
ABSTRACT

Force Touch Gesture Based Interaction for Virtual Keyboards

Kuanysh Zhunussov, M.S.

Supervisor: G. Michael Poor, Ph.D.

With extreme popularity of touch screen mobile devices, the demand for effec-

tive one-handed text-entry on virtual keyboards is continually growing. To increase

text-entry speed and decrease error rate, this thesis proposes force touch gesture based

suggestion selection for virtual keyboards and analyzes the performance compared to

standard keying and swyping keyboards. The prototype, called OctoType, was built

for iOS smartphones to take advantage of the 3D-touch technology by implement-

ing an interaction based on OctoPocus, a dynamic gesture guide. Two users studies

were conducted to evaluate performance of OctoType. The results showed that Octo-

Type outperforms standard keying keyboards by 13.1% in terms of text-entry speed.

Moreover, OctoType registered force touch gestures with an accuracy of greater than

97%. Given these advantages of force touch gesture based interaction, this thesis

also introduces the framework, called Gesturizer, that provides a conflict-free ges-

ture interaction with arbitrary shapes to iOS applications running on devices with

3D-touch.

Force Touch Gesture Based Interaction for Virtual Keyboards

by

Kuanysh Zhunussov, BEngTech

A Thesis

Approved by the Department of Computer Science

Gregory D. Speegle, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Master of Science

Approved by the Thesis Committee

G. Michael Poor, Ph.D., Chairperson

Greg Hamerly, Ph.D.

Dennis A. Johnston, Ph.D.

Accepted by the Graduate School

May 2018

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright c© 2018 by Kuanysh Zhunussov

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

1 Introduction . 1

2 Related Works . 3

2.1 Gesture Based User Interfaces . 3

2.1.1 Guides for Learning and Execution of Gestures 4

2.1.2 Gesture Recognition Algorithms 7

2.2 One-Handed Text-Entry on Touch Screen 8

2.2.1 Keyboard Layouts . 9

2.2.2 Suggestion Systems . 10

3 Gesture Recognition Algorithms . 12

3.1 Methods . 12

3.1.1 Data and Feature Extraction 12

3.1.2 SVM and K-NN . 15

3.1.3 Procedure . 16

3.2 Results . 17

3.3 Conclusion and Discussion . 17

4 Design of Keyboard Prototype . 20

iv

4.1 Prototype . 20

4.2 Dictionary . 23

5 Experiment I . 24

5.1 Participants . 24

5.2 Materials . 24

5.3 Measurements . 25

5.4 Procedure . 25

5.5 Results . 26

5.6 Conclusion and Discussion . 28

6 Experiment II . 31

6.1 Participants, Materials and Procedure 31

6.2 Measurements . 31

6.3 Results . 32

6.4 Conclusion and Discussion . 34

7 Force Touch Gesture Interaction Framework 36

7.1 Framework Features . 36

7.2 Architecture and Design . 37

8 Conclusion, Discussion and Future Works 39

APPENDICES 41

APPENDIX A Framework . 42

APPENDIX B Vita . 43

v

BIBLIOGRAPHY . 44

vi

LIST OF FIGURES

2.1 Gesture Shape Groups . 3

2.2 Feedforward Mechanism Example . 5

2.3 Feedback Mechanism Example . 5

2.4 User Input Beautification . 6

2.5 Kurtenbach’s Marking Menus . 6

2.6 OctoPocus: dynamic guide for gestural interfaces 7

2.7 Default keyboards for Apple’s iOS and Google’s Android platforms. . 10

2.8 Suggestions and Auto-correction on iOS keyboard. 10

3.1 Different gesture types from Vatavu dataset. 13

3.2 Points intensity features calculated from four equally separated rect-
angles. 14

3.3 Generation of noisy gestures. 15

3.4 Impact of k in K-NN on error rate. 17

3.5 Error rate dependency on number of training samples. 18

3.6 Error rate dependency on number of gesture types. 18

4.1 OctoType in Default Mode after typing ’do’ prefix. 20

4.2 OctoType in Gesture Mode at the beginning 21

4.3 OctoType in Gesture Mode in the middle 22

4.4 OctoType in Gesture Mode in the end 22

5.1 Testing application in training mode. 26

5.2 Error rate for all keyboards. 27

5.3 A comparison of overall WPM. 28

vii

5.4 A comparison of WPM for Group-2. 29

6.1 A comparison of WPM for all keyboards. 33

6.2 Error rates for all keyboards. 33

7.1 Example of using Gesturizer Framework 37

7.2 Architecture of Gesturizer Framework. 38

A.1 AppDelegate.swift . 42

A.2 ViewController.swift . 42

viii

LIST OF TABLES

4.1 First 10 prefixes in the dictionary . 23

5.1 Abbreviations for different keyboards 27

5.2 Paired t-test for WPM . 28

6.1 Paired t-test for WPM . 32

6.2 Gesture Drawing Accuracy . 34

6.3 Gesture Execution Time . 34

ix

ACKNOWLEDGMENTS

I would first like to express my appreciation to my thesis advisor, Dr. G.

Michael Poor. His valuable discussions and suggestions steered me in the right the

direction whenever he thought I needed it. I am very lucky to be pointed to the topic

of gesture based interfaces that I really enjoyed working on.

I would also like to acknowledge thesis committee members, Dr. Greg Hamerly

for his expert guidance in evaluation of gesture recognition algorithms and Dr. Dennis

A. Johnston for his advises that helped me in analysis of the results. Also, I would

like to thank Dr. Bill Booth for his help in recruiting of participants. Special thanks

to Noble Applications team for provided resources during an internship and their

guidance in acquiring necessary skills to build OctoType.

Finally, I must express my very profound gratitude to my parents and to

my girlfriend for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing this

thesis.

x

CHAPTER ONE

Introduction

With the expansion of computing technologies beyond the confines of the desk-

top, the demand for effective text input on handheld devices, such as the iPhone, the

iPad, and Android devices, has been increasing over the last two decades. Among

many interfaces studied by Human-Computer Interaction researchers to improve text

entry performance (Leung and Aarabi 2014, Cheng, Liang, Wu, and Chen 2013), the

standard keying keyboard remains the most commonly used, together with “swyping”

keyboards that use gesture-based interaction. However, the performance of these vir-

tual keyboards varies depending on the size and the orientation of a device (Nguyen

and Bartha 2012).

Despite using the traditional QWERTY layout, hardware keyboards outper-

form virtual ones. Lack of strong tactile feedback in addition to the restricted size

of mobile devices are key limitations of virtual keyboards (Henze, Rukzio, and Boll

2012). Moreover, smartphones are widely used in one-handed way (Hoober 2013),

bringing additional challenge to researchers. To address these limitations, we further

investigated existing gesture based user interfaces to improve efficiency of text-entry.

We introduce OctoType, a virtual keyboard with force touch gesture interaction.

OctoType was inspired from OctoPocus (Bau and Mackay 2008), a dynamic guide

that combines on-screen feedforward and feedback to help users learn, execute, and

remember gesture sets. Compared with other gesture guide mechanisms (Callahan,

Hopkins, Weiser, and Shneiderman 1988, Kurtenbach 1993), OctoPocus does not take

any extra screen space other than the gestures themselves. Since virtual keyboards in

iOS and Android devices implement suggestion systems, OctoType uses suggestion

selection as an example of the capabilities of force touch gesture interaction.

1

To address limitations of one-handed use of mobile devices, this thesis inves-

tigates the viability of one-handed force touch gesture interaction. In particular, we

are proposing to apply the interaction for suggestion selection on virtual keyboards to

improve one-handed text-entry speed. Due to high accuracy and low execution time

of force touch gestures observed in our experimental results, we are also proposing to

scale this kind of interaction for different applications by implementing a framework

for conflict-free gesture interfaces.

Two experiments were conducted to estimate performance of force touch ges-

ture interaction for virtual keyboards. In the first experiment, for group of people

who type on standard keying keyboard faster than 22 words per minute (WPM), Oc-

toType was more efficient than other keyboards as it yielded higher WPM and a lower

error rate. Results and feedback collected from participants motivated us to conduct

a second experiment with a modification to OctoType where force touch was used

only for activation of gesture drawing mode, while gestures are drawn regardless of

pressure level. As a result, the accuracy of force touch gesture drawing reached nearly

to 99.9% for two out of three gestures. Moreover, execution time of single gesture

execution was less than one second for all types of gestures used in the prototype.

In the next chapter we will review existing studies on gesture based user in-

terfaces and virtual keyboards. In Chapter Three we will discuss experiments that

we conducted to evaluate several gesture recognition algorithms and compare their

performance. In Chapter Four we demonstrate the design of our prototype. Chapter

Five discusses methods and procedures of our first experiment as well as its results.

In Chapter Six we will show modifications made to OctoType and how results were

improved. In Chapter Seven we introduce the Gesturizer, a framework that pro-

vides a conflict-free gesture interaction to iOS applications running on devices with

3D-touch. Then we briefly discuss its implementation and capabilities. Finally, in

Chapter Eight there will be a discussion and conclusion of the thesis.

2

CHAPTER TWO

Related Works

2.1 Gesture Based User Interfaces

Gesture based user interfaces provide efficient forms of interaction with objects

of interest on the screen. Depending on tasks and context, gesture based user inter-

faces are more efficient and convenient to use than standard buttons and pull-down

menus. One of the main advantages of gesture based interfaces is that a user is not

forced to execute a gesture on a particular static area of the screen. In fact, gestures

can be executed anywhere on the display regardless a cursor, finger or pen position.

Gestures can be arbitrary with different directions and shapes which helps a

user to memorize and execute gestures. Accordiing to Poppinga et al., gestures can

be grouped into 5 shapes (Poppinga, Sahami Shirazi, Henze, Heuten, and Boll 2014).

For instance, gestures with letter shapes correspond to a meaning of a command such

as “M” for mail, and a geometric shape “circle” represents opening “camera” app.

Other gesture shapes (see Figure 2.1) include word gestures which are sequence of

letters or icon gestures representing an object’s figure such as “+” sign for opening

calculator app.

Figure 2.1. Examples of gestures for five shapes each gesture can be assigned to.
Poppinga et al. empirically identified these shapes from different user-invented ges-
tures. The beginning of gestures is represented with thick point, e.g. “line” gesture
is started from left.

3

Depending on number of strokes, there are two types of gestures on touch

screen devices: unistroke and multi-stroke. Unlike multi-stroke gestures which con-

tain more than one stroke, single-stroke gestures can be executed only in two different

ways, since there are only two possible starting points. On the other hand, execu-

tion of multi-stroke gestures can be extremely challenging from the perspective of

recognition algorithms. In addition, multi-stroke gestures with more complex geo-

metrical shape decreases consistency of gesture execution between-users (Anthony,

Vatavu, and Wobbrock 2013). Therefore, unistroke gestures are commonly used in

touchscreen devices.

There are many applications for gesture based interfaces, including web browsers

(Moyle and Cockburn 2003), drawing applications (Igarashi, Kawachiya, Tanaka, and

Matsuoka 1998) and text-document editing (Rodriguez, Sánchez, and Lladós 2007).

However, most graphical user interfaces consist of standard buttons and pull-down

menus, likely because gesture based interfaces require users to learn and execute ges-

tures correctly. If users are to take advantage of gesture based interfaces in specific

and/or common applications, guide systems for users must be provided.

2.1.1 Guides for Learning and Execution of Gestures

Existing systems designed to improve the usability and learnability of gestural

interfaces provide two basic mechanisms: feedforward and feedback (Bau and Mackay

2008). Gesture guides with feedforward mechanisms visually provide information

about a gesture’s shape and a command that the gesture is associated with. For

instance, help cards or pop-up “cheat sheets” illustrate the gestures and associated

commands on the screen (Kurtenbach, Moran, and Buxton 1994). There are two main

drawbacks of such systems. First, users must alternate attention repeatedly between

current gesture state to the cheat sheet. Second, the number of gestures that can

be used within an application is restricted, since displaying a full list of gestures and

associated commands uses a wide amount of space on the screen.

4

Figure 2.2. Kurtenbach’s crib-sheet. When a user selects the word “tea”, the crib-
sheet pops up with set of possible gestures and associated commands.

In contrast, feedback mechanisms depict information after a user starts draw-

ing a gesture and/or at the end of execution. This mechanism requires a gesture

recognition algorithm. Feedback may be given by displaying the recognized gesture

(see Figure 2.3) or providing incremental information as to the current state of the

recognition algorithm (Mankoff, Hudson, and Abowd 2000). Another feature of feed-

back mechanisms is input correction or beautification. Guide systems such as Fluid

Figure 2.3. Mankoff’s ambiguity resolution system shows how it interpreted an in-
put and gives a list of possible words. In this example, the ambiguous shape was
recognized as ‘m’ and ‘w’.

5

Sketches (Arvo and Novins 2000) and Incremental Intention Extraction (Li, Zhang,

Ao, and Dai 2005) correct user input using the perfect template of a gesture (see

Figure 2.4).

Figure 2.4. Li et al’s Incremental Intention Extraction beautifies user input to the
original template of a gesture.

Considering the pros and cons of the two mechanisms, later studies showed best

practices of dynamic gesture guides combining feedforward and feedback. Kurtenbach

extended Pie menus (Callahan, Hopkins, Weiser, and Shneiderman 1988), which have

better time efficiency compared to linear menus (Kurtenbach 1993). Compared to

Pie menus, Kurtenbach’s Marking menus (Figure 2.5) have learnability of gestures

for novice users and faster speed of drawing for experts.

Figure 2.5. Once the user pressed the screen and waited (marked as circles), a set of
possible selections appears. Selected items become highlighted, allowing the user to
perform the next iteration in a sequence of actions.

6

Compared to other novel gesture guides developed during the last decade,

OctoPocus significantly improved drawing speed and learning rate of gestures (Bau

and Mackay 2008). Unlike Help menus, OctoPocus does not take any extra space other

than displaying gesture options. Also, both feedforward and feedback are continuously

updated as the gesture progresses (see Figure 2.6). After the user selects and begins

to make a gesture, less likely gesture guide paths become thinner and disappear.

OctoPocus therefore depicts ideal future path of each gesture as well as the path that

is drawn by the user, decreasing error rate and increasing speed of gesture execution.

Figure 2.6. Example of OctoPocus with guide paths for three different gestures.

2.1.2 Gesture Recognition Algorithms

Several effective and efficient algorithms have been developed for unistroke

gesture recognition using various approaches, including Hidden Markov Models (Sez-

gin and Davis 2005, Anderson, Bailey, and Skubic 2004), neural networks (Pittman

1991) and ad-hoc heuristic recognizers (Wobbrock, Wilson, and Li 2007). However,

drawbacks of these algorithms include dependence on large training dataset as well

as difficulty of programming and debugging. Therefore, these classifiers are not con-

venient for prorotyping user interfaces.

7

One of the simplest and accurate algorithms that was designed for prototyping

gesture based user interfaces is the $1-recognizer. Basically, the $1-recognizer is

an instance-based nearest-neighbor classifier with a Euclidean scoring function. In

contrast to Rubine’s classifier (Rubine 1991) that extracts geometrical features, the

$1-recognizer uses every point of a gesture as a feature. The algorithm obtains 97%

accuracy with 1 training template per gesture and 99% with 3+ templates per gesture

(Wobbrock, Wilson, and Li 2007).

To evaluate speed of execution of gestures and confusion error between pairs

of different gesture types, Vatavu et al. studied the performance of different gesture

types using the $1-recognizer (Vatavu, Anthony, and Wobbrock 2014). The results

of this study are extremely useful for constructing gesture sets when designing a

prototype with a gesture based interface. For instance, a simple ‘circle’ gesture that

looks like an English letter ‘O’, has high drawing speed over the whole gesture path,

while the more complex ‘car’ gesture has the lowest drawing speed among many

other gesture types. According to confusion matrix of gesture types, confusion error

between gesture ‘V’ and ‘caret’ gesture (looks like inverted ‘V’) is low, i.e. it is safe to

include these gesture types when designing a prototype with gesture based interface.

In contrast, there is a high confusion between ‘circle’ and ‘rectangle’ gestures. Thus,

it is important to choose distinct set of gestures to reduce error rate for recognition

algorithms.

2.2 One-Handed Text-Entry on Touch Screen

Smartphones are used by billions of people around the world and text remains

indispensable channel of communication. This is why academic researchers in HCI

and commercial developers have been studying and inventing variety of text-entry

methods for mobile devices. Although there are many novel solutions for text-entry

without using keyboards, such as speech recognition, handwriting, and sign language

8

recognition (Kölsch and Turk 2002), virtual keyboards with standard QWERTY-

layout are common in commercial mobile systems such as Apple’s iOS and Google’s

Android.

One-handed interaction with touch screen mobile devices is dominantly used in

different activities such as walking and standing (Karlson, Bederson, and Contreras-

Vidal 2006), which brings additional challenge in implementing an efficient user in-

terface for text-entry and other tasks. There are numerous research papers exploring

alternative ways of controlling UI elements with one hand including but not limited to,

using physical buttons on the sides (Wilson, Brewster, and Halvey 2013), force touch

interaction (Heo and Lee 2011), bend interaction with deformable phones (Girouard,

Lo, Riyadh, Daliri, Eady, and Pasquero 2015).

2.2.1 Keyboard Layouts

Standard QWERTY layout was designed for typewriters to prevent mechanical

jamming by putting most commonly occurring consecutive letter pairs on different

sides of the layout (Cooper 2012). This layout also was constructed to facilitate

both right and left hands. To increase text-entry performance on touchscreen de-

vices, researchers explored optimized keyboard layouts for one-handed input including

OPTI (MacKenzie and Zhang 1999), Quasi-QWERTY (Bi, Smith, and Zhai 2010),

ATOMIK (Zhai, Hunter, and Smith 2000) and others. However, QWERTY layout

remains standard and familiar to users. Current commercial systems provides two

types of touch screen keyboards using standard QWERTY layout: keying and swyp-

ing. While Apple provides standard keying keyboard by default, Google promotes

swyping keyboard on the Android operating systems (see Figure 2.7). Essentially,

swyping is gesture based interaction, where every word maps to an unique gesture.

Compared to keying keyboards, gestures in swyping keyboards possibly involves mus-

cle memory more efficiently.

9

Figure 2.7. Standard keying keyboards from Apple on the left and shape-writing
keyboard from Google on the right. The gesture in the example on the right, starting
from letter ‘s’, corresponds to the word “swipe”.

2.2.2 Suggestion Systems

To improve text-entry speed and decrease error rate, prediction systems, also

called suggestion systems, are presented as an improvement to virtual keyboards.

Augmentative and Alternative Communication research has investigated prediction

systems to improve input speed for users with physical impairments, but has found

that the benefits of suggestions are not always clear (Quinn and Zhai 2016). Current

Figure 2.8. Two examples of auto-correction and suggestions implemented in iOS.

10

commercial practice uses suggestion interfaces by default. Google’s Android platform

(versions 5 ’Lollipop’ and higher) presents up to three suggestions on top of the

keyboard. Conversely, Apple’s iOS platform (versions 9 and higher) can display

one suggestion below the text insertion cursor, or optionally, three in a bar above

the keyboard (see Figure 2.8). The suggestion below the cursor is transient, and is

accepted by tapping on the spacebar (tapping on the suggestion will reject it).

11

CHAPTER THREE

Gesture Recognition Algorithms

This chapter evaluates different approaches to gestures recognition to pick the

right algorithm for implementation of the keyboard prototype. Criterion for choosing

algorithms included accuracy and speed of recognition as well ease of programming

and debugging. Thus, the goals of this chapter are to:

(1) evaluate different gesture classification approaches to achieve sufficient results

(2) adapt gesture classifiers in order to be able to recognize noisy gestures

Since the $1-recognizer is able to classify with 99% accuracy using 3 and more

templates per gesture (Wobbrock, Wilson, and Li 2007), the target accuracy of ges-

ture recognition for our keyboard prototype was extremely high. The second goal is

important in terms of accessibility of gestures. In particular, accurate classification

of noisy gestures potentially makes gesture based interfaces accessible for users with

motor disabilities. However, the high priority was achievement of the first goal, be-

cause the prototype of our keyboard was not specifically targeting users with physical

impairment.

In the rest of this chapter, we will discuss classifiers in the context of gesture

recognition. In methods section, there will be discussions about design of experiments

for evaluation of gesture recognition algorithms followed by analysis of results. We

conclude with a discussion and future enhancements.

3.1 Methods

3.1.1 Data and Feature Extraction

In this study we used a dataset with 5,040 gesture templates (14 participants

× 18 gestures × 20 executions) collected using a Wacom DTU-710 Interactive Display

12

(Vatavu 2011). It is worth mentioning that in both our experiments we used only

14 gesture types. Since there was significant increase in the error rate classification

of other gestures. For example, all three algorithms misclassified ‘a’ and ‘g’ gestures,

increasing error rate by 5-10%. Illustrations of gesture types from the dataset are

shown in Figure 3.1.

Figure 3.1. Different gesture types from Vatavu dataset.

Pen stroke gestures are represented as a sequence of coordinates and time of

every point of a gesture in (x, y, t) form. The number of points per gesture template

ranges 120-150. As part of normalization of data, we re-sampled them to gestures

with 32 points so that distances between points were equally distributed. We also

tried resampling to 16 and 64 points, but 32 was optimal in terms of time efficiency

and accuracy of classification. From every resampled gesture template extracted 8

geometrical features were also used in Rubine’s classifier:

(1) Cosine of initial angle with respect to the X axis:

f1 = cosα = (x2 − x0)/d, where d =
√

(x2 − x0)2 + (y2 − y0)2

(2) Length of the bounding box diagonal:

f2 =
√

(xmax − xmin)2 + (ymax − ymin)2

(3) Angle between diagonal and x-axis:

f3 = arctan ymax−ymin

xmax−xmin

13

(4) Distance between first and last point:

f4 =
√

(xp−1 − x0)2 + (yp−1 − y0)2,

where p is the number of points in a template

(5) Cosine of angle between first and last point:

f5 = cosβ = (xp−1 − x0)/f4

(6) Total gesture length:

f6 =
p−2∑
i=0

√
∆x2

i + ∆y2
i , where ∆xi = xi+1 − xi and ∆yi = yi+1 − yi

(7) Maximum speed (squared):

f7 = max
∆x2

p+∆y2p
∆t2p

, where ∆tp = tp+1 − tp

(8) Path duration:

f8 = tp−1 − t0

We also calculated intensity features, which are intensities in four equally sep-

arated areas in the bounding box of a gesture, where center point O calculated as

mean of maximum and minimum of x and y values of the gesture. For example, point

intensity features for the gesture in Figure 3.2 are f9 = 0.20, f10 = 0.22, f11 = 0.31,

and f12 = 0.27. Note that the sum of four intensity features is always equals to one.

Figure 3.2. Points intensity features calculated from four equally separated rectangles.

As it was mentioned in the introduction, one of the goals is to classify noisy

gestures. However, we didn’t find any data set that was collected from participants

with a physical impairment. Which is why we applied some simple calculations on

the original gesture templates to generate noisy gestures. Firstly, we added random

noises, in a range from −10 to 10, to x and y values of every point in a gesture.

14

Then gestures were squeezed twice, either by x-axis or y-axis (axis was also picked

randomly), by halving values of x or y of a gesture template. Finally, we removed the

first N and last M points from a gesture, where N and M are random integers from

0 to 10 inclusively. Visualization of such transformations can be seen in Figure 3.3.

Figure 3.3. Generation of noisy gestures.

3.1.2 SVM and K-NN

The $1-recognizer was compared to other classification algorithms: Support

Vector Machines (SVM) and K-Nearest Neighbor (K-NN) algorithm. SVM is used

due to good generalization and stability for noisy data after adapting regularization

parameters. On the other hand, K-NN is very sensitive for noisy data (Ougiaroglou

and Evangelidis 2015), providing us opportunity to observe dependency of classifica-

tion accuracy on noise of gesture templates.

15

Implementation of the $1-recognizer written in Java1 was used in our experi-

ments, while for SVM and K-NN we used Weka Java-library (Eibe Frank and Witten

2016), collection of machine learning algorithms for data mining tasks developed at

University of Waikato, New Zealand. Using the Weka library, configuration of differ-

ent classifiers, including SVM and K-NN, can be easily managed.

Sequential minimal optimization (SMO) was chosen to solve the quadratic

programming problem that arises during the training of SVM (Zeng, Yu, Xu, Xie, and

Gao 2008). The pairwise coupling method was used to multiclass classification (Hastie

and Tibshirani 1998). This method creates n(n−1)
2

classifiers, where n is a number of

gesture types, and chooses the most probable class from all pairwise results. In fact,

for number of gesture types used in our study, pairwise coupling method performed

in ∼ 5.5 nanoseconds for classification of a single gesture template.

Both K-Nearest Neighbor and SVM were trained with features described in

previous section. However, we did not study any feature selection algorithms nor

correlation of them. Initially, we tested K-NN using our dataset to pick a value of k

with a low error rate. The result showed that 5-NN is optimal for our dataset using

the 12 features (see Figure 3.4). In the following sections, all results regarding K-NN

are achieved by 5-NN.

3.1.3 Procedure

We conducted 2 experiments to evaluate our goals stated early in this chapter.

In the first experiment we ran $1, 5-NN and SVM on both original and noisy data. To

measure how accuracy of gesture classification depended on number of training tem-

plates per gesture, we ran each algorithm 2240 times with increasing size of training

data from 1 to 224 per gesture type, i.e. 10 runs for every training template size.

Given results from the first experiment, for time efficiency and accuracy of

algorithms we used optimal number of gesture templates for training, then validated

1http://depts.washington.edu/madlab/proj/dollar/

16

Figure 3.4. Impact of k in K-NN on error rate.

all three classifiers with increasing number of gesture types (on both original and

noisy gestures).

3.2 Results

Using 1 to 25 training data per gesture type, $1 algorithm yielded a signifi-

cantly lower error rate than SVM and K-NN (see Figure 3.5). Although 5-NN reached

8.9% error rate, with SVM we also achieved high accuracy, i.e. ∼ 3% error rate or

∼ 97% accuracy. For noisy data, SVM reached lower error rate than the $1-recognizer

with 10.5% and 11.5% respectively.

In the second experiment, the $1-recognizer always performed with error rate

less than 1% on original data (see Figure 3.6). SVM also showed sufficient results

steadily increasing over number of gesture types from 0.7% to 1.95% error rate. SVM

clearly outperforms other classifiers when running validation on noisy data.

3.3 Conclusion and Discussion

In this chapter, we evaluated 5-NN and SVM with features used in Ru-

bine’s classifier as well as features describing points intensity. Compared to the $1-

recognizer, 5-NN and SVM showed higher error rates for original data. We achieved

17

Figure 3.5. Error rate dependency on number of training samples.

Figure 3.6. Error rate dependency on number of gesture types.

relatively accurate classification of noisy gestures using SVM, while the $1-recognizer

had higher error rate than SVM as well as 5-NN. In fact, even 5-NN had lower er-

ror rate than the $1-recognizer when validating on noisy data for up to 7 gesture

types. The main difference in settings of these three classifiers is that SVM and 5-NN

used geometrical features, while the $1-recognizer uses every point of template as

features. Therefore, using extracted geometrical features shows better generalization

than using raw points of a gesture template as features.

18

Given high accuracy and robustness of classification as well as ease of imple-

mentation of the $1-recognizer, in designing of our keyboard we proceeded with this

algorithm. Although the keyboard use fewer gesture types than the number of ges-

tures used in this chapter, the results of accuracy for $1-recognizer shows that the

number of gestures can be extended in the prototype.

On the other hand, if target audience for our keyboard would be changed in

future for people with physical impairment, the use of another gesture recognition

algorithm must be considered, possibly using geometrical features. In this case, we

should think about smarter way of generation noisy gestures and/or collecting real

data involving people with a physical impairment to validate different algorithms in

a real-world context.

19

CHAPTER FOUR

Design of Keyboard Prototype

4.1 Prototype

The prototype of OctoType is supported on iPhones with 3D-touch1 technol-

ogy (e.g. iPhone 6s, 7, 7+, and 8) and has two modes of operation: Default Mode

and Gesture Mode. In Default Mode, which is activated initially, OctoType per-

forms as standard keying keyboards on iOS and Android devices with suggestions

directly above the keyboard (see Figure 4.1). In the example below, three sugges-

tions appear on the suggestion bar located on top of the keyboard according to a

dictionary constructed from the phrases set specifically designed for evaluation of

text-entry methods (MacKenzie and Soukoreff 2003). The details of the dictionary

are discussed later in this section.

Figure 4.1. OctoType in Default Mode after typing ’do’ prefix.

In contrast, Gesture Mode is a state of the keyboard when different gestures

are displayed on the screen and can be executed to select a suggestion (see Figure 4.2).

Gesture Mode can be activated by applying additional pressure to any area on the

screen within the keyboard’s scope. Apple’s iOS development kit gives the ability

to read screen pressure level from 0 to 1. Force touch threshold for OctoType is

1https://developer.apple.com/ios/3d-touch/

20

0.5. Thus, when a user touches the screen with pressure level ≥ 0.5, Gesture Mode

becomes active. Once gestures become visible, the user can execute their prefered

gesture with pressure level ≥ 0.5. If the pressure level goes lower than 0.5 while

drawing a gesture, OctoType stops Gesture Mode and returns back to Default Mode.

There are three different static gestures with red, green, and blue colors that

matches with first, second, and third word in the suggestion bar respectively. Different

variations of curve and angle gestures were picked due to their simplicity and ease

of drawing (Vatavu, Anthony, and Wobbrock 2014). These three gestures are highly

distinguishable by the $1-recognizer, reducing possibility of errors. Also, speed of

drawing for this gesture is high as well as their learnability. Once a user finishes

to draw one of these gestures, OctoType associates a word matching to the gesture

executed (see Figure 4.2, Figure 4.3 and Figure 4.4).

Figure 4.2. OctoType in Gesture Mode after typing ’do’ prefix at the beginning.

The gesture interaction of the keyboard in Gesture Mode is based on Oc-

toPocus. Once Gesture Mode is active and a user starts to execute a gesture, less

likely gesture guide paths become thinner and disappear. Likeliness of a gesture based

on a path that a user already drawn is calculated similarly to the algorithm of Oc-

toPocus. Assuming T is the template or ’perfect’ gesture for class C, the algorithm

proceeds as follows for each template:

(1) Subtract the prefix of the length of user’s input from the full template T ,

resulting in a sub-template subT.

21

(2) Concatenate the current user’s input with sub-template subT. The resulting

shape perfT is the user’s completed input together with a perfect drawing for

a given class.

(3) Use the $1-recognizer to compute the distance between the resulting shape

perfT and the gesture class C associated with the template.

(4) Compute the difference between the computed current value and a given

threshold. This gives user’s room for error before reaching the distance

threshold i.e. before the input no longer resembles an element of class C,

from perspective of the recognizer.

In the examples given below, a user starts to draw the blue gesture, i.e. select

the word ’doctor’. While user starts drawing the blue gesture, the probability and

thickness of red and green gestures decrease. As a result, the red and green gestures

disappear as well as the first two suggestions.

Figure 4.3. OctoType in Gesture Mode after typing ’do’ prefix in the middle of
drawing the blue gesture.

Figure 4.4. OctoType in Gesture Mode after typing ’do’ prefix at the end of drawing
the blue gesture.

22

4.2 Dictionary

Suggestions are shown according to a dictionary that was built from MacKenzie

and Soukoreff phrases set (MacKenzie and Soukoreff 2003). Since the suggestion

mechanism itself is not the focus of the study, the dictionary is constructed by simply

sorting words in the set by frequency. However, words that are not long enough were

not included in the dictionary. In particular, if the sum of the prefix length of a word

and T was less than the length of the whole word, then it was added to the dictionary

(where T is average gesture drawing time). The value of T was approximately picked

to be equal to the typing time of 3 letters.

In total, there are 409 prefixes (see Table 4.1) that were generated from the

MacKenzie and Soukoreff set that contains 255 phrases with a mean value of 5.3 words

per phrase and σ = 1.1 words. The theoretical improvement of entry speed using this

dictionary was equal to 9.4%, which was estimated by the total time needed to finish

the whole phrases set.

Table 4.1. First 10 prefixes in the dictionary.

Prefix Suggestions
a about, always, agree

ab abandoned, aboard
ac accident, according, accept

acc accompanied, acceptance, account
acu acutely
ad adult, addition, advance
af afraid, after
ag again, agreement
ah ahead
ai airport

23

CHAPTER FIVE

Experiment I

The main objective of this experiment was to examine the text entry speed and

error rate of OctoType compared to other types of virtual keyboards. Our hypothesis

was that OctoType outperform standard keying and swyping keyboards in terms of

text-entry speed and accuracy.

5.1 Participants

A user study was conducted with 20 participants (two were left-handed and

18 were right-handed) between ages 18 to 20. They were recruited from an intro-

ductory computer science course taught at the Department of Computer Science at

Baylor University. All participants, including 3 female and 17 male, use a smartphone

(Android or iOS) on daily basis.

5.2 Materials

To evaluate virtual keyboards, experiments were conducted using the iPhone

7 (4.7-inch diagonal screen) with the iOS 11.1 operating system. Together with Octo-

Type, we used GBoard 1 (swyping keyboard developed by Google). Also, OctoType

was used in three keying modes: without suggestions, suggestion selection by tapping,

and suggestion selection by gesture drawing. Thus, the study was conducted using

4 types of virtual keyboards. In addition, suggestion selection types included nor-

mal and training modes. Since the experiment evaluates the performance of virtual

keyboards using only one dominant hand, the iPhone 7 was chosen due to smaller

screen size than other versions of iPhone with 3D-touch technology. We used short

phrases from MacKenzie and Soukoreff (MacKenzie and Soukoreff 2003) set that were

1https://itunes.apple.com/us/app/gboard/id1091700242

24

specifically designed to evaluate text entry techniques. Five randomly chosen phrases

were assigned to each type of keyboard.

5.3 Measurements

To evaluate keyboard performance, we used Soukoreff and MacKenzie (Souko-

reff and MacKenzie 2003, Soukoreff and MacKenzie 2004) metrics:

WPM =
T

S
× 60 × 1

5
(5.1)

where T is the length of transcribed string and S is the total amount of time (in

seconds).

Error =
IF

C + IF
× 100 (5.2)

where C is correct keystrokes and IF is incorrect but fixed keystrokes.

5.4 Procedure

The study is within-subject where each participant individually performed a

single session lasting approximately 30 minutes. At the beginning of a session, a

participant was asked to self-report his/her experience with different types of virtual

keyboard on Likert scale. After the introduction of the experiment, a tutorial about

OctoType and its usage was provided. Each participant was given 5 minutes of

training time to practice with OctoType in training mode (see Figure 5.1). In training

mode, the testing application highlights a prefix that needs to be typed and a color of

a gesture that needs to be drawn. In contrast, the testing application in normal mode

highlights only the current word. Additionally, in both modes the testing application

highlights letters in the text field with blue or red colors, indicating that a word is

typed correctly or not.

Once the training is over, participants typed randomly assigned phrases using

4 different types of keyboards. Keyboards with suggestion selection by tapping and

25

Figure 5.1. Testing application in training mode.

gestures were used in two different modes: training and default, i.e. 6 runs per

participant. The order of keyboards to be tested was randomized in each session.

Since participants typed using only one hand, they were allowed to take a break in

case of fatigue. At the end of a session, each participant filled out a survey about

his/her experience with OctoType.

5.5 Results

The means and standard deviations of WPM for different keyboards are shown

on Figure 5.3 (for abbreviations of different keyboards see Table 5.1). The results of

paired t-test for each pair are shown on Table 5.2.

26

Table 5.1. Abbreviations for different keyboards.

Abbreviation Description
GM-T Gesture based suggestion selection in training mode

GM Gesture based suggestion selection in default mode
Tap-T Suggestion selection by tapping in training mode

Tap Suggestion selection by tapping in default mode
DM No suggestion in default mode
GB GBoard in default mode

Figure 5.2. Error rate for all keyboards.

Taking into consideration statistically significant outcomes of paired t-test, we

see that both Tap-T and DM have a better performance than GB and GM. Also, it

appears that DM performs better than GM and GB.

However, according to differences in entry speed between DM and GM-T, there

were two groups of typers:

• Group-1: entry speed in DM was at least 22 WPM and faster than in GM-T

• Group-2: entry speed in DM was at most 22 WPM and slower than in GM-T

For the Group-2 data, the results appear to be different (see Figure 5.4). Tap-T still

shows the best performance, while GM-T outperforms DM and GB.

27

Figure 5.3. A comparison of overall WPM.

The error rate for all type of keyboards are shown in Figure 5.2. Tap, Tap-

T and DM have the lowest error rate, while GB has the highest. Also, there is a

significant decrease in GM’s error rate after training.

Table 5.2. Paired t-test for WPM.

Diff p-value

Tap-T – GM 5.63 0.0001
DM – GM 4.76 0.0005

Tap-T – GB 4.58 0.0008
DM – GB 3.71 0.0064

Tap-T – GM-T 3.49 0.0104
Tap – GM 3.04 0.0248

5.6 Conclusion and Discussion

Gesture selection had statistically significant lower performance than selection

by tapping, because single touch takes less time than executing a gesture. However,

28

Figure 5.4. A comparison of WPM for Group-2.

for the group of participants who typed slower than 22 WPM in standard keying key-

board (Group-2), OctoType had higher WPM than default keying without suggestion

selection. In fact, suggestion selection has benefits for Group-2, because it decreases

the number of letters required to type a word which allows the user to complete the

word with one final motion. Unfortunately, for the group of participants who typed

faster than 22 WPM in standard keying keyboard (Group-1), users were able to com-

plete the word faster using their normal input mechanism. The additional movement

that OctoType would provide caused the users to hesitate enough that understanding

the action slowed down their overall WPM.

From the feedback collected from participants, they suggested that drawing a

gesture with force touch becomes complicated at the end of drawing a gesture. This

suggestion aligns with the differences seen between groups 1 and 2. Simplifying the

gesture might improve the times of both groups. Additionally, it was noted that

force touch should be used only for activation of Gesture Mode, while gestures drawn

29

regardless of pressure level. This was motivation for the second experiment with

minor modifications to OctoType.

30

CHAPTER SIX

Experiment II

According to the participant feedback from Experiment I, executing a gesture

while pressing the display harder causes fatigue. Therefore, this property of OctoType

was changed so that force touch is required only for activation of Gesture Mode,

rather than throughout the entire gesture, and a gesture can be executed regardless of

pressure level. Our hypothesis was that the modification made to OctoType increases

text-entry speed and decreases error rate. Moreover, we expected that accuracy of

drawing gestures increases significantly, while their execution time decreases.

6.1 Participants, Materials and Procedure

A user study was conducted with 10 right-handed participants between ages 22

to 30. Each uses a smartphone (Android or iOS) on a daily basis. The participants of

this experiment were not participants in Experiment I. All materials and procedures

were the same as in Experiment I including the iPhone 7 smartphone, MacKenzie

and Soukoreff phrases set (MacKenzie and Soukoreff 2003), and 4 types of keyboard.

6.2 Measurements

In addition to WPM and Error, we measured accuracy and execution time of

gestures. For a given gesture (red, green, or blue), accuracy is calculated as follows:

Accuracy =
S

U + S
(6.1)

where S and U are the numbers of successful and unsuccessful executions of the

gesture.

The execution time of a gesture was calculated as a time difference between

activation of Gesture Mode and a finger release. Additionally, we calculated Gesture

31

Mode activation time which is equal to time spent from the first touch until gestures

become visible. The results of accuracy, Gesture Mode activation time, and gesture

execution time from Experiment I were obtained from log data and video records of

the iPhone 7 screen.

6.3 Results

Gesture based suggestion selection in training mode showed 18.27 WPM, while

for default mode with no suggestions it was 16.17 WPM. Thus, there is a 2.1 WPM

difference, which is ∼ 13.1% improvement in text entry speed using OctoType. With

t-Ratio equal to 3.41 and significance level p = 0.0056 for the paired t-test, the

improvement is considered to be statistically significant. Similarly to results of Ex-

periment I, TAP-T still shows the highest WPM among all keyboards (see Figure 6.1).

Surprisingly, TAP-T and GM-T had similar WPM, since paired t-test failed to reject

the difference between them. The full list of differences with statistically significant

results are shown on Table 6.1.

Error rates for DM, GM, GM-T, TAP, TAP-T are similar with mean values

4.1%, 6.2%, 5.4%, 3.9%, 3.6% respectively (see Figure 6.2). In contrast, GB showed

the highest error rate with 8.3% mean value and 4.5% standard error mean. Also,

paired t-test gave no statistical difference between error rates for any pair.

Table 6.1. Paired t-test for WPM.

Difference t-Ratio p-value
GM-T – GM 3.52 5.28 0.0006
GM-T – DM 2.1 3.42 0.0056
TAP-T – GM 4.92 4.02 0.0025
TAP-T – TAP 2.71 2.04 0.0401
TAP-T – GB 4.91 2.08 0.0377
TAP-T – DM 3.49 4.28 0.0018

32

Figure 6.1. A comparison of WPM for all keyboards.

Figure 6.2. Error rates for all keyboards.

33

Overall, gesture drawing had high accuracy and low execution time. The

average Gesture Mode activation time was equal to 0.37 seconds and average time

per character entry was 0.6 seconds. The accuracy of gestures for all three gestures

were drastically high compared to Experiment I (see Table 6.2). Which implies that

force touch should be used only for activation of Gesture Mode.

Table 6.2. Gesture Drawing Accuracy.

Red Green Blue
Experiment I 93% 85.2% 89.3%

Experiment II 97.5% 99.9% 99.9%

The execution time decreased in Experiment II. In particular, execution time

of blue gesture (0.35 seconds) were even lower than per character entry time. Thus,

execution time for all three gestures do not differ a lot from entry speed of a single

character with a keyboard in normal keying mode (see Table 6.3).

Table 6.3. Gesture Execution Time.

Red Green Blue
Experiment I 0.78 0.8 0.6

Experiment II 0.5 0.6 0.35

6.4 Conclusion and Discussion

In this experiment, we evaluated OctoType with modifications to the key-

board. As a result, our proposed force touch gesture based suggestion selection out-

performed standard keying and swyping methods. Moreover, in training mode there

were no significant differences between OctoType and suggestion selection by tapping

in terms of WPM and error rate.

Measurements of accuracy and execution time of gesture drawing showed

promising results. When a user applies additional pressure to the screen only for

34

activation of Gesture Mode, there was nearly no error for gesture drawing. Addi-

tionally, the speed of gesture drawing was almost as fast as single tap movement. In

particular, the curve gesture showed the very small execution time compared to other

angle gestures. Thus, the combination of force touch for gesture mode activation and

drawing a gesture regardless of pressure level potentially has high usability.

35

CHAPTER SEVEN

Force Touch Gesture Interaction Framework

This chapter describes the framework for iOS applications that we developed

based on the results of experiment II. The combination of using force touch for gesture

mode activation and then drawing a gesture regardless of pressure level may have high

usability in touch screen mobile devices. This combination can potentially be used

not only at keyboard level, but at application and/or an operating system’s UI level.

In fact, this kind of gesture interaction does not conflict with already existing UI

elements in apps or in mobile OS, since force touch is required for gesture mode

activation. The framework provides to researchers and developers a tool for fast

prototyping and designing conflict-free gesture based interfaces on pressure-sensitive

touch screen devices.

7.1 Framework Features

The framework, named Gesturizer, enables unistroke gesture based interaction

in any iOS apps running on 3D-touch devices without interfering with existing UI

elements. It is written in Swift1 programming language and can be imported to an

existing iOS app in relatively few lines of code.

Once the framework is imported to an application, there are two modes of

operation for gesture interaction: default and training. In default mode, there is no

visual representation of gestures. Instead, when a user applies additional pressure

to the screen, a light vibration feedback is given indicating that the user can start

executing a gesture.

On the other hand, training mode is activated after a user hesitates to draw

a gesture. The hesitation in this case is defined as 1 second delay after force touch.

1https://developer.apple.com/swift/

36

In training mode illustration of gestures on the screen is similar to OctoType (see

Figure 7.1), intending to provide dynamic guide for learning and execution of different

gestures.

Figure 7.1. Example of using Gesturizer framework on sample app with scrollable
and clickable UI elements.

By default, the framework provides three different gestures that we used in

OctoType. The number of gestures and their templates can be changed by provid-

ing a list of (x, y) coordinate points for a gesture. Additionally, parameters of the

framework such as pressure level for gesture mode activation and hesitation time for

training mode activation can be customized as well.

7.2 Architecture and Design

Architecture of the Gesturizer framework contains two main components (Fig-

ure 7.2):

37

Figure 7.2. Architecture of Gesturizer Framework.

• GesturizerWindow handles all touches and decides which UI element will

receive a touch event.

• GesturizerView is used for illustrating colorful gestures in training mode.

When a user touches the screen, all touch events firstly go to GesturizerWin-

dow. Depending on the pressure level, GesturizerWindow decides whether a touch

is associated with gesture interaction or common touch event that must be handled

with UI elements of an app. GesturizerView is only needed for displaying gestures

in training mode, while the processing of the force of pressing and the recognition of

gestures occurs in the GesturizerWindow. GesturizerWindow does not create delays

in the application due to robustness of the $1-recognizer.

Samples of code to import GesturizerWindow and GesturizerView are shown

on Figure A.1 and Figure A.2 in Appendix A.

38

CHAPTER EIGHT

Conclusion, Discussion and Future Works

In this work we evaluated use of force touch gesture interaction as an in-

put mechanism during one-handed virtual keyboard input. More specifically, force

touch gesture interaction was added to allow suggestion selection. Unfortunately, ges-

ture selection had lower performance than selection by tapping. However, OctoType

had better performance than default keying without suggestion selection in terms of

WPM. Because OctoType decreases number of letters required to type, it allows the

user to complete the word with one final motion. In contrast, for group of people who

typed faster that 22 words per minute on standard keying keyboard, users could com-

plete the word faster using their normal input mechanism. The additional movement

that OctoType required caused the users to hesitate enough that unfamiliarity with

the action reduced their WPM. Possibly text-entry speed using OctoType increases

in long-term use, since gestures become more intuitive to be executed.

Modifications made to OctoType showed that force touch gesture interaction

is accurate and fast, achieving more than 97% accuracy and execution time less

than 1 second. These promising results were a motivation to build the Gesturizer

framework that enables conflict-free gesture based user interfaces to iOS applications

running on devices with 3D-touch technology. The framework is designed in a way

that researchers and developers can use it for fast prototyping of force touch gesture

interfaces. In fact, this is one of the biggest results achieved during the research.

The interaction implemented in the framework has high potential in mobile user

interfaces. Therefore, further study should be conducted to evaluate usability of

force touch gesture based interaction in different applications on mobile devices.

39

In regards to future implementations of force touch gesture interaction, there

are numerous things that would require improvement. Further study is needed to

investigate the level of pressure to activate Gesture Mode. Also, the dictionary of

suggestions need to be improved by using existing approaches that is common for these

kinds of purposes. Lastly, since the mechanisms used in OctoType can be expanded

to use a higher number of gestures and suggestions, functionality of OctoType can be

improved by increasing number of gestures.

40

APPENDICES

41

APPENDIX A

Framework

var window: UIWindow? = GesturizerWindow()

Figure A.1. AppDelegate.swift

override func viewDidAppear(_ animated: Bool) {

super.viewDidAppear(animated)

let window = UIApplication.shared.keyWindow as! GesturizerWindow

let view = GesturizerView()

view.gestureHandler = {index in

// implement a command related to a gesture

// with given index in the gesture list

}

window.setGestureView(view: view)

}

Figure A.2. ViewController.swift

42

APPENDIX B

Vita

Name: Kuanysh Zhunussov

Date of Birth: 1994

Place of Birth: Pavlodar, Kazakhstan

Email: kuanysh.zhunussov@gmail.com

M.S. (seeking): August 2016 - May 2018 (Expected)

Computer Science

Department of Computer Science

Baylor University, Waco, TX, USA

BEngTech: August 2012 - June 2016

Computer Systems and Software

Faculty of Information Technologies

Kazakh-British Technical University, Almaty, Kazakhstan

43

BIBLIOGRAPHY

Anderson, D., C. Bailey, and M. Skubic (2004). Hidden markov model symbol
recognition for sketch-based interfaces. In AAAI fall symposium, pp. 15–21.

Anthony, L., R.-D. Vatavu, and J. O. Wobbrock (2013). Understanding the con-
sistency of users’ pen and finger stroke gesture articulation. In Proceedings of
Graphics Interface 2013, pp. 87–94. Canadian Information Processing Society.

Arvo, J. and K. Novins (2000). Fluid sketches: continuous recognition and mor-
phing of simple hand-drawn shapes. In Proceedings of the 13th annual ACM
symposium on User interface software and technology, pp. 73–80. ACM.

Bau, O. and W. E. Mackay (2008). Octopocus: A dynamic guide for learning
gesture-based command sets. In Proceedings of the 21st Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’08, New York, NY,
USA, pp. 37–46. ACM.

Bi, X., B. A. Smith, and S. Zhai (2010). Quasi-qwerty soft keyboard optimization.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 283–286. ACM.

Callahan, J., D. Hopkins, M. Weiser, and B. Shneiderman (1988). An empirical
comparison of pie vs. linear menus. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 95–100. ACM.

Cheng, L.-P., H.-S. Liang, C.-Y. Wu, and M. Y. Chen (2013). igrasp: grasp-based
adaptive keyboard for mobile devices. In Proceedings of the SIGCHI conference
on human factors in computing systems, pp. 3037–3046. ACM.

Cooper, W. E. (2012). Cognitive aspects of skilled typewriting. Springer Science &
Business Media.

Eibe Frank, M. A. H. and I. H. Witten (2016). The weka workbench. online
appendix for “data mining: Practical machine learning tools and techniques”.
Morgan Kaufmann, Fourth Edition.

Girouard, A., J. Lo, M. Riyadh, F. Daliri, A. K. Eady, and J. Pasquero (2015).
One-handed bend interactions with deformable smartphones. In Proceedings of
the 33rd annual ACM conference on human factors in computing systems, pp.
1509–1518. ACM.

Hastie, T. and R. Tibshirani (1998). Classification by pairwise coupling. In Ad-
vances in neural information processing systems, pp. 507–513.

44

Henze, N., E. Rukzio, and S. Boll (2012). Observational and experimental in-
vestigation of typing behaviour using virtual keyboards for mobile devices. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’12, New York, NY, USA, pp. 2659–2668. ACM.

Heo, S. and G. Lee (2011). Force gestures: augmented touch screen gestures using
normal and tangential force. In CHI’11 Extended Abstracts on Human Factors
in Computing Systems, pp. 1909–1914. ACM.

Hoober, S. (2013). How do users really hold mobile devices. Uxmatters
(http://www.uxmatter.com). Published: Feburary 18.

Igarashi, T., S. Kawachiya, H. Tanaka, and S. Matsuoka (1998). Pegasus: a drawing
system for rapid geometric design. In CHI 98 conference summary on Human
factors in computing systems, pp. 24–25. ACM.

Karlson, A. K., B. B. Bederson, and J. L. Contreras-Vidal (2006). Studies in one-
handed mobile design: Habit, desire and agility. In Proc. 4th ERCIM Workshop
User Interfaces All (UI4ALL), pp. 1–10. Citeseer.

Kölsch, M. and M. Turk (2002). Keyboards without keyboards: A survey of virtual
keyboards. In Workshop on Sensing and Input for Media-centric Systems, Santa
Barbara, CA.

Kurtenbach, G. (1993). The Design and Evaluation of Marking Menus. Ph. D.
thesis, Dept. of Computer Science, University of Toronto.

Kurtenbach, G., T. P. Moran, and W. Buxton (1994). Contextual animation of
gestural commands. In Computer Graphics Forum, Volume 13, pp. 305–314.
Wiley Online Library.

Leung, L. and P. Aarabi (2014). Mobile circular keyboards. In Electrical and
Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on,
pp. 1–4. IEEE.

Li, J., X. Zhang, X. Ao, and G. Dai (2005). Sketch recognition with continuous
feedback based on incremental intention extraction. In IUI.

MacKenzie, I. S. and R. W. Soukoreff (2003). Phrase sets for evaluating text entry
techniques. In CHI ’03 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’03, New York, NY, USA, pp. 754–755. ACM.

MacKenzie, I. S. and S. X. Zhang (1999). The design and evaluation of a high-
performance soft keyboard. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pp. 25–31. ACM.

Mankoff, J., S. E. Hudson, and G. D. Abowd (2000). Interaction techniques for
ambiguity resolution in recognition-based interfaces. In Proceedings of the 13th
Annual ACM Symposium on User Interface Software and Technology, UIST ’00,
New York, NY, USA, pp. 11–20. ACM.

45

Moyle, M. and A. Cockburn (2003). The design and evaluation of a flick gesture
for’back’and’forward’in web browsers. In Proceedings of the Fourth Australasian
user interface conference on User interfaces 2003-Volume 18, pp. 39–46. Aus-
tralian Computer Society, Inc.

Nguyen, H. and M. C. Bartha (2012). Shape writing on tablets: Better performance
or better experience? Proceedings of the Human Factors and Ergonomics Soci-
ety Annual Meeting 56 (1), 1591–1593.

Ougiaroglou, S. and G. Evangelidis (2015). Dealing with noisy data in the context
of k-nn classification. In Proceedings of the 7th Balkan Conference on Infor-
matics Conference, pp. 28. ACM.

Pittman, J. A. (1991). Recognizing handwritten text. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 271–275.
ACM.

Poppinga, B., A. Sahami Shirazi, N. Henze, W. Heuten, and S. Boll (2014). Under-
standing shortcut gestures on mobile touch devices. In Proceedings of the 16th
international conference on Human-computer interaction with mobile devices &
services, pp. 173–182. ACM.

Quinn, P. and S. Zhai (2016). A cost-benefit study of text entry suggestion interac-
tion. In Proceedings of the 2016 CHI conference on human factors in computing
systems, pp. 83–88. ACM.

Rodriguez, J., G. Sánchez, and J. Lladós (2007). A pen-based interface for real-
time document edition. In Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on, Volume 2, pp. 939–943. IEEE.

Rubine, D. (1991). Specifying gestures by example, Volume 25. ACM.

Sezgin, T. M. and R. Davis (2005). Hmm-based efficient sketch recognition. In
Proceedings of the 10th international conference on Intelligent user interfaces,
pp. 281–283. ACM.

Soukoreff, R. W. and I. S. MacKenzie (2003). Metrics for text entry research: An
evaluation of msd and kspc, and a new unified error metric. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03,
New York, NY, USA, pp. 113–120. ACM.

Soukoreff, R. W. and I. S. MacKenzie (2004). Recent developments in text-entry
error rate measurement. In CHI ’04 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’04, New York, NY, USA, pp. 1425–1428. ACM.

Vatavu, R.-D. (2011). Stroke gesture datasets. [Online; accessed 11-March-2018].

46

Vatavu, R.-D., L. Anthony, and J. O. Wobbrock (2014). Gesture heatmaps: Un-
derstanding gesture performance with colorful visualizations. In Proceedings
of the 16th International Conference on Multimodal Interaction, pp. 172–179.
ACM.

Wilson, G., S. Brewster, and M. Halvey (2013). Towards utilising one-handed
multi-digit pressure input. In CHI’13 Extended Abstracts on Human Factors in
Computing Systems, pp. 1317–1322. ACM.

Wobbrock, J. O., A. D. Wilson, and Y. Li (2007). Gestures without libraries, toolk-
its or training: A $1 recognizer for user interface prototypes. In Proceedings of
the 20th Annual ACM Symposium on User Interface Software and Technology,
UIST ’07, New York, NY, USA, pp. 159–168. ACM.

Zeng, Z.-Q., H.-B. Yu, H.-R. Xu, Y.-Q. Xie, and J. Gao (2008). Fast training sup-
port vector machines using parallel sequential minimal optimization. In Intel-
ligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International
Conference on, Volume 1, pp. 997–1001. IEEE.

Zhai, S., M. Hunter, and B. A. Smith (2000). The metropolis keyboard-an explo-
ration of quantitative techniques for virtual keyboard design. In Proceedings
of the 13th annual ACM symposium on User interface software and technology,
pp. 119–128. ACM.

47

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CONTENT
	Introduction
	Related Works
	Gesture Based User Interfaces
	Guides for Learning and Execution of Gestures
	Gesture Recognition Algorithms

	One-Handed Text-Entry on Touch Screen
	Keyboard Layouts
	Suggestion Systems

	Gesture Recognition Algorithms
	Methods
	Data and Feature Extraction
	SVM and K-NN
	Procedure

	Results
	Conclusion and Discussion

	Design of Keyboard Prototype
	Prototype
	Dictionary

	Experiment I
	Participants
	Materials
	Measurements
	Procedure
	Results
	Conclusion and Discussion

	Experiment II
	Participants, Materials and Procedure
	Measurements
	Results
	Conclusion and Discussion

	Force Touch Gesture Interaction Framework
	Framework Features
	Architecture and Design

	Conclusion, Discussion and Future Works

	APPENDICES
	APPENDIX Framework
	APPENDIX Vita
	BIBLIOGRAPHY

