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Beta Regression for Modeling a Covariate-Adjusted ROC
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Mentor: Jack D. Tubbs, Ph.D.

The receiver operating characteristic (ROC) curve is a well-accepted measure of ac-

curacy for diagnostic tests. In many applications, test performance is affected by covari-

ates. As a result, several regression methodologies have been developed to model the ROC

as a function of covariate effects within the generalized linear model (GLM) framework.

We present an alternative to two existing parametric and semi-parametric methods for es-

timating a covariate-adjusted ROC. These methods utilize GLMs for binary data with an

expected value equal to the probability that the test result for a diseased subject exceeds

that of a non-diseased subject with the same covariate values. This probability is referred

to as the placement value. Given that the ROC is the cumulative distribution of the place-

ment values, we propose a new method that directly models the placement values through

beta regression. We compare the beta regression method to the existing parametric and

semiparametric approaches with simulation and a clinical study. Bayesian extensions for

the parametric and the beta methods are developed and the performance of these extensions

is evaluated through simulation. We apply the proposed beta regression approach and its

Bayesian extension to a simple network meta-analysis problem using a Bayesian indicator

model selection method.
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CHAPTER ONE

Introduction

A well known problem in the testing literature is to determine and control how co-

variates affect a test’s ability to distinguish between two populations. Two widely used

measures of accuracy for diagnostic tests are the receiver operating characteristic (ROC)

curve and the area under the ROC (AUC). In this dissertation, we propose a new method for

estimating a covariate-adjusted ROC and extend application of the new method to a sim-

ple network meta-analysis. We begin with defining notation and presenting a motivating

example.

1.1 Notation

1.1.1 Receiver Operating Characteristics Curve (ROC)

We briefly introduce the ROC as a measure of test accuracy as well as the notation

used for a covariate adjusted ROC. Suppose we have two populations, one non-diseased

(D̄) and one diseased (D). Let YD̄ denote the test result for an observation from the non-

diseased (reference) population and let YD denote the test result for an observation from

the diseased (comparator) population. Suppose that we classify a subject as being from the

diseased population if Y ≥ c. Then the test’s true positive rate is TPR(c) = Pr[Y ≥ c|D].

Similarly, the test’s false positive rate is FPR(c) = Pr[Y ≥ c|D̄]. The ROC curve, defined

as the set of all TPR-FPR pairs, quantifies the separation between the diseased and non-

diseased populations. The ROC has many forms in the literature. In this dissertation, we

restrict our attention to the survival curve and the placement values given by,

ROC(t) = SD(S−1
D̄

(t))

= P [PVD ≤ t],

1



for t ∈ (0, 1), where SD, SD̄ are survival functions for the diseased and non-diseased pop-

ulations respectively, and PVD represents the placement values for the diseased subjects.

The placement value is the probability that a diseased test result exceeds a non-diseased

test result given the same covariate value. As illustrated in Figure 1.1.1, one can think of

the placement value for a diseased observation as found by mapping the diseased response

value on to the reference distribution and calculating the area to the right. Populations

which exhibit a high degree of separation will thus yield placement values close to zero.

Figure 1.1.1: Illustration of placement value calculation

The area under the curve (AUC) is a common summary measure of the ROC given

by P (YD > YD̄). The AUC is the probability that a randomly selected subject is classified

into the correct population. As illustrated in Figure 1.1.2, populations with a high degree

2



of overlap will yield a nearly diagonal ROC with an AUC close to 0.5. Those with a high

degree of separation will yield an AUC close to 1.

Figure 1.1.2: Illustration of the ROC and the AUC for different population separations

1.1.2 Covariate-Adjusted ROC Curve

Let X denote covariates common to both populations, such as age and BMI. Let XD

denote covariates that are specific to the diseased group, such as disease duration, disease

severity, or previous treatment. The covariate-adjusted ROC can then be written as

ROCX,XD
(t) = SD,X,XD

(S−1
D̄,X

(t)), for t ∈ (0, 1), (1.1)

where SD,X,XD
(c) = P (YD ≥ c|X,XD) and SD̄,X(c) = P (YD̄ ≥ c|X) are survival func-

tions at threshold c. Thus, the ROCX,XD
(t) is the probability that a test result, YD, for a

diseased subject is greater than or equal to the tth quantile for the covariate adjusted test

results of non-diseased subjects.

3



1.2 Motivating Example

Suppose we wish to compare a competing treatment to a common reference treatment

as in the Protocol I study (Elman et al., 2015) in the Diabetic Retinopathy Clinical Research

Network (NCT 00444600). In the study, each patient had been previously diagnosed with

either type 1 or type 2 diabetes as well as diabetic macular edema (DME) affecting the

center of the macula. DME, the accumulation of fluid in the retina, results from diabetic

retinopathy, a condition in which high levels of blood sugar weaken the blood vessels in

the eye, causing a build up of pressure and fluid leakage over time. The resulting excess

fluid in the retina causes swelling which impedes the function of the macula, the part of the

eye which controls visual acuity and sensitivity to light.

The patients were randomized to one of four treatment groups. For the purpose of

our example, we will consider two groups: A – a sham injection with laser treatment and B

– a 0.5 mg injection of intravitreal ranibizumab along with laser treatment given three to ten

days after injection. The primary outcome was visual acuity at one year adjusted for base-

line acuity. Visual acuity was measured with Optical Coherence Tomography (OCT) which

detects changes in retinal thickness, and the ETDRS test which records the number of let-

ters that a patient can correctly identify. In this context, a favorable result is a decrease in

retinal thickness which corresponds to vision improvement. An effective treatment would

then result in a lower OCT measurement as compared to a baseline OCT measurement.

We define treatment A (laser therapy alone) as the reference population and treatment

B as the comparator population. We define the response of interest to be the amount of

decrease in retinal thickness from baseline at one year. If treatment B is effective, the

resulting ROC curve should be different from the diagonal line, reflecting a considerable

separation in the population densities. We are interested in the effect of covariates on the

separation between the populations. Is the separation between the responses affected by a

patient’s age or the length of time since his diabetes diagnosis. To answer these questions,

we apply ROC-regression methodology. We introduce the background of ROC-regression

4



in the literature review as well as a summary of the work done in this area to date. We

then elaborate on three ROC-regression methods and compare performance via simulation

in Chapter Two.

1.3 Literature Review

We begin with an overview of existing methods in the literature that provide covariate

adjustments for the ROC and the AUC. Dodd and Pepe (2003) proposed a semi-parametric

AUC regression method to model a covariate-adjusted AUC and suggested the use of boot-

strapping methodology to estimate the standard errors of the regression coefficients. Zhang

et al. (2011) used the relationship between the AUC and the Mann-Whitney statistic, a

non-parametric unbiased estimate of the AUC to suggest an alternative to Dodd and Pepe’s

bootstrapping estimation. The alternative was based on the work of DeLong et al. (1988)

and used the delta method to estimate the variance of the Mann-Whitney statistic as well as

the variance of the parameters. Buros (2015), used the AUC regression model from Dodd

and Pepe (2003) with the analytic solution for the standard errors from Zhang et al. (2011)

to develop an adjusted Jonckheere Terpstra (JT) test for discrete covariates. Buros et al.

(2017) utilized the adjusted JT test and AUC regression to develop a nonparametric mul-

tiple comparison procedure involving a monotone alternative hypothesis as often occurs

in dose response study. Van Zyl (2017) extended the multiple comparison of Buros et al.

(2017) to a zero-dose control model.

Along with AUC regression methodology, procedures for modeling a covariate-adjusted

ROC also exist in the testing literature. Pepe (1998) provides a review of three major ap-

proaches to ROC regression that account for covariate effects. The first approach was

developed by Tosteson and Begg (1988) who used ordinal regression to model the test out-

come and then examined covariate effects on the ROC. Beam (1995) and Gatsonis (1995)

extended the test outcome regression to random effects models for ordinal test results.

The second approach mentioned by Pepe (1998) involves regression models developed by
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Thompson and Zucchini (1989) for the area under the ROC curve, a precursor to the semi-

parametric regression work of Dodd and Pepe (2003). The third approach proposed by

Pepe (2000) directly models the ROC curve using parametric distribution-free methods.

In this dissertation, we direct our attention to the approach that directly models the

ROC as opposed to modeling the underlying distributions of test responses for the diseased

and non-diseased populations. Advantages to this approach include the accommodation of

multiple test types, use of continuous covariates, and the ability to restrict the model to the

portion of the ROC that is of interest. When originally proposed, Pepe’s direct modeling

approach was difficult to implement due to the requirement of special programming. Sim-

plifications have since been made as Pepe (2000) developed a GLM framework for the ROC

(ROC-GLM) which eased the previous computation required for parameter estimation. In

particular, Pepe (2000) proposed a generalized linear model framework for the ROC given

by
ROCX(t) = g(h0(t) +X ′β), (1.2)

for t ∈ (0, 1) where g is a monotone link function, X is a vector of covariates, h0(·) is a

monotonic increasing function and β is a vector of the model parameters.

Alonzo and Pepe (2002) expanded the utility of the ROC-GLM in (1.2) by specify-

ing a parametric form for h0(·) and using a binary indicator as an outcome variable. Thus,

rather than perform pairwise comparisons between each observation from the diseased and

non-diseased samples (as in the Mann-Whitney statistic), Alonzo and Pepe (2002) com-

pared each diseased observation to a specified set of covariate-adjusted quantiles for the

non-diseased population. The resultant binary values could then be modeled using a logis-

tic regression approach.

Pepe and Cai (2004) extended the parametric ROC-GLM by allowing a non-parametric

form for h0(·). This semi-parametric approach hinged upon the relationship between the

ROC and the placement value. The ROC is the cumulative distribution function of the
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placement values PVD as seen in the following covariate-adjusted notation,

Pr[PVD ≤ t|X] = Pr[SD̄,X(YD) ≤ t|X]

= Pr[YD ≥ S−1
D̄,X

(t)|X]

= ROCX(t).

Cai (2004) further developed the semiparametric approach by demonstrating that

(1.2) is equivalent to h0(PVD) = −X ′β + ε, where h0(·) is unknown and PVD is the set

of placement values for the diseased observations. Implementation of the semiparametric

model is dependent upon pairwise comparisons of the placement values to estimate the

covariate effects β that are then included as an offset in the estimation of h0(·) (Rodriguez-

Alvarez et al., 2011).

1.4 Plan of the Dissertation

The use of placement values by Cai (2004) motivates the development of an alterna-

tive approach to modeling the covariate-adjusted ROC. Given that the ROC is the cumula-

tive distribution of the placement values for the diseased observations, we propose a new

method in Chapter Two that directly models the placement values using beta regression.

Chapter Two also details the parametric and semiparametric approaches, and we show that

the new beta approach is not only easy to implement, but it also removes the need for pair-

wise comparisons, eliminating the dependency among the binary response variable induced

by the parametric and semiparametric methods. We compare the proposed method to the

existing models with simulation and an application to the DME study from our motivating

example. In Chapter Three, we extend the parametric and beta regression approaches to

the Bayesian paradigm using hierarchical modeling. The performance of the Bayesian ex-

tensions is compared through simulation study and both methods are applied to the DME

study. We introduce an application of the beta approach to a simple network meta-analysis

problem in Chapter Four through the use of a Bayesian variable selection method. The per-

formance of the beta approach in conjunction with variable selection is evaluated through
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simulation study. Chapter Five summarizes a project done in conjunction with Eli Lilly

and is largely unrelated to the work presented in the preceding chapters. We provide an

introduction to power priors and the use of the deviance information criterion (DIC) as a

guide for choosing the value of the power prior parameter. To evaluate the performance

of the DIC for parameter guidance in a generalized linear model context, we perform a

simulation study for normal linear regression and logistic regression models.
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CHAPTER TWO

ROC Regression Methodology

In this chapter, we introduce the parametric and semiparametric ROC regression

methods and propose an alternative model based on beta regression. The ROC models

are compared through simulation and applied to a clinical study.

2.1 Parametric Approach

Alonzo and Pepe (2002) proposed a parametric extension of (1.2) as,

ROCX,XD
(t) = g(γ1h1(t) + γ2h2(t) + βX + βDXD), (2.1)

with γ1, γ2, β, and βD as model parameters, h1(t) = 1, h2(t) = Φ−1(t), and g(·) = Φ(·)

where Φ(·) is the cdf of the standard normal. Alonzo and Pepe’s approach is known as a

parametric distribution free method because a parametric model is specified for the ROC,

but no assumptions are made about the distributions for YD and YD̄ (Alonzo and Pepe,

2002).

The parametric model, (2.1), follows from Pepe (2000) where the ROC is written as

the expectation of the binary indicator Uij = I[YDi
≥ YD̄j

] for all pairs of observations

{(YDi
, YD̄j

), i = 1, . . . , nD; j = 1, . . . , nD̄}, with nD and nD̄ denoting the number of

observations from the diseased and non-diseased populations, respectively, and I denoting

the indicator function.

Alonzo and Pepe (2002) proposed a modification by replacing YD̄j
with S−1

D̄,Xi
(t), for

t ∈ T = {nT chosen values of FPRs ∈ (0, 1)}. In this case, the binary indicator becomes

Uit = I[YDi
≥ S−1

D̄,Xi
(t)]. Note, the expected value of Uit satisfies

E(Uit) = E(I[YDi
≥ S−1

D̄,Xi
(t)]) = Pr[SD̄,Xi

(YDi
) ≤ t] = Pr[PVD ≤ t],

where PVD is the placement value for the observation YDi
given the covariate vector X.
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An algorithm for (2.1) can be written as

(1) Specify a set T = {t` : ` = 1, ..., nT} ∈ (0, 1) of FPRs.

(2) Estimate the covariate specific survival function SD̄,Xj
for the reference population

at each t ∈ T, j = 1, . . . , nD̄ using quantile regression.

(3) For each diseased observation YDi
, calculate the placement values

PVDi
= ŜD̄,Xi

(YDi
), i = 1, . . . , nD.

(4) Calculate the binary placement value indicator Ûit = I[PVDi
≤ t], t ∈ T.

(5) Fit the model E[Ûit] = g−1[
∑K

k=1 γkhk(t) +X ′β].

In step (1), we specify a set of nT false positive rates (FPRs), where in practice the

FPRs are equally spaced. In step (2), we estimate the covariate-adjusted reference survival

curve using quantile regression on the set of FPRs. The quantile regression yields nT

covariate adjusted estimates of the reference survival curve for each YD̄j
. In step (3), we

calculate the placement values for each diseased observation YDi
. The placement values

are calculated by evaluating the covariate-adjusted reference survival curve at each YDi
,

resulting in nD probabilities. We next create a binary indicator Ûit in step (4) by performing

nD to nT comparisons between the placement values and the set of FPRs. Note that step

(4) is similar to the Mann Whitney statistic formed by making nD to nD̄ comparisons

from which we can derive the area under the curve (AUC)(Bamber, 1975). In step (5), the

covariate adjusted ROC is obtained by modeling the expectation of Ûit using a probit link.

2.2 Semiparametric Approach

Pepe and Cai (2004) extended the parametric approach by proposing a semiparamet-

ric method allowing for an arbitrary non-parametric baseline function h0(·) in (1.2). Their

approach required the simultaneous estimation of h0(·) and β. Cai (2004) introduced a

method of estimating parameters for the semiparametric model by demonstrating that (1.2)
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is equivalent to h0(PVD) = −X ′β + ε, where ε is a random variable with known distri-

bution g, h0(·) is an unspecified increasing function, and PVD represents placement values

for the diseased observations. Cai used pairwise comparison of placement values to esti-

mate β before estimating the baseline function h0(·). An algorithm for implementing the

semiparametric approach is as follows.

(1) Specify a set T = {t` : ` = 1, ..., nT} ∈ (0, 1) of FPRs.

(2) Estimate the covariate specific survival function SD̄,Xj
for the reference population

at each t ∈ T, j = 1, . . . , nD̄ using quantile regression.

(3) Calculate the placement values

PVDi
= ŜD̄,Xi

(YDi
), i = 1, . . . , nD.

(4) Calculate the binary placement value indicator

Ûit = I[PVDi
≤ t], t ∈ T.

(5) For each pair of observations in YD, calculate

Vij = I[PVDi
≤ PVDj

] and xij = xDi
− xDj

with i, j = 1, . . . , nD, i 6= j.

(6) Fit the following GLM without an intercept to estimate β

g(V ) = −X ′β.

(7) Estimate h0(·) using g(E[Ûit]) = intercept + offset(X ′β̂).

Note that steps (1) - (4) are identical to those of the parametric method. The dif-

ference between the two approaches appears in step (5), where we create a second binary

indicator describing the relationship between each pair of placement values. In this step,

we also calculate the pairwise differences for each covariate. We then fit a GLM without an

intercept to the binary indicator created in step 5, adjusting for covariates using the pairwise

differences. From this model, we obtain an estimate for β. In step (7), we then estimate
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h0(·) by modeling the binary indicator Û as a function of the intercept and an offset term

that accounts for β̂ (Rodriguez-Alvarez et al., 2011).

2.3 Beta Approach

The parametric and semiparametric approaches to estimating the covariate adjusted

ROC given in equation (1.2) were dependent upon a binary random variable defined by the

placement values of the diseased response as referenced with the non-diseased population.

The use of the binary random variable leads to additional correlation in the model, and

the resulting estimates for the standard errors of the regression coefficients are incorrect.

To account for the additional correlation, Alonzo and Pepe (2002) proposed a bootstrap-

ping procedure for obtaining the standard errors. In this section, we present an alternative

method that models the covariate-adjusted ROC as the cdf of the placement values directly

and bypasses the need for a binary random variable. The beta regression model is used in

this approach.

A brief introduction to the beta generalized linear model given in Ferrari and Cribari-

Neto (2004) is presented here. Suppose that Z ∼ Beta(a, b), in which case,

E(Z) =
a

a+ b
, and V ar(Z) =

ab

(a+ b)2(a+ b+ 1)
.

By letting µ = a
a+b

and φ = a + b, we obtain the reparameterized beta distribution with

mean and variance

E(Z) = µ, and V ar(Z) = µ(1−µ)
1+φ

.

Let z1, . . . , zn be independent random variables from a beta density with mean µt, t =

1,. . . ,n and scale parameter φ. Then the beta regression model can be written as

g(µt) =
k∑
i=1

xtiβi = ηt,

where β is a vector of regression parameters, xt1, . . . , xtk are observations on k covariates,

and g is a monotonic link function. Using the logit link, we have µt =
1

1 + e−x
′
tβ
.
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Estimates of the original parameters a and b are

â =
φ̂

1 + e−x
′
tβ̂

and b̂ = φ̂

(
1− 1

1 + e−x
′
tβ̂

)
. (2.2)

An algorithm for the proposed method using the beta distribution for the placement

values can be written as follows.

(1) Specify a set T = {t` : ` = 1, ..., nT} ∈ (0, 1) of FPRs.

(2) Estimate the covariate specific survival function SD̄,Xj
for the reference population

at each t ∈ T, j = 1, . . . , nD̄ using quantile regression.

(3) Calculate the placement values

PVDi
= ŜD̄,Xi

(YDi
), i = 1, . . . , nD.

(4) Perform a beta regression on the placement values to obtain estimates of β and φ.

(5) Transform to obtain a = µφ and b = (1− µ)φ.

(6) Calculate the cdf of the placement values using the Beta(a,b) distribution found

above to obtain the ROC and the AUC.

Steps (1) - (3) are identical to the parametric and semiparametric cases. In step (4), we

model the placement values directly using beta regression to obtain estimates of β and φ.

We then apply equation (2.2) to obtain beta parameters a and b and calculate the cdf of the

placement values using the resulting Beta(a, b) distribution that yields an estimate for the

ROC. The AUC is obtained by integrating the Beta(a, b) cdf, which results in b/(a+ b) by

Fubini’s theorem (Fubini, 1907).
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2.4 Simulation Studies

We compare the parametric, semiparametric and beta ROC regression methods through

two simulations, one using normally distributed data and the other using data from an ex-

treme value distribution. Rodriguez-Alvarez et al. (2011) provide a comparison of several

indirect and direct ROC regression methods including the parametric (Alonzo and Pepe,

2002) and semiparametric (Cai, 2004) for binormal and extreme value data. The data mod-

els in this section are similar to those of Rodriguez-Alvarez et al. (2011). For simplicity,

we consider one continuous covariate from a uniform distribution. The models and results

follow.

2.4.1 Binormal Data

Suppose that YD ∼ N(µD, σD) and YD̄ ∼ N(µD̄, σD̄). Then using ROC(t) =

SD(S−1
D̄

(t)), for t ∈ (0, 1), we derive the binormal ROC and AUC,

ROC(t) = Φ[a+ bΦ−1(t)], and AUC = Φ

[
a√

1 + b2

]
,

where a = (µD − µD̄)/σD and b = σD̄/σD. The following models were used for the

binormal simulation

YD = 2 + 4X + εD, and YD̄ = 1.5 + 3X + εD̄,

where X ∼ U(0, 1) and εD, εD̄ ∼ N(0, 1.52). Given the model, the true ROC and AUC at

covariate X = x0, t ∈ (0, 1) are

ROC(t) = Φ

[
0.5 + x0

1.5
+ Φ−1(t)

]
,

and

AUC(x0) = Φ

[
0.5 + x0√

4.5

]
.

We generate 1000 data sets of size nD, nD̄ = 200 from which we calculate the ROC

and AUC for each of the three methods. We also compute the mean squared error (MSE)

for the AUC of each method. Boxplots of the MSE values for each method are given in
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Figure 2.4.1. The summary statistics for the MSE of the AUC are given in Table 2.1.

We note that the mean MSE and standard deviation for the parametric method are smaller

than the corresponding results for the beta and semiparametric methods. The beta mean

MSE is, however, within one standard deviation of the parametric mean MSE. Plots of

the simulated and true ROC curves are included in Figure 2.4.2 for covariate values x0 =

{0.2, 0.5, 0.8}. The dotted lines represent plus and minus two standard deviations from the

simulated mean ROC. The cdf of a Uniform(0, 1) distribution representing the ROC for

identical populations is included for reference. Observe that the AUC increases with an

increase in the covariate value.

Table 2.1: Summary of MSEs for binormal

Method 1st.Qu. Median 3rd.Qu. Mean St. Dev.
Beta 0.000521 0.001251 0.002544 0.001819 0.001831
Parametric 0.000383 0.000936 0.001996 0.001398 0.001446
Semiparametric 0.000958 0.001912 0.003369 0.002459 0.002088

Figure 2.4.1: Boxplots of the estimated MSE for the AUC of each method based on 1000
estimates (nD = nD̄ = 200)
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Figure 2.4.2: Comparison of simulated ROC and true ROC for binormal data

2.4.2 Extreme Value Data

The extreme value distribution used in the following models has a cdf of the form

F (x) = exp{− exp[−(x−µ)/β]},where µ ∈ R, β > 0, x ∈ (−∞,∞). This extreme value

distribution is also known as the Gumbel or double exponential distribution (Balakrishnan

and Nevzorov, 2003). In choosing a model for simulation, we note that the extreme value

distribution exhibits more sensitivity than the normal distribution to differences in location

and scale for the two populations. Highly separated populations will yield an AUC of one
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regardless of covariate value. We thus consider scenarios such as the following in which

the covariate effect can be assessed.

YD = 2 + 2.5X + εD, and YD̄ = 1 + 2X + εD̄,

where X ∼ U(0, 1) and εD, εD̄ have an extreme value distribution with µ = 0 and β = 1.5.

The true value of the ROC when X = x0 is

ROCX(t) = 1− exp[− exp{ln[− ln(1− t)]− 1 + 0.5x0

1.5
}].

We approximate the AUC using numerical integration. A plot of the densities for YD and

YD̄ appears in Figure 2.4.3 as well as the true ROC at covariate values 0, 0.5, and 1.

Figure 2.4.3: Density plots and ROCs for extreme value data

As in the binormal simulation, we generate 1000 data sets of size nD, nD̄ = 200,

calculating the resulting ROC and AUC estimates from each of the parametric, semipara-

metric, and beta methods and comparing to the truth using the MSE. The summary statis-

tics for the MSE of the AUC are given in Table 2.2. We observe that the beta mean MSE

and standard deviation are slightly larger than the corresponding results for the paramet-

ric method although the means are within one standard deviation of each other as in the

binormal simulation. The semiparametric mean MSE is smaller than that of the beta, but

examination of Figure 2.4.4 shows that the beta method provides a better estimation of the
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true ROC. Plots of the simulated and true ROC curves are included in Figure 2.4.4 for co-

variate values x0 = {0.2, 0.5, 0.8}. The dotted lines represent plus and minus two standard

deviations from the simulated mean ROC.

Figure 2.4.4: Comparison of simulated ROC and true ROC for extreme value data

Table 2.2: Summary of MSEs for extreme value

Method 1st.Qu. Median 3rd.Qu. Mean St.Dev.
Beta 0.000528 0.001248 0.002578 0.001878 0.002567
Parametric 0.000406 0.000969 0.001932 0.001449 0.002046
Semi-parametric 0.000432 0.001038 0.002278 0.001712 0.002422
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2.4.3 Discussion

The binormal and extreme value simulations provide a comparison of the three ROC

regression methods. For both distributions, the beta regression approach yields results

comparable to those of the parametric method, and both the beta and parametric ROC

estimates closely align with the true covariate-adjusted ROC. Recall that the advantage of

the beta regression model over the pre-existing methods is the ability to directly model the

placement values without the use of a binary indicator. We have shown through simulation

that the beta method is a viable alternative to the parametric and semiparametric models

and merits additional exploration. We further illustrate the performance of the parametric

and beta approaches with a return to the clinical study from our motivating example.

2.5 Application to a DME Study

In this example, the parametric and beta methods are used for subject-specific data

from the Protocol I study (Elman et al., 2015) in the Diabetic Retinopathy Clinical Re-

search Network (NCT 00444600). The study was designed to determine the efficacy of

ranibizumab alone and ranibizumab in combination with laser therapy as compared to the

efficacy of laser therapy alone in the treatment of diabetic macular edema (DME). In the

study, each patient had been previously diagnosed with either type 1 or type 2 diabetes

as well as diabetic macular edema affecting the center of the macula. The patients were

randomized to one of four treatment groups. For the purpose of our example, we will con-

sider two groups: A – a sham injection with laser treatment and B – a 0.5 mg injection of

intravitreal ranibizumab along with laser treatment given three to ten days after injection.

The primary outcome was visual acuity at one year adjusted for baseline acuity. Visual

acuity was measured with Optical Coherence Tomography (OCT) which detects changes

in retinal thickness, and the ETDRS test which records the number of letters that a patient

can correctly identify. In this context, a favorable result is a decrease in retinal thickness

which corresponds to vision improvement.
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We define treatment A (laser therapy alone) to be the reference population and treat-

ment B the comparator population. To investigate the performance of the three ROC re-

gression models, we define the response of interest to be the amount of decrease in retinal

thickness from baseline at one year. If treatment B is effective, the amount of decrease

in retinal thickness should be higher for patients in the comparator population (treatment

B) than for those in the reference population (treatment A). Density plots of the response

(decrease in OCT from baseline) and one year OCT values for each treatment group appear

in Figure 2.5.1. We note a high degree of overlap in the responses for the two groups,

implying that the resulting ROC will be close to the diagonal line.

Figure 2.5.1: Density plots of one year OCT measurements on the left and one year decrease
in OCT from baseline on the right

We are interested in the effect of covariates on the separation between the popula-

tions. Covariates common to both populations are gender and age at enrollment, and for

illustrative purposes, we assume that duration of diabetes is a covariate associated with the

comparator population. In this example, duration is a binary variable with a value of 1 if the

duration is greater than or equal to the median of 17 years, and zero otherwise. A summary

for each population and covariates of interest is included in Table 2.3. Boxplots of age, one

year OCT, and one year decrease in OCT appear in Figures 2.5.2 and 2.5.3.

20



Table 2.3: Summary statistics for OCT and age by gender and duration of diabetes

Subset n OCT Baseline OCT One Year Age
Trt A Mean(SD) Med. Mean(SD) Med. Mean(SD) Med.
Females 100 323.40(116.22) 309 303.01(112.17) 282 62.84(10.66) 63

Dur(0) 56 336.36(109.34) 326 296.25(85.84) 287 62.14(10.72) 61
Dur(1) 44 306.91(123.72) 285 311.61(139.32) 269 63.73(10.65) 65

Males 141 346.70(134.83) 317 305.37(111.69) 275 62.09(9.98) 63
Dur(0) 81 352.48(133.51) 317 313.23(119.09) 278 61.22(10.01) 62
Dur(1) 60 338.88(137.34) 318 294.75(100.86) 273 63.25(9.89) 64

Trt B Mean(SD) Med. Mean(SD) Med. Mean(SD) Med.
Females 55 297.51(103.69) 281 256.00(87.72) 226 63.02(10.79) 65

Dur(0) 23 300.26(124.60) 281 239.00(87.01) 220 61.04(11.64) 65
Dur(1) 32 295.53(87.74) 285 268.22(87.53) 234 64.44(10.09) 65

Males 64 306.17(93.38) 281 261.45(67.03) 252 60.66(9.81) 61
Dur(0) 29 324.41(106.27) 285 260.69(64.60) 257 58.10(8.75) 58
Dur(1) 35 291.06(79.61) 266 262.09(69.92) 249 62.77(10.25) 64

Figure 2.5.2: Boxplots for age by treatment and gender
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Figure 2.5.3: Boxplots for one year OCT (top) and one year decrease in OCT (bottom) by
treatment and gender

For the comparator treatment B, we note a slight difference in median age between

males and females. The one year OCT measurements for treatment B are lower than those

for treatment A. The amount of decrease in OCT measurements from baseline is slightly

higher for those in treatment B and there appears to be very little gender effect. Each of the

methods is performed for the following ROC-GLM

ROCX(t) = g(h0(t) + β1 ∗ age + β2 ∗ gender + β3 ∗ duration).

Plots of the resulting ROC curves for different covariate values appear in Figures 2.5.4

and 2.5.5 for the parametric and beta approaches, respectively. The dotted line represents
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a Uniform(0, 1) cdf to illustrate the case for identical populations. Note that for both the

parametric and beta methods, the AUC increases with age which indicates that the amount

of decrease in OCT measurements from baseline was higher for older patients receiving

treatment B. As anticipated given the overlap in response densities (Figure 2.5.1), the ROC

is nearly diagonal when accounting for covariates.

Figure 2.5.4: Covariate-adjusted ROC curves from the parametric method for males and
females at ages 50 and 80

Figure 2.5.5: Covariate-adjusted ROC curves from the beta method for males and females
at ages 50 and 80
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CHAPTER THREE

Bayesian Approaches to ROC Regression

In this chapter, we introduce Bayesian extensions of the parametric ROC regression

method (Alonzo and Pepe, 2002) and the newly proposed beta approach. Both of these

methodologies lend themselves well to the Bayesian paradigm, in that the binary and beta

regression models can be easily written as Bayesian hierarchical models. We observe the

performance of the Bayesian extensions through simulation study.

3.1 Bayesian Parametric Approach

Recall that the parametric model proposed by Alonzo and Pepe (2002) is given by

ROCX,XD
(t) = g(γ1h1(t) + γ2h2(t) + βX + βDXD),

with γ1, γ2,β, and βD as model parameters, h1(t) = 1, h2(t) = Φ−1(t), and g(·) = Φ(·)

where Φ(·) is the cdf of the standard normal. This approach is distribution free because a

parametric model is specified for the ROC, but no assumptions are made about the distribu-

tions for YD and YD̄. As in the ROC-GLM framework proposed by Pepe (2000), the para-

metric approach expresses the ROC as the expectation of a binary indicator with a modifica-

tion to ease computational intensity. When originally proposed by Pepe (2000), the binary

indicator Uij was calculated for all pairs of observations {(YDi
, YD̄j

), i = 1, . . . , nD; j =

1, . . . , nD̄}, with nD and nD̄ denoting the number of observations from the diseased and

non-diseased populations, respectively. Alonzo and Pepe (2002) advocated replacing YD̄j

in the binary indicator Uij = I[YDi
≥ YD̄j

] with S−1
D̄,Xi

(t), for t ∈ (0, 1).Given the modified

indicator, the expected value of Uit satisfies

E(Uit) = E(I[YDi
≥ S−1

D̄,Xi
(t)]) = Pr[SD̄,Xi

(YDi
) ≤ t] = Pr[PVD ≤ t], (3.1)

where PVD is the placement value for the observation YDi
given the covariate vector X.

24



The covariate adjusted ROC is obtained by modeling

E[Ûit] = g−1(
K∑
k=1

γkhk(t) +X ′β), (3.2)

using a probit link. In the Bayesian extension of the parametric model, we write (3.2) as a

hierarchical model and apply Bayesian binary regression. A brief introduction to Bayesian

binary regression follows.

3.1.1 Introduction to Bayesian Binary Regression

Suppose we have independent binary random variables Zi, ..., ZN ∼ Bernoulli(θi)

where the probability of success θi is dependent on a covariate vector x′
i = (xi1..., xiN).

The binary regression model is defined as θi = g−1(x′
iβ), where β is a (k × 1) vector

of regression parameters and g−1(·) is a link function, conventionally either the logit or

probit. We obtain the probit model by specifying g−1(·) = Φ(·), where Φ(·) denotes the

cdf of the standard normal distribution. The Bayesian probit regression model is formed

by specifying a prior distribution π(β) for the regression parameters yielding the following

structure (Albert and Chib, 1993).

Zi ∼ Bernoulli(Φ(ηi))

ηi = x′
iβ

β ∼ π(β)

Posterior inferences for the regression parameters are easily obtained using MCMC simu-

lation in OpenBUGS or JAGS (Hornik et al., 2003).

3.1.2 Algorithm for Bayesian Parametric Method

An algorithm for performing the Bayesian Parametric method can be written as

(1) Specify a set T = {t` : ` = 1, ..., nT} ∈ (0, 1) of FPRs.

(2) Estimate the covariate specific survival function SD̄,Xj
for the reference population

at each t ∈ T, j = 1, . . . , nD̄ using quantile regression.
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(3) For each diseased observation YDi
, calculate the placement values

PVDi
= ŜD̄,Xi

(YDi
), i = 1, . . . , nD.

(4) Calculate the binary placement value indicator Ûit = I[VDi
≤ t], t ∈ T.

(5) Fit the model E[Ûit] = g−1[
∑K

k=1 γkhk(t) + X ′β] using Bayesian binary regres-

sion such that

Ûit ∼ Bernoulli(θi)

probit(θi) =
K∑
k=1

γkhk(t) +X ′β

γk ∼ π(γk)

β ∼ π(β)

Note that in the following examples and simulations, we choose to use flat pri-

ors for the regression coefficients, giving heavy influence to the data in order to

compare between the Bayesian and non-Bayesian parametric methods.

3.1.3 Example with Binormal Data

To illustrate the performance of the Bayesian parametric extension as compared to

the parametric method (Alonzo and Pepe, 2002), we consider an example using binormal

data. The data are generated from the following models

YD = 2 + 4X + εD, and YD̄ = 1.5 + 3X + εD̄. (3.3)

where X ∼ U(0, 1) and εD, εD̄ ∼ N(0, 1.52). In which case, the true ROC at X =

x0, t ∈ (0, 1) is ROC(t) = Φ[(0.5 + x0)/1.5 + Φ−1(t)] We generate a single data set

of size nD, nD̄ = 200 from which we calculate the ROC for the parametric method and the

Bayesian parametric method. The results for the Bayesian parametric approach were ob-

tained from MCMC simulation using Jags (5000 burn-in, 10000 iterations) with Normal(0,

.01) priors specified for the regression coefficients. A plot of the resulting ROCs appears

in Figure 3.1.1 for three covariate values. As expected with the use of diffuse priors, we
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observe that the Bayesian parametric extension is nearly identical to the non-Bayesian para-

metric method. Convergence diagnostic plots as well as plots of posterior densities for the

regression coefficients are included in the appendix.

Figure 3.1.1: Comparison of parametric, Bayesian parametric, and true ROC curves for
binormal data

3.2 Bayesian Extension of the Beta Approach

The beta regression approach described in Chapter Two is also easily extended to the

Bayesian paradigm through a hierarchical model. Bayesian beta regression was proposed

by Branscum et al. (2007) and we include a brief introduction to the method here. Given

Z ∼ Beta(a, b), the choice of parameters a and b determines a wide range of shapes for the

density function

f(z|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
za−1(1− z)b−1, for z ∈ (0, 1) and a, b > 0.

The beta density’s flexibility makes it a natural choice for modeling continuous data

restricted to the (0,1) interval. Given Z ∼ Beta(a, b), the expected value is E(Z) =

a/(a+ b) and the variance is V ar(Z) = ab/[(a+ b)2(a+ b+ 1)]. To incorporate covariate

information, we reparameterize the beta density by letting µ = a
a+b

and φ = a + b. The

reparameterized mean and variance are thus E(Z) = µ, and V ar(Z) = µ(1− µ)/(1 + φ).

The form of the beta regression model is as follows. Let z1, . . . , zn be independent random
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variables from a beta density with mean µt, t = 1,. . . ,n and scale parameter φ. Then the beta

regression model can be written as

g(µt) =
∑k

i=1 xtiβi = ηt,

where β is a vector of regression parameters, xt1, . . . , xtk are observations on k co-

variates, and g is a monotonic link function. Using the logit link, we have µt =
1

1 + e−x′tβ
.

Estimates of the original parameters a and b are

â =
φ̂

1 + e−x′tβ̂
and b̂ = φ̂

(
1− 1

1 + e−x′tβ̂

)
.

The Bayesian beta regression model as proposed by Branscum et al. (2007) is

zt|µt, φ ∼ Beta(µtφ, φ(1− µt))

µt ≡ µt(xt) = g−1(x′tβ)

π(β, φ) = π(β)π(φ),

where g is a link function. In this discussion, we specify the logit, although other link

functions such as the probit or complimentary log-log links could be used. The likelihood

function for independent data is

L(β, φ) =
n∏
t=1

Γ(φ)

Γ(g−1(x′tβ)φ)Γ(φ(1− g−1(x′tβ)))
z
g−1(xtβ)φ−1
t (1− zt)φ(1−g−1(x′tβ))−1.

The posterior distribution is given by

π(β, φ|z) ∝
n∏
i=1

(Γ(g−1(x′tβ)φ)Γ(φ(1− g−1(x′tβ))))−1z
g−1(x′tβ)φ
t (1− zt)φ(1−g−1(x′tβ))−1

× π(β, φ)Γ(φ)n.

We use Gibbs sampling to iteratively sample from the full conditional distributions π(β|φ, z ∝

L(β, φ)π(β) and π(φ|β, z)π)(φ) to generate a Monte Carlo sample from the posterior

π(β, φ|z). Posterior inferences for the mean response µ(z) and the regression parameters

β and φ are easily obtained in OpenBUGS or JAGS.
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3.2.1 Algorithm

An algorithm can be written as follows.

(1) Specify a set T = {t` : ` = 1, ..., nT} ∈ (0, 1) of FPRs.

(2) Estimate the covariate specific survival function SD̄,Xj
for the reference population

at each t ∈ T, j = 1, . . . , nD̄ using quantile regression.

(3) Calculate the placement values

PVDi
= ŜD̄,Xi

(YDi
), i = 1, . . . , nD.

(4) Perform a Bayesian beta regression on the placement values to obtain estimates of

β and φ.

(5) Transform to obtain a = µφ and b = (1− µ)φ.

(6) Calculate the cdf of the placement values using the Beta(a,b) distribution found

above to obtain the ROC and the AUC.

Steps (1) - (3) are identical to the parametric and semi-parametric cases. In step (4),

we model the placement values directly using Bayesian beta regression to obtain estimates

of β and φ. We then apply a transformation to return to the original beta parameters a and

b and calculate the cdf of the placement values using the resulting Beta(a, b) distribution

which yields an estimate for the ROC. The AUC is obtained by implementing the trapezoid

rule to calculate the area under the ROC.

3.2.2 Example with Binormal Data

The performance of the Bayesian beta extension as compared to the non-Bayesian

beta method is considered with a binormal example. The data are generated as in Model

(3.3). We generate a single data set of size nD, nD̄ = 200 from which we calculate the

ROC for the beta method and the Bayesian beta method. The results for the Bayesian

beta approach were obtained from MCMC simulation using Jags (5000 burn-in, 10000
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iterations) with Normal(0, .01) priors specified for the regression coefficients and a diffuse

Gamma(.01, .01) for the scale parameter. A plot of the resulting ROCs appears in Figure

3.2.1 for three covariate values. The ROC curve resulting from the Bayesian extension is

nearly identical to non-Bayesian beta ROC curve, as expected with the use of diffuse priors.

Convergence diagnostic plots for this example as well as plots of posterior densities for the

regression coefficients are included in the appendix.

Figure 3.2.1: Comparison of ROCs for beta, Bayesian beta, and truth for binormal data

3.3 Simulation Study

We compare the Bayesian parametric and beta ROC regression methods through two

simulations, one using normally distributed data and the other using data from an extreme

value distribution. The data models in this section are similar to those of Chapter Two. For

simplicity, we consider one continuous covariate from a uniform distribution (Rodriguez-

Alvarez et al., 2011). The models and results follow.

3.3.1 Binormal Data

We compare the Bayesian parametric and Bayesian beta approaches using a simu-

lation with binormal data. The data are generated from Model (3.3 and the true ROC at

X = x0, t ∈ (0, 1) is ROC(t) = Φ[(0.5 + x0)/1.5 + Φ−1(t)]. We generate 500 data

sets of size nD, nD̄ = 200 from which we calculate the ROC and AUC for the Bayesian
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parametric and Bayesian beta methods. For the Bayesian beta approach, the regression

parameters were given Normal(0, .01) priors and the scale parameter was given a diffuse

Gamma(.001, .001).We also compute the mean squared error (MSE) for the ROC estimates

for both the parametric and the beta. Boxplots of the MSE values for the AUC are given

in Figure 3.3.1. The summary statistics for the MSE are given in Table 3.1. As expected,

the mean and standard deviation for the parametric method are smaller than those resulting

from the beta method given that the parametric assumption (Alonzo and Pepe, 2002) per-

forms well with binormal data. Note, however, that the mean for the beta method is within

one standard deviation of the mean for the parametric method. Plots of the simulated and

true ROC curves are included in Figure 3.3.2 for covariate values x0 = {0.2, 0.5, 0.8}.

The dotted lines represent the average 2.5% and 97.5% quantiles of the simulated ROC

estimates. Observe that the AUC increases with an increase in the covariate value.

Figure 3.3.1: Boxplots of the estimated MSEs for the ROC resulting from the Bayesian
parametric and Bayesian beta methods based on 500 estimates (nD = nD̄ = 200)
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Table 3.1: Summary of MSEs for binormal data

Method 1st.Qu. Median 3rd.Qu. Mean St.Dev.
Beta 0.000482 0.001112 0.002297 0.001696 0.001838
Parametric 0.000385 0.000979 0.002011 0.001451 0.001515

Figure 3.3.2: Comparison of simulated ROC and true ROC for binormal data

3.3.2 Extreme Value Data

A second simulation to compare the Bayesian parametric and Bayesian beta ap-

proaches is performed using data from the extreme value distribution. The data are gener-

ated from YD = 2 + 2.5X + εD and YD̄ = 1 + 2X + εD̄, where X ∼ U(0, 1) and εD, εD̄

have an extreme value distribution with mean 0 and standard deviation 1.5. The true value

of the ROC when X = x0 is

ROCX(t) = 1− exp

{
− exp{ln[− ln(1− t)]− 1 + 0.5x0

1.5
}
}
.
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For the Bayesian parametric approach, the regression coefficients were each given a dif-

fuse Normal (0, .01) prior. For the Bayesian beta approach, the regression parameters were

given Normal(0, .01) priors and the scale parameter was given a diffuse Gamma(.001, .001).

As in the binormal simulation, we generate 500 data sets of size nD, nD̄ = 200 from which

we calculate the ROC and AUC for the Bayesian parametric and Bayesian beta methods

through MCMC simulation using JAGS (20000 iterations, 5000 burn-in). We also com-

pute the mean squared error (MSE) for the AUC estimates for both the parametric and the

beta. The summary statistics for the MSE are given in Table 3.2. Note that the mean MSE

and standard deviation for the Bayesian beta method are slightly higher than the analo-

gous results for the Bayesian parametric method, but the means are less than one standard

deviation apart. Plots of the simulated and true ROC curves are included in Figure 3.3.3

for covariate values x0 = {0.2, 0.5, 0.8}. The dotted lines represent the average 2.5% and

97.5% quantiles of the simulated ROC estimates.

Figure 3.3.3: Comparison of simulated ROC and true ROC for extreme value data
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Table 3.2: Summary of MSEs for extreme value data

Method 1st.Qu. Median 3rd.Qu. Mean St.Dev.
Beta 0.000489 0.001110 0.002185 0.001733 0.003010
Parametric 0.000396 0.000928 0.001892 0.001470 0.002525

3.4 DME Application

We return to the DME example from Chapter Two as an illustration of the Bayesian

extensions of the parametric and beta approaches. As before, we define treatment A (laser

therapy alone) to be the reference population and we define treatment B as the comparator

population. For the purpose of investigating the performance of the three methods, we de-

fine the response of interest to be the amount of decrease in retinal thickness from baseline

at one year. If treatment B is effective, the amount of decrease in retinal thickness from

baseline should be higher than for patients in the comparator population (treatment B) than

for those in the reference population (treatment A).

We are interested in the effect of covariates on the separation between the popula-

tions. Covariates common to both populations are gender, age at enrollment, and duration

of diabetes is a covariate associated with the diseased group. In this example, duration is

a binary variable with a value of 1 if the duration is greater than or equal to 20 years, and

zero otherwise. Each of the methods is performed for the following ROC-GLM

ROCX(t) = g(h0(t) + β1 ∗ age + β2 ∗ gender + β3 ∗ duration).

Plots of the resulting ROC curves for different covariate values appear in Figures

3.4.1 and 3.4.2 for the parametric and beta approaches, respectively. Note that for both the

Bayesian parametric and beta methods, the AUC increases with age which indicates that

the amount of decrease in OCT measurements from baseline was higher for older patients

receiving treatment B. As noted in Chapter Two, given the overlap in response densities

(Figure 2.5.1), the ROC is nearly diagonal (dotted line) when accounting for covariates.
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Figure 3.4.1: Covariate-adjusted ROC curves from the Bayesian parametric method

Figure 3.4.2: Covariate-adjusted ROC curves from the Bayesian beta method
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CHAPTER FOUR

Indirect Comparison of ROC Curves

Having introduced ROC regression methodology and explored the performance of

three methods, we now apply the beta approach to a simple network meta-analysis. Sup-

pose we have two studies and three treatments A, B, and C. The first study compares treat-

ment A to treatment B and the second study compares treatment A to treatment C. Given

that treatment A is common to both studies, we would like to explore the ability to draw

an indirect comparison between treatments B and C. The described scenario represents a

simple network-meta analysis that can be summarized in Figure 4.0.1, where the solid lines

indicate observed comparisons and the dashed line indicates the indirect comparison.

Figure 4.0.1: Simple Network Meta-Analysis Diagram

The beta ROC regression methodology introduced in Chapter Two and extended to

the Bayesian paradigm in Chapter Three offers an approach for drawing such an indirect

comparison. Essentially, we obtain an ROC curve from each of Studies 1 and 2 using

the beta approach. We thus have a covariate-adjusted ROC curve that compares treatment

A to treatment B and a second covariate-adjusted ROC curve that compares treatment A

to treatment C. To draw an indirect comparison between B and C, we apply a Bayesian
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variable selection method to assess the relationship between the two ROC curves. We begin

with defining notation and then describe the variable selection procedure for the indirect

comparison.

4.1 Notation

Suppose we have two studies (Study 1 and Study 2) and three treatments A,B, and C

such that Study 1 compares A to B and Study 2 compares A to C. In each study, we define

treatment A to be the reference group and denote the reference responses by YA1 and YA2

for Study 1 and Study 2, respectively. The responses for the comparator treatments B and

C are denoted YB and YC . We perform the Bayesian beta ROC regression approach and

obtain a covariate-adjusted ROC curve for each of Study 1 and Study 2. We use ROCAB

to denote the ROC curve from Study 1 and ROCAC to denote the ROC curve from Study

2. If ROCAB 6= ROCAC then treatments B and C are different in terms of how they relate

to the reference treatment A. In contrast, if ROCAB = ROCAC then treatments B and C

are similar in relation to treatment A.

4.2 Bayesian Variable Selection

To determine whether the resulting ROCAB and ROCAC are the same or different,

we borrow an approach from Bayesian variable selection methodology. Bayesian variable

selection was developed as a solution to the familiar regression problem of identifying a

subset from a large number of explanatory variables that explains a large proportion of

the response variation. (O’Hara et al., 2009) provide an overview of Bayesian variable

selection methods, among which is an indicator selection model which we will apply in

the simple network example. We illustrate the idea of a Bayesian indicator selection as

follows.

Suppose we construct a regression model to explain an outcome yi, i = 1, ..., N for

an individual i and let xi,j, j = 1, ..., p represent covariate values. Given a vector of
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parameters β a linear regression model for the response yi is

yi = β0 +
∑p

j=1 βjxi,j + ei,

where β0 is the intercept and the errors ei are from a Normal(0, σ2) distribution. Assuming

that yi is from an exponential family yields a GLM written as

E[g(yi)] = β0 +
∑p

j=1 βjxi,j,

where g(·) is a link function. Bayesian variable selection specifies spike and slab priors

(Miller, 2002) on each βj which are used in determining which of the βjs are equal to zero.

The probability mass (the spike) is set at zero and the slab is set elsewhere. An indicator

variable Ij denotes whether the variable j is in the spike (Ij = 0) or the slab (Ij = 1)

portion of the prior. That is, if Ij = 0 the covariate j is absent from the model. Note that Ij

is an auxiliary variable.

4.2.1 Indicator Model Selection

In indicator model selection, the spike θj|(Ij = 0) is set equal to zero and the slab

θj|(Ij = 1) is set to βj, where θj is an auxiliary variable defined such that θj = Ijβj.

Kuo and Mallick (1998) proposed an indicator model selection method that assumes that

θj and Ij are independent a priori. Independent priors are placed on each of Ij and βj such

that π(Ij, βj) = π(Ij)π(βj). The model is fit using MCMC where the variable selection

portion of the model relies on estimation of Ij and βj. The mean value of the indicator Ij

a posteriori represents the probability that variable j is in the model. When Ij = 0, the

MCMC algorithm updates the value of θj using the full conditional distribution which is

π(θj).

4.2.2 Application to Simple Network

We explain the application of the indicator model selection method (Kuo and Mallick,

1998) to the simple network with the aid of a diagram. Following the algorithm for

the Bayesian beta approach, we begin with the responses from Study 1 and estimate a

38



covariate-adjusted survival curve for the reference treatment A. We then calculate the place-

ment values for the treatment B responses (denoted PVB in the diagram) and proceed with

the Bayesian beta regression model to obtain estimates of a1 = µ1φ1 and b1 = (1− µ1)φ1.

We then estimate the placement values PVC for treatment C using the covariate-adjusted

reference survival from Study 2. The indicator model selection method is incorporated in

the Bayesian beta regression model for PVC . Note in the diagram that each of β02 and β12

is multiplied by an indicator variable ω. This corresponds to the indicator Ij in Kuo and

Mallick’s algorithm. The indicator ω is given a spike and slab prior so that if ω = 0, then

β02 and β12 are absent from the model. That is, the placement values PVC come from the

same beta distribution as the placement values PVB and the resultingROCAB andROCAC

are equivalent. If ω = 1, then both β02 and β12 are present in the model and the resulting

ROCs from each study are said to be different. The posterior mean of ω thus represents

the probability that β02 and β12 are needed in the model and that the resulting ROCs are

not the same. We illustrate the performance of indicator selection in conjunction with the

Bayesian beta ROC regression method through simulation study.

Figure 4.2.1: Diagram of indirect model selection for beta regression model
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4.3 Simulation Study

The simulations included in this section are intended to serve as a proof of concept

for using a Bayesian indicator model selection method in conjunction with Bayesian beta

regression. While certainly not exhaustive, the simulations show how the model selection

method performs for various degrees of separations among treatments in a simple meta-

analysis network. We consider data from both normal and extreme value distributions.

4.3.1 Normal Data

Normal data are generated for each of Studies 1 and 2 according to the simulation

schemes in Table 4.1 with variance of one and covariate distributed Uniform(0, 1). Study

1 compares treatments A and B, and Study 2 compares treatments A and C. Density plots

for each treatment are given in the upper section of Figure 4.3.1. The corresponding ROC

curves at covariate value x = 0.5 are given in the lower section of Figure 4.3.1, where

the dotted lines represent a Unif(0, 1) cdf to illustrate the case of identical populations.

Note that the reference treatments for Studies 1 and 2 are generated independently from the

specified normal distribution, although for plot readability only one reference density ap-

pears in Figure 4.3.1. We generate 500 datasets from each simulation scheme with sample

sizes nD1 , nD̄1
= 200 and nD2 , nD̄2

= 200 for Studies 1 and 2 respectively. We apply the

Bayesian indicator model selection method to each dataset and record the posterior mean

estimate of ω. Because we assume no prior knowledge regarding the necessity of a second

model for Study 2, we use a Bernoulli(.5) prior for the indicator ω. Flat normal priors were

given to the beta regression coefficients β01, β02, β11, β12, and a diffuse Gamma(.001, .001)

prior was specified for the scale parameter φ. MCMC simulations were run in JAGS with

10000 iterations and 5000 burn-in. Diagnostic plots are included in the appendix.
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Table 4.1: Covariate dependent simulation means for binormal data

Simulation Scheme A1, A2 B C
I: A1 = A2 = B = C 1.5 + 3x 1.5 + 3x 1.5 + 3x
II: A1 = A2 = B < C 1.5 + 3x 1.5 + 3x 2 + 3.5x
III: A1 = A2 < B = C 1.5 + 3x 2 + 4x 2 + 4x
IV: A1 = A2 < B < C 1.5 + 3x 2 + 3.5x 2.5 + 4x

Figure 4.3.1: Top: Densities for simulation schemes II, III, and IV, Bottom: True binormal
ROC curves at covariate value 0.50

4.3.1.1 Results. Scenario I represents the null case and will be used to determine

a suitable cut off value for the inclusion probability ω to be used in determining whether

a separate beta regression model is needed for Study 2. Because the B and C populations

are independently generated from a common normal distribution, we expect the resulting

ROCAB to be the same as ROCAC and the indicator model selection method should yield

a posterior mean for ω that is close to zero. We generate 500 data sets from simulation
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scheme I (see Table 4.1) with a variance of one and nD = nD̄ = 200. A summary of the

resulting posterior estimates for ω at several quantiles is included in Table 4.2. The results

are ranked by mean. Note that choosing the 95th percentile (0.8920) as a cut-off probability

yields a type I error rate of 5% under the null hypothesis that β01 = β02 and β11 = β12. For

the remaining simulations schemes, we would thus conclude that a second model is needed

for Study 2 if the posterior mean ω exceeds 0.8920.

Table 4.2: Summary of posterior estimates for ω with nD, nD̄ = 200.

Quantile Mean SD 2.5% 25% 50% 75% 97.5%
0.01 0.0000 0.0000 0 0 0 0 0
0.25 0.0090 0.0945 0 0 0 0 0
0.50 0.0210 0.1435 0 0 0 0 0
0.75 0.0820 0.2745 0 0 0 0 1
0.80 0.1530 0.3602 0 0 0 0 1
0.85 0.3190 0.4663 0 0 0 1 1
0.90 0.5740 0.4947 0 0 1 1 1
0.95 0.8920 0.3105 0 1 1 1 1

Figure 4.3.2: Histogram of posterior means for ω from Scenario I
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In Scenario II, both reference treatments as well as treatment B are independently

generated from the same normal distribution. Treatment C is generated from a normal

distribution with a higher mean (Table 4.1). Note that the covariate effect for treatment C is

higher than the covariate effect for the other treatments, which implies that the probability

of inclusion ω should be greater than the cut-off 0.8920 established in the null case. We

generate 500 data sets from simulation scheme II with a variance of one and sample sizes

nD, nD̄ = 200. A histogram of the posterior means for ω appears in Figure 4.3.3. All but

eight (1.6 %) of the the posterior means for ω are greater than 0.8290 which indicates that

a second model is needed for Study 2 as anticipated.

Figure 4.3.3: Histogram of posterior means for ω from Scenario II

For Scenario III, the reference distributions for both studies are the same. Treatments

B and C are generated from a normal distribution with mean higher than that of the refer-

ence (Table 4.1). We expect ROCAB = ROCAC which implies that the probability of

inclusion ω should be less than 0.8920 as established in the null case. We generate 500 data

sets from simulation scheme III with a variance of one and sample sizes nD, nD̄ = 200. A

summary of the resulting ranked posterior estimates for ω is included in Table 4.3 and a
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histogram of the posterior means for ω appears in Figure 4.3.4. Note that roughly 10% of

the 500 posterior means for ω exceeded the cut-off probability of 0.8920.

Table 4.3: Summary of posterior estimates for ω from Scenario III

Quantile Mean SD 2.5% 25% 50% 75% 97.5%
0.01 0.0010 0.0316 0 0 0 0 0
0.25 0.0100 0.0995 0 0 0 0 0
0.50 0.0350 0.1839 0 0 0 0 1
0.75 0.1810 0.3852 0 0 0 0 1
0.80 0.3010 0.4589 0 0 0 1 1
0.85 0.4790 0.4998 0 0 0 1 1
0.90 0.7490 0.4338 0 0 1 1 1
0.95 0.9790 0.1435 1 1 1 1 1

Figure 4.3.4: Histogram of posterior means for ω from Scenario III

In Scenario IV, the mean for treatment C is greater than the mean for treatment B,

and both are greater than the means for the references. Using simulation scheme IV, we

generate 500 data sets with a variance of one and sample sizes nD, nD̄ = 200. A summary

of the resulting ranked posterior estimates for ω is included in Table 4.4 and a histogram of

the posterior means for ω appears in Figure 4.3.5. Note that 98% of the the posterior means

for ω are greater than 0.8920 which indicates that a second model is needed for Study 2.
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Table 4.4: Summary of posterior estimates for ω from Scenario IV

1 0.01 0.1290 0.3354 0 0 0 0 1
2 0.25 1.0000 0.0000 1 1 1 1 1
3 0.50 1.0000 0.0000 1 1 1 1 1
4 0.75 1.0000 0.0000 1 1 1 1 1
5 0.80 1.0000 0.0000 1 1 1 1 1
6 0.85 1.0000 0.0000 1 1 1 1 1
7 0.90 1.0000 0.0000 1 1 1 1 1
8 0.95 1.0000 0.0000 1 1 1 1 1

Figure 4.3.5: Histogram of posterior means for ω from Scenario IV

4.3.2 Extreme Value Data

Extreme value data are generated for each of Studies 1 and 2 according to the simula-

tion schemes in Table 4.5 with scale of one and covariate distrbution Uniform(0, 1). Study

1 compares treatments A and B, and Study 2 compares treatments A and C. Density plots

for each treatment are given in the upper section of Figure 4.3.6. The corresponding ROC

curves at covariate value x = 0.5 are given in the lower section of Figure 4.3.6, where

the dotted lines represent a Unif(0, 1) cdf to illustrate the case of identical populations.

Note that the reference treatments for Studies 1 and 2 are generated independently from the

specified normal distribution, although for plot readability only one reference density ap-

pears in Figure 4.3.6. We generate 500 datasets from each simulation scheme with sample
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sizes nD1 , nD̄1
= 200 and nD2 , nD̄2

= 200 for Studies 1 and 2, respectively. We apply the

Bayesian indicator model selection method to each dataset and record the posterior mean

estimate of ω. Because we assume no prior knowledge regarding the necessity of a second

model for Study 2, we use a Bernoulli(.5) prior for the indicator ω. Flat normal priors were

given to the beta regression coefficients β01, β02, β11, β12, and a diffuse Gamma(.001, .001)

prior was specified for the scale parameter φ. MCMC simulations were run in JAGS with

10000 iterations and 5000 burn-in. Diagnostic plots are included in the appendix.

Table 4.5: Covariate dependent simulation means for extreme value data

Simulation Scheme A1, A2 B C
I: A1 = A2 = B = C 1 + 2x 1 + 2x 1 + 2x
II: A1 = A2 = B < C 1 + 2x 1 + 2x 1 + 3x
III: A1 = A2 < B = C 1 + 2x 1 + 3x 1 + 3x
IV: A1 = A2 < B < C 1 + 2x 1 + 3x 2 + 3x

Figure 4.3.6: Top: Densities for simulation schemes II, III, and IV, Bottom: True extreme
value ROC curves at covariate value 0.50
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4.3.2.1 Results. Scenario I represents the null case and will be used to determine

a suitable cut off value for the inclusion probability ω to be used in determining whether

a separate beta regression model is needed for Study 2. Because the B and C populations

are independently generated from a common extreme value distribution, we expect the

resulting ROCAB to be the same as ROCAC and the indicator model selection method

should yield a posterior mean for ω that is close to zero. We generate 500 data sets from

simulation scheme I (see Table 4.5) with a scale of one and nD = nD̄ = 200. . A summary

of the resulting ranked mean posterior estimates for ω at several quantiles is included in

Table 4.6. Note that choosing the 95th percentile (0.8040) as a cut-off probability yields

a type I error rate of 5% under the null hypothesis that β01 = β02 and β11 = β12. For the

remaining simulations, we would thus conclude that a second model is needed for Study 2

if the posterior mean ω exceeds 0.8040.

Table 4.6: Summary of posterior estimates for ω from Scenario I with extreme value data

Quantile Mean SD 2.5% 25% 50% 75% 97.5%
0.01 0.0000 0.0000 0 0 0 0 0
0.25 0.0090 0.0945 0 0 0 0 0
0.50 0.0250 0.1562 0 0 0 0 0
0.75 0.1080 0.3105 0 0 0 0 1
0.80 0.1480 0.3553 0 0 0 0 1
0.85 0.2510 0.4338 0 0 0 1 1
0.90 0.4610 0.4987 0 0 0 1 1
0.95 0.8040 0.3972 0 1 1 1 1

In Scenario II, both reference treatments as well as treatment B are independently

generated from the same normal distribution. Treatment C is generated from a normal

distribution with a higher mean (Table 4.1). Note that the covariate effect for treatment C is

higher than the covariate effect for the other treatments, which implies that the probability

of inclusion ω should be greater than the cut-off 0.8040 established in the null case.
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Figure 4.3.7: Histogram of posterior means for ω from Scenario I with extreme value data

We generate 500 data sets from simulation scheme II with a variance of one and sample

sizes nD, nD̄ = 200. A summary of the resulting ranked posterior estimates for ω is in-

cluded in Table 4.7 and a histogram of the posterior means for ω appears in Figure 4.3.8.

Note that 34% of the posterior means for ω are less than the cut-off of 0.8404. The remain-

ing 66% support the need for a second model for Study 2.

Table 4.7: Summary of posterior estimates for ω from Scenario II with extreme value data

Quantile Mean SD 2.5% 25% 50% 75% 97.5%
0.01 0.0010 0.0316 0 0 0 0 0
0.25 0.4720 0.4995 0 0 0 1 1
0.50 0.9990 0.0316 1 1 1 1 1
0.75 1.0000 0.0000 1 1 1 1 1
0.80 1.0000 0.0000 1 1 1 1 1
0.85 1.0000 0.0000 1 1 1 1 1
0.90 1.0000 0.0000 1 1 1 1 1
0.95 1.0000 0.0000 1 1 1 1 1
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Figure 4.3.8: Histogram of posterior means for ω from Scenario II with extreme value data

For Scenario III, the reference distributions for both studies are the same. Treatments

B and C are generated from an extreme value distribution with a location parameter higher

than that of the reference (Table 4.5). We expect ROCAB = ROCAC which implies that

the probability of inclusion ω should be less than 0.8040 as established in the null case.

We generate 500 data sets from simulation scheme III with a scale parameter of one and

sample sizes nD, nD̄ = 200. A summary of the resulting ranked posterior estimates for ω is

included in Table 4.8 and a histogram of the posterior means for ω appears in Figure 4.3.9.

Note that approximately 7.8% of the 500 posterior means for ω exceeded 0.8040.

Table 4.8: Summary of posterior estimates for ω from Scenario III with extreme value data

Quantile Mean SD 2.5% 25% 50% 75% 97.5%
0.01 0.0010 0.0316 0 0 0 0 0
0.25 0.0110 0.1044 0 0 0 0 0
0.50 0.0340 0.1813 0 0 0 0 1
0.75 0.1610 0.3677 0 0 0 0 1
0.80 0.2510 0.4338 0 0 0 1 1
0.85 0.4430 0.4970 0 0 0 1 1
0.90 0.7020 0.4576 0 0 1 1 1
0.95 0.9880 0.1089 1 1 1 1 1

49



Figure 4.3.9: Histogram of posterior means for ω from Scenario III with extreme value data

In Scenario IV, the location parameter for treatment C is greater than the location

parameter for treatment B, and both are greater than those for the references. Using simu-

lation scheme IV, we generate 500 data sets with a scale parameter of one and sample sizes

nD, nD̄ = 200. All of the posterior means for ω were equal to one, a result expected from

the density plots in Figure 4.3.6.

4.3.3 Discussion

The preceding simulations provide a preliminary exploration of the performance of

Bayesian indicator model selection used in conjunction with Bayesian beta regression. Op-

portunities for further investigation are numerous, including exploring the effect of differ-

ent variances, examining different magnitudes of covariate effect across the treatments, and

identifying an amount of separation among the treatments that might yield contradictory re-

sults in terms of the inclusion probability ω. In the null cases of the normal and extreme

value simulations, we noted that sample size is highly influential in determining a cut-off

probability for ω. Given a simulation context, we have the advantage of choosing the dis-

tribution, sample size, and variance. Extension of the methods introduced in this chapter

to real data poses a few additional challenges. To establish a cut-off value, one would need
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to set up a null case simulation, requiring an estimate of the variances and an initial idea of

the separation between the treatments. Future work will examine these ideas.
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CHAPTER FIVE

The Deviance Information Criteria and Power Prior Specification

In this chapter, we summarize the findings of a simulation project that investigates

the role of the deviance information criterion (DIC) in choosing the value of the power

prior parameter. We provide an introduction to power priors and a brief overview of their

appearance in the literature. This chapter focuses specifically on the use of power priors

in a generalized linear model (GLM) context. We examine the performance of the DIC

as a guide for power parameter specification, through simulation studies of normal linear

regression and logistic regression models.

5.1 Introduction to Power Priors

In the Bayesian paradigm, informative prior elicitation remains a widely studied and

important topic. The task of quantifying prior information and building a suitable prior

distribution often proves difficult, particularly in settings that involve large amounts of

historical data. The power prior first formalized by Ibrahim and Chen (2000) offers a sys-

tematic procedure for building an informative prior in the presence of historical data. With

its convenient theoretical properties and relative ease of construction and computation, the

power prior has gained popularity as a suitable general class of priors that can easily be

applied to various regression models including the GLM. Given historical data D0 and cur-

rent data D, the power prior is constructed by raising the likelihood of D0 to the power a0,

where 0 ≤ a0 ≤ 1 is known as the power parameter. The value of a0 controls the degree

of borrowing from the historical data with a0 = 0 yielding no borrowing, and a0 = 1, full

borrowing. That is, the power parameter quantifies the amount of heterogeneity between

the historical and current data.
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Advocates of the power prior approach argue that the method provides an objec-

tive way to elicit an informative prior, given that the degree of informativeness is largely

dictated by the historical data. However, the process of choosing the value of the power pa-

rameter a0 is highly subjective and remains a topic of debate. Ibrahim et al. (2015) suggest

several methods for choosing the value of the hyperparameter a0, including specifying a

proper prior distribution as in a hierarchical model. Establishing a hyperprior, however, in-

creases computational difficulty and closed forms are no longer possible. As an alternative

Ibrahim et al. (2015) propose fixing a0 and using a model selection criteria such as the de-

viance information criterion (DIC) to observe sensitivity to the choice of a0. In this chapter,

we explore through simulation the use of the DIC as a guide for choosing an appropriate

value of a0 for analysis of generalized linear models.

5.1.1 Formulation

We begin with the basic formulation of the power prior as proposed by Ibrahim and

Chen (2000). Given historical data D0, current data D, and a vector of parameters θ, we

have that the corresponding likelihoods are L(θ|D0) and L(θ|D), respectively. The power

prior is then constructed by

π(θ|D0, a0) ∝ L(θ|D0)a0π0(θ), (5.1)

where π0(θ) is the prior specified for θ before observing D0, and a0 ∈ [0, 1]. The posterior

distribution for θ is

π(θ|D,D0, a0) ∝ L(θ|D)L(θ|D0)a0π0(θ). (5.2)

Note that the power parameter a0 controls the heaviness of the tails of the prior for θ.

Smaller values of a0 yield heavier tails and give less weight to the historical data. Taking

a0 = 1 reduces (5.1) to Bayes’ theorem with the resulting posterior distribution acting as

the prior for the current data. Setting a0 = 0 yields π(θ|D0, a0) ≡ π0(θ) and thus removes

all influence of historical data on the prior for θ. The ability to control a0 is especially

important when there exists heterogeneity between the historical and current studies or a
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notable difference in sample sizes. Given a proper initial prior for π0(θ), the power prior

given in (5.1) will also be proper. Ibrahim et al. (2015) note that the power prior has in

advantage over other priors in that it shares the properties of the likelihood function. In

particular, likelihood theory can be used to obtain propriety of the power prior for various

models including logistic regression models (Ibrahim et al., 1998) and GLMs in general

(Chen et al., 2000).

5.1.2 Power Priors for Generalized Linear Models

The GLM power prior derived by Ibrahim et al. (2015) is formulated as follows.

Suppose yi for i = 1, ..., n is the response variable for the current study and xi is a p-

dimensional vector of covariates. Then the current study data can be written as D =

{(yi, xi), i = 1, ..., n} ≡ (n, y, X), where y = (y1, ..., yn)′ and X = (x′1, ..., x′n)′. In this

chapter, following the notation of Ibrahim et al. (2015), we assume a GLM for the response

with density of exponential class for yi given xi such that

f(yi|xi, θi, τ) = exp{α−1
i (τ)(yiθi − ψ(θi)) + φ(yi, τ)} for i = 1, ..., n,

where θi is the GLM canonical parameter, τ is the scale parameter, and ψ, φ determine

the specific exponential family such as the normal or Poisson. Note that αi(τ) is often

expressed as a function of know weights wi such that αi(τ) = τ−1w−1
i . In the GLM for-

mulation, the θ′is are assumed to satisfy θi = h(ηi) and ηi = x′iβ, where h is the link

function and β is a p-dimensional vector of regression coefficients. We can then rewrite

f(yi|xi, θi, τ) as

f(yi|xi,β) = exp{α−1
i (τ)[yih(x′iβ)− ψ(h(x′iβ))] + φ(yi, τ)} for i = 1, ..., n.

The likelihood of the current data is thus given by L(β|D) =
∏n

i=1 f(yi|xi,β).

Similarly, let y0i for i = 1, ..., n0 be the response variable for the historical study and

x0i be a p-dimensional vector of covariates. Then the historical data can be written asD0 =

{(y0i, x0i), i = 1, ..., n0} ≡ (n0, y0, X0), where y0 = (y01, ..., y0n)′ and X = (x′01, ..., x′n0)′.
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We assume a GLM for the response such that

f(y0i|x0i,β) = exp{α−1
0i (τ)[y0ih(x′0iβ)− ψ(h(x′0iβ))] + φ(y0i, τ)} for i = 1, ..., n0,

where α0i = τ−1w−1
0i . The likelihood for the historical data is L(β|D0) =

∏n
i=1 f(yi|xi,β).

We thus have that the power prior for the GLM with fixed a0 is

π(β|D0, a0) ∝ {L(β|D0)}a0π0(β) for a ∈ [0, 1],

where π0(β) is the initial prior for β. The conditional power prior for the GLM with a

random a0 is given by

π(β|D0, a0) =
[L(β|D0)]a0π0(β)∫
[L(β|D0)]a0π0(β)dβ

.

5.1.3 Specifying the Power Parameter

Choosing a value for a0 remains an important issue in the use of the power prior.

Specifying a proper prior distribution for a0 such as a beta distribution, presents an easy

solution but is more intensive computationally than choosing a fixed value of a0. As an

alternative, Ibrahim et al. (2015) suggest fixing a0 and using model selection criterion such

as the deviance information criterion (DIC) to establish a starting value for analysis, noting

that several sensitivity studies should be performed once the starting value has been de-

termined (Ibrahim et al., 2003). The DIC for the generalized linear model is based on the

deviance function for GLMs defined as

Dev(β) = −2
n∑
i=1

log f(yi|xi,β)

= −2
n∑
i=1

{α−1
i (yih(x′iβ)− ψ(h(x′iβ)) + φ(yi)}.

From Spiegelhalter et al. (2002), the DIC for a0 is DIC(a0) = Dev(β̃) + 2pD(a0), where

β̃ = E[β|D,D0, a0] and pD(a0) = E[Dev(β)|D,D0, a0 − Dev(β̃). Ibrahim et al. (2015)

show that the optimal value of a0 is then

aopt0,DIC = arg min
0≤a0≤1

DIC(a0).
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The performance of the DIC as a guide in choosing the value of a0 for a GLM power prior

is evaluated through simulation study.

5.2 Simulation Study

Ibrahim et al. (2015) examine the empirical performance of the normal linear regres-

sion power prior with random a0 versus fixed a0 considering two scenarios, one in which

the historical and current data are similar and one in which they are different. We follow

a similar scheme and examine the relationship between the DIC and a0 for a normal lin-

ear regression model and a logistic regression model. Before considering power priors for

GLMs, we provide a simple example using data from an exponential distribution and we

show how the value of a0 influences the posterior distribution of the exponential parameter.

5.2.1 Single Exponential Sample

The exponential model for the historical is y0i ∼ Exp(λ0) for i = 1, ..., n0 and the

model for the current data is yj ∼ Exp(λ) for j = 1, ..., n. The two scenarios considered are

summarized in Table 5.1. Density plots of the historical and current data for each scenario

are included in Figure 5.2.1.

Table 5.1: Exponential Simulation Scenarios

Scenario Historical Current Sample Size
I λ0 = 2.5 λ = 2 n = 250, n0 = 500
II λ0 = 6 λ = 2 n = 250, n0 = 500

We generate 500 simulated datasets for each scenario and calculate the posterior

means and standard deviations for λ using the power prior with fixed values of a0 =

0.10, 0.25, 0.50, 0.75, 0.90. We also recorded the DIC for each of the 500 models. For

Scenario I, little heterogenity exists between the historical and current data though there is

a difference in sample size. Given the similarity, we might expect the DIC to indicate a

higher value of a0 as a starting point for analysis. In Scenario II, the historical data is much

56



different from the current, and we anticipate that the lowest DIC will be associated with a

small value of a0.

Figure 5.2.1: Density plots of historical and current exponential data for Scenario I (left)
and Scenario II (right)

For both scenarios, the average DIC for the 500 models is reported in Table 5.2

for each value of a0 along with the posterior means for λ. Recall that a lower DIC value

indicates better fit of the model. The lowest average DIC for Scenario I is associated with

a0 = .10, which indicates that the historical data should have little influence through the

power prior despite the similarity between the historical and current data. Note that the

average DIC values for Scenario I lie in a much narrower range than the average DIC values

for Scenario II. As anticipated given the distinct difference between historical and current

data in Scenario II, the lowest DIC value is associated with a0 = .10. Posterior densities for

the exponential parameter λ are given in Figure 5.2.2. We observe that posterior distribution

of λ is highly influenced by the value of a0.
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Table 5.2: Average values of the DIC and posterior means for Scenarios I and II

Scenario I Scenario II
a0 DIC λ a0 DIC λ

0.10 152.264 2.084 0.10 155.540 2.267
0.25 152.928 2.156 0.25 168.742 2.589
0.50 154.403 2.235 0.50 198.385 3.019
0.75 155.736 2.285 0.75 228.787 3.353
0.90 156.420 2.307 0.90 245.980 3.520

Figure 5.2.2: Posterior densities of λ by value of a0

5.2.2 Normal Linear Regression

To illustrate performance of the DIC in the GLM context, we turn our attention to

normal linear regression. We specify the models for the current and historical data as

yi = β0 + β1xi + εi

yi0 = β00 + β10xi0 + εi0

where εi
iid∼ N(0, 1), i = 1, ..., n, and εi0

iid∼ N(0, 1), i = 1, ..., n0. Note that εi is assumed

independent of the εi0. The covariates xi and xi0 are assumed to be independently generated

from a standard normal distribution. The scenarios considered appear in Table 5.3. For

each case, we generated 500 datasets, and for each dataset, we calculated the posterior
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means and standard deviations for β0 and β1 using the power prior with fixed values of

a0 = 0.10, 0.25, 0.50, 0.75, 0.90. We also recorded the DIC for each of the 500 models.

For Scenario I, the historical and current datasets are quite similar, β10 is slightly

lower than β1 and the sample sizes are identical. Given the similarity between the datasets,

we might reasonably expect the DIC to indicate a higher value of a0 as a suggestion for the

power parameter. The average DIC for the 500 models is reported in Table 5.4 for each

Table 5.3: Scenarios for Normal Linear Regression Simulations

Scenario Historical Current Sample Size
I β00 = 1 β10 = 1.75 β0 = 1 β1 = 2 n = n0 = 500
II β00 = 1 β10 = 1.75 β0 = 1 β1 = 2 n = 250, n0 = 500
III β00 = 1 β10 = 2.25 β0 = 1 β1 = 2 n = n0 = 500
IV β00 = 1 β10 = 2.25 β0 = 1 β1 = 2 n = 250, n0 = 500

value of a0 along with the posterior means for β0, β1, and σ.Observe that the lowest average

DIC occurs for a0 = 0.10,which is contrary to what we expected. For further investigation,

we include the distribution of the DIC values for each value of a0 in Figure 5.2.3. We note

that the distributions exhibit no extreme behavior across the a0 values.

Table 5.4: Average values of the DIC and posterior means for Scenarios I and II

Scenario I Scenario II
a0 DIC β0 β1 σ a0 DIC β0 β1 σ

0.10 1426.036 1.049 1.996 0.954 0.10 720.522 1.104 2.000 0.910
0.25 1447.186 1.124 1.996 0.888 0.25 770.525 1.255 1.999 0.790
0.50 1536.926 1.249 1.996 0.791 0.50 1066.970 1.505 1.999 0.609
0.75 1728.800 1.373 1.998 0.703 0.75 2730.522 1.756 1.998 0.407
0.90 1927.206 1.450 1.996 0.648 0.90 1513.468 1.224 1.997 0.809

In Scenario II, the historical and current data sets are again similar as in Scenario I,

but the sample size for the current dataset is half that of the historical. The average DIC for

the 500 models is reported in Table 5.4 for each value of a0 along with the posterior means

for β0, β1, and σ. Again, we observe that the lowest average DIC occurs for a0 = 0.10,
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which is unexpected given the similarity in the data. We include posterior density plots of

the regression coefficients β0 and β1 to illustrate the influence of a0 (Figure 5.2.4).

Figure 5.2.3: Distribution of DIC values for Scenario I
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Figure 5.2.4: Posterior densities of β0 (left) and β1 (right) for different a0 values

Scenario III provides an example in which the historical and current datasets are

again similar, but the historical β10 is now higher than the current β1 (Table 5.5). The sam-

ple sizes are identical. Again the lowest average DIC occurs at a0 = 0.10, with the highest

average DIC occurring for a0 = 0.90. Scenario IV is similar to III, with the exception of

the difference in sample sizes. Note that the lowest average DIC value again occurs at

a0 = 0.10 (Table 5.6).

Table 5.5: Average values of the DIC and posterior means for Scenario III

a0 DIC β0 β1 σ
0.10 1426.042 1.049 1.996 0.954
0.25 1447.204 1.124 1.996 0.888
0.50 1536.822 1.249 1.996 0.791
0.75 1729.820 1.375 1.996 0.701
0.90 1926.540 1.450 1.996 0.648

In the preceding scenarios, the data is simulated such that the error satisfies

εi
iid∼ N(0, 1), i = 1, ..., n, and εi0

iid∼ N(0, 1), i = 1, ..., n0. We now briefly explore the

effects of increasing the error variance which we have been denoting as σ. Continuing with

Scenario IV, we change the error variance so that σ = 1.75 and observe the behavior of
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Table 5.6: Average values of the DIC and posterior means for Scenario IV

a0 DIC β0 β1 σ
0.10 720.527 1.104 2.000 0.910
0.25 770.568 1.255 1.999 0.790
0.50 1067.309 1.505 1.999 0.609
0.75 2753.956 1.756 1.998 0.407

the DIC. As seen in Table 5.7, the lowest average DIC still occurs at a0 = 0.10. We next

increase the error to σ = 3. Again we observe that a0 = 0.10 yields the lowest average DIC

(Table 5.7). We thus note that increasing the variance in the data appears to have no effect

on the suggested a0 value as indicated by the DIC.

Table 5.7: Average DIC values and posterior means for different values of σ

Scenario IV (σ = 1.75) Scenario IV (σ = 3)
a0 DIC β0 β1 σ a0 DIC β0 β1 σ
0.10 1000.306 1.095 1.976 1.606 0.10 1267.933 1.098 1.977 2.751
0.25 1028.092 1.245 1.977 1.423 0.25 1289.640 1.248 1.977 2.451
0.50 1138.330 1.496 1.977 1.192 0.50 1360.307 1.499 1.977 2.098
0.75 1374.210 1.747 1.978 1.004 0.75 1475.673 1.750 1.977 1.841
0.90 1625.540 1.898 1.979 0.900 0.90 1570.947 1.901 1.977 1.713

5.3 Logistic Regression

As a second example of GLM power priors and the DIC, we consider a logistic

regression model with two binary covariates. We specify the models for the historical and

current data as

logit(yi0) = β00 + β10x10i + β20x20i, for i = 1, ..., n0

logit(yi) = β0 + β1x1i + β2x2i, for i = 1, ..., n,

where the intercepts β00 and β0 are taken to be zero. The covariates x10 and x1

are from a Bernoulli(0.5) distribution, while x20 and x2 are from a Bernoulli (0.35) dis-

tribution. We consider the models as summarized in Table 5.8. For each scenario, we

generated 500 simulated datasets, and for each dataset, we calculated the posterior means
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and standard deviations for β0, β1, and β2 using the power prior with fixed values of

a0 = 0.10, 0.25, 0.50, 0.75, 0.90. We also recorded the DIC for each of the 500 models.

Table 5.8: Scenarios for Logistic Regression Simulations

Scenario Historical Current Sample Size
I β10 = 0 β20 = 0.21 β1 = 1 β2 = 0.25 n0 = 500, n = 100
II β10 = 1.5 β20 = 0.21 β1 = 1 β2 = 0.25 n0 = 500, n = 100
III β10 = 1.0 β20 = 0.25 β1 = 1 β2 = 0.25 n0 = 500, n = 100

For Scenario I, the current and historical data sets differ in that the first covariate has

no effect in the historical data. From Table 5.9, we observe that a0 = 0.10 yields the lowest

average DIC value of the a0 values tested, although there is little difference in the average

DICs across the range of a0. At the iteration level, we have that a0 = 0.10 produced the

lowest individual DIC value for 92% of the simulated data sets. In Figure 5.3.1, we include

plots of the posterior densities for β1 and β2 to illustrate the influence of a0.

Figure 5.3.1: Posterior densities of β1 (left) and β2 (right) for different values of a0
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Table 5.9: Average values of the DIC and posterior means for Scenario I

a0 DIC β0 β1 β2

0.10 630.288 0.007 0.900 0.238
0.25 631.855 0.007 0.776 0.231
0.50 635.836 0.007 0.635 0.224
0.75 639.893 0.008 0.537 0.220
0.90 642.179 0.008 0.492 0.218

For Scenario II, the lowest DIC values is associated with a0 = 0.25 (Table 5.10).

Given the difference in historical and current data for Scenario III, we might have expected

the DIC to recommend a higher value of a0.Note that at the iteration level, a0 = 0.25 yields

the lowest DIC only 33% of the 500 datasets with a0 = 0.50 coming in second at 24%. In

Scenario III, the historical and current data are generated from the same distributions. We

thus anticipate that the lowest DIC will be associated with a0 = 0.10. From Table 5.10, we

note the opposite. The lowest average DIC occurs for a0 = 0.90, and at the iteration level,

a0 = 0.90 yields the lowest average DIC for 90% of the 500 datasets.

Table 5.10: Average values of the DIC and posterior means for Scenarios II and III

Scenario II Scenario III
a0 DIC β0 β1 β2 a0 DIC β0 β1 β2

0.10 629.868 0.006 1.049 0.241 0.10 629.777 0.006 1.009 0.245
0.25 629.683 0.006 1.097 0.236 0.25 629.307 0.006 1.007 0.244
0.50 629.977 0.006 1.159 0.230 0.50 628.917 0.006 1.006 0.244
0.75 630.495 0.007 1.203 0.227 0.75 628.768 0.006 1.005 0.244
0.90 630.850 0.007 1.225 0.225 0.90 628.734 0.006 1.005 0.244

5.4 Discussion

The preceding simulations show that the DIC alone does not appear to provide a re-

liable method for choosing the value of the power parameter a0, particularly in the GLM

context. Given the influence of a0 on the posterior distributions of the regression coeffi-

cients, the choice of a0 is highly influential upon the estimates resulting from the model.

Further exploration may reveal specific instances in which the DIC performs well in terms
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of proposing a value for a0. For those who utilize the GLM power prior, we reiterate that the

use of model selection criterion as a guide for selecting a0 should be followed by sensitivity

analysis to ensure that the value of a0 reflects the heterogeneity in the data.
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CHAPTER SIX

Conclusion

In this dissertation, we considered ROC regression methods to determine the effect

of covariates on a test’s ability to distinguish between two populations. We examined the

parametric and semi-parametric ROC regression approaches which utilize GLMS for bi-

nary data based on the placement value. The use of placement values in the pre-existing

approaches along with expression of the ROC as the cdf of the placement values motivated

the proposal of a new beta ROC regression method. We developed the beta approach in

Chapter Two and showed that it is not only easy to implement, but also removes the depen-

dency on a binary variable. The beta method was compared to the parametric and semipara-

metric models with a simulation study using data from both the normal and extreme value

distributions. We also examined performance of the parametric and beta methods through

application to a DME study. In Chapter Three, we extended the parametric and beta regres-

sion approaches to the Bayesian paradigm using hierarchical modeling. The performance

of the Bayesian extensions was compared through simulation study for both the normal and

extreme value distributions and through application to the DME study from Chapter Two.

In Chapter Four, we introduced an application of the beta approach to a simple network

meta-analysis problem through the use of a Bayesian variable selection method. We devel-

oped a variable selection approach to be used in conjunction with the beta ROC-regression

methodology and evaluated its performance through simulation study. Chapter Five pro-

vided an introduction to power priors and examined the role of the deviance information

criterion as a guide for choosing the value of the power parameter. We were particularly

interested in the GLM context and showed through simulation of normal linear and logistic

regression models that the DIC is not always a reliable indicator of an appropriate power

parameter value.

66



APPENDICES

67



APPENDIX A

Convergence Diagnostics for Bayesian Methods

A.1 Diagnostics for Chapter Three

1.1.1 Bayesian Beta Regression

Figure A.1.1: Diagnostic plots from binormal data example for Bayesian beta ROC regres-
sion.
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1.1.2 Bayesian Parametric Regression (Diffuse Priors)

The following diagnostic plots result from MCMC simulation in JAGS. Normal(0,

.01) priors were used for all regression coefficients. The trace plots for both γ1 and γ2

exhibit a spike for the first iteration before leveling for the remainder of the plot. Simula-

tions with Normal(0, .1) priors for all regression coefficients were also performed and the

resulting trace plots exhibited similar behavior. Minimal difference in the posterior means

existed for the regression coefficients for the Normal(0, .01) versus Normal(0, .1) priors.

Figure A.1.2: Diagnostic plots from binormal data example for Bayesian parametric ROC
regression.
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1.1.3 Bayesian Parametric Regression (More Informative Priors)

Using slightly more informative priors, β ∼ Normal(1, .1), γ1 ∼ Normal(0, .1), γ2 ∼

Normal(1, .1), we no longer observe a spike in the trace plots. For analysis, we continue

with the more diffuse Normal(0, .01) priors given that the calculation of the ROC is based

on the posterior means of β, γ1, and γ2 which do not change drastically for diffuse versus

more informative priors, and that we wish the data to have heavy influence on the posterior

for this example. Future work will investigate specification of informative priors.

Figure A.1.3: Diagnostic plots from binormal data example for Bayesian parametric ROC
regression.
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A.2 Diagnostics for Chapter Four

Figure A.2.1: Diagnostic plots from extreme value data Scenario I for Bayesian model se-
lection.

71



A.3 Diagnostics for Chapter Five

1.3.1 Normal Linear Regression

Figure A.3.1: Diagnostic plots from normal linear regression Scenario II with a0 = 0.1
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1.3.2 Logistic Regression

Figure A.3.2: Diagnostic plots from logistic regression Scenario I with a0 = 0.1
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APPENDIX B

R-Code

B.1 Parametric ROC Regression Code

#### Binormal data generation
z <- runif(200,0,1) # uniform covariate

yDis <- sapply(z, function(x) rnorm(1, 2 + 4*x, 1.5))
yRef <- sapply(z, function(x) rnorm(1, 1.5 + 3*x, 1.5))

# disease indicator (1 = dis, 0 = ref)
yInd <- rep(c(1,0), each = length(z))

#data1 <- data.frame(cbind(yInd, c(yDis, yRef), z ))

binorm.ref <- data.frame(cbind("y" = yRef, "x" = z))
binorm.dis <- data.frame(cbind("y" = yDis,"x" = z))

# specifying set of false positive rates
FPR <- seq(.02, .98, by = .02)

# quantile regression to estimate reference survival
qr1 <- rq(y ~ x, data=binorm.ref, tau = rev(FPR))
pred1 <- predict.rq(qr1, newdata = binorm.dis)

Inv.t <- qnorm(FPR) # inverse normal of FPRs
nq <- length(Inv.t) # number of quantiles
nd <- nrow(binorm.dis) # number of diseased points

# reshaping data for probit regression
trans.pred1 <- t(pred1)
col.pred1 <- c(trans.pred1)
col.t <- rep(Inv.t, nd)
col.ydis <- rep(binorm.dis$y, each = nq)
col.x <- rep(binorm.dis$x, each = nq)
col.uit <- as.numeric(col.ydis >= col.pred1)

probitData <- data.frame( "fdbar" = col.pred1,
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"phiInv" = col.t,
"disRes" = col.ydis,
"covX" = col.x,
"uit" = col.uit)

probitMod <- glm(uit ~ phiInv + covX,
family = binomial(link = "probit"),
data = probitData)

####### Calculating the ROC
p <- seq(0, 1, by = .02)
data.ROC <- data.frame(z = seq(min(z), max(z), l = 100))
h <- qnorm(p) # if logistic link use qlogis

ROCParam <- sapply(1:length(h), function(s){
pnorm(as.matrix(cbind(1, h[s],

data.ROC))%*%
probitMod$coefficients)

})

####### Calculating the AUC
intFunc <- function(x){

obj <- function(t){
pnorm(as.matrix(cbind(1, qnorm(t), x))%*%

probitMod$coefficients)
}
integrate(obj, upper = 1, lower = 0)$value

}

newZ <- seq(min(data421$z), max(data421$z), l = 100)
AUCparam <- sapply(newZ,intFunc)
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B.2 Beta ROC Regression Code

#### Data generation as in Parametric Code

#### Calculating Placement Values
pv <- rep(.0001, nd) # initializing placement value vector

for (i in 1:nd){
for(j in 1:(nq - 1)){

if( binorm.dis$y[i] > rev(pred1[i, ])[j] &&
binorm.dis$y[i] <= rev(pred1[i,])[j+1]){

pv[i] <- 1 - FPR[j]
}
if(binorm.dis$y[i] < min(pred1)){

pv[i] <- .9999 }
} #end j

} # end i

temp <-data.frame(cbind(binorm.dis, pv))

BetaModel <- betareg(pv ~ x, data = temp,
link.phi = "identity", link = "logit")

### Extracting coefficients for ROC calculation
intercept <- BetaModel$coefficients$mean[1]
cov1 <- BetaModel$coefficients$mean[2]
scale <- BetaModel$coefficients$precision

# specifying FPRs and covariate values for ROC
p <- seq(0, 1, by = .02)
newZ <- seq(min(z), max(z), l = 100)

### parameters of Beta(a,b) density from beta regression
aVec <- (1/(1 + exp(-intercept - cov1*newZ)))*scale
bVec <- (1 - (1/(1 + exp(-intercept - cov1*newZ))))*scale

### Calculating the ROC and the AUC
ROCbeta <- sapply(1:length(p), function(s){

pbeta(p[s], (1/(1 + exp(-intercept - cov1*newZ)))*scale,
(1 - (1/(1 + exp(-intercept - cov1*newZ))))*scale )

})
AUCbeta <- aVec/(aVec + bVec)
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B.3 Semiparametric ROC Regression Code

# for data generation, quantile regression,
# and calculation of placement values see Parametric section

#### Calculating B.hat for expectation of binary indicator

# reshaping data
col.pv <- rep(pv, each = length(FPR))
col.t <- rep(FPR, nd)
col.Bhat <- as.numeric(col.pv <= col.t)

B.hat <- matrix(, nrow = nd, ncol = nq)
for (j in 1:nq){

for(i in 1:nd){
B.hat[i,j] <- (pv[i] <= FPR[j])*1

} #end i
} #end j

#########################################
temp <-data.frame(cbind(binorm.dis, pv))

####### Pairwise differences of placement values
# "combn" function calculates row 2 - row 1, so take
# negative to get row 1 - row2; store in pvDiff
pvComb <- combn(pv,2)
pvDiff <- -combn(pv, 2, diff)

# Calculating covariate differences
xDiff <- -combn(temp$x, 2, diff)

# if difference <= 0, we have a 1
BinPV <- (pvDiff <= 0)*1

# storing differences in new data frame
temp2 <- data.frame(cbind(BinPV, xDiff))

# First call to GLM to estimate the Betas (No intercept)
probitMod1 <- glm((BinPV) ~ xDiff - 1 ,

family = binomial(link = "probit"),
data = temp2)

beta.hat <- probitMod1$coefficients
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# Second call to GLM to estimate h0(t) -- note the offset term
xPbeta <- beta.hat*binorm.dis$x
h0 <- apply(B.hat,2,function(s){

#applied to the columns of B.hat
glm(s ~ + offset(xPbeta),

family = binomial(link = "probit"),
control = list(maxit = 150))$coefficient[1]

})

######### Calculating the ROC
# Compute.ROC takes covariates values of interest, FPR,
# a set of t values, and the betaHat coefficient from glm

Compute.ROC <- function(cov.data = seq(0,1, by = .2),
FPRvec = FPR, tVec = FPR,
betaCoef = beta.hat){

xPbetaROC <- cov.data * (betaCoef)

#Can evaluate function at any set of t’s, we just chose FPR
h <- approxfun(FPRvec, h0)(tVec)
ROC <- sapply(1:length(tVec),

function(s) pnorm(h[s] + xPbetaROC))
}

ROCsemi <- Compute.ROC(cov.data = newZ,
FPRvec = FPR,
tVec = seq(0.02, 0.98, by = .02),
betaCoef = beta.hat)

########### Calculating the AUC
# reshaping the data
tVec = seq(0.02,.98, by = .02)
xseq <- newZ # should match the cov.data from Compute.ROC

newROC <- t(ROC.727[[2]])
newROC.long <- c(newROC)
t.long <- rep(tVec, length(xseq))
x.long <- rep(xseq, each = length(tVec))

ROCdata <- data.frame(cbind(ROC = newROC.long,
t = t.long,
x = x.long,
factor.x = as.factor(x.long)))
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auc2 <- function(data, factor){
#data <- dfParam
#factor = .2
data2 <- subset(data, x == factor)
meanROC <- NULL; dt <- NULL; pAUC <- NULL; AUC <- NULL;
t <- data2$t
dt[1] <- t[1]
meanROC[1] <- data2$ROC[1]/2
pAUC[1] <- dt[1]*meanROC[1]
AUC[1] <- pAUC[1]

for (i in 2:nrow(data2)){
dt[i] <- t[i] - t[i-1]
meanROC[i] <- (data2$ROC[i] + data2$ROC[i-1])/2
pAUC[i] <- dt[i]*meanROC[i]
AUC[i] <- AUC[i-1] + pAUC[i]

}
(AUC_PVest <- AUC[nrow(data2)])

}

# needs to match covariate data in compute.roc function
covVec <- newZ

AUCsemi <- sapply(covVec, function(x) auc2(ROCdata, x))
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B.4 Bayesian Parametric Code

#######################################################
# Data generation and construction of binary variables
# follow from the Parametric ROC Regression code. The
# call to "glm" for the probit regression is replaced
# by the call to JAGS for the given model.
#######################################################

model1 <- function(){
for (i in 1:n) {

probit(p[i]) <- a0 + phiInv*y[i] + covX*x[i]
uit[i] ~ dbern(p[i])

}
a0 ~ dnorm(0, .1) # Prior for intercept
phiInv ~ dnorm(1, .1) # Prior for phiInv
covX ~ dnorm(1,.1) # Prior for covariate

}

data2 <- list("uit" = probitData$uit, "y"= probitData$phiInv,
"x" = probitData$covX,
"n" = length(probitData$uit))

parameters <- c("a0", "phiInv", "covX")

BayesModAlonzo <- jags(
data = data2,
inits = NULL,
parameters.to.save = parameters,
model.file=model1,
n.burnin = 5000, n.iter = 15000,
n.thin = 5, n.chains=1)

BayesSum <- BayesModAlonzo$BUGSoutput$summary

########### Calculation of ROC ##################
modCoef <- BayesSum[c(1,4,2),1] # intercept, phiInv, covX

ROCparam <- sapply(1:length(h), function(s){
pnorm(as.matrix(cbind(1, h[s], data.ROC))%*%modCoef)

})
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B.5 Bayesian Beta Code

#######################################################
# Data generation and calculation of placement values
# follow from the Beta ROC Regression code. The call
# to "betareg" is replaced by the call to JAGS for the
# given model.
#######################################################

model1 <- function(){
for(i in 1:n){

y[i] ~ dbeta(a[i], b[i])
a[i] <- mu[i] * gamma
b[i] <- (1 - mu[i])*gamma
logit(mu[i]) <- beta0 + beta1 * x[i]
}

gamma ~ dgamma(.001,.001)
beta0 ~ dnorm(0,.1)
beta1 ~ dnorm(0,.1)

}

data1 <- list("y" = tempQ$pvQuant, "x" = tempQ$z,
"n" = length(tempQ$pvQuant))

parameters <- c("beta0", "beta1", "gamma")

BayesMod <- jags(
data = data1,
inits = NULL,
parameters.to.save = parameters,
model.file= model1,
n.burnin = 5000, n.iter = 10000, n.chains=1)

BayesSum <- BayesMod$BUGSoutput$summary

########### Calculation of ROC ##################
intercept <- BayesSum[1,1]
cov1 <- BayesSum[2,1]
scale <- BayesSum[4,1]

ROCbeta <- sapply(1:length(p), function(s){
pbeta(p[s], (1/(1 + exp(-intercept - cov1*newZ)))*scale,

(1 - (1/(1 + exp(-intercept - cov1*newZ))))*scale )
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B.6 Bayesian Model Selection R-Code

#########################################################
# Generate two sets of data following the Beta ROC
# regression code and calculate the corresponding
# placement values for each. Instead of calling
# "betareg" for each set of placement values, run the
# following JAGS model to perform Bayesian model
# selection. The posterior summary of z yields to
# probability of inclusion.
#########################################################

model1 <- function(){
for(i in 1:n){

y1[i] ~ dbeta(a1[i], b1[i])
a1[i] <- mu1[i] * gamma1
b1[i] <- (1 - mu1[i])*gamma1
logit(mu1[i]) <- beta01 + beta11 * x1[i]

}

for(j in 1:m){
y2[j] ~ dbeta(a2[j], b2[j])
a2[j] <- mu2[j] * gamma2
b2[j] <- (1 - mu2[j])*gamma2
logit(mu2[j]) <- beta02*z+beta01 +

(beta12*z+beta11) * x2[j]
}

gamma1 ~ dgamma(.001,.001)
beta01 ~ dnorm(0,.1)
beta11 ~ dnorm(0,.1)

gamma2 ~ dgamma(.001,.001)
beta02 ~ dnorm(0,.1)
beta12 ~ dnorm(0,.1)

z ~ dbern(.05)
}

data1 <- list("y1" = tempQ$pvQuant, "x1" = tempQ$z,
"n" = length(tempQ$pvQuant),
"y2" = tempQ2$pvQuant2, "x2" = tempQ2$z,
"m" = length(tempQ2$pvQuant2))
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parameters <- c("beta01", "beta11", "gamma1",
"beta02", "beta12", "gamma2", "z")

BayesMod1 <- jags(
data = data1,
inits = NULL,
parameters.to.save = parameters,
model.file= model1,
n.burnin = 5000, n.iter = 20000, n.chains=1)

BayesMod1$BUGSoutput$summary
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B.7 Power Prior and DIC Code

2.7.1 Normal Linear Regression

model <- function()
{

for( i in 1 : n ) {

# Current Data
y[i] ~ dnorm(mu[i], tau)
mu[i] <- beta0 + beta1*x1[i]

}
# Historical Data (Use Zeros Trick)

for( i in 1:n0) {
mu0[i] <- beta0 + beta1*x10[i]
l[i] <- (-a0/2)*(log(2*3.1416/tau)+ (y0[i] - mu0[i])*tau)

dummy[i]<-0
dummy[i] ~ dloglik(l[i])

}

# Priors
beta0~dnorm(0, .001)
beta1~dnorm(0, .001)
tau ~ dgamma(.01,.01)
sigma <- 1/sqrt(tau)

a0 <- .1 # Fixed a0
}
############ End of Model

# Initial values
inits <- list(tau = 0, beta0 = 0, beta1 = 0)

n0 <- 500; n <- 250
B0 <- 1; B1 <- 2
B00 <- 1; B10 <-1.75

x1 <-rnorm(n, 0, 1)
y <- rnorm(n, B0 + B1*x1, 1)

x10 <- rnorm(n0,0,1)
y0 <- rnorm(n0, B00 + B10*x10, 1)

84



data <- list("n" = n, "n0" = n0, "y" = y, "y0" = y0,
"x1" = x1,"x10" = x10)

parameters <- c("beta0", "beta1", "sigma")

ss.sima01 <- bugs(
data = data,
inits = inits,
parameters.to.save = parameters,
model.file=model,
working.directory = "C:/Users/sarah_stanley/Documents/
Normal_powerPrior",
n.burnin = 5000,
n.iter = 20000,
n.chains=3,
DIC = TRUE, debug = FALSE)

LOG <- bugs.log("C:/Users/sarah_stanley/Documents/
Normal_powerPrior/log.txt")
yDICvec <- rep(LOG$DIC[2,3], 4)
DICvec <- rep(ss.sim1$DIC, 4)
exp <- as.data.frame(ss.sim1$summary[1:4 ,c(1:3,7)])
SimSummary <- cbind(exp, DICvec, yDICvec)
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2.7.2 Logistic Regression

library(coda)
library(R2OpenBUGS)

model <- function()
{

for( i in 1 : n ) {

# Current Data
y[i] ~ dbern(p[i])
logit(p[i]) <- beta0+beta1*x1[i]+beta2*x2[i]

}

# Historical Data (Use Zeros Trick)
for( i in 1:n0) {
logit(p0[i])<- beta0+beta1*x10[i]+beta2*x20[i]

# log likelihood
l[i]<-a0*(y0[i]*log(p0[i])+(1-y0[i])*log(1-p0[i]))

dummy[i]<-0
dummy[i] ~ dloglik(l[i])

}

# Priors
beta0~dnorm(0, .1)
beta1~dnorm(0, .1)
beta2~dnorm(0, .1)

a0 <- .1 # Fixed a0
}
########### End of Model

# Initial values
inits <- list(beta0=0, beta1=0, beta2=0)

# Data generation
set.seed(m)
n <- 100; n0 <- 500
B0 <- 0; B1 <- 1; B2 <- .25
B00 <- 0; B10 <- 0; B20 <- 0.21

x10 <- as.numeric(rbinom(n0, 1,0.5))

86



x20 <- as.numeric(rbinom(n0, 1, 0.35))
y0 <- as.numeric(rbinom(n0, 1, 1/(1 +

exp(-(cbind(1,x10, x20) %*%
c(B00, B10, B20))))))

x1 <- as.numeric(rbinom(n, 1, 0.5))
x2 <- as.numeric(rbinom(n, 1, 0.35))

p=1/(1+exp(-cbind(1,x1, x2) %*% c(B0, B1, B2)))
y <- as.numeric(rbinom(n, 1, p))

data <- list("n" = n, "n0" = n0, "x1" = x1, "x2" = x2,
"y" = y, "x10" = x10, "x20" = x20, "y0" = y0)

parameters <- c("beta0", "beta1", "beta2")

########################

log.sima01 <- bugs(
data = data,
inits = inits,
parameters.to.save = parameters,
model.file=model,
n.burnin = 5000,
n.iter = 20000,
n.chains=3,
DIC = TRUE, debug = F)

log.sima01$summary
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APPENDIX C

SAS-Code

C.1 Parametric ROC Regression Code

data inparm; seed0=12345; seed1=67891;

*** Normal data generation ***;
do n = 1 to 50;

x0 = ranuni(seed0);
x1 = ranuni(seed1);

LA=0;
m0 = 0.0;
s0 = 1.0;
y0 = m0 + 3*x0 + sqrt(s0)*rannor(seed0);

m1 = 0;
s1 = 1.0;
y1 = m1 + 4*x1 + sqrt(s1)*rannor(seed1);

la1A = (m1-m0+(x1))/s1;
la2A = s0**2/s1**2;
AUC_true = cdf("normal", (la1A/sqrt(1+la2A)), 0, 1);
output;
end;
run;

proc print data=inparm; where n <= 10; run;

data binorm; set inparm;
y=y0; x=x0; LA=0; output;
y=y1; x=x1; LA=1; output;

keep LA y x;
run;

*++++++++++++++++++++++++++++++++++++++++++++++++;
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proc quantreg data=binorm ; where LA=0;
ods select ParameterEstimates;
ods output ParameterEstimates = parms;
model y = x /quantile=(.01 to .99 by .01) nosummary;

run;

data c; set binorm; where LA=1; run;

proc iml;
use parms;
read all into dataRef;
use c; read all into dataDis;
vec1 = do(1, 197, 2);
vec2 = do(2, 198, 2);

intRefcoef = dataRef[vec1,3];
xRefcoef = dataRef[vec2,3];

**initializing vectors/matrices;
nd = nrow(dataDis);
nq = dimension(vec1)[1,2];
FPR = do(.01, .99, .01);
predSurv = j(nd, nq, 1);
qq = j(nq, 1, 1);
t = j(nd, nq, 0);
xCov = j(nd, nq, 0);
yDis = j(nd, nq, 0);
k = nd*nq;
colUit = j(k, 1, 99);

**calculating predicted reference survival curve;

**prepping data for probit regression;

do i = 1 to nd;
do j = 1 to nq;

predSurv[i, j] = intRefcoef[j] + dataDis[i,3]*xRefcoef[j];
qq[j] = quantile("normal", FPR[j]);
t[i,j] = qq[j];
xCov[i,j] = dataDis[i,3];
yDis[i,j] = dataDis[i,2];

end;
end;

transPredSurv = predSurv‘;
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transPredSurv2 = transPredSurv[nrow(transPredSurv):1,];
colPred = colvec(transPredSurv2‘);
colX = colvec(xCov);
colyDis = colvec(yDis);
colT = colvec(t);
colUIT = colyDis <= colPred;

new = colUit||colT||colX;
create f from new;
append from new;

run;

data temp; set f; uit = col1; phiInv = col2;
x = col3; drop col1-col3; run;

proc probit data = temp plot = predpplot;
ods select parameterEstimates;
ods output parameterEstimates = parms2;
model uit = phiInv x;

run;

proc transpose data=parms2 out=out_parms; run;

data out_parms; set out_parms;
if _NAME_ = ’Estimate’;run;

*** calculating the ROC ***;
data temp1; set out_parms;

alpha_hat = col1;
beta_hat = col2;
theta = col3;

do x = .5 to 1 by .1;
do s = 0.001 to 0.999 by .005;

quant = quantile(’normal’, s, 0, 1);
ROC = cdf(’normal’, +1*alpha_hat + beta_hat*quant + theta*x, 0,1);

output; end;end;

keep alpha_hat beta_hat s theta x ROC ;
run;

*** plotting the ROC ***;
proc sgpanel data=temp1;

panelby x;

90



series y=ROC x=s;
run;

*** calculating the AUC ***;
%macro loop(dsn= , cov=, title= );

data temp; set &dsn; where x=&cov; keep x s roc;run;
title &title;
proc sgplot data=temp;
series y=roc x=s;
run;

proc iml;
use temp;
read all into data;
x = data[1,1];
t = data[,2];
roc = data[,3];
np = nrow(data);
dt = t;
auc=roc; meanroc=roc; pAUC=AUC;
dt[1] = t[1];
meanROC[1] = ROC[1]/2;
pAUC[1] = dt[1]*meanROC[1];
AUC[1]= pAUC[1];

do i=2 to np by 1;
dt[i] = t[i] - t[i-1];
meanROC[i] = (ROC[i] + ROC[i-1])/2;
pAUC[i] = dt[i]*meanROC[i];
AUC[i] = AUC[i-1] + pAUC[i];
end;

AUC_PVest = AUC[np];
print x AUC_PVest;
quit;

%mend;

%loop(dsn = temp1, cov = 0.5, title = ’x = 0.5’);
%loop(dsn = temp1, cov = 0.6, title = ’x = 0.6’);
%loop(dsn = temp1, cov = 0.7, title = ’x = 0.7’);
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C.2 Beta ROC Regression Code

data inparm; seed0=12345; seed1=67891;

*** Normal data generation ***;
do n = 1 to 50;

x0 = ranuni(seed0);
x1 = ranuni(seed1);

LA=0;
m0 = 0.0;
s0 = 1.0;
y0 = m0 + 3*x0 + sqrt(s0)*rannor(seed0);

m1 = 0;
s1 = 1.0;
y1 = m1 + 4*x1 + sqrt(s1)*rannor(seed1);

la1A = (m1-m0+(x1))/s1;
la2A = s0**2/s1**2;
AUC_true = cdf("normal", (la1A/sqrt(1+la2A)), 0, 1);
output;
end;
run;

proc print data=inparm; where n <= 10; run;

data binorm; set inparm;
y=y0; x=x0; LA=0; output;
y=y1; x=x1; LA=1; output;

keep LA y x;
run;

*++++++++++++++++++++++++++++++++++++++++++++++++;

** Quantile Regression;
proc quantreg data=binorm ; where LA=0;

ods select ParameterEstimates;
ods output ParameterEstimates = parms;

model y = x /quantile=(.01 to .99 by .01) nosummary;
run;
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data c; set binorm; where LA=1; run;

proc iml;
use parms;
read all into dataRef;
use c; read all into dataDis;
vec1 = do(1, 197, 2);
vec2 = do(2, 198, 2);

intRefcoef = dataRef[vec1,3];
xRefcoef = dataRef[vec2,3];

** initializing vectors/matrices;
nd = nrow(dataDis);
nq = dimension(vec1)[1,2];
FPR = do(.01, .99, .01);
predSurv = j(nd, nq, 1);
predSurvRev = j(nd, nq, 1);

**calculating predicted reference survival curve;
do i = 1 to nd;
do j = 1 to nq;
predSurv[i, j] = intRefcoef[j] + dataDis[i,3]*xRefcoef[j];
end;
end;

* calculating placement values;
pv = j(nd, 1, .0001);
do i = 1 to nd;
do j = 1 to 98;

if dataDis[i,2] > predSurv[i,j] &
dataDis[i,2] <= predSurv[i,j+1] then
pv[i] = 1 - FPR[j];

if dataDis[i,2] < min(predSurv) then pv[i] = .9999;
end;
end;

new = pv||dataDis[,3];
create f from new;
append from new;

run;

data temp; set f; pv = col1; x = col2;
drop col1-col2; run;
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proc glimmix data=temp;
ods select ParameterEstimates;
ods output ParameterEstimates=parms;
model pv = x/dist=beta solution ;

run;

proc transpose data=parms out = mn;
run;

data mn (keep= Intercept e_A1 scale mu omega tau x roc s);
set mn;
if _NAME_=’Estimate’
then do;
Intercept = col1;
e_A1 = col2;
scale = col3;

do x = .5 to 1.0 by .1;
mu = 1/(1+exp(-Intercept - e_A1*x));
omega = mu*scale;
tau = (1 - mu)*scale;

do s = 0.001 to 0.999 by .005;
ROC = cdf("beta",s, omega, tau);

output; end; end; end;
run;

proc sgpanel data=mn;
panelby x;
series y=roc x=s;

run;

data mn2; set mn; keep x s roc; run;

%macro loop(dsn= , cov=, title= );
data temp; set &dsn; where x=&cov; keep x s roc;run;

title &title;
proc sgplot data=temp;
series y=roc x=s;

run;

proc iml;
use temp;
read all into data;
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x = data[1,1];
t = data[,2];
roc = data[,3];
np = nrow(data);
dt = t;
auc=roc; meanroc=roc; pAUC=AUC;
dt[1] = t[1];
meanROC[1] = ROC[1]/2;
pAUC[1] = dt[1]*meanROC[1];
AUC[1]= pAUC[1];

do i=2 to np by 1;
dt[i] = t[i] - t[i-1];
meanROC[i] = (ROC[i] + ROC[i-1])/2;
pAUC[i] = dt[i]*meanROC[i];
AUC[i] = AUC[i-1] + pAUC[i];
end;

AUC_PVest = AUC[np];
print x AUC_PVest;
quit;

%mend;

%loop(dsn = mn2, cov = 0.5, title = ’x = 0.5’);
%loop(dsn = mn2, cov = 0.6, title = ’x = 0.6’);
%loop(dsn = mn2, cov = 0.7, title = ’x = 0.7’);
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