
ABSTRACT

Analysis of Resting-State fMRI using Pearson-VII Mixture Modeling

True Price

Director: Erich Baker, Ph.D.

In the past two decades, functional magnetic resonance imaging (fMRI) has
been widely used to research and characterize neural activity in the brain based on
measuring the hemodynamic response correlated to neuronal firing. A main goal
of fMRI analysis is to characterize functional connectivity—correlation in activation
pattern—between different regions of the brain for different task- or disease-related
events. Here, we present a novel, data-driven method for identifying functionally con-
nected regions of the brain using a Pearson-VII mixture model learning algorithm (p7-
means). This method is complementary to independent component analysis (ICA),
which derives underlying source signals, rather than probabilistic distributions, to
characterize brain components. The p7-means algorithm is powerful in its ability
to model a range of leptokurtic to Gaussian components, which makes it robust in
identifying core functional components in noisy images. Additionally, p7-means has
the advantage of learning the number of components from the data set, rather than
returning a fixed number of components matching dimensionality. We apply the al-
gorithm to resting-state monkey fMRI and compare the discovered components to
those found in ICA. Correlational analysis shows consistent activation components
between the two methods, although p7-means appears to result in more spatially
localized groups.
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CHAPTER ONE

Introduction

The past few decades have seen remarkable growth in the field of medical imag-

ing. Our understanding of the human body is being continuously updated as novel,

more sensitive imaging methods are developed. As the quality and scope of imag-

ing acquisition techniques increases, however, new methods for extracting meaningful

information from the data must also be developed. This is especially true when an-

alyzing the activity of functionally complex and widely varying biological structures

such as the human brain. Neuroimaging is a fascinating field of research because

it extends not only to structural analysis in the localized space of the skull, but to

phenotypic traits, such as social behavior and general body functions, as well. The

introduction of medical imaging to neuroscience research is revolutionizing our per-

spective on topics like cognition and neurological disease that previously could only be

evaluated on a qualitative level. Neuroimaging analysis techniques seek to understand

how regions of the brain differ in functionality, the patterns of activity these regions

exhibit in different conditions, and how these regions interact to drive large-system

biological function and form a complex, self-cognizant individual.

The purpose of this honors thesis is to demonstrate a new computational pro-

cess, referred to as p7-means, for the functional segmentation of brain activity with

specific application to fMRI. This method deviates from current analysis methods by

using a Pearson VII mixture model to describe functional components, rather than

characterizing such regions using signal processing techniques. In applying Pearson

VII distributions, which are capable of accommodating outlier-heavy data sets in their

modeling, the approach provides robust performance against sub-Gaussian noise fac-

tors inherent in fMRI scans. Effectively, the mixture model is a method for functional
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segmentation of (not necessarily contiguous) regions across the entire brain that is

consistent for a given neurological state. p7-means has implications in many areas of

neuroimaging research, including between-subject registration, structural segmenta-

tion, simulation, and disease-state analysis.

1.1 fMRI Analysis

Functional magnetic resonance imaging (fMRI) is an important imaging tech-

nique that has greatly influenced neuroscience research since its first use in the early

1990s. This method iteratively applies the magnetic resonance techniques of MRI

to collect a spatial-temporal signal mapping of the Blood-Oxygenation Level Depen-

dency (BOLD) signal in the brain. In the resulting image, the scan is discretized into

three-dimensional positional units called voxels, usually on the order of one to three

cubic millimeters, with each voxel storing a vector of BOLD signal fluctuations in

over time. In neuroscience theory, variations in neural activity are trailed by changes

in the flow of oxygenated blood — known as the hemodynamic response — by one to

two seconds. As such, the BOLD signal measure in a given voxel can be interpreted as

a time-delayed observation of the firing of neurons contained within the space of that

voxel. On the scale of the entire neural system, the patterns of voxel activation over

time give an indication of how the brain performs certain tasks, such as observing an

image, tapping a finger, or just being in an unstimulated, resting state.

The process by which fMRI translates brain activity is into a volumetric time

series is complex and outside the scope of this paper. However, in the interest of pro-

viding an insight into the type of data fMRI collects, a short overview follows. MRI

technology is based on the quantum mechanical property of atomic nuclei spin (Lo-

gothetis 2008; Huettel 2009), which may be thought of as the angular rotation and

orientation of an elementary particle. When spin-1
2

protons, such as the hydrogen

atoms found in water molecules, are placed in the presence of an external magnetic
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field, the spin orientations begin to align parallel to the field. The orientations are

said to precess around the magnetic field vector, rotating in a circle like a spinning

top. Application of a radiofrequency field rotating at a frequency equal to the fre-

quency of precession then causes the magnetization of the spinning protons to point

perpendicular to the orientation of the magnetic field. After this excitation in the

transverse plane, the protons return to their parallel configuration in a process known

as relaxation. There are three different time constants of relaxation corresponding

to different types of environments for the protons: T1, which is the time recovery

for spins returning to a low-energy (non-perpendicular) state; T2, which characterizes

the rate of magnetic resonance signal decay due to spin-spin interactions of excited

protons; and T ∗
2 , which is a combined measurement of the T2 decay and loss of signal

coherency due to fluxuations in the applied magnetic field. These relaxation times

are often used as measures of MRI contrast; for example, MRI T1-weighted scans are

able to highlight the different relaxation rates of grey and white matter, generating

structural contrast. In fMRI, T ∗
2 relaxation is typically used to detect subtle varia-

tions in blood oxygenation levels. The end result of an MRI or fMRI image, therefore,

is a formation of the magnetic gradient, or spatially varying magnetic field (Huettel

2009). The magnitude of this field directly correlates, with some factor of noise, to

the amount of oxygenated blood in a given voxel.

fMRI has found widespread use in neuroscientific research because of several

advantages over other well-known methods. First, fMRI is capable of measuring

deep-brain activity, unlike electroencephalograph techniques, which are only able to

measure signal changes around the neural cortex. Second, unlike MRI analysis, fMRI

is able to detect the temporal, rather than merely structural, origins of blood flow

gradients that contribute to the hemodynamic response for a given activity. Finally,

fMRI is a non-invasive procedure unlike positron emission tomography, which uses a

radioactive metabolite to detect blood flow in the brain.
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1.2 Functional and Effective Connectivity

Historically, the principle of functional segregation has been a popular mech-

anism for understanding task-related neural activity (Friston 1994; Stephan, Riera,

Deco, and Horwitz 2008). This concept is derivative of the practice of mapping brain

regions to associated roles – for example, the amygdala controlling emotional response

or the hippocampus being a center for memory storage. While the idea that brain

activation organizes into structure-function associations is undoubtedly important for

understanding neural activation at a high level, at best it is only a partial model for

explaining event-driven brain function (Stephan, Riera, Deco, and Horwitz 2008). In

practice, observed brain function follows a causal network model.

The idea of perception as a process illustrates this concept: First, some exter-

nal stimulus causes a localized area of the brain (e.g. the visual coretex) to activate.

In turn, the neurally-encoded interpretation of the stimulus is transmitted to other

areas of the brain for processing via neural connections. Each unit of brain activity

is sequential, and the overall function being performed is determined by the activity

of several distinct regions simultaneously processing the information transmitted by

one or several source regions. As the capabilities of neuroimaging and subsequent

neuronal modeling have increased, explicitly system-based, information-theoretical

approaches have become the focus of neuroscience research. Current methods in neu-

roscience seek to answer the question of functional integration, that is, interpreting

brain function as an emergent property of interacting components of neuronal net-

works. Consequently, the topic of brain connectivity has become the leading factor in

modeling neural system dynamics (Lee, Harrison, and Mechelli 2003; Stephan, Riera,

Deco, and Horwitz 2008).

The advancement of neuroanalytical techniques has led to two core definitions of

connectivity: functional connectivity and effective connectivity (Friston 1994; Sporns

2012). Functional connectivity is defined as the temporal correlation between spa-
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tially remote neurophysiological events. In other words, two brain regions having

highly correlated patterns of activation are said to be functionally connected. Im-

portantly, observed functional connectivity makes no assumption about underlying

neuroanatomical structure; it is a model-free statistical measure. Effective connec-

tivity, on the other hand, is defined as the influence one neuronal system exerts over

another. Anatomical and functional connectivity derive this link; two brain regions

are effectively connected if they have a neural pathway connecting them and the ex-

citement of one region causes an activation of the other region via this pathway. The

effective relationship between the two regions may be uni- or bi-directional. Intu-

itively, this sequence of activation is manifested in observed functional connectivity.

1.3 Methods of analysis

The distinction between functional and effective connectivity is an example of

the difficulty in converting data analysis to knowledge discovery. As stated in (Lee,

Harrison, and Mechelli 2003), functional connectivity measures are descriptions of

patterns of neural activity, while effective connectivity seeks to find explanations

of the origins of these patterns. Thus, discovery of effective connectivity is tied to

both functional connectivity and an a priori model of anatomical connections. Many

methods have been proposed for characterizing effective connectivity models but, in

general, fMRI data are analyzed using some manner of hypothesis-driven or data-

driven techniques (Frackowiak 2004).

1.3.1 The General Linear Model

Introduced by Karl Friston in 1995 (Friston, Holmes, Worsley, Poline, Frith,

and Frackowiak 1994), the general linear model (GLM) has long been the underlying

framework for modeling the hemodynamic response. This model asserts that the

observed data (the “response” variable) in an MRI signal comes from a linear mixture
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of K components which may be protocol-dependent (e.g. task-related or disease-

related) or protocol-independent (relating to scanner artifacts or physiological noise),

plus some independent error:

xij = gi1β1j + gi2β2j + . . .+ giKβKj + eij (1.1)

for some individual observation xij , where i and j index a specific observation (time-

point, subject scan, etc.) and a specific voxel, respectively. Each coefficient gik is

an explanatory variable relating the level of influence a source component βkj has on

the given observation; βkj and K are unknown parameters to be estimated from the

data. eij is a source of random error found in the signal. In matrix notation, the

formulation of the GLM given in Equation 1.1 becomes:

X = Gβ + e. (1.2)

Here, X is a data matrix comprised of i rows corresponding to each scan and j

columns corresponding to each scan. β becomes a parameter matrix whose rows

represent underlying source components and whose columns reflect the associated

parameter vector for each voxel. The I by K matrix G is commonly referred to as

the design matrix, as it reflects the weight of the influence of each effect (its columns)

in each dimension (its rows). Finally, e is a matrix of error terms normally distributed

around the mean of the data.

1.3.2 Hypothesis-Driven Techniques

Hypothesis-driven methods of fMRI analysis seek to model effective connectiv-

ity by considering activated brain regions with a priori knowledge of function. Often,

these methods analyze patterns of activity between a set of pre-selected voxels or

Regions of Interest (ROIs) to find significant patterns of correlation. Increasingly,

ROI selection in clinical studies is driven by exploratory analysis such as independent

component analysis (see below), where selected regions show consistent activation
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across subjects. ROIs present a simple way to explore activity patterns across con-

ditions, although the use of ROI connectivity to describe brain activity as a whole

is inappropriate because of the statistical bias introduced when the ROIs were first

selected. (Poldrack 2007) gives an excellent overview of the benefits and issues in

using ROIs to study functional imaging.

A priori models can also be based around task or disease analysis. Statistical

Parametric Mapping (Friston, Holmes, Worsley, Poline, Frith, and Frackowiak 1994),

for instance, can be used to assess the differences in brain activation patterns of a

single scan based on task activation and deactivation events. The design matrix of

the GLM in this case might consist of a pattern such as [1, 1, 1, . . . ,−1,−1,−1, . . .],

where a value of 1 indicates task activation and -1 indicates resting state. Voxel

activation is necessarily tied to this pre-defined paradigm.

The power of hypothesis-driven techniques is severely limited when generalized

to large-scale analysis, whether in disease-state models or among large groups of

subjects (Poldrack 2007). Type I errors are a very real possibility, especially when

working with ROIs, where the selected areas are almost guaranteed to be significantly

connected. In neuroinformatics contexts, too, hypothesis-driven methods become

nearly intractable – that is, the concept of a “normal” brain falls away as the number

of subject scans increases. Variability of anatomy and even effective connectivity

make manual curation of ROI assessment infeasible in this context.

Finally, disease-state analysis can be very problematic in hypothesis-driven

techniques, as regions other than those selected can be activated, and even the acti-

vation patterns observed in ROIs may not match correctly to the design matrix. For

example, recent exploratory studies have found evidence that schizophrenia patients

may display task activation patterns during resting state and have asymmetric acti-

vation in ROIs between hemispheres (Zhou, Liang, Tian, Wang, Hao, Liu, Liu, Jiang,

et al. 2007; Hoptman, Zuo, D’Angelo, Mauro, Butler, Milham, and Javitt 2012).
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1.3.3 Data-Driven Analysis

Because of the inherent drawbacks to a priori modeling approaches, much the-

oretical, and increasingly clinical, fMRI research of the last decade has focused on

data-driven methods that approximate the GLM without forcing predetermined de-

sign onto the data. Without any further processing, data-driven methods are a form

of exploratory analysis and, to this end, are commonly used to discover or confirm

patterns and areas of activation in real fMRI data. While data-driven methods can

be powerful, they may also may suffer from dependence on user-defined parameters

or uninterpretable results. (For instance, these are two open issues with independent

component analysis – model order selection can greatly affect the resulting descrip-

tion of activity, and the order of components returned is non-specific (Li, Adalı, and

Calhoun 2007; Lindquist 2008).) However, their statistical power and ability to more

completely describe neuroimages outweigh these caveats. The next two sections of

this chapter briefly describe two of the most common data-driven fMRI analysis tech-

niques, principle component analysis and independent component analysis. Chapter

two defines our proposed data-driven analysis method, p7-means.

1.4 Principle Component Analysis

Principle Component Analysis (PCA) is a statistical method of extracting key

features of a data set across all dimensions. These features (the “components”) are

ordered such that the largest components account for the greatest sources of variance

in the original data set. Often, a small number of the largest components are able to

sufficiently account for most of the data distribution in a set of observations. In other

words, a small number of cross-dimensional components may be able to model the

data of a higher-dimensional data set, especially if redundant (i.e. strongly correlated)

dimensions exist. As such, PCA is often used as dimensionality reduction technique

in data-driven analysis to decrease dimensional and computational complexity of a
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data set. In addition to dimensionality reduction, PCA on a single-subject level has

denoising benefits in choosing the most informative subspace for the data (Erhardt,

Rachakonda, Bedrick, Allen, Adali, and Calhoun 2011). Algorithm 1 outlines the

process of PCA:

Algorithm 1 Principal Component Analysis

Input: n by d data matrix X, number of principal components to select p
Output: n by p PCA-reduced data matrix X ′

1: Zero-mean the dimensions (columns) of X.
2: Compute the d by d covariance matrix of the transpose of X.
3: Find the eigenvalues W and eigenvectors V of the covariance matrix.
4: Rank the W and their corresponding V from highest to lowest eigenvalue.
5: Let V ′ = the first p eigenvectors from the ranked list selected into a p by d matrix,

where each row of the matrix represents one eigenvector.
6: Let X ′ = transpose(V ′ × transpose(X)).

Several methods exist for choosing the reduced dimensionality p, including

Akaike Information Criterion (AIC), Kullback Information Criterion (KIC), and the

Minimum Description Length (MDL) (Erhardt, Rachakonda, Bedrick, Allen, Adali,

and Calhoun 2011). Choosing an optimal value for p is dependent on the manner of

analysis. For single-subject scans, matching the optimal p will best fit the data; in

group-level comparisons of scans, however, it is necessary to select a common p for all

scans. Methods for group-level selection include performing PCA on the mean of the

normalized dataset and on a spatially concatenated matrix of each subject’s scans.

1.5 Independent Component Analysis

First introduced in (Bell and Sejnowski 1995), independent component analysis

(ICA) is a method for data-driven analysis that incorporates unsupervised information

and signal processing techniques to discover underlying source signals in a set of signal

observations. ICA is a process of blind source separation, where the set of unknown

source signals is derived under the assumption that the signal in a given observation is

a linear weighted sum of all source signals. While the method is relatively new, it has
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a rich history of application to fMRI (Mckeown, Makeig, Brown, Jung, Kindermann,

Kindermann, Bell, and Sejnowski 1998; Calhoun, Adali, Hansen, Larsen, and Pekar

2003).

ICA has a corollary definition to the GLM. Given an observation xi with t time

indices, we seek to “unmix” x into the linear weighted sum of statistically independent

signals:

xi(t) =

m
∑

j=1

aijsj(t), (1.3)

where sj is an underlying signal, aij is the weight of the effect of that signal on xi,

and m is the number of distinct source signals (Hyvärinen 2013).

In more general terms, it is adequate to model all xi in one n by t matrix X,

where n is the number of distinct observations. The coefficients become a mixing

matrix A of size n by n, and therefore the sources assume a matrix of the shape n by

t. Importantly, this formulation of ICA requires the number of distinct sources m to

be equal to the number of observations n.

X = AS. (1.4)

Unlike PCA, which organizes data into orthagonal components, ICA assumes

that the data consist of statistically independent components, meaning they have

no systematic overlap in time or space (Lindquist 2008). Additionally, ICA models

components as non-Gaussian sources, allowing for at most one Gaussian component.

In application to fMRI, these assumptions have been justified by the observation that

functional sources in the brain tend to be super-Gaussian signals, although artifactual

signals may take different forms, such as Gaussian or sub-Gaussian (Calhoun and

Adali 2006). A final assumuption of ICA is that the mixture matrix A is both square

and invertible, which may be relaxed in certain instances (Hyvärinen 2013).

Many heuristic methods for estimating A and S exist, including the infomax,

fastICA, and JADE algorithms (Calhoun, Adali, Hansen, Larsen, and Pekar 2003).
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Numerous approaches build off these methods, particularly in multi-subject appli-

cations, known as Group ICA (GICA) (Calhoun, Liu, and Adalı 2009; Erhardt,

Rachakonda, Bedrick, Allen, Adali, and Calhoun 2011). Still other methods, such

as Probabilistic ICA (PICA), which we use as a point of comparison in this study,

seek to tailor ICA models specifically to fMRI (Beckmann and Smith 2004). PICA,

for one, allows for a nonsquare mixing process (i.e. m does not necessarily equal

n) and assumes background Gaussian noise is inherently present in the data. The

general formulation for this approach is

xi = Asi + µ+ ei, (1.5)

where µ is the mean of xi and e is some source of Gaussian noise. This equation is

intented to more closely match the GLM.
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CHAPTER TWO

p7-Means Algorithm

Mixture model estimation is a data-driven analysis technique where a set of K

probability distributions are estimated from the data for purposes of describing the

data set as a whole. The method is useful in a variety of contexts where data can be

interpreted by a statistical model, including data mining, clustering/segmentation,

and computer vision.

With the specific goal of functionally segmenting fMRI, this research applies an

existing maximum likelihood estimator defined for Pearson type VII mixture mod-

els. This method is wrapped into an iterative K-learning algorithm, which we call

p7-means. The algorithm is intended to provide a robust method for component

derivation from noisy data sets, with the additional feature of estimating the number

of components K from natural model-fitting, rather than running with a fixed number

of components decided a priori or estimated from the data prior to analysis. Another

main difference in the modeling principles of p7-means when compared to methods

such as ICA is to treat sub-Gaussian components as sources of noise confounds, rather

than attempting to characterize them as separate functional sources.

2.1 The Pearson VII Distribution

The Pearson type VII family of distributions (Pearson 1916) is a class of sym-

metrical frequency curves that includes both the normal- and t-distributions. In sta-

tistical modeling, Pearson type VII distributions have been used for robust mixture

modeling because of their ability to adopt both Gaussian and super-Gaussian forms

and for their power against outliers in noisy data sets (Sun, Kaban, and Garibaldi

2010). The probability density function for the multivariate Pearson type VII distri-
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Figure 2.1: Pearson-VII type distributions with unit variance for different values of
m.

bution in d dimensions is

p(t;µ,Λ, m) =
Γ(m)

π
d
2 Γ(m− d

2
)
|Λ|−

1
2
[

1 + ∆2
]−m

, (2.1)

where ∆2 = (t − µ)T Λ−1(t − µ) is the Mahalanobis squared distance, µ is the d-

dimensional distribution mean, Λ is a scaling matrix, and m is the degrees of freedom.

Figure 2.1 shows the range of robustness the Pearson VII distribution can assume for

different degrees of freedom.

Interestingly, a Pearson type VII distribution can be expressed as a scale mix-

ture of normals. Following the formulations given in (Sun, Kaban, and Garibaldi

2010), we observe the following Pearson VII property:

p(t;µ,Λ, m) =

∫ ∞

0

N

(

t | µ,
Λ

u

)

G

(

u | m−
d

2
,
1

2

)

du, (2.2)
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where G is the gamma distribution, given parameters a and b and latent variable u.

G (u | a, b) = baua−1 e
−bu

Γ(a)
. (2.3)

We can then rephrase the distribution model as the dependence of our observed

variable over the integral of our (non-negative) latent variable:

p(t;µ,Λ, m) =

∫ ∞

0

p(t | u)p(u)du, (2.4)

where p(t | u) and p(u) correspond to the normal and gamma scale distributions of our

model, respectively. In a mixture model context, we incorporate a prior probability

for each of K independent models, given an observation t:

p(t | Θk) = p(t, u,Θk) = p(t | u,Θk)p(u | Θk)p(Θk), (2.5)

where Θk = {µk,Λk, mk} is one of the K Pearson VII models, and p(Θk) is the prior

probability of any given model (
∑

K p(Θk) = 1).

The log-likelihood of Θ given a finite data set Y = {t1, . . . , tN} is thereby given

as:

L(Θ | Y) =
∑

N

∑

K

log
(

p(tn | un,Θk)p(un | Θk)p(Θk)
)

. (2.6)

2.2 Pearson VII EM Algorithm

To estimate a Pearson VII mixture model from a data set, we use the expectation-

maximization procedure for maximum likelihood estimation outlined in (Sun, Kaban,

and Garibaldi 2010). In this section, we give an overview of their formulation of the

algorithm. The maximum likelihood algorithm works by, after initializing parameters

for each of the K specified models, iteratively running the expectation, or E-step, and

maximization, or M-step, procedures until the likelihood of the model converges.

2.2.1 E-step

The E-step of the modelling algorithm computes the posterior probabilities, or

expectations, of each data point given the set of estimated components, Θ. From
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this, we are able to calculate the likelihood of the estimated model.

In our explanation, let us say that p(Θk|tn) represents the probability that model

Θk has some influence in the value of observation tn. This is commonly referred to

as the “responsibility” or “expectation” of tn for model Θk. We then have:

p(Θk, un | tn) = p(Θk | tn)p(un | tn,Θk). (2.7)

Bayes’ rule allows us to reformulate the posteriors as:

p(Θk | tn) =
p(tn | Θk)p(Θk)

∑

k′ p(tn | Θk′)p(Θk′)
(2.8)

and

p(un | tn,Θk) =
p(tn | un,Θk)p(Θk)

p(tn | Θk)

=
N
(

tn | µk,
Λk

un

)

G
(

un | mk −
d
2
, 1

2

)

p(t | µk,Λk, mk)

=

(

1
(2π)d/2

u
d/2
n

|Λk|1/2e
1
2
un∆2

k

)(

1
2

mk−
d
2u

mk−
d
2
−1

n
e−

un
2

Γ(mk−
d
2
)

)

Γ(mk)

π
d
2 Γ(mk−

d
2 )
|Λk|

− 1
2 [1 + ∆2

k]
−mk

=

(

[1 + ∆2
k]

2

)mk

umk−1
n

e−
[1+∆2

k]

2
un

Γ(mk)

= G

(

ank =
[1 + ∆2

k]

2
, bnk = mk

)

,

(2.9)

where ∆2
k = (tn − µk)

T Λ−1
k (tn − µk).

Using the hyperparameters ank and bnk derived in the above equation, we can

define the following estimated latent variables:

unk =

∫

unp(un | tn,Θk)dun =
ank

bnk
(2.10)

and

log unk =

∫

[log un]p(un | tn,Θk)dun = ψ(ank) − log bnk, (2.11)

where ψ is the digamma function.
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Finally, we are able to compute the log-likelihood of the estimated model:

L(Θ) =
∑

N

∑

K

p(Θk | tn) log [p(tn | un,Θk)p(un | Θk)p(Θk)]

=
∑

N

∑

K

p(Θk | tn) log[p(tn | un,Θk)]

+
∑

N

∑

K

p(Θk | tn) log[p(un | Θk)]

+
∑

N

∑

K

p(Θk | tn) log[p(Θk)]

=
∑

N

∑

K

p(Θk | tn) logN (tn | µk,
Λk

unk
)

+
∑

N

∑

K

p(Θk | tn) logG(unk | mk −
d

2
,
1

2
)

+
∑

N

∑

K

p(Θk | tn) log p(Θk)

(2.12)

Applying the log of the normal and gamma distributions gives us:

logN (tn | µk,
Λk

unk
) = log

(

1

(2π)d/2

u
d/2
nk

|Λk|1/2
e

1
2
unk∆2

k

)

=
d

2
unk −

1

2
log |Λk| −

1

2
unk∆

2
k −

d

2
log(2π)

(2.13)

and

log G(unk | mk −
d

2
,
1

2
) = log

(

(

1

2

)mk−
d
2

u
mk−

d
2
−1

n
e−

unk
2

Γ(mk −
d
2
)

)

=(mk −
d

2
) log

1

2
+ (mk −

d

2
− 1) log unk

−
1

2
unk − log Γ(mk −

d

2
)

(2.14)

2.2.2 M-step

The M-step of the algorithm seeks to find the model components Θk that max-

imize L(Θ). Model priors can simply be updated as the average expectation for each

component:

p(Θk) =
1

N

∑

N

p(Θk|tn) (2.15)
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The mean and scale matrices for each component can be computed through weighted

least squares estimation; that is, the parameters can be estimated from the data

(considered as independent samples), weighted by our currently estimated component

priors and latent u variables:

µk =

∑

N p(Θk | tn)unktn
∑

N p(Θk | tn)unk
(2.16)

Λk =

∑

N p(Θk | tn)unk(tn − µk)(tn − µk)
T

∑

N p(Θk | tn)
(2.17)

Calculating the degrees of freedom forces us to take the derivative of Equation

2.12 w.r.t. mk and setting it to zero, leaving us with:

∂

∂mk

∑

N

p(Θk | tn)

[

(mk −
d

2
) log

1

2
+ (mk −

d

2
− 1) logunk − log Γ(mk −

d

2
)

]

= 0

∑

N

p(Θk | tn)

[

log unk − log(2) − ψ

(

mk −
d

2

)]

= 0

ψ−1

(∑

N p(Θk | tn) [log unk − log(2)]
∑

N p(Θk | tn)

)

+
d

2
= mk (2.18)

2.3 The p7-means Algorithm

Now that we have defined the EM approach for learning our Pearson VII mixture

model, we merely need to wrap our algorithm in an appropriate K estimator. Several

methods have been proposed for estimating the number of components in a data set,

including pre-processing methods such as Minimum Description Length (MDL), which

estimates optimal model order based on log-likelihood of the scaled data eigenvalues

balanced by some penalty model, and K-learning methods such as pg-means, which

iteratively adds components to the model and, for each K-component model, projects

the data and model onto one dimension and uses the Kolmogorov-Smirnov statistic

and Monte Carlo estimation to determine whether the model fits the data (Feng and

Hamerly 2007). For our algorithm, p7-means, we employ a simple iterative approach

to learning K that begins with one component and grows until at least one component
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is estimated that has a prior probability, p(Θk) less than a user-specified threshold t.

In our experiments we use t = 0.01, which means that the algorithm exits when it

discovers a component that explains less than one percent of the data.

To initialize our starting component, we estimate µ1 as the mean of the data

across every dimension, and we set m1, and Λ1 according to (Nagahara 2004):

m1 =
5 × kurtosis − 9

2 × kurtosis − 6
(2.19)

Λ1 = Σ × (2m1 − 3), (2.20)

where Σ is the covariance matrix of the data.

When generating a new component for inclusion in the model, p7-means ac-

tually runs a pre-determined number (in our experiments, ten) of EM runs and se-

lects the result with the highest log-likelihood as the new mixture model. To seed

these runs, p7-means all voxels by ascending e value, as defined in (Sun, Kaban, and

Garibaldi 2010):

en =
∑

K

p(Θk | t)unk. (2.21)

The purpose of running multiple EM runs is to find the best new model for the set

of data points that most poorly fit the current mixture model. As the EM approach

optimizes only to local maxima (Moon 1996), the use of multiple model initializations

allows for the possibility of approaching a better fit than if only the lowest proba-

bility point was used as a seed. This is similar to the approach used in pg-means,

except that we choose to use only the least-likely data points (making the algorithm

deterministic), rather than a mixture of unlikely and random data points.

In calculating m and Λ values for the new component, the algorithm computes

the values just as in the initialization step, except that it only samples the first N/K

voxels when computing kurtosis and covariance, whereK is the number of components

with the newest component included. Model means are assigned for each of the r runs

by selecting the first r voxels with the lowest e values.
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We implemented p7-means in the Python programming language using the

NumPy (http://www.numpy.org) and SciPy (http://www.scipy.org) libraries (As-

cher, Dubois, Hinsen, Hugunin, and Oliphant 1999; Jones, Oliphant, Peterson, et al.

01 ). Figure 2.2 shows the performance of p7-means on a simulated data set of five

Gaussian components with a uniform background noise component. The top four fig-

ures are, from left to right, the progression of the algorithm from one to four centers.

Each color represents a different estimated component, and data points are assigned

to a cluster based on the highest expectation. The bottom picture shows the final

estimation of the algorithm. We see that p7-means correctly distinguished the five

Gaussian components from the uniform noise (shown in red), but two components

(shown in light blue) were incorrectly estimated as one single component.

As with most mixture modeling algorithms, p7-means becomes computationally

difficult as the data dimensionality increases. Additionally, the covariance matrices

of high-dimensional data, particularly fMRI, tend to approach singularities because

the distinction between two given dimensions may be hard or impossible to define.

Therefore, it is common practice in mixture model to reduce high-dimensional data

along the first d components of variance in the data set. In other words, we apply

principal component analysis to high-dimensional data sets and run p7-means using

the first d (a pre-selected number) dimensions of variance, instead.
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Figure 2.2: Performance of p7-means on a simulated data set of 6000 points, 5000
coming from random Gaussian distributions, and one consisting of a uniform distri-
bution.
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CHAPTER THREE

Experimental Results

To analyze the performance of p7-means on real fMRI data, we apply the al-

gorithm to resting-state monkey fMRI. We qualitatively evaluate the components

returned by the method and compare the results to the components returned by

ICA.

3.1 Image Acquisition and Pre-processing

Three resting-state monkey fMRI were obtained Oregon National Primate Re-

search Center on a Siemens Tim-Trio (3T) MRI scanner. We refer to these scans as

Scans #1, #2, and #3. Scans #1 and #3 are images of normal control monkeys,

while Scan #2 is an image of a monkey suspected to exhibit alcohol addiction.

Resting state echo-planar images recorded BOLD fluctuation over 864 time-

points (excluding the first four acquisitions) approximately two seconds apart (TR=2.07).

Pre-processing of the functional images was performed using FEAT (FMRI Expert

Analysis Tool) Version 6.00, part of FSL (www.fmrib.ox.ac.uk/fsl), FMRIB’s Soft-

ware Library (Jenkinson, Beckmann, Behrens, Woolrich, and Smith 2012; Woolrich,

Jbabdi, Patenaude, Chappell, Makni, Behrens, Beckmann, Jenkinson, Smith, et al.

2009; Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister,

De Luca, Drobnjak, Flitney, et al. 2004). The image was (1) motion corrected us-

ing MCFLIRT (Jenkinson, Bannister, Brady, Smith, et al. 2002); (2) slice-timing

corrected; (3) masked using brain extraction with BET, f=0.3 (Smith 2002); (4)

spatially smoothed (FWHM, 5mm); and (5) high-pass filtered (sigma=50 seconds).
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3.2 Probabilistic Components

Before applying p7-means to the monkey scans, the data were first voxel-wise

de-meaned and subsequently reduced to 20 dimensions through PCA. Figures 3.1,

3.2, and 3.3 show the components returned by p7-means for Scans #1, #2, and #3.

Scan #1 shows 34 strongly segmented components (that is, having little overlap)

that also tend to be spatially localized. Components also appear to correlate strongly

between hemispheres of the brain for the same functional regions, although some

complementary areas are divided into two components (for example, components e-

blue and f-blue).

Scans #2 and #3 show strong segmentation of components, as well, with p7-

means generating 23 components for Scan #2 and 33 components for Scan #3. It

is difficult to qualitatively evaluate the overall performance of p7-means using only

three scans. However, the number and location of components predicted for Scans #1

and #3 appear much more similar than the components returned for Scan #2. For

example, component c-green for Scan #1 and component e-red for Scan #3 appear

to match structurally to some degree around the putamen and caudate nucleus. Scan

#2 also has a putamen- and caudate nucleus-related component (a-blue); however,

the component also incorporates posterior white matter regions, as well, which is

significantly different from the Scan #1 and Scan #3 components.

It is interesting that Scan #2, a brain suspected to exhibit alcoholism, displays

fewer regions of distinct functional activation when compared to Scans #1 and #3. In

an exploratory but limited fashion, this suggests that p7-means may have been quite

successful in distinguishing functionally important patterns of activation in the brain.

While more trials are necessary to identify the specificity of the components returned

by p7-means for different brain states, the fewer number of components returned for

Scan #2 indicate that the algorithm is able to successfully characterize a marked

difference in activation for disease-state scans.
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3.3 Comparison with ICA

To validate the performance of our approach against existing methods, we

compared the output of our single-scan results for Scan #1 to the FSL program

MELODIC, which estimates functional similar regions using probabilistic indepen-

dent component analysis (Beckmann and Smith 2004). In applying this method,

voxels were de-meaned and variance normalized, and the data were reduced to 20

dimensions using PCA dimensionality reduction.

Initially, we used MELODIC’s automatic estimation tool for calculating the

number of independent components to detect. However, this ended up generating

631 separate components, which is impossible to interpret and yields no components

particularly interesting in size or location. Therefore, we set the number of compo-

nents to a predetermined 20, which is around the number that has commonly been

used in literature when applying group ICA (Calhoun, Adali, Hansen, Larsen, and

Pekar 2003, for example), which requires the number of components be consistent.

Figure 3.4 shows the results of this analysis.

Figure 3.5 shows the results of matching p7-means probability maps to ICA

maps on a per-voxel basis. The ICA maps generated by MELODIC contain proba-

bilistic involvement in each component based on a mixture model of a single gamma

and a single normal distribution. The data modeled by MELODIC in this case is

the spatial map of per-voxel mixing coefficients for each component, normalized by

z-statistics. To quantify the amount of similarity between the two, we used Pearson’s

correlation coefficient, which ranges from -1, meaning completely anticorrelated, to

1, meaning completely correlated. The formula for correlation is:

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY

Figure 3.6 shows the four ICA/p7-means component pairs with the highest r

scores. Images (a), (b), and (d) appear to indicate a more coherent, localized per-

formance of p7-means over ICA in terms of component specificity (“noisiness”). In
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image (c), we see the same effect; however, it also appears that ICA has predicted ad-

ditional activation in the frontal cortex that was not detected by p7-means. This may

not be a false positive or false negative for either algorithm – computationally, each

algorithm perceives the data in a very different way, and as always, the parameters

given to each algorithm could affect its performance. Nevertheless, the observation

does reaffirm the notion that p7-means returns a set of components that are more

spatially segmented when compared to ICA. On the other hand, ICA components are

more likely to predict similar patterns of activation in different (that is, not mirrored

across hemispheres) regions of the brain.
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a.

b.

c.

d.

e.

f.

g.

h.

i.

Figure 3.1: Result of the p7-means algorithm on a smoothed, resting-state monkey
fMRI image (Scan #1). Using PCA dimensionality reduction to 20 dimensions, the
p7-means algorithm discovers 34 generative components for this scan. Each image
shows four of these components, in no specific order, with a probability threshold
cutoff of p(t | Θk) > 0.5.

25



a.

b.

c.

d.

e.

f.

Figure 3.2: Result of the p7-means algorithm on a smoothed, resting-state monkey
fMRI image (Scan #2). Using PCA dimensionality reduction to 20 dimensions, the
p7-means algorithm discovers 23 generative components for this scan. Each image
shows four of these components, in no specific order, with a probability threshold
cutoff of p(t | Θk) > 0.5.
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f.

g.

h.

i.

Figure 3.3: Result of the p7-means algorithm on a smoothed, resting-state monkey
fMRI image (Scan #3). Using PCA dimensionality reduction to 20 dimensions, the
p7-means algorithm discovers 33 generative components for this scan. Each image
shows four of these components, in no specific order, with a probability threshold
cutoff of p(t | Θk) > 0.5.
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d.

e.

f.

g.

h.

i.

j.

Figure 3.4: Probability maps from Melodic ICA components after PCA dimension-
ality reduction to 20 dimensions. Each image shows two of these components, with
any overlap indicated in purple, using a threshold cutoff of p(t | Θk) > 0.5.
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Figure 3.5: Pearson’s r scores between p7-means and MELODIC ICA probability
maps. The components (each row and column) are given in no specified order. Qual-
itatively, we see that nearly every component from p7-means corresponds at least
somewhat with a component from ICA, and vice-versa.
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a.

b.

c.

d.

Figure 3.6: Four paired ICA (red) and p7-means (blue) components having the highest Pearson’s r scores. Areas of overlap
between the components appear as purple (threshold: p(t | Θk) > 0.5). r values are: (a) 0.6, (b) 0.458, (c) 0.445, and (d) 0.428.
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CHAPTER FOUR

Discussion and Conclusion

The purpose of this thesis was to lay the framework for a new method for

functional connectivity analysis of fMRI that has robust performance over existing

methods. While p7-means is shown merely as a proof-of-concept approach here,

there are many avenues of research still available for the algorithm. We have shown,

however, that p7-means is able to perform comparatively to independent component

analysis on real-world data, although the lack of specific ground truth data makes

this comparison difficult to quantify.

Historically, there has been little research in applying clustering-type algorithms

to functionally segment fMRI, especially when compared to independent component

analysis, which has a panoply of algorithms and implementations throughout the

literature. The research presented here is therefore novel in its application to fMRI,

and as such, we believe that p7-means is an innovative method of fMRI analysis. If

nothing more, we hope this research opens the door for discussion about how robust

methods can be applied in data-driven fMRI, as well as challenging the current field

of algorithm development to consider the advantages and pitfalls of popular methods

in a new light.

With that said, p7-means (and whatever may come from it) still has a long way

to go before it is even comparable to the vastly more researched analysis methods

currently in use. Several optimizations in the algorithm should be the focus for future

research:

1. Smarter thresholding: The current implementation of p7-means uses a very

rudimentary threshold for algorithm completion. In future versions of the

algorithm, it could be beneficial to use different methods for checking whether
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the components returned by the algorithm adequately describe the data.

2. Noise-agnostic modeling: One limitation to applying an iterative K-learning

algorithm is that noise components of the data are still included in one or

more components. Methods could be developed to adjust the mixture model

such that noise components do not as significantly affect the placement of

new components.

3. Alternatives to PCA dimensionality reduction: p7-means, like almost all mix-

ture model algorithms, is restricted in the number of dimensions it can handle,

especially in data sets where many dimensions have high redundancy, such

as is the case in fMRI. Estimation of the covariance matrix (with some data

loss, of course) and its inverse may allow us to avoid dimensionality reduction

and possibly decrease the alogorithm runtime. (Sun, Kaban, and Garibaldi

2010), for instance give a method in their paper for estimating the covariance

matrix with the Wishart distribution.

4. Ordering components: ICA and p7-means both suffer from not having a spec-

ified order of components that makes sense in terms of functional significance.

Further research into effective ordering strategies could benefit not just our

own research, but the general data-driven community, as well.

5. u-map incorporation: One idea, not addressed in this thesis, is to perform

analysis on the estimated latent variables unk, which are associated with each

voxel for each component. u values give a less modular, but possibly more

informative, map of the brain for each component that includes localized

white-matter tracts (data not shown). The exact use of these maps in our

analysis has yet to be determined, but at the very least, they offer an addi-

tional layer of information which we can analyze.
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There exist several open applications of p7-means to be explored, as well, the

chief of these being between-subject registration and comparison. Because the al-

gorithm inherently provides a statistical model of functional activity, registration

applications can be applied using distribution similarity tests. In other words, when

comparing the results of p7-means on two (or more) different scans, the components

could be matched using a statistical test. The Kolmogorov-Smirnov test, for exam-

ple, could be used to measure the empirical distributions of voxel values between all

pairs of components between two different scans. A similar pair of components would

have a smaller Kolmogorov-Smirnov statistic, and therefore component pairs could

be matched by the best statistic. In addition, the statistic gives a weak assertion of

the degree of matching for any pair of components, implying that multiple functional

components in one scan could be associated with one or more components in the

other. Importantly, this statistical matching would allow for registration in prob-

abilistic functional space, rather than anatomical space – a non-atlas (that is, not

spatially normalized) between-subject comparison. Especially for neuroinformatics

research, this anonymous registration method could be very powerful in elucidating

functional characteristics of the brain on a population-wide level.

An alternative to the Kolmogorov-Smirnov test that abstracts the model analy-

sis even further is to use information metrics such as the Kullback-Leibler divergence

(Kullback and Leibler 1951). This measure would allow us to match component pairs

between scans based solely on the predicted Pearson VII distribution of each com-

ponent, rather than using the set of voxels most strongly associated with a given

component as a comparative sample. When comparing the probability distributions

associated with components from two scans, a distribution from the second scan

having low divergence from a given distribution in the first scan can be thought

of as well described by the first scan’s distribution. Effectively, the measure of di-

vergence functions for measuring differences in component distributions just as the
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Kolmogorov-Smirnov statistic does for measuring differences in component samples.

The implications of this are that full functional registration can be achieved as a

post-processing step using only computed statistical models. Developing divergence

analysis methods for scan comparison is a key focus of future research.

The approach also paves the way for the development of functional atlases,

where the voxels of other scans are mapped to the pre-defined mixture model of the

atlas. This would give a “null-hypothesis map” for (atlas-based) normal functioning.

In turn, this ground-truth could be analyzed against the results of running p7-means

on the non-atlas scan. Component-wise correlation or model likelihood comparison

could give an idea of how well the scan matches the atlas control. Another method

could be to apply the Kolmogorov-Smirnov test or Kullback-Leibler divergence using

the set of atlas distributions as references and the set of predicted components to

match against (using the associated voxels for each predicted component as samples

in the case of the Kolmogorov-Smirnov test). In this case, predicted components

having no strongly corresponding atlas component would be marked as potentially

abnormal in function.

These approaches solve issues of non-standard structural damage, as well. For

example, a traumatic brain injury patient may have severe structural damage in one

area of the brain, causing a priori and structural atlas-based methods poorly model

the functional capabilities across the entire brain, especially if neuroplasticity has

allowed another region (or other regions) to adopt and maintain the functionality of

the affected region. Applying the mixture model in a non-atlas way, on the other

hand, could allow us to detect this alternative functional structure.

The mixture model approach also lends itself well to the simulation of fMRI,

as the probability makeup of each voxel can be randomly sampled to try and sim-

ulate the patterns of neuronal firing across the entire brain. Comparison of these

randomly-induced processes to actual fMRI signals could help us better understand
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the underlying mechanisms as well as confounds that form the fMRI signal. Moving

forward, we could weight our random samplings with signal-related biases based on

a priori models of neuronal firings. Matching these adjusted random processes to

actual observations would aid us in validating the accuracy of our neuronal models.

Our long-term intention is to apply p7-means as a robust method for disease-

state and group analysis, particularly on a neuroinformatics level. We believe that

the algorithm shows particular promise as far as comparitive results go, as the data

are being modeled as probability distributions, rather than arbitrary signals. We are

excited by the range of potential influence of p7-means, and we hope this thesis is the

first step toward a new perspective for the field of data-driven fMRI analysis.
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