
 

 

 

 

 

 

 

 

ABSTRACT 

 

Deep Learning for Energy-efficient Wireless Communications  

and Spectrum Management 
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Mentor: Liang Dong, Ph.D. 

 

 

 In the past couple of decades, wireless communication has undergone rapid 

development. The current fourth generation and upcoming fifth generation wireless 

technologies promise us an ultra-fast data rate. However, a lot of energy is sacrificed in 

order to guarantee high quality communication. Therefore, energy-efficient wireless 

communication has been widely explored under the background of scarce energy 

resource and environmental-friendly data transmission.  

In order to assure the fast communication speed and network reliability, the 

structures of wireless communication systems become more and more complicated. The 

rational resource allocation in the sophisticated communication systems is a tough 

problem that urgently needs to be solved. The conventional communication theories 

exhibit limitations in fulfilling the perfect resource allocation in the systems. 

Nevertheless, Deep Learning methods are expert at solving sophisticated optimization 

problems. The key advantages of Deep Learning are the efficient learning of an enormous 

amount of data and the precise analysis for the hidden distribution. Therefore, Deep 



Learning methods can be used to solve complicated but useful energy efficiency 

optimization problems in wireless communication systems.  

This dissertation first explores an energy-efficient wireless communication 

system: the Simultaneous Wireless Information and Power Transfer system. Specifically, 

the wireless transmitters stably communicate with the information receivers, while there 

are several energy harvesters. The harvesters can take the electromagnetic waves as the 

energy source in order to charge the low power Internet of things. Deep Learning 

algorithms are utilized to optimize the wireless information and power transfer 

strategies. 

Second, this dissertation discusses another energy-efficient wireless 

communication system: a multiuser downlink Orthogonal Frequency Division Multiple 

Access data transmission system. In the system, the base station aims to achieve the 

highest communication quality with the least energy consumption. Deep Learning 

algorithms are applied to accomplish the energy-efficient wireless transmission. 

In summary, this dissertation investigates the usefulness of Deep Learning 

algorithms to boost the performance of two energy-efficient wireless communication 

systems, the Simultaneous Wireless Information and Power Transfer system and 

multiuser downlink Orthogonal Frequency Division Multiple Access data transmission 

system. The numerical results prove the excellence of Deep Learning methods in solving 

the optimization problems in energy-efficient wireless communication systems. 
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CHAPTER ONE 

 

Introduction 

 

The fifth generation (5G) wireless communication system is designed to satisfy the 

huge demands for high speed and low latency communication. However, the traditional 

communication theories have difficulties in achieving satisfactory system performance for 

several reasons. First, in many complicated communication systems, it is difficult to 

conduct a real-time channel estimation. In all communication systems, the signals are 

transmitted through a medium, which is called the channel. The distortion or noise in the 

channel is added to the signals. Imprecise channel estimation dramatically degrades the 

system performance since the design of the traditional communication systems relies 

heavily on the channel conditions. Second, the existing communication systems show 

deficiency in achieving low latency communication. Since a large number of traditional 

communication methods can only operate iteratively, it takes a long time for the base 

stations to make the transmission decision [1]. In order to deal with these difficulties in the 

real communication systems, Machine Learning (ML), especially Deep Learning (DL) 

methods have been widely applied to solve practical communication problems [2, 3]. 

In the DL process, the Deep Neural Network (DNN) is proven to be a universal 

function approximator [4]. No matter how complicated the optimization problems are, the 

learned operating rules can be represented by the tuned weights in the neural network (NN). 

Besides, once the NN is well trained and utilized in the communication systems, NN can 
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immediately determine a transmission strategy for the transmitter, which largely increases 

the signal processing speed and realizes the low latency communication. 

Moreover, some complicated communication problems are formulated as the long-

term optimization problems, such as the multiuser Orthogonal Frequency Division 

Multiple Access (OFDMA) data packet transmission problem and the everlasting wireless 

charging problem. The problems are analyzed in a period of time. Whether the optimization 

goal is accomplished depends on each action that is taken within the time period. In order 

to solve such global optimization problems, the transmitter has to dynamically alter its 

transmission strategy in accommodating to the channel variations. However, the hardware 

limitations are the main obstacles to carry out the effective real-time channel estimation [5, 

6]. Without the channel distribution information, the conventional communication methods 

cannot be implemented dynamically. Nevertheless, Deep Reinforcement Learning (DRL) 

is skilled at solving the global optimization problems with limited environmental 

information [7]. Reinforcement learning (RL) is a good method in achieving long-term 

benefits which are not afforded by traditional approaches. Nonetheless, RL shows bad 

performance in complex decision-making tasks. For this reason, DRL, which has the 

architecture of DNN with RL algorithms, was invented. Focusing on long-term reward, 

DRL can optimize the transmission strategies in a complicated system even without 

complete channel information. More recently, DRL has been applied to deal with complex 

communication problems and has shown to achieve good performance [3]. Multi-Armed 

Bandit (MAB) is another important model for studying the exploration and exploitation 

tradeoff in RL. MAB is good at maximizing the expected system performance without the 
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full knowledge of the environment. Recently, MAB has been used to deal with wireless 

communication issues and achieved excellent system performance [8]. 

The summary of the above-mentioned algorithms is presented in Fig. 1.1. Given all 

its advantages, DL is a good method in solving the optimization problems in energy-

efficient wireless communication systems.  

 

 

Figure 1.1: Artificial Intelligence algorithms in solving wireless communication 

optimization problems. 

 

 

Energy-efficient communication attracts more and more attentions from both 

academia and industry [9, 10]. 5G communication systems are able to deliver up to one 

hundred times as much data as the fourth generation (4G) communication systems. 
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However, 5G communication systems consumes up to one hundred times as much energy 

as 4G communication systems at a cost. In order to reduce the energy consumption and 

greenhouse gas emission, energy saving communication infrastructures are urgently 

needed. The research in this dissertation focuses on improving the system performance in 

two energy-efficient wireless communication systems: Simultaneous Wireless 

Information and Power Transfer (SWIPT) system and multiuser downlink OFDMA data 

transmission system. 

 

Simultaneous Wireless Information and Power Transfer 

 

Radio-frequency (RF) energy harvesting is a promising and feasible technology in 

5G communication systems [11]. The energy harvesters are able to harvest energy from 

RF signals. The structure of the SWIPT system is shown in Fig. 1.2. The multi-antenna 

wireless transmitter communicates with information receivers while delivering the 

electromagnetic waves to each energy harvester as the energy supply. The harvested energy 

can help the Internet of Things (IoT) devices prolong their battery life, which can 

effectively improve the system energy efficiency. With the knowledge of the channel 

information, the transmitter can adjust its transmission strategy to boost the energy 

harvesting rate at the harvesters. However, the estimation of channel at the harvesters is 

difficult due to the hardware limitations [6]. Moreover, the SWIPT system not only radiates 

the energy to the energy harvesters, but delivers the information to the information receiver. 

It is difficult to determine the optimal transmission strategy that coordinates both the 

wireless power transfer and the wireless information transfer. Given these obstacles, a 

DNN is used to solve the optimization problem in the SWIPT system. To avoid high 

computational complexity, the optimal power allocation is acquired by a DNN instead of 
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solving a convex optimization problem. The simplified channel vectors and the information 

rate requirement are the input to the DNN. The DNN is trained offline with a large amount 

of simulated data. When the channels experience block fading, the K-means clustering 

algorithm is applied to classify the channels into several classes. For each class, a DNN is 

trained. The transmitter determines what class the channel belongs to and uses the DNN to 

find the optimal transmission strategy. 

 

 

Figure 1.2: Simulataneous Wireless Information and Power Transfer system 

 

 

Next, the wireless power transfer is formulated through a continuous charging 

process. By adapting its transmission strategy, the transmitter fully charges the energy 

buffers of all energy harvesters in the shortest amount of time while maintaining the target 

information rate toward the receiver. At the beginning of each time slot, the transmitter 

determines the particular transmission strategy to transmit with. Throughout the whole 

charging process, the transmitter doesn’t estimate the channel condition from the 
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transmitter to any energy harvester. Due to the high complexity of the system, the goal of 

the work is to apply a Deep Q-Network (DQN) algorithm to dynamically determine the 

optimal transmission strategy at the transmitter. 

After that, one transmitter system is upgraded to multiple transmitters case. 

Multiple wireless transmitters communicate with their intended information receivers 

while radiating RF energy to multiple nearby energy harvesters. The channels from the 

transmitters to the receivers and to the energy harvesters are time-varying and unknown. 

The transmitters jointly determine their multi-antenna transmissions to fairly charge all the 

energy harvesters while maintaining the signal-to-interference-and-noise ratio (SINR) at 

the receivers. This task is formulated as a Combinatorial Multi-Armed Bandit (CMAB) 

problem and is solved with the Upper Confidence Bound (UCB) algorithm. Numerical 

results show that the algorithm can quickly converge to the optimal strategy with moderate 

signaling overhead. The UCB algorithm has superior performance in fair energy harvesting 

while maintaining communication quality. 

 

Multiuser OFDMA Energy-efficient Wireless Transmission 

 

As a promising multi-access technique, OFDMA is applied to many broadband 

wireless communication systems. Multiple access is achieved in OFDMA by spectrum 

management. Once OFDMA is adopted by multiple users, a good spectrum management 

policy can sufficiently exploit multiple users’ diversity in order to enhance the overall 

system performance [12]. An OFDMA operating procedure is shown in Fig. 1.3. In order 

to reduce the energy consumption in communication system and green gas emission, 

energy-efficient transmission attracts much attentions. Energy efficiency is defined as the 

number of bits that can be sent over a unit of energy consumption, which is an effective 
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metric to evaluate the efficiency of the energy consumption in wireless communication 

[13]. Energy-efficient transmission aims at achieving the highest communication quality 

with the least energy consumption. The energy efficiency problems in OFDMA wireless 

communication systems have recently been discussed. In [14], the authors maximized the 

energy efficiency of the worst-case communication link under the information rate, total 

transmit power and available subcarrier constraints. 

 

 
 

Figure 1.3: OFDMA operating mechanism 

 

 

In this dissertation, a multiuser downlink OFDMA wireless transmission system is 

constructed. The base station communicates with multiple mobile users. The base station 

intends to consume the least energy to guarantee the highest Quality of Service (QoS). The 

spectrum management strategies are adjusted in order to maximize the total energy 

efficiency while maintaining the communication quality. 

In OFDMA system, adaptively performing resource allocation (spectrum 

management) on each subcarrier can significantly improve the energy efficiency of the 
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system. However, it is not easy to acquire the optimal subcarrier assignment and power 

allocation strategies in solving the complex energy efficiency optimization problem. 

Iterative algorithm only leads to a sub-optimal solution [14]. Due to the non-convexity of 

the optimization, two individual DNNs are trained to solve the optimization problem. With 

the channel gain as the input, two DNNs can output the optimal power allocation and 

subchannel assignment, respectively. A Refined Exhaustive Search algorithm is invented 

in order to generate the training data. The DNNs are trained with simulated data offline but 

can be utilized online for an immediate reaction. The simulation results prove that the 

DNNs achieve good system performance with extremely fast reaction speed. 

After that, the energy-efficient transmission is formulated as a continuous process. 

The dynamic subchannel assignment and power allocation strategies are optimized in order 

to maximize the total energy efficiency while delivering the information payload to each 

mobile user within the time budget. The optimization is formulated as a long-term 

optimization problem, in which the optimization target is related to the real-time resource 

allocation strategies. A Deep Deterministic Policy Gradient (DDPG) framework is utilized 

to solve the optimization problem. With proper design of the system state and the reward 

function, the resource allocation policy can be determined for multiple users’ energy-

efficient transmission. As the number of available subchannels increases, high dimensional 

action increases the difficulty of implementing DDPG algorithm. Therefore, a hybrid 

algorithm is invented: a DDPG is applied to determine the power allocation strategy, while 

a heuristic approach is utilized to assign the subchannels to multiple users. The simulation 

results prove the excellent performance of the invented hybrid approach. 
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Dissertation Overview 

 

In Chapter One, the growing demand of energy-efficient wireless communication 

systems is analyzed. In order to achieve rational resource allocation in the energy-

efficient wireless communication systems, the powerful DL methods are strongly 

recommended. The motivation of applying DL methods in solving the complicated 

optimization problems is discussed. Two practical energy-efficient wireless 

communication systems are established. They are SWIPT system and multiuser downlink 

OFDMA data transmission system, respectively. The background of designing two 

wireless systems are provided. 

The specific system models are discussed from Chapter Two to Chapter Six. The 

relationship diagram of the system models are shown in Fig. 1.4. 

 

 

Figure  1.4: Relationship diagram of the system models 
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In Chapter Two, the mathematical model of SWIPT system is formulated. The 

single wireless transmitter static system model is considered. The base station aims at fairly 

charging multiple energy harvesters while maintaining the communication QoS. In order 

to reduce the computational complexity, the DNN is applied to solve the problem. Chapter 

Two is published as: [15] and [16]. In [15], my contributions included system modeling, 

mathematical derivation, and coding. Dr. Liang Dong contributed to simulation 

verification. In [16], my contributions included system modeling, mathematical derivation, 

and coding. Dr. Liang Dong and Mr. Yuchen Qian contributed to simulation verification. 

In Chapter Three, the system model is extended from the single transmitter static 

system to dynamic system, which indicates the channel condition is time-variant. The long-

term optimization problem is formulated in the SWIPT system. A DQN is trained to solve 

the dynamic power allocation problem in a continuous wireless charging process. DQN 

algorithm shows the preeminence in determining the real-time transmission strategy for 

complex systems. 

In Chapter Four, the single communication pair in SWIPT system is extended to 

multiple communication transceivers. The transmitters jointly determine their multi-

antenna transmissions to fairly charge all the energy harvesters while maintaining the 

required SINR at the receivers. This task is formulated as a CMAB problem and is solved 

with the UCB algorithm. Chapter Four is published as: [18]. My contributions included 

system modeling, mathematical derivation, and coding. Dr. Liang Dong and Mr. Yuchen 

Qian contributed to simulation verification. 

In Chapter Five, the mathematical model of multiuser downlink OFDMA data 

transmission system is formulated. The spectrum management is implemented in OFDMA 
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system. In the system, the channel is invariant over the time. The subchannel assignment 

and power allocation strategies are optimized in order to maximize the total energy 

efficiency while maintaining the information rate from the base station to each mobile user. 

A Refined Exhaustive Search algorithm is invented to generate the training data and two 

DNNs are trained to determine the power allocation and subchannel assignment. 

In Chapter Six, the channel environment is considered to be time-variant and the 

dynamic subchannel assignment and power allocation strategies are optimized in order to 

maximize the total energy efficiency while successfully delivering the information payload 

to each user within the time budget. A DDPG framework is utilized to determine the 

resource allocation policy for multiple users’ energy-efficient transmission. As the number 

of available subchannels increases, high dimensional action increases the difficulty of 

training the NNs in DDPG algorithm. Therefore, a hybrid algorithm is invented in solving 

the optimization problem. 

Chapter Seven summarizes the dissertation and proposes the future research 

directions. 

All research in this dissertation has been published or submitted for publication. 

The modeling of SWIPT system is published in [15]. The application of DNN in solving 

SWIPT optimization problem is published in [16]. The DQN framework in solving 

continous charging problem is presented in [17]. The MAB approach in solving multiuser 

SWIPT problem is published in [18]. The DNN algorithm in solving multiuser downlink 

OFDMA optmization problem is presented in [19]. The DDPG algorithm in solving 

dynamic spectrum management problem in OFDMA system is presented in [20, 21]. 
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CHAPTER TWO 

 

Deep Learning for Optimized Wireless Information and Power Transfer 

 

This chapter published as: Y. Xing and L. Dong, "Passive radio-frequency energy 

harvesting through wireless information transmission", in Pro. of IEEE DCOSS, Jun. 

2017, pp. 73-80. 

 

Y. Xing, Y.Qian and L. Dong, "Deep learning for optimized wireless transmission to 

multiple rf energy harvesters", in Pro. of IEEE VTC Fall, 2018.  

 

 

Introduction 

 

Energy harvesting is essential in green wireless communications and networks 

because it can alleviate the problem of limited battery life that restricts the massive 

deployment of small wireless devices. Passive RF energy harvesting collects the radiated 

energy from adjacent wireless information transmitters instead of using a dedicated 

wireless power source. For a wireless transmitter-receiver pair with multiple antennas, 

adjusting the transmit signal covariance matrix can provide high data-rate communication 

over the multiple-input multiple-output (MIMO) channel. Meanwhile, the radiated RF 

energy can be harvested by the surrounding RF energy harvesters. 

In practice, it is difficult for the transmitter to acquire the knowledge of the channels 

to the RF energy harvesters. The random locations of the energy harvesters and the 

hardware restriction make the channel estimation challenging [6]. The analytic center 

cutting plane method (ACCPM) was proposed for the transmitter to iteratively approach 

the channel with a few bits of feedback from the RF energy receiver [6]. The method is 

implemented by solving a convex optimization problem, which incurs high computational 
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complexity. To reduce complexity, Kalman filtering was proposed to implement the 

channel estimation. However, the convergence is slow. 

To manage the RF energy harvesting network, either time-splitting or weight-

splitting beamforming strategies can be used. Time-splitting beamforming focuses on 

charging one energy harvester at a time. Weight-splitting beamforming splits the 

microwave beam toward multiple energy harvesters simultaneously [22]. The weight-

splitting method transmits with a fixed beam pattern and outperforms the time-splitting 

method with less computational complexity. In this work, treating each RF energy 

harvester consistently and fairly, the weight-splitting beamforming method is adopted to 

transmit with a beam pattern that maximizes the minimum harvested energy among the 

multiple energy harvesters [23]. 

In the proposed model, the matrix channel between the communication pair is 

assumed to be known to the transmitter, whereas the vector channel to the RF energy 

harvester is unknown. Parameters of a simplified channel vector can be estimated through 

particular transmissions and very limited feedback. Once the transmitter obtains the 

simplified channel vector, it can find the optimal transmit covariance matrix using 

optimization methods, e.g., the interior point method. 

To avoid high computational complexity, a novel method is proposed to find the 

optimal power allocation with a DNN instead of solving a convex optimization problem. 

The simplified channel vectors and the information rate requirement are the input to the 

DNN. The DNN is trained offline with a large number of simulated data. 

When the channels experience block fading, the K-means clustering algorithm is 

applied to classify each of the channels into one of several classes. For each class, a DNN 
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is trained. The transmitter determines what class the channel belongs to and uses the DNN 

to find the optimal transmit covariance matrix. 

 

Simultaneous Wireless Information and Power Transfer System 

 

System Model 

 

As a wireless communication transmitter transmits to its receiver, the radiation can 

be collected by adjacent RF energy harvesters. As shown in Fig. 2.1, an information 

transmitter is perceived by 𝐾 surrounding energy harvesters. The information transmitter 

has 𝑀𝑡 antennas and its corresponding receiver has 𝑀𝑟 antennas. Each of the RF energy 

harvesters in the vicinity has one receive antenna. 

 

 

Figure 2.1: A pair of wireless communication transmitter and receiver as well as multiple 

energy harvesters   
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The narrowband signals are transmitted over quasi-static fading channels and the 

RF energy harvesters respond well to the carrier frequency. In the baseband equivalent 

model, the signal transmitted at the information transmitter is 𝐱 ∈ ℂ𝑀𝑡 . The energy 

harvester does not need to convert the received signal from the RF band to the baseband. 

Nevertheless, the harvested RF power is proportional to the power of the baseband signal. 

The baseband received signal at the 𝑖th energy harvester, 𝑖 ∈ 𝒦 = {1,2,… ,𝐾}, is given by  

 𝑢𝑖 = 𝐠𝑖
𝐻𝐱 + 𝑛𝑖 (2.1) 

 where 𝐠𝑖 ∈ ℂ
𝑀𝑡×1 is the conjugate channel vector from the information transmitter to the 

𝑖th energy harvester, and 𝑛𝑖 is the background noise. The signal received at the information 

receiver is 𝐲 ∈ ℂ𝑀𝑟 , which is given by  

 𝐲 = 𝐇𝐱 + 𝐳 (2.2) 

 where 𝐇 ∈ ℂ𝑀𝑟×𝑀𝑡 is the normalized baseband equivalent channel from the information 

transmitter to its receiver, 𝐳 ∈ ℂ𝑀𝑟×1  is a zero-mean circularly symmetric complex 

Gaussian noise vector with 𝐳~𝒞𝒩(𝟎, 𝜎𝑛
2𝐈). It is assumed without loss of generality that 

𝜎𝑛
2 = 1 for clarity. The channels are known to the transmitter [24]. 

The received power at energy harvester 𝑖 indicates the harvested energy normalized 

by the baseband symbol period. It can be written as  

 𝜁E[|𝑢𝑖|
2] = 𝜁𝐠𝑖

𝐻𝐐𝐠𝑖 (2.3) 

 where 𝐐 denotes the transmit covariance matrix of signal 𝐱, i.e.,  

 𝐐 = E[𝐱𝐱𝐻] (2.4) 

 𝜁 is a constant that indicates energy conversion efficiency. It is implied that the noise 

power is negligible compared with the received signal power. 
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For the information transmission, it is assumed that the Gaussian codebook with 

infinitely many codewords is used for the symbols and the expectation of the transmit 

covariance matrix is taken over the entire codebook. The covariance matrix is Hermitian 

positive semidefinite, i.e., 𝐐 ⪰ 0. The transmit power is limited by the transmitter’s power 

constraint 𝑃, i.e.,  

 Tr(𝐐) ≤ 𝑃 (2.5) 

 When channel matrix 𝐇 is known to the transmitter and the receiver, from an information-

theoretical perspective, the maximum achievable information rate is given by  

 𝑟 = log|𝐈 + 𝐇𝐐𝐇𝐻| (2.6) 

 With transmitter precoding and receiver filtering, the capacity of the MIMO channel is the 

sum of the capacities of the parallel non-interfering single-input single-output channels 

(eigenmodes of channel 𝐇) [25, 26]. 

The channel vector 𝐠𝑖 is used to describe the wireless link from the transmitter to 

energy harvester 𝑖. Without loss of generality, suppose that the energy harvesting channel 

vector is normalized, i.e.,  

 ∥ 𝐠𝑖 ∥= 1 (2.7) 

 The average channel gain can be easily estimated. 

 

Problem Formulation 

 

For the wireless transmitter, the objective is to maximize the minimum energy 

harvesting rate of multiple RF energy harvesters while satisfying the transmit power 

constraint and the minimum achievable rate requirement of the information receiver. This 

is accomplished by designing the transmit covariance matrix 𝐐.  
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The optimization problem can be formulated as  

 𝒫1:

maximize
𝐐 min

𝑖∈𝒦
{𝐠𝑖
𝐻𝐐𝐠𝑖}

subjectto 𝐐 ⪰ 𝟎

Tr(𝐐) ≤ 𝑃

log|𝐈 + 𝐇𝐐𝐇𝐻| ≥ 𝑅

 (2.8) 

 where 𝑅  is the minimum achievable information rate. Problem 𝒫1  is a convex 

optimization problem for which efficient numerical optimization is possible [27] . 

A singular value decomposition on 𝐇 gives  

 𝐇 = 𝐔𝚺𝐕𝐻 (2.9) 

With  

 𝐐̂ = 𝐕𝐻𝐐𝐕 (2.10) 

 and  

 𝐠̂𝑖 = 𝐕
𝐻𝐠𝑖 (2.11) 

 Problem 𝒫1 can be written as  

 𝒫1:

maximize
𝐐̂ min

𝑖∈𝒦
{𝐠̂𝑖
𝐻𝐐̂𝐠̂𝑖}

subjectto 𝐐̂ ⪰ 𝟎

Tr(𝐐̂) ≤ 𝑃

log|𝐈 + 𝚺𝐐̂𝚺𝐻| ≥ 𝑅.

 (2.12) 

When the constraint on the achievable information rate in (8) and (12) takes effect, 

𝐐̂ is a diagonal matrix. This is because the capacity formula (6) is derived as MIMO 

channel 𝐇 can be decomposed in parallel eigenmode channels. The Hadamard’s inequality 

states that the determinant of a positive definite matrix is less than or equal to the product 

of its diagonal entries.  
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Therefore, the above optimization problem is modified as  

 𝒫1:

maximize
{𝑞̂𝑚}

min
𝑖∈𝒦

{∑𝑀𝑚=1 |𝑔̂𝑖𝑚|
2𝑞̂𝑚}

subjectto 𝑞̂𝑚 ≥ 0,   ∀𝑚

∑𝑀𝑚=1 𝑞̂𝑚 ≤ 𝑃

∑𝑀𝑚=1 log(1 + |𝜎𝑚|
2𝑞̂𝑚) ≥ 𝑅

 (2.13) 

 where {𝑞̂𝑚} are the diagonal elements of 𝐐̂, {𝜎𝑚} are the diagonal elements of 𝚺, and 

{𝑔̂𝑖𝑚} are the elements of 𝐠̂𝑖. 

The power allocated on each eigen-channel is regulated as  

 𝐪̂ = [𝑞̂1, 𝑞̂2, … , 𝑞̂𝑀]
𝑇 (2.14) 

 The simplified channel vector from the transmitter to the 𝑖 th RF energy harvester is 

defined as  

 𝐚𝑖 = [|𝑔̂𝑖1|
2, |𝑔̂𝑖2|

2, … , |𝑔̂𝑖𝑀|
2]𝑇 , 𝑖 ∈ 𝒦 = {1,2,… ,𝐾} (2.15) 

 With the assumption of channel normalization,  

 ∥ 𝐚𝑖 ∥1= 1 (2.16) 

 The simplified channel vector contains no phase information. The 𝐾 simplified channel 

vectors compose matrix 𝐀 ∈ ℝ𝑀×𝐾 that  

 𝐀 = [𝐚1, 𝐚2, … , 𝐚𝐾] (2.17) 

The channel vectors {𝐠𝑖} are usually unknown to the transmitter. Nevertheless, in 

Problem 𝒫1, given the simplified channels 𝐀, the optimal 𝐪̂ can be calculated. The 

algorithm for the transmitter to acquire 𝐀 is presented in Alg. 1. If the transmitter has 𝑀 

antennas, the simplified channel vector to each energy harvester can be estimated with 𝑀 

feedbacks of the received power levels. Comparatively, acquiring the channel vectors 

{𝐠𝑖} incurs much larger feedback overhead. 
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Algorithm 1: Acquiring the simplified channels 𝐀   
input:   channel matrix 𝐇   
output: simplified channels 𝐀 

      1. Perform SVD on 𝐇: 𝐇 = 𝐔𝚺𝐕𝐻. 

      2. for 𝑙 = 1,2, . . .𝑀 do 

      3.     Construct power allocation vector 𝐪̂ ∈ ℝ𝑀×1, where 𝑞̂𝑗 = {
𝑃, 𝑗 = 𝑙
0, 𝑗 ≠ 𝑙

 ,  

                 𝑗 = 1,… ,𝑀. 

      4.     Calculate the transmit covariance matrix as 𝐐 = 𝐕𝐐̂𝐕𝐻 . Transmit with 𝐐. 

       5.     The 𝑖th harvester measures the received power 𝑝𝑖 and feeds it back to the   

    transmitter, ∀𝑖 ∈ 𝒦. 

       6.     The element of the simplified channel vector to the 𝑖th RF energy harvester on  

               the 𝑙th eigen-channel is obtained as |𝑔̂𝑖𝑙|
2 = 𝑝𝑖/𝑃, ∀𝑖 ∈ 𝒦. 

       7.     The simplified channels are acquired 𝐀 = [𝐚1, 𝐚2, … , 𝐚𝐾].   
       8. end for   
 

Optimal Transmission Strategy with Deep Neural Network 

 

Deep Neural Network Structure 

 

Instead of using any optimization solver, a DNN is implemented at the transmitter 

to find the optimal power allocation 𝐪̂ on the eigen-channels for the max-min problem 𝒫1. 

The DNN is trained offline with a large number of simulated data. It reduces the complexity 

of online execution and increases the response speed of the transmitter. In [28], an artificial 

NN was applied to transmit-power control in a MIMO system. The NN output was a 

selection from a group of fixed power allocation patterns. In this work, the output of the 

DNN is required to approach the exact optimal power allocation. The structure of the DNN 

is shown in Fig. 2.2. 
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Figure  2.2: Structure of deep neural network for transmitter power allocation. ←: Pilot 

signals, ⇢: Feedbacks of received power levels. DNN output 𝐪̂out. 
 

 

The transmitter acquires the simplified channels 𝐀 according to Alg. 1 and uses it 

as the input to the DNN. The input is  

 𝐚in = vec(𝐀) (2.18) 

 and 𝐚in ∈ ℝ𝑀𝐾×1 The output of the DNN is  

 𝐪̂out = [𝑞̂1
out, 𝑞̂2

out, … , 𝑞̂𝑀
out]𝑇 (2.19) 

The input-output relation of the DNN is defined as  

 𝐪̂out = 𝐅(𝐚in) (2.20) 

 where function 𝐅(⋅)  derives 𝐪̂out  based on 𝐚in  in order to maximize 

min𝑖∈𝒦 ∑
𝑀
𝑚=1 |𝑔̂𝑖𝑚|

2𝑞̂𝑚
out. The DNN is trained using the optimal 𝐪̂∗ solved in Problem 𝒫1. 

The size of input to the DNN is set as 𝑀𝐾. Therefore, the DNN can handle the case 

of at most 𝐾 nearby RF energy harvesters. If the actual number of the RF energy harvesters 
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𝐾 is less than 𝐾, in order to regulate the size of the DNN input, the simplified channels 𝐀 

is constructed as  

 𝐀 = [𝐚1, … , 𝐚𝐾̃ , 𝐚1, … , 𝐚1⏟    
𝐾−𝐾̃

] (2.21) 

 and let  

 𝐚in = vec(𝐀) (2.22) 

 to maximize min{𝑝1, … , 𝑝𝐾̃} is equivalent to maximize min{𝐀𝑇𝐪̂}. 

In Problem 𝒫1 , the optimal 𝐪̂  is also determined by the information rate 

requirement 𝑅. The DNN can be adaptable when 𝑅 is treated as an additional input feature. 

That is,  

 𝐚in = [
vec(𝐀)
𝑅

] (2.23) 

 and 𝐚in ∈ ℝ(𝑀𝐾+1)×1. With the extra input feature 𝑅, the DNN can be trained to produce 

𝐪̂out that maximizes the minimum received power and satisfies any preset information rate 

requirement 𝑅. 

The input feature 𝑅 should be in the range 𝑅 ∈ [0, 𝑅max] to make it feasible to train 

the DNN. If 𝑅 > 𝑅max, Problem 𝒫1 does not have any feasible solution. Considering only 

the constraints of Problem 𝒫1, 𝑅max  can be acquired with the water-filling algorithm. The 

power allocation that maximizes the information rate is given by  

 𝑞̂𝑚 = max (0,
1

𝜈
−

1

|𝜎𝑚|
2) ,𝑚 = 1,2, … ,𝑀 (2.24) 

 where the water level is  

 1/𝜈 = (𝑃 + ∑𝑚∈𝒲
1

|𝜎𝑚|
2)/|𝒲| (2.25) 

 and 𝒲 is the set that indicates the eigen-channels that are allocated with non-zero power.  
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            The upper limit of the achievable information rate is given by  

 𝑅max = ∑𝑚∈𝒲 log(1 + |𝜎𝑚|
2 (

1

𝜈
−

1

|𝜎𝑚|
2)). (2.26) 

 𝑅max  denotes the upper bound. 

 

 

Deep Neural Network Algorithm 

 

The transmitter aims to determine the optimal transmission strategy over vector 

channels 𝐠𝑖. The simplified channel vector 𝐚in are taken as the input to the NN. The desired 

outputs of the NN are 𝐪̂, which are used to construct the optimal transmit covariance 

matrix. 

𝑁𝐿 is defined as the total number of the NN’s layers. 𝐯𝑙 denotes the output vector 

of the 𝑙th layer  

 𝐯𝑙 = [𝑣1
𝑙 , 𝑣2

𝑙 , … , 𝑣𝑛𝑙
𝑙 ]𝑇 (2.27) 

 where the size of the 𝑙th layer is regulated as 𝑛𝑙. The output of the 𝑙th layer’s 𝑖th neuron 

is defined as 𝑣𝑖
𝑙. 𝑤𝑖,𝑗

𝑙  denotes the weight between the 𝑖th node in the 𝑙th layer and the 𝑗th 

node in the (𝑙 − 1)th layer. The bias of the 𝑖th node in the 𝑙th layer is denoted as 𝑏𝑖
𝑙. The 

input to the 𝑖th node in the 𝑙th layer is denoted as  

 𝑠𝑖
𝑙 = 𝑏𝑖

𝑙 +∑
𝑛𝑙−1
𝑗=1 𝑤𝑖,𝑗

𝑙 𝑣𝑗
𝑙−1. (2.28) 

 The tanh function is used as the activation function to calculate the output of the 𝑖th node 

in the 𝑙th layer.  

 𝑣𝑖
𝑙 = 𝑓(𝑠𝑖

𝑙) =
𝑒𝑠𝑖
𝑙
−𝑒−𝑠𝑖

𝑙

𝑒
𝑠𝑖
𝑙
+𝑒

−𝑠𝑖
𝑙 (2.29) 

The cost function 𝐶 of the NN is acquired by  

 𝐶 =
1

2
∥ 𝐪̂ − 𝐯𝑁𝐿 ∥2. (2.30) 
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The gradient descent is utilized in order to minimize 𝐶  

 𝑤̂𝑖,𝑗
𝑙 (𝑛 + 1) = 𝑤̂𝑖,𝑗

𝑙 (𝑛) − 𝜇
∂𝐶

∂𝑤𝑖,𝑗
𝑙  (2.31) 

 𝑏̂𝑖
𝑙(𝑛 + 1) = 𝑏̂𝑖

𝑙(𝑛) − 𝜇
∂𝐶

∂𝑏𝑖
𝑙 (2.32) 

 where 𝜇 is defined as a positive value, which denotes the step size. In the 𝑛th training 

epoch, 𝑏̂𝑖
𝑙(𝑛) and 𝑤̂𝑖,𝑗

𝑙 (𝑛) denote the estimate value of 𝑏𝑖
𝑙 and 𝑤𝑖,𝑗

𝑙 , respectively. 

The output error of the 𝑖th node in the 𝑙th layer is defined as 𝑒𝑖
𝑙  

 𝑒𝑖
𝑙 ≡

∂𝐶

∂𝑠𝑖
𝑙. (2.33) 

 𝑒𝑖
𝑙, 𝑙 = 1,2,… , 𝑁𝐿 − 1 is defined as  

 𝑒𝑖
𝑙 = ∑

𝑛𝑙+1
𝑘=1

∂𝐶

∂𝑠𝑘
𝑙+1

∂𝑠𝑘
𝑙+1

∂𝑠𝑖
𝑙 = (∑

𝑛𝑙+1
𝑘=1 𝛿𝑘

𝑙+1𝑤𝑘,𝑖
𝑙+1)𝑓′(𝑠𝑖

𝑙). (2.34) 

 And 𝑒𝑖
𝑁𝐿  is defined as  

 𝑒𝑖
𝑁𝐿 =

∂𝐶

∂𝑠
𝑖

𝑁𝐿
=

∂

∂𝑠
𝑖

𝑁𝐿

1

2
∥ 𝐪̂ − 𝐯𝑁𝐿 ∥2= −(𝜃𝑖 − 𝑣𝑖

𝑁𝐿)𝑓′(𝑠𝑖
𝑁𝐿). (2.35) 

The partial derivatives of 𝐶 with respect to 𝑏𝑖
𝑙 is denoted as  

 
∂𝐶

∂𝑏𝑖
𝑙 = 𝛿𝑖

𝑙 . (2.36) 

The partial derivatives of 𝐶 with respect to 𝑤𝑖,𝑗
𝑙  is denoted as  

 
∂𝐶

∂𝑤𝑖,𝑗
𝑙 = 𝛿𝑖

𝑙𝑣𝑗
𝑙−1. (2.37) 

Both the weights and the biases of the neural network are arbitrarily assigned before 

the first training epoch. As the cost function 𝐶  indicates, the output of the NN 𝐯𝑁𝐿  is 

compared with the desired output 𝐪̂. The weights and biases are updated as the calculated 

error is back-propagated to the previous layers. The training process is continued until the 
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cost function is lower than a threshold. A well trained NN is capable to produce the precise 

output with the input data [29]. 

 

Deep Neural Network for Block Fading Channel 

 

Next, both channels 𝐇 and 𝐠𝑖  are assumed to experience block fading. Within the 

period of each block, the channel states are quasi-static. However, the channel states vary 

independently from block to block. Suppose that the channel matrix 𝐇(𝑛)  from the 

transmitter to its receiver in the 𝑛th fading block is measured. Suppose that the simplified 

channels 𝐀(𝑛) from the transmitter to the RF energy harvesters in the 𝑛th fading block are 

acquired by Alg. 1. When the channel matrix 𝐇(𝑛) is measured within the 𝑛th fading 

block, the SVD of 𝐇(𝑛) gives the eigen-value vector  

 𝐬(𝑛) = [|𝜎1(𝑛)|
2, |𝜎2(𝑛)|

2, … , |𝜎𝑀(𝑛)|
2]𝑇 (2.38) 

 Due to channel variation, 𝐬(𝑛) has to be reevaluated in each fading block. Consequently, 

a specific DNN has to be trained during each fading block. This is impractical. 

The K-means clustering method is utilized to solve this problem for block fading 

channels. The K-means clustering method effectively assigns each vector in a 

multidimensional feature space with a class label [30]. For many channel matrices {𝐇(𝑛)}, 

the possible eigen-value vectors are classified into 𝑁  clusters. The cluster centers are 

denoted as  

 𝐜𝑖 = [|𝜎1
𝑖|2, |𝜎2

𝑖|2, … , |𝜎𝑀
𝑖 |2]𝑇, 𝑖 = 1,2,… ,𝑁. (2.39) 

 For each cluster of eigen-value vectors, the cluster center is used as {|𝜎𝑚|
2}𝑚=1
𝑀  to train a 

DNN. In the 𝑛th fading block, the cluster center that has the shortest Euclidean distance to 

𝐬(𝑛) is selected and the corresponding DNN is called to produce 𝐪̂. 
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The process to determine the 𝑁 cluster centers is presented in Alg. 2. Suppose that 

the Frobenius norm of the channel matrix ∥ 𝐇(𝑛) ∥𝐹  is constant. A large number 𝑇𝑐  of 

eigen-value vectors are randomly generated to find the 𝑁  cluster centers. The random 

samples of the eigen-value vectors are chosen as  

 𝐝𝑖 = [|𝜎1
𝑖|2, |𝜎2

𝑖|2, … , |𝜎𝑀
𝑖 |2]𝑇 , 𝑖 = 1,2,… , 𝑇𝑐 (2.40) 

 such that  

 |𝜎1
𝑖|2 > |𝜎2

𝑖|2 > ⋯ > |𝜎𝑀
𝑖 |2 (2.41) 

 and  

 ∑𝑀𝑚=1 |𝜎𝑚
𝑖 |2 =∥ 𝐇 ∥𝐹

2  (2.42) 

 For any given 𝑁, Alg. 2 converges to 𝑁 cluster centers. 

 

Algorithm 2: Determine the 𝑁 cluster center   
input:   eigen-value vectors 𝐝1, 𝐝2, … , 𝐝𝑇𝑐   
output: cluster centers {𝐜𝑚}𝑚=1

𝑁  
      1. Choose 𝑇𝑐 random samples of the eigen-value vectors 𝐝1, 𝐝2, … , 𝐝𝑇𝑐. 

      2. Initialize 𝑁 cluster centers as 𝐜𝑢 = 𝐝𝑇𝑐−𝑢+1, 𝑢 = 1,2,… , 𝑁. 

      3. Initialize sets 𝒰𝑘 = ∅, 𝑘 = 1,2,… ,𝑁.       

      4. while {𝐜𝑚}𝑚=1
𝑁  don’t converge do 

       5.     for 𝑖 = 1, . . . , 𝑇𝑐 do 

       6.         Calculate 𝑙𝑖,𝑢 =∥ 𝐝𝑖 − 𝐜𝑢 ∥, 𝑢 = 1,2,… , 𝑁. 

       7.          𝑣𝑖 = arg min
𝑢∈{1,2,…,𝑁}

𝑙𝑖,𝑢. 

       8.          𝒰𝑣𝑖 = 𝒰𝑣𝑖 + {𝑖}.  

       9.     end for 

      10.    for 𝑚 = 1, . . . , 𝑁 do 

      11.         𝐜𝑚 = ∑𝑖∈𝒰𝑚 𝐝𝑖/|𝒰𝑚|. 

      12.     end for 

      13. end while  
 

 

Simulation Results 

 

A MIMO wireless communication system with nearby RF energy harvesters is 

simulated. The wireless transmitter has 𝑀 = 3 antennas. The maximum transmitted power 
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is 𝑃 = 120 mW. With Matlab NN toolbox, the DNN is established with 10 layers and each 

hidden layer has 50 nodes. All layers of the neural networks are fully connected. The total 

number of weights is 18100. The activation function for the hidden layers is tanh. The 

learning rate is 0.01. The NN minimum gradient threshold is set as 10−6. 

Random (uniformly distributed) simplified channel vectors {𝐚} are used to train the 

DNN. There are 5027, 23436 and 37820 simplified channel vectors for the cases with 

𝐾 = 1, 2 and 3 RF energy harvesters, respectively. The simplified channel vectors are the 

inputs to the DNN. The corresponding optimal transmit power allocations {𝐪̂} of Problem 

𝒫1 are generated by the CVX convex optimization solver [31] and used as the DNN outputs 

for training. 

The minimum harvested power among all of the RF energy harvesters derived from 

the NN result is denoted as  

 𝑝NN = min{𝐀𝑇𝐪̂out} (2.43) 

 and the information rate  

 𝑟NN = ∑𝑀𝑚=1 log(1 + |𝜎𝑚|
2𝑞̂𝑚
out) (2.44) 

 The minimum harvested power derived from the CVX solver result is  

 𝑝CVX = min{𝐀𝑇𝐪̂} (2.45) 

 and the information rate requirement is 𝑅. 

We define the power loss ratio as  

 𝜆𝑝 = (𝑝
CVX − 𝑝NN)/𝑝CVX (2.46) 

 and the information rate loss ratio  

 𝜆𝑅 = (𝑅 − 𝑟
NN)/𝑅 (2.47) 
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If 𝜆𝑝 < 0 (or 𝜆𝑅 < 0), which means that the DNN has a better result than the CVX 

solver, then 𝜆𝑝 = 0 (or 𝜆𝑅 = 0). The power loss ratio threshold is defined as 𝑛𝑝 and the 

information rate loss ratio threshold is defined as 𝑛𝑅. Of all of the 𝑁𝑇 DNN testing outputs, 

transmissions with 𝑁𝑆 particular transmit power allocations satisfy 𝜆𝑝 ≤ 𝑛𝑝 (or 𝜆𝑅 ≤ 𝑛𝑅). 

The precision  

 𝜂 = 𝑁𝑆/𝑁𝑇 (2.48) 

 is used to evaluate the DNN performance. 

 

 

 

Figure 2.3: Precision 𝜂 of the proposed DNN for power allocation versus the power loss 

ratio threshold 𝑛𝑝. The number of the RF energy harvesters is 𝐾 = 3. The information rate 

requirement is 𝑅 = 5 bps/Hz. 

 

 

First, the channel matrix 𝐇 is supposed to be fixed. Each trained DNN is applied to 

𝑁𝑇 = 3000 test data, which are randomly generated with the case of 𝐾 = 3 RF energy 
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harvesters. The information rate requirement is regulated as 𝑅 = 5 bps/Hz. bps/Hz stands 

for bits per second per Hertz.  

Fig. 2.3 shows the system performance in DNN precision 𝜂 versus the power loss 

ratio threshold 𝑛𝑝. When 𝑛𝑝 = 0.3, the outputs of DNN with 2 hidden layers have 74% 

precision, while the outputs of DNN with 10 hidden layers have 84% precision. The 

simulation shows that it is hard to train a DNN with more than 10 layers for better 

performance. Fig. 2.4 shows the system performance in DNN precision versus the 

information rate loss ratio threshold 𝑛𝑅. The DNN has a higher precision on 𝜆𝑅 with more 

hidden layers. In the following simulations, the number of DNN’s hidden layers is 

regulated as 10. 

 

 

Figure 2.4: Precision 𝜂 of the proposed DNN for power allocation versus the information 

rate loss ratio threshold 𝑛𝑅 . The number of the RF energy harvesters is 𝐾 = 3 . The 

information rate requirement is 𝑅 = 5 bps/Hz. 
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The DNN is enhanced with information rate requirement 𝑅 as an additional input. 

The trained DNN is applied to 𝑁𝑇 = 9000 test data and the particular information rate 

requirements 𝑅. 

Fig. 2.5 shows the system performance in DNN precision versus the power loss 

ratio threshold 𝑛𝑝 with different information rate requirements 𝑅. When 𝑅 = 5 bps/Hz and 

𝑛𝑝 = 0.05, the DNN precision of one-harvester case can be as high as 100%, while the 

precision of three-harvester case is as low as 60%.  

The precision gets lower with more RF energy harvesters in the system. This is 

because there isn’t enough training data for the case of more RF energy harvesters in the 

system, which results in worse DNN performance. Fig. 2.5 also indicates that the variation 

of 𝑅 does not affect the precision of the DNN. 

 

 

Figure 2.5: Precision 𝜂 of the proposed DNN for power allocation versus the power loss 

ratio threshold 𝑛𝑝. The number of the RF energy harvesters is 𝐾 = 1,2,3. The Information 

rate requirements 𝑅 = 5,9 bps/Hz. 
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Second, the channel is assumed to experience block fading. Suppose 

∑𝑀𝑚=1 |𝜎𝑚
𝑖 |2 =∥ 𝐇 ∥𝐹

2= 40. The K-means clustering algorithm is applied to classify the 

eigen-value vector 𝐬(𝑛) into 𝑁 = 1,3,5 clusters.  

For each cluster, a particular DNN is trained. 𝑁𝑇 = 9000 test data are used for each 

of the 𝑅 = 5,7,9 bps/Hz conditions with the cases of 𝐾 = 1,2,3 RF energy harvesters. 

Each data point is with a random 𝐀 and a random 𝐇. 

 

Figure 2.6: Precision 𝜂 of the proposed DNN for power allocation versus the    power loss 

ratio threshold 𝑛𝑝 and the information rate loss ratio threshold 𝑛𝑅 in block fading channels. 

The information rate requirements 𝑅 = 5,7,9 bps/Hz. 

 

 

Fig. 2.6 shows the system performance in the precision versus both the power and 

the information rate loss ratio thresholds with different cluster numbers. As the channel 

matrix 𝐇  is normalized, all three clustering cases have similar good performances. 

Clustering with 𝑁 = 5 achieves the best precision on 𝜆𝑅. When clustering with 𝑁 = 1, i.e., 
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just taking the expected value of the eigen-value vectors as the cluster center, the DNN has 

relatively good performance in both 𝜆𝑝  and 𝜆𝑅 . Henceforth, 𝑁 = 1  cluster is used in 

practice.    

 

          Table 2.1. Program running time of 100 fading channel blocks 

M R (bps/Hz) Method Running time (sec) 

3 5 DNN 2.47 

3 5 CVX Solver 96.46 

3 7 DNN 2.38 

3 7 CVX Solver 130.90 

3 9 DNN 2.65 

3 9 CVX Solver 135.31  
 

 

With Matlab R2017a and the CVX package [31], the running time of different 

algorithms (excluding the offline-training of the DNN) is shown in Tab. 2.1. Tab. 2.1 shows 

the effectiveness of the proposed method that is based on DNN. 

 

Conclusions 

 

A design method is proposed for wireless power transfer to multiple RF energy 

harvesters with unknown channels. The simplified channel vectors and the information rate 

requirement are used as the input to a DNN, which outputs the optimal transmit power 

allocation that can maximize the minimum harvested energy of all the RF energy 

harvesters. At the same time, the information rate requirement at the communication 

receiver is satisfied. When the channels experience block fading, the transmitter applies 

the K-means clustering method to classify the eigen-value vectors into a few clusters. 

During one fading block, the transmitter estimates the communication channel and finds 

the cluster it belongs to. Then, a corresponding DNN is called to find the optimal transmit 

power allocation. 
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CHAPTER THREE 

 

Deep Reinforcement Learning for Optimized Wireless Information and Power Transfer 

 

 

Introduction 

 

In Chapter Three, the constructed SWIPT system is same as the one in Chapter 

Two. In the system, a multi-antenna transmitter communicates with an information receiver 

while radiating the electromagnetic waves to multiple energy harvesters. Since energy 

charging is a continuous process, a practical dynamic energy charging scenario is 

discussed. Each energy harvester is equipped with a limited volume energy buffer, the 

energy collected from the transmitter can be accumulated in the buffer. By adapting to the 

channel variations, the transmitter can adjust its transmission strategy to take care of each 

energy harvester. The transmitter intends to fully charge all surrounded energy harvesters’ 

energy buffers in the shortest time while maintaining a target information rate toward the 

receiver. 

The communication link is established as a strong line of sight (LOS) transmission, 

thus the channel condition from the transmitter to the information receiver is assumed to 

be invariant. However, the channel conditions from the transmitter to the energy harvesters 

experience block fading. Due to the hardware limitations, the estimation of the energy 

harvesting channel vectors is not able to be implemented under the fast varying channel 

conditions. Therefore, the wireless charging problem can be modeled as a high complexity 

discrete time stochastic control process with unknown system dynamics [32]. 
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To deal with this complicated optimization problem, DQN is applied to solve the 

energy charging problem and find the optimal transmission strategy. DQN was introduced 

to learn how to play complex games with very large number of system states, and unknown 

state transition probabilities [32]. More recently, DQN has been applied to deal with 

complex communication problems and shown to achieve good performance [3, 33, 34]. In 

this model, the accumulated energy at the energy harvesters is defined as the system states, 

while the transmit power allocation is regulated as the action. At the beginning of each 

time slot, each energy harvester feedbacks the accumulated energy level to the wireless 

transmitter. Then, the transmitter collects all the information in order to form it as the 

system state and inputs the system state into the well-trained DQN. The DQN outputs the 

Q values corresponding to all possible actions. The action with the maximum Q value is 

selected as the beam pattern to be used for the transmission during the current time slot. 

Based on the traditional DQN, the Double DQN and Dueling DQN algorithms are 

applied in order to reduce the observed overestimations [35] and improve the learning 

efficiency [36]. Henceforth, Dueling Double DQN is utilized to solve the multiple energy 

harvesters’ wireless charging problem in Chapter Three. 

The contribution of Chapter Three is summarized as follows: the wireless charging 

problem is formulated as a Markov Decision Process (MDP) and the DQN algorithm is 

applied to find the optimal transmission policy without estimating the channel conditions. 

Using DQN, a centralized power allocation strategy is derived. The impact of the channel 

conditions, energy buffer size and the number of energy harvesters on the optimal 

transmission strategy is explored as well. 
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Dynamic Simultaneous Wireless Information and Power Transfer System 

 

System Model 

 

As shown in Fig. 2.1, an information transmitter communicates with its receiver 

while perceived by 𝐾 nearby RF energy harvesters. Both the transmitter and the receiver 

are equipped with 𝑀  antennas, while each RF energy harvester is equipped with one 

receive antenna. The baseband received signal at the receiver can be represented as  

 𝐲 = 𝐇𝐱 + 𝐳, (3.1) 

 where 𝐇 ∈ ℂ𝑀×𝑀  denotes the normalized baseband equivalent channel from the 

information transmitter to its receiver, 𝐱 ∈ ℂ𝑀×1 represents the transmitted signal, and 𝐳 ∈

ℂ𝑀×1 is the zero-mean circularly symmetric complex Gaussian noise with 𝐳~𝒞𝒩(𝟎, 𝜌2𝐈). 

The transmit covariance matrix is denoted with 𝐐, i.e.,  

 𝐐 = E[𝐱𝐱𝐻] (3.2) 

 The covariance matrix is Hermitian positive semidefinite, i.e., 𝐐 ⪰ 0. The transmit power 

is restricted by the transmitter’s power constraint 𝑃, i.e., Tr(𝐐) ≤ 𝑃. For the information 

transmission, it is assumed that a Gaussian codebook with infinitely many codewords is 

used for the symbols and the expectation of the transmit covariance matrix is taken over 

the entire codebook. 

With transmitter precoding and receiver filtering, the capacity of the MIMO 

channel is the sum of the capacities of the parallel non-interfering single-input single-

output (SISO) channels (eigenmodes of channel 𝐇) [26]. The MIMO channel is converted 

to 𝑀  eigen-channels for information and energy transfer [37, 38]. A singular value 

decomposition (SVD) on 𝐇 gives  

 𝐇 = 𝐔𝚺𝐕𝐻 (3.3) 
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             The 𝚺  can be acquired as 

 𝚺 = diag(𝜎1, 𝜎2, . . . 𝜎𝑀) (3.4) 

contains the 𝑀  singular values of 𝐇. Since the MIMO channel is decomposed into 𝑀 

parallel SISO channels, the information rate can be given by  

 𝑟 = ∑𝑀𝑚=1 log(1 + 𝜌
−2|𝜎𝑚|

2𝑞̂𝑚), (3.5) 

 where {𝑞̂𝑚} are the diagonal elements of 𝐐̂ with  

 𝐐̂ = 𝐕𝐻𝐐𝐕 (3.6) 

The RF energy harvester received power specifies the harvested energy normalized 

by the baseband symbol period and scaled by the energy conversion efficiency. The 

received power at the 𝑖th energy harvester is  

 𝑝𝑖 = 𝐠𝑖
𝐻𝐐𝐠𝑖 (3.7) 

 where 𝐠𝑖 ∈ ℂ
𝑀×1 is the channel vector from the transmitter to the 𝑖th energy harvester. 

With MIMO channel decomposition, the received power at energy harvester 𝑖 is denoted 

as  

 𝑝𝑖 = ∑
𝑀
𝑚=1 |𝑔̂𝑖𝑚|

2𝑞̂𝑚 , (3.8) 

 where {𝑔̂𝑖𝑚} are the elements of vector 𝐠̂𝑖 with  

 𝐠̂𝑖 = 𝐕
𝐻𝐠𝑖 (3.9) 

The simplified channel vector from the transmitter to the 𝑖th RF energy harvester 

is defined as  

 𝐜𝑖 = [|𝑔̂𝑖1|
2, |𝑔̂𝑖2|

2, … , |𝑔̂𝑖𝑀|
2]𝑇, (3.10) 

 for each 𝑖 ∈ 𝒦 = {1,2,… ,𝐾} . The simplified channel vector contains no phase 

information. The 𝐾 simplified channel vectors compose matrix 𝐂 ∈ ℝ𝑀×𝐾  as  

 𝐂 = [𝐜1, 𝐜2, … , 𝐜𝐾]. (3.11) 
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In what follows, it is assumed that time is slotted, each time slot has a duration 𝑇. 

Each energy harvester is equipped with an energy buffer of size 𝐵𝑖 ∈ [0, 𝐵max], 𝑖 ∈ 𝒦. 

Without loss of generality, it is assumed that at 𝑡 = 0, all harvesters’ buffers are empty, 

which corresponds to system state  

 𝑠0 = [0,0, . . . ,0] (3.12) 

 At a generic time slot 𝑡, the transmitter transmits with one of the designed beam patterns. 

Each harvester 𝑖 can harvest the specific amount of power 𝑝𝑖, and its energy buffer values 

increase to  

 𝐵𝑖
𝑡+1 = 𝐵𝑖

𝑡 + 𝑝𝑖𝑇 (3.13) 

 Therefore, each state of the system includes the accumulated harvested energy information 

of all 𝐾 harvesters, i.e.,  

 𝑠𝑡 = [𝐵1
𝑡, 𝐵2

𝑡 , . . . , 𝐵𝐾
𝑡 ], (3.14) 

 where 𝐵𝑖
𝑡 denotes the 𝑖-th energy harvester’s accumulated energy up to time slot 𝑡. 

Once all harvesters are fully charged, the system arrives at a final goal state, which 

is denoted as  

 𝑠𝐺 = [𝐵max, 𝐵max, . . . , 𝐵max] (3.15) 

 The energy buffer level 𝐵max also accounts for situations in which 𝐵𝑖 > 𝐵max . 

 

Problem Formulation 

 

In this section, the communication link is characterized by strong LOS 

transmission, which indicates an invariant channel matrix 𝐇 . The energy harvesting 

channel vector 𝐠 varies over time slots. The wireless charging problem is modeled as a 

MDP and the optimization problem is solved by RL. When the number of system states is 
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very large, DQN algorithm is applied to acquire the optimal strategy at each particular 

system state. 

In order to model the optimization problem as a RL problem, the beam pattern 

chosen in a particular time slot 𝑡 is defined as the action 𝐚𝑡. The set 𝒜, which contains all 

possible actions, is formulated by equally generating 𝐿 different beam patterns with power 

allocation vector  

 𝐪̂ = [𝑞̂1, … , 𝑞̂𝑚] (3.16) 

 that satisfies the power and information rate constraints, i.e.,  

 ∑𝑀𝑖=1 𝑞̂𝑚 = 𝑃 (3.17) 

 and  

 ∑𝑀𝑖=1 log(1 + 𝜌
−2|𝜎𝑚|

2𝑞̂𝑚) ≥ 𝑅 (3.18) 

 Each beam pattern corresponds to a particular power level 𝑝𝑖, which not only depends on 

the action 𝐚𝑡 but also on the channel condition experienced by the harvester during time 

slot 𝑡. 

Given the above, the SWIPT problem for a time-varying channel can be formulated 

as  

 𝒫1:

minimize
{𝐚𝑡} 𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 𝑎𝑚
𝑡 ≥ 0

∑𝑀𝑚=1 𝑎𝑚
𝑡 ≤ 𝑃

∑𝑀𝑚=1 log(1 + 𝜌
−2|𝜎𝑚|

2𝑎𝑚
𝑡 ) ≥ 𝑅

∑𝑛𝑡=1 ∑
𝑀
𝑚=1 |𝑔̂𝑖𝑚

𝑡 |2𝑎𝑚
𝑡 𝑇 ≥ 𝐵max, ∀𝑖 ∈ 𝒦

 (3.19) 

By adapting to the current channel conditions and current energy buffer state of the 

harvesters, the action is selected at each time slot. Therefore, the evolution of the system 

can be described by a Markov chain. 
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The generic state 𝑠 is identified by the current buffer levels of the harvester, i.e.,  

 𝑠 = {𝐵1, 𝐵2, … , 𝐵𝐾} (3.20) 

 The set of all states is denoted by 𝒮. Among all states, the initial system state describes the 

situation that all harvesters’ buffer are empty, namely  

 𝑠0 = {0,… ,0} (3.21) 

 and the final system state 𝑠𝐺  appears when all the harvesters are fully charge, i.e.,  

 𝑠𝐺 = {𝐵max, … , 𝐵max} (3.22) 

 Suppose that all the channel coefficients at each time slot are known, problem 𝒫1 can be 

seen as a stochastic shortest path (SSP) problem from state 𝑠0 to state 𝑠𝐺 . At each time slot 

the system is in a generic state 𝑠, the transmitter selects a beam pattern (action 𝐚 ∈ 𝒜), and 

the system transits to a new state 𝑠′. The dynamics of the system is captured by transition 

probabilities 𝑝𝑠,𝑠′(𝐚), 𝑠, 𝑠′ ∈ 𝒮 and 𝐚 ∈ 𝒜, describing the probability that the harvesters’ 

energy buffer reach the levels in 𝑠′ after a transmission with beam pattern 𝐚. It is noted that 

the final state 𝑠𝐺  is absorbing, i.e.,  

 𝑃𝑠𝐺,𝑠𝐺(𝐚) = 1, ∀𝐚 ∈ 𝒜 (3.23) 

Each system state transition is associated with a reward 𝑤(𝑠, 𝐚, 𝑠′) . 𝑤(𝑠, 𝐚, 𝑠′) 

denotes the reward when the current state is 𝑠 ∈ 𝒮, action 𝐚 ∈ 𝒜 is selected and the system 

moves to state 𝑠′ ∈ 𝒮. Since the optimization aims at reaching 𝑠𝐺  in the fewest transmission 

time slots, the action is considered to entail a positive reward related to the difference 

between the current energy buffer level and the full energy buffer level of all harvesters. 

When the system reaches state 𝑠𝐺 , the reward is set as 0. In this way, the system not only 

tries to fully charge all harvesters in the shortest time but also uniformly charges all the 

harvesters.  
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In detail, the reward function is defined as 

 𝑤(𝑠, 𝐚, 𝑠′) = −𝜆(𝐾𝐵max − ∑
𝐾
𝑖=1 min(𝑠′𝑖, 𝐵max)), (3.24) 

 where  

 𝜆𝑠′𝑖 = 𝜆𝑠𝑖 + 𝜆 ∑
𝑀
𝑚=1 |𝑔̂𝑖𝑚|

2𝑎𝑚𝑇, (3.25) 

 and 𝜆 denotes the unit price of the harvested energy. 

It can be noted that different reward functions can also be selected. As an example, 

it is also possible to set a constant negative reward (e.g., a unitary cost) for each 

transmission that the system doesn’t reach the final state, and a big positive reward only 

for the states and actions that bring the system to the final state 𝑠𝐺 . In formulas, this can be 

expressed as  

 𝑤(𝑠, 𝐚, 𝑠′) = (
+∞,       𝑠′ = 𝑠𝐺
−1,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3.26) 

 It can be noted that the reward formulation (74) is actually equivalent to minimizing the 

number of time slots to reach state 𝑠𝐺  starting from state 𝑠0. 

Using the above formulation the optimization problem 𝒫 = (𝒮,𝒜, 𝑝,𝑤, 𝑠0, 𝑠𝐺) can 

then be seen as a stochastic shortest path search from state 𝑠0 to state 𝑠𝐺  on the Markov 

chain with states 𝒮  and probabilities {𝑝𝑠,𝑠′(𝐚)}, actions 𝐚 ∈ 𝒜 , and rewards 𝑤(𝑠, 𝐚, 𝑠′). 

The optimization objective is to find, for each possible state 𝑠 ∈ 𝒮, an optimal action 𝐚∗(𝑠) 

so that the system reaches the final state following the path with maximum average reward. 

A generic policy can be written as 𝜋 = {𝐚(𝑠): 𝑠 ∈ 𝒮}. 

Different techniques can be applied to solve problem 𝒫1, as it represents a particular 

class of MDPs. In Chapter Three, however, it is assumed that the channel conditions at 

each time slot are unknown, which corresponds to not knowing the transition probabilities 
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{𝑝𝑠,𝑠′(𝐚)}. RL is a good method in solving this problem. Therefore, in the next section RL 

is applied to solve the proposed optimization problem. 

 

Optimal Transmission Strategy with Deep Q-Network 

 

RL is suitable to solve optimization problems in which the system dynamics follow 

a particular transition probability function, however, the probabilities {𝑝𝑠,𝑠′(𝐚)}  are 

unknown. In what follows, the Q-learning algorithm [39] is utilized to solve the 

optimization problem. Then the RL approach is combined with a NN to approximate the 

system model in case of large states and actions sets [32]. 

 

Q learning Algorithm 

 

If the number of the system states is small, the traditional Q-learning method can 

be used to find the optimal strategy at each system state. 

To this end, the cost function of action 𝐚 on system state 𝑠 is regulated as 𝑄(𝑠, 𝐚), 

with 𝑠 ∈ 𝒮, 𝐚 ∈ 𝒜 . The algorithm initializes with 𝑄(𝑠, 𝐚) = 0, and then updates the 𝑄 

values using the following equation.  

 𝑄(𝑠, 𝐚) = (1 − 𝛼(𝑠, 𝐚))𝑄(𝑠, 𝐚) + 𝛼(𝑠, 𝐚)[𝑤(𝑠, 𝐚, 𝑠′) + 𝛾𝑓(𝑠′, 𝐚)] (3.27) 

 where  

 𝑓(𝑠′, 𝐚) = min
𝐚∈𝒜

𝑄(𝑠′, 𝐚) (3.28) 

 and 𝛼(𝑠′, 𝐚) denotes the learning rate. In each time slot, only one Q value is updated, hence 

all the other Q values remain the same. 

At the beginning of the learning iterations, since the Q-table does not have enough 

information to choose the best action at each system state, the algorithm randomly explores 
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new actions with a particular probability. The selection threshold is defined as 𝜀𝑐 ∈ [0.5,1]. 

A probability is randomly generated as 𝑝 ∈ [0,1], if 𝑝 ≥ 𝜀𝑐 , the action 𝐚 is chosen as  

 𝐚 = max
𝐚∈𝒜

𝑄(𝑠, 𝐚) (3.29) 

 On the contrary, if 𝑝 < 𝜀𝑐, the action is randomly selected from the action set 𝒜. 

When 𝑄∗ converges, the optimal strategy at each state is determined as  

 𝜋∗(𝑠) = argmax
𝐚∈𝒜

𝑄∗(𝑠, 𝐚) (3.30) 

 which corresponds to the optimal beam pattern for each system state explored during the 

charging process. 

 

Deep Q-Network Algorithm 

 

When considering the complex system, in which there are multiple harvesters and 

channel conditions vary by time, the number of system states dramatically increases. In 

order to learn the optimal transmission strategy at each system state, the Q-learning 

algorithm requires a Q-table with a large number of elements, which makes it very difficult 

for all the values in the Q-table to converge. Therefore, in what follows the DQN approach 

is applied to find the optimal transmission policy. 

The main idea of DQN is to train a NN to find the Q function of a particular system 

state and action combination. When the system is in state 𝑠, and action 𝐚 is selected, the Q 

function is denoted as 𝑄(𝑠, 𝐚, 𝜃). 𝜃 denotes the parameters of the Q network. The purpose 

of training the NN is to make  

 𝑄(𝑠, 𝐚, 𝜃) ≈ 𝑄∗(𝑠, 𝐚) (3.31) 

According to the DQN algorithm [35], two NNs are used to solve the problem: the 

evaluation network and the target network, which are denoted as 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡  and 
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𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 , respectively. The output of 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡  and 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡  are denoted as 

𝑄𝑒(𝑠, 𝐚, 𝜃) and 𝑄𝑡(𝑠, 𝐚, 𝜃′), respectively. The evaluation network is continuously trained 

to update the value of 𝜃, however, the target network only copies the weight parameters 

from the evaluation network intermittently (i.e., 𝜃′ = 𝜃). The loss function is defined as  

 L𝑜𝑠𝑠(𝜃) = 𝐸[(𝑦 − 𝑄𝑒(𝑠, 𝐚, 𝜃))
2]. (3.32) 

 𝑦 represents the real Q value, and is is calculated as  

 𝑦 = 𝑤(𝑠, 𝐚, 𝑠′) + 𝜀 max
𝐚′∈𝒜

, 𝑄𝑡(𝑠′, 𝐚′, 𝜃′) (3.33) 

 where 𝜀 is the learning rate.  

 

Algorithm 3: Deep Q-Network algorithm training process   
input:   experience pool 𝑒𝑝   
output: well trained evaluation network 

       1. Randomly generate the weight parameter 𝜃 for the 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡. The 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡   
           clones the weight parameters 𝜃′ = 𝜃. 𝐷 = 𝑑 = 1. 

      2. for 𝑢 = 1, . . . , 𝑈 do 
      3.      𝑡 = 0. 𝑠 = 𝑠𝑡. 𝐂 = 𝐂𝑡.        
      4.     while 𝑠 ≠ 𝑠𝐺  do 

       5.          Randomly generate a probability 𝑝 ∈ [0,1]. 
       6.         if 𝐷 > 200 and 𝑝 ≥ 𝜀𝑐ℎ then 

       7.               The action 𝐚 is chosen as 𝐚 = max
𝐚∈𝒜

𝑄(𝑠, 𝐚) 

       8.          else 

       9.   Randomly choose the action from action set 𝒜. 

      10.         end if 

      11.         The transmitter transmits with the selected beam pattern. 

      12.         Throughout the whole time slot, the RF energy is accumulated in the  

                    harvesters’ energy buffer, as 𝑠′𝑖 = 𝑠𝑖 + ∑
𝑀
𝑚=1 |𝑔̂𝑖𝑚

𝑡 |2𝑎𝑚𝑇, ∀𝑖 ∈ 𝒦. At the   

                    end of each time slot, each harvester feedbacks the energy level to the   

                    transmitter and the system state is updated to 𝑠′. 
      13.         𝑒𝑝(𝑑, : ) = {𝑠, 𝐚, 𝑤(𝑠, 𝐚, 𝑠′), 𝑠′}. 𝑑 = 𝑑 + 1. If 𝐷 reaches the maximum of 

                    experience pool, 𝐷 remain constant, 𝑑 = 1; otherwise, 𝐷 = 𝑑. 𝑠 = 𝑠′.  
                    𝑡 = 𝑡 + 1. 𝐂 = 𝐂𝑡. 
      14.         After experience pool accumulates enough data, from 𝐷 experiences,  

                    randomly select 𝐷𝑠 experiences to train the NN 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡. Back-propagation 

                    method is applied to minimize the loss function L𝑜𝑠𝑠(𝜃). Clone the weight 

                    parameters from 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡 to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 after several time intervals. 

      15.     end while 

      16. end for  
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In order to better train the NN, the experience reply method is utilized to remove 

the correlation between different training data. Each experience consists of the current 

system state 𝑠 , the action 𝐚 , the next system state 𝑠′ , and the corresponding reward 

𝑤(𝑠, 𝐚, 𝑠′). The experience is denoted by the set 𝑒𝑝 = {𝑠, 𝐚,𝑤(𝑠, 𝐚, 𝑠′), 𝑠′}. The algorithm 

conserves 𝐷 experiences and randomly select 𝐷𝑠  (with 𝐷𝑠 < 𝐷) experiences from 𝐷 for 

training. After the training is finished, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 clones all the weight parameters from 

the 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡 (i.e., 𝜃′ = 𝜃). 

The algorithm used for the DQN training process is presented in Alg. 3.0.2. In each 

training iteration, 𝐷 usable experiences 𝑒𝑝 are generated, and 𝐷𝑠 experiences are selected 

for training the 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡. In total, there are 𝑈 training iterations. For both the 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡 

and the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡, the NNs have 𝑁𝑙 hidden layers. In the learning process, 𝐂𝑡 is used to 

denote all energy harvesters’ channel conditions at a particular time slot 𝑡. 

 

Dueling Double Deep Q-Network Algorithm 

 

Dueling Double DQN has been proved to boost the performance of traditional DQN 

since it can effectively deal with the overestimating problem during the training process 

and improve the learning efficiency of the NN. Doubling DQN is a technique that 

strengthens the traditional DQN algorithm by preventing the overestimating to happen 

[35]. In traditional DQN, the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 is utilized to predict the maximum 𝑄 value of the 

next state. However, the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡  is not updated at every training episode, which 

probably leads to an increase in the training error, and therefore complicate the training 

process. However, Doubling DQN shows superiority in solving that problem. In Doubling 

DQN, both the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 and the 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡 are used to predict the 𝑄 value.  
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The 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡 is used to determine the optimal action to be taken for the system 

state 𝑠′ as  

 𝑦 = 𝑤(𝑠, 𝐚, 𝑠′) + 𝜀max
𝑎′∈𝒜

𝑄𝑒 (𝑠′, arg
𝐚∈𝒜

max𝑄(𝑠′, 𝐚, 𝜃), 𝜃′). (3.34) 

It can be shown that following this approach, the training error considerably decreases [35]. 

In traditional DQN, the NN only has the Q value as the output. In order to speed up 

the convergence, Dueling DQN is applied by setting up two output streams from the NN. 

The first stream is the NN’s output 𝑉(𝐬, 𝜃, 𝛽). The second stream is called advantage output 

𝐴(𝑠′, 𝐚, 𝜃, 𝛼) and describes the advantage of applying each particular action to the current 

system state [36]. 𝛼 and 𝛽 are parameters that related to the two streams and the NN output. 

The Q value of the NN is denoted as  

 𝑄(𝑠, 𝐚, 𝜃, 𝛼, 𝛽) = 𝑉(𝑠, 𝜃, 𝛽) + (𝐴(𝑠′, 𝐚, 𝜃, 𝛼) −
∑𝑎′𝐴(𝑠′,𝐚,𝜃,𝛼))

|𝐴|
 (3.35) 

 Dueling DQN can efficiently eliminate the extra training freedom, which speeds up the 

training [36]. 

 

Simulation Results 

 

Simulated Channel Model 

 

In order to evaluate the performance of the proposed algorithm, in this section the 

wireless channel from the transmitter to each harvester is modeled as a block fading 

channel. Both the Rician fading and Rayleigh fading model [40] are exploited. The 

established channel models are used to derive the simulation results. 

It is supposed that within each time slot 𝑡, the channel is invariant and varies in 

different time slots [41]. At the end of each time slot, the energy harvester feedbacks the 

current energy level back to transmitter. 
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For Rician fading channel model, the signal often arrives at the receiver with a LOS 

components. The total gain of the signal is denoted as 𝐠.  

 𝐠 = 𝐠𝑠 + 𝐠𝑑 (3.36) 

 where 𝐠𝑠 is the invariant LOS component and 𝐠𝑑 denotes a zero mean Guassian diffuse 

component. In the system model, the transmitter has 𝑀 antennas, and the channel from the 

transmitter antenna 𝑚 to the energy harvester 𝑖 can be denoted as  

 𝑔𝑖𝑚 = 𝑔𝑖𝑚
𝑠 + 𝑔𝑖𝑚

𝑑  (3.37) 

 The magnitude of the faded envelope can be modeled using the Rice factor Kr such that  

 K𝑖𝑚
r =

𝜌𝑖𝑚
2

2𝜎𝑖𝑚
2  (3.38) 

 where 𝜌𝑖𝑚
2  denotes the average power of the main LOS component between the transmitter 

antenna 𝑚 and energy harvester 𝑖, and 𝜎𝑖𝑚
2  denotes the variance of the scatter component. 

The magnitude of the main LOS component can be derived as  

 |𝑔𝑖𝑚
𝑠 | = √2K𝑖𝑚

r 𝜎𝑖𝑚 (3.39) 

 since  

 
1

2
𝐸[(|𝑔𝑖𝑚

𝑑 |)2] = 𝜎𝑖𝑚
2  (3.40) 

 The mean and the variance of 𝑔𝑖𝑚  are denoted as 𝜇𝑔𝑖𝑚 = 𝑔𝑖𝑚
𝑠  and 𝜎𝑔𝑖𝑚

2 = 𝜎𝑖𝑚
2 , 

respectively, or in polar coordinates,  

 𝑔𝑖𝑚 = 𝑟𝑖𝑚𝑒
𝑗𝜃𝑖𝑚  (3.41) 

 Therefore, 𝑔𝑖𝑚 is analyzed by both its amplitude and its phase. The probability density 

function of the amplitude 𝑟𝑖𝑚 is given by  

 𝑝𝑟𝑖𝑚(𝑟𝑖𝑚 , K𝑖𝑚
r , 𝜎𝑖𝑚) =

𝑟𝑖𝑚

𝜎𝑖𝑚
2 𝑒

−
𝑟𝑖𝑚
2

2𝜎𝑖𝑚
2 −K𝑖𝑚

r

𝐼0(
𝑟𝑖𝑚√2K𝑖𝑚

r

𝜎𝑖𝑚
), (3.42) 
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 where 𝐼0(⋅) denotes the first kind zero order Bessel function. For zero mean phase angle, 

the probability density function can be denoted as  

 

𝑝𝜃𝑖𝑚(𝑟𝑖𝑚 , K𝑖𝑚
r , 𝜎𝑖𝑚) =

𝑒−K𝑖𝑚
r

2𝜋
[1 + √4𝜋K𝑖𝑚

r 𝑐𝑜𝑠𝜃𝑖𝑚𝑒
K𝑖𝑚
r 𝑐𝑜𝑠𝜃𝑖𝑚

2
(1 − 𝑄(√2K𝑖𝑚

r 𝑐𝑜𝑠𝜃𝑖𝑚))]
 (3.43) 

 where 𝜃 ∈ [−𝜋, 𝜋] , and 𝑄(⋅)  is the tail distribution function of the standard normal 

distribution. It is clear that the channel amplitude is not independent of the phase angle. 

When the Rice factor Kr is large enough, the rician distribution can be approximated by a 

Normal distribution [40]. Therefore, when K𝑖𝑚
r ≥ 10 , for the channel from the 𝑚 -th 

antenna of the trasmitter to the 𝑖-th harvester, the fading channel main LOS component is 

denoted as  

 𝑔𝑖𝑚
𝑠 = 𝑟𝑖𝑚𝑒

𝑗𝜃𝑖𝑚  (3.44) 

 The probability density function of the amplitude and phase can be approximated by two 

Gaussian distribution  

 |𝑔𝑖𝑚|~𝑁(√2K𝑖𝑘
r 𝜎𝑖𝑚 , 𝜎𝑖𝑚

2 ) (3.45) 

 and  

 ∠𝑔𝑖𝑚~𝑁 (arg(𝑔𝑖𝑚
𝑠 ),

1

2K𝑖𝑚
r ) (3.46) 

 respectively, and  

 𝑟𝑖𝑚 = √2K𝑖𝑚
r 𝜎𝑖𝑚 (3.47) 

 𝜃𝑖𝑚 = arg(𝑔𝑖𝑚
𝑠 ). 

In case of Non-line-Of-sight (NLOS) transmission from the transmitter to each 

energy harvester, the fading channel is characterized by a Rayleigh fading channel model. 
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As a result, both the real and imaginary components of the channel are Gaussian distributed 

with variance 𝜎𝑖𝑚
2 . The probability density function of 𝑔𝑖𝑚 is denoted as  

 𝑝𝑔𝑖𝑚(𝑟𝑖𝑚 , 𝜃𝑖𝑚) =
𝑟𝑖𝑚

2𝜋𝜎𝑖𝑚
2 𝑒

−
𝑟𝑖𝑚
2

2𝜎𝑖𝑚
2

 (3.48) 

 The amplitude and the phase are independent from each other, and their individual 

probability density function are given by  

 𝑝𝑟𝑖𝑚(𝑟𝑖𝑚 , 𝜃𝑖𝑚) =
𝑟𝑖𝑚

𝜎𝑖𝑚
2 𝑒

−
𝑟𝑖𝑚
2

2𝜎𝑖𝑚
2
, (3.49) 

 𝑝𝜃𝑖𝑚(𝑟𝑖𝑚 , 𝜃𝑖𝑚) =
1

2𝜋
, 𝜃 ∈ [−𝜋, 𝜋]. (3.50) 

It can be noted that the Rician fading channel model with K𝑖𝑚
r = 0 corresponds to 

a Rayleigh fading channel, while as K𝑖𝑚
r → ∞ the channel becomes invariant. 

 

Simulation Results 

 

A MIMO wireless communication system with nearby RF energy harvesters is 

simulated. The wireless transmitter has 𝑀 = 3  antennas. The 3 × 3  communication 

MIMO channel matrix 𝐇 is measured by two Wireless Open-Access Research Platform 

(WARP) v3 boards. Both WARP boards are mounted with the FMC-RF-2X245 dual-radio 

module, who is operated in 5.805-GHz frequency band. The Xilinx Virtex-6 FPGA 

operates as the central processing system and the WARPLab is used for rapid physical 

layer prototyping which is compiled by MATLAB [42].    

Two transceivers are deployed as LOS transmission. Henceforth, the Eigen-value 

vector for communication channel(𝐬 ) is [13.52,2.9,0.6]𝑇 . The maximum transmitted 

power is 𝑃 = 12W. 𝜌2 = −70dBm. The information rate requirement 𝑅 is 53bps/Hz. The 
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average channel gain from the transmitter to the energy harvester is −30dB. The energy 

conversion efficiency is 0.1. The duration of one time slot is defined as 𝑇 = 100ms. 

DQN is trained to solve for the optimal transmission strategies for each system 

state. The number of the hidden layers is 4. The number of the nodes of each hidden layer 

is 100. The network is fully connected. The total number of the weights is 30400. The 

activation function is ReLU. The learning rate is 0.1. The mini-batch is 10. The size of 

experience pool is 20000.  

The exploration rate 𝜀𝑐 determines the probability whether the network selects an 

action randomly or follows the values of the Q-table. Initially, 𝜀𝑐 = 1  because the 

experience pool has to accumulate reasonable amount of data to train the NN. 𝜀𝑐 decreases 

with 0.001 at each training interval, and finally stops at 𝜀𝑐ℎ = 0.1, since the experience 

pool has collected enough training data. The structure of Dueling Double DQN is presented 

in Fig. 3.1. The software environment for simulation is TensorFlow 0.12.1 with Python 3.6 

in Jupyter Notebook 5.6.0. 

The action set 𝒜  contains 13  actions: [2,2,8]𝑇 , [2,4,6]𝑇 , [2,6,4]𝑇 , [2,8,2]𝑇 , 

[4,2,6]𝑇, [4,4,4]𝑇, [4,6,2]𝑇, [4,8,0]𝑇, [6,2,4]𝑇 , [6,4,2]𝑇, [6,6,0]𝑇 , [8,2,2]𝑇, [8,4,0]𝑇 . All 

these actions satisfy the information rate requirement. For the energy harvesting channel 

conditions, both the Rician and the Rayleigh channel fading models are exploited as 

described previously. 

First, the optimal DQN structure is explored under fading channels. It is assumed 

that there are 𝐾 = 2 harvesters. The channel from each antenna of the transmitter to each 

harvester is individually Rician distributed. 
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Figure  3.1: Dueling Double Deep Q-Network structure. 

 

 

The LOS amplitude component of all channel links are defined as 𝑟𝑖𝑚 = 0.5, with 

𝑖 = 1,2 and 𝑚 = 1,2,3. For the LOS phase component of all channel links are defined as: 

𝜃11 =
𝜋

4
, 𝜃12 =

𝜋

2
, 𝜃13 = −

𝜋

4
, 𝜃21 = −

𝜋

2
, 𝜃22 = 0, 𝜃23 =

3𝜋

4
. According to Eqs. (3.45) and 

(3.46), the standard deviation of the 𝑔𝑖𝑚  amplitude and phase are denoted as: 𝜎𝑖𝑚  and 

1

√2K𝑖𝑚
r

, respectively. It is supposed that 𝜎𝑖𝑚 = 0.05, ∀𝑖,𝑚. Hence 
1

√2K𝑖𝑚
r
= (

𝑟𝑖𝑚

𝜎𝑖𝑚
)−1 = 0.1,

∀𝑖,𝑚. 

Using the fading channel model above, Fig. 3.2, shows how the structure of the 

NN, together with the learning rate can affect the performance of the DQN for a fixed 

number of training episodes (i.e., 40000). The performance of DQN is measured by the 

average number of time slots required to fully charge both harvesters. The average is 

obtained over 1000 testing data. 
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Figure 3.2: Deep Q-Network performance on different learning rate and number of 

hidden layers for the NN. 

 

 

Fig. 3.2 shows that if the DNN has multiple hidden layers, a smaller learning rate 

is necessary to achieve better performance. When the learning rate is 0.1, the DQN with 4 

hidden layers performs worse than a NN with 2 or 3 hidden layers. On the other side, when 

the learning rate decreases, it shows that the NN with 4 hidden layers and a learning rate 

of 0.00005 achieves the best overall performance. It is noted that there is not a monotonic 

decrease of the average number of time slots due to the stochastic nature of the channel 

that causes some fluctuations in the DQN optimization. After an initial improvement, 

decreasing the learning rate results in a slight increase in the average number of charging 

steps for all three NN structures. This is due to the fixed number of training episodes. Given 

longer training episodes, the DNN with smaller learning rate can achieve better 

performance. As a result, for all the simulations presented in this section, a DQN is 
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constructed with a 4 hidden layers DNN, with 100 nodes in each layers and a learning rate 

of 0.00005. 

 

 

Figure  3.3: Deep Q-Network performance for different values of neural network 

replacement iteration interval and experience pool. 

 

 

In Fig. 3.3, it can be observed that the size of the experience pool also affects the 

performance of DQN (40000 training episodes). To eliminate the correlation between the 

training data, only part of the experiences in the pool are selected for training. The number 

of extracted experiences from the experience pool are called mini batch, which is set to 10. 

Larger experience pool contains more training data. Selecting the mini batch data from the 

experience pool for training can eliminate the correlation between the training data. 

However, there is a need to balance the size of the experience pool and the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 

weight replacement interval. If the experience pool is large but the replacement iteration 
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interval is small, even if the correlation problem among the training data is addressed, the 

NN does not have enough training episodes to reduce the training error before the weight 

of the 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 is replaced. 

 

Figure  3.4: The Deep Q-Network performance for different reward functions. 

 

 

From Fig. 3.3, it can be observed that a large replacement iteration interval doesn’t 

achieve the optimal system performance as well. Fig. 3.3 shows that the optimal size of the 

experience pool and the optimal NN replacement iteration interval are 60000 and 1000, 

respectively. 

Fig. 3.4 shows the impact of the reward function on the DQN performance. In this 

figure, the following three reward functions are considered. Reward 1 is defined as  

 𝑤(𝑠, 𝐚, 𝑠′) = (
0,       𝑠′ = 𝑠𝐺
−𝜆(𝐾𝐵max − ∑

𝐾
𝑖=1 min(𝑠′𝑖, 𝐵max)),       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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            Reward 2 is defined as  

 𝑤(𝑠, 𝐚, 𝑠′) = (
10,       𝑠′ = 𝑠𝐺
−1,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Reward 3 is defined as  

 𝑤(𝑠, 𝐚, 𝑠′) = (
1,       𝑠′ = 𝑠𝐺
−1,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

So in total three different rewards are defined. 

 

 

Figure  3.5: The Deep Q-Network performance for different energy buffer size 𝐵max. 
 

 

          The number of the users is 𝐾 = 2 and 𝜆 = 0.25. All three reward functions are 

designed to minimize the number of time slots required to fully charge all the harvesters. 

However, from Fig. 3.4, it can be observed that the best performance can be obtained using 

Reward 1. In this case, the energy level accumulated by each harvester increases uniformly, 

which motivates the DQN to converge faster to the optimal policy. Both Reward 2 and 

Reward 3, instead, do not penalize states that unevenly charge the harvesters. Therefore, 



54 

 

both Reward 2 and Reward 3 require more iterations to converge to the optimal solution 

(not shown in the figure) due to the large number of system states to explore. Therefore, in 

the following simulations, the reward function Reward 1 is used. It is noted that, in both 

Fig. 3.4 and Fig. 3.5, 40000 training steps is averaged in every 100 steps in order to better 

show the convergence of the algorithm. 

 

Figure  3.6: The comparison between Deep Q-Network and other action selection 

algorithms in Rician fading channel model. 

 

 

In Fig. 3.5, as each energy harvester in the system is equipped with a larger 

energy buffer, the number of system states increases. Therefore, DQN requires more 

training episodes to converge to the steady transmit strategy for each system state. It can 

be observed that when 𝐵max = 1.6mJ, the system only needs less than 5000 training 

episodes to converge to the optimal strategy. When 𝐵max = 3.2mJ, the system needs 

around 12000 training episodes to converge to the optimal policy. While as 𝐵max =
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4.8mJ, the system needs as many as 20000 training episodes to converge to the optimal 

strategy. 

 

 

Figure  3.7: Simplified channel distribution with Rician fading channel model for 

different values of 𝜎𝑎𝑚𝑝. 

 

 

In the following simulations, the impact of the channel model on optimization 

problem 𝒫1 is explored. For the Rician fading channel model, K𝑖𝑚
r ≥ 10 and assumed to 

be same for all 𝑖,𝑚. In this way, the Rician distribution is approximated as a Gaussian 

distribution. 𝑟𝑖𝑚 = 0.5, ∀𝑖, 𝑚 , but it is allowed the standard deviation of both the 

amplitude and the phase of the channel to change to evaluate the performance on the system 

under different channel conditions. Since 𝑟𝑖𝑚 = 0.5 and √2K𝑖𝑚
r =

𝑟𝑖𝑚

𝜎𝑖𝑚
, 

1

√2K𝑖𝑚
r
= 2𝜎𝑖𝑚. It is 

defined that 𝜎𝑖𝑚 ≤ 0.1 to guarantee K𝑖𝑚
r ≥ 10. 
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Figure  3.8: The action selection process of two harvesters scenario when 𝜎𝑎𝑚𝑝 = 0.05. 

 

 

In Fig. 3.6, the standard deviation 𝜎𝑎𝑚𝑝 = 𝜎𝑖𝑚 , ∀𝑖,𝑚 of the phase and amplitude 

of the channel are varied, and the performance of different algorithms are compared. 

Different heuristic approaches are implemented to compare with DQN. Single action 

selection selects a fixed single beam pattern for all transmissions. Random action selection 

selects an action at random at each transmission time slot. Fig. 3.6 is analyzed together 

with Fig. 3.7. It can be observed that increasing 𝜎𝑎𝑚𝑝 results in a larger distribution of the 

values of 𝐠̂. No matter what the channel distributions are, DQN can always achieve the 

optimal system performance compared with all the other algorithms. In particular, DQN 

has a huge improvement compared to the random action selection policy. Comparatively, 

DQN requires 20% fewer time slots to fully charge all harvesters in the system. 
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Figure  3.9: Simplified channel distribution with Rayleigh fading channel model with 

different values of 𝜎𝑖𝑚. 

 

 

Fig. 3.6 shows that the performance of the optimal policy achieved by DQN is 

around 10% better than the performance of a policy that selects the best single action for 

transmission. It seems the improvement is not large. However, it is noted that in order to 

determine this best single action, the transmitter needs to be able to estimate the channel 

conditions at the harvesters. The channel estimation at the energy harvesters is difficult to 

be implemented. Therefore, DQN obviously outperforms best single action selection on 

implementation. Even the action is randomly selected for all transmissions, there is only 

1

|𝒜|
 probability that the optimal single action is selected. If the standard deviation of channel 

amplitude increases, the worst single action has a better performance. Due to the severe 

variations of the channel, there is a higher chance that the worst action selected at a time is 

the best action at another particular time slot. 
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Figure  3.10: Comparison between Deep Q-Network and heuristic action selection 

algorithms in Rayleigh fading channel model. 

 

 

To better explain the performance of the optimal policy, in Fig. 3.8, the action 

selected by DQN at a particular system state when 𝜎𝑎𝑚𝑝 = 0.05 is plotted. From Fig. 3.6, 

it can be observed that when 𝜎𝑎𝑚𝑝 = 0.05, the best single action selection can accomplish 

charging both harvesters in around 48 time slots. The best single action is the third action 

𝐚3 = [2,6,4]
𝑇 . Correspondingly, the optimal policy determined by DQN can finish 

charging in around 43 time slots. To this end, Fig. 3.8 shows that the optimal charging 

strategy can be taken as two individual procedures: before harvester 1 accumulates 1.2mJ 

energy and harvester 2 accumulates 0.8mJ energy, action 4 𝐚4 = [2,8,2]
𝑇 is selected. After 

that, mostly, action 1 𝐚1 = [2,2,8]
𝑇 is selected. As defined above, if both the amplitude 

and the phase of the channel is Gaussian distributed with zero standard deviation, 𝐠̂1
0 =

[0.05,0.59,0.11]𝑇, and 𝐠̂2
0 = [0.04,0.19,0.51]𝑇. 
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Figure  3.11: The action selection distribution of two harvesters scenario when 𝜎𝑖1 =
𝜎𝑖3 = 0.1, 𝜎𝑖2 = 0.8. 

 

 

So when both the amplitude and the phase of the channel change, the simplified 

channel state information will be distributed around 𝐠̂1
0  and 𝐠̂2

0 . The simulation result 

validates that a policy that selects either action 1 or action 4 with different probabilities can 

have better performance than the policy that only selects action 3. This explains the reason 

DQN outperforms the best single action selection, which shows the ability of DQN to 

determine the optimal policy. 

When considering the channel model as Rayleigh fading channel model, two 

different conditions are considered: 𝜎𝑖1 = 𝜎𝑖2 = 𝜎𝑖3  and 𝜎𝑖1 = 𝜎𝑖3 ≠ 𝜎𝑖2 . The second 

condition considers that one of the antennas of the MISO (Multiple-Input Single-Output) 

communication system has a higher space diversity gain compared to the others. From Fig. 

3.9, it can be observed that when 𝜎𝑖1 = 𝜎𝑖3 = 0.1  and 𝜎𝑖2 = 0.8 , the variance of the 
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simplified channel vector 𝐠̂ is very large. When 𝜎𝑖1 = 𝜎𝑖2 = 𝜎𝑖3 = 0.5, the variance of the 

channel is even larger. The Rayleigh fading is featured as a NLOS transmission and the 

phase is uniformly distributed, thus there is large uncertainty in channel conditions. 

 

 

Figure  3.12: The possibility that the best single action is the action selected by the 

channel estimation of the first time slot. 

 

 

 In this case, DQN is still able to learn the channel conditions, and it determines the 

optimal strategy at each particular system state. Nonetheless, the performance of the 

optimal strategy is close to the performance of a random action selection or single action 

selection policy. In particular, Fig. 3.10 shows that when 𝜎𝑖1 = 𝜎𝑖3 = 0.1, 𝜎𝑖2 = 0.8, 

DQN doesn’t have much advantages compared with a single action selection policy. 

When 𝜎𝑖1 = 𝜎𝑖3 = 0.1, 𝜎𝑖2 = 0.8, the best single action is to select action 4. 

Fig. 3.11 validates that the action selected by DQN in the majority of the system 

states is action 4, which is the best single action. Fig. 3.12 shows that if the optimal action 

is chosen based on channel estimation of the first training time slot channel, it is hard to 

determine whether the chosen action is the best single action for this particular fading 
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channel environment. This proves the superiority of DQN, since DQN can make the 

optimal transmission decision without channel estimation. 

 

Figure  3.13: Deep Q-Network performance compared to other action selection 

algorithms when 𝜎𝑖1 = 𝜎𝑖3 = 0.1, 𝜎𝑖2 = 0.8. 

 

 

Finally, Fig. 3.13 shows the performance of DQN together with the other heuristic 

action selection algorithms when the number of energy harvesters in the system is 

increased. Compared with the other algorithms, DQN achieves the optimal system 

performance. 

Conclusions 

 

In Chapter Three, the optimal wireless power transfer strategy for multiple RF 

energy harvesters is designed. DQN is used to fully charge the energy buffers of all 

energy harvesters in the shortest time while satisfying the information rate requirement of 

the communication system. The strong LOS communication channel conditions and time-
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varying energy harvesting channel conditions are considered. The optimization problem 

is formulated as a MDP and solved with RL. Due to the large number of system states 

and the environment uncertainty, a DQN approach is adopted to find the optimal 

transmission strategy corresponding to each system state. Simulation results show the 

behavior of the optimal policy under different settings, as well as the performance of 

heuristic policies. 
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CHAPTER FOUR 

 

A Multi-Armed Bandit Approach to Wireless Power Transfer 

 

This chapter published as:Y. Xing, Y.Qian and L. Dong, "A multi-armed bandit approach 

to wireless information and power transfer", IEEE Communication Letters, 2020. 

 

 

Introduction 

 

SWIPT technology can support wireless devices that have RF energy harvesting 

capability and reduce over-reliance on batteries. To increase the harvested power, multi-

transmitter SWIPT is configured. However, the wireless channels are usually assumed 

invariant and perfectly estimated [43, 44]. The SWIPT is also discussed with fading 

channels. However, either only a single transmitter is considered or the instantaneous 

channel gain or channel statistics are known [45]. 

In Chapter Four, the multi-transmitter SWIPT problem is considered over unknown 

block fading channels. Each wireless transmitter communicates with its corresponding 

information receiver, and all the transmitters collectively transfer power to multiple RF 

energy harvesters. The transmitters can be wireless base stations in an outdoor use case or 

WiFi access points in an indoor use case. The transmitters communicate with their 

receivers while wirelessly powering nearby micro devices [46]. Each transmitter has 

multiple antennas for beamforming. At the end of each time slot of a channel block, the 

receivers feed the SINR and the energy harvesters feed the levels of the harvested power 

back to a network coordinator. The coordinator determines the transmit beamforming 

weights and informs all the transmitters for the next time slot. Without any channel 

knowledge, the coordinator aims at fixing to the optimal beamforming weights for fair 
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energy harvesting while satisfying the SINR requirements of the receivers. Fair energy 

harvesting means that the minimum average received power among all the energy 

harvesters is maximized. 

This task is formulated as a CMAB problem [47]. The combinatorial feature is 

necessary because a decision is made on meeting the SINR requirements of all the receivers 

and maximizing the minimum average received power among all the harvesters. Recently, 

CMAB has been used to deal with wireless communication issues [8]. In Chapter Four, the 

type-one UCB (UCB1) algorithm [48] is proposed to solve the CMAB problem. Compared 

with the 𝜀-greedy algorithm, the UCB1 algorithm can converge to the optimal transmission 

strategy. Moreover, the convergence rate of the UCB1  algorithm is improved with 

hierarchical arm selection. It can be implemented with less signaling overhead in terms of 

feedback from the information receivers and the RF energy harvesters. It has superior 

performance of satisfying the SINR requirements and maximizing the minimum average 

harvested power. When compared with the ideal case where optimization is done at every 

time slot with known channels, the proposed method can maximize the minimum average 

harvested power to about 80% of the ideal value while maintaining the communication 

quality. 

 

Multiple Transmitters Wireless Information and Power Transfer System 

 

System Model 

 

As shown in Fig. 4.1, there are 𝐾 information transmitters communicating with 

their intended receivers while transferring power to 𝐿 nearby RF energy harvesters. Each 
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transmitter is equipped with 𝐷 antennas. Each information receiver has one antenna and 

each harvester has one antenna. 

 

 

Figure  4.1: Multi-transmitter Simultaneous Wireless Information and Power Transfer 

with a network coordinator. 

 

 

The baseband received signal at receiver 𝑖, 𝑖 ∈ 𝒦 = {1,2, … , 𝐾}, is  

 𝑦𝑖 = 𝐡𝑖𝑖
𝐻𝐱𝑖 + ∑𝑗∈𝒦\{𝑖} 𝐡𝑖𝑗

𝐻𝐱𝑗 + 𝑧𝑖 (4.1) 

where 𝐱𝑖 ∈ ℂ
𝐷×1 is the transmitted signal, 𝐡𝑖𝑖 ∈ ℂ

𝐷×1 denotes the baseband vector channel 

from transmitter 𝑖  to its intended receiver, 𝐡𝑖𝑗 ∈ ℂ
𝐷×1  is the interference channel from 

transmitter 𝑗  to receiver 𝑖 , and 𝑧𝑖~𝒞𝒩(0, 𝜎𝑛
2)  is the circularly symmetric complex 

Gaussian noise with mean zero and variance 𝜎𝑛
2.  
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             The 𝑖th transmitter uses beamforming weight 𝐰𝑖 to transmit symbol 𝑠𝑖,  

 𝐱𝑖 = 𝐰𝑖𝑠𝑖 (4.2) 

            Suppose that  

 E[|𝑠𝑖|
2] = 1 (4.3) 

 ∥ 𝐰𝑖 ∥
2= 𝑃𝑖 (4.4) 

The SINR at the 𝑖th information receiver is  

 SINR𝑖 = |𝐡𝑖𝑖
𝐻𝐰𝑖|

2/(∑𝑗∈𝒦\{𝑖} |𝐡𝑖𝑗
𝐻𝐰𝑗|

2 + 𝜎𝑛
2) (4.5) 

The received power at the RF energy harvester specifies the harvested energy 

normalized by the symbol period. The received power at the 𝑙th harvester is  

 𝑝𝑙 = 𝜂∑𝑖∈𝒦 |𝐠𝑙𝑖
𝐻𝐰𝑖|

2, 𝑙 ∈ ℒ = {1,2,… , 𝐿} (4.6) 

 where 𝐠𝑙𝑖 ∈ ℂ
𝐷×1 is the vector channel from transmitter 𝑖 to RF energy harvester 𝑙 and 𝜂 

is the energy conversion efficiency. Assume that the noise power is negligible compared 

to the received signal power. 

Suppose that the wireless channels {𝐡𝑖𝑖}, {𝐡𝑖𝑗}, and {𝐠𝑙𝑖} experience Rician block 

fading. Each vector channel is invariant within a block but varies independent from block 

to block according to a Rician distribution. 

 

Problem Formulation 

 

There is a network coordinator that determines the beamforming weights {𝐰𝑖} for 

the transmitters. Neither the network coordinator nor the transmitter knows the channels 

{𝐡} or {𝐠}. The beamforming weights are designed to maximize the minimum harvested 

energy among the RF energy harvesters over time while maintaining the SINR for each 

information receiver. This optimization problem is formulated as a CMAB problem. The 

coordinator is the agent who can choose super arms. Each super arm consists of several 
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simple arms. A simple arm is the beamforming weight 𝐰𝑖 for one transmitter. Therefore, 

the super arm is the combination of the beamforming weights of the transmitters, i.e.,  

 𝐖 = [𝐰1, 𝐰2, … ,𝐰𝐾] (4.7) 

        𝐖 contains all users beam weights. For a CMAB formulation, the agent aims to find 

the best super arm to achieve the best energy harvesting effect. 

The optimization problem is 

𝒫1:
maximize

𝐖 min
𝑙∈ℒ
E[𝑝𝑙]

subjectto ||𝐰𝑖||
2 = 𝑃𝑖andSINR𝑖 ≥ 𝛾𝑖 , ∀𝑖 ∈ 𝒦

 (4.8) 

 where 𝛾𝑖 is the SINR requirement of the 𝑖th receiver. The expectation indicates that it is 

to minimize the harvested energy over a long period of time of many channel blocks. The 

optimal beamforming weights will be used over channels that vary from block to block. 

However, the constraints are to be met within each channel block. 

To limit the number of choices of super arms, the quantized beamforming weights 

are used as simple arms. Let 𝑤𝑖𝑗 , 𝑗 = 1,2,… ,𝐷, be the 𝑗th element in the beamforming 

weight 𝐰𝑖 of the 𝑖th transmitter. For each 𝑤𝑖𝑗 , we set 𝛿𝑣1 and 𝛿𝑣2 as its real and imaginary 

parts, where 𝛿  is the quantization step size and 𝑣1, 𝑣2 ∈ ℤ . Of all the quantized 

beamforming weights, the specific weights are collected who satisfy  

 𝑃𝑖 − 𝜀 ≤∥ 𝐰𝑖
𝑞
∥2≤ 𝑃𝑖, ∀𝑖 ∈ 𝒦 (4.9) 

 to form set  

 𝒲 = {[𝐰1
𝑞
, 𝐰2

𝑞
, … , 𝐰𝐾

𝑞
]} (4.10) 

 𝜀 is a small constant that takes into account the quantization effect. The agent chooses the 

super arm from this set, i.e., 𝐖 ∈𝒲. 
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When the agent uses super arm 𝐖𝑚 , 𝑚 = 1,2,… , |𝒲|, at time slot 𝑛, it gets a 

reward as  

 𝑟𝑚(𝑛) = 𝛽[𝛼1(𝑛)𝛼2(𝑛)⋯𝛼𝐾(𝑛) − 0.5] ⋅ min𝑝𝑙(𝑛) (4.11) 

              𝑝𝑙(𝑛) is related to channels {𝐠𝑙𝑖} at time slot 𝑛. And 𝛼𝑖(𝑛) is used to indicate 

whether the SINR requiremend is fulfilled. 

                  𝛼𝑖(𝑛) = {
1, SINR𝑖(𝑛) ≥ 𝛾𝑖
0, SINR𝑖(𝑛) < 𝛾𝑖

 , ∀𝑖 ∈ 𝒦 (4.12) 

 where SINR𝑖(𝑛) is related to channels {𝐡𝑖𝑖} and {𝐡𝑖𝑗} at time slot 𝑛. 𝛽 is a normalization 

factor. The reward function is designed to maximize the minimum harvesting rate among 

the RF energy harvesters as well as satisfying the SINR requirement of each receiver. 

At the beginning of time slot 𝑛, the network coordinator determines a specific arm 

and notifies the transmitters. Each transmitter transmits with the corresponding 

beamforming weights. By the end of time slot 𝑛, each information receiver feeds back one 

bit to the coordinator indicating whether the SINR requirement is met, and each RF energy 

harvester feeds back the level of the harvested power 𝑝𝑙(𝑛). Then, the network coordinator 

calculates its reward 𝑟𝑚(𝑛). The feedback overhead in the network is moderate. 

 

Optimal Transmission Strategy with Combinatorial Multi-Armed Bandit 

 

To guarantee convergence, the UCB1  algorithm is utilized to solve 𝒫1 . The 

algorithm achieves a balance between exploiting the best known arm and exploring unused 

arms for the CMAB problem [48]. 

Let 𝜇𝑚(𝑛) be the expected reward of selecting the 𝑚th super arm at time slot 𝑛, 

i.e.,  

 𝜇𝑚(𝑛) = E[𝑟𝑚(𝑛)] (4.13) 
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 As the channels vary at different time slots, 𝑟𝑚(𝑛) is random and its expectation is difficult 

to find. Instead, 𝜇𝑚(𝑛)  is calculated with an empirical average. Define 𝜈𝑚(𝑛)  as the 

number of times the 𝑚th super arm is used from the first time slot to time slot 𝑛 − 1. The 

agent acquires the average reward 𝜇𝑚(𝑛) by using the 𝑚th super arm up to time slot 𝑛 −

1, that is  

 𝜇𝑚(𝑛) = ∑𝑛′:𝐼𝑛′=𝑚 𝑟𝑚(𝑛′)/𝜈𝑚(𝑛) (4.14) 

 where 𝐼𝑛 indicates which super arm is selected at time 𝑛. An upper bound of the expected 

reward is  

 𝑙𝑚(𝑛) = 𝜇𝑚(𝑛) + √2log(𝑛 − 1)/𝜈𝑚(𝑛) (4.15) 

The UCB1 algorithm first selects each super arm in turn from the super-arm set 𝒲. 

Each super arm is used in one time slot. In the next time slot, the channels vary and the 

next super arm in the set is used. Next, at time slot 𝑛 ≥ |𝒲| + 1, the UCB1 algorithm will 

select a super arm with the maximum upper bound of its expected reward. That is  

 𝑚(𝑛) = arg max
𝑚∈[1,𝑀]

𝑙𝑚(𝑛) (4.16) 

 where 𝑀 = |𝒲|. 

Define the cumulative regret of selecting arms 𝐼𝑛, 𝑛 = 1,2,… , 𝑇, over a period of 

𝑇 time slots as  

 𝑅𝑇 = 𝜇
∗𝑇 − ∑𝑇𝑛=1 𝑟𝐼𝑛(𝑛) (4.17) 

 where 𝜇∗ is the expected reward of using the optimal super arm to the CMAB problem. 

The regret is a non-negative number because 𝜇∗𝑇 is the best long-term reward the agent 

can get. With the UCB1 algorithm. 
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             E[𝑅𝑇], i.e., the expected regret after 𝑇 actions, is bounded [48].  

 lim
𝑇→∞

E[𝑅𝑇]/𝑇 = 0 (4.18) 

             Therefore, the UCB1 algorithm converges in time. 

For the CMAB problem, the large number of bandit super arms results in time-

consuming initial exploration and slow algorithm convergence. The UCB1  algorithm is 

improved with hierarchical arm selection to deal with these issues. In the improved 

algorithm, the arm selection is performed in multiple stages. The first stage starts with a 

large quantization step size 𝛿1 . A small set of super arms 𝒲1  is generated with 

beamforming weights that satisfy the transmit power constraints. The UCB1  algorithm 

converges and finds the optimal beamforming weights {𝐰𝑖
opt
}𝑖=1
𝐾 . In the second stage, a 

quantization step size 𝛿2 = 𝛿1/2 is utilized to generate candidate beamforming weights. 

For the 𝑖th transmitter, only the candidate beamforming weights that have a small 

 ∥ 𝐰𝑖
𝑞
𝐰𝑖
𝑞𝐻
− 𝐰𝑖

opt
𝐰𝑖
opt𝐻

∥𝐹  are selected to form the super arm set 𝒲2. That is  

 𝑊2 = {[𝐰1
𝑞
, 𝐰2

𝑞
, … , 𝐰𝐾

𝑞
]| ∥ 𝐰𝑖

𝑞
𝐰𝑖
𝑞𝐻
−𝐰𝑖

opt
𝐰𝑖
opt𝐻

∥𝐹≤ 𝑑, 𝑖 = 1,2,… ,𝐾}

 (4.19) 

 where ∥⋅∥𝐹 denotes the Frobenius norm and 𝑑 is the limit. The UCB1 algorithm is executed 

again to update the optimal beamforming weights {𝐰𝑖
opt
}𝑖=1
𝐾 . This process can be 

continued in multiple stages. In each stage, the quantized step size is halved to generate the 

candidate beamforming weights. Only the candidate beamforming weights that are close 

to the optimal beam weights of the previous stage are selected to form a new super-arm 

set.  
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Algorithm 4: UCB1 with Hierarchical Arm Selection   
input:   quantization step 𝛿, quantization deviation 𝜀, beam weight deviation 𝑑   
output: optimal beam weight {𝐰𝑖

opt
}𝑖=1
𝐾  

      1. for 𝑠 = 1,…, max_num_stages do 

      2.      𝛿𝑠 = 𝛿/2
𝑠−1. 

      3.     With 𝛿𝑠 and 𝜀, generate quantified {𝐰𝑖
𝑞
}𝑖=1
𝐾  that satisfy the power constraints.     

      4.      if 𝑠 = 1 then 

       5.           𝒲𝑠 = {[𝐰1
𝑞
, 𝐰2

𝑞
, … , 𝐰𝐾

𝑞
]}. 

       6.     else 

       7.           𝒲𝑠 = {[𝐰1
𝑞
, 𝐰2

𝑞
, … , 𝐰𝐾

𝑞
]| ∥ 𝐰𝑖

𝑞
𝐰𝑖
𝑞𝐻
− 𝐰𝑖

opt
𝐰𝑖
opt𝐻

∥𝐹≤ 𝑑, 𝑖 = 1,2,… ,𝐾}. 

       8.           𝒰𝑣𝑖 = 𝒰𝑣𝑖 + {𝑖}.  

       9.      end if 

      10.     𝑀 = |𝒲𝑠| 
      11.     for 𝑛 = 1,… ,𝑀 do 

      12.          Select super arm 𝑚 = 𝑛 at time slot 𝑛. 

      13.          𝜇𝑚(𝑛) = 𝑟𝑚(𝑛), 𝜈𝑚(𝑛) = 1. 

      14.     end for 

      15.     for 𝑛 = 𝑀 + 1,𝑀 + 2,⋯ do 

      16.          With 𝜈𝑚(𝑛) and 𝜇𝑚(𝑛), select 𝑚(𝑛) according to Eq. (4.16) 

      17.          The coordinate receives feedback {𝛼𝑖(𝑛)}𝑖=1
𝐾  and {𝑝𝑙(𝑛)}𝑙=1

𝐿  and updates 

                        𝑟𝑚(𝑛), 𝜈𝑚(𝑛), and 𝜇𝑚(𝑛). 
      18.          if 𝑚(𝑛) converges (unchanged over a number of slots) 

      19.               𝑚opt = 𝑚(𝑛), update {𝐰𝑖
opt
}𝑖=1
𝐾 ; break 

      20.          end if 

      21.     end for 

      22. end for 

 

   The UCB1 algorithm with hierarchical arm selection is presented in Alg. 4. As the 

process deepens in the hierarchy, the solution to the optimization problem becomes more 

accurate.  

As shown in Eq. (4.16), the computational complexity is largely due to the selection 

of the super arm that gives the maximum upper bound among a pool of 𝑀 candidate super 

arms. The limited memory space for the huge set of candidate super arms is another 

practical concern. The improved UCB1 algorithm reduces 𝑀 and therefore solves these 

problems. 
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Figure  4.2: Channel measurement with the WARP and USRP boards. 

 

 

Simulation Results 

 

Indoor wireless channels are measured and used in the evaluation of the proposed 

method. The transceivers consist of the WARP v3 boards with FMC-RF-2X245 modules 

and the Universal Software Radio Peripheral (USRP) X310 and N210 boards with CBX 

daughterboards. An N9030A PXA Signal Analyzer is used to measure the received power 

at the locations of RF energy harvesters. Each transmitter has three antennas (𝐷 = 3). 

(Figure 4.2) The transmission is centered at 2.4 GHz with maximum transmit power 𝑃 =

16 mW. The measured channels are used as the dominant components of the Rician fading 

channels and simulate the block fading effects with a 𝐾-factor of 10. The average channel 

gain from the transmitters to the receivers or the harvesters is −50 dB. 
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Figure  4.3: Comparison of cumulative regrets of the three algorithms. 𝐿 = 2. 

 

 

The scenarios where there are 𝐾 = 2 or 𝐾 = 3 transmitters are simulated. The 

SINR requirement is 𝛾 = 0.5  when 𝐾 = 2  or 𝛾 = 0.25  when 𝐾 = 3 . There are 𝐿 = 2 

nearby RF energy harvesters.  

The UCB1  algorithm is compared with the 𝜀-greedy algorithm. For the original 

UCB1  algorithm, there are an excessive amount of bandit arms. Due to hardware 

limitations, it is defined that 𝛿 = 2. The same 𝛿 = 2 is used for the 𝜀-greedy algorithm. 

The 𝜀  is defined as 0.2 with 20% exploration and 80% exploitation. The 𝜀 -greedy 

algorithm re-initiates after every 5000 time slots. Exploration is necessary because the 𝜀-

greedy algorithm tends to converge to a suboptimal strategy. With the hierarchical arm 

selection, four stages are considered. The quantization step starts with 𝛿 = 4 in the first 

stage and goes down to 𝛿 = 2,1,0.5  in the following stages. The algorithm is 
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computationally efficient, so 𝛿 can be pushed to 0.5. The arm selecting limits at the first 

three states are set as 𝑑 = 18,9,4.5, respectively. The quantization constant is 𝜀 = 0.25. 

Fig. 4.3 compares the cumulative regrets of these methods. It shows that the improved 

UCB1 algorithm converges the quickest. 

 

 

Figure  4.4: Comparison of UCB 1 with Hierarchical Arm Selection UCB 1, 𝜀-greedy 

algorithms, and random arm selection against the benchmark CVX solver on receiver 

SINR satisfaction and harvested power. 

 

 

Before any algorithm converges, there is signaling overhead that is due to feedback 

of SINR indicators 𝛼1, 𝛼2, … , 𝛼𝐾  from the 𝐾  receivers and received power 𝑝𝑙 , 𝑝2, … , 𝑝𝐿 

from the 𝐿 RF energy harvesters to the network coordinator. The amount of signaling 

overhead is linearly proportional to the number of time slots before algorithm convergence. 

After the algorithm converges, the transmitters’ beamforming weights are fixed. 𝜁𝑠𝑖𝑛𝑟 is 

defined as the proportion of time that the SINR requirements are satisfied over future time 
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slots. With these fixed weights, the minimum average harvested power of all the harvesters 

is 𝑃̂ = min𝑙∈ℒE[𝑝𝑙]. 

Tab. 4.1 lists the signaling overhead (in terms of the number of time slots before 

algorithm convergence), 𝜁sinr , and 𝑃̂  of the algorithms. The improved UCB1  algorithm 

effectively reduces the number of super arms. As a result, it has a smaller signaling 

overhead even with a smaller final-stage 𝛿 compared with the original UCB1 algorithm. 

The UCB1 algorithm has superior performance taking into account both receiver SINR 

requirements and minimum average harvested power. The 𝜀-greedy algorithm has not 

converged during the test period.    

 

Table 4.1. Performance comparison of the UCB 1 and 𝜀-greedy algorithms on signaling 

overhead, receiver SINR satisfaction, and harvested power. 

 

Algorithm 𝐾 δ Overhead ζ𝑆𝐼𝑁𝑅  𝑃̂(𝜇𝑊) 
UCB1 hier. arm selec. 2 0.5 3.2 ×104 0.994 5.866 

UCB1 2 2 4.2 ×104 0.960 6.151 

ε-greedy 2 2 >3 ×105 0.985 5.360 

UCB1 hier. arm selec. 3 0.5 1.6 ×105 0.999 10.964 

UCB1 3 2 2.6 ×105 0.994 10.662 

ε-greedy 3 2 >3 ×105 0.999 7.749  
 

In practice, the network coordinator has no knowledge of the channels. Given 

prefect channel knowledge at each time slot, the optimal solution of the optimization 

problem 𝒫1 can be obtained with the CVX solver [31]. This ideal solution is used as the 

benchmark against which the performance of the algorithms is evaluated. 𝜁𝑝 is defined as 

the ratio of the minimum average harvested power with the super arm learned by the 

algorithm to the one from the ideal solution. The case where a random super arm is 

selected at each time slot is also compared with the proposed algorithm on 𝜁𝑠𝑖𝑛𝑟 and 𝜁𝑝 
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calculated accordingly. Fig. 4.4 shows the performance of multiple algorithms against the 

ideal solution by the CVX solver. 𝐾 = 2,3 and 𝐿 = 2,3,6. When super arms are selected 

randomly, 𝜁sinr is about 0.6 and 𝜁𝑝 is merely about 0.3. The UCB 1 algorithms greatly 

improve the performance with 𝜁sinr close to one and 𝜁𝑝 increased to about 0.8. 

 

Conclusion 

 

The multi-transmitter SWIPT over unknown fading channels is treated as a CMAB 

problem. It is solved by the UCB algorithm with hierarchical arm selection. With moderate 

feedback from the information receivers and the RF energy harvesters, the algorithm can 

quickly converge to an optimal multi-antenna transmission strategy. It maximizes the 

minimum average received power among all the energy harvesters to about 80% of the 

ideal value, i.e., through optimization with known channels, while maintaining the 

communication quality at each information receiver. 
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CHAPTER FIVE 

 

Deep Neural Networks for Optimized OFDMA Energy-efficient Transmission 

 

 

Introduction 

 

Applying multiuser transmission over parallel frequency channels is a promising 

technique, since multiple parallel subchannels can resist the transmission inference [49, 

50]. Adapting to different channel conditions, the transmission strategy on each subchannel 

can be adjusted to maximize the communication quality. In [51], the authors dealt with a 

wireless communication system, which consisted of multiple parallel Gaussian broadcast 

channels. The authors determined a resource allocation strategy in order to maximize a 

weighted sum of rates under the sum power and additional receiver-specific rate constraints 

in the system. 

To achieve certain amount of information transmission with minimum energy 

consumption, the energy efficiency is an important criterion to evaluated a wireless system 

performance [13, 52, 53, 54]. The energy efficiency can also be measured by the ratio 

between the information rate to the consumed power, such as in [52]. The authors applied 

a concave-convex fractional-programming framework to iteratively solve a energy 

efficiency optimization problem. The proposed Dinkelbach approach can determine the 

best power allocation strategy for a fixed energy efficiency in each iteration. 

Recently, the energy-efficient wireless transmission in OFDMA system has been 

widely discussed [55, 56, 12, 57, 14, 58, 59]. In [56], the overall transmit power was 

minimized by assigning the Orthogonal Frequency Division Multiplexing (OFDM) 
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subcarriers to different users, determining the number of bits and allocating the transmit 

power on each subcarrier. The authors proposed an iterative algorithm for multiuser 

subcarrier assignment. The bit and power allocation algorithm was applied to each user on 

its allocated subcarrier after the subcarrier allocation was determined. In [12], the energy-

efficient resource allocation was investigated in downlink together with uplink cellular 

networks with OFDMA. The authors aimed at maximizing the generalized energy 

efficiency for the downlink transmission, at the same time maximizing the minimum 

energy efficiency for each individual uplink case. The two optimizations were both 

established under certain prescribed QoS requirements. The authors provided both the 

optimal solution and a low-complexity suboptimal solution by exploring the inherent 

structure and property of the energy-efficient design. In [14], a single cell uplink 

communication system was discussed. The authors maximized the energy efficiency of the 

worst-case link subject to the information rate, transmit power, and subcarrier assignment 

constraints. An iterative algorithm was invented to solve the optimization problem with a 

generalized fractional programming theory and the Lagrangian dual decomposition. In 

order to further decrease the computational complexity, the authors devised algorithms to 

separate the subcarrier assignment and power allocation, which result in a suboptimal 

solution. 

In Chapter Five, a practical energy efficiency optimization problem is formulated. 

The base station aims at maximizing the total energy efficiency while maintaining the 

achievable information rate requirement from the base station to each mobile user. The 

power allocation and channel assignment are conducted in order to solve the optimization 

problem. 
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To avoid high computational complexity, a novel method is proposed to find the 

optimal power allocation and subchannel assignment with DNNs instead of solving the 

optimization problem. DNN is a powerful tool in solving the complex optimization 

problems, especially non-convex optimization problems [60]. Compared with the 

traditional optimization algorithms, the DNN can achieve high precision in solving the 

optimization problems with extremely fast speed. DNN has been widely applied to solve 

the optimization problems in complicated communication systems [28, 61, 62]. In [61], the 

authors proposed a DNN based scheme for the real-time interference management over 

interference-limited channels. The DNN achieved orders of magnitude speedup in 

computational time compared to the state of the art interference management algorithm. In 

Chapter Five, two DNNs are trained individually, which determine the optimal power 

allocation and subchannel assignment, respectively. It consumes very long time to train the 

DNNs with a large number of training data offline. However, the well trained DNNs can 

be utilized online in a quick response. The simulation results prove the superiority of DNNs 

in solving the proposed optimization problem. 

 

Multiuser Downlink OFDMA Data Transmission System 

 

System Model 

 

Considering a downlink OFDMA system: the base station serves 𝐾 users. There 

are 𝑁 subchannels. 𝒩 = {1,2, . . . , 𝑁}. Any subchannel can be allocated to any user 𝑘. Each 

subchannel has same bandwidth 𝑊. The system model is shown in Fig. 5.1. 𝑗𝑘,𝑛 is defined 

as the subchannel indicator. It indicates whether user 𝑘 occupies the 𝑛th subchannel. 𝑗𝑘,𝑛 =
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1  if user 𝑘  occupies the 𝑛 th subchannel; 𝑗𝑘,𝑛 = 0  if user 𝑘  doesn’t occupy the 𝑛 th 

subchannel. 

 

Figure  5.1: Multiuser downlink OFDMA wireless transmission system 

 

The achievable information rate of the 𝑘th user is denoted as  

 𝑟𝑘 = ∑
𝑁
𝑛=1 𝑊log2 (1 +

𝑃𝑛𝑗𝑘,𝑛|ℎ𝑘𝑛|
2

𝑊𝑁0
) (5.1) 

 where 𝑃𝑛  is the power allocated on the 𝑛 the subchannel. 𝑁0  denotes the single-sided 

spectral density of additive Gaussian noise. ℎ𝑘𝑛 denotes the frequency response of the 𝑛th 

suchannel of user 𝑘. 

The total energy efficiency ΓEE
𝑡𝑜𝑡𝑎𝑙  is denoted as  

 ΓEE
𝑡𝑜𝑡𝑎𝑙 =

∑𝐾𝑘=1 𝑟𝑘

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛𝑗𝑘,𝑛

 (5.2) 

 



81 

 

Problem Formulation 

 

The optimization aims at maximizing the sum energy efficiency Γ𝐸𝐸
𝑡𝑜𝑡𝑎𝑙 , at the same 

time, the achievable rate requirement 𝑅𝑘  has to be satisfied. The maximum total transmit 

power is 𝑃. The problem is formulated as  

 𝒫1:

maximize
{𝑗𝑘,𝑛},{𝑃𝑛}

∑𝐾𝑘=1 𝑟𝑘

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛𝑗𝑘,𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑘 ≥ 𝑅𝑘 ,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 𝑗𝑘,𝑛 ≤ 1,    ∀𝑛 ∈ 𝒩

∑𝑁𝑛=1 𝑗𝑘,𝑛 ≥ 1,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛𝑗𝑘,𝑛 ≤ 𝑃

 (5.3) 

The rayleigh block fading channel model is used to characterize each subchannel. 

The channel variations of 𝑁 subchannels can be seen as a frequency selective rayleigh 

block fading. 

The channel gain vector from the base station to the 𝑘th mobile user is denoted as  

 𝐚𝑘 = [|ℎ𝑘1|
2, |ℎ𝑘2|

2, … , |ℎ𝑘𝑁|
2]𝑇 , 𝑘 = {1,2,… , 𝐾} (5.4) 

 All 𝐾 channel gain vectors compose the channel gain matrix 𝐀 ∈ ℝ𝐾×𝑁 that  

 𝐀 = [𝐚1, 𝐚2, … , 𝐚𝐾] (5.5) 

The subchannel vector is regulated as  

 𝐜𝑙 = [𝑐1
𝑙 , 𝑐2

𝑙 , . . . , 𝑐𝑁
𝑙 ], 𝑐𝑛

𝑙 = 1,2, . . . , 𝐾, 𝑙 = 1,2, . . . , 𝐿 (5.6) 

 If 𝑐𝑛
𝑙 = 𝑘, then 𝑗𝑘,𝑛

𝑙 = 1 and 𝑗
𝑘′,𝑛
𝑙 = 0, 𝑘′ ∈ 𝒦\𝑘. 𝒞 = {𝐜𝑙}. 𝐿 = |𝒞|. 𝑗𝑘,𝑛

𝑙  is defined as 

the subchannel occupation indicator corresponding to 𝐜𝑙  in 𝒞 . The optimal subchannel 

assignment strategy is contained in 𝒞. Each vector 𝐜𝑙 in set 𝒞 = {𝐜1, . . . , 𝐜𝐿} satisfies  

 ∑𝐾𝑘=1 𝑗𝑘,𝑛
𝑙 ≤ 1 (5.7) 

 ∑𝑁𝑛=1 𝑗𝑘,𝑛
𝑙 ≥ 1 (5.8) 
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Optimal Spectrum Management with Deep Neural Networks 

 

Since the proposed non-convex optimization problem cannot be solved by any 

optimization tool, DNNs are implemented at the base station to find the optimal power 

allocation 𝑃𝑛  and subchannel assignment 𝑗𝑘,𝑛  for 𝒫1. The DNN is trained offline with a 

large number of simulated data. It reduces the complexity of online execution and increases 

the response speed of the base station. There are two NNs, one is called Power DNN, 

another one is called Subchannel DNN. Each DNN independently outputs in order to 

approach the optimal power allocation and subchannel assignment. 

The base station acquires the channel gain matrix 𝐀 and uses it as the input to the 

DNN. The input is  

 𝐚in = vec(𝐀) (5.9) 

 and 𝐚in ∈ ℝ𝐾𝑁×1. For the Power DNN, it outputs  

 𝐏out = [𝑃1
out, 𝑃2

out, … , 𝑃𝑁
out]𝑇 (5.10) 

 The input-output relation of the Power DNN is defined as  

 𝐏out = 𝐅1(𝐚
in) (5.11) 

 For the Subchannel DNN, it outputs  

 𝐈out = [𝐼1
out, 𝐼2

out, … , 𝐼𝐿
out]𝑇 (5.12) 

 The output is normalized as 𝐼𝑙
out ∈ [0,1]. Each 𝐼𝑙

out corresponds to a particular 𝐜𝑙 . The 

optimal subchannel assignment index is selected as  

 𝑙∗ = arg    max
𝑙∈ℒ

    𝐼𝑙
out (5.13) 

 The input-output relation of the Power DNN is defined as  

 𝐈out = 𝐅2(𝐚
in) (5.14) 
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 Both function 𝐅1(⋅) and function 𝐅2(⋅) derive the outputs based on 𝐚in in order to 

maximize 
∑𝐾𝑘=1 𝑟𝑘

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

out𝑗𝑘,𝑛
𝑙∗ . The DNN is trained using the optimal power allocation and 

subchannel assignment solved by Refined Exhaustive Search algorithm, which is 

described in the next section. 

Since the channel experience rayleigh block fading, ℎ𝑘𝑛 is generated with 𝛿2 = 1, 

and the channel gains |ℎ𝑘𝑛|
2 follow the exponential distribution. 𝐚in is taken as the input 

to two DNNs. In order to generate the outputs of the traning data, 𝒫1 has to be solved. 

However, problem 𝒫1 is non-convex and cannot be solved by CVX solver directly. Hence, 

a Refined Exhaustive Search algorithm is invented to approximate the optimal solution. 

First, optimization 𝒫2 and 𝒫3 are formulated to acquire the upper and lower bound 

of the sum power and sum information rate, respectively. 

Optimization 𝒫2 is formed as  

 𝒫2:

maximize
{𝑗𝑘,𝑛},{𝑃𝑛}

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛𝑗𝑘,𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑘 ≥ 𝑅𝑘 ,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛𝑗𝑘,𝑛 ≤ 𝑃

∑𝐾𝑘=1 𝑗𝑘,𝑛 ≤ 1,    ∀𝑛 ∈ 𝒩

∑𝑁𝑛=1 𝑗𝑘,𝑛 ≥ 1,    ∀𝑘 ∈ 𝒦

 (5.15) 

 The power allocation and channel assignment are solved as {𝑃𝑛
∗} and {𝑗𝑘,𝑛

∗ }. The sum 

power lower bound is denoted as  

 𝑃𝑠
𝐿 = ∑𝐾𝑘=1 ∑

𝑁
𝑛=1 𝑃𝑛

∗𝑗𝑘,𝑛
∗  (5.16) 

 The sum rate lower bound is denoted as 

 𝑅𝑠
𝐿 = ∑𝐾𝑘=1 𝑟𝑘 (5.17) 
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Optimization 𝒫3 is formulated as  

 𝒫3:

maximize
{𝑗𝑘,𝑛},{𝑃𝑛}

∑𝐾𝑘=1 𝑟𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑘 ≥ 𝑅𝑘 ,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛𝑗𝑘,𝑛 ≤ 𝑃

∑𝐾𝑘=1 𝑗𝑘,𝑛 ≤ 1,    ∀𝑛 ∈ 𝒩

∑𝑁𝑛=1 𝑗𝑘,𝑛 ≥ 1,    ∀𝑘 ∈ 𝒦

 (5.18) 

 The power allocation and channel assignment are solved as {𝑃𝑛
∗} and {𝑗𝑘,𝑛

∗ }. The sum 

power upper bound is denoted as  

 𝑃𝑠
𝑈 = ∑𝐾𝑘=1 ∑

𝑁
𝑛=1 𝑃𝑛

∗𝑗𝑘,𝑛
∗  (5.19) 

 The sum rate upper bound is denoted as  

 𝑅𝑠
𝑈 = ∑𝐾𝑘=1 𝑟𝑘 (5.20) 

The sum power and the achievable rate are equally spaced between the upper and 

lower bounds. The spacing intervals are defined as  

 Δ𝑃 =
𝑃𝑠
𝑈−𝑃𝑠

𝐿

𝑇1
 (5.21) 

 and  

 Δ𝑅 =
𝑅𝑠
𝑈−𝑅𝑠

𝐿

𝑇2
 (5.22) 

 𝑇1 and 𝑇2 are the spacing indexes. Multiple constraint thresholds are defined for power  

 𝑃𝑡1 = 𝑃𝑠
𝑈 − Δ𝑃(𝑡1 − 1), 𝑡1 = 1,2, . . . , 𝑇1 (5.23) 

 and sum rate  

 𝑅𝑡2 = 𝑅𝑠
𝑈 − Δ𝑅(𝑡2 − 1), 𝑡2 = 1,2, . . . , 𝑇2 (5.24) 
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For each 𝐜𝑙  with particular power constraint 𝑃𝑡1 , convex optimization 𝒫4  is 

formulated in order to maximize the sum rate with the power constraint  

 𝒫4:

maximize
{𝑗
𝑘,𝑛
𝑙,𝑡1},{𝑃𝑛

𝑙,𝑡1} ∑𝐾𝑘=1 𝑟𝑘
𝑙,𝑡1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑘
𝑙,𝑡1 ≥ 𝑅𝑘 ,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛

𝑙,𝑡1𝑗𝑘,𝑛
𝑙,𝑡1 ≤ 𝑃

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛

𝑙,𝑡1𝑗𝑘,𝑛
𝑙,𝑡1 ≤ 𝑃𝑡1

∑𝐾𝑘=1 𝑗𝑘,𝑛
𝑙,𝑡1 ≤ 1,    ∀𝑛 ∈ 𝒩

∑𝑁𝑛=1 𝑗𝑘,𝑛
𝑙,𝑡1 ≥ 1,    ∀𝑘 ∈ 𝒦

 (5.25) 

 where 𝑗𝑘,𝑛
𝑙,𝑡1  denotes the subchannel indicator of user 𝑘  on subchannel 𝑛  when the 

subchannel assignment strategy is 𝐜𝑙  and the power constraint is 𝑃𝑡1 . 𝑃𝑛
𝑙,𝑡1  denotes the 

power allocation of user 𝑘 on subchannel 𝑛 when the subchannel assignment strategy is 𝐜𝑙 

and the power constraint is 𝑃𝑡1. The optimal power allocation and subchannel assignment 

are solved as {𝑃𝑛
∗,𝑙,𝑡1}, {𝑗𝑘,𝑛

∗,𝑙,𝑡1}, respectively.  

 𝑙∗ = arg max
𝑡1∈𝒯1 ,𝑙∈ℒ

∑𝐾𝑘=1𝑟𝑘
∗,𝑙,𝑡1

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

∗,𝑙,𝑡1𝑗
𝑘,𝑛
∗,𝑙,𝑡1

 (5.26) 

 𝑡1
∗ = arg max

𝑡1∈𝒯1 ,𝑙∈ℒ

∑𝐾𝑘=1 𝑟𝑘
∗,𝑙,𝑡1

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

∗,𝑙,𝑡1𝑗
𝑘,𝑛
∗,𝑙,𝑡1

 (5.27) 

 The optimal power allocation and subchannel assignment are solved as {𝑃𝑛
𝑙∗,𝑡1

∗

}, {𝑗𝑘,𝑛
𝑙∗,𝑡1

∗

}, 

respectively. The optimal achievable energy efficiency of all 𝐜𝑙  and 𝑃𝑡1  combination is 

denoted as  

 ΓEE
𝐼 ∗
= max
𝑡1∈𝒯1,𝑙∈ℒ

∑𝐾𝑘=1 𝑟𝑘
∗,𝑙,𝑡1

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

∗,𝑙,𝑡1𝑗
𝑘,𝑛
∗,𝑙,𝑡1

 (5.28) 
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For each 𝐜𝑙  with particular sum rate constraint 𝑅𝑡2 , convex optimization 𝒫5  is 

solved in order to minimize the sum power with the sum information rate constraint  

 𝒫5:

minimize
{𝑗
𝑘,𝑛
𝑙,𝑡2},{𝑃𝑛

𝑙,𝑡2} ∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛

𝑙,𝑡2𝑗𝑘,𝑛
𝑙,𝑡2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑟𝑘
𝑙,𝑡2 ≥ 𝑅𝑘 ,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛

𝑙,𝑡2𝑗𝑘,𝑛
𝑙,𝑡2 ≤ 𝑃

∑𝐾𝑘=1 𝑟𝑘
𝑙,𝑡2 ≥ 𝑅𝑡2

∑𝐾𝑘=1 𝑗𝑘,𝑛
𝑙,𝑡2 ≤ 1,    ∀𝑛 ∈ 𝒩

∑𝑁𝑛=1 𝑗𝑘,𝑛
𝑙,𝑡2 ≥ 1,    ∀𝑘 ∈ 𝒦

 (5.29) 

 where 𝑗𝑘,𝑛
𝑙,𝑡2  denotes the subchannel indicator of user 𝑘  on subchannel 𝑛  when the 

subchannel assignment strategy is 𝐜𝑙 and the sum rate constraint is 𝑅𝑡2. 𝑃𝑛
𝑙,𝑡2  denotes the 

power allocation of user 𝑘 on subchannel 𝑛 when the subchannel assignment strategy is 𝐜𝑙 

and the sum rate constraint is 𝑅𝑡2. 

The optimal power allocation and subchannel assignment are solved as {𝑃𝑛
∗,𝑙,𝑡2}, 

{𝑗𝑘,𝑛
∗,𝑙,𝑡2}, respectively.  

 𝑙∗ = arg max
𝑡2∈𝒯2 ,𝑙∈ℒ

∑𝐾𝑘=1𝑟𝑘
∗,𝑙,𝑡2

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

∗,𝑙,𝑡2𝑗
𝑘,𝑛
∗,𝑙,𝑡2

 (5.30) 

 𝑡2
∗ = arg max

𝑡2∈𝒯2 ,𝑙∈ℒ

∑𝐾𝑘=1 𝑟𝑘
∗,𝑙,𝑡2

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

∗,𝑙,𝑡2𝑗
𝑘,𝑛
∗,𝑙,𝑡2

 (5.31) 

The optimal power allocation and subchannel assignment are solved as {𝑃𝑛
𝑙∗,𝑡2

∗

}, 

{𝑗𝑘,𝑛
𝑙∗,𝑡2

∗

}, respectively. 

The optimal achievable energy efficiency of all 𝐜𝑙 and 𝑅𝑡2 combination is denoted 

as  

 ΓEE
𝐼𝐼 ∗ = max

𝑡2∈𝒯2,𝑙∈ℒ

∑𝐾𝑘=1 𝑟𝑘
∗,𝑙,𝑡2

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

∗,𝑙,𝑡2𝑗
𝑘,𝑛
∗,𝑙,𝑡2

 (5.32) 
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The optimal total energy efficiency ΓEE
𝑡𝑜𝑡𝑎𝑙∗ = max(ΓEE

𝐼 ∗
, ΓEE
𝐼𝐼 ∗). 

The corresponding optimal power {𝑃𝑛
𝑙∗,𝑡∗} and subchannel assignment {𝑗𝑘,𝑛

𝑙∗,𝑡∗} can 

be determined. The Refined Exhaustive Search algorithm is shown in Alg. 5.  Alg. 5 is 

used to generate the training data for the DNNs. 

 

Algorithm 5: Refined Exhaustive Search Algorithm   
input:   channel gain |ℎ𝑘𝑛|

2, ∀𝑘 ∈ 𝒦,∀𝑛 ∈ 𝒩   

output: optimal power allocation {𝑃𝑛
𝑙∗,𝑡∗}, optimal subchannel assignment {𝑗𝑘,𝑛

𝑙∗,𝑡∗} 

      1. The upper and lower bounds of the sum power and sum information rate 𝑃𝑠
𝑈, 𝑃𝑠

𝐿 , 

            𝑅𝑠
𝑈, 𝑅𝑠

𝐿  are calculated based on 𝒫2 and 𝒫3. 
      2. Equally space between the upper and lower bound of sum power and sum   

           information rate. Generate multiple constraint thresholds for power 𝑃𝑡1 and sum  

           information rate 𝑅𝑡2. 

      3. For each 𝐜𝑙 and 𝑃𝑡1 combination, solve 𝒫4. Acquire ΓEE
𝐼 ∗

 with Eq. (5.28). 

      4. For each 𝐜𝑙 and 𝑅𝑡2 combination, solve 𝒫5. Acquire ΓEE
𝐼𝐼 ∗ with Eq. (5.32). 

       5. The maximum total energy efficiency is calculated as ΓEE
𝑡𝑜𝑡𝑎𝑙∗ = max(ΓEE

𝐼 ∗
, ΓEE
𝐼𝐼 ∗).   

           The optimal power allocation {𝑃𝑛
𝑙∗,𝑡∗} and subchannel assignment {𝑗𝑘,𝑛

𝑙∗,𝑡∗} strategy   

           are determined. 
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Figure  5.2: The structure of Power Deep Neural Network 

 

 

Simulation Result 

 

A downlink OFDMA system is simulated. The base station serves 𝐾 = 2 mobile 

users with 𝑁 = 6 subchannels. The maximum total transmitted power is 𝑃 = 2 mW. The 

noise power spectrum density is 𝑁0 = −170 dBm/Hz. The channel gain is −80 dBm. The 

bandwidth of each subchannel is defined as 𝑊 = 1MHz. 
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Figure  5.3: The structure of Subchannel Deep Neural Network 

 

 

With Python Keras Toolkit [63], both the Power DNN and the Subchannel DNN 

are established with multiple layers. The Power DNN has 5 hidden layers and each layer 

contains 70 nodes. The Subchannel DNN also has 5 hidden layers and each layer has 50 

nodes. The connectivity of each neural network is fully connected. The total number of the 

weights for the Power DNN is 20860 and the total number of the weights for the 

Subchannel DNN is 10900. The activation function for the hidden layers are ReLU 

function. For the Subchannel DNN, the activation function for the output layer is softmax 

function. Adam Optimizer is selected to train the DNNs. The learning rate for Power DNN 

and Subchannel DNN are 0.0001 and 0.001, respectively. The batch normalization is 

applied in training process in order to leverage the tranining effects. The structure of Power 

DNN and Subchannel DNN are shown in Fig. 5.2 and 5.3. 

For training both Power DNN and Subchannel DNN, early stopping is used to avoid 

overtraining the neural network. The training process of the Power DNN is shown in in 

Fig. 5.4. It can be observed that the mean square error of the power decreases with the 



90 

 

training epochs increase. The training process of the Subchannel DNN is shown in Fig. 5.5. 

In Fig. 5.5, the categorical crossentropy loss decreases with the training epochs increase. 

 

 

Figure  5.4: Mean square error of the power versus training epochs in Power Deep Neural 

Network 

 

 

 

Figure  5.5: Categorical crossentropy loss versus training epochs in Subchannel Deep 

Neural Network 

 

 

Random (exponential distributed) channel gain vectors {𝐚𝑘} are utilized to train 

both Power and Subchannel DNNs. There are 8500 randomly generated channel gain 

vectors for 𝑁 = 4,5,6 available subchannels conditions, respectively. The channel gains 

are the inputs to the DNNs. The corresponding optimal transmit power allocations {𝐪̂} and 

the optimal subchannel assignment of Problem 𝒫1 are generated by the invented Refined 
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Exhaustive Search algorithm. The Refined Exhuastive Search algorithm is solved in 

multiple steps with MATLAB CVX solver [31]. 80% of the generated data are used for 

training and 20% of the data are used for testing. 

 

 

Figure  5.6: The energy efficiency of the RES algorithm versus spacing index. 

 

 

 

Figure  5.7: The execution time of the RES algorithm versus spacing index. 
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The maximum energy efficiency derived by two DNNs results is defined as  

 ΓEE
NN =

∑𝐾𝑘=1𝑟𝑘

∑𝐾𝑘=1 ∑
𝑁
𝑛=1𝑃𝑛

out𝑗𝑘,𝑛
𝑙∗  (5.33) 

 𝑙∗ = arg    max
𝑙∈ℒ

    𝐼𝑙
out (5.34)  

 𝑙∗ is the optimial subchannel assignment. 

 

 

Figure  5.8: Precision 𝜂 of the proposed DNNs versus the information rate loss ratio 

threshold 𝑛R. The number of the mobile users is 𝐾 = 2. The number of the available 

subchannels is 𝑁 = 4,5,6. The information rate requirement is 𝑅 = 1,1.5Mbps. 

 

 

The information rate is denoted as  

 𝑟𝑘
NN = ∑𝑁𝑛=1 𝑊log2 (1 +

𝑃𝑛
out𝑗𝑘,𝑛

𝑙∗ |ℎ𝑘𝑛|
2

𝑊𝑁0
) (5.35) 

The maximum energy efficiency derived by the Refined Exhaustive Search 

algorithm is  

 ΓEE
RES = ΓEE

𝑡𝑜𝑡𝑎𝑙∗ (5.36) 

 and the information rate requirement is 𝑅. The energy efficiency loss ratio is regulated as  

 𝜆EE = (ΓEE
RES − ΓEE

NN)/ΓEE
RES (5.37) 
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           The information rate loss ratio  

 𝜆𝑅
𝑘 = (𝑅 − 𝑟𝑘

NN)/𝑅 (5.38) 

If 𝜆EE < 0 (or 𝜆𝑅
𝑘 < 0), which means that the DNN has a better result than the CVX 

solver. Therefore, 𝜆EE = 0  (or 𝜆𝑅
𝑘 = 0 ). The energy efficiency loss ratio threshold is 

defined as 𝑛EE and the information rate loss ratio threshold is defined as 𝑛𝑅. Of all of the 

𝑁𝑇  DNN testing outputs, transmissions with 𝑁𝑆  particular transmit power allocations 

satisfy 𝜆𝑝 ≤ 𝑛𝑝 (or ∀𝑘 ∈ 𝒦, 𝜆𝑅
𝑘 ≤ 𝑛𝑅). The precision  

 𝜂 = 𝑁𝑆/𝑁𝑇 (5.39) 

 is used to evaluate the DNN performance. 

 

 

Figure  5.9: Precision 𝜂 of the proposed DNNs versus the energy efficiency loss ratio 

threshold 𝑛𝐸𝐸. The number of the mobile users is 𝐾 = 2. The number of the available 

subchannels is 𝑁 = 4,5,6. The information rate requirement is 𝑅 = 1,1.5Mbps. 

 

 

Fig. 5.6 and 5.7 show the performance of the proposed Refined Exhaustive 

Search(RES) algorithm. The number of the mobile users is 𝐾 = 2. The number of the 
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available subchannels is 𝑁 = 4,5,6. The information rate requirement is 𝑅 = 1Mbps. The 

spacing index is defined as 𝑇 = 𝑇1 = 𝑇2. It can be observed that with a lager spacing index, 

the achieved energy efficiency gets higher, which however results in a longer execution 

time. 

If the spacing index is large enough, the energy efficiency can converge. For the 

later simulation, the spacing index 𝑇 is selected as 6 in generating the training data. Since 

in this way, a satisfactory energy efficiency performance can be ensured and the algorithm 

execution time is moderate. 

Fig. 5.8 and 5.9 show the performance of DNNs in both information rate 

satisfaction and achieved energy efficiency. It can be observed that with more available 

subchannels, the information rate satisfaction decreases. Since same amount of training 

data are generated for 𝑁 = 4,5,6  conditions. When the number of the subchannels 

increases, more training data are needed to guarantee a better performance. When the 

information rate requirement increases, the trained DNNs achieve better performance in 

the energy efficiency. At last, the execution time of DNNs and Refined Exhaustive Search 

algorithm are compared. The average execution time of DNNs is 6.46 × 10−7 second, 

however, the average execution time of Refined Exhuastive Search algorithm is 157.7 

second. The DNNs obviously outperform the Refined Exhaustive Search algorithm in 

terms of algorithm running time. 

 

Conclusions 

 

A novel approach is proposed for downlink multiuser OFDMA data transmission. 

The base station uses the measured channel gains as the input to two different DNNs, which 

output the optimal transmit power allocation and subchannel assignment that can maximize 
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the system energy efficiency. At the same time, the information rate requirement at each 

communication receiver is satisfied. A Refined Exhaustive Search algorithm is invented to 

generate the training data. With larger spacing index, the Refined Exhaustive Search 

algorithm is shown to converge to the optimal solution. The simulation results show that 

the DNNs can dramatically reduce the execution time in solving the optimization problem 

while assuring an excellent system performance. The DNNs are trained offline with a large 

amount of simulated data, but it has very effective online performance. 
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CHAPTER SIX 

 

Deep Reinforcement Learning for Optimized OFDMA Energy-efficient Transmission 

 

 

Introduction 

 

The energy-efficient wireless transmission in OFDMA system has been widely 

discussed [55, 56, 12, 57, 14, 58, 59]. In Chapter Five, a novel approach is proposed for 

downlink multiuser OFDMA data transmission. The base station uses the measured 

channel gains as the input to two different DNNs, which output the optimal transmit power 

allocation and subchannel assignment that can maximize the system energy efficiency. At 

the same time, the information rate requirement at each communication receiver can be 

satisfied. 

Thus far, most research assumed an invariant channel environment and solved the 

resource allocation problems with complete knowledge about the channel. Only few papers 

considered the environmental dynamics and solved the long-term optimization problems 

[7, 64, 65, 66]. In [7], the authors proposed an energy efficiency optimization problem in 

energy harvesting Ultra Dense Network. Focusing on acquiring the optimal power control 

strategy, the power allocation strategy was determined without prior knowledge about 

energy arrival, user arrival and channel state information. The authors applied DDPG 

algorithm to solve the proposed problem and simulation results proved that the DDPG 

algorithm can enhance the energy efficiency performance significantly. In [66], the 

spectrum sharing problem in vehicular networks was investigated where multiple vehicle-

to-vehicle (V2V) links reused the frequency spectrum pre-occupied by vehicle-to-
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infrastructure (V2I) links. Collecting accurate instantaneous channel state information at 

the base station was impractical due to the fast variations of the channels in high mobile 

vehicular environments. The optimization problem was formulated as a multi-agent 

optimization problem and solved by DQNs. The multiple V2V agents can successfully 

learn to cooperate in a distributed way to simultaneously improve the sum capacity of V2I 

links and payload delivery rate of V2V links. 

In order to solve the long-term optimization problems, DRL shows its superiority 

in decision making, thereby avoiding short-sighted result and achieving the long-term 

optimization goal. DQN was introduced to learn how to play complex games with very 

large number of system states, and unknown state transition probabilities [32]. In [67], the 

authors adapted the ideas underlying the success of DQN to the continuous action domain. 

Therefore, a DDPG algorithm was invented. DDPG can be taken as an actor-critic, model-

free algorithm based on the deterministic policy gradient that operates over continuous 

action spaces. The proposed algorithm solved more than 20 simulated physics tasks and 

the performance was competitive with those found by a planning algorithm. However, the 

planning algorithm had full access to the dynamics of the domain. 

In 5G wireless network, the volume of edge resources is limited, while the number 

and complexity of tasks in the network are increasing sharply [68, 69, 70, 71]. Therefore, 

providing effective services to network users with limited resources is an urgent issue. In 

order to improve the communication utility with limited resource, the joint resource 

allocation problems are urgently to be solved. However, these problems are difficult to be 

solved by traditional approaches. Thanks to the development of Artificial Intelligence, the 

Artificial Intelligence algorithms, especially DRL algorithms have been applied to solve 
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complex decision-making optimization problems. More recently, DRL has been applied to 

deal with complex communication problems and has shown to achieve superior 

performance [3, 33, 72, 34, 7, 66, 73, 74]. In [72], an Artificial Intelligent-assisted wireless 

network architecture was proposed. Based on the proposed architecture, the authors utilized 

DQN to solve the complex and high-dimensional joint resource allocation problem and 

achieved better performance compared to other resource allocation schemes. In [73], the 

author proposed an energy management algorithm based on the DDPG algorithm. With 

only one day’s real solar data and the simulated channel data for training, the proposed 

algorithm showed excellent performance in the validation with about 800 days length of 

real solar data and achieved the optimal performance in terms of long-term average net bit 

rate. In [74], a resource allocation problem in vehicular communications was proposed, in 

which each V2V communication acted as agent and adopted Non-Orthogonal Multiple 

Access (NOMA) technology to share the frequency spectrum that pre-allocated to V2I 

communications. A multi-agent DDPG was applied which was capable of handling 

continuous high dimensional action spaces to find the optimal allocation strategy. 

In Chapter Six, a real-time optimization problem is formulated. Within a time 

budget, the base station aims at maximizing the total energy efficiency while the 

information payload has to be delivered to each user. The dynamic power allocation and 

subchannel assignment are conducted in order to maximize the global benefits. DDPG 

algorithm is applied to solve the optimization problem. The DDPG algorithm can learn a 

dynamic operating strategy even with limit knowledge about the environment. In the 

proposed DDPG framework, the system state contains the partial channel information 

together with system performance information. Considering both the objective and the 
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constraints of the optimization problem, the reward function is properly designed. The 

simulation results prove the superiority of the DDPG algorithm in solving the proposed 

optimization problem. As the number of available subchannels increases, a hybrid 

approach is invented: a DDPG is utilized to determine the power allocation and a heuristic 

approach is used to determine the subchannel assignment. 

The contributions of Chapter Six are as follows. First, a practical long-term 

optimization problem is formulated in a multiuser downlink OFDMA system. The real-

time power allocation and subchannel assignment have to be determined in order to 

maximize the total energy efficiency while delivering the information payloads to multiple 

users within the time budget. Second, a DDPG algorithm is applied to solve the proposed 

long-term optimization problem. With limited channel information, the DDPG algorithm 

can optimize the spectrum management strategy for each time slot in order to meet the 

long-term optimization goal and constraints. Third, in order to solve the optimization 

problem, both the continuous power control and discretized subchannel assignment 

strategies have to be determined by the DDPG algorithm. Based on [75], the output of the 

action is redesigned due to the combinatorial action spaces and constraints on resource. At 

last, as the number of available subchannels increases, traditional DDPG algorithm cannot 

solve the proposed problem well because the high dimensional action space results in bad 

training effect. A hybrid algorithm is invented to solve the problem. Specifically, a DDPG 

algorithm is utilized to determine the power allocation, while a heuristic approach is used 

to determine the subchannel assignment strategy in a timely manner. 
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Dynamic Multiuser Downlink OFDMA Data Transmission System 

 

System Model 

 

In a downlink OFDMA system, the base station disseminates data to 𝐾 mobile 

users in 𝑁  parallel subchannels. All subchannels have identical bandwidth 𝑊 . It is 

assumed that independent channel fading across different subchannels but same within one 

subchannel. The time is assumed to be slotted by channel coherence time. In each time slot, 

the channel gain remains constant [7, 66]. The channel gain between the base station and 

the 𝑘th user on the 𝑛th subchannel at time 𝑡 is defined as  

 ℎ𝑘𝑛(𝑡) = 𝛼𝑘𝑔𝑘𝑛(𝑡) (6.1) 

 where 𝑔𝑘𝑛(𝑡)  is the small-scale fading power component, which is assumed to be 

exponentially distributed due to the Rayleigh fading channel feature. 𝛼𝑘 = 𝑙𝑘
−𝛽

 is the path 

loss between the base station and user 𝑘. 𝑙𝑘 is the geographical distance between the base 

station and user 𝑘. 𝛽 denotes the path-loss exponent [76]. 

The achievable information rate of the 𝑘th user at time 𝑡 is denoted as  

 𝑟𝑘(𝑡) = ∑
𝑁
𝑛=1 𝑊log2 (1 +

𝑃𝑛(𝑡)𝜌𝑘,𝑛(𝑡)ℎ𝑘𝑛(𝑡)

𝑊𝑁0(𝑡)
) (6.2) 

 where 𝑃𝑛(𝑡) is the power allocated on the 𝑛the subchannel at time 𝑡. 𝜌𝑘,𝑛(𝑡) = 1 indicates 

the 𝑛th subchannel is assigned to user 𝑘 at time 𝑡, otherwise 𝜌𝑘,𝑛(𝑡) = 0. 𝑁0(𝑡) denotes 

the single-sided spectral density of additive Gaussian noise. 

ΓEE
(𝑡)

 indicates the total energy efficiency by time 𝑡, which is denoted as  

 ΓEE
(𝑡)
=

∑𝑡𝑢=1 ∑
𝐾
𝑘=1 𝑟𝑘(𝑢)Δ𝑡

∑𝑡𝑢=1 ∑
𝐾
𝑘=1 ∑

𝑁
𝑛=1𝑃𝑛(𝑢)𝜌𝑘,𝑛(𝑢)Δ𝑡

 (6.3) 

 where the coherent time duration is Δ𝑡. 
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Problem Formulation 

 

The time budget is defined as 𝑇𝑏  time slots. Within the time budget 𝑇𝑏 , the 

optimization aims at maximizing the total energy efficiency Γ𝑡𝑜𝑡  while delivering 

information payload 𝐵 to each user. The power is capable to be allocated on all available 

subchannels. The subchannel assignment {𝜌𝑘,𝑛(𝑡)} and the power allocation {𝑃𝑛(𝑡)} are 

required to solve the optimization. The optimization is shown in 𝒫1.  

 𝒫1:

maximize
{𝜌𝑘,𝑛(𝑡)},{𝑃𝑛(𝑡)}

Γ𝑡𝑜𝑡 = ΓEE
(𝑇)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑇𝑡=1 𝑟𝑘(𝑡)Δ𝑡 = 𝐵,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 𝜌𝑘,𝑛(𝑡) ≤ 1,    ∀𝑛 ∈ 𝒩

∑𝑁𝑛=1 𝜌𝑘,𝑛(𝑡) ≥ 1,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 ∑
𝑁
𝑛=1 𝑃𝑛(𝑡)𝜌𝑘,𝑛(𝑡) ≤ 𝑃

𝑇 ≤ 𝑇𝑏

 (6.4) 

 where the constraint regulates no subchannel can be assigned to more than one user and 

one user can be assigned with more than one subchannel. The total transmit power in each 

time slot is less than 𝑃. 𝒫1  is a complicated long-term optimization problem. Both the 

energy efficiency and the success of payload delivery depends on the resource allocation 

strategy in each time slot. Both the DDPG algorithm and DQN algorithm are applied to 

solve the proposed long-term optimization problem. 

In order to model the optimization problem as a MDP, the system state 𝐬𝑡 is defined 

as  

 
𝐬𝑡 = [ℎ11(𝑡), . . . , ℎ𝐾𝑁(𝑡), 𝐵1

𝑎𝑐𝑐(𝑡), . . . , 𝐵𝐾
𝑎𝑐𝑐(𝑡),

𝐸𝑎𝑐𝑐(𝑡), 𝐵𝑎𝑐𝑐(𝑡), 𝑡] ∈ 𝐑1×(𝐾𝑁+𝐾+3)
 (6.5) 

 where the accumulated delivered payload of user 𝑘 by time 𝑡 is denoted as  

 𝐵𝑘
𝑎𝑐𝑐(𝑡) = ∑𝑡𝑢=1 𝑟𝑘(𝑢)Δ𝑡 (6.6) 
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The accumulated energy consumption by time 𝑡 is denoted as  

 𝐸𝑎𝑐𝑐(𝑡) = ∑𝑡𝑢=1 ∑
𝐾
𝑘=1 ∑

𝑁
𝑛=1 𝑃𝑛(𝑢)𝜌𝑘,𝑛(𝑢)Δ𝑡 (6.7) 

 the accumulated sum delivered payload of all the users by time 𝑡 is defined as  

 𝐵𝑎𝑐𝑐(𝑡) = ∑𝐾𝑘=1 𝐵𝑘
𝑎𝑐𝑐(𝑡) (6.8) 

 The set that contains all system states is denoted by 𝒮. 

For the DQN framework, the action 𝐚𝑡 includes both the subchannel assignment 

{𝑣𝑛(𝑡)} and power allocation strategy {𝑃𝑛(𝑡)}. 

The subchannel assignment is indicated by 𝑣𝑛(𝑡). If the 𝑛th subchannel is assigned 

to user 𝑘 at time slot 𝑡, then 𝜌𝑘,𝑛(𝑡) = 1, 𝑣𝑛(𝑡) = 𝑘.  

 𝑣𝑛(𝑡) = arg
𝑘∈𝒦

    𝜌𝑘,𝑛(𝑡) = 1 (6.9) 

The power allocation on the 𝑛th subchannel at time 𝑡 is denoted as 𝑃𝑛(𝑡), which is 

discretized between [0, 𝑃] that satisfies ∑𝑁𝑛=1 𝑃𝑛(𝑡) ≤ 𝑃. 

The action at time 𝑡 is defined as 𝐚𝑡, which is denoted as  

 𝐚𝑡 = [𝑣1(𝑡), . . . , 𝑣𝑁(𝑡), 𝑃1(𝑡), . . . , 𝑃𝑁(𝑡)] ∈ 𝐑
1×2𝑁 (6.10) 

 where 𝑣𝑛(𝑡) ∈ 𝒦. 𝑃𝑛(𝑡) ∈ [0, 𝑃]. The action set is denoted as 𝒜. 

In order to implement the DDPG algorithm, the action has to be reformed into a 

continuous value format in order to achieve better training effect [75]. Hence, the action is 

defined as  

 𝐚𝑡 = [𝛼1(𝑡), 𝛼2(𝑡), . . . 𝛼𝑁(𝑡), 𝛼𝑁+1(𝑡), 𝛼𝑁+2(𝑡), . . . 𝛼2𝑁(𝑡)] (6.11) 

In DDPG algorithm, each output of the NN is normalized between 0 and 1. 

Therefore, 𝛼𝑛(𝑡) ∈ [0,1]. Here defines there are 2 users, [0,1] are evenly divided into 2 

ranges: [0,0.5], (0.5,1]. If 𝛼𝑛(𝑡) ∈ (0.5,1], 𝑣𝑛(𝑡) = 2. 
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The subchannal assignment at time 𝑡 is determined as  

 𝑣𝑛(𝑡) = ⌊
𝛼𝑛(𝑡)
1

2

⌋ , 𝑛 = 1,2, . . . , 𝑁 (6.12) 

The power allocation on the 𝑛th subchannel at time 𝑡 is calculated as  

 𝑃𝑛(𝑡) = (𝑃 − ∑
𝑛−1
𝑗=1 𝑃𝑗(𝑡))𝛼𝑛+𝑁(𝑡), 𝑛 = 1,2, . . . , 𝑁 (6.13) 

 where 𝑃1(𝑡) = 𝑃𝛼𝑁+1(𝑡), 𝑃2(𝑡) = (𝑃 − 𝑃1(𝑡))𝛼𝑁+2(𝑡). In this way, ∑𝑁𝑛=1 𝑃𝑛(𝑡) ≤ 𝑃. 

In general, the selection of the action at each time slot depends on the current 

channel conditions and payload delivery conditions. The first system state is defined for 

𝑡 = 0 as  

 𝐬0 = [ℎ11(0), . . . , ℎ𝐾𝑁(0),0, . . . ,0] (6.14) 

 and the final state 𝐬𝑇 is defined for 𝑡 = 𝑇 as  

 𝐬𝑇 = [ℎ11(𝑇), . . . , ℎ𝐾𝑁(𝑇), 𝐵, . . . , 𝐵, 𝐸
𝑎𝑐𝑐(𝑇), 𝐾𝐵, 𝑇] (6.15) 

The accumulated delivered information payload 𝐵𝑘
𝑎𝑐𝑐(𝑡) = 𝐵  also accounts for 

situations in which 𝐵𝑘
𝑎𝑐𝑐(𝑡) > 𝐵. 

Since the optimization aims at maximizing the sum energy efficiency at the same 

time delivering information payload to each user within the time budget, the optimization 

target together with the constraint are both related to the reward function [66]. In detail, 

the reward function is defined as 

 𝑤(𝐬𝑡, 𝐚𝑡) = ΓEE(𝑡)𝜂1(𝑡). . . 𝜂𝐾(𝑡) (6.16) 

 where  

 𝜂𝑘(𝑡) = {
1        𝐵𝑘

𝑎𝑐𝑐(𝑡) ≥ 𝑡
𝐵

𝑇𝑏

0        𝐵𝑘
𝑎𝑐𝑐(𝑡) < 𝑡

𝐵

𝑇𝑏

 (6.17) 
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 where 𝜂𝑘(𝑡) can motivate DDPG to learn the strategy to satisfy the payload requirement 

within the time budget 𝑇𝑏. 𝑡
𝐵

𝑇𝑏
 denotes the specific amount of information payload, which 

is required to successfully delivered to each mobile user by time 𝑡. 

𝒫1 = (𝒮,𝒜, 𝑝, 𝑤) can be seen as a MDP from state 𝐬0 to state 𝐬𝑇 on the Markov 

chain. {𝑝𝐬𝑡,𝐬𝑡+1(𝐚𝑡)} denotes the state transition probabilities. Without knowledge about 

{𝑝𝐬𝑡,𝐬𝑡+1(𝐚𝑡)}, the algorithm aims to find, for each possible state 𝐬𝑡 ∈ 𝒮, an optimal action 

𝐚𝑡
∗(𝐬𝑡)  so that the system maximizes the sum energy efficiency Γ𝑡𝑜𝑡  while delivering 

information payload to each user. A generic policy can be written as 𝜋 = {𝐚𝑡(𝐬𝑡): 𝐬𝑡 ∈ 𝒮}. 

 

Optimal Spectrum Management with Deep Deterministic Policy Gradient 

 

Deep Q-Network 

 

In this section, the RL approach is combined with a NN to approximate the system 

model in case of large states and actions sets [38]. In DQN, the cost function(Q function) 

is acquired by a well trained DNN. The Q function is denoted as 𝑄(𝐬𝑡, 𝐚𝑡 , 𝜃). 𝜃 denotes the 

parameters of the Q network. The purpose of training the NN is to make  

 𝑄(𝐬𝑡, 𝐚𝑡 , 𝜃) ≈ 𝑄
∗(𝐬𝑡, 𝐚𝑡) (6.18) 

There are two NNs in the structure of DQN: the evaluation network and the target 

network. Both of them have 𝑁𝑙 hidden layers. The current system state 𝐬𝑡 is taken as the 

input to the evaluation network, while the next system state 𝐬𝑡+1  is the input to target 

network. 𝑄𝑒(𝐬𝑡, 𝐚𝑡 , 𝜃) and 𝑄𝑡(𝐬𝑡, 𝐚𝑡 , 𝜃′) are the outputs of evaluation network and target 

network, respectively. The evaluation network is trained in each training epoch by updating 

𝜃. The target network periodically clones 𝜃 from the evaluation network 𝜃′ = 𝜃.  
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The loss function is denoted as  

 L𝑜𝑠𝑠(𝜃) = 𝐸[(𝑦 − 𝑄𝑒(𝐬𝑡, 𝐚𝑡 , 𝜃))
2]. (6.19) 

            The real cost value 𝑦 is denoted as  

 𝑦 = 𝑤(𝐬𝑡, 𝐚𝑡 , 𝐬𝑡+1) + 𝛾 max
𝐚𝑡+1∈𝒜

, 𝑄𝑡(𝐬𝑡+1, 𝐚𝑡+1, 𝜃′) (6.20) 

 where 𝛾 denotes the reward discount. The loss function is renewed in each learning epoch 

and 𝜃 is updated as well. 

 

Algorithm 6: Deep Q-Network algorithm training process   
input:   experience pool 𝑒𝑝   
output: well trained evaluation network 

       1. Randomly generate the weight parameter 𝜃 for the 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡. The 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡   
           clones the weight parameters 𝜃′ = 𝜃. 𝐷 = 𝑑 = 1. 

      2. for 𝑢 = 1, . . . , 𝑈 do 
      3.      𝑡 = 0. System state is 𝐬𝑡.        
      4.     while 𝐬𝑡 ≠ 𝐬𝑇 do 

       5.          Randomly generate a probability 𝑝 ∈ [0,1]. 
       6.         if 𝐷 > 10000 and 𝑝 ≥ 𝜀𝑐ℎ then 

       7.               The action 𝐚 is chosen as 𝐚𝑡 = max
𝐚𝑡∈𝒜

𝑄(𝐬𝑡 , 𝐚𝑡) 

       8.          else 

       9.   Randomly choose the action from action set 𝒜. 

      10.         end if 

      11.         𝐵𝑘
𝑎𝑐𝑐(𝑡), 𝐸𝑎𝑐𝑐(𝑡) renewed and feedbacked to base station. At the end of each 

                    time slot, the channel updates. Base station estimates the channel and the 

                    system state changes into 𝐬𝑡+1. 

      12.         𝑒𝑝(𝑑, : ) = {𝐬𝑡, 𝐚𝑡 , 𝑤(𝐬𝑡, 𝐚𝑡), 𝐬𝑡+1}. 𝑑 = 𝑑 + 1. If 𝐷 = 𝐷max, 𝑑 = 1;    

                    otherwise, 𝐷 = 𝑑. 𝐬𝑡 = 𝐬𝑡+1. 𝑡 = 𝑡 + 1.   

      13.         After experience pool accumulates enough data, from 𝐷 experiences,  

                    randomly select 𝐷𝑠 experiences to train the NN 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡. Back-propagation 

                    method is applied to minimize the loss function L𝑜𝑠𝑠(𝜃). Clone the weight 

                    parameters from 𝑒𝑣𝑎𝑙_𝑛𝑒𝑡 to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑒𝑡 after several time intervals. 

      15.     end while 

      16. end for  
 
 

The algorithm used for the DQN training process is presented in Alg. 6. The 

experience reply method is applied in DQN. The experience is store in a buffer 𝑒𝑝. The 
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experience buffer size is 𝐷max  and in each learning epoch, 𝐷𝑠  (with 𝐷𝑠 < 𝐷max ) 

experiences are selected from 𝑒𝑝 for training. The training lasts 𝑈 time slots. 

 

Deep Deterministic Policy Gradient 

 

In DDPG, the optimal Q-value at time 𝑡  is denoted as 𝑄∗(𝐬𝑡, 𝐚𝑡) , which is 

approximated by a critic network. The approximated Q value can be calculated as  

 𝑄̂𝑡(𝐬𝑡, 𝐚𝑡 , 𝜃
𝑄) = 𝑤(𝐬𝑡, 𝐚𝑡) + 𝛾 max

𝐚′∈𝒜
, 𝑄𝑡+1(𝐬𝑡+1, 𝐚𝑡+1, 𝜃

𝑄) (6.21) 

 where 𝛾 is the reward discount. 𝜃𝑄 denotes the weight parameters of the critic network. 

𝜃𝑄 is updated in order to minimize the Temporal-difference error (TD-error)  

 𝐿 =
1

𝑇
∑𝑇𝑡=0 (𝑄𝑡(𝐬𝑡, 𝐚𝑡 , 𝜃

𝑄) − 𝑄̂𝑡(𝐬𝑡, 𝐚𝑡 , 𝜃
𝑄))2 (6.22) 

 Besides two critic networks, there are two actor networks in the structure. In order update 

the policy 𝜋, a actor network is trained by sampled policy gradient [29]  

 ∇𝜃𝜇𝐽 ≈
1

𝑁
∑𝑡 ∇𝐚𝑡𝑄(𝐬𝑡, 𝐚𝑡 , 𝜃

𝑄)∇𝜃𝜇𝜋(𝐬𝑡, 𝜃
𝜇) (6.23) 

 where 𝜃𝜇  is denoted as the weight parameters of an actor network. The weight parameters 

of two target networks are denoted as 𝜃′ and 𝜇′, respectively. 

𝜃′ and 𝜇′ are updated as  

 𝜃𝑄
′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
 (6.24) 

 𝜃𝜇
′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
 (6.25) 

 where 𝜏  denotes the updating parameter. The alogorithm is shown in Alg. 7. 𝑒𝑝 ∈

ℝ𝐷max×(5𝐾+7) is regulated as the experience pool. 𝐷max  is the maximum capacity of the 

experience pool.  
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Algorithm 7: Deep Deterministic Policy Gradient algorithm training process   
input:   experience pool 𝑒𝑝   
output: well trained evaluation critic and actor networks 

1. Randomly generate the weight parameter 𝜃𝑄 and 𝜃𝜇  for the evaluation critic 

network and evaluation actor network, respectively. The target critic network and 

target actor network clone the weight parameters from evaluation critic network 

and evaluation actor network respectively: 𝜃𝑄
′
= 𝜃𝑄. 𝜃𝜇

′
= 𝜃𝜇 . 𝐷 = 𝑑 = 1.   

      2.   for 𝑢 = 1, . . . , 𝑈 do 

      3.       𝑡 = 0. System state is 𝐬𝑡.        
      4.      while 𝐬𝑡 ≠ 𝐬𝑇 do 

       5.          The action 𝐚𝑡 is chosen as 𝐚𝑡 = 𝜋(𝐬𝑡, 𝜃
𝜇) + 𝑛𝑜𝑖𝑠𝑒, where 𝑛𝑜𝑖𝑠𝑒 is the   

                    exploration noise. 

       6.          𝐵𝑘
𝑎𝑐𝑐(𝑡), 𝐸𝑎𝑐𝑐(𝑡) renewed and feedbacked to base station. At the end of each 

                    time slot, the channel updates. Base station estimates the channel and the 

                    system state changes into 𝐬𝑡+1. 

       7.          𝑒𝑝(𝑑, : ) = {𝐬𝑡 , 𝐚𝑡 , 𝑤(𝐬𝑡 , 𝐚𝑡), 𝐬𝑡+1}. 𝑑 = 𝑑 + 1. If 𝐷 = 𝐷max , 𝑑 = 1;    

                    otherwise, 𝐷 = 𝑑. 𝐬𝑡 = 𝐬𝑡+1. 𝑡 = 𝑡 + 1.   

       8.          Random sample 𝐷𝑠 data from 𝐷 experiences.  

                    𝑄̂𝑡(𝐬𝑡, 𝐚𝑡 , 𝜃
𝑄) = 𝑤(𝐬𝑡, 𝐚𝑡) + 𝛾 max

𝐚′∈𝒜
, 𝑄𝑡+1(𝐬𝑡+1, 𝐚𝑡+1, 𝜃

𝑄). 

       9.          The weights of evaluation critic network and actor networks are updated. 

      10.         The weights parameters of target critic network and target actor network are 

                    updated as 𝜃𝑄
′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
; 𝜃𝜇

′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
.  

      11.     end while 

      12. end for  
 
 

Optimal Spectrum Management with Hybrid Approach 

 

In OFDMA system, the channel gains on a large number of subchannels have to be 

precisely estimated in a timely manner, which leads to an unaffordably high sampling rate 

or implementation complexity [5]. Henceforth, in the practical system, the mobile users are 

only required to evaluate the channel condition on each subchannel as good or bad and 

feedback them to the base station. 𝑝̂𝑠 is defined as subchannel selection threshold. 𝑝̂𝑠 is 

same for each subchannel of each mobile user. Each user categorizes all 𝑁 subchannels 

into two sets at time 𝑡. Good subchannel set is denoted as  

 𝒩𝑘
𝐺(𝑡) = {𝑛|arg𝑛∈𝒩ℎ𝑘𝑛(𝑡) ≥ 𝑝̂𝑠} (6.26) 
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             The bad subchannel set is denoted as  

 𝒩𝑘
𝐵(𝑡) = {𝑛|arg𝑛∈𝒩ℎ𝑘𝑛(𝑡) < 𝑝̂𝑠} (6.27) 

 Each mobile user only informs the base station of its good and bad subchannel sets. The 

exclusively good subchannel set for user 𝑘 is defined as  

 𝒩𝑘
𝑈(𝑡) = {𝑛|𝑛 ∈ 𝒩𝑘

𝐺(𝑡), 𝑛 ∉ 𝒩𝑗
𝐺(𝑡), 𝑗 ∈ 𝒦/𝑘} (6.28) 

 in which the subchannels are only evaluated as good ones by user 𝑘. However, it is normal 

that multiple users take same subchannels as the good ones. Those subchannels are defined 

as the mutual good subchannels. To the greatest extend, the mutual good subchannels are 

evenly assigned to each user. Among all mutual good subchannels, the ones assigned to 

user 𝑘  uniquely formulate set 𝒩𝑘
𝑆(𝑡) . 𝒩𝑘

𝑡𝑜𝑡(𝑡)  is defined as the set includes all the 

subchannels assigned to user 𝑘 at time 𝑡.  

 𝒩𝑘
𝑡𝑜𝑡(𝑡) = 𝒩𝑘

𝑈(𝑡) ∪ 𝒩𝑘
𝑆(𝑡) (6.29) 

 The total power allocated for user 𝑘  at time 𝑡  is denoted as 𝑃𝑘(𝑡) , which is equally 

allocated to each subchannel in 𝒩𝑘
𝑡𝑜𝑡(𝑡). The method to acquire 𝒩𝑘

𝑡𝑜𝑡(𝑡) for each user is 

called heuristic approach. 

The achievable information rate of the 𝑘th user at time 𝑡 is denoted as  

 𝑟𝑘(𝑡) = ∑𝑛∈𝒩𝑘
𝑡𝑜𝑡(𝑡) 𝑊log2(1 +

𝑃𝑘(𝑡)

|𝒩𝑘
𝑡𝑜𝑡(𝑡)|

ℎ𝑘𝑛(𝑡)

𝑊𝑁0(𝑡)
) (6.30) 

 where 𝜌𝑘,𝑛(𝑡) = 1 indicates the 𝑛th subchannel is occupied by user 𝑘 at time 𝑡, otherwise 

𝜌𝑘,𝑛(𝑡) = 0. 𝑁0(𝑡) denotes the single-sided spectral density of additive Gaussian noise. 
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The energy efficiency is used to observe the efficiency of energy in data 

transmission. The total energy efficiency at time instant 𝑡 is defined as ΓEE
(𝑡)

.  

 ΓEE
(𝑡)
=

∑𝑡𝑢=1 ∑
𝐾
𝑘=1 𝑟𝑘(𝑢)Δ𝑡

∑𝑡𝑢=1 ∑
𝐾
𝑘=1𝑃𝑘(𝑢)Δ𝑡

 (6.31) 

 where the channel coherence time duration is Δ𝑡. 

Within the time budget 𝑇𝑏, the optimization aims at maximizing the total energy 

efficiency Γ𝑡𝑜𝑡 to deliver payload 𝐵 to each user. The power allocation {𝑃𝑘(𝑡)} is required 

to solve the optimization problem. The optimization is shown in 𝒫2.  

 𝒫2:

maximize
{𝑃𝑘(𝑡)}

Γ𝑡𝑜𝑡 = ΓEE
(𝑇)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑇𝑡=1 𝑟𝑘(𝑡)Δ𝑡 = 𝐵,    ∀𝑘 ∈ 𝒦

∑𝐾𝑘=1 𝑃𝑘(𝑡) ≤ 𝑃

𝑇 ≤ 𝑇𝑏

 (6.32) 

 The total transmit power in each time slot is no greater than 𝑃. 𝒫2 is a complicated long-

term optimization problem. Both the energy efficiency and the success of payload delivery 

depend on the real-time resource allocation strategy. 

In order to solve 𝒫2, only the power allocation have to be determined in a timely 

manner since the subchannel assignment is calculated by the heuristic approach. 

Henceforth, it is appropriate to apply DDPG to solve such long-term optimization. 

The system state at time 𝑡 is defined as  

 
𝐬𝑡 = [|𝒩1

𝑡𝑜𝑡(𝑡)|, . . . , |𝒩𝐾
𝑡𝑜𝑡(𝑡)|, 𝐵1

𝑎𝑐𝑐(𝑡), . . . , 𝐵𝐾
𝑎𝑐𝑐(𝑡),

𝐸𝑎𝑐𝑐(𝑡), 𝐵𝑎𝑐𝑐(𝑡), 𝑡] ∈ 𝐑1×(2𝐾+3)
 (6.33) 

 where the accumulated delivered payload of user 𝑘 by time 𝑡 is  

 𝐵𝑘
𝑎𝑐𝑐(𝑡) = ∑𝑡𝑢=1 𝑟𝑘(𝑢)Δ𝑡 (6.34) 

 The accumulated energy consumption is  

 𝐸𝑎𝑐𝑐(𝑡) = ∑𝑡𝑢=1 ∑
𝐾
𝑘=1 𝑃𝑘(𝑢)Δ𝑡 (6.35) 
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 The accumulated sum delivered payload is  

 𝐵𝑎𝑐𝑐(𝑡) = ∑𝐾𝑘=1 𝐵𝑘
𝑎𝑐𝑐(𝑡) (6.36) 

 The set contains all states is denoted by 𝒮. 

The action is defined as 𝐚𝑡.  

 𝐚𝑡 = [𝑃1(𝑡), 𝑃2(𝑡), . . . , 𝑃𝐾(𝑡)] ∈ 𝐑
1×𝐾  (6.37) 

 where 𝑃𝑘(𝑡) ∈ [0,𝑃], ∑
𝐾
𝑘=1 𝑃𝑘(𝑡) ≤ 𝑃. 

The action need to be reformed into the values between [0,1] in order to achieve 

better training performance. 𝛼𝑘(𝑡) ∈ [0,1]. Hence the action is defined as  

 𝐚𝑡 = [𝛼1(𝑡), 𝛼2(𝑡), . . . 𝛼𝐾(𝑡)] (6.38) 

 where  

 𝑃𝑘(𝑡) = {
𝑃𝛼1(𝑡), 𝑘 = 1

(𝑃 − ∑𝑘−1𝑗=1 𝑃𝑗(𝑡))𝛼𝑘(𝑡), 𝑘 = 2,3, . . . , 𝐾
 (6.39) 

 The action set is denoted as 𝒜. 

In general, the action selected at each time slot depends on the current channel 

conditions and information payload delivery conditions. The first system state is defined 

for 𝑡 = 0 as  

 𝐬0 = [|𝒩1
𝑡𝑜𝑡(0)|, . . . , |𝒩𝐾

𝑡𝑜𝑡(0)|,0, . . . ,0] (6.40) 

 and the final state 𝐬𝑇 is defined for 𝑡 = 𝑇 as  

 𝐬𝑇 = [|𝒩1
𝑡𝑜𝑡(𝑇)|, . . . , |𝒩𝐾

𝑡𝑜𝑡(𝑇)|, 𝐵, . . . , 𝐵, 𝐸𝑎𝑐𝑐(𝑇), 𝐾𝐵, 𝑇] (6.41) 

 The final state 𝐬𝑇 is absorbing. 

The reward function is same as the one in the previous section since the 

optimization goal and constraints of two optimization problems are the same. 

 𝑤(𝐬𝑡, 𝐚𝑡) = Γ𝐸𝐸
(𝑡)
𝜂1(𝑡). . . 𝜂𝐾(𝑡) (6.42) 
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            𝜂𝑘(𝑡) is denoted as 

 𝜂𝑘(𝑡) = {
1        𝐵𝑘

𝑎𝑐𝑐(𝑡) ≥ 𝑡
𝐵

𝑇𝑏

0        𝐵𝑘
𝑎𝑐𝑐(𝑡) < 𝑡

𝐵

𝑇𝑏

 (6.43) 

𝜂𝑘(𝑡) is utilized to motivate DDPG to learn the strategy to satisfy the payload 

requirement within the time budget 𝑇𝑏. 

 

Simulation Result 

 

Indoor channels are measured with the USRP N210 with the CBX daughterboard. The 

bandwidth of each subchannel is 𝑊 = 1MHz. The users are randomly distributed around 

the base station and remain stationary within time budget 𝑇𝑏. 𝑇𝑏 = 30ms. The path loss 

exponential is 𝛽 = 2. The channel gains are approximately in range [−80,−60]dB. The 

noise power spectrum density is 𝑁0 = −170 dBm/Hz. The channel coherence time is 

Δ𝑡 = 1ms. The total transmit power 𝑃 ≤ 3mW. 

 

 

Figure  6.1: Deep Deterministic Policy Gradient framework. 

 

 

The framework of DDPG is shown in Fig. 4. The evaluation actor network has 2 

hidden layers. The first hidden layer has 300 nodes and the second hidden layer has 200 

nodes. The second hidden layer is connected to two output layers. One output layer is used 
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to output the power and another one is used to determine the subchannel assignment. The 

total number of the weighs for the evaluation actor network is 64500. For the evaluation 

critic network, there are 2 hidden layers as well. The first hidden layer has 300 nodes and 

the second hidden layer has 20 nodes. The total number of the weighs for the evaluation 

actor network is 11120. 

 

 

Figure  6.2: The convergence on average total energy efficiency Γ̅𝑡𝑜𝑡(moving average of 

Γ𝑡𝑜𝑡) in the training process of both Deep Deterministic Policy Gradient and Deep Q-

Network. 𝐾 = 2. 𝑁 = 3. 𝐵 = 24Kbits. 

 

 

For each evaluation network, the network connectivity is fully connected. For each 

evaluation network, the activation function for the hidden layers of is ReLU. For the 

evaluation actor network, the activation function for the output layers is sigmoid. Both the 

target actor network and the evaluation actor network have the same structure of the neural 

network. Both the target critic network and the evaluation critic network also have the same 

structure of the neural network. The learning rate for both the actor networks and critic 



113 

 

networks is defined as 0.0005 . The replacing interval for actor networks and critic 

networks are 1700  and 1500 , respectively. The mini batch size is 32 . The memory 

capacity is more than 200000. The reward discount 𝛾 ≥ 0.8. The training episodes is more 

than 120000. Each episode starts at 𝑡 = 0 and ends at 𝑡 = 𝑇𝑏. 

 

 

Figure  6.3: The convergence on payload delivery satisfaction 𝜇̅(moving average of 𝜇) in 

the training process of both Deep Deterministic Policy Gradient and Deep Q-Network. 

𝐾 = 2. 𝑁 = 3. 𝐵 = 24Kbits. 

 

 

The DQN is implemented in order to compare with the DDPG algorithm. When 

𝑁 = 3 , the action space 𝒜  is generated as 𝑃𝑛(𝑡)  is selected from [2,1,0.5,0.25]mW. 

∑𝑁𝑛=1 𝑃𝑛(𝑡) ≤ 𝑃. 

Both the evaluation network and the target network in DQN are structured with 4 

hidden layers, each hidden layer has 100 hidden nodes.  

The total number of the weights is 37500. The connectivity of each neural network 

is fully connected. The learning rate is defined as 0.00005.  
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The mini batch size is 10. The size of the experience pool is 60000. Initially, the 

exploration rate 𝜀𝑐 = 1 and it decreases with 0.001 at each training interval, and finally 

stops at 𝜀𝑐ℎ = 0.1. 

 

 

Figure  6.4: The total energy efficiency performance comparison between Deep 

Deterministic Policy Gradient algorithm, Deep Q-Network, Random action selection and 

Fixed action selection algorithms on Γ̅𝑡𝑜𝑡. 𝐾 = 2, 𝑁 = 3. 

 

 

The target network’s weight replacement interval is 500 training epochs.  

The training process is counted by episodes.  

The total training episodes is 60000. Each episodes starts at 𝑡 = 0 and ends at 𝑡 =

𝑇. 

In a training episodes 𝑢 , the payload satisfactory parameter 𝜇(𝑢)  is defined. 

𝜇(𝑢) = 1 if 𝑡 ≤ 𝑇𝑏 and ∀𝑘, 𝐵𝑘
𝑎𝑐𝑐(𝑇) ≥ 𝐵.  
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Otherwise 𝜇(𝑢) = 0. Throughout the training process, the moving average of 100 

episodes’ 𝜇(𝑢) is calculated as  

 𝜇̅ =
𝜇(𝑢−99)+...+𝜇(0)

100
 (6.44) 

 Higher 𝜇̅ indicates a higher successful payload delivery rate. The moving average of 100 

episodes’ Γ𝑡𝑜𝑡(𝑢) is calculated as  

 Γ̅𝑡𝑜𝑡 =
Γ𝑡𝑜𝑡(𝑢−99)+...+Γ𝑡𝑜𝑡(0)

100
 (6.45) 

From Fig. 6.2 and Fig. 6.3, it can be observed that by the training episodes increase, 

both the average total energy efficiency Γ̅𝑡𝑜𝑡  and the payload delivery satisfaction 𝜇̅ 

converge.  

 

 

Figure  6.5: The information payload delivery performance comparison between Deep 

Deterministic Policy Gradient algorithm, Deep Q-Network, Random action selection and 

Fixed action selection algorithms on 𝜁𝐵. 𝐾 = 2, 𝑁 = 3. 

 



116 

 

Both DDPG and DQN achieve high payload delivery satisfaction. However, DDPG 

outperforms DQN on the total energy efficiency.  

That can be explained as DDPG can output the continuous action values, however, 

DQN can only choose discretized action. 

 

  

Figure  6.6: The convergence on average total energy efficiency Γ̅𝑡𝑜𝑡(moving average of 

Γ𝑡𝑜𝑡) of hybrid approach and traditional Deep Deterministic Policy Gradient algorithm in 

the training process. 𝐵 = 24Kbits. 𝐾 = 3. 𝑁 = 16. 

 

 

In the simulation, 𝑁𝑡 = 1000 test data are applied to test the performance of the 

well training DDPG algorithm. It is defined that 𝜁𝐵 =
𝑁𝑠

𝑁𝑡
, which denotes that 𝑁𝑠 of 𝑁𝑡 test 

data can successfully deliver the payload. 

 Γ̅𝑡𝑜𝑡 is used to evaluate the energy efficiency performance of 1000 test data. The 

system performance of DDPG algorithm is compared with DQN,  
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Random action selection and Fixed action selection when there are 2 users and 3 

available subchannels 𝐾 = 2, 𝑁 = 3. In Random transmission, a random action is selected 

from the discretized action set 𝒜 for transmission in each time slot.  

For Fixed action selection, 
1

6
 mW power is evenly allocated on each subchannel. In 

the simulation, different payload requirements are considered. 

 

 

Figure  6.7: The convergence on payload delivery satisfaction 𝜇̅(moving average of 𝜇) of 

hybrid approach and traditional Deep Deterministic Policy Gradient algorithm in the 

training process. 𝐵 = 24Kbits. 𝐾 = 3. 𝑁 = 16. 

 

 

From Fig. 6.4 and Fig. 6.5, it can be observed that of all four algorithms, DDPG 

algorithm accomplishes the highest energy efficiency while maintaining near 100% 

successful payload delivery probability. By the information payload requirement increases, 

the achieved energy efficiency slightly decreases. That can be explained as that DDPG 

consumes more power for transmission in order to satisfy the payload requirement, which 

results in a decrease in energy efficiency. 
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When considering the large number of available subchannel condition, DDPG 

algorithm is utilized to determine the power allocation of each mobile user. The subchannel 

assignment is calculated by a heuristic approach. The subchannel selection threshold is 

𝑝̂𝑠 = 10
−7. The OFDMA system model is established with multiple mobile users 𝐾 = 3,4 

and multiple available subchannels 𝑁 = 16,32,64. The traditional DDPG algorithm is also 

implemented as, it can output both the power allocation and subchannel assignment. 

 

. 

Figure  6.8: The performance comparison of average energy efficiency Γ̅𝑡𝑜𝑡. 𝐾 = 3,4, 

𝑁 = 16,32,64. 𝐵 = 24 Kbits. 

 

 

Fig. 6.6 and Fig. 6.7 compare the performance of the hybrid approach and 

traditional DDPG algorithm. Both the hybrid approach and traditional DDPG can achieve 

high payload delivery satisfaction. However, the hybrid approach outperforms traditional 

DDPG algorithm in energy efficiency. The reasons are explained as follows. In the 

simulation, the number of the users is 𝐾 = 3 and the total number of the subchannels is 
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𝑁 = 16. If implementing traditional DDPG algorithm, the dimension of the action is 𝐚𝑡 =

ℝ1×32. However, when implementing the hybrid approach, 𝐚𝑡 = ℝ
1×3. High dimensional 

output results in training difficulty and bad training performance. Beside, in order to 

implement traditional DDPG algorithm, the system state has to contain precise channel 

gain on each subchannel, which is not practical to be acquired in the real-time system [5].  

Henceforth, the hybrid approach is better than traditional DDPG in solving the long-term 

optimization in condition of a large number of available subchannels. 

 

 

Figure  6.9: The performance comparison of successful payload delivery probability 𝜁𝐵. 

𝐾 = 3,4, 𝑁 = 16,32,64. 𝐵 = 24 Kbits. 

 

 

In Fig. 6.8 and Fig. 6.9, the system performance of the hybrid approach is compared 

with the other algorithms under different conditions of the number of users and available 

subchannels. For DQN, the power 𝑃𝑘  is discretized between [0,3] mW, and the action 

space is formulated as 𝒜  under the constraint of ∑𝐾𝑘=1 𝑃𝑘(𝑡) ≤ 𝑃 . In Random 

transmission, a random action is selected from action set 𝒜 for transmission at each time 
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slot. For Fixed action selection, 0.125 mW power power are evenly allocated to each user, 

respectively. Of all the algorithms, the hybrid approach accomplishes higher energy 

efficiency than DQN and Random action selection algorithms while maintaining near 

100% payload delivery probability. The Fixed action selection achieves higher energy 

efficiency than the hybrid approach, however, it cannot satisfy the payload requirement. 

 

 

Figure  6.10: The performance comparison of average energy efficiency Γ̅𝑡𝑜𝑡 and 

successful payload delivery probability 𝜁𝐵. 𝐾 = 3,4, 𝑁 = 16,32,64. 𝐵 = 27 Kbits. 
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In Fig. 6.10, the payload requirement is increased from 24 Kbits to 27 Kbits and 

the system performance of the hybrid approach is compared with the other algorithms. 

When the payload requirement increases, the difference in energy efficiency achieved 

between the hybrid approach and DQN becomes smaller. However, the successful payload 

delivery rate of DQN gets lower, which still proves the superiority of the hybrid approach. 

 

Conclusions 

 

In Chapter Six, a real-time multiuser OFDMA energy-efficient transmission system 

is implemented. With dynamic power allocation and subchannel assignment, the 

optimization problem is formulated as maximizing the total energy efficiency while 

delivering information payloads to all mobile users. DDPG algorithm is applied to make 

the optimal resource allocation decision effectively in a real-time system. With proper 

design of the action, both the continuous power allocation and discretized subchannel 

assignment are simultaneously determined by DDPG algorithm. Compared with DQN and 

other algorithms, DDPG shows the excellent performance in achieving high energy 

efficiency and delivering information payloads to the mobile users. As the number of 

available subchannels increases, a hybrid approach is invented: the power allocation is 

determined by DDPG and the subchannel assignment is determined by a heuristic 

algorithm. Compared with the traditional DDPG algorithm, the hybrid approach 

dramatically decreases the dimension of the action and enhances the training effect. The 

simulation results demonstrate that the hybrid approach outperforms the traditional DDPG 

in energy efficiency. Compared with DQN, Random action selection and Fixed action 

selection, the hybrid approach shows advantages in energy saving and information 

payloads delivery.  



122 

 

 

 

 

CHAPTER SEVEN 

 

Conclusions 

 

 

Dissertation Summary 

 

This dissertation mainly focuses on applying DL algorithms to solve practical 

energy-efficient wireless communication and spectrum management problems. 

Specifically, two promising wireless communication systems are explored: SWIPT system 

and multiuser downlink OFDMA data transmission system. In the SWIPT system, different 

DL methods are utilized to determine the optimal transmission strategies, which can 

improve the energy harvesting performance. In the multiuser downlink OFDMA data 

transmission system, the optimal spectrum management strategies are optimized by the DL 

algorithms in order to achieve the energy-efficient data transmission. 

In the SWIPT systems, the operating mechanism of simultaneous wireless 

information and power transfer is discussed. The base station aims at fairly charging 

multiple energy harvesters while maintaining high communication quality. A DNN is 

trained to solve the optimization problem, which efficiently accelerates the operating 

speed. It consumes very long time to train a DNN with a large number of training data. 

However, the well trained DNN can be utilized online for an immediate reaction. Besides 

the DNN, a K-means clustering algorithm is applied to classify each of the channel 

conditions into one of several classes. For each individual class, a specific DNN is trained. 

Once a channel condition is classified, the corresponding DNN is called to output the power 
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allocation strategy. The cooperation between DNN and K-means clustering can help the 

transmitter effectively adjust its transmission strategy. 

Then, wireless charging is formulated as a continuous process. With very limited 

environment information, a DQN guides the transmitter to continuously and fairly charge 

multiple energy harvesters while maintaining the communication quality. The DQN shows 

superiority in dynamically determining the transmission strategy and avoiding short-

sighted suboptimal solutions. Even with different channel statistics, the DQN can always 

learn the optimal power allocation strategy in order to fully charge all energy harvesters in 

the least time without sacrificing any communication quality. 

Finally, the system model is extended from a single communication pair (one 

transmitter and one information receiver) to the multiple communication pairs. Since 

multiple information transmitters cannot acquire the precise channel information to 

determine the real-time transmission decision, a MAB approach is applied to analyze the 

fair energy harvesting optimization problem. In particular, an improved UCB1 algorithm is 

used to deal with a large number of bandit arms. 

In the multiuser downlink OFDMA data transmission system, the spectrum 

management strategies are adjusted at the base station to accomplish data transmission 

from the base station to multiple mobile users. The base station aims at maximizing the 

energy efficiency while maintaining a good communication quality from the base station 

to each user. Since both the subchannel assignment and power allocation on each 

subchannel have to be determined, two different DNNs are trained separately. Due to the 

non-convexity of the proposed optimization problem, generating the training data 

consumes a lot of time. Therefore, a Refined Exhaustive Search algorithm is proposed, 
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which can efficiently reduce the data generation time and ensure sufficient training data. 

DNNs can dramatically reduce the execution time in solving the optimization problem 

while assuring an excellent system performance. 

Next, the data transmission is modeled as a continuous process. The long-term 

optimization is formulated as maximizing the total energy efficiency while delivering 

information payload to each mobile user within the time budget. The real-time power 

allocation and subchannel assignment have to be determined. A DDPG algorithm is applied 

to solve the proposed long-term optimization problem. With limited channel information, 

the DDPG algorithm can optimize the resource allocation strategy for each time slot to 

meet global optimization goal and constraints. In order to solve the optimization problem, 

both the continuous power control and discretized subchannel assignment strategies have 

to be determined by the DDPG algorithm. As the number of available subchannels 

increases, traditional DDPG algorithm cannot solve the proposed problem well because 

high dimensional action leads to poor training result. A hybrid algorithm is invented to 

solve that problem: a DDPG algorithm is utilized to determine the power allocation, while 

a heuristic approach is used to determine the subchannel assignment in a timely manner. 

 

Future Research 

 

For the SWIPT system, the experimental results indicate that the amount of 

harvested energy is tiny. In order to improve the amount of harvested energy, a massive 

MIMO communication system is considered in the future research. The core technology of 

5G communication is massive MIMO. A large number of antennas equipped on both the 

information transmitters and receivers can guarantee an extremely fast data speed, while it 

can result in a considerable increase in harvested energy. However, it becomes more 
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difficult to adjust the power allocation strategy on a large number of transmit antennas. 

Solving the previously proposed optimization problems, the DNN and DRL have to be 

refined. Due to the large number of antennas, the dimensions of both input and output of 

the DNNs dramatically increase. A more precise training process has to be carried out to 

guarantee a better training effect. In the future, the proposed SWIPT is implemented in the 

real 5G communication systems as an important power supply for the IoT devices. 

For the multiuser downlink OFDMA data transmission system, the current 

proposed single base station system is extended to a multiuser scenario. Since in 5G 

communication systems, the number of base stations is largely increased in order to assure 

a high data speed and low latency communication. As multiple base stations coexist in the 

systems, they have to dynamically adjust their transmission strategies to transmit data 

energy-efficiently. Each base station aims to provide high quality communication to the 

responsible mobile users while avoiding the possible interference with the other base 

stations. A decentralized DRL framework is applied at each base station to determine the 

optimal transmission strategy in a timely manner. In order to approximate the real 

communication systems, mobile users are not stationary, which increases the complexity 

of the system. The proposed OFDMA scheme is operated at the real base stations as a 

solution to enormous energy waste existing in present communication systems. 

Besides two continued projects, the DL algorithms are exploited in more practical 

communication systems, such as V2X (Vehicle-to-Everything) and UAV (Unmanned 

aerial vehicle) communication systems. DL methods have shown superiority in solving 

complicated optimization problems, which will be seriously considered in different 

industries in the future. 
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