2013), BERT (Günther, Rücker, & Spitzer, 2006; Rücker,

Günther, & Spitzer, 2006), EarthImager3D (EarthImager 3D, 2008), E4D (Johnson,

Versteeg, Ward, Day-Lewis, & Revil, 2010), pyGIMLi (Rücker, Günther, & Wagner,

2017), and ZondRes3D (ZONDRES3D, 2017). These software packages can also image

frequency-dependent electrical conductivities but cannot capture dynamic subsurface

processes. Moreover, when imaging fluid flow in the subsurface, they are not coupled

with flow and reactive-transport models, which would improve image quality. To over-

come these problems, Johnson et al. (Johnson et al., 2017) developed the massively

parallel PFLOTRAN-E4D simulator, which couples PFLOTRAN (Hammond, Lichtner, &

Mills, 2014), a subsurface flow and reactive-transport code, to E4D, a finite element

code for simulating and inverting geoelectrical data. However, PFLOTRAN-E4D does

36



not account for induced polarization. To capture dynamics of subsurface processes

and the true sources of induced polarization, a computationally efficient framework

is needed to couple fluid flow and solute transport with the SIP process model. This

work extended the capabilities of PFLOTRAN-E4D to include SIP in a framework called

PFLOTRAN-SIP. Here, in a medium with polarization properties, PFLOTRAN-SIP was

demonstrated with a representative tracer-transport model to provide more informa-

tion than the ERT model.

PFLOTRAN-SIP: Process Models and Coupling Framework

The PFLOTRAN-SIP framework couples flow and reactive-transport process mod-

els in PFLOTRAN (Hammond, Lichtner, Lu, & Mills, 2012; Hammond et al., 2014;

Lichtner, Hammond, et al., 2019a, 2019b) with SIP process models in E4D (Johnson

et al., 2010; Pacific Northwest National Laboratories, 2014; T. C. Johnson, 2014)

to characterize fluid-driven electrical impedance signatures across multiple frequen-

cies. At each time-step, simulation outputs from PFLOTRAN (fluid saturation, tracer

concentration, etc.) were supplied to Archie’s model (Archie, 1942) to calculate fluid-

dependent bulk electrical conductivities for E4D simulations. These estimated bulk

electrical conductivities were decomposed into real and imaginary components for

user-defined frequencies using the Cole-Cole model (Cole & Cole, 1941; Tarasov &

Titov, 2013), which is an empirical description of frequency-dependent behavior of

bulk electrical conductivities. These processes were repeated until the entire transient

simulation was completed.

E4D is an open-source, massively parallel, finite-element code for simulating and

inverting three-dimensional time-lapsed ERT and SIP data (Johnson & Thomle, 2017;

Johnson et al., 2010; Pacific Northwest National Laboratories, 2014; T. C. Johnson,

2014). The process models in E4D for ERT and SIP assume that displacement currents

are negligible and current density can be described by Ohm’s constitutive model
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(Johnson & Thomle, 2017). These assumptions result in a Poisson equation relating

induced current to the potential field that determines the electrical potential field:

−div [σ (x) grad [Φσ(x)]] = Iδ (x− x0) , (3.1)

where σ [Sm−1] is the effective electrical conductivity, I [A] the current injected, and

Φσ(x) [V] the electrical potential all at position-vector x [m] while δ (·) is the Dirac

delta function.

Equation (3.1) models the DC effect, which is required in ERT forward/inverse

modeling; however, it does not account for induced polarization under alternating cur-

rents. Induced polarization under alternating current results in a secondary potential

that needs to be accounted for in the SIP forward/inverse modeling. This requires

modification of Equation (3.1) to solve for the total electrical potential field under IP

effects:

−div [(1− η(x))σ (x) grad [Φη(x)]] = Iδ (x− x0) , (3.2)

where Φη [V] is the total electrical potential field, which includes IP effects from

a polarized material with chargeability distribution η (r) [milliradians] (H. O. Seigel,

1959). The secondary potential resulting from the IP effect is (Oldenburg & Li, 1994):

Φs = Φη − Φσ, (3.3)

and the apparent chargeability is (H. O. Seigel, 1959):

ηa =
Φη − Φσ

Φη

. (3.4)

Secondary potential Φs and apparent chargeability ηa can be computed by solving

Eqs. (3.1) and (3.2). These potentials Φη, Φσ, and Φs are time-domain signatures of

induced polarization. Eq. (3.3) is in the time domain and is transformed into the

frequency domain:

−div [σ∗(x, ω)grad [Φ∗(x)]] = Iδ (x− x0) , (3.5)
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where ω [Hz] is the frequency. σ∗(x, ω) [S/m] and Φ∗(x) [V] are the frequency-

dependent electrical conductivities and electrical potential, respectively. Φ∗(x) con-

sists of real and complex electrical potentials corresponding to induced polarization.

Zero potential is enforced on boundaries of the domain (Johnson & Thomle, 2017,

Section 3) to solve Eq. (3.5).

E4D simulates four-electrode configurations (e.g., Wenner array, dipole-dipole

array) (Johnson et al., 2010). Current is injected from source to sink electrodes while

measurements are recorded between the other two electrodes (Johnson et al., 2010;

Kearey et al., 2013; Robinson et al., 2015). For ERT, the measured response is the

potential difference (Voltage) between the two electrodes while SIP also includes the

phase shift (radians). Based on the user-defined survey design, E4D simulates up to

thousands of ERT/SIP measurements to compute the electrical potential distribu-

tion or to invert the lab/field/simulated data to identify the best-fit bulk electrical

conductivity distribution throughout the model domain. As the governing equations

are linear in Φσ and Φη, E4D solves Eq. (3.5) by superimposing pole solutions with

different current sources that makes ERT or SIP forward modeling highly scalable

(Johnson & Thomle, 2017; Johnson et al., 2010).

E4D solves the ERT and SIP process models in the frequency domain using a

low-order finite element method (FEM). The output of the FEM solution for the ERT

process model is electrical potential throughout the domain, which is real valued and

frequency independent. Because the SIP process model is frequency dependent, the

corresponding output of the FEM solution has both real and imaginary components

of electrical potential. The complex-valued electrical potential (or equivalently the

phase-shift distribution in the model domain) provides new information on IP in the

subsurface,which is not capturable by ERT.

E4D uses the standard Galerkin weak formulation (T. J. R. Hughes, 2012) on an

unstructured, low-order, tetrahedral, finite element mesh (Si, 2015) and it iteratively
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computes the total electrical potential field due to IP effects (Johnson & Thomle,

2017, Section 3). Equations for computing the real and imaginary components of the

complex-valued electrical potential are decoupled, and the finite-element analysis is

performed in the real-number domain. First, E4D solves for the real component with-

out considering IP effects. Second, the current source for the imaginary component

is computed from the real component. Third, the imaginary component of the total

electrical potential is calculated based on this computed current source. Fourth, the

secondary current source arising from the imaginary component is computed. This

secondary current source considers IP effects. Later, the real component is calculated

based on this secondary current source. These steps are repeated until a convergence

criterion is satisfied.

PFLOTRAN Process Models

PFLOTRAN solves a system of nonlinear partial differential equations describ-

ing multiphase, multicomponent reactive flow and transport using the finite-volume

method (FVM) (Hammond et al., 2012, 2014; Lichtner et al., 2015). In this paper, I

consider only single-phase fluid flow and solute transport when predicting the spatio-

temporal distribution of solute concentrations. Mass conservation for single-phase,

variably saturated flow is:
∂φsρ

∂t
+ div [ρq] = Qw, (3.6)

where ρ [kg/m3] is the fluid density, φ [–] is the porosity, s [–] is the saturation, t [s]

is time, q [m/s] is the Darcy flux, and Qw [kg/m3/s] is the volumetric source/sink

term. Darcy flux is:

q = −kkr(s)

µ
grad [p− ρgz] , (3.7)

where k [m2] is the intrinsic permeability, kr [–] is the relative permeability, µ [pa s]

is dynamic viscosity, p [Pa] is pressure, g [m/s] is gravity, and z [m] is the vertical
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component of x. The source/sink term is:

Qw =
qM

Ww

δ (x− xQ) , (3.8)

where qM [kg/m3/s] is the mass flow rate, Ww [kg/kmol] is the formula weight of

water, and xQ [m] denotes the location of the source/sink. The governing equation

for tracer transport is:

∂φc

∂t
+ div [cq− φsτD grad []c]] = Qc, (3.9)

where c [molality] is the solute concentration, D [m2/s] is the diffusion/dispersion

coefficient, τ [–] is tortuosity (related to the path length of the fluid flow), and Qc

[molality/s] is the solute source/sink term. Dirichlet, Neumann, or Robin boundary

conditions are specified when solving Eqs. (3.6)–(3.9).

Coupled governing Eqs. (3.6)–(3.9) are solved with a two-point flux FVM in

space and a fully implicit backward Euler method in time using a Newton–Krylov

solver (Balay et al., 2017; Hammond et al., 2012). PFLOTRAN’s process model tree

shown in Fig. 3.1 has master process A and pointers to child process B and peer pro-

cess C. Here, the flow model is master processA while B and C are the solute transport

and E4D/SIP models, respectively. The time step for the flow model may be different

from solute-transport model. Transfer of information between A (e.g., flow) and B

(e.g., solute transport) takes place before and after each of A’s time steps. Synchro-

nization of A and C (e.g., ERT or SIP) occurs at specified times. Execution starts

with the master-process model A, which can take as many adaptive time steps as

needed to reach the synchronization point. B and C proceed according to their time

steps (≤ A’s) to reach the synchronization point. When A, B, and C all reach the syn-

chronization point, variables and parameters (e.g., saturation, solute concentration,

porosity, etc.) are updated between A and C.
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PFLOTRAN-SIP Coupling

The coupling involves six steps: (1) PFLOTRAN’s flow model calculates fluid pres-

sure, saturation, and velocity; (2) using those simulated outputs, the transport model

calculates solute concentrations; (3) solute concentrations in each PFLOTRAN mesh

cell are used to calculate DC electrical conductivities for E4D based on Archie’s

model; (4) the Cole-Cole model calculates frequency-dependent electrical conductivi-

ties; (5) real and complex electrical conductivities are interpolated onto the E4D mesh;

and (6) the SIP model solves the forward problem to calculate electrical impedances

and phase shifts.

PFLOTRAN and E4D use message passing interface calls for inter-process com-

munication. Based on user specification, PFLOTRAN divides the computing resources

between PFLOTRAN and E4D at the initial step. PFLOTRAN and E4D read their corre-

sponding input files and complete pre-simulation steps. These include setup of the flow

model, the solute transport model, the SIP model, and mesh interpolation matrix.

Mesh interpolation is needed for two reasons: (1) the meshes of PFLOTRAN and E4D

are different and (2) the solution procedure of PFLOTRAN is based on the FVM while

E4D’s solution procedure is based on the FVM. As a result, the state variables (e.g.,

solute concentration, fluid saturation) computed at the cell center by PFLOTRAN need

to be accurately transferred from the PFLOTRAN mesh to the E4D mesh to calculate

electrical conductivities. Generation of the mesh interpolation matrix is described in

Sec. 3. Algorithm 3 and Fig. 3.2 summarize the coupling of PFLOTRAN and E4D SIP

models.

Petrophysical Transformation

To simulate SIP signals during fluid flow and solute transport, a mathemat-

ical relationship linking fluid flow state variables and bulk electrical conductivities

is required. Archie’s model (Archie, 1942; Glover, 2010; Shah & Singh, 2005) is a
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petrophysical transformation relating state variables simulated by PFLOTRAN to bulk

electrical conductivities:

σb (x) =
1

τ
φαsβf σf , (3.10)

where σb(x) [S/m] is the bulk electrical conductivity at near-zero frequency (ω ∼ 0),

α [–] is the cementation exponent (1.8 to 2.0 for sandstone), sf [–] is the solute

concentration simulated by PFLOTRAN, β [–] is the saturation exponent (close to 2.0),

and σf [S/m] is the fluid electrical conductivity.

To account for frequency dependence, Eq. (3.10) was modified using the Cole-

Cole model (Cole & Cole, 1941, 1942; Dias, 2000; Revil, Florsch, & Camerlynck, 2014;

Tarasov & Titov, 2013):

σ∗(x, ω) = σb(x)

[
1 + ηa

(
(iωT )γ

1 + (1− ηa) (iωT )γ

)]
, (3.11)

where i2 = −1, γ [–] is a shape parameter, and T [s] is the characteristic relaxation

time constant (time for the imaginary electrical component to reach equilibrium after

perturbation) related to characteristic pore or grain size.

Mesh Interpolation

Once the frequency-dependent real and imaginary components of bulk electrical

conductivities were calculated on PFLOTRANmesh, they were interpolated onto the E4D

mesh. The conductivity at any intermediate point in a PFLOTRAN mesh cell was ap-

proximated using tri-linear interpolation. These approximated values were computed

using values at the PFLOTRAN cell centers surrounding the point (see Fig. 3.3) using

(Johnson et al., 2017):

σei (x, ω) =
1

Vi

∫
vi

σc (x, ω) dV ≈ 1

nk

nk∑
k=1

σci,k (x, ω) , (3.12)

where Vi [m3] is the volume of the ith element of E4D mesh, σc [Sm−1] is the bulk

electrical conductivity in the PFLOTRAN mesh element, nk [–] is the number of subdivi-

sions by which ith E4D element is divided for integral approximation, and σci,k [Sm−1]
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is the bulk conductivity within the ith element and subdivision k. The value of σci,k is:

σci,k(x, ω) =
nc∑
j=1

Wi,k,jσ
c
j(x, ω), (3.13)

where nc [–] is the total number of mesh elements in the PFLOTRAN mesh, σcj is the

bulk conductivity of the jth element in the PFLOTRAN mesh, and Wi,k,j is the linearly

interpolated weight for σcj to determine the value of sub-element k in the ith E4D mesh

element.

The preceding equations interpolated data onto the E4D mesh based on the

computed values of σ(x, ω) in the PFLOTRAN mesh (Johnson et al., 2017; Johnson &

Thomle, 2017):

σei =
1

nk

nk∑
k=1

nc∑
j=1

Wi,k,jσ
c
j . (3.14)

Numerical Model Setup

PFLOTRAN Model Setup

The domain was 500 × 500 × 500m3 and consisted of three layers as shown in

Fig. 3.4. The PFLOTRAN mesh had a total of 125,000 finite volume cells of equal size.

The upper layer was 500 × 500 × 350m3 and extended from z = 0 to −350m as a

highly conductive material with a permeability of 7.38 × 10−13 m2. Fluid was water,

and these rock properties (e.g., permeability, porosity, diffusion coefficient, etc.) are

representative of sandstone. The middle layer was less permeable (permeability was

1.05×10−22 m2), with size 500×500×50m3 extending from z = −350 to −400m. This

permeability is representative of rocks such as shale or granite. The low-permeability

layer, however, included a small-volume, highly permeable (7.38× 10−13 m2) material

between x = 300 and 350m, y = 0 and 500m, and z = −400 and −450m. The bottom

layer was also a highly conductive region with a permeability of 7.38× 10−13 m2 and

dimensions of 500× 500× 100m3.
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A solute (conservative tracer) at 10 mol m−3 was placed below the low permeable

zone as shown in Fig. 3.4 as the purple 50×500×50m3 block. The initial and boundary

conditions for the model included: pressure of 1 atm at the top with a hydrostatic

pressure gradient from top to bottom. The right face (x = 0) was assigned 2 atm to

drive fluid from right to left. For solute transport, the boundary conditions were zero-

concentration Dirichlet inflow at the right face and zero diffusive gradient outflow at

the left face that allowed only advective outflow. The remaining faces were specified

as zero-solute flux boundaries.

For low- and high-permeability zones, tortuosity was 1.0 while porosities were

0.3 and 0.25, respectively. Solute diffusivity was 10−9 m2 s–1. The Newton solver (20-

iteration maximum) was applied for flow and solute transport. For the flow solver,

relative and absolute tolerances were 10−50 with a relative update tolerance of 10−60

while for solute transport solver, relative and absolute tolerances were 10−4 with a

relative update tolerance of 10−60. The simulation was run for one year with an initial

time step of 10−8 years, which was allowed to accelerate by a factor of 8.

SIP Model Setup

Although the domain dimensions for SIP simulations were identical to the

PFLOTRAN simulation, there was only a single layer. The corresponding E4D mesh

for the simulation had 86,780 nodes and 609,562 tetrahedral elements. Zero poten-

tials were enforced on the boundaries. A total of 80 point electrodes were placed in

the domain, all located at z = −425m arranged in 5 lines along the x-axis, with each

line comprising 16 electrodes. The electrode coordinates started at (40, 50,−425) and

ended at (460, 450,−425) with a 28m separation between lines. Electrode measure-

ment configurations included a combination of Wenner and dipole-dipole arrays.

A current of 1A was injected between one pair of electrodes and the potential

difference was measured between another pair of electrodes. There are various ad-
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vantages of using separate source and potential electrode pairs. For example, such a

measurement system can eliminate any inaccuracies caused by the injecting circuit

impedance (the contact impedance between the probe and the medium, which can

be high). Using the prescribed measurement configuration, a total of 1,062 simulated

measurements were collected to capture electrical impedance and phase shift.

The electrical conductivity of the fluid at ω = 0Hz was 2×10−3 S/m. The cemen-

tation and saturation exponents were 0.564 and 0.576, respectively. The characteristics-

relaxation time was 0.061 s, all representative of sandstone (Titov, Komarov, Tarasov,

& Levitski, 2002). SIP analysis was performed for five different frequencies: 0.1, 1.0,

10, 100, and 1,000Hz. Forward model simulations were performed using 61 proces-

sors, where 20 processors were assigned for PFLOTRAN and 41 for E4D. Out of those 41

processors, 40 performed SIP simulations for different measurement configurations,

and the remaining processor gathered the simulated data.

SIP Inversion of Electrical Conductivity

For verification, E4D’s inversion module was used to estimate frequency-dependent

electrical conductivity based on the simulated electrical impedance and phase-shift

data. This estimated conductivity was compared with the simulated conductivity

generated by the PFLOTRAN-SIP framework. The employed inversion process was

blind (i.e., I did not provide prior constraints on the conductivity). This can be

improved by providing detailed conductivity information to E4D’s inversion module.

The SIP inversion employs an unstructured mesh, which consisted of 51,124 nodes

with 316,183 mesh elements. Low-order mesh elements were generated to make inver-

sion process simple and computationally efficient because high-order mesh elements

did not improve the outcome (T. C. Johnson, 2014). The simulated measurements by

PFLOTRAN-SIP were the data supplied to the inversion process as observations.
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The E4D inversion is based on minimizing the following objective function to

estimate the frequency-dependent electrical conductivity distribution, σest:

Φ = Φd [Wd(Φobs − Φpred)] + ζΦm [Wm(σest − σref)] , (3.15)

where Φd is an operator that provides a scalar measure of the misfit between ob-

served and simulated data (e.g., electrical impedance and phase shift) based on the

user-specified norm (e.g., Euclidean norm), Φm is another operator that provides the

scalar measure of the difference between σest [Sm−1] and constraints placed upon the

structure of σref [Sm−1], ζ is the regularization parameter, Wd is the data-weighting

matrix, and Wm is the model-weighting matrix. σest and σref are the estimated and

reference frequency-dependent electrical conductivities. The user specified bounds on

the frequency-dependent conductivity in each mesh cell were 0.00001 and 1.0. The

Φobs and Φpred were the observed and simulated data, respectively. Eq. (3.15) is solved

using the iteratively reweighted least square method (Scales & Gersztenkorn, 1988).

Further details on the parallel inverse modeling algorithm and its implementation in

E4D are available (Johnson et al., 2010).

The ζ value was 100 at the beginning of the inversion and decreased as the non-

linear iteration progressed. Before ζ was reduced, the minimum fractional decrease in

the objective function, Φ, between iterations had to be less than 0.25 upon which ζ

was reduced to 0.5. The convergence of the SIP inversion procedure was based on the

χ2 value of the current iteration after data culling, computed as:

χ2 =
Φd

nd − nc

, (3.16)

where the data residual is the difference between observed and estimated values di-

vided by the standard deviation for that measurement. nd is the total number of

survey measurements and nc is the number of measurements selected from the total

number of measurements during the current iteration. SIP inversion converged after

48 iterations when χ2 reached 60 using the example model from Sec. 3.
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Results

The one-year PFLOTRAN-SIP model simulations were completed in two minutes.

The computation was performed on 61 Intel R© Xeon R© CPU E5-2695 V4@ 2.1GHz

processors. Fig. 3.5 shows the tracer concentration at the end of simulation. In one

year, the pressure gradient drove the tracer about 100m from its initial location in

the y-direction and also moved it upward about 20m.

The SIP module in PFLOTRAN-E4D simulated real and complex electrical impedances

at 0.1, 1, 10, 100, and 1,000Hz. Because of minimal differences between 1 and 10Hz,

only results for 0.1, 10, 100, and 1,000Hz are discussed. This indicated that some

frequencies may be redundant because they yielded similar impedances. Sensitivity

analysis can be performed to identify redundant frequencies; however, this was be-

yond the scope of this paper. Fig. 3.6 shows the real and complex potentials due to

changes in tracer concentration for the various frequencies. Also, this figure provides

information on the change in electrical potential at different frequencies for a single

measurement configuration, indicating the maximum tracer concentration. This 80-

node measurement configuration was selected because tracer concentration was most

visible. The response clearly shows the polarization feature of the tracer. The gradient

of the real electrical potential was high near x = 300m (top row of Fig. 3.6) because

the tracer concentration was maximum. From Fig. 3.6, it is evident that the real po-

tential response for 0.1Hz is different from the responses at 10, 100, and 1,000Hz The

root-mean-square error (RMSE) between these responses was approximately 15% of

the maximum real potential value indicating that frequency has an impact on the real

potential distribution.

The bottom row of Fig. 3.6 shows complex electrical potential responses where

the polarity was switched (colors interchanged). Unlike the real electrical potential,

each complex electrical potential was notably different suggesting that it was fre-

quency dependent. The corresponding RMSE between responses was ∼85% of the
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maximum complex potential value. Such high variation was expected as the complex

electrical potential depends on frequency, chargeability, and relaxation time, although

the last two were constant in this study. Because the response of the complex potential

was clearly visible in the simulation, this indicated that the PFLOTRAN-SIP framework

can effectively simulate polarized geologic materials.

Fig. 3.7 shows the simulated and estimated frequency-dependent electrical con-

ductivities using the PFLOTRAN-SIP framework with the SIP inversion module in E4D.

The true (PFLOTRAN simulated) and estimated (inversion of survey data) real elec-

trical conductivities are plotted in Fig. 3.7(a)-(d) and Fig. 3.7(e)-(h), respectively.

SIP inversion was performed using the simulated electrical impedance, and phase-

shift data obtained from PFLOTRAN-SIP model runs after one year. The computa-

tional time required to perform SIP inversion was approximately two hours on 41

Intel R© Xeon R©d CPU E5-2695 V4@ 2.1GHz processors. Estimated electrical conduc-

tivities showed high contrast around the high tracer distribution/simulated conductiv-

ities, although they were more diffuse than the true/simulated distribution (Fig. 3.7(a-

h)). However, estimated conductivities at 1,000Hz were more accurate than frequen-

cies <1,000Hz with the same constraints. Later, real conductivity values were used

in Eq. 3.11 to provide initial guesses for complex conductivities for SIP inversion.

Estimated complex electrical conductivity distributions are shown in Fig. 3.7(i)-(l).

Similar to estimated real conductivities, complex conductivities computed from SIP

inversion were also diffuse. The inversion process can be improved by providing prior

information and structural constraints on electrical conductivities. However, both es-

timated conductivities were generally consistent with the tracer distribution, which

showed that the SIP inversion module can simulate electrical impedance and phase-

shift data. To summarize, SIP provides a major benefit, which ERT lacks. SIP provides

greater information content than ERT. This is because the SIP survey yields multiple

datasets at different frequencies, which help to overcome false positives. For example,
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from Fig. 3.7 it is evident that the SIP inversion analyses at different frequencies are

indicating the same tracer region, (not a false positive). With an ERT survey, it may

be difficult to delineate a false positive from a true positive because ERT generates a

single dataset.

Fig. 3.8(a)-(c) show simulated outputs of tracer concentrations, real potentials,

and complex potentials for the 80-electrode measurement configuration at frequen-

cies of 0.1, 10, 100, and 1,000Hz. The location of maximum tracer concentration was

around x = 300m. The locations of current and potential measurement electrodes

were at (x = 208, 236, 264, and 292m, y = 250m, and z = −420m) (Fig. 3.8(a)).

Note that electrodes were not placed at the location of maximum concentration be-

cause of the lack of a prior knowledge of tracer fate (which is the case in real-world

applications). Because the measurement electrodes were offset from the maximum

tracer concentration, this resulted in an offset of peaks between tracer distribution

and geoelectrical signals. However, the measured potentials provided meaningful infor-

mation on the bounds of the tracer distribution as well as revealing the significance

of higher frequencies obtained from a combination of the electrical impedance and

phase shift.

Fig. 3.8 (b) and (c) showed that the absolute real potential and complex po-

tential decreased as frequency increased. For SIP simulations, E4D first solves the

real potential Φr. That is, −div [σrgrad [Φr]] = I, where σr is the real component of

σ∗(x, ω) and the real potential, Φr is inversely proportional to σr. Also, σr increases

as ω increases; hence the absolute value of the real potential distribution (as shown in

Fig. 3.8 (b)) decreases as ω increases. After σr is evaluated, E4D computed the complex

potential by solving div [σrgrad [Φc]] = −div [σcgrad [Φr]] where σc is the imaginary

part of σ∗(x, ω) and Φc is the imaginary potential. Thus, Φc is proportional to σc.

Also, σc decreases as ω increases; hence the absolute value of the complex potential

distribution (as shown in Fig. 3.8 (c)) decreased as ω increased.
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Fig. 3.8 (d) shows phase-shift data distribution along the same line for tracer

distribution, real and imaginary potential distribution. Mathematically, the phase

shift is the inverse tangent of the ratio between complex and real potential responses.

Physically, it is the shift between voltage and current signals that is largely governed

by the polarization characteristics of the subsurface. In this study, phase shift lever-

aged signals from both real and complex potential responses to improve interpretation

of survey data. From Fig. 3.8, there was a change in phase shift where tracer trans-

port was predominant. Moreover, the 1,000Hz frequency bounded the tracer zone

better than lower frequencies that cannot be distinguished with ERT. This change in

phase helped constrain the polarized region or bound the interface between tracer-

filled and tracer-free fluids. Obtaining the region of interest using these constraints,

further geoelectrical interrogation can be performed with this volume. Hence, through

phase-shift signatures across multiple frequencies, the PFLOTRAN-SIP framework will

facilitate identification of polarized or geochemically altered zones.

Discussion

IP arises from solute transport and accumulation of ions/electrons in polarized

materials (e.g., those with different grain types, colloids, biological materials, phase-

separated polymers, blends, and crystalline minerals, etc.) that are subject to an

external electric field. Five mechanisms govern the IP phenomena at frequencies <

1MHz: (1) Maxwell-Wagner polarization, which occurs at high frequencies (Alvarez,

1973; Chelidze & Gueguen, 1999; Y. Chen & Or, 2006; Lesmes & Morgan, 2001);

(2) polarization of the inner part of the interface between minerals and water (de

Lima & Sharma, 1992; Leroy & Revil, 2009; Revil, 2012; Vaudelet, Revil, Schmutz,

Franceschi, & Bégassat, 2011); (3) polarization of the outer part of the interface

between minerals and water (de Lima & Sharma, 1992; Dukhin, Shilov, & Bikerman,

1974); (4) membrane polarization for multi-phase systems (Marshall & Madden, 1959;
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Titov et al., 2002; Vinegar & Waxman, 1984); and (5) electrode polarization observed

in the presence of disseminated conductive minerals such as sulfide minerals and pyrite

(Merriam, 2007; H. Seigel, Nabighian, Parasnis, & Vozoff, 2007; Wong, 1979).

This PFLOTRAN-SIP simulations were geared toward IP mechanisms (1), (4), and

(5). To simulate the mechanisms mentioned in (2) and (3), Eq. (3.11) must be replaced

with conductivity models that account for interface polarization with consideration

of effective pore size, electrical formation factor, distribution of relaxation times, and

sorption mechanisms (Revil & Florsch, 2010; Vaudelet, Revil, Schmutz, Franceschi, &

Bègassat, 2011). Note that the Cole-Cole model given by Eq. (3.11) neglects the effects

of polarization at interfaces or sorption onto mineral surfaces. The PFLOTRAN-SIP

framework can easily account for such modifications in conductivity, but this is a

future endeavor.

Conclusions

This work developed a computational framework to couple PFLOTRAN and E4D

to model electrical-impedance and phase-shift data for SIP due to changes in subsur-

face processes. PFLOTRAN and E4D are massively parallel codes that simulate processes

related to fluid flow, reactive transport, and SIP. A mathematical relationship based

on Archie’s and Cole-Cole models linked flow and solute-transport state variables at

various frequencies. A reservoir-scale tracer transport model demonstrated the pro-

posed PFLOTRAN-SIP framework where fluid flow and tracer concentration evolution

were simulated over one year. Then, I simulated electrical potentials for various elec-

trode configurations at different frequencies. These simulations showed that contrast

in real potential was minimal even as the frequency varied. However, there was a

significant change in contrast of complex potentials across frequencies. Phase shift

(combination of real and complex potentials) helped identify the region where tracer

concentration was high. This analysis showed that SIP has two major advantages
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over ERT. First, SIP provided frequency-dependent electrical impedance data. Sec-

ond, phase-shift signatures obtained from SIP analysis identified and constrained

geochemically altered zones. Combining frequency-dependent real potential, complex

potential, and phase responses from a SIP survey/simulation paints a more detailed

picture of the subsurface with an enhanced ability to detect contaminants/tracers.

Moreover, coupling fluid flow, reactive transport, and SIP models can better detect

contaminants compared to either the ERT or SIP method alone. For instance, through

the specified numerical example, solute transport simulations provided insight into

the tracer distribution. This information was used to customize SIP inversion to esti-

mate frequency-dependent electrical conductivities, which yielded an improved image

of tracer concentration at different frequencies. Although this work focused on simu-

lating tracer transport, it could also be applied to detect hydrocarbon flow, changes

in the subsurface due to geochemical reactions, sulfide minerals, metallic objects,

municipal wastes, and salinity intrusion.

Flow

Physics Numerical methods

Time integrator
Newton solver
Linear solver

Peer

Child

Figure 3.1: Peer and child process model class of PFLOTRAN (redrawn from reference
(Johnson et al., 2017)).
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Algorithm 1 Overview of the proposed PFLOTRAN-SIP framework for simulating electrical
impedance data
1: INPUT: Initial and boundary conditions for fluid flow and solute transport models

in PFLOTRAN, fluid density, porosity, saturation, volumetric source/sink with its
location, intrinsic and relative permeabilities, dynamic viscosity, mass flow rate,
diffusion/dispersion coefficients, tortuosity, solute source/sink with its location,
Archie’s and Cole-Cole model parameters, total simulation time, time-step for
PFLOTRAN, interrogation frequencies, electrode locations and measurement config-
uration, number of processors for PFLOTRAN and E4D, and meshes for PFLOTRAN
and E4D.

2: Solve Eqs. (3.6)–(3.8) for fluid pressure, fluid saturation, and fluid velocity.
3: Solve Eq. (3.9) to calculate the spatio-temporal distribution of solute concentra-

tion.
4: Transfer solute concentration from PFLOTRAN to the E4D master processor to per-

form SIP simulations at specific times.
5: Receive numerical model setup information from PFLOTRAN input files to perform

mesh interpolation for SIP simulations.
6: Broadcast run information and distribute mesh assignments to E4D slave proces-

sors.
7: Calculate the mesh interpolation matrix Eq. (3.14) to interpolate PFLOTRAN simu-

lation outputs (e.g., solute concentrations) onto the E4D mesh for SIP simulations.
8: Calculate electrical conductivities using Archie’s model Eq. (3.10).
9: Calculate frequency-dependent electrical conductivities using the Cole-Cole model

Eq. (3.11).
10: Pass real and complex conductivities calculated at different frequencies to the E4D

master processor to perform SIP simulations.
11: Broadcast real and complex conductivities to E4D slave processors to compute

pole solutions for electrode configurations.
12: Solve Eq. (3.5) to compute real and complex electrical potential at different fre-

quencies and solute concentrations at specified times.
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Flow model

Reactive-transport model

Grid interpolation

Archie’s model

Cole-Cole model

SIP

Figure 3.2: Steps involved in coupling fluid flow, solute transport, and SIP process
models in the PFLOTRAN-SIP framework; further details are available (Johnson &
Thomle, 2017; Lichtner et al., 2015).

E4D grid, i

PFLOTRAN grid, j

point i, k

Figure 3.3: Schematic of interpolation of state variables (e.g., solute concentration) on
the PFLOTRAN mesh (cube) on to E4D mesh (tetrahedron), redrawn from (Johnson et
al., 2017).
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Figure 3.5: Spatial distribution of tracer concentrations after one year.
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Figure 3.6: Slices of simulated real (top) and complex (bottom) electrical potential-
s/impedances at y = 250m for a single electrode-measurement configuration after one
year.
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Figure 3.7: Simulated and estimated frequency-dependent electrical conductivities at y
= 250m after one year (a)-(d) True-electrical conductivities from the PFLOTRAN-SIP
framework, (e)-(h) estimated bulk-real conductivities from SIP inversion, and (i)-
(l) estimated bulk complex electrical conductivities from SIP inversion.
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vI

Figure 3.8: Distribution of (a) tracer concentration where I and V represents current
and potential electrodes, respectively, (b) real potential, (c) complex potential, and
(d) phase shift along the y-axis at x = 250m and z = −425m.
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CHAPTER FOUR

Manuscript 3: ML to Reactive-transport Data

This chapter was submitted to arXiv as: B. Ahmmed, M. K. Mudunuru, S. Karra, 
S. C. James, V. V. Vesselinov, (2020): A Comparative Study of Machine Learning 

Models for Predicting the State of Reactive Mixing, arXiv:2002.11511v1.

Abstract

Mixing phenomena are important mechanisms controlling flow, s pecies trans-

port, and reaction processes in fluids and porous media. Accurate predictions of reac-

tive mixing are critical for many Earth and environmental science problems such 

as contaminant fate and remediation, macroalgae growth, and plankton biomass 

evolution. To investigate mixing dynamics over time under different scenarios (e.g., 

anisotropy, fluctuating velocity fields), a high-fidelity, finite-element-based numerical 

model is built to solve the fast, irreversible bimolecular reaction-diffusion equations 

to simulate a range of reactive-mixing scenarios. A total of 2,315 simulations are per-

formed using different sets of model input parameters comprising various spatial scales 

of vortex structures in the velocity field, t ime-scales associated with velocity oscilla-

tions, the perturbation parameter for the vortex-based velocity, anisotropic dispersion 

contrast (i.e., ratio of longitudinal-to-transverse dispersion), and molecular diffusion. 

Outputs comprise concentration profiles o f t he r eactants a nd p roducts. The inputs 

and outputs of these simulations are concatenated into feature and label matrices, 

respectively, to train 20 different machine learning (ML) emulators to approximate 

system behavior. The 20 ML emulators based on linear methods, Bayesian methods, 

ensemble learning methods, and multilayer perceptron (MLP), are compared to assess 

these models. The ML emulators are specifically trained to classify the state of mix-

ing and predict three quantities of interest (QoIs) characterizing species production,
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decay (i.e., average concentration, square of average concentration), and degree of

mixing (i.e., variances of species concentration). Linear classifiers and regressors fail

to reproduce the QoIs; however, ensemble methods (classifiers and regressors) and the

MLP accurately classify the state of reactive mixing and the QoIs. Among ensemble

methods, random forest and decision-tree-based AdaBoost faithfully predict the QoIs.

At run time, trained ML emulators are ≈ 105 times faster than the high-fidelity nu-

merical simulations. Speed and accuracy of the ensemble and MLP models facilitate

uncertainty quantification, which usually requires 1,000s of model run, to estimate

the uncertainty bounds on the QoIs.

Introduction

reactive-transport phenomena dictate the distribution of chemical species in

fluids (e.g., coastal waters) and subsurface porous media. Accurate quantification of

species concentration is critical to remediation applications such as nuclear remedia-

tion, spill distribution, algal-bloom forecasting, etc (Ahmmed, 2015; Cama, Soler, &

Ayora, 2019; L. Chen, Wang, Kang, & Tao, 2018; Lagneau et al., 2019; Lichtner et al.,

2015; Lichtner, Steefel, & Oelkers, 2019; Molins & Knabner, 2019; Öztürk, Ashraf,

Aksoy, Ahmad, & Hakeem, 2015; Rolle & Le Borgne, 2019; Sin & Corvisier, 2019).

Parameters that influence reactive-transport in fluids and subsurface porous media

include the structure of the flow field (e.g., chaotic advection), fluid injection/ex-

traction (i.e., location of wells, injection/extraction rates), subsurface heterogeneity,

dispersion, and anisotropy (Mudunuru & Karra, 2019; Vesselinov, Mudunuru, Karra,

O’Malley, & Alexandrov, 2019). These parameters have variable impacts on important

quantities of interest (QoIs) such as species production and decay (e.g., average and

squared average species concentrations) and degree of mixing (i.e., variances of species

concentrations). For QoIs, nonlinear partial differential equations are solved using

high-fidelity numerical methods (e.g., finite-difference, -element,or -volume methods)
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that can take hours to days (for ≈ O(106) − O(109) degrees-of-freedom) on state-

of-the-art, high-performance computing (HPC) machines. Such computation times

preclude real-time predictions, which can be critical to decision making for remedia-

tion activities. Hence, alternative faster approaches are needed and machine learning

(ML)-based emulators show promise (Hulbert et al., 2019; Srinivasan et al., 2018;

Valls et al., 2018; Viswanathan et al., 2018; Wu et al., 2018). Here, I built and com-

pared various ML emulators to predict reactive-transport QoIs. The ML emulators

were trained and tested using data from high-fidelity, finite-element numerical simula-

tions, which expressly reflected the underlying reaction-diffusion physics in anisotropic

porous media.

Given sufficient data, ML models can successfully detect, quantify, and predict

different types of phenomena in the geosciences (Bergen et al., 2019; Reichstein et

al., 2019). Applications include remote sensing (Mesa et al., 2018; Valls et al., 2018),

ocean wave forecasting (James et al., 2018; O’Donncha et al., 2018, 2019), seismology

(Hulbert et al., 2019; Leduc et al., 2017; M.-Zook & Ruppert, 2017; Reynen & Audet,

2017; Wu et al., 2018; Yuan et al., 2019), hydrogeology (Barzegar et al., 2018; Srini-

vasan et al., 2018; Viswanathan et al., 2018), and geochemistry (Cracknell et al., 2014;

Galiano et al., 2015; Kirkwood et al., 2016; Oonk & Spijker, 2015; Zuo, 2017). ML

emulators (also known as surrogate models or reduced-order models) can be fast, reli-

able, and robust when trained on large datasets (Bergen et al., 2019; Reichstein et al.,

2019; Salah, 2018). ML emulators are constructed using training data (e.g., features

and labels), which include inputs and outputs either from field data, experimental

data, high-fidelity numerical simulations, or any combination of these (Brunton &

Kutz, 2019; Salah, 2018). In this paper, I compared emulators based on generalized

linear methods (Hastie, Tibshirani, & Friedman, 2009; Marquaridt, 1970), Bayesian

methods (Murphy, 2012; Tipping, 2001), ensemble methods (Breiman, 1996; Freund
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& Schapire, 1997), and an MLP (Montavon, Samek, & Müller, 2018; Rumelhart,

Hinton, & Williams, 1988; Rumelhart et al., 1988) to predict various QoIs.

Previous researchers have used unsupervised and supervised ML methods to

reproduce reactive-transport QoIs. Vesselinov et al. (Vesselinov et al., 2019) used

non-negative tensor factorization with custom k-means clustering (unsupervised ML)

to identify hidden features in the solutions to reaction-diffusion equations. They de-

termined that anisotropy features (i.e., longitudinal and transverse dispersion) govern

reactive mixing at early to middle times while molecular diffusion controls product

formation at late times. They also quantified the effects of longitudinal and trans-

verse dispersion and molecular diffusion on species production and decay over time.

Mudunuru and Karra (Mudunuru & Karra, 2019) ranked the importance of input

parameters/features on reactive-transport QoIs. Also, they developed support vector

machine (SVM) and support vector regressor (SVR) emulators to classify the degree

of mixing and to predict QoIs. However, SVM/SVR training times significantly in-

crease with the size of the training data set (Mudunuru & Karra, 2019). To obviate

this problem, this study built ML emulators whose training times are ≈ 105 times

faster than SVM and SVR without compromising accuracy.

Specifically, I compared one linear classifier, two Bayesian classifiers, an en-

semble classifier, an MLP classifier, seven linear regressors, six ensemble regressors,

and an MLP regressor. Emulator performance was assessed according to training and

testing scores, training time, and R2 score on the QoIs from a blind data set. The

blind data set included six realizations that were not seen during training and testing

phases. This study addressed the following questions: (1) Can ML emulators accu-

rately classify the mixing state of the anisotropic reaction-diffusion system? (2) How

accurately do they predict QoIs of reactive mixing? (3) How fast can they be trained?

(4) How does each emulator rank overall?
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Governing Equations for Reactive Mixing

Let Ω ⊂ IRd be an open bounded domain, where d indicates the number of

spatial dimensions. The boundary was denoted by ∂Ω, which was assumed to be

piece-wise smooth. Let Ω be the set closure of Ω and let spatial point x ∈ Ω. The di-

vergence and gradient operators with respect to x were denoted by div[•] and grad[•],

respectively. Let n(x) be the unit outward normal to ∂Ω. Let t ∈ ]0, I[ denote time,

where I is the length of time of interest. The governing equations were posed on

Ω×]0, I[ and the initial condition was specified on Ω. Consider the fast bimolecular

reaction where species A and B reacted irreversibly to yield product C:

nAA + nB B −→ nC C. (4.1)

The governing equations for this fast bimolecular reaction without volumetric sources/sinks

are:

∂cA
∂t
− div[D(x, t) grad[cA]] = −nA kABcAcB in Ω×]0, I[, (4.2a)

∂cB
∂t
− div[D(x, t) grad[cB]] = −nB kABcAcB in Ω×]0, I[, (4.2b)

∂cC
∂t
− div[D(x, t) grad[cC ]] = +nC kABcAcB in Ω×]0, I[, (4.2c)

ci(x, t) = cp
i (x, t) on ΓD

i ×]0, I[ (i = A, B, C), (4.2d)

(−D(x, t) grad[ci]) · n(x) = hp
i (x, t) on ΓN

i ×]0, I[ (i = A, B, C), (4.2e)

ci(x, t = 0) = c0
i (x) in Ω (i = A, B, C). (4.2f)

Traditional numerical formulations for Eqs. (4.2a)–(4.2f) can yield nonphysical solu-

tions for chemical species concentration (Nakshatrala, Mudunuru, & Valocchi, 2013).

Also, when anisotropy dominates, the standard Galerkin formulation produces erro-

neous concentrations (Mudunuru & Nakshatrala, 2012, 2017; Mudunuru, Shabouei,

& Nakshatrala, 2015; Nakshatrala et al., 2013). To overcome these problems, a non-

negative, finite-element method was used to compute species concentrations (Naksha-
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trala et al., 2013). This method ensures that concentrations are non-negative and

satisfy the discrete maximum principle.

Reaction Tank Problem and Associated QoIs

Figure 4.1 depicts the initial boundary-value problem. The model domain was

a square with L = 1. Zero-flux boundary conditions hp
i (x, t) = 0 were enforced on

all sides of the domain. For all chemical species, the non-reactive volumetric source

fi(x, t) was equal to zero. Initially, species A and B were segregated (see Fig. 4.1)

and stoichiometric coefficients were nA = 1, nB = 1, and nC = 1. The total time of

interest was I = 1. The dispersion tensor was taken from the subsurface literature

(Nakshatrala et al., 2013; Pinder & Celia, 2006):

Dsubsurface(x) = DmI + αT‖v‖I +
αL − αT

‖v‖
v ⊗ v. (4.3)

The model velocity field was used to define the dispersion tensor according to stream

function (Adrover, Cerbelli, & Giona, 2002; Mudunuru & Nakshatrala, 2016; Tsang,

2009):

ψ(x, t) =


1

2πκf
[sin(2πκfx)− sin(2πκfy) + v0 cos(2πκfy)] if νT ≤ t <

(
ν + 1

2

)
T

1
2πκf

[sin(2πκfx)− sin(2πκfy)− v0 cos(2πκfx)] if
(
ν + 1

2

)
T ≤ t < (ν + 1)T

.

(4.4)

Using Eq. (4.4), the divergence-free velocity field components are:

vx(x, t) = −∂ψ
∂y

=


cos(2πκfy) + v0 sin(2πκfy) if νT ≤ t <

(
ν + 1

2

)
T

cos(2πκfy) if
(
ν + 1

2

)
T ≤ t < (ν + 1)T

,

(4.5)

vy(x, t) = +
∂ψ

∂x
=


cos(2πκfx) if νT ≤ t <

(
ν + 1

2

)
T

cos(2πκfx) + v0 sin(2πκfx) if
(
ν + 1

2

)
T ≤ t < (ν + 1)T

.

(4.6)
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In Eqs. (4.5)–(4.6), T controls the oscillation of the velocity field from clockwise

to anti-clockwise. v0 is the perturbation parameter of the underlying vortex-based

flow field. Larger values of v0 skew the vortices into ellipses while smaller values of

v0 yield circular vortex structures in the velocity field. αL

αT
controls the magnitude of

the anisotropic dispersion contrast. Smaller values of αL

αT
indicate less anisotropy and

vice versa. The magnitude of κfL governs the size of the vortex structures in the flow

field (Mudunuru & Karra, 2019; Vesselinov et al., 2019). Note that varying v0 does

not significantly alter vortex locations.

The QoIs were defined as:

(1) Species production/decay, which can be analyzed by calculating normalized

average concentrations, ci, and normalized average of squared concentrations,

c2
i. Normalized average of squared concentration, c2

i, provides information on

the species production/decay as a function of the eigenvalues of anisotropic

dispersion. For example, see Theorem 2.3 in Reference (Mudunuru & Karra,

2019), which shows that c2
i is bounded above and below by an exponential

function of minimum and maximum eigenvalues of anisotropic dispersion.

These quantities are:

ci :=
〈ci(t)〉

max [〈ci(t)〉]
where 〈ci(t)〉 =

∫
Ω

ci(x, t) dΩ, (4.7)

c2
i :=

〈c2
i 〉

max [〈c2
i 〉]

where
〈
c2
i (t)
〉

=

∫
Ω

c2
i (x, t) dΩ. (4.8)

(2) Degree of mixing was defined as the variance of concentration:

σ2
ci

:=
〈c2
i 〉 − 〈ci〉2

max [〈c2
i 〉 − 〈ci〉2]

. (4.9)

Note that the values for ci, c2
i, and σ2

ci
were non-negative and ranged from 0 to 1

∀ i = A,B,C.
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Feature Generation

First, a 2D numerical model was built using first-order finite-element structured

triangular mesh, which had 81 nodes on each side. A total of 2,500 high-fidelity

numerical simulations were run for different sets of reaction-diffusion model input

parameters, of which 2,315 ran to completion because certain parameter combinations

did not yield to stable solution. Each simulation used 1,000 time steps (I = 0.0 to

1.0 with a uniform time step of 0.001). Features included: longitudinal-to-transverse

anisotropic dispersion ratio αL

αT
, molecular diffusion Dm, the perturbation parameter

of the underlying vortex-based velocity field v0, and velocity field characteristics scales

κfL and T . Specifically, input parameters were: v0 = [1, 10−1, 10−2, 10−3, 10−4], αL

αT
=

[1, 101, 102, 103, 104], Dm = [10−8, 10−3, 10−2, 10−1], κfL = [1, 2, 3, 4, 5], and T = [1 ×

10−4, 2× 10−4, 3× 10−4, 4× 10−4, 5× 10−4]. αT was varied with αL held at 1.0. Five

features for each of the 2,315 models with 1,000 time steps formed the feature matrix

with dimensions 2, 315, 000× 5.

Machine Learning Emulators

Labels (QoIs) and Preprocessing

Labels were the QoIs of the 2,315 simulations at each time step yielding label

vectors. Features and labels were concatenated into training and testing data forming

a 2, 315, 000×6 matrix. For ML classification, the degree of mixing in the system was

characterized by four classes representing: Class-1 (well mixed), Class-2 (moderately

mixed), Class-3 (weakly mixed), and Class-4 (ultra-weak mixing). The corresponding

σ2
i for these classes are 0.0–0.25, 0.25–0.5, 0.5–0.75, and 0.75–1.0, respectively. Of

course, additional classes could be defined although this would necessitate re-training

of ML emulators. These data were partitioned into training and testing data during

construction of the ML emulators and Table 4.1 lists the different partitions. Each

emulator was trained using the three different data partitions and the performance
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of each assessed. First, 0.9% of data were used as training data to identify optimized

hyperparameters and other tunable parameters. Subsequently, emulators using the

optimized hyperparameters were validated against 63% and 81% of data partitions.

Preprocessing is typically required for ML emulator development. ML emulators

that use the Euclidean norm (e.g., kernel-based methods) must have all features/in-

put parameters of the same scale to make accurate predictions (Buitinck et al., 2013;

Müller & Guido, 2016; Pedregosa et al., 2011a). Common preprocessors are standard-

ization (recasting all feature data into the standard normal distribution N(0, 1)),

normalization (independently scaling each feature between 0 and 1), and max-abs

scaling (scale and translate individual features such that the maximal absolute value

of a feature is 1). In this study, except for Random Forests (RF), which is agnostic

to feature scaling, because features are neither sparse nor skewed and do not have

outliers, all data were standardized. For polynomial regression, I used the quadratic

transformation of the data.

Optimization of Hyperparameter and Other Tunable Parameters

Every ML emulator learns a function or a set of functions by comparing features

and corresponding labels. During this process, different hyperparameters for each ML

emulator control the learning process. Some common hyperparameters are regular-

ization, learning rate, and the cost function. In addition, there are additional tunable

parameters for each ML emulator that also speed the learning process and make a

more robust emulator, including the number of training iterations, kernel, truncation

value, etc. Because hyperparameter optimization is an exhaustive, time-consuming

process, 0.9% of the data (23 simulations) were used with the Gridsearch algorithm

in Scikit-learn (Pedregosa et al., 2011b), a Python ML package. Tables 4.2 and 4.3 list

the hyperparameters for each ML emulator. Later, 7% and 9% of the data were used

for validation with 30% or 10% reserved as blind data for testing.
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Table 4.1: Summary of training and testing data partitions used in ML emulator
development and testing.

% of input data (No. of simulations) Size of samples for QoIs
Training data Validation data Testing data Training Testing
0.9% (20) 0.1 (3) % 99% (2,292) 20,150 2,291,850
63% (1458) 7% (162) 30% (690) 1,458,500 694,500
81% (1875) 9% (208) 10% (230) 1,875,500 231,500

Because, ML emulators can introduce bias during training, overfitting is a com-

mon phenomenon. To ameliorate this, k-fold cross-validation algorithm was used to

avoid bias, to determine optimal computational times, and to calculate reliable vari-

ances (Chou, Tsai, Pham, & Lu, 2014; Kohavi, 1995). In this work, 10-fold cross-

validation was used (Chou et al., 2014; Kohavi, 1995). First, it subdivided training

data into equal ten subsets. Then, it used nine sets for training while one set was

left for validation, and this process was repeated leaving out each subset once. The

average performance on the 10 withheld data sets were reported along with their

variance.

ML Emulators

This research applied 20 ML emulators to classify the state of reactive mix-

ing and to predict the reactive-transport QoIs. Among the 20 ML emulators, eight

were linear, five were Bayesian, six were ensemble, and one was an MLP. The eight

linear ML emulators were ordinary least square regressor (LSQR), ridge regressor

(RR), lasso regressor (LR), elastic-net regressor (ER), Huber regressor (HR), polyno-

mial, logistic regression (LogR), and kernel ridge (KR). Among the linear emulators,

only LogR is a classifier. The five Bayesian techniques were – Bayesian ridge (BR),

Gaussian process (GP), naïve Bayes (NB), linear discriminant analysis (LDA), and

quadratic discriminant analysis (QDA). Among these Bayesian emulators, LDA and

QDA are classifiers and remaining are regressors. The six ensemble ML emulators

were bagging, decision tree (DT), random forest (RF), AdaBoost (AdaB), DT-based

69



AdaB, and gradient boosting method (GBM). Among the six ensemble emulators,

RF was used as both classifier and regressor. MLP was also used as both classifier

and regressor.

Linear ML Emulators

Linear ML emulators tend to fit a straight line to the labels. Each linear emu-

lators’ equation along with its corresponding cost function is described in Appendix

B. A brief mathematical description of each linear ML emulator is explained at Ap-

pendix A. The equation for polynomial regression is not listed here because it applies

the LSQR formula to quadratic-scaled data. For LSQR and polynomial regressor, I

optimized intercept. For RR, α2 and ε (tolerance/threshold) were optimized. For LR,

α1, ε, and maximum iteration number were optimized. For ER, α1, α2, ε, l1 ratio, and

maximum iteration number were optimized. For HR, α1, ε, and maximum iteration

number were optimized. Optimized hyperparameters and other tunable parameters

(bolded) for linear ML emulators were listed in Table 4.2. For Logistic regression,

multi-class (binary or multi-class), solver, ε, and maximum number of iterations were

optimized and corresponding settings are presented in Table 4.2. Tested solvers in-

cluded Newton’s method, limited memory large-scale bound constrained (LBFGS)

solver, and the stochastic average gradient (SAG) solver. For KR, α1, λ, and kernels

were optimized (see, Table 4.2).

Bayesian ML Emulators

Bayesian ML emulators apply Bayes’ rule to learn function from labels to pre-

dict equivalent label. Equations for Bayesian ML emulators are described in Appendix

B. Also, a brief mathematical description of each Bayesian ML emulator is explained

in Appendix A. For BR, β, ω, maximum iterations, and ε were the hyperparameters

and their optimized values are shown in bold in Table 4.3. For GP, kernel was opti-

mized and its best is listed in Table 4.3. In NB, only priors and variance smoothing
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were hyperparameters. For LDA, solver was optimized; solvers included singular value

decomposition (SVD), LSQR, eigen value decomposition. Among these three, SVD

was fastest. For QDA, only tolerance was optimized and best value was 10−4.

Ensemble Emulators

If the relationship between features and label is nonlinear, linear ML emulators

are not expected to perform well. Instead, nonlinear ML emulators such as an MLP

and ensemble methods should work better. Ensemble methods bootstrap (random

sampling with replacement) data to develop different tree models/predictors. Each

label is used with replacement as input for developing individual models; therefore,

tree models have different labels based on the bootstrap process. Because bootstrap-

ping captures many uncorrelated base learners to develop a final model, it reduces

variance; resulting in a reduced prediction error. Also, in ensemble models, many dif-

ferent trees predict the same target variable; therefore, they predict better than any

single tree alone.

Ensemble techniques are further classified into Bagging (bootstrapping aggre-

gating) and Boosting (form many weak trees/learners into a strong tree). While bag-

ging emulators work best with strong and complex trees (e.g., fully developed decision

trees), boosting emulators work best with weak models (e.g., shallow decision trees). In

this study, several averaging/bagging and boosting ensemble emulators were explored

to classify and predict reactive mixing. The averaging emulators included bagging

and RF while boosting emulators include AdaBoost (AdaB), DT-based AdaB, and

gradient boosting method (GBM).

For DT, maximum tree depth, maximum number of features, and minimum

sample splitting were optimized and best settings are listed in bold in Table 4.4. In

Bagging, tree number, bootstrapping, and maximum number of features were opti-

mized and their best settings are prescribed in Table 4.4. In RF, maximum depth of
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tree, tree number in forest, minimum sample splitting number, bootstrapping, and

maximum feature number were optimized and their best settings are listed in bold

in Table 4.4. For AdaB and DT-based AdaB, number of trees, loss function, and γ

were optimized and their best settings are in bold in Table 4.4. In GBM, number of

trees, sub-sampling, and γ were optimized and their best settings are prescribed in

bold in Table 4.4. For MLP, number of hidden layers, activation function, α, γ, solver,

and maximum number of iteration were optimized and their best values are bold in

Table 4.5. Solvers in MLP are adaptive momentum (Adam), LBFGS, and SGD.

Performance Metrics

Training time and R2 score are performance metrics for each emulator. Training

time should be fast while R2 measures the correlation between y and ŷ. For n pairs

of data points, the R2 score is:

R2 =

n∑
i=1

(yi − ymean)2 −
n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ymean)2
, (4.10)

which ranged from 0 to 1 for the worst and best predictions, respectively. For classi-

fication, the performance metrics is defined as:

Accuracy =
1

nsamples

nsamples∑
i=1

1(y) (ŷi = yi) , (4.11)

where 1(y) is the indicator function (Hastie et al., 2009).

Results

After time t = 0, reactants A and B were allowed to mix and formed prod-

uct C. The extent of mixing depended upon the reaction-diffusion inputs (features).

Increased degree of mixing increased the yield of product C. Product C yield at nor-

malized simulation times t = 0, 0.5, and 1.0 are shown in Figs. 4.2-4.4 revealing the

significance of kfL on product formation at different times. The importance of αL

αT
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Table 4.2: Hyperparameters and tunable parameters for generalized linear ML
emulators, logistic regression, and KR with the best parameters in bold numbers

and text in type-writer font.

Emulator Hyperparameter and Sought range
tunable parameter

LSQR Fit intercept True, False

RR α2 1.0, 100, 1,000
Max. no. of iterations 50, 300, 1,000

LR
α1 10−1, 10−2, 10−3, 10−4

ε 10−3, 10−4

Max. no. of iterations 50, 100, 300, 1, 000

ER

α1 and α2 10−1, 10−2, 10−3, 10−4

ε 10−2, 10−3, 10−4

l1 ratio 0.1, 0.5, 1.0
Max. no. of iterations 102, 103, 104

Tolerance 10−2, 10−3, 10−4

HR
α1 10−1, 10−2, 10−3,10−4

ε 10−3, 10−4, 10−5

Max. no. of iterations 10, 50, 100

LogR

Multi-class OVR, Multinomial
Solver Newton-cg, lbfgs, SAG
ε 10−3, 10−4, 10−5,

Max. no. of iterations 10, 50, 100, 200, 300

KR
α 10−2, 10−3, 10−4

λ 1, 2, 3
Kernel linear, polynomial, RBF

Table 4.3: Hyperparameters and tunable parameters for Bayesian emulators where
bold numbers and text in type-writer font parameters were best suited parameters.

Exponential sine squared
(
K (x, x

′
) = σ2exp

(
−2sin2

(
π|x− x′|/p

)
/l2
))

is
parameterized by a length-scale parameter (l) >0 and a periodicity (p) >0.

Emulator Hyperparameter and Sought range
tunable parameter

BR No. of iterations 100, 200, 300
ε 10−2, 10−3, 10−4

GP Kernel Exponential sine squared, RBF

NB Priors True, None
Variance smoothing 10−7, 10−8, 10−9

LDA Solver SVD, LSQR, Eigen
QDA Tolerance 10−3, 10−4, 10−5
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Table 4.4: Hyperparameters and tunable parameters for ensemble ML emulators
with the best parameters in bold numbers and text in type-writer font.

Emulator Hyperparameter and Sought range
tunable parameter

DT
Maximum depth 2, 3, None

Max. no. of features 3, 4, 5
Min. sample splits 5 3, 4

Bagging
No. of trees 100, 200, 500
Bootstrap True, False

Max. no. of features 3, 4, 5

RF

Maximum depth 2, 3, None
No. of trees in the forest 250, 500, 1,000

Bootstrap True, False
Max. no. of features in a tree 3, 4, 5

Min. sample splits 2, 3, 4

AdaB
No. of trees 100, 200, 300

Loss function type linear, square, exponential
γ 0.1, 0.5, 0.75,1.0

DT-based
AdaB

No. of trees 100, 200, 500
Loss function type linear, square, exponential

γ 0.1, 0.5, 1.0

GBM
No. of trees 100, 200, 500
Sub-sample 0.5, 0.7, 0.8

γ 0.1, 0.25, 0.5

Table 4.5: Hyperparameters and tunable parameters for MLP emulator with the best
parameters in bold numbers and text in type-writer font.

Emulator Hyperparameter and Sought range
tunable parameter

MLP

No. of hidden layers 5, 25, 50, 100, 200
Activation function ReLU, tanh, logistic

α 10−1, 10−2, 10−4

γ 10−1, 10−1, 10−3

Solver Adam, lbfgs, sgd
Max. no. of iterations 1–5,000, 200

on product formation at various times was also evident. For kfL = 2 and αL

αT
= 103

(see Fig. 4.2 (a-c)) at t = 0.1, there is little reaction at the center of the vortices.

However, regions with zero concentration decreased as kfL increases. For example, at

kfL = 3 and t = 1.0, more product was formed and negligible zero concentration of
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C was present in the model domain. At kfL = 5 and t = 1.0, the system was nearly

well-mixed even at high anisotropy. Because high kfL created a higher number of vor-

tices that enhanced reactant mixing, it increased product yield. Figure 4.3 shows the

product C yield under medium anisotropy. Reducing anisotropy (αL

αT
) from 1,000 to

100 improved product yield even under low κfL (see Fig. 4.3(c)). Among αL

αT
, kfL, and

Dm, αL

αT
controlled the reaction at early times while kfL and Dm controlled reaction

at late times. Higher values of αL

αT
decreased product yield but higher values of kfL

and Dm increased the product yield.

ML emulators were also used to classify the mixing state of the system. Out

of 20 ML emulators, only LogR, LDA, QDA, RF, and MLP were used for classifica-

tion. Table 4.6 shows the training score, testing score, sample sizes, and training time

for each linear ML emulator. Because the progress of reactive-transport is nonlinear,

linear ML emulators (e.g., LogR, LDA, QDA) failed to learn an accurate function

for the state of mixing. Mixing state classification by linear classifiers on training

and testing data had accuracies <80%. Nonlinear classifiers such as RF and MLP

learnt better functions whose accuracies were >95%. Results from RF and MLP were

used to plot the confusion matrix of Figure 4.5 to show true and false predictions.

Confusion matrix for RF and MLP were constructed using approximately 1% of data

(23 simulations as training data) while the remaining 99% (2,292 simulations) data

were used as testing data. In the confusion matrix, diagonal and off-diagonal elements

show true and false predictions, respectively. The RF and MLP emulators false pre-

diction scores were less than 2% and 10%, respectively. Similar trends were observed

for species A and B, hence the confusion matrices for them are not shown here.

Table 4.7 shows the training and testing scores for the six linear ML emulators.

Although training times were short (always <20minutes), training and testing R2

scores never exceed 73%. Also, three Bayesian ML emulators (e.g., BR, GP, NB) were

applied to predict QoIs that show similar performance as linear emulators. Among
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them, training and testing scores of BR and NB were <75%. GPs failed to converge

for large datasets because of lack of sparsity and due to large training sample size

(≈ O(104)−O(106)); however, GP trained on a smaller sample size scored >99%. This

increased prediction capability of GP compared to other Bayesian ML emulators can

be attributed to the RBF kernels. As species A and B decayed or product C increased

in an exponential fashion, RBF kernels used by GP emulators were better suited to

model such a reactive-transport system. Hence, GP emulators trained on small (0.25%

of data) data performed best and showed promise to predict QoIs.

Table 4.8 compares the training and testing scores for ensemble and MLP em-

ulators. The R2 scores for training and testing datasets were greater than 90% (e.g.,

Bagging, DT, RF, MLP). For six unseen (blind) realizations, Bagging, DT, RF, Ad-

aBoost, DT-based AdaB, and GBM showed astounding match between true QoIs

and their corresponding predictions by RF and GBM. Here, only figures for RF and

GBM emulators (see, Figures 4.6–4.7) are shown here because the remaining ensemble

emulators showed the similar trend. These results indicate that tree-based methods

outperformed linear ML methods in capturing the QoIs of the reactive-transport sys-

tem. Also, Figure 4.8 shows the QoIs predictions by the MLP emulator for the six

blind realizations. The test R2 score (>99%) on different data sizes and generalized

cross-validation during emulator development indicate that overfitting was not a prob-

lem. As the size of the training dataset increased, the ensemble and MLP emulator

development time increased.

Finally, the computational costs to run the high-fidelity model and the ML

emulators were investigated. Tables 4.6–4.8 compare the computational cost of devel-

opment of various ML emulators. These tables provide details on training time for

various training dataset sizes on a 32-core processor (Intel(R) Xeon(R) CPU E5-2695

v4 2.10GHz). A single, high-fidelity numerical simulation required approximately
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1,500 s on a single core. Testing an ML emulator (e.g., RF, MLP) took 0.01–0.1 s

about 1/100,000th of the time of the high-fidelity numerical simulation.

Discussion

A suite of linear, Bayesian, and nonlinear ML emulators are trained to classify

and replicate QoIs from high-fidelity anisotropic bi-linear diffusion numerical simu-

lations. For this highly nonlinear system, linear and Bayesian ML emulators never

exceeded 70% classification accuracy while LogR and QDA achieved only 75% and

77% classification accuracies, respectively. On the other hand, nonlinear emulators

performed well (95% classification accuracies for RF and MLP). For the regression

problem (predicting the three QoIs for each chemical species), as expected, linear re-

gressors predicted QoIs at only R2 = 69%, but decision-tree-based ensembles and the

MLP neural network performed remarkably well with accuracy >85. DTs (with and

without AdaBoost), RFs, and the MLP all had R2 = 99% with GBM (98%), bagging

(95%), and AdaBoost (85%) performed somewhat worse.

These results indicate that ensemble emulators outperformed other ML emula-

tors in predicting the progress of reactive mixing on unseen data. However, not all of

them performed equally. For example, RF outperformed other averaging ensembles

(e.g., Bagging, DT) while DT-based AdaB outperformed other boosting methods (e.g.,

AdaB, GBM). Each bagging/averaging ensemble methods introduced randomness and

voting-based evaluation metrics in unique ways; therefore, their performance was not

the same. For example, DTs often used the first feature to split; resultantly, the order

of variables in the training data was critical for DT-based model construction. Also, in

DTs, trees were pruned and not fully grown. Contrarily, RF had unpruned and fully

grown trees and were not sensitive to the feature order as in DTs. Also, each tree

in an RF learns using random sampling, and at each node, a random set of features

were considered for splitting. This random sampling and splitting introduced diver-
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sity among trees in a forest. After randomly selecting features, RF built a number of

regression trees and averaged (aka bagging) them. With enough trees, combinations

of randomly selected features and averaging (aka voting), RF emulators reduced the

variance of predictions and deter the overfitting. Resultantly, their performances were

best among all averaging ensemble emulators.

Among boosting methods, DT-based AdaB outperformed AdaB and GBM be-

cause it combined DT and boosting estimators to predict QoIs. In this study, the

DT-based AdaB used 100 trees as a base estimator to build DT-based AdaB emula-

tor. Two base estimators enhanced the confidence on QoI predictions; resultantly, the

DT-based AdaB emulator scored better than other two boosting approaches. Based

on the ML analyses presented in Sec. 3, linear and Bayesian ML emulators (e.g., NB,

BR, GP) are a poor choice to classify and predict reactive-transport QoIs. Overall,

RF, DT-based AdaB, GBM, and MLP emulators accurately predicted unseen re-

alizations with average accuracies >90%. From the computational-cost perspective,

generalized linear and Bayesian ML emulators were faster to train than ensemble and

MLP emulators. Among ensemble and boosting methods, RF and GBM emulators

took longest to train. Also, MLP emulators were more expensive to develop than

other ML emulators. However, ensemble and MLP emulators took 1/100,000th of the

time required for a high-fidelity simulation to predict equivalent QoIs.

Conclusions

The primary purpose was to accurately understand reactive-transport state and

expedite predictions of species concentration (QoIs) due to reactive mixing. A suite

of linear, Bayesian, ensemble, and MLP ML emulators were compared to classify

the state of reactive mixing and to predict species concentrations. All ML emula-

tors were developed based on high-fidelity numerical simulation datasets. A total of

2,315 simulations were carried out to generate data to train and test the emulators.
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Data were generated by solving the anisotropic reaction-diffusion equations using

the non-negative finite element method. Because of the highly nonlinear reactive-

transport system, linear and Bayesian (except GP) ML emulators performed poorly

in classifying and predicting the state of reactive mixing (e.g., R2 ≈ 70%). Among

Bayesian ML emulators, GP showed promise for accurate prediction of QoIs for small

datasets. On the other hand, ensemble and MLP emulators accurately classified the

state of reactive-transport and predicted associated QoIs. For example, RF and MLP

emulators classified the state of reactive-transport with an accuracy of >90%. More-

over, they predicted the progress of reactive-transport with an accuracy of >95% on

training, testing, and unseen data. Among bagging ensemble methods, RF emulators

provided comparatively better predictions than bagging and DT emulators. Similarly,

among boosting ensemble methods, DT-based AdaBoost emulators provided better

predictions than AdaBoost and GBM emulators. Computationally, for QoI predic-

tions, ML emulators were approximately 105 faster than a high-fidelity numerical

simulation. Finally, ensemble ML and MLP emulators proved good classifiers and

predictors for interrogating the progress of reactive mixing. Looking to the future,

ensemble ML and MLP emulators will be validated on both reservoir-scale field and

simulation data.
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Table 4.6: Performance metrics of ML emulators on training and test datasets for
classifying the mixing state (i.e., degree of mixing) of the reaction-diffusion system.

Emulator Training Testing Training Testing Training
size (%) size (%) score (%) score (%) time (s)

LogR
0.9 99 75 75 31
63 30 75 75 138
81 10 75 75 174

LDA
0.9 99 72 72 28
63 30 72 72 93
81 10 72 72 102

QDA
0.9 99 77 77 66
63 30 77 77 128
81 10 77 77 133

RF
0.9 99 100 98 6,527
63 30 100 99 22,161
81 10 100 99 24,015

MLP
0.9 99 97 96 3,384
63 30 99 99 50,397
81 10 99 99 66,381

Species A Species B

𝑐𝑐𝐴𝐴0 = 1 𝑐𝑐𝐵𝐵0 = 1

ℎ𝑖𝑖
p(𝒙𝒙, 𝑡𝑡) = 0

L

L

B
ar

ri
er

Figure 4.1: Schematic of the initial boundary value problem. L, hp
i (x, t), c0

A, and c0
B

are the length of the domain, diffusive flux on the boundary for ith chemical species,
initial concentration of species A, and initial concentration of species B, respectively.
Species A and B were initially on the left and right sides of the domain, respectively.
Initial concentrations of A and B were 1.0 and mixing commenced for t > 0.
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Table 4.7: Performance metrics of linear and Bayesian ML emulators (regressors).
Note, GP and KR failed to converge even on 1% of training data because of a

memory leak due to storage of a dense matrix.

Emulator Training Testing Training Testing Training
size (%) size (%) score (%) score (%) time (s)

LSQR
0.9 99 69 69 12
63 30 69 69 52
81 10 69 69 57

RR
0.9 99 69 69 10
63 30 69 69 42
81 10 69 69 50

LR
0.9 99 69 69 95
63 30 69 69 330
81 10 69 69 368

ER
0.9 99 69 69 121
63 30 69 69 1,077
81 10 69 69 1,227

HR
0.9 99 69 69 14
63 30 69 69 185
81 10 69 69 195

Polynomial
0.9 99 89 89 79
63 30 89 89 143
81 10 89 89 164

BR
0.9 99 69 69 12
63 30 69 69 62
81 10 69 69 69

NB
0.9 99 73 73 69
63 30 73 73 73
81 10 73 73 91
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Table 4.8: Performance metrics of ensemble and MLP emulators.

Emulator Training Testing Training Testing Training
size (%) size (%) score (%) score (%) time (s)

DT
0.9 99 100 99 42
63 30 99 99 100
81 10 99 99 110

Bagging
0.9 99 98 95 42
63 30 98 95 110
81 10 98 95 100

RF
0.9 99 100 99 1,435
63 30 100 99 5,468
81 10 100 99 6,044

AdaB
0.9 99 90 90 72
63 30 89 89 1,378
81 10 89 89 1,585

DT-based
AdaB

0.9 99 99 99 103
63 30 99 99 1,648
81 10 99 99 1,778

GBM
0.9 99 98 98 133
63 30 98 98 1,533
81 10 98 98 2,048

MLP
0.9 99 99 99 688
63 30 99 99 4,678
81 10 99 99 9,691
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(a) κfL = 2 and t = 0.1(b) κfL = 2 and t = 0.5(c) κfL = 2 and t = 1.0

(d) κfL = 3 and t = 0.1(e) κfL = 3 and t = 0.5(f) κfL = 3 and t = 1.0

(g) κfL = 4 and t = 0.1(h) κfL = 4 and t = 0.5(i) κfL = 4 and t = 1.0

(j) κfL = 5 and t = 0.1(k) κfL = 5 and t = 0.5(l) κfL = 5 and t = 1.0

Figure 4.2: Concentration of product C at times t = 0.1, 0.5, and 1.0. Other input
parameters were αL

αT
= 103 (high anisotropy), v0 = 1, T = 0.1, and Dm = 10−3.

Increased κfL increases C production, especially at later times.
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(a) κfL = 2 and t = 0.1(b) κfL = 2 and t = 0.5(c) κfL = 2 and t = 1.0

(d) κfL = 3 and t = 0.1(e) κfL = 3 and t = 0.5(f) κfL = 3 and t = 1.0

(g) κfL = 4 and t = 0.1(h) κfL = 4 and t = 0.5(i) κfL = 4 and t = 1.0

(j) κfL = 5 and t = 0.1(k) κfL = 5 and t = 0.5(l) κfL = 5 and t = 1.0

Figure 4.3: Concentration of product C at times t = 0.1, 0.5, and 1.0. Other input
parameters were αL

αT
= 100 (medium anisotropy), v0 = 1, T = 0.1, and Dm = 10−3.

Lower anisotropy increased C production than higher anisotropy in Fig. 4.2.
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(a) κfL = 2 and t = 0.1(b) κfL = 2 and t = 0.5(c) κfL = 2 and t = 1.0

(d) κfL = 3 and t = 0.1(e) κfL = 3 and t = 0.5(f) κfL = 3 and t = 1.0

(g) κfL = 4 and t = 0.1(h) κfL = 4 and t = 0.5(i) κfL = 4 and t = 1.0

(j) κfL = 5 and t = 0.1(k) κfL = 5 and t = 0.5(l) κfL = 5 and t = 1.0

Figure 4.4: Concentration of product C at times t = 0.1, 0.5, and 1.0. Other input
parameters were αL

αT
= 10 (low anisotropy), v0 = 1, T = 0.1, and Dm = 10−3. At

low anisotropy, production of C increased. During late times (e.g., t = 0.5 and 1.0),
diffusion dominates C production while κfL and αL

αT
minimally affect C production.
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(a) Species C: RF
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(b) Species C: MLP

Figure 4.5: Confusion matrices classifying the degree of mixing for the RF (left) and
MLP (right) emulators.
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(c) Species A: σ2
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(d) Species B: cB
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(e) Species B: cB
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(f) Species B: σ2
B
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Figure 4.6: This figure shows the true (markers) and RF emulator predictions (solid
curves) of average concentrations, squared of average concentrations, and degree of
mixing (a)–(c) of species A; (d)–(f) of species B, and (g)–(i) of species C.
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Figure 4.7: This figure shows the true (markers) and GBM emulator predictions (solid
curves) of average concentrations, squared of average concentrations, and degree of
mixing (a)–(c) of species A; (d)–(f) of species B, and (g)–(i) of species C.
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Figure 4.8: This figure shows the true (markers) and ANN emulator predictions (solid
curves) of average concentrations, squared of average concentrations, and degree of
mixing (a)–(c) of species A; (d)–(f) of species B, and (g)–(i) of species C.
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CHAPTER FIVE

Conclusions

The primary purpose of this dissertation was to demonstrate the importance of

numerical modeling, uncertainty analyses, and machine learning for decision support

in the Geosciences. To this end, I began by developing a numerical model of a chem-

ical waste site followed by a thorough analysis of uncertainties in model parameters

and predictions. This work suggested how NWIRP site characterization could have

been improved. Next, I coupled a flow and reactive-transport code, PFLOTRAN and

a electrical resistivity code, E4D to simulated flow, reactive-transport and SIP pro-

cess at different frequencies. This code can be used to simulate remediation activities

for chemical, nuclear, green, and bio waste sites. Finally, I labeled reactive-transport

model outputs and used them in 20 ML models to predict simulation outcomes. Ma-

chine learning study showed that not all ML models were accurate but a few of them

were extremely accurate and fast when predicting reactive-transport outcomes.

In the first paper, I developed a groundwater model of the NWIRP site using

MODFLOW and particle tracking model using MODPATH. Based on MODFLOW

and MODPATH calibration and model interrogation, I quantified parameter and pre-

dictive uncertainties, parameter identifiabilities, and observation worth for both ex-

isting and hypothetical monitoring wells. Parameter uncertainties were reduced up

to 92% and 36 of 156 parameters exceeded a 10% reduction when constrained by the

calibration data set. Seven parameters were highly identifiable (>0.5) while 12 param-

eters had identifiabilities between 0.1 and 0.5. Travel-time uncertainties were reduced

up to 92%. Further, pre-calibration travel-time uncertainties were reduced by >50%

for two particles released at site M and between 5 and 40% for the remaining sites. An

observation-worth analysis showed that the existing monitoring well network does not
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strongly constrain travel times. However, targeted data collection could reduce travel-

time uncertainties for all particles by factors from 1.04 to 4.3. Using this information,

decision maker could more effectively characterize the site with reduced budget and

resources. Also, this study predicted that conservative tracers exited the flow system

through the more conductive upper layer within a year, which agreed with site mea-

surements. Looking to the future, a transient numerical-modeling study would reveal

a better understanding of the system. The second paper described a code, which cou-

pled PFLOTRAN and E4D to model electrical-impedance and phase-shift data for SIP

due to changes in subsurface characteristics. PFLOTRAN and E4D are massively parallel

codes that simulate fluid flow, reactive transport, and SIP. A mathematical relation-

ship based on Archie’s Law and the Cole-Cole model linked flow and solute-transport

state variables at various frequencies. A reservoir-scale tracer transport model demon-

strated the capability of the newly developed PFLOTRAN-SIP framework, which clearly

showed evolution of flow, reactive transport, and SIP processes over one year. The

process started by solving flow and reactive-transport model for tracers. Next, elec-

trical potentials for various electrode configurations at different frequencies were sim-

ulated. These simulations revealed that contrast in real potential was minimal even

as the frequency varied. However, complex potential showed variable responses across

frequencies. Additionally, phase shift (combination of real and complex potentials)

helped identify regions where tracer concentrations were high. Combining frequency-

dependent real potential, complex potential, and phase responses from an SIP sur-

vey/simulation paints a more detailed picture of the subsurface with an enhanced

ability to detect contaminants/tracers. Moreover, coupling fluid flow, reactive trans-

port, and SIP models can supports improved detection of contaminants compared to

either the ERT or SIP method alone because flow and reactive-transport simulations

capture tracer evolution. For instance, through a numerical example, solute transport

simulations provided insight into the tracer distribution. This information was used
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to customize SIP inversion to estimate frequency-dependent electrical conductivities,

which yielded an improved image of tracer concentrations. This work highlighted the

benefit of PFLOTRAN-SIP to detect tracers and it can can be easily extended to de-

tect hydrocarbon flow, changes in the subsurface due to geochemical reactions, sulfide

minerals, metallic objects, municipal wastes, and salinity intrusion.

The third paper studied which ML models are best for replicating reactive-

transport outcomes in subsurface porous media. This study developed 20 ML models

to emulate reactive-transport state and to forecast species concentrations (QoIs) due

to reactive transport. These ML models included a suite of linear, Bayesian, ensemble,

and MLP ML models that were developed based on high-fidelity numerical simulation

datasets. A total of 2,315 simulations were carried out to generate data to train and

test the models by solving the anisotropic reaction-diffusion equations using the non-

negative finite element method. Because of the highly nonlinear reactive-transport

system, linear and Bayesian (except GP) ML models performed poorly when classify-

ing and predicting the state of reactive transport (e.g., R2 ≈ 70%). Among Bayesian

ML models, GP showed promise for accurate prediction of QoIs for small datasets. On

the other hand, ensemble and MLP models accurately classified the state of reactive-

transport and predicted associated QoIs. Specifically, RF and MLP models classified

the state of reactive-transport with an accuracy of >90%. Moreover, they predicted

the progress of reactive-transport with an accuracy of >95% on training, testing, and

unseen data. Among bagging ensemble methods, RF models issued comparatively

better predictions than bagging and DT models. Similarly, among boosting ensemble

methods, DT-based AdaBoost models provided better predictions than AdaBoost and

GBM models. Computationally, for QoI predictions, ML models were approximately

105 faster than a high-fidelity numerical simulation. Finally, ensemble ML and MLP

models proved good classifiers and predictors for interrogating the progress of reactive
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transport. Looking to the future, ensemble ML and MLP emulators will be validated

on both reservoir-scale field and simulation data.
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APPENDIX A

NWIRP

Table A.1: Locations and measurement of hydraulic conductivity (hk).

Well x (m) y (m) hk (m/s) Well x (m) y (m) hk (m/s)

K1 9461 3499 1× 10−5 K51 8192 7845 2× 10−7

K2 2522 3864 3× 10−6 K52 10613 4765 2× 10−5

K3 5572 6719 3× 10−6 K53 5622 6770 1× 10−8

K4 7602 6134 7× 10−6 K54 6807 6080 6× 10−6

K5 9997 4928 5× 10−6 K55 8366 7603 4× 10−8

K6 6325 6121 4× 10−6 K56 3430 6566 1× 10−5

K7 2264 4547 4× 10−6 K57 2158 4522 2× 10−6

K8 6426 6810 4× 10−7 K58 7971 6755 2× 10−6

K9 4682 6375 1× 10−9 K59 2000 4080 4× 10−6

K10 6387 7868 6× 10−8 K60 2260 4063 1× 10−5

K11 6767 6108 5× 10−7 K61 2430 3445 1× 10−7

K12 9788 6078 2× 10−6 K62 3547 3221 1× 10−8

K13 1996 5308 2× 10−6 K63 7072 8002 4× 10−7

K14 10322 4829 2× 10−7 K64 5067 7610 2× 10−6

K15 7789 5298 8× 10−8 K65 2328 4154 1× 10−8

K16 10371 4824 3× 10−6 K66 3550 4842 1× 10−8

K17 2857 3932 1× 10−6 K67 4460 6441 1× 10−8

K18 10423 4895 7× 10−8 K68 11344 4146 1× 10−8

K19 10429 4933 1× 10−5 K69 1804 3916 3× 10−8

K20 2432 4206 5× 10−7 K70 9477 7319 5× 10−6

K21 4901 6201 9× 10−9 K71 6457 5976 8× 10−5
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K22 10943 4806 4× 10−7 K72 10544 4756 2× 10−8

K23 5633 7727 2× 10−5 K73 6832 6307 1× 10−9

K24 9115 5669 1× 10−8 K74 1659 3818 4× 10−6

K25 10347 5043 5× 10−7 K75 2398 4053 1× 10−9

K26 10396 4947 2× 10−7 K76 8770 4813 2× 10−8

K27 6406 6231 1× 10−8 K77 2328 4389 1× 10−4

K28 8054 8068 3× 10−8 K78 7806 8198 3× 10−9

K29 1509 3145 4× 10−6 K79 2175 3788 1× 10−7

K30 10554 4908 1× 10−7 K80 9897 4600 4× 10−9

K31 10201 4997 1× 10−5 K81 5625 6712 2× 10−6

K32 2106 4628 2× 10−6 K82 2430 4132 2× 10−6

K33 1967 4532 2× 10−6 K83 5460 4628 6× 10−7

K34 6808 6097 3× 10−7 K84 7239 6867 5× 10−7

K35 6754 6498 1× 10−6 K85 4037 6562 3× 10−6

K36 4668 5910 8× 10−6 K86 4365 5671 3× 10−8

K37 4082 6038 2× 10−6 K87 4662 3360 2× 10−7

K38 4863 5076 4× 10−7 K88 4659 4076 1× 10−6

K39 4787 5128 9× 10−7 K89 2560 4571 9× 10−6

K40 6357 6207 2× 10−7 K90 11249 5943 4× 10−6

K41 2119 4505 5× 10−7 K91 6525 5924 2× 10−7

K42 6970 7814 4× 10−7 K92 3556 3791 1× 10−8

K43 7693 5727 1× 10−7 K93 11602 5230 4× 10−6

K44 5722 3315 1× 10−8 K94 10419 3715 8× 10−6

K45 10649 6319 2× 10−9 K95 7194 6002 1× 10−10

K46 2206 3029 3× 10−7 K96 10606 4771 8× 10−6

K47 10472 4744 8× 10−8 K97 2455 3391 4× 10−8

K48 6290 6239 6× 10−9 K98 11304 4914 3× 10−6
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K49 2239 4120 8× 10−7 K99 10440 5531 6× 10−7

Table A.2: Locations and average heads of observations.

Observation x (m) y (m) Head (m) Observation x (m) y (m) Head (m)

MW3-1 6422 6072 233.65 GAF-2 6832 6306 232.26

MW3-2 6407 6230 232.66 GAF-3 6940 6124 233.09

MW3-3 6357 6206 232.30 GAF-4 6749 5949 235.23

MW3-4 6346 6173 232.44 GAF-5 6577 6027 234.64

MW3-5 6456 6142 233.47 GAF-6 6512 6045 234.52

MW3-6 6458 5975 234.12 GAF-7 6426 6809 230.17

MW3-7 6326 6120 232.83 GAF-8 6755 6498 230.02

MW3-8 6302 6177 232.31 GAF-9 6835 6673 229.55

MW3-9 6291 6238 232.29 AF0MW01 6668 6135 235.35

MW3-10 6526 5924 234.80 AF0MW02 6539 6054 234.65

MW3-11 6315 6064 233.03 AF0MW03 6543 6012 234.63

MW3-12 6513 6283 232.93 AF0MW04 6439 5940 234.54

MW3-16 6409 6307 231.74 MW1-3 10396 4946 210.89

MW8-1 6768 6108 234.22 MW2-1 2001 4079 245.60

MW8-2 6801 6102 234.03 MW2-4 1804 3916 241.10

MW8-3 6808 6097 234.03 MW4-3 5587 6757 230.89

MW8-4 6807 6079 233.70 MW5-1 2397 4190 243.69

MW8-5 6802 6151 233.70 MW5-2 2239 4119 247.10

MW8-6 6771 6151 233.84 MW7-1 2264 4547 247.19

GAF-1 6685 6433 230.49 MW7-3 2107 4627 246.50

MW3-13 6231 6164 232.65 MW3-14 6228 6263 232.10

MW3-15 6474 6417 231.23

97



Table A.3: hk of pilot point (PP).

PP x y hk (m/s) PP x y hk (m/s)

P1 9461 -6201 1.00× 10−5 P51 8192 -1855. 2.00× 10−7

P2 2522 -5836 3.00× 10−6 P52 10613 -4935. 2.00× 10−5

P3 5572 -2981 3.00× 10−6 P53 5622 -2930 1.00× 10−8

P4 7602 -3566 7.00× 10−6 P54 6807 -3620 6.00× 10−6

P5 9997 -4772 5.00× 10−6 P55 8366 -2097 4.00× 10−8

P6 6325 -3579 4.00× 10−6 P56 3430 -3134 1.00× 10−5

P7 2264 -5153 4.00× 10−6 P57 2158 -5178 2.00× 10−6

P8 6426 -2890 4.00× 10−7 P58 7971 -2945 2.00× 10−6

P9 4682 -3325 1.00× 10−9 P59 2000 -5620. 4.00× 10−6

P10 6387 -1832 6.00× 10−8 P60 2260 -5637. 1.00× 10−5

P11 6767 -3592 5.00× 10−7 P61 2430 -6255. 1.00× 10−7

P12 9788 -3622 2.00× 10−6 P62 3547 -6479. 1.00× 10−8

P13 1996 -4392 2.00× 10−6 P63 7072 -1698. 4.00× 10−7

P14 10322 -4871 2.00× 10−7 P64 5067 -2090. 2.00× 10−6

P15 7789. -4402 8.00× 10−8 P65 2328 -5546. 1.00× 10−8

P16 10371 -4876 3.00× 10−6 P66 3550 -4858. 1.00× 10−8

P17 2857 -5768 1.00× 10−6 P67 4460 -3259. 1.00× 10−8

P18 10423 -4805 7.00× 10−8 P68 11344 -5554 1.00× 10−8

P19 10429 -4767 1.00× 10−5 P69 1804 -5784.0 3.00× 10−8

P20 2432 -5494 5.00× 10−7 P70 9477 -2381. 5.00× 10−6

P21 4901 -3499 9.00× 10−9 P71 6457 -3724. 8.00× 10−5

P22 10943 -4894 4.00× 10−7 P72 10544 -4944 2.00× 10−8

P23 5633 -1973 2.00× 10−5 P73 6832 -3393 1.00× 10−9

P24 9115 -4031 1.00× 10−8 P74 1659 -5882 4.00× 10−6
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P25 10347 -4657 5.00× 10−7 P75 2398 -5647 1.00× 10−9

P26 10396 -4753 2.00× 10−7 P76 8770 -4887 2.00× 10−8

P27 6406 -3469 1.00× 10−8 P77 2328 -5311 1.00× 10−4

P28 8054 -1632 3.00× 10−8 P78 7806 -1502 3.00× 10−9

P29 1509 -6555 4.00× 10−6 P79 2175 -5912 1.00× 10−7

P30 10554 -4792 1.00× 10−7 P80 9897 -5100 4.00× 10−9

P31 10201 -4703 1.00× 10−5 P81 5625 -2988 2.00× 10−6

P32 2106 -5072 2.00× 10−6 P82 2430 -5568 2.00× 10−6

P33 1967 -5168 2.00× 10−6 P83 5460 -5072 6.00× 10−7

P34 6808 -3603 3.00× 10−7 P84 7239 -2833 5.00× 10−7

P35 6754 -3202 1.00× 10−6 P85 4037 -3138 3.00× 10−6

P36 4668 -3790 8.00× 10−6 P86 4365 -4029 3.00× 10−8

P37 4082 -3662 2.00× 10−6 P87 4662 -6340 2.00× 10−7

P38 4863 -4624 4.00× 10−7 P88 4659 -5624 1.00× 10−6

P39 4787 -4572 9.00× 10−7 P89 2560 -5129 9.00× 10−6

P40 6357 -3493 2.00× 10−7 P90 11249 -3757 4.00× 10−6

P41 2119 -5195 5.00× 10−7 P91 6525 -3776 2.00× 10−7

P42 6970 -1886 4.00× 10−7 P92 3556 -5909 1.00× 10−8

P43 7693 -3973 1.00× 10−7 P93 11602 -4470 4.00× 10−6

P44 5722 -6385 1.00× 10−8 P94 10419 -5985 8.00× 10−6

P45 10649 -3381 2.00× 10−9 P95 7194 -3698 1.00× 10−10

P46 2206 -6671 3.00× 10−7 P96 10606 -4929 8.00× 10−6

P47 10472 -4956 8.00× 10−8 P97 2455 -6309 4.00× 10−8

P48 6290 -3461. 6.00× 10−9 P98 11304 -4786 3.00× 10−6

P49 2239 -5580. 8.00× 10−7 P99 10440 -4169 6.00× 10−7

P50 4541 -2193. 3.00× 10−8
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APPENDIX B

Manuscript: ML to reactive-transport data

Variables

A = Diagonal matrix

aln = Activation function of neuron n at layer l

b = Bias

ci [molm−3] = The molar concentration of chemical species i

c0
i (x) = The initial concentration of chemical species i

cp
i (x, t) [molm−3] = Prescribed molar concentration

D(x, t) [s2 m−1] = The anisotropic dispersion tensor

Dm [m3 s−2] = The molecular diffusivity

det = Determinant

E = Expectation

F = Activation function

f = Function

fm = mth classifier

G = Impurity

H = Gini impurity function

He = Truncation value for Huber loss

hm = Base learner/tree

hp
i (x, t) [m s−1] = Flux

i = Index

I = The identity tensor

inf = The greatest upper bound

J = sup |ŷi − yi|
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j = Feature index

k = Class variable index

kAB [m−1] = The bi-linear reaction rate coefficient

L = Loss function

L1 = L1 norm

L2 = L2 norm

l = Layer index

l = The length of the ‘wiggles’ in sine function

M = Number of training data

m = Tree node index

N = Gaussian or normal distribution

n = Node number

nA = Stoichiometric coefficient for species A

nB = Stoichiometric coefficient for species B

nC = Stoichiometric coefficient for species C

o = Random coefficient

p [%] = Probability

p = The distance between repetitions of the sine function

pmk [%] = Probability at mkth leaf

Q = Data at tree node m

q = Batch or subsample

r = Random coefficient

s = Split

sup = The least upper bound

tm = Threshold at which trees split

u = Random coefficient

v [m s−1] = The velocity vector field
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v0 = The perturbation parameter

w = Coefficient

w = Coefficient vector

w0 = Intercept

X = Feature matrix

x = Feature vector

y = Label

y = Label vector

ŷ = Approximation to y

z = The dummy variable

Greek Symbols

α = Penalty/regularization parameter

α1 = Regularization parameter for w

α2 = Regularization parameter for w

αL [m2 s−1] = The longitudinal diffusivity

αT [m2 s−1] = The transverse diffusivity

β = Regularization parameter

ΓD
i = Dirichlet boundary condition

ΓN
i = Neumann boundary condition

θm = Confidence in the prediction for mth data

κfL and T [–] = The characteristic spatial and temporal scales of the flow field

γ = Learning rate

ε = Truncation value under which no penalty is associated with the training loss

η = Noise

θ = Confidence function for prediction

K = Node number
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K = Kernel

λ = Spread of kernel

µ = Mean

ν = Integer

π = cos–1(–1)

Σ = The covariance matrix

Ψ = Vector of N × 1 size

ω = Regularization parameter

I = Identity matrix

T = Number of regression tree

Φ = Design matrix of N × (N + 1) size

ω = Regularization parameter

⊗ = The tensor product

1 = Indicator function (either 1 or 0)

Linear Emulators

Generalized Linear Emulators

Suppose there are n features x1 through xn that correspond to a label y. LSQR

calculates the closest ŷ by finding the best linear combination of features as:

ŷ (w, x) = w0 + w1x1 + · · ·+ wnxn = x · w. (B.1)

Linear regressors minimize a loss (or cost) function. The cost/loss function in this case

is the residual sum of squares between a set of training feature vectors x1, x2, · · · , xm

and predicted targets y1, y2, · · · , ym of the form:

Llin = min
w
||Xw− y||22 + α1||w||1 + α2||w||22 + Σ

m∑
i=1

[
1 +Hε

(
xi · w− yi

Σ

)]
. (B.2)
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For LSQR, α1 = α2 = Σ = 0, for RR, α1 = Σ = 0, for LR, α2 = Σ = 0, for ER,

Σ = 0, and for HR, α2 = 0.

Hε (e) =


e2 if e < ε

2ε|e| − ε2 otherwise

. (B.3)

The LSQR method minimizes Llin without regularization. RR uses the L2 norm,

which does not use sparsity constraints. However, it includes a penalty α2 to weights,

which is known as the ridge coefficient. This prevents weights from getting too large

as well as overfitting. LR is another linear regressor that penalizes the L1 norm. This

penalty α1 on the absolute value of weights results in sparse models tending toward

small weights. The α1 controls the strength of the regularization penalty, and more

parameters are eliminated with increasing α1. With increasing α1, bias increases, but

variances decrease and vice versa. ER is another linear regressor that combines the L1

and L2 penalties of RR and LR. It is useful for data with multiple features that are

correlated with each other. LR likely picks one of these correlated features at random,

but ER picks all the correlated features. HR is a generalized linear regression method

that put a sample as an inlier, if the absolute error of that sample is less than the

specified threshold. HR puts a sample as an outlier, if absolute errors go beyond the

specified threshold. Polynomial regression applies the LSQR formula on quadratic

scaled data.

Logistic Regression

Despite its name, logistic regression is a classifier; it uses the linear regres-

sion scheme to correlate a probability for each class. Logistic regression predicts the

outcome in terms of probability and provides a meaningful threshold at which dis-

tinguishing between classes is possible Molnar (2019). Multi-class classification is

achieved through either One-vs-One or One-vs-Rest strategy Pedregosa et al. (2011a).

A simple linear ML emulator fails to provide multi-class output as probabilities. But
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the logistic regression provides the probabilities through the logistic function. Con-

sider an ML model with two features x1 and x2 with one label y, which is classified

with a probability p. If we assume a linear relationship between predictor variables

and the log-odds of the event:

ln
p

1− p
= w0 + w1x1 + w2x2. (B.4)

With simple algebraic manipulation, the probability p of classifying the predictor

variable can be recast as:

p =
1

1 + e−(w0+w1x1+w2x2)
. (B.5)

Here, the loss function is defined by cross-entropy loss as:

Lcross-entropy = − 1

n

n∑
n=1

[ynlog(pn) + (1− yn) log (1− pn)] . (B.6)

Kernel Ridge (KR) Regression

KR regression combines RR with kernel tricks Murphy (2012) to learn a linear

function induced by both the kernel and data. The kernel trick enables a linear ML

emulator to learn nonlinear functions without explicitly mapping a linear learning

algorithm. The kernel function is applied on each label to map the original nonlinear

observations into a higher-dimensional space. In this work, the stationary radial basis

function (RBF) kernel is the optimized kernel. The RBF kernel on two different feature

vectors, x1 and x2, is:

KRBF (x1, x2) = exp
(
−λ ||x1 − x2||2

)
. (B.7)

If the kernel is Gaussian then high λ shrinks the spread of Gaussian distribution and

vice versa. The squared-loss function is used to learn the linear mapping function:

Lsquared = (y − ŷ)2 . (B.8)
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Bayesian Ridge (BR) Regression

Using Bayes’ Rule, BR formulates a probabilistic model of the regression prob-

lem. BR assumes labels y as normally distributed around Xw and obtains a proba-

bilistic model by:

p (y|X,w, β) = N (y|Xw, β) . (B.9)

The prior for the coefficient vector w is given by a spherical Gaussian distribution:

p (w|ω) = N
(
w|0, ω−1I

)
. (B.10)

The β and ω are selected to be conjugate priors and gamma distributions. The pa-

rameters β and ω are estimated by maximizing the log-marginal likelihood MacKay

(1992); Tipping (2001) as:

Llml = −1

2

[
log10 ‖ω−1I + ΦA−1Φᵀ‖+ Ψᵀ

(
ω−1I + ΦA−1Φᵀ

)−1
Ψ
]

+ extension,

(B.11)

where extension =
∑n

i=0 (ologβi − rβi) + u logω − wω.

Gaussian Process (GP)

GPs are generic supervised learning methods for prediction and probabilistic

classification that use properties inherited from the normal distribution. GP has the

capability of using kernel tricks, which differentiate GP from BR. GP emulators are

not sparse; as a result they are computational inefficient when developing models in

high-dimensional spaces. That is, computing GP emulators are difficult to implement

if features exceed a few dozens Rasmussen (2003); Santner, Williams, and Notz (2018)

in Scikit-learn and our training sample size is O(105). In this study, the RBF kernel

(Eq. (B.7)) is used to obtain GP emulators by maximizing the first term on the right

of Eq. (B.11) to predict ŷ.
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Naïve Bayes (NB)

NB emulators are supervised ML methods that also apply Bayes’ Theorem

with the naïve assumption of conditional independence between every pair of fea-

tures given the label value Manning, Raghavan, and Schütze (2010); McCallum and

Nigam (1998); Metsis, Androutsopoulos, and Paliouras (2006); Rennie, Shih, Teevan,

and Karger (2003). NB maximizes p (xi | y) and p (y) by maximizing the a posteriori

function Pedregosa et al. (2011a). Various naïve Bayes regressions differ by the as-

sumptions they make regarding the distribution of p (xi | y) Zhang (2004). Herein, we

use Gaussian-naïve Bayes emulator:

p (xi | y) =
1√

2πσ2
y

exp

[
−(xi − µy)2

2σ2
y

]
. (B.12)

NB updates model parameters such as feature means and variance using different

batch sizes, which makes NB computationally efficient C., G, and L. (1983).

Linear and Quadratic Discriminant Analyses (LDA/QDA)

LDA and QDA are classifiers that use Bayes rule. They compute the class

conditional distribution of data p (x|y = k) for each class k. Based on p (x|y = k), for

partition y = q of sample space, predictions are made using Bayes’ rule:

p (y = k|x) =
p (x|y = k) p (y = k)

p (x)
=

p (x|y = k) p (y = k)∑
q

p (x|y = q) p (y = q)
. (B.13)

Later, class k is selected to maximize the conditional probability. Specifically, p (x|y)

is modeled using a multivariate Gaussian distribution with density:

p (y = k|x) =
1

(2π)j/2 |det[
∑

k]|
1/2

exp

[
−1

2
(x− µk1) · (∑k)

−1 (x− µk1)

]
. (B.14)

Using training data, it estimates the class priors p (y = k), class means µk, and co-

variance matrices ∑
k either by the empirical sample class covariance matrices or

by a regularized estimator. In LDA, each class shares the same covariance matrix
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(i.e., ∑
k = ∑), which leads to linear decision surface Hastie et al. (2009):

log

(
p (y = k|x)

p (y = q|x)

)
= log

(
p (x|y = k) p (y = k)

p (x|y = q) p (y = q)

)
= 0 ⇐⇒

(µk − µq) 1 ·∑−1x =
1

2

(
µk1 ·∑−1µk1− µq1 ·∑−1µq1

)
− log

p (y = k)

p (y = q)
.

(B.15)

However, QDA does not assume covariance matrices of the Gaussian’s, which leads

to a quadratic decision surface Hastie et al. (2009). Both LDA and QDA use the

cross-entropy loss function Eq. (B.6).

Ensemble ML Emulators

Decision Tree (DT)

DT is interpretable as a weak ML classifier and regressor. DTs split leaves in

a tree and find the best or optimal split s∗ that increases the purity/accuracy of the

resulting tree Breiman (2001); Breiman, Friedman, Olshen, and Stone (2017); Galiano

et al. (2015); Geurts, Ernst, and Wehenkel (2006). A single tree reduces error in a

locally optimal way during feature space splitting while a regression tree minimizes

the residual squared error. For n pairs of training samples, the DT recursively parti-

tions the space to bring the same labels under the same group. Let data at node m

be represented by Q. For each candidate split s = (j, εm) consisting of feature j and

threshold εm, DT splits data into Qleft(s) and Qright(s) subsets. For regression, the im-

purity at m is computed using the Gini impurity function H (Xm) = 1
Tm

∑
i∈Tm

(yi − ŷi)2

using:

G (Q, s) =
nleft

Tm
H (Qleft(s)) +

nright

Tm
H (Qright(s)) , (B.16)

where Tm ≤ minsamples or Tm = 1. Then, the DT selects the parameters that minimize

the impurity:

s∗ = argmin
s

G (Q, s) . (B.17)

DT recursively find Qleft (s∗) and Qright (s∗) till to reach maximum allowable depth,

Tm < minsamples or Tm = 1. For regression, the loss function, LMSE, is defined as mean
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squared error (MSE) between the high-fidelity simulations and the ML emulators:

LMSE =
1

n

n∑
i=1

(yi − ŷi)2 . (B.18)

Bagging Emulator

Bagging is a simple ensemble technique that builds on many independent tree/pre-

dictors and combines them using various model averaging techniques such as a weighted

average, majority vote, or arithmetic average. For n pairs of training samples, bagging

(bootstrap aggregating) selects M set of samples from n with replacement. Based on

each sample, it trains functions f1 (x1) , ..., fM (xM). Then, these individual functions

or trees are aggregated for regression as:

f̂ =
M∑
i=1

fi(xi). (B.19)

The optimized regression criteria, or loss function, to select locations for splits is LMSE

(see Eq. (B.18)).

Random Forest (RF)

RF is a model-free ensemble emulator, which provides good accuracy by com-

bining the performance of numerous DTs to classify or predict the value of a variable

Breiman (2001); Breiman et al. (2017). For given input data (e.g., feature vector x),

RF builds a number of regression trees (M) and averages the results. For each tree

Tm(x) for all m = 1, 2, · · · ,M , the RF prediction is:

f̂Mrf =
1

M

M∑
m=1

T (x) . (B.20)

For regression, LMSE (Eq. (B.18)) is used for the loss function. For classification, the

Gini impurity function is used for the loss function and for k class variables, the Gini

impurity is:

H (xm) =
∑
k

pmk (1− pmk) . (B.21)

109



AdaBoost (AdaB)

AdaB (aka Adaptive Boosting) converts weak learners into a strong learners

Freund (1995); Freund and S. (1996); Freund and Schapire (1996, 1997); Schapire

and Freund (1995). Weak learners are DTs with a single split that are also known as

decision stumps. AdaB is a greedy and forward stage-wise additive model (adding up

multiple models to create a composite model) with an exponential loss function that

iteratively fits a weak classifier to improve the current estimator. AdaB puts more

weight on difficult-to-learn labels and less on others. AdaB construct a tree regressor,

fm, from training data so that fm : x → y. Every pair of training data is passed

through fm. Then, fm calculates a loss for each training datum using the square-loss

function:

Li =
|ŷi − yi|2

J2
. (B.22)

Then, the Li is averaged by L̂ =
n∑
i=1

Lipi to measure confidence in the prediction as:

θ =
L̂

1− L̂
. (B.23)

The resulting θ is used to update weights: wi → wiθexp (1− Li). For xi, each of M

trees/regressors makes a prediction hm, m = 1, · · · , T , to form a cumulative function:

f = inf

[
y ∈ y :

∑
m:hm≤y

log

(
1

θm

)
≥ 1

2

∑
m

log

(
1

θm

)]
. (B.24)

DT-based AdaB is a heterogeneous emulator that applies both DT and boosting

base estimators to learn a prediction function.

Gradient Boosting Method (GBM)

GBM learns function like AdaB, but it generalizes the model by allowing opti-

mization of an arbitrary differentiable loss function. GBM builds learning function f
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for M trees as:

f =
M∑
m=1

γmhm (xm) . (B.25)

After learning each weak model, the additive model (fm) is built in a greedy fashion:

fm = fm−1 + γmhm, (B.26)

where the newly added tree minimizes the least-squared function, Llsqr, for previous

model fm−1 by:

Llsqr = min
w

n∑
i=1

(xiw − yi)2 , (B.27)

where i = 1, · · · , n. The new learner is:

hm = arg min
h

n∑
1=1

Llsqr [yi, fm−1 (xi) + h (xi)] . (B.28)

GBM minimizes the Llsqr (optimal loss function for this work) by using steepest

descent where the steepest descent direction is the negative gradient of the Llsqr

determined at the fm−1. The steepest gradient direction and rate is calculated by:

γm = arg min
γ

n∑
i=n

Llsqr

(
yi, fm−1 (xi)− γ

∂Llsqr (yi, fm−1 (xi))
∂fm−1 (xi)

)
. (B.29)

Artificial Neural Networks

Multi-layer Perceptron (MLP)

An MLP is a supervised ML method for classification and prediction. MLPs

are feed-forward neural networks or neural networks that are generalizations of linear

models for prediction after multi-processing stages Müller and Guido (2016). MLPs

consist of numerous simple computation elements called neurons arranged in layers.

Neuron output is calculated as the result from a nonlinear activation function whose

input is the sum of weighted inputs from all neurons in the preceding layer. The out

from neuron n in layer l is:

a(l)
n = F

(
Nl−1∑
K =1

w
(l)
K ,na

(l−1)
K + b(l)

n

)
. (B.30)
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The rectified linear unit (ReLU) Nair and Hinton (2010) is the optimal activation

function for this work:

f(z) = max (0, z) . (B.31)

The MSE function (see Equations (B.18)) and cross-entropy function (see Equa-

tion (B.6)) are optimal loss functions for regression and classification, respectively.

.
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