

Effect of Cell Binding Domain Mutation in the *unc-52*Gene of *C. elegans*

Siena Bertoluzzi, Olineece Croomes, Emily Johnson, Meagan Marquez, Mariam Tajudeen, Zhongqiang Qiu,

Myeongwoo Lee

Bio 4308, Baylor University

Abstract

- Caenorhabditis elegans have sequenced genome, recorded molecular pathways and simple structure
- *unc-52* gene encodes a homologue for the extracellular matrix proteoglycan perlecan
- CRISPR-Cas9 to mutate the amino acid sequence of the unc-52 gene from RGD→RGE and successfully generated homozygous alleles
- Mutated *C. elegans* were observed and compared to N2 in order to further characterize *unc-52*
- Possible implications in development of the cytoskeleton and interaction in the Extracellular Matrix

Background

C. elegans:

- Soil nematode with quick generation time
- Easily observable phenotypes
- Easy to store specimens frozen

unc-52

- Encodes a proteoglycan perlecan
- Structural basement membrane protein
- Role in myofilament organization
- Regulator of growth-factor signaling in body wall muscle cells
- Known that mutations cause uncoordination and severe phenotypes are known to cause paralysis

RGD sequence

- Responsible for integrin binding in the ECM
- Changed RGD→ RGE
- Arg-gly-asp → arg-gly-glu

Purpose:

• Mutate RGD to further characterize the function of *unc-52* in *C.elegans*

Results

Movement Observations:

- Severely uncoordinated movement
- Paralysis
- Lack of DTC migration led to lack of muscle cells in body wall

Other Observations:

- -Slow growing: after 3 days, Unc-52 worms are much smaller than N2
- -Produce less progeny than N2 counterparts

Left: Structure of unc-52 perlecan protein Middle: target RGD protein structure Right: Target protein and DNA sequence

Positive PCR results show successful transformation of RGD→RGE

*= this plate generated 100% homozygous mutants

Left: Phenotypic result of UNC-52 mutant with paralyzed uncoordinated movement, 10x Right: N2 worms with no mutant phenotype, 10x

Methods

reatment

- *C. elegans* treated with two CRISPRs:
- target *unc-52*
- indicator dpy-10

• 6 DUMPY or ROLLER phenotypes were selected and given individual plates

allowed to self-fertilize

Tostin

- Progeny tested with PCR for mutant RGE sequence
- Visualized with gel electrophoresis

- Positive plates selected based on gel results and treated with mutant PCR
- Testing and purification repeated two more times to isolate homozygous alleles

• 7

- Total successful mutants counted
- Movement assays performed
- Phenotype compared to N2

Phenotype

• Observed mutants and compared to normal to observe phenotype and characterize *unc-52*

Discussion

Allows for beyond microscopic understanding regarding both intracellular and extracellular processes that may be disrupted and the resulting effects upon organisms

Implications:

- Muscle development
- Organ development
- Tissue development
- Skeletal muscle
- Myopathies and muscular dystrophies
- Corneal Epithelial development
- Basal Lamina mutations