
ABSTRACT

Modeling of Flexible Fiber Motion and Prediction of Material Properties

Cong Zhang, M.S.M.E.

Committee Chairperson: David A. Jack, Ph.D.

This work employs the rod chain model of Wang et al. (2006) to study the

motion of discrete flexible fibers. Results are presented for both individual fibers and

a stochastic distribution of fibers to study the variations in the transient effects be-

tween the rigid and the flexible fiber systems. Results demonstrate that the observed

period decreases as the fiber flexure increases, and provide insight into the modifi-

cations required for the orientation distribution function of flexible suspensions. To

demonstrate the importance in studying the alterations in the transient effects on a

processed part, a study of the cured composite stiffness is presented for the flexible

fiber system using the micro-mechanical approach of Hsiao and Daniel (1996) along

with an adapted version of the rigid fiber micromechanical approach discussed by

Jack and Smith (2008).
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CHAPTER ONE

Introduction

There is a considerable industrial demand for lightweight, durable composites

composed of long fibers due to their high strength to weight ratios. Manufacturing

fiber reinforced composites with injection molding has become a dominant alterna-

tive over other traditional manufacturing processes, such as compression molding and

extrusion molding, largely because of its relatively low cost of manufacturing, the abil-

ity to process parts with complex shapes, and the potential for increased use in high

volume applications. Existing short fiber models for predicting the composites’ un-

derlying microstructure are quite proficient at capturing the orientation effects during

the processing of the polymer melt and the final product of the cured part for rigid

fibers. It would be of an industrial benefit to have similar models available for long

fiber systems. Of particular interest is understanding the differences between clas-

sical rigid suspension models and the recent flexible suspension models, and present

scenarios where the classical models can continue to be applied for systems with long

fibers. Recent work in flexible fiber suspension kinematics has focused on a series of

models which represent the motion of a single fiber as a series of connected beads or

a series of rigid rods connected by force and torque transferring hinges between them.

The orientation and flexure of individual fibers within a processed fiber-

reinforced composite plays a significant role in defining the bulk properties: such

as elastic modulus [4–6], electrical and thermal conductivity [7], and thermal ex-

pansion [8], etc. During processing, the spatially varying fiber orientation alters the

observed viscous stress of the polymer melt, which directly affects the processing

parameters thus determining the cost and efficiency of processing [9–12]. Jeffery’s
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equation has been the foundation for rigid fiber orientation research due to three di-

mensional flow gradients for decades [13]. For example, it predicts that the motion of

a single rigid ellipsoid is periodical in a shear flow and follows a very well-established

and predictable orbit in three dimensional space. Fiber-fiber interactions in semi-

dilute and concentrated suspensions of rigid fibers are assumed to be well represented

by the addition of a diffusion term to Jeffery’s equation [14–16].

To obtain further advances in the resulting processed part’s performance be-

yond those observed from short fibers, there is a strong industrial desire to incorporate

fibers with increased aspect ratios. Long fibers (normally with aspect ratio larger

than 20) are desired for manufacturing fiber reinforced composites largely because

they offer better mechanical stiffness as well as the thermal and electrical properties

when they are aligned than the corresponding short fiber composites. They also of-

fer better material properties for some specific applications, such as impact strength.

An apparent draw back is their tendency to flex during processing [17], which both

reduces the material improvements anticipated as well as diminishes the accuracy of

the existing models for simulating the motion of short rigid fibers. Jeffery’s equation

is unable to describe the motion of a long flexible fiber, which will experience both

bending and twisting during processing [18]. Also, the alignment of long fibers in the

flow will cause a great increase in the viscosity of the fluid, thus inducing a higher

shear stress on the fibers [11,19]. A balance of incorporating long fibers into compos-

ites with the least possible deformation of the fibers during the manufacturing will

offer the optimal material properties.

Several models have employed different mathematical representations for flex-

ible fibers, such as a series of beads [1, 2, 10, 20], rods [21] and spheroids/needles

[3, 9, 18, 22–25]. The bead chain model represents a single flexible fiber as a series
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of spheres that can stretch, bend and twist relative to each other. The rod chain

model optimizes the bead chain model by combining several beads into a rigid rod.

Then the rods are connected to represent a single flexible fiber. The spheroid model

represents a single flexible fiber with rigid bodies connected by joints. All these three

models describe the motion of a flexible fiber under a pure shear flow by solving the

motion equations along with satisfying the continuum requirement of the models.

The motion of a flexible fiber in a pure shear flow differs from that of a rigid fiber in

the same flow in terms of the motion period and orientation space path [18]. Effective

models for describing the motion and orientation of flexible fibers must yield results

approaching that of Jeffery’s equation as fiber rigidity increases.

The rod chain model of Wang et al. [21] has been adopted in the present work

due to its clarity of the physics and simplicity of the model, which may lend itself

to a distribution approach required for industrial simulations. This thesis provides

a comparison of the flexible fiber model to the classical Jeffery’s equation for rigid

fibers. The results show that the motion period of the flexible fiber decreases relative

to that of the rigid fiber, and the period is inversely proportional to the stiffness of the

fiber. Simulation results of the cured composites for distributions of flexible fibers are

also studied to show the areas of overlap and areas of differences between those of a

flexible fiber suspension and model results that assume rigid fibers during processing.

A literature review of the modeling of flexible fiber motion and the prediction

of material properties for discontinuous fiber reinforced composites is given in Chapter

Two. A comparison between models for rigid fiber motion and those for flexible fiber

motion is presented in Chapter Two, along with an extensive review of the classical

rigid fiber model, Jeffery’s equation, multiple flexible fiber models, and especially the

rod chain model used in this research. Chapter Two concludes with a discussion of
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the existing stiffness approaches for straight fibers, with the extension to flexible fibers

left to Chapter Four. Chapter Three compares the orientation results from the Jeffery

model for straight fibers to those of the rod chain model. Results are presented for

both individual fibers and a stochastic distribution of fibers to study the variations

in the transient effects between the rigid and the flexible fiber systems. Scenarios

are presented to discuss when the Jeffery model is appropriate for long fibers, as well

as a qualitative feel for the anticipated error as the fiber flexure increases. Chapter

Four investigates the processed part’s stiffness due to variations in the underlying

fiber orientation and stiffness. The cured composite stiffness is presented for the

flexible fiber system using the micro-mechanical approach of Hsiao and Daniel [4] for

individual flexible fibers combined with the spatial homogenization of the stiffness for

a distribution of fibers discussed by Jack and Smith [5] previously only for straight

fibers. This thesis concludes with a summary of the scientific contributions created

by this work along with a listing of anticipated and suggested future research studies.
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CHAPTER TWO

Literature Review of Fiber Motion and Orientation Modeling and Stiffness
Prediction

This chapter starts with a description of the injection molding process as

the background information and then gives a literature review over the models of

fiber motion simulation and material property prediction. Three major flexible fiber

models are described in details, which are the bead chain model, the needle chain

model and the rod chain model. The orientation homogenization method for the

prediction of the stiffness of fiber reinforced composites is discussed at the end of this

chapter.

2.1 Injection Molding of Fiber Reinforced Composites

Injection molding has become the most commonly used manufacturing process

for the fabrication of a range of thermoplastic products with varying sizes, com-

plexity and application [26,27]. Typical product categories include housewares, toys,

automotive parts, furniture, rigid packaging items, appliances and medical disposal

syringes. Injection molding has the following advantages:

• Accuracy in weight of articles

• Choice of desired surface finish and colors

• Choice of ultimate strength of articles

• Faster production and lower rejection rates

• Faster start-up and shut down procedures

• Minimum wastage

• Stability of processing parameters
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• Versatility in processing different raw materials

• Option in article sizes by changing the mold

• Minimum post molding operations

The injection molding process requires the use of an injection molding machine, raw

plastic materials, and a mold. An injection molding machine includes a plasticiz-

ing/injection unit, a clamping unit, a control system and tempering devices for the

mold (Figure 2.1). An injection mold is the central element of the injection molding

process. It is made of at least two parts, which are clamped onto the injection mold-

ing machine. The mold contains a cavity, into which the thermoplastic material is

injected and which forms the final part geometry. The general procedures of injec-

tion molding include melting the plastic in the injection molding machine and then

injecting the melt into the mold, where it cools and solidifies into final parts.

The complete injection molding cycle takes place in the following steps

1. Plastication: Raw material, normally in the form of pellets or powders, is added

into an empty barrel through the feed hopper, as shown in Figure 2.1. The raw

material is plasticized to a fluid state with the help external heaters on the

barrel in the process of passing through the barrel under the force from the

rotation of the screw inside the barrel.

2. Clamping: The mold, as shown in Figure 2.1 closes until the two halves are in

close contact.

3. Injection: The screw moves forward axially without rotation and carry the

melt into the cavity in the mold. The mold is filled with hot melt. As the

molded part in the mold cools down from the melt temperature, further melt is

conveyed into the cavity to compensate for volume contraction. Subsequently,

the injection unit starts plasticizing and preparing material for the next shot.
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Figure 2.1: A general display of an injection molding machine.

4. Ejection: After the molded part has cooled sufficiently, the mold opens and the

finished part is ejected. The mold closes again ready for the next cycle.

5. Repeat stages 2 to 4.

Fiber reinforced thermoplastic composites are widely used in industry, espe-

cially in automotive industry, as they can offer low cost, light weight and high dura-

bility structural materials. Long fiber reinforced composites offer even much better

mechanical performance than the short fiber composites as the higher aspect ratios

of the long fibers considerably increase the composite stiffness and strength, and en-

hance creep and fatigue endurance [28,29]. The injection molding equipment can be

adjusted with some specific tool design in low cost of part production to produce fiber

reinforced composites. A number of factors affect the final quality of the injection

molded parts. This study focuses on the influence of the long fiber orientation and

flexure on the material properties in the final processed part. During the injection

stage, the melt flow with the fibers filling the mold goes through three stages identified

as three regions: the gate region, the lubrication region and the fountain regain. The

7



majority of the flow will be contained in the lubrication region. Thus, it is normally

assumed the orientation of the fibers are only greatly influenced by this region, which

is also the focusing study of this research. The flexure of the long fibers will also

come into play to influence (normally decrease) the properties of the final processed

composites.

The design or the prediction of the properties of the long fiber reinforced com-

posite materials should take into account many factors, including the fiber orientation

and flexure. This study predicts the stiffness of the processed parts by studying the

dynamics of the fibers in the flow in the lubrication region of the injection molding

process along with compensating the influence of the fiber flexure.

2.2 Short Straight Fiber Motion and Orientation Modeling

The research of fiber motion begins with short rigid fibers. The concepts created

and the methods used are the starting point for the research of long flexible fiber

motion. This section covers the work on short fiber motion, including the models

proposed and the approaches created in order to give enough background information

to understand the research on long flexible fiber motion.

2.2.1 Fiber Orientation

The orientation of a short rigid fiber can be described by a unit direction vector

p, usually expressed in a spherical coordinate system by an angle pair (θ,ϕ) (Figure

2.2) as

p =


sinθ cosϕ
sinθ sinϕ
cosθ

 (2.1)

As the two ends of the fibers are essentially indistinguishable [30], a fiber’s orientation

can be described by either p(θ, ϕ) or −p(θ, ϕ) without any difference. Then the

8



x3

x1

x2
φ

θ

p(θ,φ)

Figure 2.2: Coordinate system defining the unit direction vector p(θ, ϕ) along with
angles θ and ϕ.

following relationship is valid when describing fiber orientation

(θ, ϕ) → (π − θ, π + ϕ) (2.2)

Since modeling individual fibers is industrially impractical, the discrete set of fibers is

often assumed to satisfy a given continuous probability distribution function ψ(θ, ϕ).

Then the probability of a fiber orienting between the angles θi and θi+dθ and between

ϕi and ϕi + dϕ is defined as [31]

P (θi ≤ θ ≤ θi + dθ, ϕi ≤ ϕ ≤ ϕi + dϕ) = ψ(θ, ϕ) sin θidθdϕ (2.3)

And the probability function ψ(θ, ϕ) has the following property because of Equation

(2.2) as

ψ(θ, ϕ) = ψ(π − θ, π + ϕ) (2.4)

The orientation of any fiber can be described by some angle pair (θ, ϕ) ∈ S2. Thus

the distribution function must satisfy the normalization function, which means that
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the integral of the distribution function over the unit sphere S2 equals to one∮
S2
ψ(θ, ϕ)dS =

∫ 2π

0

∫ π

0

ψ sin θdθdϕ = 1 (2.5)

The fiber distribution function is a complete description if the orientation

of a fiber is statistically unrelated with that of any of its neighboring fibers, and

is considered to be continuous and varying smoothly with position [30]. However,

the calculations with the distribution function are too computationally costly when

applied to industrially relevant flows. Besides, the distribution function does not

provide a convenient and straight-forward understanding of the physical behaviors of

the fibers [5, 6, 30, 32]. Advani and Tucker [6] suggest using tensors to describe the

average orientation property over a volume. This volume should be large enough to

contain many fibers, but small enough such that the statistics of the orientation are

uniform throughout. This assumption is valid when the volume is small compared to

the dimension of the part but large compared to the fiber length [33]. For example,

for a spherical volume, the diameter of the sphere is at least twice the length of

the fibers. The so called orientation tensors are calculated as the moments of the

distribution to capture the statistical behavior of the distribution function [6]

aij... =

∮
S2
pipj . . . ψ(θ, ϕ)dS (2.6)

Notice the odd ordered orientation tensors have components all zero due to the prop-

erty of the distribution function shown in Equation (2.4). The orientation tensors

are symmetric and have the following properties

aij = aji

aijkl = aklij = ajikl = ailkj = . . . (2.7)

aijklmn = ajiklmn = aklijmn = amnklij = ailkjmn = ainklmj = . . .
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Because of the symmetry of the orientation tensors, there are six independent com-

ponents of the second order orientation tensor aij, which are reduced to five as the

normalization condition of Equation (2.5) is also considered [34]. Similarly, there

are 14 independent components of the fourth order orientation tensor aijkl, 27 in-

dependent components of the sixth order orientation tensor aijklmn, 44 independent

components of the eighth order orientation tensor aijklmnop and 65 independent com-

ponents of the tenth order orientation tensor aijklmnopqr [34]. The orientation tensors

are an incomplete representation of the fiber distribution function, but are very useful

and widely used in industrial simulations of fiber orientations.

2.2.2 Jeffery’s Equation

The investigation into fiber dynamics in various flows has been for decades an

active and extensive research topic due to the strong dependence the processed prod-

uct’s material properties have on the underlying fiber orientation [4, 35–38]. Thus

predicting the spatially varying fiber orientation is essential for the design of fiber re-

inforced composites. Models for simulating the motion of short rigid fibers in various

flows have been constructed. One of the earliest research on fiber motion and orien-

tation was Jeffery’s equation [13], first published in 1923. It describes the motion of

an ellipsoidal particle in a newtonian flow by the following equation

ṗ =
Dp

Dt
= Ω · p + λ[D · p−D : ppp] (2.8)

where ar is the fiber aspect ratio and ae is the effective aspect ratio. For a long

cylindrical rod, ae can be calculated by ae = ar1.24/
√
ln(ar) [39–41]. λ = a2e−1

a2e+1
is a

shape correction factor for cylindrical rods, Ω = (κ−κT ) is the vorticity tensor, and

D = (κ+κT ) is the rate of deformation tensor where κ is the gradient of the velocity

vector. p is the unit direction vector of the fiber, which is a function of two angle
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parameters θ and ϕ as shown in Figure 2.2 and defined in Equation (2.1). In a shear

flow the rigid ellipsoid rotates and remains on its initial streamline and periodically

repeats the same orbit in the absence of interacting with the environment (other

fibers, body forces, etc.) (Figure 2.3). There is an orbit constant C associated with

the motion trajectory defined as

C = tanα0

√
cos2 γ0 +

1

a2e
sin2 γ0 (2.9)

where (α0, γ0) is the initial orientation and ae is the equivalent aspect ratio of the

ellipsoid. α is the angle between the fiber axis and the vorticity direction (y-axis) of

the shear flow and γ is the angle between the orthogonal axis (z-axis) and the x− z

projection of the fiber axis. C → ∞ corresponds to a spheroid tumbling in the plane

of shear, and C = 0 corresponds to a motion where the spheroid spins in the vorticity

direction.

Jeffery’s equation can be solved numerically to provide the transient solution of

the orientation of an individual fiber. It can be shown that Jeffery’s equation predicts

a periodical behavior for a fiber in a pure shearing flow with an orbital period given

by [25]

Torbit =
2π

γ̇
(ae +

1

ae
) (2.10)

where the shear rate γ̇ =
√
2tr(D2).

However, Jeffery’s equation is only valid for rigid fibers in a dilute suspension,

and cannot be used for fibers in a semi-dilute or a concentrated suspension. Folgar

and Tucker [37] introduced a diffusion term to the original Jeffery’s equation in order

to solve this problem, and several authors have proposed improvements on the original

model. Neither the Jeffery’s equation nor the form with a diffusion term is capable
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Figure 2.3: A rigid ellipsoid in a shear flow.

of describing the motion of a distribution of long flexible fibers as any fiber bending

and twisting is ignored based on the perfect rigidity assumption.

2.2.3 The Folgar-Tucker Model

Jeffery’s equation only applies to fiber suspensions with no fiber interactions,

requiring a dilute suspension, defined when the inverse of the square of the aspect

ratio ar of the fiber is much greater than the volume fraction Vf of the fibers, i.e.

Vf ≤ 1
a2r

[30,34]. The semi-dilute suspension is defined such that 1
a2r

≤ Vf ≤ 1
ar

[30,34].

The concentrated suspension is defined such as Vf >
1
ar
. For the typical fiber aspect

ratios ranging from 10 to 20 [42], the volume fraction of the fiber has to be less

than 1% to have a dilute suspension and between 1% and 10% to have a semi-dilute

suspension. Typical industrial manufacturing of fiber reinforced composites require

the fiber volume fraction to be much greater than 10% thus inducing fiber interactions,

which means Jeffery’s equation is of little use in industrial applications.
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The modeling of fiber interaction is often modeled using a form similar to

the theory of rotary Brownian motion [34, 43, 44], where the interacting ellipsoids

collide with each other within the flow causing forces and torques on each other.

The rotary Brownian motion has been perviously used to model the dynamics of

polymer liquids whereby the interactions are models as being caused by directionally

dependent diffusion processes [34, 43, 44]. The first model accounting for the fiber

interaction by adding a diffusion term is given by Bird [44]:

Dψ

Dt
= −∇ · [ṗψ(p)−∇(Drψ(p))] = −∇ · [ṗψ(p)] +∇2[Drψ(p)] (2.11)

where Dr is the rotary diffusivity. When it is assumed that there is no fiber interac-

tions, which results in Dr to be zero, the model of Equation (2.11) is essentially the

same as the model of Jeffery’s equation. Folgar and Tucker [14] propose a diffusivity

function based on the rate of deformation tensor D along with an empirical derived

parameter CI :

Dr = CI γ̇ (2.12)

where γ̇ is the scalar magnitude of the rate of deformation tensor D. This model

neglects the directional dependence of the collision interaction between the fibers.

The Folgar-Tucker model has been the standard for both industrial and academic

communities because of its exceptional results.

2.2.4 The Advani-Tucker Model

The orientation tensors are proposed by Advani and Tucker [6] to describe

the averaged orientation of a fiber suspension. They also developed the equation of

motion for the second order orientation tensor with the diffusivity term as

Daij
Dt

=

∮
S2
ṗψ · ∇(pipj)dS−

∮
S2
∇(Drψ) · ∇(pipj)dS (2.13)
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where the first term on the right-hand side is the rate of change of motion due to

hydrodynamic forces, which is essentially the same as given by Jeffery’s equation, and

the second term is the change due to rotary diffusion. The first term can be rewritten

by the chain rule in the following form

∮
S2
ṗψ · ∇(pipj)dS = −1

2
Ωikakj +

1

2
aikΩkj

+
1

2
λ(Dikakj + aikDkj − 2Dklaijkl) (2.14)

where Dik, Dkj and Dkl are the index forms of the rate of deformation tensor. aijkl is

the index form of the fourth order orientation tensor. Notice that the appearance of

the fourth order orientation tensor on the right-hand side of Equation (2.14) induces

the classic closure problem. The second term on the right-hand side of Equation

(2.13) is also written by the chain rule in the following form

∮
S2
∇(Drψ) · ∇(pipj)dS =

∮
S
Drψ(2δij − 6pipj)dS

Therefore the motion equation of the second order orientation tensor is written by

combining Equation (2.14) and Equation (2.15) in the following form

Daij
Dt

= −1

2
Ωikakj +

1

2
aikΩkj +

1

2
λ(Dikakj + aikDkj − 2Dklaijkl)

+

∮
S
Drψ(2δij − 6pipj)dS (2.15)

Notice Equation (2.15) also shows the closure problem. By assuming the diffusivity

term is of the form given by Folgar and Tucker, the resulting equation of motion of

the second order orientation tensor is written as

Daij
Dt

= −1

2
Ωikakj +

1

2
aikΩkj +

1

2
λ(Dikakj + aikDkj − 2Dklaijkl)

+CI γ̇(2δij − 6aij) (2.16)
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The computation of the evolution of the second order orientation tensor re-

quires knowledge of at least the fourth order orientation tensor, which induces the

classic closure problem.

2.2.5 Orientation Closure

The orientation closure is an approximation method of representing higher order

orientation tensors in terms of lower order orientation tensors. A fourth order closure

may be expressed as:

aijkl ≈ Fijkl(amn) (2.17)

where Fijkl is a function of the second order tensor aij. A six-order orientation tensor

closure may be expressed as

aijklmn ≈ Gijklmn(aopqr) (2.18)

where Gijklmn is a function of the fourth order orientation tensor aoprq. There have

been many methods proposed to address the closure problem. The hybrid closure

proposed by Advani and Tucker [6] is the most widely used method in industry be-

cause of its algebraic simplicity and numerical robustness. The hybrid closure linearly

combines the quadratic closure of Doi [45] and the linear closure of Hand [46] as

aijkl = (1− f)âijkl + fāijkl (2.19)

where the first term on the right-hand side contains the linear closure as

âijkl = − 1

35
(δijδkl + δikδjl + δilδjk) +

1

7
(aijδkl + aikδjl

+ ailδjk + aklδij + ajlδik + ajkδil) (2.20)

and the second term of Equation (2.19) contains the quadratic closure as

āijkl = aijakl
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The hybrid closure is used to investigate the Advani-Tucker model and is frequently

used in commercial softwares for simulating injection molding of composites. Al-

though the hybrid closure gives significant improvement over previously existing meth-

ods, it tends to over-predict the alignment state [47].

The orthotropic closure is a series of eigenvalue based fourth order fitted clo-

sure first proposed by Cintra and Tucker [48] and then modified by Chaubal and

Leal [49], VerWeyst et al. [12], Chung and Kwon [50], Han and Im [51]. They give

better accuracy over the hybrid closure but at the price of more computational ef-

forts. Schache, Jack and Smith [52–54] developed the fourth order neural network

based closure (NNET) and demonstrated its effectiveness in simple flows of short fiber

suspensions. The NNET balanced the accuracy of the orthotropic closure and the

efficiency of the hybrid closure [54]. Montgomery-Smith and Jack [55, 56] developed

the fast exact closure (FEC). It is not a closure method in the traditional sense as it

does not rely upon an approximation, which is based on selecting fourth order orien-

tation tensors and will give exact solutions for suspensions in the dilute regime. This

approach does not involve any curve fitting, instead it relies on solving a series of

related ordinary differential equations. With all the existing fourth order orientation

tensor closure approximation method, Jack [57, 58] and Jack and Smith [59] demon-

strate that further research on fourth order closures is expected to yield only minor

improvements in accuracy. Thus it is necessary to carry out investigation into higher

order orientation tensor closures in order to gain significant increase in accuracy.

The motion of flexible fiber is more complicated due to its flexibility and thus

the deformation under the influence of the flow. It is worthwhile to pursue a similar

approach of developing an equation for the evolution of the orientation tensor for
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a distribution of flexible fibers. Then a diffusion term can be added to address the

intra- and inter-fiber interactions.

2.3 Discrete Element Modeling of Flexible Fiber Motion and Orientation

The modeling of flexible fiber motion takes a different route from that of rigid

short fiber, as there has not been an explicit mathematical equation which governs the

motion of a distribution of flexible bodies in a flow due to the deformation (bending

and twisting) of the flexible bodies under the influence of the flow. The models for

individual fibers usually assume that the flexible fiber consists of multiple rigid parts

connected with each other. The bending and twisting deformation is reflected by

allowing movement of the rigid parts relative to each other. This section first gives

a brief overview of the recent flexible fiber models, among which, the bead chain

model [1,2], needle chain model [3,22] and rod chain model [21] are the most relevant

to this research. A detailed description of these three models are then discussed.

2.3.1 An Overview

Yamamoto and Matsuoka created a bead-chain model in 1992 [1, 2] for sim-

ulating the motion of a flexible fiber in a simple shear flow under the conditions of

an infinitely dilute system, no hydrodynamic interaction and low Reynolds number.

They assumed fibers can be represented by a series of spheres that are lined up and

bonded to each other (Figure 2.4). They demonstrated their model by the simula-

tion of the movement of a flexible fiber by solving the developed translational and

rotational equations for each individual spheres. The flexibility of a fiber is adjusted

by varying the bending constant of the fiber. A large bending constant corresponds

to a rigid fiber. In order to verify the model, the motion period was calculated for a

rigid fiber, which agreed with that from the prediction by Jeffery’s equation. For the
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Figure 2.4: (a) Schematic fiber representation of the bead chain model; (b) Schematic
fiber model made up of N spheres of radius a [1, 2].

flexible fiber, the motion period decreases dramatically as the bending deformation of

the fiber became obvious and the motion orbit deviated from the one Jeffery’s equa-

tion described, which was similar to the experimental results described by Forgacs

and Mason [60]. Simulation results from this model show the movement of every

point on the fiber accurately, but require a significant computational effort as the

fiber becomes very long, which is the desired case to study for industrial applications.

A detail description of the bead chain model for an isolated flexible fiber moving in

a simple shear flow is given in Section 2.3.2.

The bead chain model was then modified by Yamamoto and Matsuka [10, 20]

to simulate the motion of fibers in a concentrated shear flow. Only the hydrodynamic

interaction is considered. They assume the hydrodynamic interaction can be decom-

posed into two parts, intra- and inter-fiber ones. The intra-fiber interactions are

calculated using the N-body mobility matrix for each fiber. The inter-fiber interac-

tions are calculated by the lubrication approximation. This model is used to predict
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the influence of several parameters, such as the fiber aspect ratio, fiber flexibility and

fiber volume fraction, on the microstructure and the rheological properties of fiber

suspensions. The lubrication approximation is also used in a model proposed by Ya-

mane et al. [61] to simulate the motion of semi-dilute suspensions of non-Brownian,

rod-like particles under simple shear flow. Although this model does not address the

motion of flexible fibers, it offers insight into the effectiveness of accounting for short

range fiber interactions by the lubrication approximation. Yamane et al. found the

effect of the hydrodynamic interaction on the viscosity as well as the Folgar-Tucker

constant is small, which disagrees with the experimental results. The authors explain

this as a result of non-Brownian motion of the rigid rods.

Ross and Klingenberg [3] simulated the dynamics of flexible fiber suspensions

by representing a flexible fiber by a series rigid spheroid bodies connected through

ball and socket joints (Figure 2.5), which is usually named the needle chain model.

The motion of the fiber was determined by solving the translational and rotational

equations of motion for each rigid body. This model is used to simulate the motion of

both rigid and flexible fibers. The motion period of a single rigid fiber in a shear flow

predicted by this model agreed with that from Jeffery’s equation and the motion of a

flexible fiber was similar to the experimental observations of Forgacs and Mason [60].

The model is similar to that proposed by Yamamoto and Matsuoka, except the joints

are modeled as ball and socket, where the resistance can be varied to adapt the model

for both flexible and rigid fibers. And this model eludes the need for iterative con-

straints to maintain fiber connectivity, and can model flexible fibers with large aspect

ratios with relatively few spheroids, which will help significantly to reduce the com-

putation time. However, larger needle lengths diminished the accuracy of the model.

A detailed description of the needle chain model is given in section 2.3.3. This model
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Figure 2.5: A flexible fiber is represented as linked rigid bodies. a and b are the
spheroid major and minor axis, respectively. The parameter ε is the separation be-
tween spheroids (usually ε = 0.01b) [3].

was also used to simulate the motion of fiber suspensions by only accounting for the

repulsive interactions and neglecting the hydrodynamic interactions and particle in-

ertia. The repulsive interactions include both intra- and inter-fiber interactions, such

as colloidal forces, short-range repulsion and friction between fibers. The transient

behavior of the relative viscosity of the suspension under simple shear flow is inves-

tigated. They found the flexibility of fiber increases the hydrodynamic contribution

to the viscosity.

Skjetnet, Ross and Klingenberg [22] published a follow-up article to give more

insight into the needle chain model. The simulation results for flexible fibers agree

with previous experimental observations where the direction and the rate of drift from

the Jeffery orbit depend on a few factors, such as fiber stiffness, fiber initial orienta-

tion and the flow field. Schmid et al. [23] followed the way of the needle chain model

and developed a particle-level model to simulate the motion of flexible fibers by treat-

ing a flexible fiber as a chain of elongated bodies connected by hinges. This model

is used to simulate flocculation in flowing fiber suspensions. The model incorporates

fiber flexibility, irregular fiber equilibrium shapes, and frictional fiber interactions.

They found flocculation forms due to inter-fiber friction and repulsive interactions in

the absence of attractive forces between fibers. The simulations have demonstrated

that fiber features (stiffness, fiber shape, etc.) and interaction forces strongly affect
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flocculation behavior and floc properties. Switzer and Klingenberg [18, 24] further

investigated the relationships between fiber properties and interactions, and the re-

sulting suspension rheological properties for a simple shear flow. Their model is based

on the method of Schmid et al., where the flexible suspensions are modeled as chains

of neutrally buoyant, linked rigid bodies connected by ball and socket joints immersed

in a Newtonian liquid. The fiber interact with other fibers via short-range repulsive

forces and friction forces. The simulation results repeat the ones given by Schmid

et al. and they have shown fiber flexibility results in shear thinning behavior as a

result of competition between hydrodynamic forces and fiber elasticity.

The hydrodynamic interactions are taken into account in the model created

by Fan et al. [62] to simulate the motion of rigid fiber suspensions. The interactions

are considered in two folds with a short range interaction via lubrication forces and

a long range interaction via slender body approximation. They demonstrated that

the method can well simulate the motion of fiber suspensions. Rheological proper-

ties, such as the relative viscosity and the Folgar-Tucker’s constant, were calculated.

They found in the semi-concentrated and concentrated regime, the fibers do not

follow the Jeffery’s orbits, and instead, they align mostly with the shear direction.

Computational time is also an issue with this simulation method. The authors sug-

gested a reduction in the computational time by a master-slave implementation in a

distributed computing environment, and it is worth pursuing this in future studies.

Based on the work by Yamane et al. and Fan et al., Joung et al. [25] created

a model to simulate the motion of flexible fiber suspensions. They modified the Ya-

mane and the Fan models to allow a small amount of bending and torsion in the

fibers along with a restoring moment acting to straighten the fibers as they inter-

act in the flow. The fibers are modeled as a chain of beads joined with connectors,
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which is similar to the bead chain and need chain model but with a different way

to determine internal moments and subsequent fiber shapes. The connectors in the

fiber chain are allowed to rotate in relation to each other and therefore allow the

deformation of the fiber as it interacts with its environment. The fiber interactions

include external viscous drag and long ranges hydrodynamic effects and short range

lubrication forces between beads. The model was used to obtain the rheological in-

formation of the suspensions, such as fiber orientations and suspension viscosity. The

model reproduced the Jeffery orbit and motion period for undisturbed rigid fibers.

The predicted viscosity for rigid fiber suspensions agreed well with the experimental

results. For long flexible fiber suspensions, the prediction for viscosity is markedly

improved when fiber flexibility is accounted for. The Joung model warrants future

studies and is a candidate for investigations into forming an industrial form using a

distribution averaging procedure. This model is also used to investigate the relation-

ship between fiber curvature and viscosity of a fiber suspension [9]. They have shown

there is a rapid and large increase in bulk viscosity as fiber curvature is increased.

The authors speculated the reason of the curvature-viscosity relationship is due to

the propensity of a curved fiber suspension to misalignment and misalignment causes

viscosity increasing.

Wang et al. [21] performed numerical simulations of the motion of an isolated

flexible fiber in a Newtonian flow with a rod chain model. A long flexible fiber is

composed by a series of rigid rods, each of which is a rigid straight chain of beads

(Figure 2.6). The length of each rod can be adjusted by the number of component

beads in order to reflect the flexibility of the fiber. Shorter rods result in a more

flexible fiber. The connectivity of the fiber is maintained by internal constraint forces

at the joints of the rods. A detailed description of the rod chain model is given in
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section 2.3.4. The rod chain model is conceptually similar to the needle chain model

but adopts a different way to determine the internal constraint forces. They have

found that the fiber exhibit different apparent flexibility depending on the stiffness

of the fiber, the strength of the flow field and the initial orientation of the fiber.

Results comparing the rod length selection in terms of the computational time and

the relative error have been presented and an optimum rod length is suggested to

balance the computational time and accuracy. The rod chain model is chosen in this

research to carry out flexible fiber orientation modeling and the subsequent material

property predictions due to its clarity of the physics and simplicity of the model.

Most of the work on fiber motion is limited to zero Reynolds number flows,

where inertia of fluid and particles is neglected, even though the fiber orientation

is influenced by the inertia effect at the Reynolds number as small as 10−3. And

in many situations, the Reynolds number is large and inertia cannot be neglected.

Thus Qi [63] created a modle to simulate the movement of a flexible cylindrical fiber

based on the lattice Boltzmann equation to account for the inertia. This methods is

equivalent to solving the Navier-Stokes equations where nonlinear inertia effects are

intrinsically included. In the model, a long flexible fiber is represented as a chain of

rigid cylindrical segments connected with each other by ball and socket joints that

allow rotation in three dimensions. Also, there is a constraint force imposed at each

joint, which can be solved using joint contacting conditions. It is shown that the

flow inertia forces the long flexible fiber perpendicular to the vorticity of the flow and

the motion period increases as the Reynolds number increases. These simulation

results well correspond with experimental results. This model can be used to study

nonlinear inertial interactions between the flexible fibers and the fluid and worth of

further pursuing.
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Figure 2.6: (a) The schematics of the rod chain model, (b) end-to-end vector showing
the orientation of the flexible fiber.

Lindstrom and Uesaka [64, 65] extended the work of Schmid et al. [23] but

with significant modifications by allowing the model to simulate the motion of semi-

dilute/semi-concentrated fiber suspensions taking into account fiber hydrodynamic

interactions and fiber-flow coupling. A fiber is modeled as a chain of segments, inter-

acting with the fluid through viscous and dynamic drag forces. The two-way coupling

between the solid and the fluid phase is taken into account by enforcing momentum

conservation. The model includes long-range and short-range hydrodynamic fiber-

fiber interactions, as well as mechanical interactions. Simulation results are consis-

tent with the experimental results for both the semi-dilute and the concentrated
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regimes. From their results, they show the viscosity depends primarily on volume

concentration, and that fiber aspect ratio has only a weak influence.

2.3.2 The Bead Chain Model

This section gives the detailed construction of the bead chain model for an

isolated flexible fiber of Yamamoto and Matsuoka [1,2]. Modification can be made to

address fiber interactions, the details of which can be found in these two publications

[10, 20]. In the bead chain model [1, 2], the fiber is represented as a cylindrical rod

made up of N spheres each of radius a, connected with each other (Figure 2.4).

The cylindrical rod/fiber is of length 2aN , diameter 2a and an aspect ratio of N .

Each pair of neighboring spheres can stretch, bend, and twist by changing their bond

distance, bond angle, and torsion angle respectively.

For a pair of adjacent spheres i and j, there will be a force F s exerted on

each sphere to recover the equilibrium. This force is proportional to the change in

the equilibrium distance r0 between the two spheres, where the actual distance is r

(Figure 2.7(a)). The force is expressed as a simple spring restoring force as [1, 2]

F s = −ks(r − r0) (2.21)

where ks is the stretching force constant, expressed as ks = πa
2
E with E being the

elastic modulus of the fiber. The direction of the force is pointing from the center of

the sphere i to the center of the sphere j, which is along a unit direction vector nij

defined as [1, 2]

nij =
rj − ri

∥rj − ri∥
(2.22)

where ri and rj are the position vector of the centers of sphere i and sphere j.

The bending torque between spheres is a function of the bond angle θb between

the spheres (Figure 2.7(b)). There will be a bending torque T b exerting on each sphere
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Figure 2.7: The deformation of a bead-represented fiber: (a) stretching; (b) bending;
(c) twisting [1, 2].

to back the equilibrium bond angle if the bond angle is changed from its equilibrium

angle θb0. The bending torque is expressed as [1, 2]

T b = −kb(θb − θb0) (2.23)

where kb is the bending torque constant, expressed as kb =
πa3

8
E. The direction of

the torque is around the vector that is perpendicular to nij.

The torsional torque is a function of the torsion angles θt (Figure 2.7(c)).

There will be a torsion torque T t exerting on each sphere to recover the equilibrium

torsion angle if the torsion angle is changed from its equilibrium angle θt0. The torque

is expressed as the following equation [1, 2]

T t = −kt(θt − θt0) (2.24)

where kt is the twisting torque constant, expressed as kt =
πa3

4
G with G being the

shear modulus of the fiber.

27



The bead chain model is considered to be immersed in a Newtonian fluid of

viscosity η0, and subjected to a macroscopic flow whose velocity field v(r) is given

by [1, 2]

v(r) = κ · r (2.25)

where κ is the velocity gradient tensor, and r is the global coordinate system.

The translational friction force and angular friction torque between the sphere

and the fluid are assumed to be proportional to the relative translational velocity

and the relative angular velocity of the sphere with respect to the microscopic flow

respectively (Figure 2.8). Let ri be the position vector of the center of the sphere i

and θi be the angle position. Then the translational friction force is [1, 2]

Fh
i = −6πη0a(vi − v(ri)) (2.26)

where 6πη0a is the Stokes’ friction constant, vi is the translational velocity of the

sphere i and v(ri) is the microscopic translational velocity of the fluid. Similarly, the

angular friction torque is [1, 2]

Th
i = −8πη0a

3(ωi − ω(ri)) (2.27)

where 8πη0a
3 is the rotational friction constant, ωi is the angular velocity of the

sphere i and ω(ri) is the macroscopic angular velocity of the fluid, expressed as

ω(ri) =
1
2
rotv(ri), where rot represents the curl operator.

The translational and rotational motions are written as [1, 2]

m
dvi

dt
=

∑
Fs

i +
∑

fij + Fh
i (2.28)

2

5
ma2

dωi

dt
=

∑
Tb

i +
∑

Tt
i +
∑

fij × anij +Th
i (2.29)

where m is the mass of the sphere. fij is the tangential friction force, which is per-

pendicular to nij, exerting on the sphere i by the sphere j at the contact point. The
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Figure 2.8: The forces and torques applied on the fiber by the flow [1,2].

summation terms in Equations (2.28) and (2.29) mean to consider the effects of the

neighboring spheres on both sides of the sphere i. Imposing the non-slip condition,

the translational velocities of each sphere are the same at their contact point, which

yields the following equation [1, 2]

vi + aωi × nij = vj + aωj × nji (2.30)

In the actual simulation, the differentiation of Equation (2.30) is used and it

is of the form as [1, 2]

dvi

dt
+ a

dωi

dt
+ aωi × (ωi × nji)

=
dvj

dt
+ a

dωj

dt
× nji + aωj × (ωj × nji) (2.31)

Thus, in the bead chain model, the simulation is carried out in the following

procedure.

1. An initial configuration is given to each sphere and the properties and param-

eters of the flow is set.
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2. Based on the initial conditions, the stretching force, bending torque, and twist-

ing torque are calculated by Equations (2.21), (2.23) and (2.24).

3. The translational friction force and the angular friction torque are calculated

by Equation (2.26) and (2.27).

4. The tangential friction forces are solved by Equations (2.28), (2.29) and (2.31).

5. The translational velocity and the angular velocity at the next time step t+∆t

are updated by Equations (2.28) and (2.29) with a finite difference technique.

6. The position at the next time step t+∆t is updated in the following manners

ri(t+∆t) = ri(t) + ∆tvi(t) +
1

2
(∆t)2

dvi

dt
(2.32)

θi(t+∆t) = θi(t) + ∆tωi(t) +
1

2
(∆t)2

dωi

dt
(2.33)

7. The motion of all the spheres and thus that of the fiber can be described by

repeating steps 2 to 6.

2.3.3 The Needle Chain Model

In the needle chain model [3,22], connectivity matrices are employed to describe

how the spheroid bodies are connected by the ball and socket joints. The fiber is

composed of Nα rigid bodies. Matrices are constructed by numbering the bodies and

joints. Body number starts with 0, but is only reserved for the fixed reference frame

and joint 1 is between body 0 and 1. The end body of the fiber is body 1. The

numbering of other bodies and joints are shown in Figure 2.9. The authors convert

the index information into a system graph, which consists of points, called vertices,

and lines connecting the vertices, called arcs. The vertices (s1, ..., sNα) represent the

bodies and the arcs (u1, ..., uNα) represent the joints. Two integer functions, i(+)α(a)

and i(−)α(a) are defined to relate vertex indices and arc indices. For arc number a =

1, ..., Nα, i
(+)α(a) is the index of the vertex from which arc uα emanates, and i(−)α(a)
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is the index of the vertex toward which arc uα is pointing. Then the connectivity

matrices Sα and Tα are defined in terms of the integer functions and the system

graph [3,22] as

Sα
ia =


+1 if i = i(+)α(a)
−1 if i = i(−)α(a) i, a = 1, ..., Nα

0 otherwise
(2.34)

and

Tα
ia =



+1 if ua belongs to the path between s0 and si
and is directed toward s0

−1 if ua belongs to the path between s0 and si
and is directed away s0

0 if ua does not belong to the path between
s0 and si
i, a = 1, ..., Nα

(2.35)

For the numbering method used in Figure 2.9, the above matrices are given by [3,22]

Sα =


−1 1 0 · · · 0

0 −1 1
. . .

...
. . . . . . 0

...
. . . −1 1

0 · · · 0 −1

 (2.36)

Tα =


−1 −1 −1 · · · −1
0 −1 −1 · · · −1

−1 · · · −1
...

. . . . . .
...

0 · · · 0 −1

 (2.37)

The above matrices have the following property [3, 22]

TαSα = SαTα = Iα (2.38)

where Iα is an Nα ×Nα identity matrix.

In order to establish the relationship between the spheroid positions, a set of

body-fixed connectivity vectors, cαia(i, a = 1, 2, ..., Nα), are introduced by the authors.

The directions of the vectors are from the center of mass of spheroid i to joint a, as
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Figure 2.9: (a)Illustration of body and hinge index numbering used in constructing
the connectivity matrices, (b)system graph for (a) [3].

shown in Figure 2.10. For a joint a not connected to with spheroid i, this vector is

defined as the zero vector. The spheroid positions are related by these vectors in the

following way [3,22]

(ri(−)α(a) + ci(−)α(a)a) − (ri(+)α(a) + ci(+)α(a)a) = 0

a = 1, 2, ..., Nα (2.39)

The above Nα equations can be written in the matrix form as [3, 22]

(Sα)T rα + (Cα)T1Nα = 0 (2.40)

where Sα is the connectivity matrix defined in Equation (2.35) with the superscript

T denoting transpose, rα = [rα1 , r
α
2 , ..., r

α
Nα

]T , 1Nα is an Nα× 1 matrix of ones, and Cα

is an Nα × Nα matrix with components Cα
ia = Sα

iac
α
ia. Multiplying Equation (2.40)

by Tα and using the property given by Equation (2.38), the spheroid positions can

be expressed in terms of the connectivity vectors as [3, 22]

rα = −(CαTα)T1Nα (2.41)
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or in index form [3,22]

rαi =
Nα∑
j=1

dα
ji (2.42)

where dα
ji = −(CαTα)ji and the center of mass Rα

i of spheroid i relative to the fiber

center mass rαC can be expressed as [3, 22]

Rα
i = rαi − rαC (2.43)

Substituting Equation (2.42) into Equation (2.43) gives the following form ( [3, 22])

Rα = −(CαTανα)T1Nα (2.44)

where νij = δij − 1/Nα, or in index form [3,22]

Rα
i =

Nα∑
j=1

bα
ji (2.45)

where bα
ji = −(CαTανα)ji. Substituting Equation (2.45) into Equation (2.43) [3,22],

rαi =
Nα∑
j=1

bα
ji + rαC (2.46)

Differentiating Equation (2.46) gives the translational velocity of spheroid i as [3,22]

ṙαi =
Nα∑
j=1

ωα
j × bα

ji + ṙαC (2.47)

where ωα
j is the angular velocity of the spheroid j, which is related to the relative

angular velocities of spheroid j − 1 through the connectivity matrix Tα [3, 22],

ωα
j = −

Nα∑
a=1

Tα
ajΩ

α
a (2.48)

where Ωα
a is the angular velocity of spheroid i(−)α(a) relative to that of spheroid

i(+)α(a).

The motion of a spheroid body is described by Newton’s second law and the law

of moment of momentum. The free-body diagram is given for spheroid body i is given
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Figure 2.10: Illustration of the connectivity vectors in the model kinetics [3].

in Figure 2.11, where Fα
i is the resultant external force acting through the center of

mass, Mα
i is the resultant external torque, X

(c)α
b and X

(c)α
c are the internal constraint

forces in joints b and c respectively and Yα
b and Yα

c are the resultant internal torques

in joints b and c respectively. Newton’s second law takes the following form [3,22]

mα
i r̈

α
i = Fα

i +
Nα∑
a=1

Sα
iaX

(c)α
a (2.49)

and the law of momentum yields [3, 22]

Ḣα
i = Mα

i +
Nα∑
a=1

Sα
ia(c

α
ia ×X(c)α

a +Yα
a ) (2.50)

where mα
i is the mass, r̈αi is the translational acceleration, and Ḣα

i is the time rate

of change of the angular momentum of spheroid i. The resultant external force Fα
i

is the combination of hydrodynamic forces F
(h)α
i , inter-particle forces F

(p)α
i and body

forces F
(g)α
i . The resultant external toque Mα

i is the combination of hydrodynamic

torques, and torques produced by external moments or inter-particle forces M
(p)α
i .

Neglecting the hydrodynamic interactions and fluid inertia, the hydrodynamic

forces and torques are given in terms of the rate of strain tensor E(∞) and the vorticity
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Ω(∞) as [3, 22]

F
(h)α
i = A

(h)α
i · (U(∞)α

i − ṙαi ) (2.51)

and

M
(h)α
i = C

(h)α
i · (Ω(∞)α − ωα

i ) + H̃
(h)α
i : E(∞) (2.52)

whereU
(∞)α
i is the ambient fluid translational velocity evaluated at the center of mass

of spheroid i. A
(h)α
i , C

(h)α
i and H̃

(h)α
i are the resistance tensors, which depend only

on the instantaneous orientation of spheroid i.

The inter-particle force F
(p)α
i depends only on the instantaneous spheroid po-

sitions and orientations, which include any inter- or intra-fiber interactions. M
(p)α
i

accounts for any externally applied moments or inter-particles forces that do not

act through the spheroid center of mass. The body force is due to gravity, given

by F
(g)α
i = 4

3
πab2∆ρg, where g is the acceleration of gravity and ∆ρ is the density

difference between fiber and the flow.

The resultant internal torques Y
(B)α
a at the joints comprise of the bending

torque Y
(B)α
a and twisting torque Y

(T )α
a . The bending torque is assumed to be pro-

portional to the difference between the bending angle θαa and its equilibrium value

θ
(0)α
a [3, 22],

Y(B)α
a = −kαB(θαa − θ(0)αa )npb (2.53)

where npb is the unit vector normal to plane of bending [3, 22] defined as

npb =
cα
i(−)α(a)a

× cα
i(+)α(a)a

∥cα
i(−)α(a)a

× cα
i(+)α(a)a

∥
(2.54)

and θαa is given by [3, 22]

cos θαa =
cα
i(−)α(a)a

· cα
i(+)α(a)a

∥cα
i(−)α(a)a

∥∥cα
i(+)α(a)a

∥
(2.55)
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The bending constant is given in terms of young’s modulus E and moment of inertia

I as

kαB =
EI

a
(2.56)

Similarly, the twisting torque Y
(T )α
a is assume to be proportional to the difference

between the twisting angle ϕα
a and its equilibrium value ϕ

(0)α
a [3, 22],

Y(T )α
a = −kαT (ϕα

a − ϕ(0)α
a )

cα
i(−)α(a)a

∥cα
i(−)α(a)a

∥
(2.57)

The twisting angle is given in terms of body-fixed vector uα
i , which extend from the

center of mass and are oriented perpendicular to the cαia vectors. The twisting angle

is given by [3, 22]

cosϕα
a =

uα
i(−)α(a)

· u′
a

∥u′
a∥

(2.58)

where u′
a = uα

i(+)α(a)
− uα

i(+)α(a)
· cα

i(−)α(a)a
. The twisting constant is given in terms of

shear modulus E and moment of inertia I as

kαT =
GI

a
(2.59)

With all the forces and torques defined along with neglecting particle inertia, Equation

(2.49) and (2.50) reduce to [3, 22]

F
(h)α
i + F

(p)α
i + F

(g)α
i +

Nα∑
a=1

Sα
iαX

(c)α
a = 0 (2.60)

and

M
(h)α
i +M

(p)α
i +

Nα∑
a=1

Sα
iα(c

α
ia ×X(c)α

a +Yα
a ) = 0 (2.61)

Putting Equation (2.47) into Equation (2.51) and substituting the terms on Equation
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Figure 2.11: Free-body diagram for spheroid i in fiber α [3].

(2.60), the motion of the fiber center of mass is obtained as [3, 22]

ṙαC = −(Aα)−1 · [
Nα∑
j=1

Nα∑
k=1

A
(h)α
j · (ωα

k × bα
kj)

−
Nα∑
j=1

(A
(h)α
j ·U(∞)α

j + F
(p)α
j + F

(g)α
j )] (2.62)

where Aα =
∑Nα

i=1A
(h)α
i . Then the translational equation of motion for spheroid i is

given by combining Equation (2.47) and Equation (2.62) as [3, 22]

ṙαC =
Nα∑
j=1

ωα
j × bα

ji − (Aα)−1 · [
Nα∑
j=1

Nα∑
k=1

A
(h)α
j · (ωα

k × bα
kj)

−
Nα∑
j=1

(A
(h)α
j ·U(∞)α

j + F
(p)α
j + F

(g)α
j )] (2.63)

The rotational equations of motion are evaluated by first solving Equation

(2.60) to obtain the constraint forces. Then Equation (2.52) and the obtained internal

constraint forces along with Equation (2.51) in the form of Equation (2.47), are

substituted into Equation (2.61). After solving the final equation, the rotational

equation of motion for spheroid i is [3, 22]

Nα∑
j=1

Qα
il · ωα

l = Dα
i (2.64)
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where

Qα
il = δilC

(h)α
i −

Nα∑
j=1

d̃α
ij ·A

(h)α
j · b̃α

lj

+
Nα∑
j=1

Nα∑
k=1

d̃α
ij ·A

(h)α
j · (Aα)−1 ·A(h)α

k · b̃α
lk, (2.65)

Dα
i = M

(p)α
i −

Nα∑
j=1

dα
ij × [A

(h)α
j ·U(∞)α

j + F
(p)α
j + F

(g)α
j

−A
(h)α
j · (Aα)−1 ·

Nα∑
k=1

(A
(h)α
k ·U(∞)α

k + F
(p)α
k + F

(g)α
k )]

+C
(h)α
i ·Ω(∞) + H̃

(h)α
i : E(∞) +

Nα∑
j=1

Sα
ijY

α
j , (2.66)

d̃α
ij =

 0 −dαzij dαyij
dαzij 0 −dαxij

−dαyij dαxij
0

 , (2.67)

b̃α
ij =

 0 −bαzij bαyij
bαzij 0 −bαxij

−bαyij bαxij
0

 (2.68)

The angular velocities ωα
l are solved from Equation (2.64) by combining the compo-

nents of the tensorQα
il into a 3Nα×3Nα matrix and inverting it. From Equation (2.63)

and (2.64), the dynamical behavior of the flexible fiber can be fully described.

2.3.4 The Rod Chain Model

The rod chain model is an effective approach for predicting the motion of flexible

fibers, and is chosen in the present context due to its ease of implementation as well

as its computational efficiency [21]. There are four assumptions associated with the

Rod chain model: (1) the suspension is Newtonian; (2) Brownian motion is neglected;

(3) decoupling of flow and fiber orientation is valid; and (4) there is no interactions

between rods and fibers and (5) fibers are inextensible. The fiber is represented as
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a chain of Nr rigid rods with each rod composed of N beads. Each rod has a unit

direction vector to indication the orientation of the rod, where as the orientation of

the fiber is determined by a unit end-to-end vector pend−to−end as shown in Figure

2.6.

To simplify the following equations, quantities are made dimensionless through

the shear rate γ̇, fiber radius a, and the fluid viscosity η as [21]

t̂ = tγ̇ (2.69)

l̂ = l/a (2.70)

F̂ =
F

πηa2γ̇
(2.71)

T̂ =
T

πηa3γ̇
(2.72)

where in Equations (2.69) - (2.72) the hat symbol ˆ is used for the dimensionless

parameter.

The changing motion of the fluid surrounding the fiber depicted in Figure 2.12

causes hydrodynamic forces and torques to be exerted on the fiber. The resulting

deformation causes resisting forces and torque within the fiber. Assuming the hydro-

dynamic friction force exerted on each bead is proportional to the velocity difference

between the bead and the flow, the hydrodynamic friction force on rod i is the sum

of the forces on each bead within a rod [21], given by

F̂h
i = 6N(κ̂ · r̂i − v̂i), i = 1 ∼ Nr (2.73)

where N is the number of beads in the rod, Nr is the number of rods in a fiber, r̂i is

the center position vector of rod i, v̂i is the velocity of the center of rod i.

The hydrodynamic angular friction torque on rod i is given by [21]

T̂h
i = −2N3(ω̂i − ω̂∞), i = 1 ∼ Nr (2.74)
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Figure 2.12: The external and internal forces and torques on rod i.

where ω̂i is the angular velocity vector of the center of rod i and ω̂∞ is the angular

velocity vector of the flow at the position of the center of rod i.

The bending torque between two neighboring rods is proportional to the dif-

ference between the bending angle and the equilibrium angle [21], given by

T̂b
i = −k̂b(θbi − θbeq)n

b
i , i = 2 ∼ Nr (2.75)

and the bending torques at the ends of the fiber are

T̂b
1 = T̂b

Nr+1 = 0

where nb
i =

pi−1×pi

∥pi−1×pi∥ is the unit vector normal to the plane of bending of rod i, the

bending angle is θb = cos−1
(

pi−1·pi

∥pi−1·pi∥

)
. In the present study we assume all fibers are

straight when there are no applied loads, thus θbeq = 0 throughout the remainder of

the text. k̂b = kb

πηa3γ̇
and the bending constant kb is related to the bending stiffness

of the fiber via kb = EIb

2Na
, where Ib = πa4

4
.
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The twisting torque between two neighboring rods is [21]

T̂t
i = −k̂t(θti − θteq)pi, i = 2 ∼ Nr (2.76)

and the twisting torques at the ends of the fiber are

T̂t
1 = T̂t

Nr+1 = 0

where a body-fixed unit vector ui perpendicular to rod i is defined in order to de-

termine the twisting angle θti = cos−1
(

ui−1·u′
i

∥ui−1·u′
i∥

)
, where u′

i = ui−1 − (ui−1 · pi)pi.

k̂t = kt

πηa3γ̇
and the torsion constant kt is related to the torsion stiffness of the fiber

via kt = GIt

2a
, where I t = πa4

2
. In the present study we assume fibers are initially

straight. Thus the equilibrium twist angle is θteq = 0.

The motion equation for each rod is [21]

dv̂i

dt̂
=

1

2NRe

(
F̂h

i + X̂i − X̂i+1

)
, i = 1 ∼ Nr (2.77)

where X̂i is the internal constraint force between rod i and i + 1, Re = πa2ργ̇
η

is the

particle Reynolds number, and ρ is the density of the fiber.

The angular momentum balance equation for each rod is [21]

dω̂i

dt̂
=

1

2N3Re
[T̂h

i + T̂b
i − T̂b

i+1 + T̂t
i

−T̂t
i+1 −Npi × (X̂i + X̂i+1)], i = 1 ∼ Nr (2.78)

For continuity purposes, the velocities at the joint of two neighboring rods are

the same. Thus we have the following continuity equation for each joint [21]

dv̂i

dt̂
+
dω̂i

dt̂
×Npi + ω̂i ×N (ω̂i × pi) =

dv̂i+1

dt̂

−dω̂i+1

dt̂
×Npi+1 − ω̂i+1 ×N (ω̂i+1 × pi+1) , i = 1 ∼ Nr − 1 (2.79)
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Substituting Equation (2.77) and (2.78) into Equation (2.79), an Equation is

obtained for solving the internal constraint forces shown as [21]

(X̂i − 2X̂i+1 + X̂i+2)− 3[pi × (X̂i + X̂i+1)

×pi + pi+1 × (X̂i+1 + X̂i+2)× pi+1]

= (F̂h
i+1 − F̂h

i )−
1

N
[(T̂h

i + T̂b
i − T̂b

i+1

+T̂t
i − T̂t

i+1)× pi + (T̂h
i+1 + T̂b

i+1

−T̂b
i+2 + T̂t

i+1 − T̂t
i+2)× pi+1]

−2ReN2[ω̂i × (ω̂i × pi)

+ω̂i+1 ×N(ω̂i+1 × pi+1)], i = 2 ∼ Nr − 1 (2.80)

Note, because there are no constraint forces at the ends of the fiber, thus

X̂1 = X̂Nr+1 = 0 and thus there are 3× (Nr − 1) internal constraints.

The position vector of the center of the fiber is updated by the following

equation [21]

r̂newm = r̂oldm +∆t̂
∑

v̂old
i /Nr, i = 1 ∼ Nr (2.81)

and the unit direction vector of each rod can be updated by the following equation [21]

pnew
i =

pold
i + ω̂new

i × pold
i ∆t̂

∥pold
i + ω̂new

i × pold
i ∆t̂∥

, i = 1 ∼ Nr (2.82)

When there are an odd number of rods, then the center position of each rod is updated

as [21]

r̂(Nr+1)/2 = r̂m

r̂i = r̂m +N
i∑

n=Nr+1
2

+1

(pn−1 + pn), i =
Nr + 1

2
+ 1 ∼ Nr

r̂i = r̂m −N

i∑
n=Nr+1

2
−1

(pn−1 + pn), i =
Nr + 1

2
− 1 ∼ Nr (2.83)
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When there are an even number of rods, then the center position of each rod

is updated as [21]

r̂Nr/2+1 = r̂m +NpNr/2+1

r̂Nr/2+1 +N

i∑
n=Nr

2
+2

(pn−1 + pn), i =
Nr

2
+ 2 ∼ Nr

r̂Nr/2 = r̂m −NpNr/2

r̂Nr/2 −N
i∑

n=Nr
2

−1

(pn + pn+1), i =
Nr

2
− 1 ∼ 1 (2.84)

The translational velocity for each rod is updated by the following equation [21]

v̂new
i =

r̂newi − r̂oldi

∆t̂
(2.85)

The implementation of the rod chain model is discussed in Chapter Three as well as

a comparison with Jeffery’s equation.

2.4 Prediction of Elastic Properties of Fiber Reinforced Composites

The elastic properties of short fiber reinforced composites is determined by the

orientation state of the fibers within the underlying matrix. All the models used to

predict the elastic properties are based on the same basic assumptions [66]: (1) The

fibers and the matrix are linearly elastic, the matrix is isotropic, and the fibers are

either isotropic or transversely isotropic; (2) the fibers are axisymmetric, identical in

shape and size, and can be characterized by an aspect ratio; (3) the fibers and matrix

are well bonded at their interface, and remain that way during deformation. Thus,

no interfacial slip is considered, nor fiber/matrix debonding or matrix micro-cracking.
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2.4.1 Unidirectional Stiffness Prediction

This section discusses the models for predicting the stiffness of a piece of

unidirectional short fiber composites, especially the Tandon-Weng model, which is

adopted in the material property prediction in this research.

2.4.1.1 Bounding Models. This approach assumes an approximate field for ei-

ther the stress or the strain in the composite and then by minimizing or maximizing

some functional of the stress and strain the unknown filed is found through a vari-

ational principle. The predicted stiffness is not an exact value, instead it is either

larger or smaller than the actual value, depending on the variational method. The

robust bounding property is the advantage of this approach. The first model to give

robust upper and lower bounds are attributed to Voigt and Reuss [67] respectively.

The Voigt model (Equation (2.86)) can be derived by minimizing the potential en-

ergy based on the assumption that the fiber and matrix have the same uniform strain.

Similarly, the Reuss model (Equation (2.87)) can be derived by maximizing the com-

plementary energy based on the assumption that the fiber and matrix have the same

uniform stress.

CV oigt = Cm + Vf (C
f −Cm) = VfC

f + VfC
m (2.86)

SReuss = Sm + Vf (S
f − Sm) = VfS

f + VfS
m (2.87)

The models of Voigt and Reuss give bounds for isotropic composites, which is

hardly the real case. Besides, they give very broad gaps between the lower and higher

bounds when fiber and matrix have very different materials, which provides litter in-

formation for the actual composite stiffness. Thus, Hashin and Shtrikman [68, 69]

developed an alternative model by adopting a different variational principle for het-

erogeneous materials. There is a reference material in their method, based on which
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the subsequent development is carried out. A single variation principle is used to

give both the upper and the lower bounds by making appropriate reference materi-

als. Choosing the stiffer component (usually fiber) as the reference material will give

the upper bound while choosing the less stiffer component (usually matrix) will give

the lower bound. When the reference material is with zero or infinite stiffness, the

Hashin-Shtrikman model becomes the Voigt-Reuss model. Walpole [70,71] re-derived

the Hashin-Shtrikman bounds using classical energy principles and extended them to

anisotropic materials, which are called the Hashin-Shtrikman-Walpole bounds. These

bounds were further extended to short fiber composites [72] and explicit formula for

aligned ellipsoids were developed by Weng [73] and by Eduljee et al. [74, 75]. Weng

gives the general bounding formula in terms of the stiffness C shown as

C = [VfC
fQf + VmC

mQm][VfQ
f + VmQ

m]−1 (2.88)

where the tensors Qf and Qm are defined as below:

Qf = [I+ E0S0(Cf −C0)]−1

Qm = [I+ E0S0(Cm −C0)]−1 (2.89)

Note that E0 is the Eshelby’s tensor [76] associated with the properties of the reference

material with stiffness C0 and compliance S0.

The strain concentration tensor associated with the lower bound is given by

Equation (2.88) when choosing matrix as the reference material.

Âlower = [I+ EmSm(Cf −Cm)]−1 (2.90)

Eduljee and McCullough [74, 75] argue that the lower bound should be a model as

it provides the most accuracy. Notice that the lower bound is identical to the Mori-

Tanaka model, as shown by Equation (2.105).
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Correspondingly, the strain concentration tensor is given from Equation (2.88)

by choosing fiber as the reference material.

Âupper = [I+ EfSf (Cm −Cf )]−1 (2.91)

where Ef is the Eshelby tensor computed for inclusions of matrix material surrounded

by the fiber material.

Leilens et al. [77] suggest that at very high fiber volume fractions the composite

stiffness should be much closer to the upper bound, or equivalently to the Mori-Tanaka

prediction using fiber as the continuous phase. They interpolated the lower and upper

bounds to give the predictive equation for the strain concentration factor, given by

ÂLielens = {(1− f)[Âlower]−1 + f [Âupper]−1}−1 (2.92)

where f is the interpolation factor depending on the fiber volume fraction, given by

f =
Vf + V 2

f

2
(2.93)

2.4.1.2 Eshelby’s Equivalent Inclusion. A fundamental model is Eshelby’s

equivalent inclusion [76]. This model solves for the elastic stress field in an around

and ellipsoidal particle in an infinite matrix and can be used to model the stress and

strain fields around a cylindrical fiber. Because this model only considers a single

particle surrounded by an infinite matrix and the stiffness predicted by this model

increases linearly with fiber volume fraction. One of the most important results from

Eshelby is that the strain εC is uniform within an ellipsoidal inclusion and is related

to the transformation strain by the following equation

εC = EεT (2.94)
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where εT is also called the eigenstrain, which is the uniform strain acquired if it were

a separate body from the matrix, and E is called the Eshelby’s tensor which only

depends on the inclusion aspect ratio and the matrix elastic constants.

For a dilute concentration short fiber reinforced composite, the average com-

posite stiffness C in terms of strain-concentration tensor A and the matrix properties

can be expressed by [66]

C = Cm + Vf (C
f −Cm)A (2.95)

where Cf and Cm are the stiffness tensors of the fiber and the matrix respectively.

And the equation for the compliance in terms of the stress-concentration tensor B is:

S = Sm + Vf (S
f − Sm)B (2.96)

where Sf and Sm are the compliance tensors of the fiber and the matrix respectively

and Vf is the fiber volume fraction. A and B are essentially ratios between the

average fiber strain/stress (ε̄f ,σ̄f ) and the corresponding average of the composite

(ε̄,σ̄), given by

ε̄f = Aε̄ (2.97)

σ̄f = Bσ̄ (2.98)

The dilute Eshelby model replaces A in Equation (2.95) with AEshelby shown in the

following equation

AEshelby = [I+ ESm(Cf −Cm)]−1 (2.99)

The elastic modulus of short fiber composites can be predicted by the use of AEshelby

in Equation (2.95)
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2.4.1.3 Self-Constraint Method. Another approach to account for finite fiber

volume fraction is the self-consistent method, which is generally credited to Hill [78]

and Budiansky [79]. The application to short-fiber composites was developed by Laws

and McLaughlin [80] and by Chou, Nomura and Taya [81]. This approach gives the

strain concentration tensor in the following form

ASC = [I+ ES(Cf −C)]−1 (2.100)

Without knowing the initial values of C and S, an initial guess is made first

to obtain the values of E and ASC from Equation (2.100). And then these values are

plugged into Equation (2.95) to update the values of the stiffness until it converges.

2.4.1.4 Halpin-Tsai Equations. The Halpin-Tsai equations [82] have been ex-

tensively used for predicting the properties of short-fiber composites. Halpin and

Tsai found that three of Hermans’ equations for stiffness could be expressed in the

following form

P

Pm

=
1 + ζηVf
1− ηVf

η =
(Pf/Pm)− 1

(Pf/Pm + 1)
(2.101)

where P represents any one of the composite moduli, and Pf and Pm are the corre-

sponding moduli of the fibers and matrix, while ζ is a parameter that depends on

the matrix Poisson ratio and on the particular elastic property being considered. P

in Equation (2.101) is a generic term, which can be the plane strain bulk modulus

K23 for aligned fibers, the transverse shear modulus G23 for aligned fibers, the longi-

tudinal shear modulus G12 for align fibers, bulk modulus K for particulate and shear

modulus G for particulate respectively. The value of the parameter ζ is between 0

and ∞. Halpin and Tsai found that ζ varies as a function of the aspect ratio l
d
. By
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comparing the predicted results with those given by the 2-D finite element results,

they also found that ζ = 2 l
d
gave good predictions for E11 of short fiber composites.

Hewitt and de Malherbe [83] suggested making ζ as a function of fiber volume fraction

Vf to predict the stiffness at high fiber volume fraction, and they gave a proposed

equation ζ = 1 + 40V 10
f based on curve-fitting, which gave the value of G12 in good

agreement with that given by 2-D finite element results.

Nielsen and Lewis [84, 85] modified the Halpin-Tsai equation by adding an

additional term, which leads to the following form

P

Pm

=
1 + ζηVf

1− ψ(Vf )ηVf
(2.102)

where η has been defined in Equation (2.101) and ψ(Vf ) is a function of the maximum

fiber volume fraction Vfmax to give the appropriate behavior at the lower and upper

volume fraction limits, the equation for both cases given by

ψ(Vf ) = 1 +

(
1− Vfmax

Vf
2
max

)
Vf (2.103)

ψ(Vf ) =
1

Vf

[
1− exp

(
−Vf

1− (Vf/Vfmax)

)]
(2.104)

The Nielson and Lewis model improves the predictions for shear modulus G of

particle-reinforced composites and G12 of continuous-fiber reinforced composites.

2.4.1.5 Mori-Tanaka Predictions. Several models were created for non-dilute

composite materials based on Mori and Tanaka’s work [86]. The Mori-Tanaka strain

concentration tensor AMT assumes a different form from that of the Eshelby model’s,

which is given by [86]

AMT = AEshelby[(1− vf )I+ vfA
Eshelby]−1 (2.105)

This is the basic equation of the Mori-Tanaka model, based on which Taya and
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Mura [87] and Taya and Chou [88] first developed the Mori-Tanaka predictions for

the longitudinal modulus of a short-fiber reinforced composites.

Tandon and Weng [89] developed equations for the complete set of elastic

constants of a short-fiber composites based on Mori and Tanaka’s work, including the

longitudinal modulus E11, transverse modulus E22, shear modulus G12 along the x1

direction in the x1−x3 plane, shear modulus G23 along the x2 direction in the x1−x2

plane, Poisson’s ratio ν12 between the x2 and the x1 directions, and Poisson’s ratio

ν23 between the x3 and the x2 directions. This model is used in this research as this

approach is one of the most accurate ones [66]. The equations for elastic moduli are

given by [66,89,90]

E11 =
Em

1 + Vf (A1 + 2νmA2)
(2.106)

E22 =
Em

1 + Vf [−2νmA3 + (1− νm)A4 + (1− νm)A5A]/2A
(2.107)

Similarly, the shear modulus can be calculated as

G12 = Gm

(
1 +

Vf
Gm

Gf−Gm
+ 2(1− Vf )S1212

)
(2.108)

G23 = Gm

(
1 +

Vf
Gm

Gf−Gm
+ 2(1− Vf )S2233

)
(2.109)

And Poisson’s ratios are calculated in the following way

ν12 =
νmA− νf (A3 − νmA4)

A+ ν(A1 + 2νmA2)
(2.110)

ν23 = −1 +
E22

2G23

(2.111)
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where A and Ai, i ∈ 1, 2, 3, 4, 5 are parameters given by

A1 = D1(B4 +B5)− 2B2

A2 = (1 +D1)B2 − (B4 +B5)

A3 = B1 −D1B3

A4 = (1 +D1)B1 − 2B3

A5 =
1−D1

B4 −B5

A = 2B2B3 −B1(B4 +B5) (2.112)

where the values of parameters Bi, i ∈ 1, 2, 3, 4, 5 are given by

B1 = VfD1 +D2 + (1 + Vf )(D1S1111 + 2S2211)

B2 = Vf +D3 + (1− Vf )(D1S1122 + S2222 + S2233)

B3 = Vf +D3 + (1− Vf )(S1111 + (1 +D1)S2211)

B4 = VfD1 +D2 + (1− Vf )(S1122 +D1S2222 + S2233)

B5 = Vf +D3 + (1− Vf )(S1122 + S2222 +D1S2233) (2.113)

and the values of parameters Di, i ∈ 1, 2, 3 are given by

D1 = 1 +
2(νf − µm)

λf − λm

D2 =
λm + 2µm

λf − λm

D3 =
λm

λf − λm
(2.114)

where λf , µf and λm, µm are Lame’s constants for the fiber and the matrix respectively
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and can be calculated by the following equations

λm =
Emνm

(1 + νm)(1− 2νm)

λf =
Efνf

(1 + νf )(1− 2νf )

µm =
Em

2(1 + νm)

µf =
Ef

2(1 + νf )
(2.115)

The Sijkl, i, j, k, l ∈ 1, 2, 3 terms in Equation (2.113) are the components of the Es-

helby’s tensor for a fiber-like spheroid inclusion, which can be calculated by the fol-

lowing equations

S1111 =
1

2(1− νm)

(
1− 2νm +

3a2r − 1

a2r − 1
−
[
1− 2νm +

3a2r − 1

a2r − 1

]
g

)

S1122 = S1133 =
1

2(1− νm)

[
1− 2νm − 1

a2r − 1

]
+

1

2(1− νm)

[
1− 2νm − 3

2(a2r − 1)

]
g

S1212 = S1313 =
1

4(1− νm)

(
1− 2νm +

a2r + 1

a2r − 1
− 1

2

[
1− 2νm +

3(a2r + 1)

a2r − 1

]
g

)

S2211 = S3322 = − 1

2(1− νm)

a2r
a2r − 1

+
1

4(1− νm)

(
3a2r − 1

a2r − 1
− (1− 2νm)

)
g

S2222 = S3333 =
3

8(1− νm)

a2r
a2r − 1

+
1

4(1− νm)

[
1− 2νm − 9

4(a2r − 1)

]
g

S2233 = S3322 =
1

4(1− νm)

(
a2r

2(a2r − 1)
−
[
1− 2νm + 4

3

4(a2r − 1)

]
g

)

S2323 = S3232 =
1

4(1− νm)

(
a2r

2(a2r − 1)
−
[
1− 2νm − 4

3

4(a2r − 1)

]
g

)
(2.116)

where ar is the aspect ratio of fiber and the value of g is given by the following

equation:

g =
ar

(ar − 1)3/2
[ar(a

2
r − 1)1/2 − cosh−1 ar] (2.117)
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2.4.2 Orientation Homogenization Method

Homogenization method is one of the most commonly used methods to predict

material properties of non-aligned fiber reinforced composites. This method is based

on unit cell analysis, assuming that the composite is formed by a periodic repetition

of a unit cell, and the material properties are themselves periodic functions of some

characteristic variables of the unit cell. This assumption lead to the conclusion that

when the cell size shrinks to 0, the predicted material properties converge to the

equivalent homogeneous properties of the material. Advani and Tucker [6,31] popu-

larized orientation averaging approach to predict the elastic properties of non-aligned

short fiber composites. Their approach averages the elastic constants of unidirec-

tional fibers to estimate the elastic properties of a short fiber composite with any

given fiber orientation distribution. It has been demonstrated by Gusev et al. [91]

that the orientation averaging method gives reliable predictions for engineering design

application.

The equation (Equation (2.118)) for predicting the stiffness of an injection

molded short fiber reinforced composite is given by Advani and Tucker without de-

tailed proof. The development of this approach is based on a continuum model where

the properties of the two phases are averaged with a homogeneous continuum, the

properties of which are predicted by the previously discussed unidirectional stiffness

prediction models. The properties of the composite material are then obtained as the

average of these unidirectional properties over all directions weighted by the proba-

bility distribution function.

⟨Cijkl⟩ = b1(aijkl) + b2(aijδkl + aklδij) + b3(aikδjl + ailδjk

+ ajlδik + ajkδil) + b4(δijδkl) + b5(δikδjl + δilδjk) (2.118)
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In Equation (2.118), the scalars bi, i ∈ 1, 2, , 3, 4, 5 are related to the components of

the underlying unidirectional stiffness tensor in the contracted form, given by

b1 = C11 + C22 − 2C12 − 4C66

b2 = C12 + C22

b3 = C66 +
1

2(C23 − C22)

b4 = C23

b5 =
1

2(C22 − C23)
(2.119)

The fourth order tensor aijkl and the second order tensor aij in Equation (2.118)

were defined in Equation 2.6. Fiber orientation tensors were proposed by Advani

and Tucker [6] to describe an average orientation property of the composite. The

composite under consideration must be over a sufficietnly large enough volume to

contain many fibers, but small enough such that the statistics of the orientation is

uniform all though. This assumption can be realized when the volume is compared

to the dimension of the composite but large with respect to the fiber length. The

proof of the orientation averaging approach proposed by Advani and Tucker was later

given by Jack and Smith [5]. They employed the Laplace series of complex spherical

harmonics to expand the fiber orientation distribution function assuming only that

the distribution is symmetric about a single axis, given by

ψ(θ, ϕ) =
∞∑
l=0

αl(θ, ϕ) (2.120)

where each αl(θ, ϕ) is a function of the complete spherical harmonics which are a 2D

analogy of a series expansion on a sphere similar in concept to the 1D Fourier series.

They developed an analytical form based on the fiber orientation tensor to calculate

both the expectation and variance of the material stiffness tensor. In this research,
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the orientation averaging method is used following the approach discussed in Jack

and Smith [5], which will be discussed in detail in Chapter Four.
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CHAPTER THREE

Comparison of Rigid Fiber Motion and Flexible Fiber Motion

This chapter compares the rod chain model with model based on Jeffery’s

equation. A concept of critical buckle aspect ratio is employed to define the rigidity

or flexibility of a fiber, above which a fiber is flexible enough to be bent and twisted.

When a fiber has an aspect ratio under the critical buckle aspect ratio, fiber motion

predicted by the rod chain model overlaps perfectly with that of Jeffery’s equation.

The trajectories of a single rigid fiber with different initial orientations are shown

by the rod chain model, which are in line with what Jeffery’s equation predicts.

The configuration of a single flexible fiber at different times shows the flexure of the

fiber.

3.1 Rod Chain Model Implementation

The motion and orientation evolution of a single flexible fiber composed of a

series of rods is determined by the following procedures implemented by an in-house

code developed in Matlab, as shown in Appendix A.

1. At t = 0, an initial configuration of a flexible fiber and a flow field is given by

the scripts in Appendix A on page 103. The fiber is generally stationary at this

time.

2. Obtain the hydrodynamic friction forces Fh
i and the angular friction torques

Th
i on each of the rod and the bending torques Tb

i and the twisting torques Tt
i

between each pair of the rods by solving Equations (2.73) ∼ (2.76) at time t,

which is implemented by the scripts in Appendix A on page 101.

3. Obtain the internal constraint forces Xi by solving Equations (2.80) at time t,

which is implemented by the scripts in Appendix A on page 104.
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4. Update the angular velocities ωi at t + ∆t for each of the rod from Equation

(2.78) by using the Xi solved from the last step by the Euler method, which is

implemented by the scripts on page 100.

5. Update the position vector of the center of the fiber rm at t+∆t from Equation

(2.81), which is implemented by the scripts on page 100.

6. Update the unit direction vectors of each of the rod pi at t+∆t from Equation

(2.82), which is implemented by the scripts on page 100.

7. Update the position vectors of the centers of each of the rods ri at t + ∆t by

Equations (2.84) and (2.83), which is implemented by the scripts on page 106.

8. Update the translational velocities of each of the rod vi from Equation (2.85),

which is implemented by the scripts on page 101.

9. Repeat steps 1 ∼ 7.

After the above procedures, the motion of each of the component rods can be de-

scribed. And then the evolution of the motion of the fiber can be simulated. In this

work, simulation for one single flexible fiber takes about one hour to finish for time

step size ∆t = 0.001 on a PC with a Windows 7 64-bit operating system, a Intel(R)

Core(TM)2 Quad CPU and 4.00 GB RAM. ∆t = 0.001 was chosen because it was the

largest time step that could generate stable numerical solutions for the differential

equations for up to 1000 seconds of flow time. For simulation of a large number of

fibers, the scripts were run on the supercomputer clusters Kodiack at Baylor Univer-

sity with 100 threads simultaneously running and 10 fibers on each thread.

3.2 Comparison of the Rod Chain Model and Jeffery’s Equation

Jeffery’s equation does not apply to long flexible fibers, as the equation can only

describe the motion of perfectly rigid ellipsoids. As shown in the detailed description

of the rod chain model, it allows the fiber to bend and twist, which is a way to take into
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account the flexibility and thus the deformation of the fiber. This section compares

the results from Jeffery’s equation and the rod chain model for fibers with the same

aspect ratio. From the comparison, the necessity of incorporating the deformation of

fibers is shown.

The flexibility of a fiber depends on its aspect ratio, stiffness and the strength

of the flow. Forgacs et al. [60,92] demonstrated there is a critical buckle aspect ratio

rc of a fiber above which the axial force along the fiber will be large enough to bend

the fiber. This critical buckle aspect ratio depends on the relative strength of the

fiber reflected by a ratio included in the following equation

ηγ̇

E
=

ln(2rc)− 1.75

2r4c
(3.1)

Throughout the following examples in this chapter, the fibers are placed within a pure

shear flow with the velocity vector components expressed as v1 = γ̇x3 and v2 = v3 = 0

where the scalar γ̇ is the shear rate. This particular flow field will tend to rotate a

fiber about the x2 axis, where it will spend most of its time near the x1 axis. This

particular flow is selected to study for two reasons. The first is the periodic nature

of the solution will highlight flaws in solution approaches due to the nature of the

coupled ODEs, and the second is its prevalence in industrial applications where most

industrial molded products experience a significant degree of shear during processing.

In order to maintain the most accuracy, all the simulation work has been finished

with only one bead in each rod.

When the aspect ratio of a fiber is smaller than its critical buckle aspect ratio,

which also means the fiber is effectively rigid, fiber motion should exhibit the same

trajectory as that predicted by Jeffery’s equation. For a flow with E/ηγ̇ = 2 × 105

the critical buckle aspect ratio from Equation (3.1) is 21.13, and thus a fiber with

aspect ratio of 10 will be effectively rigid. The motion orbit of a fiber with an aspect
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Figure 3.1: The orbits of a rigid fiber with different initial angles with the vortex
axis x3 (N = 1, Nr = 10, ar = 10, E/ηγ̇ = 2× 105, rc = 21.13).

ratio of 10 is shown in Figure 3.1. The motion orbit indicates the motion trajectory

of either one of the ends of the rigid fiber. A straightforward way to look at the the

motion orbit is to imagine that there is a light dot on one of the ends of the rigid

fiber, and the orbit is seen as the trajectory of the light dot as the fiber moves. The

fiber motion orbit observed in Figure 3.1 for the rigid fiber motion solved using the

rod chain model kinematics is a stable orbit, which is also the case predicted from

Jeffery’s equation for a rigid fiber. Figure 3.2 plots the first and third components

of the end-to-end unit vector from Figure 2.6 for the fiber orientation obtained using

the rigid-fiber kinetics of Jeffery’s equation and fiber orientation obtained using the

rod chain model. Figure 3.2 (a) is of a fiber of aspect ratio ar = 10 and with flow and

fiber stiffness parameters of E/ηγ̇ = 2 × 105, thus the critical buckle aspect ratio is

rc = 21.13. For this scenario, the Jeffery model and the rod chain model predict the

same fiber orientation results. This observation is essential to aid in the validation of
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Figure 3.2: Motion period(a) (N = 1, Nr = 10, ar = 10, E/ηγ̇ = 2× 105, rc = 21.13),
initial unit direction vector p = [1, 0, 0]T , (b) (N = 1, Nr = 30, ar = 30, E/ηγ̇ =
2× 103, rc = 4.75), initial unit direction vector p = [1, 0, 0]T ).

the rod chain model since in the limiting case of a rigid fiber the flexible fiber model

must approach the same orientation configuration as that predicted by the Jeffery

model.

As the fiber increases in length or as the shear rate becomes stronger, the

fiber will be bent and twisted significantly in the flow, as depicted in Figure 3.3. The

deformation of the fiber in the flow suggests that the fiber in this example is relatively

flexible and deformable due to the large fiber aspect ratio. Due to the bending of the

fiber, different rods in the fiber will have different unit direction vectors. In order

to examine the overall change of the fiber orientation for a flexible fiber, the end-

to-end unit vector introduced in Figure 2.6 is plotted in Figure 3.2 (b) for a flexible

fiber. For comparison purposes, the flexible fiber orientation is compared to that
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of the rigid fiber as predicted by Jeffery’s equation. Notice that the flexible fiber’s

orientation still is periodic, but the period of the orbit is considerably decreased as

compared to that of the Jeffery fiber. This alteration in the orientation period and

state will drastically alter both the final processed part’s orientation state as well

as the processing parameters of industrial parts as the fiber orientation is directly

coupled with that of the effective shear stresses.

One deficiency of the rod chain model is that the bead number N does not

appear to alter the motion period when the rod number Nr = 1, as observed in Figure

3.4. This can be explained from Equations (2.74), (2.78) and (2.82). When Nr = 1,

the whole fiber is only a single rigid rod. So there is no bending torque Tb, twisting

toque Tt, or internal constraint forces X. Then dω
dt

is only dependent on the value of

hydrodynamic angular friction toque Th, which is proportional to N3 as suggested by

Equation (2.74). Then the N3 in Equation (2.78) in the denominator will be canceled

out, which makes dω
dt

independent of N. When the unit direction vector p is updated

by Equation (2.82), it will also be irrelevant to N . So the evolution of p does not

depend on N when Nr = 1. This will bring a contradiction when the product of N

and Nr actually represents the aspect ratio of the fiber, which influences the motion

period of the fiber as suggested by Equation (2.10).

It is often more appropriate to characterize the bulk average of orientation,

particularly when considering the final processed material stiffness. As discussed in

Chapter Two, orientation tensors are generally used to described the bulk orientation

of all the fibers in the flow, which can be calculated by Equation (2.6). Then for a

second order orientation tensor, it is calculated by

aij =

∮
S2
pipjψ(θ, ϕ)dS (3.2)

If a uniform distribution of fiber orientations is assume, then from Equation (2.5)
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Figure 3.3: Deformation of a flexible fiber (N = 1, Nr = 30, ar = 30, E/ηγ̇ = 2 ×
103, rc = 4.75), initial unit direction vector p = [1, 0, 0]T ).

the distribution function ψ(p) = 1
4π
. A random distribution of fiber orientations will

result in an orientation tensor of the following form

a =


1
3

0 0

0 1
3

0

0 0 1
3


whereas a unidirectional distribution of fiber orientations along the x1 direction will

result in the following form

a =

1 0 0

0 0 0

0 0 0


The bulk orientation response is shown in Figure 3.5 for a pure shear flow with a

fiber aspect ratio of 30. The flexible fiber equations of motion are solved for the same

aspect ratio and flow parameters as the Jeffery model solution and for a suspension

of 1000 discrete flexible fibers. The form of Equation (3.2) assumes a continuous

function of orientation, but for a finite sample set, the orientation tensor can be

approximated as
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Figure 3.4: Number of beads N does not alter the motion period when rod number
Nr = 1 (E/ηγ̇ = 2× 105, rc = 21.13).

aij =

∑Nf

n=1 pipj
Nf

(3.3)

where Nf is the number of fibers in the sample. The evolution of the orientation

tensor from Jeffery’s model is shown in Figure 3.5 as well as that obtained from the

rod chain model for the 1000 samples. As show in Figure 3.5, initially the fibers are

randomly orientated with a11 = a22 = a33 = 1
3
, and the Jeffery model predicts a

periodical change of the components of the orientation tensor, which corresponds to

the evolution of the unit direction vector shown in Figure 3.2.

The result given by the rod chain model deviates from the one given by the

Jeffery model in two aspects. The motion period for the flexible fibers are reduced

and there is an orbit drifting phenomenon happening, as for the black curves in the

plots of Figure 3.5, the a22 component decreases toward 0 and at the same time the

a11, a33 and a13 components change periodically. This discrepancy arises because of

the flexibility of fibers. Notice the fibers have aspect ratios of 30, which is much

large than the critical buckle aspect ratio. The ability of rod chain model to address
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Figure 3.5: Comparison of the evolution of the components of the orientation tensor
(N = 1, Nr = 30, ar = 30, rc = 4.75, Nf = 1000).

this flexibility of fibers result in the discrepancy described above. The influence of

the fiber flexibility on the drifting behavior of the motion orbit will be discussed in

Chapter Four.

Another difference for the plots of the evolution of the seconde order orienta-

tion tensor in Figure 3.5 is there is a “double-peaks” behavior for the results given by

the rod chain model for flexible fibers. The “double-peaks” indicate there is a sudden

bouncing back of the ends of the fibers when the fiber is significantly bent. For a

flexible fiber, it has a small stiffness, but when the fiber is deformed significantly,

the stiffness of the fiber will react strongly to straighten the fiber, which will cause a
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Figure 3.6: Deformation of a flexible fiber in a pure shear flow, N = 1, Nr = 30, ar =
30, E/ηγ̇ = 1× 104.

sudden bouncing back of the ends of the fiber. Figure 3.6 shows 9 consecutive frames

for the motion of a flexible fiber. The marker “end 1” in the figure indicates one of

the ends of the fiber, so that the same end can be recognized in all 9 frames. From

the figure we can see that the fiber is very flexible and there is significant deformation

on the fiber. Frame 6 ∼ 9 show the sudden bouncing back of the ends of the fiber.

When the fiber becomes significantly flexible, deformation of the fiber may

cause it cutting cross itself, which makes the physics become more complicated. The

fiber shown in Figure 3.6 is flexible enough to cut cross itself when it is deformed

heavily. Frame 3 through 5 show that the fiber cuts cross and passes through itself.

It is not physical that the fiber passes through itself, as it means that at some time
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point during the deformation, two different parts of the fiber occupy the same position

in the space, which is not possible. This shows the deficiency of the rod chain model,

which means it can not be applied to a fiber that is so flexible that it cuts cross and

passes through itself under heavy deformation.
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CHAPTER FOUR

Material Properties Prediction of Flexible Fiber Reinforced Composites

This chapter covers the prediction of material properties, specifically the stiffness

tensor, based on the orientation and waviness of flexible fibers caused by the flow

kinetics during injection molding of polymeric composites. A grain decomposition

approach is employed and the prediction of the value of the stiffness tensor is done in

two steps, similar to that proposed in Jack and Smith’s publication [5]. The first step

is to decompose the whole part of the material under consideration into a set of smaller

aggregates of uniaxially aligned fibers with the same concentration of fibers, and the

stiffness tensor of each aggregate is predicted using micro-mechanical approaches.

The second step is to predict the expectation value, which is the sample mean, for

the stiffness tensor over each of the aggregates whose orientation is sampled from

the orientation and flexure distribution functions. The resulting expectation is the

stiffness tensor for the polymeric composite.

4.1 Flexible Fiber Orientation

For a rigid fiber, the orientation of the fiber is described by a single unit direction

vector along the major axis of the fiber. The orientation of the fiber can then be fully

described by the two angle parameters θ and ϕ, as shown in Figure 2.2 and defined in

Equation (2.1) where a fiber can have any orientation from θ ∈ [0, π] and ϕ ∈ [0, 2π).

Conversely, a flexible fiber will display a wavy configuration under the influence of

the flow (as shown in Figure 3.1), and a normalized end-to-end vector will be used

to describe the orientation of the fiber, as shown in Figure 3.3. This normalized unit

direction vector, which is also associated with the same two angle parameters, can
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capture the approximate orientation of a flexible fiber in the flow, and this is also a

common way to describe the orientation of a curved or flexed body.

4.2 Flexible Fiber Waviness

One salient characteristic of long flexible fibers is that they will become wavy

under the influence of the flow. The fibers display curved configuration in the flow

and it is possible, depending on the viscous characteristics, curing kinetics and the

stiffness of the fiber, that it will remain curved in the processed composites. The

fiber wavy configuration is assumed to be a planar sinusoidal curve [4] and defined by

z′ = A sin
2πx′

L
(4.1)

where A and L are the amplitude and the range of the sinusoidal curve, respectively.

z′ and x′ are the two perpendicular axes of the coordinate system in the plane where

the fiber is, as shown in Figure 4.1. x′ is the axis along the end-to-end vector of the

flexible fiber, and y′ and z′ form a right-handed coordinate system with x′ and z′

lying in the fiber plane and y′ normal to the fiber plane.

The fiber waviness α is defined as

α = 2π
A

L
(4.2)

An in-house code is developed to calculate fiber waviness, and is provided in

Appendix B. The idea is to fit a sinusoidal curve to the fiber configuration based on

the local coordinates of each rod of the fiber (Figure 4.2). The local coordinates of

each rod (x′i, z
′
i) are obtained by running the rod chain model for the fiber defined in

Equations (2.69) ∼ (2.85) and using the MATLAB code provided in Appendix B. By

minimizing

R ≡ (z′i − A sin
2πx′i
L

)2 (4.3)
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Figure 4.1: Flexible fiber orientation and configuration.

using a least square method, the amplitude A that minimizes equation (4.3) is

A =

∑
z′i sin

2πx′
i

L∑
(sin

2πx′
i

L
)2

(4.4)

4.3 Investigation of the Influence of Fiber Waviness on Fiber Orientations

This section discusses how fiber waviness influences fiber orientations. The

motions of individual fibers with different waviness are compared in terms of the unit

end-to-end vectors. The motions of groups of fibers are compared as well in terms

of the second orientation tensor and the differences are shown as a result of different

flexibility/waviness.

As defined in Chapter Three, the unit end-to-end vector pend−to−end is used

to describe the orientation of a flexible fiber. Figure 4.3 shows the evolution of the

components of pend−to−end for single flexible fibers with different flexibility and p for

a single rigid fiber moving in a pure shear flow. The pure shear flow has velocities

along the x1 direction and velocity gradient along the x3 direction given by
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Figure 4.2: The scheme of calculating the fiber waviness.

κ =

0 0 1
0 0 0
0 0 0

 (4.5)

For the rigid fiber scenario, the fiber has an initial orientation with the two angle pa-

rameters θ = π
4
and ϕ = π

4
, which make the unit direction vector along the [1

2
, 1
2
, 1√

2
]T

direction. For the three flexible fiber scenarios, each fiber is straight initially and

along the [1
2
, 1
2
, 1√

2
]T direction. The motion of the rigid fiber in terms of the unit

direction vector p is given by the solution of Jeffery’s equation, shown in Figure 4.3

as the red line, and it can be seen that the periodic motion previously alluded to in

a shearing fluid is exhibited. The motions of flexible fibers, given by the solution of

the rod chain model, in terms of pend−to−end are shown with a range of fiber stiffness

presented to demonstrate the effects of flexure on the orientation. For the rod chain

model, when the fiber has a large elastic modulus relative to the strength of the flow

field, the motion of the fiber is visually identical to that of a rigid fiber with the same

aspect ratio solved using Jeffery’s equation, shown as the green line in Figuire 4.3.

The evolution of pend−to−end for flexible fibers are not as perfectly periodical as that

of the rigid fiber given by Jeffery’s equations, which is due to the drifting the orbits.
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But it is worthwhile to note that before the drifting starts, flexible fibers undergo

periodical motions in the pure shear flow with a decreasing motion period as the

strength of the fibers decreases.

Unlike the motion of a rigid straight fiber in a shear flow, which rotates in a

stable orbit (see Figure 3.1) with fiber orbit constant (see Equation (2.9)) ranging

from 0 to ∞, the ends of a flexible fiber does not follow a stable orbit and the orbit

drifts toward C = ∞ or C = 0 depending on a big C (C > 0.2) or a small C

(C < 0.05) [22]. C = ∞ indicates a rotating motion in the x1 − x3 plane, whereas

C = 0 indicates a spinning motion with the fiber along the x2 direction, which is

the direction of the vorticity of the flow filed. However, it is found in this research

that the motion orbit of a flexible fiber drifts also depending on the magnitude of the

flexibility (waviness) of the fiber.

As shown in Figure 4.3, for the flexible fiber with E/ηγ̇ = 1 × 104, which

corresponds to a less flexible fiber in this research, the p3 component of the unit

end-to-end vector is decreasing toward 0 whereas the p1 and p2 components change

periodically, which means the motion orbit drifts to C = 0. It is not surprising that

the p1 component hasn’t decreased in the time range of the plot (p1 will eventually

goes to 0, supposedly) and the p2 component hasn’t increased much (p2 will eventually

goes to 1, supposedly), as it has been reported [22] that the drifting of the orbit to

C = 0 is slow. For the more flexible fiber in this research with E/ηγ̇ = 5 × 103,

the p2 component decreases rapidly toward 0 whereas the p1 and p3 components

change periodically, which indicates that the orbit drifts to C = ∞. Notice that

the two flexible fibers have the same aspect ratio and the same initial orientation,

which should have given the same drifting behavior, but their orbits drift toward
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two different directions. Thus it is believed that the different flexibility of the fibers

causes the different drifting behaviors.

Figure 4.3: Evolution of the orientation of single isolated fibers, pinitial = [1
2
, 1
2
, 1√

2
]T ,

N = 1, Nr = 30, ar = 30, Re = 0.1, γ = 1.0sec−1: (a) the first component; (b) the
second component; (c) the third component.

It also can be seen from the plots in Figure 4.3 that there is disturbance or

noise on the curves of the less flexible fiber, which is marked by the blue line. One

possible explanation for the occurrence of the noise is associated with the deformation

or the wavy configuration of the flexible fibers. The unit end-to-end vector adopted

to characterize the orientation of a flexible fiber is fundamentally not equivalent to

the unit direction vector of a rigid straight fiber, which is always along its axis. The
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direction change of the unit direction vector is only caused by the rotation of the rigid

fiber, whereas the direction change of the unit end-to-end vector is caused by both

the rotation of the flexible fiber as well as the deformation of the fiber, especially

the bending deformation of the two ends of the fiber. It can be imagined that the

direction change of the unit direction vector due to the bending deformation of the

ends must be very sensitive compared to the rotating motion of the fiber simply

because of the definition of the end-to-end vector, which is a vector drawn between

the two ends of the fiber. Thus the evolution of the unit end-to-end vector is caused

by the combination of two kinds of “motion”, one of which is the rotation of the

flexible fiber, the other the deformation of the flexible fiber, which is shown as the

noise on the plots.

The flexibility of fibers comes into play when fibers have small elastic moduli

compared to the strength of the flow field (see Equation (3.1) for a description of

this critical buckle aspect ratio). Fibers under the influence of a given flow may

experience a different flexibility/waviness response due to their individual material

makeup. This is demonstrated in Figure 4.4 where the flexure response for fibers

with differing stiffnesses’ is plotted for a shearing flow. The vertical axis is the fiber

waviness. When this ratio is zero a fiber is straight, and as the ratio increases the

degree of flexure of a fiber increases. For the relatively rigid fiber (indicated by the

green line in Figure 4.4), the waviness remains a zero, but as the stiffness is reduced,

the maximum magnitude a given fiber is flexed increases. It is interesting to note

that the semi-rigid fiber (E/ηγ = 1 × 104) actually spends more time in flexure as

compared to the flexible fiber, but the maximum peak of the waviness ratio is the

greatest for the soft fiber. This is due to the drifting of the orbit resulting in the

change of the motion period.
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Figure 4.4: Evolution of the waviness of a single flexible fiber, N=1, Nr=30, ar=30,
Re=0.1, γ = 1.0sec−1.

For industrial composites, the motion of an individual fiber is somewhat irrele-

vant, but it is the bulk response that is important. Therefore we look at a set of fibers

randomly sampled from an initially isotropic orientation distribution ψ(θ, ϕ) = 1
4π

and

plot the components of the orientation tensor from Equation (3.3). The change of

motion period is also seen from the evolution of the components of the second order

orientation tensor for rigid fibers as indicated by Figure 4.5. For each of the four

situations depicted in Figure 4.5, there are initially 1000 fibers randomly orientated

in the flow, which corresponds to a 1
3
value for a11, a22 and a33. Note that due to

the finite size of samples, results given by Jeffery’s equation and the rod chain model

for rigid fibers don’t perfectly overlap with each other, but the changes of these two

curves follow the same pattern. The drifting of the orbits can be seen from the plots

as well. For the less flexible fibers with E/ηγ̇ = 1× 104, the a33 and a13 components

decrease toward 0 whereas the a11 component decreases slowly and a22 component

increases slowly and both of them change periodically, which means the orbits of all
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Figure 4.5: Evolution of the second order orientation tensor for 1000 initially ran-
domly orientated fibers, N = 1, Nr = 30, ar = 30, Re = 0.1, γ = 1.0sec−1.

the fibers drift to C = 0. For the more flexible fiber with E/ηγ̇, the a22 compo-

nent decreases toward 0 whereas the a11, a33 and a13 components change periodically,

which indicates that the orbits of all the fibers drift toward C = ∞.

The orbit drifting of all the fibers indicates its independence of the initial

orientations. But from Equation (2.9), the initial fiber orbit constant depends on

the orientation of the fiber, and the initial fiber orbit constant tells how the orbit

drifts. One possible explanation is when fiber has a large aspect ratio, the drifting

behavior largely depends on the flexibility of the fiber. This new observation invites

investigation of the drifting behavior of long flexible fibers.
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4.4 Material Properties Prediction

The material stiffness tensor is addressed through the grain decomposition

approach discussed in Jack and Smith’s paper [5]. A modification is made to adapt

the method to flexible wavy fiber composites. The first step is to decompose the whole

part into a set of smaller aggregates of unidirectionally aligned wavy fibers with the

same concentration of fibers as the representative volume. The stiffness tensor of

each of the aggregates is then predicted using a micro-mechanics approach, which in

this study is the method from Hsiao and Daniel [4]. The second step is to obtain

material stiffness values by computing the expectation value from the aggregates of

unidirectional wavy fibers using the fiber orientation distribution function ψ(θ, ϕ, β).

Notice, unlike rigid fibers, there are three orientation parameters to capture the plane

in which the fiber flexure is contained within. The three angle parameters are shown

in Figure 4.1 where θ is the angle between the fiber end-to-end vector and the global

z-axis. ϕ is the angle between the projection of the end-to-end vector on the xy-plane

and the global x-axis, and β is the angle between the fiber plane and the plane formed

by the global z-axis and the projection of the end-to-end vector on the xy-plane. For

the present study we will assume that at the mold inlet all fibers in the flow are straight

and are well represented by an isotropic three dimensional orientation distribution.

The initial straight fiber assumption of the fibers is sufficiently described by the angle

parameters θ and ϕ, and the associated fiber orientation distribution function initially

is only a function of θ and ϕ, which is ψ(θ, ϕ) = 1
4π
. The expectation value of the

material stiffness tensor after the composite is processed is formulated from the non-

correlated aggregate of unidirectional fibers defined as the first moment of the fiber

orientation probability distribution function ψ(θ, ϕ, β) as [5]

⟨Cijkl⟩ =
∮
S
Qpi(θ, ϕ, β)Qqj(θ, ϕ, β)Qrk(θ, ϕ, β)Qsl(θ, ϕ, β)C̄pqrsψ(θ, ϕ, β)dS (4.6)
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where ⟨Cijkl⟩ is the expectation value of the stiffness tensor, C̄pqrs is

the unidirectional wavy fiber stiffness tensor of the aggregate with respect

to the coordinate system along the aggregate’s principal directions, and

Qpi(θ, ϕ, β)Qqj(θ, ϕ, β)Qrk(θ, ϕ, β)Qsl(θ, ϕ, β)C̄pqrsψ(θ, ϕ, β) is the unidirectional wavy

fiber stiffness tensor with respect to the global coordinate. The rotation matrix

Q(θ, ϕ, β) in Equation (4.6) is defined as

Q =

 sin θ cosϕ sin θ sinϕ cos θ
− sinϕ cos β − cos θ cosϕ sin β cosϕ cos β − cos θ sinϕ sin β sin θ sin β
sinϕ sin β − cos θ cosϕ cos β − cosϕ sin β − cos θ sinϕ cos β sin θ cos β

(4.7)
The derivation of the rotation matrix is shown in Appendix C.

An in-house code has been developed in Matlab to solve the stiffness response

of long fiber reinforced composites, as shown in Appendix B following the procedures

shown below.

1. Run the rod chain model for each one of a group of initially randomly oriented

flexible fibers, which is implemented by the scripts in Appendix A. The random

initial orientations are generated by the scripts in Appendix B on page 119.

2. Obtain the compliance of the unidirectional lamina referred to the principal

material axes by the Tandon-Weng theory, which is implemented by the scripts

in Appendix B on page 120.

3. Calculate the waviness for each fiber based on the results given by the rod

chain model and obtain the elastic properties of each of the aggregates of a

unidirectional composite with uniform fiber waviness from the equations given

by Hsiao and Daniel [4], which is implemented by the scripts in Appendix B on

page 115.

4. Obtain the stiffness tensor for each of the aggregates of a unidirectional compos-

ite with uniform fiber waviness, which is implemented by the scripts in Appendix

B on page 124.
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5. Calculate the rotation matrix for each of the aggregates and rotate the respective

stiffness tensor into the global coordinate and obtain the sample mean of the

stiffness tensor by averaging the stiffness tensors over all the aggregates, which

is implemented by the scripts in Appendix B on page 117.

The following sub-sections in this section discusses the implementation of the above

method and give the simulation results. Section 4.4.1 describes the model by Hisao

and Daniel for predicting the stiffness response of a unidirectional flexible fiber rein-

forced composite. Section 4.4.2 describes the orientation averaging method by Jack

and Smith for the stiffness prediction with statistical sampling. Section 4.4.3 gives

the simulation results.

4.4.1 Material Stiffness Prediction of Aggregates

The analytical model used to predict the elastic properties of a unidirectional

composite with uniform fiber waviness is based on a model proposed by Hisao and

Daniel [4] for the representative volume considered in Figure 4.6. The configuration

of the fiber is assumed to be a planar sinusoidal curve. This assumption may not

be valid when fiber is heavily deformed as the fiber configuration may form a spatial

3-D curve. Hsiao and Daniel divide the volume into infinitesimally thin slices of

thickness dx′, x′ being the end-to-end vector direction and the load direction. They

then obtain the compliance of each of the slice from the compliance transformation

relations, and then integrate the strains in the x’ direction over the range of the sine

function, with the elastic properties of the composite determined from these average

strains. Note that the configuration of the flexible fiber can be assumed to be a planar

curve other than the sinusoidal curve only requiring a different definition for the fiber

waviness. The whole derivation of the equations is in Hsiao and Daniel’s paper [4]

with the following equations for calculating the elastic properties of a unidirectional

78



composite with uniform fiber waviness in the global reference frame provided here for

completeness

Ex′ =
1

S11 + (2S12 + S66)I3 + S22I5

νx′y′ = − S12I6 + S23I8
S11 + (2S12 + S66)I3 + S22I5

νx′z′ = −(S11S22 − S66)I3 + S12(I1 + I5)

S11 + (2S12 + S66)I3 + S22I5

Ey′ =
1

S22

νy′x′ = −S12I6 + S23I8
S22

νy′z′ = −S23I6 + S12I8
S22

Ez′ =
1

S11I5 + (2S12 + S66)I3 + S22I1

νz′y′ = −(S11 + S22 − S66)I3 + S12(I1 + I5)

S11I5 + (2S12 + S66)I3 + S22I1

νz′y′ = − S23I6 + S12I8
S11I5 + (2S12 + S66)I3 + S22I1

Gx′y′ =
1

2(S22 − S23)I8 + S66I6

Gy′z′ =
1

2(S22 − S23)I6 + S66I8

Gx′z′ =
1

4(S11 + S22 − 2S12)I3 + S66(I1 − 2I3 + I5)
(4.8)

where E is the young’s modulus, ν is the Poisson’s ratio and G is the shear modulus.

Sij, for i, j = 1, 2, 3, 4, 5, 6, are the components of the compliance tensor of the unidi-

rectional lamina of straight fibers given in the principal material axes, marked by 1,

2, 3 and as shown in Figure 4.6.

There are many methods to calculate the compliances of unidirectional straight

fiber composites, as was discussed in the Chapter Two. In this study, the unidirec-

tional straight fiber compliances are calculated based the Tandon-Weng theory [89] by

an in-house code in the Appendix B, Section 2.3. Ii, for i = 1, 3, 5, 6, 8, in Equation
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Figure 4.6: A representative volume and coordinates for a unidirectional composite
with uniform waviness (image copied from [4]).

(4.8) are functions of the fiber waviness and are defined as

I1 =
1 + α2/2

(1 + α2)3/2

I3 =
α2/2

(1 + α2)3/2

I5 = 1− 1 + 3α2/2

(1 + α2)3/2

I6 =
1

(1 + α2)1/2

I8 = 1− 1

(1 + α2)1/2
(4.9)

where α is the fiber waviness defined by Equation (4.2).
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The stiffness tensor C of the unidirectional fiber composite with uniform wavi-

ness can be concisely expressed as the 6× 6 matrix as

C̄ =



1
Ex′

−νy′x′

Ey′

−νz′x′
Ez′

0 0 0
−νx′y′

Ex′
1

Ey′

−νz′y′

Ez′
0 0 0

−νx′z′
Ex′

−νy′z′

Ey′
1

Ez′
0 0 0

0 0 0 1
Gy′z′

0 0

0 0 0 0 1
Gx′z′

0

0 0 0 0 0 1
Gx′y′



−1

(4.10)

where the components are defined in Equation (4.8).

The Tandon-Weng model for unidirectional straight fiber reinforced compos-

ites predicts that the longitudinal modulus E11 increases as the fiber aspect ratio

increases and then reaches a plateau when the aspect ratio is large enough, whereas

the transverse modulus E22 and the Poisson’s ratio ν12 hardly change with the aspect

ratio. Figure 4.7 shows these relationships for a piece of fiber reinforced composite

with the component material properties Ef/Em = 100, as plotted according to the

model. As for the model of Hsiao and Daniel for unidirectional wavy fiber reinforced

composites, they show that the major modulus deteriorates with the increase of fiber

waviness. Figure 4.8 shows E11 decreases rapidly with the increase of fiber waviness

whereas E22 is hardly influenced by the waviness of the fiber. It is not surprising

that E22 does not change with fiber waviness, as no fiber aligns in the x2 direction.

Note that the Poisson’s ratio decreases initially with the increase of the fiber waviness

and then increases. The influence of the fiber aspect ratio and waviness will come

into play more when the ratio Ef/Em becomes larger. The properties of long flexible

fiber reinforced composites are undermined by the fiber waviness when one intends

to use fibers with a larger aspect ratio. The balance between the aspect ratio of the

fibers and the waviness determines the final properties of the material.
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Figure 4.7: Normalized material properties change with fiber aspect ratio, Ef/Em =
100.

4.4.2 Stiffness Prediction with Statistical Sampling

The sample mean of the stiffness tensor, Equation (4.12), is calculated as an

average value over a number of aggregates of unidirectional wavy fiber reinforced

composites, which is based on the orientation averaging model of Jack and Smith [5]

and the wavy fiber model of Hisao and Daniel [4]. The orientation of each aggregate

is represented by the orientation of a flexible fiber (Figure 4.9.) This work assumes

when the processing of the composite is finished, the part is cured instantly and all the

aggregates maintain their instantaneous orientations at the time when processing is

finished. The rod chain model is utilized to simulate the motion of all the representing

fibers/aggreagtes individually to gain information of the orientation and configuration

of each aggregate at the time when processing is finished. This work considers the

case where the initial fiber orientation distribution before processing is known and

the method of Monte-Carlo is employed to generate statistical data for the initial

orientations of the fibers. In the present context, the fibers are set to be initially

straight with an isotropic/random orientation. The orientation along with the flexure
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Figure 4.8: Normalized material properties change with fiber waviness, Ef/Em =
100.

information gained from the rod chain model is then used to analyze the sample mean

of the material stiffness tensor using Equation (4.6).

4.4.2.1 The Monte-Carlo Simulation Method. The Monte-Carlo method is

also called the Random Simulation Method, the Random Sampling Method or the

Statistical Testing Method [93]. This method uses the average value of randomly

generated data from a distribution to approach the mean value of the distribution.

In this research, the idea of the Monte-Carlo simulation is utilized as to randomly

generating pairs of the two angle parameter variables (Θ,Φ) of the initial direction

vectors of the fibers, representing the orientation of aggregates. And these randomly

oriented fibers undergo the processing simulated by the rod chain model to give final

orientations as the part is processed. Then the final orientation information is utilized

to analyze the stiffness response.
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Figure 4.9: Orientation homogenization model [5].

4.4.2.2 Accept Reject Generation Algorithm. An appropriate set of angle pairs

is selected in this research using the Accept-Reject Generation Algorithm (ARGA).

This part of work is completely based on the Ph.D. thesis of Jack [34] under the

help of Dr. David A. Jack. The ARGA numerically generates a sample set for any

given probability distribution function, such as ψ(θ, ϕ) ∈ S2 using a uniform random

number generator that provides a distribution on (0, 1) ∈ R. The basic idea of the

one dimension ARGA is to develop a continuous random variable X whose probability

distribution function is f(x) from the probability distribution function g(x) where the

random variable Y , an observation from g(x), is sufficiently easy to generate.

If there exists some constant K ∈ R+, such that ∀x ∈ (−∞,+∞) the prob-

ability distribution functions satisfy the relationship f(x) ≤ Kg(x), the ARGA can

be performed by the following algorithm [34].

• Generate numerical samples from the random variables Y and U

• If U ≤ f(Y )
Kg(Y )

, then set the random variable X equal to Y

• Then the random variable X will have the probability distribution function f(x)
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Jack [34] has found that in this study the most effective choice of constant K is

to setK = (maxx∈R f(x))(1+ϵ) where ϵ is a small positive number. The random vari-

able Y in this study follows a uniform distribution for ease of computation. To move

from one dimension R to the surface of the sphere S, AGRA is accomplished for the

random variable pair Θ and Φ belonging to the probability distribution ψ(θ, ϕ) sin (θ).

For a group of initially randomly oriented fibers, the following procedures [34] are

used to generate a sample set of Θ and Φ values on the sphere at discrete points

(θ, ϕ) = ( i−1
Nθ−1

π, j−1
Nϕ−1

2π) for i ∈ {1, 2, ..., Nθ} and j ∈ {1, 2, ..., Nϕ}, and Nθ and Nϕ

are the numbers of the steps in θ and ϕ, respectively (distribution function symmetry

is assumed).

1. Pick K = (max(θ,ϕ)∈S ψ(θ, ϕ))(1 + ϵ) where ϵ ∼ 10−2

2. Pick a value for (θ, ϕ) where the observation will be made

3. Generate a random observation U from the uniform distribution

4. If KU < ψ(θ, ϕ) sin θ, then set Θ = θ and Φ = ϕ

5. Step 2 through 4 are repeated at each point on the sphere

4.4.2.3 Central Limit Theorem. The central limit theorem gives conditions un-

der which the mean of a sufficiently large number of independent random variables,

each with finite mean and variance, will approximately follow a normal distribu-

tion. The general form of the central limit theorem states: let X1, X2, ..., Xn be n

independent variables with their distinct and finite mean µi and variance σi respec-

tively for i ∈ {1, 2, ..., n}. Then for the variable X = X1 +X2 + ... +Xn with mean

µ = µ1+µ2+ ...+µn and variance σ =
√
σ2
1 + σ2

2 + ...+ σ2
n, for sufficiently large n, X

approximately follows a normal distribution with mean µ and variance σ. It is com-

mon that X1, X2, ..., Xn are independent and follow the same distribution, then for

sufficiently large n, X approximately follows a normal distribution with mean nµ and
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variance
√
nσ2, or given X̄n = 1

n

∑n
i=1Xi as the mean of the set of random samples,

the random variable

Yn =
√
n
X̄n − µ

σ
(4.11)

will approximately follow a standard normal distribution for sufficiently large n.

4.4.3 Simulation Results of the Prediction of Material Stiffness

Given a set of N angle combinations {(θn, ϕn, βn) : n = 1, 2, 3, ..., N} corre-

sponding to each of the N unidirectional waviness fiber aggregates, it is assumed that

the mean strain is constant over each aggregate. Thus, the sample mean mijkl for

the stiffness tensor from the corresponding stress field is

mijkl =
1

N

N∑
n=1

(Qn
qiQ

n
rjQ

n
skQ

n
tlC̄qrst) (4.12)

with

Qn
ij ≡ Qij(θn, ϕn, βn) (4.13)

where i, j, k, l, q, r, s, t ∈ 1, 2, 3, C̄qrst is the unidirectional stiffness tensor in Equation

(4.14), and the repeated indices on q, r, s, t imply summation. The results are

shown in terms of the elastic properties (i.e., elastic modulus) as the stiffness tensor

components relate to the elastic properties of the material in the following way

C̄ =



1
E11

−ν21
E22

−ν31
E33

0 0 0
−ν12
E11

1
E22

−ν32
E33

0 0 0
−ν13
E11

−ν23
E22

1
E33

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12



−1

(4.14)

Note that in each aggregate the material is orthotropic based on the assumption that

each aggregate is a unidirectional composite. Thus the stiffness tensor, which is a
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Figure 4.10: The first component of the second order orientation tensor.

fourth order tensor, of each aggregate can be expressed as a 6 × 6 matrix based on

the following properties

Cijkl = Cklij = Cjikl = Cijlk = Cjilk (4.15)

E11 represents the longitudinal modulus, which is along the x1 direction, E22 the

transverse modulus along the x2 direction, E33 the transverse modulus along the

x3 direction, ν12 the Poisson’s ratio between the x2 direction and the x1 direction,

which is also called the major Poisson’s ratio, ν21 the Poisson’s ratio between the

x1 direction and the x2 direction, ν13 the Poisson’s ratio between the x3 direction

and the x1 direction, ν31 the Poisson’s ratio between the x1 direction and the x3

direction, ν23 the Poisson’s ratio between the x3 direction and the x2 direction, ν32

the Poisson’s ratio between the x2 direction and the x3 direction, G12 the shear

modulus along the x1 direction and in the x1 − x3 plane, G23 the shear modulus

along the x2 direction and in the x1 − x2 plane, and G13 the shear modulus along

the x1 direction and in the x1 − x2 plane. Figure 4.11 shows the predicted values
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Figure 4.11: The predicted material properties of a processed part (Ef/Em = 100,
vf = 0.03, νf = 0.30, νm = 0.35, ar = 30, Nf = 1000): (a) longitudinal modulus E11;
(b) transverse modulus E22; and (c) major Possion’s ratio ν12.

of the longitudinal modulus, transverse modulus and the major Poisson’s ratio for a

composite part with Ef/Em = 100, vf = 0.03, νf = 0.30, νm = 0.35, ar = 30. In this

research, 1000 fibers/aggregates are used for calculation. In the plot, the x-axis does

not mean the material property changes with flow time. It means at each time when

the processing is shut down and the part is cured based on the assumption that all the

fibers/aagregates in the flow field will keep their instantaneous configurations at the

specific time. The values of the longitudinal elastic modulus is extracted from the

first component of the predicted stiffness tensor using the above discussed method.
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Figure 4.12: The averaged waviness of all the fibers.

In this discussion, 1000 fibers/aggregates are used in the simulation with a random

distribution of initial fiber orientations in the flow (as shown in Figure 4.10, a11 ≈ 1
3

initially). Note Figure 4.11 (a) and the red curve in Figure 4.10 follow a similar

pattern. When a11 has a value close to 1, which will occur when most of the fibers

aligned along the x1 direction, the elastic modulus in the x1 direction will increase.

The same phenomenon happens for Figure 4.11 (b) and the green curved in Figure

4.10.

There are two curves provided in each of the plots of Figure 4.11. The blue

curve corresponds to the material properties computed using a straight fiber micro-

mechanics model, which is the Tandon-Weng model in this research, and the green

line corresponds to the material properties computed from the flexible fiber modle

by Hsiao and Daniel. Figure 4.12 shows the corresponding averaged fiber waviness

for the green lines in Figure 4.11. Notice the comparison between the two lines in

Figure 4.11 (a), it clearly shows when there is a large averaged fiber waviness shown

in Figure 4.12, the discrepancy between the respective predicted longitudinal moduli

E11 under the two circumstances is large. To be more specific, without considering

89



the waviness of the fibers, an overly optimistic longitudinal modulus E11 will be

predicted, especially when there is a large averaged fiber waviness. The same change

happens for the transverse modulus, which is shown in Figure 4.11 (b). This seems

contradictive from Figure 4.8, which shows the E22 is not influenced by fiber waviness.

The contradiction does not exist as in Figure 4.8, all the fibers are unidirectional along

the x1 direction. In Figure 4.11 (b), fibers have a distribution of orientation whenever

the process is finished and it is possible there is a large number of fibers orient along

the x2 direction, where fiber waviness will come into play to influence E22. The major

Poisson’s ratio is slightly influenced by the averaged fiber waviness as shown in Figure

4.8 (c).
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CHAPTER FIVE

Conclusions and Recommendations

Fiber orientation kinematics during the processing of discontinuous fiber rein-

forced composites determines the resulting material properties of the final product.

In the literature there exists a considerable number of models to simulate the mo-

tion of rigid fibers based on the original work of Jeffery [13] with the most popular

in industry being the Folgar-Tucker [14] model for dense suspensions of rigid fibers.

However, these models are not suitable for simulating the motion of long flexible

fibers as the fibers are treated as perfectly rigid bodies. With the desire to enhance

the part stiffness, there is a desire to incorporate longer fibers, but they will have a

greater tendency to flex during processing and to follow orientation paths that differ

from those of straight fibers. This becomes an urgent problem as the interest in in-

corporating long fibers in the making of fiber reinforced composites continues to grow.

Several models to simulate the motion and orientation evolution of long flexible fiber

suspensions have been previously created and were described in the literature chapter.

This thesis chose to use the rod chain model created by Wang and his coworkers [21]

to study the motion of long flexible fiber suspensions in a simple shear flow because of

the clarity of the physics, the simplicity of the model and the potential for conversion

over to a probability distribution form.

In this research, the end goal in researching fiber motion kinematics is to

predict the material properties of a fiber reinforced composite based on the fiber

orientation and flexure distribution in the composite. Previous models neglect either

the flexibility of long fibers or the orientational distribution of the fibers. This work

adapts the work by Jack and Smith [5] for predicting the elastic properties of straight
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fiber composites with a distribution of flexible fiber orientations in the matrix to

model the material properties of long flexible fiber composites.

The significant scientific contributions of this work to assist in solving the

preceding issues are briefly summarized in the following list.

• A methodology has been proposed in this research for the prediction of material

properties of long fiber reinforced composites. This methodology adopts the rod

chain model to obtain the information of the orientation and waviness of the

fibers, which is then, combined with the orientation averaging method, used to

predict the material properties.

• This work has given a thorough study of the rod chain model for simulating

the motion of long flexible fibers in a simple shear flow. The deficiency of the

model has been studied and shown. When the rod number Nr = 1, the bead

number N does not alter the evolution of the unit direction vector p of the fiber,

as discussed in Chapter Three. It is important to avoid using a rod number of

1.

• Unlike rigid fibers, which move in stable orbits in a pure shear flow, as pre-

dicted by Jeffery’s equation, the orbits of flexible fibers drift as the fibers move.

Researcher have shown that the drifting behavior depends on the initial orien-

tation and aspect ratio of the fiber. This work has shown the dependence of

the orbit drifting behavior on the flexibility of the fiber through the utilization

of the rod chain model.

• This work has shown the influence of including the waviness of the fiber into the

orientation of the fiber distribution, and just as importantly on the resulting

material property prediction. This has been done by comparing the simulation

results of the evolution of the fiber unit end-to-end vector from both Jeffery’s
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equation for rigid fibers and the rod chain model for flexible fibers, and by

comparing the resulting material property prediction with and without fiber

waviness taken into consideration. Governing equations developed in the future

for flexible fiber motion should incorporate fiber waviness.

• This work has incorporated the fiber flexure into the material property predic-

tion for fibers sampled from a known orientation distribution function. Com-

bined with the approach used by Jack and Smith [5] for rigid fibers, the rod

chain model has been used to gather the information of the distribution of fiber

orientations to predict the stiffness response of long flexible fiber reinforced com-

posites. The difference of the material properties predicted when fiber flexure is

taken into account invites a new model in industry application for long flexible

fiber reinforced composite.

• This work has proposed a way to define the orientation and the configuration

of a flexed fiber with three angle parameters. A rotation matrix has been given

based on those three angle parameters. This new description, although novel,

may pose additional modeling difficulties in the future as existing model for

dense, rigid suspensions are unable to readily incorporate this third angle pa-

rameter of fiber orientation.

• This work has demonstrated the sudden “bouncing-back” behavior of the ends

of a flexible fiber under heavy deformation, which causes the “double-peaks” on

the orientation tensor plot for a suspension of flexible fibers. This demonstrates

that the trends of the distribution of flexible fibers are notably different from

those of rigid fibers.

There is still much work to be undertaken in the area of the simulation of flexible

fiber motion and material property prediction, and several thoughts for the direction

of future research are presented below.
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• Modification of the rod chain model can be done to address fiber-fiber inter-

actions when this model is used to simulate the motion of semi-dilute/semi-

concentrated or concentrated flexible fiber suspensions. New forces need to be

created in the model to address these interactions. Some researchers [61, 65]

have proposed using frictional and lubricant forces to simulate the interactions

between fibers in their models. Similar forces can be adopted to be accom-

modated into the rod chain model. As shown in Figure 5.1, the strength of

interaction force depends on the distance of the two parts (either two rods

from a flexible fiber or two different flexible fibers) and the direction is along

nij =
pi×pj

∥pi×pj∥
.

• The equations for calculating the forces and torques in the rod chain model

need to be modified if a non-newtonian fluid is employed in the simulation. In

the current rod chain model, forces and torques are calculated proportional to

the relative translational velocity and rotational velocity, independent of the

flow properties, such as viscosity, which is not necessarily true when the fiber

is moving in a non-newtonian flow. Changes can be made by forming a non-

linear relationship between the relative velocities and forces and torques. For

example, the friction force can be expressed as

Fh = c0 + c1∆v + c2∆v
2 (5.1)

where ∆v is the difference between the velocity of the fiber and the microscopic

flow field. c0, c1 and c2 are coefficients.

• The orientation probability distribution function approach introduced in section

2.2.1 may be applied to flexible fibers as well. The probability distribution

function will be a function of a pair three angle parameters (θ, ϕ, β), as shown
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Figure 5.1: Interaction of fibers.

in Figure 4.1. An evolution equation of the probability function ψ(θ, ϕ, β) may

be developed.

• The prediction of material properties assumes all the fibers have the same aspect

ratio, which in reality follows a distribution instead of being a single number.

Some modification can be made to Jack and Smith’s [5] approach to accommo-

date the distribution of the fiber aspect ratio as a factor. For each aggregate,

they will have a different fiber aspect ratio used to calculate the stiffness of the

aggregate and address the distribution of fiber aspect ratio. An analytical solu-

tion of the mean and variance of the predicted stiffness of a piece of composite

with varying fiber aspect ratio is believed to exist as well and can be developed.

• A finite element analysis can be done to validate the method used to predict the

material properties in this research. A representative element of a composite

can be chosen to study and analyze.

• Current research adopts the rod chain model to gain information of the evolution

of fiber orientation and then calculate the waviness of the fiber. It will simplify

the calculation if concise forms of the evolution of flexible fiber orientation and
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waviness can be developed, which will be eventually mapped into industrial

forms for real application.

• Modification of the rod chain model needs to be made to address the “cutting

cross and passing through” behavior of a flexible fiber if it will be applied to

an extremely flexible fiber. Conditions may be set up so that when a fiber is

heavily deformed and it cuts cross itself, the two bent parts can only contact

each other but not occupy the same position.

96



APPENDICES

97



APPENDIX A

Scripts for the Rod Chain Model

1.1 Main Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code is used to simulate the motion of a single flexible fiber moving

%in a simple shear flow based on the rod chain model proposed by Wang and

%his coworkers

%Written by: Cong Zhang

%Last Modified: Apr. 13, 2010

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%giving the parameters and properties of the flow filed

kappa = [0 0 1; 0 0 0; 0 0 0]; %velocity gradient

w = 1/2*(kappa - kappa’); %vorticity tensor

D = 1/2*(kappa + kappa’); %deformation rate tensor

gamma = sqrt(2*trace(D^2)); %shear rate

eta = 10; %viscosity of the flow

Re = 0.1; %Reynolds number of the flow

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%giving the parameters and the properties of the fiber

N = 1; %number of beads in each rod

Nr = 30; %number of road in the fiber

rho = 0.2; %density of the fiber

a = sqrt(Re*eta/(pi*rho*gamma));%radius of the cross-section

E = 2*10^5*eta*gamma; %modulus of the fiber

nu = 0.3; %poisson’s ratio of the fiber

G = E/(2*(1+nu)); %shear modulus of the fiber

k_b = E*pi*a^4/4/(2*N*a); %bending stiffness of the fiber

k_t = G*pi*a^4/2/(2*a); %twisting stiffness of the fiber

t = 1000; %time of simulation

delt = 0.001; %time step

T = 0:delt:t; %time array

row = length(T); %the row length of the matrices

delt_plot = 100; %this dictates which data to be saved

size_plot = floor(1+row/delt_plot);%the size of variabls saved

T_plot = zeros(size_plot,1); %the time variable for making plots

script = 1; %this counts the number of data points to

%be saved

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%nondimenstionalizing the quantities

kappa = kappa/gamma;

k_b = k_b/(pi*eta*a^3*gamma);

k_t = k_t/(pi*eta*a^3*gamma);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%defining the variables

rm = [0 0 0]; %fiber center of mass

p = zeros(row,3*Nr); %the unit direction vectors, each row for

%a time step, each three columns for a rod

r = zeros(row,3*Nr); %the position vectors, each row for a time

%step, each three columns for a rod

u = zeros(row,3*Nr); %body-fixed vector

v = zeros(row,3*Nr); %translational velocity of each rod

omega = zeros(row,3*Nr); %angular velocity of each rod

omega_inf = 1/2*[kappa(3,2)-kappa(2,3);kappa(1,3)-kappa(3,1);...

kappa(2,1)-kappa(1,2)];

%bulk angular velocity

Fh = zeros(row,3*Nr); %hydrodynamic friction force acted on each

%rod

Th = zeros(row,3*Nr); %angular friction torque acted on each rod

Tb = zeros(row,3*(Nr+1)); %bending torque acted between two

%connected rods

%0 at the head and the end

Tt = zeros(row,3*(Nr+1)); %twisting torque acted between two

%connected rods

%0 at the head and the end

X = zeros(row,3*(Nr+1)); %internal constraint force between two

%connected rod,0 at the head and the end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%defining the varibales to save for post-processing

p_plot = zeros(size_plot,3*Nr);

r_plot = zeros(size_plot,3*Nr);

u_plot = zeros(size_plot,3*Nr);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%giving the initial configuration of the fiber and the flow field

initial_condition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%solving for the internal constraint force X

iplot = 1; %this indicates when to save the data

%points

for k=2:row

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating angular velocity omega

for i=1:Nr

iii = 3*i-2:3*i;

jjj = 3*(i+1)-2:3*(i+1);

domegadt = 3*pi/(Re*8*N^3)*(Th(k-1,iii)+...

Tb(k-1,iii)-Tb(k-1,jjj)...

+Tt(k-1,iii)-Tt(k-1,jjj)...

-N*my_cross(p(k-1,iii),(X(k-1,iii)+...

X(k-1,jjj))));

omega(k,iii) = omega(k-1,iii)+ delt*domegadt;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating center of mass rm

rm_temp = [0 0 0];

for i=1:Nr

rm_temp = rm_temp + v(k-1,3*i-2:3*i);

end

rm = rm + delt*rm_temp/Nr;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating unit direction vector p

for i=1:Nr

iii = 3*i-2:3*i;

p(k,iii) = p(k-1,iii)+ my_cross(omega(k,iii),...

p(k-1,iii))*delt;

p(k,iii) = p(k,iii)/norm(p(k,iii));

u(k,iii) = u(k-1,iii)+ my_cross(omega(k,iii),...

u(k-1,iii))*delt;

u(k,iii) = u(k,iii)/norm(u(k,iii));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%calling a created function get_r to update the the position vectors

r(k,:) = get_r(Nr,N,rm,p(k,:)); %position vectors of each rod

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%updating the translational velocity

for i=1:Nr

iii = 3*i-2:3*i;

v(k,iii) = (r(k,iii) - r(k-1,iii))/delt;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating hydrodynamic friction force and angular friction torque

for i=1:Nr

iii = 3*i-2:3*i;

Fh(k,iii) = 6*N*(kappa*(r(k,iii))’-v(k,iii)’);

%hydrodynamic friction force on each

%rod

Th(k,iii) = -2*N^3*(omega(k,iii)’-omega_inf);

%angular friction torque on each rod

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating bending torque and twisting torque

for i=2:Nr

iii = 3*i-2:3*i;

jjj = 3*(i-1)-2:3*(i-1);

p1 = p(k,jjj);

p2 = p(k,iii);

temps1 = my_dot(p1,p2);

if(abs(1-temps1)<10*eps)

theta_b = 0;

Tb(k,iii) = 0;

else

theta_b = acos(temps1);

nb = my_cross(p1,p2);

nb = nb/norm(nb);

Tb(k,iii) = -k_b*theta_b*nb;

end

end

for i=2:Nr
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iii = 3*i-2:3*i;

jjj = 3*(i-1)-2:3*(i-1);

temps2 = u(k,jjj)- my_dot(u(k,jjj),...

p(k,iii))*p(k,iii);

temps3 = my_dot(u(k,jjj),temps2)/norm(temps2);

if(abs(1-temps3)<10*eps)

theta_t = 0; %twisting angle

Tt(k,iii) = 0;

else

theta_t = acos(temps3); %twisting angle

Tt(k,iii) = -k_t*theta_t*p(k,iii);

%twisting torque

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calling a created function get_x to solve for internal

%constraint force X

X(k,:) = get_X(Nr,N,Re,p(k,:),omega(k,:),Fh(k,:),Tb(k,:),Th(k,:),...

Tt(k,:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%save the desired data points

iplot = iplot+1;

if iplot == delt_plot

iplot = 0;

script = script+1;

T_plot(script) = T(k);

p_plot(script,:) = p(k,:);

u_plot(script,:) = u(k,:);

r_plot(script,:) = r(k,:);

else

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%give the initial values of the variables to save

p_plot(1,:) = p(1,:);

u_plot(1,:) = u(1,:);

r_plot(1,:) = r(1,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%This part of code is to post-process the data obtained

%Dimensionlize the time variable

T = T/gamma;

T_plot = T_plot/gamma;

r = r*a;

r_plot = r_plot*a;

%calculating the end-to-end vector

p_end_to_end = zeros(size_plot,3);

p_magnitude = zeros(size_plot,1);

c_Nr = 3*Nr-2:3*Nr;

for i=1:size_plot

p_end_to_end(i,:) = (r_plot(i,c_Nr)+ N*a*p_plot(i,c_Nr))...

-(r_plot(i,1:3)- N*a*p_plot(i,1:3));

p_magnitude(i) = norm(p_end_to_end(i,:));

p_end_to_end(i,:) = p_end_to_end(i,:)/norm(p_end_to_end(i,:));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1.2 Initial Configuration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code gives the initial configuration of the fiber and calculating the

%initial forces and torques

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%giving initial orientation of the rods in the fiber

theta = 0;

phi = pi/2;

p_ini = [sin(theta)*cos(phi) sin(theta)*sin(phi) cos(theta)];

%direction vector of the rods

u_ini = cross([1 1 1],p_ini);

%body fixed vector of the rods

p_ini = p_ini/norm(p_ini);

u_ini = u_ini/norm(u_ini);

%normalize the vectors

for i=1:Nr

p(1,3*i-2:3*i) = p_ini;

%all rods pointing to the same direction initially

%which also means the fiber is straight initially

u(1,3*i-2:3*i) = u_ini;

%all rods having the same body-fixed vector

end
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r(1,:) = get_r(Nr,N,rm,p(1,:));

%position vectors of each rod

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating hydrodynamic friction force and angular friction torque

for i=1:Nr

Fh(1,3*i-2:3*i) = 6*N*(kappa*(r(1,3*i-2:3*i))’-v(1,3*i-2:3*i)’);

%hydrodynamic friction force on each rod

Th(1,3*i-2:3*i) = -2*N^3*(omega(1,3*i-2:3*i)’-omega_inf);

%angular friction torque on each rod

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating bending torque and twisting torque

for i=2:Nr

p1 = p(1,3*(i-1)-2:3*(i-1));

p2 = p(1,3*i-2:3*i);

temps1 = dot(p1,p2);

if(abs(1-temps1)<10*eps)

theta_b = 0;

Tb(1,3*i-2:3*i) = 0;

else

theta_b = acos(temps1);

nb = cross(p1,p2);

nb = nb/norm(nb);

Tb(1,3*i-2:3*i) = -k_b*theta_b*nb;

end

end

for i=2:Nr

temps2 = u(1,3*(i-1)-2:3*(i-1))- dot(u(1,3*(i-1)-2:3*(i-1)),...

p(1,3*i-2:3*i))*p(1,3*i-2:3*i);

temps3 = dot(u(1,3*(i-1)-2:3*(i-1)),temps2)/norm(temps2);

if(abs(1-temps3)<10*eps)

theta_t = 0;

Tt(1,3*i-2:3*i) = 0;

else

theta_t = acos(temps3);

Tt(1,3*i-2:3*i) = -k_t*theta_t*p(1,3*i-2:3*i);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1.3 Internal Constraint Forces

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%calculating the internal constraint forces by calling a function

X(1,:) = get_X(Nr,N,Re,p(1,:),omega(1,:),Fh(1,:),Tb(1,:),Th(1,:),Tt(1,:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This function solves for the internal constraint force X

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X = get_X(Nr,N,Re,p,omega,Fh,Tb,Th,Tt)

A = zeros(3*(Nr-1),3*(Nr+1));

R = zeros(3*(Nr-1),1);

c1 = 0.75/N;

c2 = 2*Re*N^2/pi;

for i=1:(Nr-1)

pi1 = p(1,3*i-2);

pi2 = p(1,3*i-1);

pi3 = p(1,3*i);

piplus11 = p(1,3*(i+1)-2);

piplus12 = p(1,3*(i+1)-1);

piplus13 = p(1,3*(i+1));

Ksm = zeros(3,9);

Ksm(1,1)=1-0.75*pi2^2 - 0.75*pi3^2;

Ksm(1,2)=0.75*pi1*pi2;

Ksm(1,3)=0.75*pi1*pi3;

Ksm(1,4)=-2-0.75*pi2^2-0.75*pi3^2-0.75*piplus12^2-0.75*piplus13^2;

Ksm(1,5)=0.75*pi1*pi2+0.75*piplus11*piplus12;

Ksm(1,6)=0.75*pi1*pi3+0.75*piplus11*piplus13;

Ksm(1,7)=1-0.75*piplus12^2-0.75*piplus13^2;

Ksm(1,8)=0.75*piplus11*piplus12;

Ksm(1,9)=0.75*piplus11*piplus13;

Ksm(2,1)=Ksm(1,2);

Ksm(2,2)=1-0.75*pi1^2-0.75*pi3^2;

Ksm(2,3)=0.75*pi2*pi3;

Ksm(2,4)=Ksm(1,5);

Ksm(2,5)=-2-0.75*pi1^2-0.75*pi3^2-0.75*piplus11^2-0.75*piplus13^2;

Ksm(2,6)=0.75*pi2*pi3+0.75*piplus12*piplus13;

Ksm(2,7)=Ksm(1,8);

Ksm(2,8)=1-0.75*piplus11^2-0.75*piplus13^2 ;

Ksm(2,9)=0.75*piplus12*piplus13;

Ksm(3,1)=Ksm(1,3);

Ksm(3,2)=Ksm(2,3);

Ksm(3,3)=1-0.75*pi1^2-0.75*pi2^2 ;
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Ksm(3,4)=Ksm(1,6);

Ksm(3,5)=Ksm(2,6);

Ksm(3,6)=-2-0.75*pi1^2-0.75*pi2^2-0.75*piplus11^2-0.75*piplus12^2;

Ksm(3,7)=Ksm(1,9);

Ksm(3,8)=Ksm(2,9);

Ksm(3,9)=1-0.75*piplus11^2-0.75*piplus12^2;

A((3*i-2):(3*i),(3*i-2):(3*i+6)) = Ksm;

ii = 3*i-2:3*i;

jj = 3*(i+1)-2:3*(i+1);

kk = 3*(i+2)-2:3*(i+2);

atemp = Th(1,ii) + Tb(1,ii) - Tb(1,jj) + Tt(1,ii) - Tt(1,jj);

btemp = Th(1,jj) + Tb(1,jj) - Tb(1,kk) + Tt(1,jj) - Tt(1,kk);

R(ii,1 )=(Fh(1,jj) - Fh(1,ii)) ...

-c1*(my_cross( atemp , [pi1 pi2 pi3]) + my_cross(btemp,[piplus11...

piplus12 piplus13]))-c2*(my_double_cross_special(omega(1,ii)...

,[pi1 pi2 pi3]) + my_double_cross_special(omega(1,jj),...

[piplus11 piplus12 piplus13]));

end

A = A(:,4:3*Nr);

X = A\R;

X = [0;0;0;X;0;0;0]’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1.4 Position Vectors of Each Rod

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This function solves for the position vectors r

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function r = get_r(Nr,N,rm,p)

r = zeros(1,3*Nr);

if(round(Nr/2)==(Nr/2)) %Even number of rods

r(1,3*(Nr/2+1)-2:3*(Nr/2+1)) = rm + N*p(1,3*(Nr/2+1)-2:3*(Nr/2+1));

%Put one fiber to the right

r(1,3*(Nr/2)-2:3*(Nr/2)) = rm - N*p(1,3*(Nr/2)-2:3*(Nr/2));

%Put one fiber to the left

for i=(Nr/2+2):Nr %Place the rods that are to the right of center

p_sum = [0 0 0];

for n=(Nr/2+2):i

p_sum = p_sum + p(1,3*(n-1)-2:3*(n-1))+p(1,3*n-2:3*n);

end

r(1,3*i-2:3*i) = r(1,3*(Nr/2+1)-2:3*(Nr/2+1))+ N*p_sum;
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end

for i=(Nr/2-1):-1:1 %Place the rods that are to the left of center

p_sum = [0 0 0];

for n = (Nr/2-1):-1:i

p_sum = p_sum + p(1,3*n-2:3*n)+p(1,3*(n+1)-2:3*(n+1));

end

r(1,3*i-2:3*i) = r(1,3*(Nr/2)-2:3*(Nr/2))- N*p_sum;

end

else %Odd number of rods

r(1,3*(Nr+1)/2-2:3*(Nr+1)/2) = rm; %The rod at the center

for i=((Nr+1)/2+1):Nr %The rods to the right

p_sum = [0 0 0];

for n=((Nr+1)/2+1):i

p_sum = p_sum + p(1,3*(n-1)-2:3*(n-1))+p(1,3*n-2:3*n);

end

r(1,3*i-2:3*i) = rm + N*p_sum;

end

for i=(((Nr+1)/2)-1):-1:1%The rods to the left

p_sum = [0 0 0];

for n=(Nr+1)/2-1:-1:i

p_sum = p_sum + p(1,3*n-2:3*n)+p(1,3*(n+1)-2:3*(n+1));

end

r(1,3*i-2:3*i) = rm - N*p_sum;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

1.5 Subroutines

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%the following functions are created to save computational time for

%calculating the cross and dot products

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function c = my_cross(a,b)

c = [-a(3)*b(2) + a(2)*b(3), a(3)*b(1)-a(1)*b(3),-a(2)*b(1) + a(1)*b(2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function c = my_cross_col_vec(a,b)

c = [-a(3)*b(2) + a(2)*b(3); a(3)*b(1)-a(1)*b(3);-a(2)*b(1) + a(1)*b(2)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%this subroutine computes the triple cross product, but for the special

%case of c = a x (a x b)

function c = my_double_cross_special(a,b)

c = [-a(2)^2*b(1) - a(3)^2*b(1) + a(1)*a(2)*b(2) + a(1)*a(3)*b(3),...

a(1)*a(2)*b(1) - a(1)^2*b(2) - a(3)^2*b(2) + a(2)*a(3)*b(3) ,...

a(1)*a(3)*b(1) + a(2)*a(3)*b(2) - a(1)^2*b(3) - a(2)^2*b(3)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function c = my_dot(a,b)

c = a(1)*b(1) + a(2)*b(2) + a(3)*b(3);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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APPENDIX B

Scripts for the Material Property Prediction

2.1 Main Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code is to calculate the sample mean stiffness tensor for a fiber

%reinforced composite material at a specific time during processing

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

clc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%getting data for unit direction vectors and position vectors for a group

%of fibers

newSeed = sum(100*clock);

RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,newSeed));

defaultStream = RandStream.getDefaultStream;

newState = defaultStream.State;

th_vec = [];

phi_vec = [];

Nth = 2E3;%number of angle theta

Nphi = 2E3;%number of angle phi

%these two combined decide the number of fiber

[th_rand,phi_rand] = ARGA_3D(Nth,Nphi);

%call the function ARGA_3D to generate a group of randomly

%oriented fibers

a = rand(length(th_rand),1);

[b,c] = sort(a);

N_fiber = 100;

th_rand = th_rand(c(1:N_fiber));

phi_rand = phi_rand(c(1:N_fiber));

clear a b c

n_previous = 0;

%this gives how many fibers’ motion has been simulated

%previously. Here it is set to be 0, since no simulation is done

%before.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The following save the data obtained from the rod chain model and save
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%them with ordered file name for the convinence of future use.

for n=1:N_fiber

flexible_fiber_motion

%run the rod chain model simulation for each of the fiber

if n+n_previous<10

save([’p_000’,num2str(n+n_previous)],’-ascii’,’p_plot’)

save([’u_000’,num2str(n+n_previous)],’-ascii’,’u_plot’)

save([’p_end_to_end_000’,num2str(n+n_previous)],’-ascii’,...

’p_end_to_end’)

save([’r_000’,num2str(n+n_previous)],’-ascii’,’r_plot’)

save([’p_magnitude_000’,num2str(n+n_previous)],’-ascii’,...

’p_magnitude’)

elseif n+n_previous<100

save([’p_00’,num2str(n+n_previous)],’-ascii’,’p_plot’)

save([’u_00’,num2str(n+n_previous)],’-ascii’,’u_plot’)

save([’p_end_to_end_00’,num2str(n+n_previous)],’-ascii’,...

’p_end_to_end’)

save([’r_00’,num2str(n+n_previous)],’-ascii’,’r_plot’)

save([’p_magnitude_00’,num2str(n+n_previous)],’-ascii’,...

’p_magnitude’)

elseif n+n_previous<1000

save([’p_0’,num2str(n+n_previous)],’-ascii’,’p_plot’)

save([’u_0’,num2str(n+n_previous)],’-ascii’,’u_plot’)

save([’p_end_to_end_0’,num2str(n+n_previous)],’-ascii’,...

’p_end_to_end’)

save([’r_0’,num2str(n+n_previous)],’-ascii’,’r_plot’)

save([’p_magnitude_0’,num2str(n+n_previous)],’-ascii’,...

’p_magnitude’)

else

save([’p_’,num2str(n+n_previous)],’-ascii’,’p_plot’)

save([’u_’,num2str(n+n_previous)],’-ascii’,’u_plot’)

save([’p_end_to_end_’,num2str(n+n_previous)],’-ascii’,...

’p_end_to_end’)

save([’r_’,num2str(n+n_previous)],’-ascii’,’r_plot’)

save([’p_magnitude_’,num2str(n+n_previous)],’-ascii’,...

’p_magnitude’)

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%saving some of the variables for future use

save(’T’,’-ascii’,’T’)
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save(’T_plot’,’-ascii’,’T_plot’)

save(’size_plot’,’-ascii’,’size_plot’)

save(’N_fiber’,’-ascii’,’N_fiber’)

save(’kappa’,’-ascii’,’kappa’)

save(’Nr’,’-ascii’,’Nr’)

save(’N’,’-ascii’,’N’)

save(’w’,’-ascii’,’w’)

save(’D’,’-ascii’,’D’)

save(’a’,’-ascii’,’a’)

save(’Ef’,’-ascii’,’E’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating the sample mean stiffness tensor

%loading the data

load N_fiber

for n=1:N_fiber

if n<10

load([’p_000’,num2str(n)],’-ascii’);

load([’u_000’,num2str(n)],’-ascii’);

load([’p_end_to_end_000’,num2str(n)],’-ascii’);

load([’p_magnitude_000’,num2str(n)],’-ascii’);

load([’r_000’,num2str(n)],’-ascii’);

elseif n<100

load([’p_00’,num2str(n)],’-ascii’);

load([’u_00’,num2str(n)],’-ascii’);

load([’p_end_to_end_00’,num2str(n)],’-ascii’);

load([’p_magnitude_00’,num2str(n)],’-ascii’);

load([’r_00’,num2str(n)],’-ascii’);

elseif n<1000

load([’p_0’,num2str(n)],’-ascii’);

load([’u_0’,num2str(n)],’-ascii’);

load([’p_end_to_end_0’,num2str(n)],’-ascii’);

load([’p_magnitude_0’,num2str(n)],’-ascii’);

load([’r_0’,num2str(n)],’-ascii’);

else

load([’p_’,num2str(n)],’-ascii’);

load([’u_’,num2str(n)],’-ascii’);

load([’p_end_to_end_’,num2str(n)],’-ascii’);

load([’p_magnitude_’,num2str(n)],’-ascii’);

load([’r_’,num2str(n)],’-ascii’);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%load some saved variables

load Ef

load N

load Nr

load size_plot

load N_fiber

load a

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%giving parameters of the composite material

Ef = Ef; %young’s modulus of fiber in Gpa

vf = 0.30; %possion’s ratio of fiber

Em = Ef/10; %young’s modulus of matrix

vm = 0.35; %possion’s ratio of matrix

Vfrac = 0.001; %volume fraction of fiber

ar = N*Nr; %aspect ratio of fiber

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%define the quantities to be used

A_over_L = zeros(size_plot,N_fiber); %the values of A/L,this will be

%calculated for all time steps

distance = zeros(size_plot,Nr-1); %distance from the head of rod 1~Nr-1 to

%the vector p_end_to_end

extent = zeros(size_plot, Nr-1); %distance from the head of the fiber to

%the projection of the head pf each rod

%on the end to end vector

x_coordinate = zeros(size_plot,Nr+1); %the x coordinate of the all the

%heads and ends of rods in the

%primed coordinates

y_coordinate = zeros(size_plot,Nr+1); %the y coordinate of the all the

%heads and ends of rods in the

%primed coordinates

theta = zeros(size_plot,1);%angle theta for all time steps

phi = zeros(size_plot,1);%angle phi for all time steps

beta = zeros(size_plot,1);%angle beta for all time steps

S_unwavy = zeros(6,6); %compliance tensor of the unwavy fibers composites

S_wavy = zeros(6,6); %compliance tensor of the wavy fibers composites

C_wavy = zeros(6,6); %stiffness tensor of the wavy fibers composites

Q = zeros(3,3);%rotation matrix

m = zeros(3,3,3,3); %the sample mean for the stiffness tensor

m_contracted = zeros(6,6); %the sample mean for the stiffness tensor in

%contracted notation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating the compliance tensor for unwavy fibers composites by calling

%the function compliance_uni

S_unwavy = compliance_uni(Ef,vf,Em,vm,Vfrac,ar);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculating the sample mean stiffness tensor

for i=1:size_plot

for ii=1:3

for jj=1:3

for kk=1:3

for ll=1:3

for n=1:N_fiber

m_temp = 0;

%calculating A/L and angle beta

if n<10

p = eval([’p_000’,num2str(n)]);

u = eval([’u_000’,num2str(n)]);

p_end_to_end = eval([’p_end_to_end_000’,...

num2str(n)]);

p_magnitude = eval([’p_magnitude_000’,...

num2str(n)]);

r = eval([’r_000’,num2str(n)]);

elseif n<100

p = eval([’p_00’,num2str(n)]);

u = eval([’u_00’,num2str(n)]);

p_end_to_end = eval([’p_end_to_end_00’,...

num2str(n)]);

p_magnitude = eval([’p_magnitude_00’,...

num2str(n)]);

r = eval([’r_00’,num2str(n)]);

elseif n<1000

p = eval([’p_0’,num2str(n)]);

u = eval([’u_0’,num2str(n)]);

p_end_to_end = eval([’p_end_to_end_0’,...

num2str(n)]);

p_magnitude = eval([’p_magnitude_0’,...

num2str(n)]);

r = eval([’r_0’,num2str(n)]);
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else

p = eval([’p_’,num2str(n)]);

u = eval([’u_’,num2str(n)]);

p_end_to_end = eval([’p_end_to_end_’,...

num2str(n)]);

p_magnitude = eval([’p_magnitude_’,...

num2str(n)]);

r = eval([’r_’,num2str(n)]);

end

head_point = r(i,3*Nr-2:3*Nr)+ ...

N*a*p(i,3*Nr-2:3*Nr);

%the position of the head point of the fiber

for j=1:Nr-1

head_point_rod = r(i,3*j-2:3*j)+ ...

N*a*p(i,3*j-2:3*j);

%the position of the head point of rod 1~Nr-1

temp = my_cross(p_end_to_end(i,:),...

head_point-head_point_rod);

distance(i,j) = norm(temp);

extent(i,j) = abs(my_dot(p_end_to_end(i,:),...

head_point-head_point_rod));

projection = head_point-extent(i,j)*...

p_end_to_end(i,:);

%the coordinate of the projection of

%the head point of rod on the end to

%end vector

distance_direction = head_point_rod-projection;

%the direction pointing from the

%projection to the head point of rod

if my_dot(u(i,3*j-2:3*j),distance_direction)>0

y_coordinate(i,j+1) = distance(i,j);

else

y_coordinate(i,j+1) = -distance(i,j);

end

p_fiber_mid = head_point - 1/2*...

p_magnitude(i,:)*p_end_to_end(i,:);

temp_xx = projection - p_fiber_mid;

if my_dot(temp_xx,p_end_to_end(i,:))>0

x_coordinate(i,j+1) = norm(temp_xx);

else

x_coordinate(i,j+1) = -norm(temp_xx);
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end

end

%the following codes use least square to fit

%a sine curve y=A*sin(2*pi*x/L), where L is

%p_magnitude, for the fiber using x_coordinate

%and y_coordinate

sum11 = 0;

sum22 = 0;

for mm=1:Nr+1

sum11 = sum11 + sin(2*pi*...

x_coordinate(i,mm)/p_magnitude(i,:))*...

y_coordinate(i,mm);

sum22 = sum22 + (sin(2*pi*...

x_coordinate(i,mm)/p_magnitude(i,:)))^2;

end

A = sum11/sum22;

A_over_L(i,n) = A/p_magnitude(i,:);

A_over_L(i,n) = abs(A_over_L(i,n));

plane_direction = ...

my_cross(p_end_to_end(i,:),[0 0 1]);

%the normal vector of the plane formed

%by fiber direction vector and z-axis

temp_1 = my_dot(u(i,3*Nr-2:3*Nr),...

plane_direction);

temp_2 = ...

my_dot(my_cross(u(i,3*Nr-2:3*Nr),...

plane_direction),p_end_to_end(i,:));

%the following lines give the value

%of beta depends on the position of

%body-fixed vector dut to the range

%of beta is [0,2*pi]

if temp_1>=0 && temp_2>0

beta(i) = ...

pi/2-acos(temp_1/...

norm(plane_direction));

elseif temp_1>=0 && temp_2<0

beta(i) = ...

pi/2+acos(temp_1/...

norm(plane_direction));

elseif temp_1<=0 && temp_2>0
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beta(i) = ...

2*pi-(acos(temp_1/...

norm(plane_direction))-pi/2);

elseif temp_1<=0 && temp_2<0

beta(i) = ...

pi/2+acos(temp_1/...

norm(plane_direction));

end

theta(i) = ...

acos(my_dot(p_end_to_end(i,:)...

,[0 0 1]));

temp_3 = ...

[p_end_to_end(i,1) ...

p_end_to_end(i,2) 0];

if temp_3(1)>=0 && temp_3(2)>=0

phi(i) = ...

acos(my_dot(temp_3,...

[1 0 0])/norm(temp_3));

elseif temp_3(1)<=0 &&...

temp_3(2)>=0

phi(i) = ...

acos(my_dot(temp_3,...

[1 0 0])/norm(temp_3));

elseif temp_3(1)<=0 &&...

temp_3(2)<=0

phi(i) = ...

2*pi-acos(my_dot(temp_3,...

[1 0 0])/norm(temp_3));

elseif temp_3(1)>=0 && ...

temp_3(2)<=0

phi(i) = ...

2*pi-acos(my_dot(temp_3,...

[1 0 0])/norm(temp_3));

end

%calculating the elastic properties for

%unidirectional wavy fibers composites by calling

%the function elastic_properties_uni_wavy

[E1,v12,v13,E2,v21,v23,E3,v31,v32,G12,G23,G13]=...

elastic_properties_uni_wavy(S_unwavy,...

A_over_L(i,n));

%calculating the stiffness tensor for

%unidirectional wavy fiber composites by calling

116



%the function stiffness_uni_wavy

[S_wavy,C_wavy] = stiffness_uni_wavy(E1,v12,...

v13,E2,v21,v23,E3,v31,v32,G12,G23,G13);

%calculating the rotation matrix Q

Q(1,1) = sin(theta(i))*cos(phi(i));

Q(1,2) = sin(theta(i))*sin(phi(i));

Q(1,3) = cos(theta(i));

Q(2,1) = -sin(phi(i))*cos(beta(i))-...

cos(theta(i))*cos(phi(i))*sin(beta(i));

Q(2,2) = cos(phi(i))*cos(beta(i))-...

cos(theta(i))*sin(phi(i))*sin(beta(i));

Q(2,3) = sin(theta(i))*sin(beta(i));

Q(3,1) = sin(phi(i))*sin(beta(i))-...

cos(theta(i))*cos(phi(i))*cos(beta(i));

Q(3,2) = -cos(phi(i))*sin(beta(i))-...

cos(theta(i))*sin(phi(i))*cos(beta(i));

Q(3,3) = sin(theta(i))*cos(beta(i));

%calculating the sample mean stiffness tensor

for q=1:3

for rr=1:3

for s=1:3

for t=1:3

if q==1 && rr==1

qr=1;

elseif q==2 && rr==2

qr=2;

elseif q==3 && rr==3

qr=3;

elseif q+rr==5

qr=4;

elseif q+rr==4

qr=5;

elseif q+rr==3

qr=6;

end

if s==1 && t==1

st=1;

elseif s==2 && t==2

st=2;

elseif s==3 && t==3

st=3;

elseif s+t==5

st=4;
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elseif s+t==4

st=5;

elseif s+t==3

st=6;

end

m_temp = m_temp+Q(q,ii)*...

Q(rr,jj)*Q(s,kk)*Q(t,ll)*...

C_wavy(qr,st);

end

end

end

end

m(ii,jj,kk,ll) = m(ii,jj,kk,ll)+m_temp;

end

m(ii,jj,kk,ll) = m(ii,jj,kk,ll)/N_fiber;

end

end

end

end

%getting the contracted stiffness tensor

for ii=1:3

for jj=1:3

for kk=1:3

for ll=1:3

if ii==1 && jj==1

ij=1;

elseif ii==2 && jj==2

ij=2;

elseif ii==3 && jj==3

ij=3;

elseif ii+jj==5

ij=4;

elseif ii+jj==4

ij=5;

elseif ii+jj==3

ij=6;

end

if kk==1 && ll==1

kl=1;

elseif kk==2 && ll==2

kl=2;

elseif kk==3 && ll==3

kl=3;

elseif kk+ll==5

kl=4;

118



elseif kk+ll==4

kl=5;

elseif kk+ll==3

kl=6;

end

m_contracted(ij,kl)=m(ii,jj,kk,ll);

end

end

end

end

%saving the stiffness tensor for each time step

if i<10

save([’stiffness_000’,num2str(i)],’-ascii’,’m_contracted’)

elseif i<100

save([’stiffness_00’,num2str(i)],’-ascii’,’m_contracted’)

elseif i<1000

save([’stiffness_0’,num2str(i)],’-ascii’,’m_contracted’)

else

save([’stiffness_’,num2str(i)],’-ascii’,’m_contracted’)

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%save the fiber waviness for future use

save A_over_L.dat A_over_L ’-ascii’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2.2 Generation of Randomly Oriented Fibers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This function is to generate a randomly distributed fiber orientations

function [th_rand,phi_rand] = ARGA_3D(Nth,Nphi)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Create the values of the distribution function to be sampled from

dist = zeros(Nth,Nphi);

for ii = 1:Nth

for jj = 1:Nphi

dist(ii,jj) = 1/(4*pi);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Get the maximum of the distribution function.

maxd=max(max(dist));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Generate a random array of size (len_th+1)x(len_phi+1)

%with values between 0 and 1.

randval = rand(Nth,Nphi);

mur = mean(mean(randval));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Then to select the points from the distribution function that are greater

%than the randomly generated value that is normalized by the quantity

%maxd/mur.

k = 0;

th_rand = zeros(Nth*Nphi,1);

phi_rand = zeros(Nth*Nphi,1);

for ii=1:Nth

for jj=1:Nphi

if(randval(ii,jj)*maxd/mur <= dist(ii,jj)*sin((ii-1)/(Nth-1)*pi))

k=k+1;

th_rand(k)=(ii-1)/(Nth-1)*pi;

phi_rand(k)=(jj-1)/(Nphi-1)*2*pi;

end

end

end

th_rand((k+1):length(th_rand)) = [];

phi_rand((k+1):length(phi_rand)) = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2.3 Compliance of the Unidirectional Lamina

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This function returns the compliance (S) and stiffness (C) tensors in

%contracted notation given the Young’s moduli of the fiber (EF) and the

%matrix (Em), the Poisson’s Ratio of the fiber (vf) and the matrix (vm)

%along with the volume fraction (Vfrac) and the effective aspect ratio

%(ar)of the fiber. The material stiffness and compliance tensors are

%computed using the Tandon-Weng theory (Tandon, G.P. and G.J. Weng.

%"The Effect of Aspect Ratio of Inclusions on the Elastic Properties

%of Unidirectionally Aligned Composites." Polymer Composites,

%5(4):327-333, October 1984). The paramter for v12 is selected to be

%the one given in Tucker and Liang ("Stiffness Predictions for

%Unidirectional Short-Fiber Composites: Review and Evaluation"

%Composites Science and Technology, 59:655-671, 1999) and provides
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%an alternative for the iterative formulation originally presented in

%Tandon and Weng’s paper.

function [S]=compliance_uni(Ef,vf,Em,vm,Vfrac,ar)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate Lame’s constants

lm = Em*vm / ( (1+vm)*(1-2*vm) );

mum = Em / ( 2*(1+vm) );

lf = Ef*vf / ( (1+vf)*(1-2*vf) );

muf = Ef / ( 2*(1+vf) );

Gm = Em / ( 2*(1+vm) ); %Notice this is the same as mum

Gf = Ef / ( 2*(1+vf) ); %Notice this is the same as muf

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute the parameter g

g = ar/(ar^2-1)^(3/2) * (ar*(ar^2-1)^(1/2)-acosh(ar));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute the Eshelby tensor components S_{ijkl}

S1111 = 1/(2*(1-vm)) * ...

(1 - 2*vm + (3*ar^2-1)/(ar^2-1) - (1 - 2*vm + 3*ar^2/(ar^2-1))*g);

S2222 = 3/(8*(1-vm)) * ar^2/(ar^2-1)...

+1/(4*(1-vm)) * (1 - 2*vm -9/(4*(ar^2-1)))*g;

S3333 = S2222;

S2233 = 1/(4*(1-vm)) * (ar^2/(2*(ar^2-1)) - (1-2*vm + 3/(4*(ar^2-1)))*g );

S3322 = S2233;

S2211 = -1/(2*(1-vm)) * ar^2/(ar^2-1) ...

- 1/(4*(1-vm)) *(1-2*vm-3*ar^2/(ar^2-1))*g;

S3311 = S2211;

S1122 = -1/(2*(1-vm)) * (1 - 2*vm + 1/(ar^2-1)) ...

+1/(2*(1-vm)) * (1 - 2*vm + 3/(2*(ar^2-1)))*g;

S1133 = S1122;

S2323 = 1/(4*(1-vm)) * (ar^2/(2*(ar^2-1)) + (1-2*vm-3/(4*(ar^2-1)))*g);

S3232 = S2323;

S1212 = 1/(4*(1-vm)) * ...

(1-2*vm-(ar^2+1)/(ar^2-1)-1/2*g*(1-2*vm-3*(ar^2+1)/(ar^2-1)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the Di constants

D1 = 1+2*(muf-mum)/(lf-lm);

D2 = (lm+2*mum)/(lf-lm);
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D3 = lm/(lf-lm);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the Bi constants

B1 = Vfrac*D1 + D2 + (1-Vfrac)*( D1*S1111 + 2*S2211 );

B2 = Vfrac + D3 + (1-Vfrac)*( D1*S1122 + S2222 + S2233 );

B3 = Vfrac + D3 + (1-Vfrac)*( S1111 + (1 + D1)*S2211 );

B4 = Vfrac*D1 + D2 + (1-Vfrac)*( S1122 + D1*S2222 + S2233 );

B5 = Vfrac + D3 + (1-Vfrac)*( S1122 + S2222 + D1*S2233 );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the Ai constants

A1 = D1*(B4+B5)-2*B2;

A2 = (1+D1)*B2 - (B4+B5);

A3 = B1 - D1*B3;

A4 = (1+D1)*B1 - 2*B3;

A5 = (1-D1)/(B4-B5);

A = 2*B2*B3 - B1*(B4+B5);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the material coefficients

E11 = Em / ( 1+Vfrac*(A1+2*vm*A2)/A );

E22 = Em / ( 1+Vfrac*(-2*vm*A3+(1-vm)*A4+(1+vm)*A5*A)/(2*A) );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The following terms for G12 and G23 come from the original Tandon Wang

%paper.

G12 = Gm*(1+Vfrac/(Gm/(Gf-Gm)+2*(1-Vfrac)*S1212));

G23 = Gm*(1+Vfrac/(Gm/(Gf-Gm)+2*(1-Vfrac)*S2323));

v12 = (vm*A-vf*(A3-vm*A4))/(A+vf*(A1+2*vm*A2));

v23 = -1+E22/(2*G23);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The compliance matrix for a transversely isotropic material

S=[ 1/E11, -v12/E11, -v12/E11, 0, 0, 0;...

-v12/E11, 1/E22, -v23/E22, 0, 0, 0;...

-v12/E11, -v23/E22, 1/E22, 0, 0, 0;...

0, 0, 0, 1/G23, 0, 0;...
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0, 0, 0, 0, 1/G12, 0;...

0, 0, 0, 0, 0, 1/G12];

C = inv(S);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2.4 Elastic Properties of Each Aggregate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code calculates the elastic properties of composites with

%unidirectionally distributed wavy fibers

function [E1,v12,v13,E2,v21,v23,E3,v31,v32,G12,G23,G13]=...

elastic_properties_uni_wavy(S,A_over_L)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%fiber waviness

alpha = 2*pi*A_over_L; %this quantity defines how curved the fiber is

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculate the quantites needed to calculate the elastic properties

I1 = (1+alpha^2/2)/(1+alpha^2)^(3/2);

I3 = (alpha^2/2)/(1+alpha^2)^(3/2);

I5 = 1-(1+3*alpha^2/2)/(1+alpha^2)^(3/2);

I6 = 1/(1+alpha^2)^(1/2);

I8 = 1-1/(1+alpha^2)^(1/2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%calculate the elastic properties

E1 = 1/(S(1,1)*I1+(2*S(1,2)+S(6,6))*I3+S(2,2)*I5);

v12 = -(S(1,2)*I6+S(2,3)*I8)/(S(1,1)*I1+(2*S(1,2)+S(6,6))*I3+S(2,2)*I5);

v13 = -((S(1,1)+S(2,2)-S(6,6))*I3+S(1,2)*(I1+I5))/...

(S(1,1)*I1+(2*S(1,2)+S(6,6))*I3+S(2,2)*I5);

E2 = 1/S(2,2);

v21 = -(S(1,2)*I6+S(2,3)*I8)/S(2,2);

v23 = -(S(2,3)*I6+S(1,2)*I8)/S(2,2);

E3 = 1/(S(1,1)*I5+(2*S(1,2)+S(6,6))*I3+S(2,2)*I1);

v31 = -((S(1,1)+S(2,2)-S(6,6))*I3+S(1,2)*(I1+I5))/...

(S(1,1)*I5+(2*S(1,2)+S(6,6))*I3+S(2,2)*I1);

v32 = -(S(2,3)*I6+S(1,2)*I8)/(S(1,1)*I5+(2*S(1,2)+S(6,6))*I3+S(2,2)*I1);

G12 = 1/(2*(S(2,2)-S(2,3))*I8+S(6,6)*I6);

G23 = 1/(2*(S(2,2)-S(2,3))*I6+S(6,6)*I8);

G13 = 1/(4*(S(1,1)+S(2,2)-2*S(1,2))*I3+S(6,6)*(I1-2*I3+I5));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This code calculates the stiffness tensor of composites with

%unidirectionally distributed wavy fibers

function[S,C] = stiffness_uni_wavy(E1,v12,v13,E2,v21,v23,E3,v31,v32,G12,...

G23,G13)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2.5 Stiffness Tensor of Each Aggregate

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S=[ 1/E1, -v21/E2, -v31/E3, 0, 0, 0;...

-v12/E1, 1/E2, -v32/E3, 0, 0, 0;...

-v13/E1, -v23/E2, 1/E3, 0, 0, 0;...

0, 0, 0, 1/G23, 0, 0;...

0, 0, 0, 0, 1/G13, 0;...

0, 0, 0, 0, 0, 1/G12];

C = inv(S);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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APPENDIX C

Derivation of the Rotation Matrix

From basic coordinate rotation theory, a fourth-order tensor in a coordinate

xyz is rotated right-handedly into a coordinate x′y′z′ by

T′ = QQTQTQT (3.1)

where Q is the rotation matrix from the coordinate xyz into the coordinate x′y′z′.

QT is the transpose of Q and Q is orthogonal. Let Q = RT , then Equation (3.1)

becomes

T′ = RTRTTRR (3.2)

where R is actually the rotation matrix from the coordinate x′y′z′ into the coordinate

xyz. By pre-multiplying RR and op-multiplying RTRT on both sides of Equation

(3.3), we can obtain the equation for rotating a fourth tensor right-handedly from

coordinate x′y′z′ into coordinate xyz as

T = RRT′RTRT = QTQTT′QQ (3.3)

In this research, it’s more straightforward to directly derive R than derive Q.

So the following derivation is for developing the rotation matrix R, from coordinate

x′y′z′ into xyz. In R3, coordinate system rotations about the x−, y−, and z− axes

in a counterclockwise direction when looking towards the origin give the rotation

matrices as

Rx(α) =

1 0 0
0 cosα sinα
0 − sinα cosα

 (3.4)
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Ry(m) =

cosm 0 − sinm
0 1 0

sinm 0 cosm

 (3.5)

Rz(γ) =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 (3.6)

From Figure 4.1, in order to rotate the coordinate x′y′z′ into the coordinate xyz,

first rotate about the x′−axis clockwise by β, and then rotate about the y′−axis

counterclockwise by π
2
−θ, and at last rotate about the z′−axis clockwise by ϕ, which

makes the rotation matrix R a matrix product of three rotation matrices as

R = Rz′(γ = −ϕ)Ry′(m =
π

2
− θ)Rx′(α = −β) (3.7)

Thus from Q = RT , we obtain the rotation matrix Q in Equation (3.8) as

a =

 sin θ cosϕ sin θ sinϕ cos θ
− sinϕ cos β − cos θ cosϕ sin β cosϕ cos β − cos θ sinϕ sin β sin θ sin β
sinϕ sin β − cos θ cosϕ cos β − cosϕ sin β − cos θ sinϕ cos β sin θ cos β

(3.8)
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