
ABSTRACT

The Sixth-Order Krall Differential Expression and Self-Adjoint Operators

Katie Elliott, Ph.D.

Advisor: Lance L. Littlejohn, Ph.D.

We first provide an overview of classical GNK Theory for symmetric, or sym-

matrizable, differential expressions in L2((a, b);w). Then we review how this theory

is applied to find a self-adjoint operator in L2
µ(−1, 1) generated by the sixth-order

Lagrangian symmetric Krall differential equation, as done by S. M. Loveland. We

later construct the self-adjoint operator generated by the Krall differential equation

in the extended Hilbert space L2(−1, 1) ⊕ C2 which has the Krall polynomials as

(orthogonal) eigenfunctions. The theory we use to create this self-adjoint operator

was developed recently by L. L. Littlejohn and R. Wellman as an application of the

general Glazman-Krein-Naimark (GKN-EM) Theorem discovered by W. N. Everitt

and L. Markus using complex symplectic geometry. In order to explicitly construct

this self-adjoint operator, we use properties of functions in the maximal domain in

L2(−1, 1) of the Krall expression. As we will see, continuity, as a boundary condi-

tion, is forced by our construction of this self-adjoint operator. We also construct

six additional examples of self-adjoint operators in an extended Hilbert space, three

with a one-dimensional extension space and three with a two-dimensional extension

space.
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CHAPTER ONE

Classical GKN Theory

For more on this topic, see [1], [4], [16], [26], [27], [29], [30], [31], and [33]. In

this chapter, I review classical GKN theory.

1.1 Symmetric Differential Expressions

Let us consider the ordinary differential expression `[·] of order 2n given by

`[y](x) :=
n∑
j=0

(−1)j
(
aj(x)y(j)(x)

)(j)
, x ∈ I, (1.1)

where I is the open interval I = (a, b) with −∞ ≤ a < b ≤ ∞ and n is a positive

integer. In this chapter, we will assume that ak ∈ Ck(I,R) for k = 0, 1, . . . , n and

an(x) 6= 0. In this chapter, we will study linear operators in L2(a, b) generated

by (1.1). The differential expression `[·], as defined in (1.1), is called a formally

symmetric differential expression.

We will now discuss regular and singular differential expressions.

Definition 1.1. The differential expression `[·] given in (1.1) is a regular differential

expression if the interval I has finite length and the coefficients 1
an
, an−1, . . . , a0 ∈

L(I), where L(I) is defined as the set of Lebesgue measurable functions f : I → C

that are Lebesgue integrable on the interval I. On the other hand, `[·] is called a

singular differential expression if it is not regular.

We can also classify the endpoints of I = (a, b) as regular or singular endpoints.

Definition 1.2. The endpoint b is a regular point of the expression `[·] if b <∞ and

if there exists an ε > 0 sufficiently small so that the coefficients 1
an
, an−1, . . . , a0 ∈

L(b− ε, b). If b is not a regular point of `[·], then it is a singular point of `[·].

We can similarly define the left endpoint a as a regular point of `[·] if −∞ < a
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and there exists a sufficiently small ε > 0 such that 1
an
, an−1, . . . , a0 ∈ L(a, a + ε).

Otherwise, a is a singular point of `[·].

1.2 The Maximal and Minimal Operators Generated by `[·]

We now define and discuss the maximal and minimal operators in L2(I) gen-

erated by the differential expression `[·] given in (1.1).

Definition 1.3. The operator T1 : L2(I)→ L2(I) defined by

T1[y] =`[y]

D(T1) =
{
y : I → C|y(k) ∈ ACloc(I), k = 0, 1, . . . , 2n− 1; y, `[y] ∈ L2(I)

}
is called the maximal operator generated by the expression `[·] in the space L2(I).

The domain of the maximal operator, D(T1), is the largest subspace in which

T1 can be defined as an operator from L2(I) into L2(I), so the word “maximal” is

indeed appropriate.

Before we can define the minimal operator, we first need to define Green’s

formula and the sesquilinear form.

Definition 1.4. For f, g ∈ D(T1), the sesquilinear form [f, g](·) generated by `[·] is

defined by

[f, g](x) =
n∑
j=1

j∑
m=1

(−1)m+j
{(

aj(x)g(j)(x)
)(j−m)

f (m−1)(x)

−
(
aj(x)f (j)(x)

)(j−m)
g(m−1)(x)

}
. (1.2)

Definition 1.5. For [α, β] ⊂ (a, b), the Green’s formula for `[·] is given by∫ β

α

{`[f ]g − `g]f} dx = [f, g]
∣∣∣β
α

(f, g ∈ D(T1)) (1.3)

Notice that for all f, g ∈ D(T1) and a < x < b, we have

[f, g](x) = −[f, g](x).
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We also note that, by definition ofD(T1) and Hölder’s inequality, the limits [f, g](b) :=

lim
x→b−

[f, g](x) and [f, g](a) := lim
x→a+

[f, g](x) exist and are finite. It will be seen later

that Green’s formula is important for determining all the self-adjoint extensions of

the minimal operator generated by `[·] in L2(I).

Since D(T1) is dense in L2(I), we know that the adjoint of T1, denoted by T ∗1 ,

exists.

Definition 1.6. We call T0 := T ∗1 the minimal operator generated by `[·] in L2(I).

Observe that if L is any densely defined linear operator in L2(I) such that

L ⊂ T1, then T ∗1 ⊂ L∗, and hence it makes sense to call T0 “minimal.” Before we

give a constructive description of D(T0), we first need a few more definitions and

results.

Let D′0 be the densely defined subspace of all functions f ∈ D(T1) which have

compact support in the interval I. Then the restriction of the maximal operator T1

to the subspace D′0 is denoted by T ′0.

Theorem 1.7. The operator T ′0 defined above is symmetric in L2(I).

See [26, p. 61].

Let H be a Hilbert space with inner product (·, ·)H . For the rest of the section,

let S : H → H be a linear operator with domain D(S).

Definition 1.8. The linear operator S is called symmetric in H if D(S) is dense in

the Hilbert space H and if

(Sx, y)H = (x, Sy)H

for all x, y ∈ D(S).

Note that an operator S is symmetric in H if and only if S ⊂ S∗. Now we

define a self-adjoint operator:
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Definition 1.9. A linear operator S : H → H is self-adjoint in the Hilbert space H

if D(S) is dense in H and S = S∗.

Definition 1.10. Let {xn} ⊂ D(S). If the conditions xn → x and Sxn → y, for some

y ∈ H, imply x ∈ D(S) and Sx = y, then we say that the operator S is closed.

If S is a densely defined operator, then its adjoint S∗ is a closed operator.

Since we defined the minimal operator T0 as the adjoint of the operator T1, we see

that the minimal operator is indeed a closed operator.

Definition 1.11. The linear operator S is closable if there exists a closed, linear

extension of S.

Definition 1.12. A closed linear extension S ′ of a closable linear operator S is said

to be minimal if every closed linear extension of S is a closed linear extension of S ′.

This minimal extension S ′ of S, if it exists, is called the closure of S, and S is said

to admit a closure if S ′ exists. See [21, p. 537].

The notation for the closure of an operator S is S.

Theorem 1.13. Let H be a Hilbert space. Then if T : H → H is a symmetric operator,

it admits a closure. Furthermore, the closure T is symmetric in the Hilbert space H.

The proof of this theorem can be found in [26, p. 13]. As a consequence of

Theorem 1.13, we see that the operator T ′0 has a symmetric closure T ′0. Furthermore,

we have the following theorem:

Theorem 1.14. (T ′0)
∗

= T1.

Naimark proves this result in [26, p. 18]. Combining Theorem 1.14 with the

well-known fact that a closed, densely defined operator A in the Hilbert space H

has the property that the adjoint of the adjoint of A is A, i.e. A∗∗ = A, we obtain:
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Theorem 1.15. T0 = T ′0 and T ∗0 = T1. In particular, the minimal operator T0 and the

maximal operator T1 are closed operators, each being the adjoint of the other.

An immediate consequence of this theorem is that if A is a symmetric extension

of the minimal operator T0 in L2(I), then A ⊂ T1, where T1 is the maximal operator,

since

T0 ⊂ A ⊂ A∗ ⊂ T ∗0 = T1.

Indeed, A has the same form as the differential expression `[·] and is a restriction

of T1, the maximal operator. This means that, in this case, A[y] = `[y] for all

y ∈ D(T0).

The next theorem characterizes the minimal operator in terms of the sesquilin-

ear form defined in (1.2). We have

Theorem 1.16. The domain D(T0) of the minimal operator T0 in L2(I) consists of

all f ∈ D(T1) satisfying

[f, g] (x)
∣∣∣b
a

= 0,

for all g ∈ D(T1).

Naimark gives a proof of this theorem in [26, p. 70]. The condition given in

Theorem 1.16 can be modified to a simplified condition if either one or both of the

endpoints a, b of I are regular. For example, if a, the left endpoint of the interval I,

is regular, then f ∈ D(T0) if

(i) f (k)(a) = 0 for k = 0, 1, 2, . . . , 2n− 1 and

(ii) [f, g](b) = 0 for all g ∈ D(T1).

A proof of this modified statement can be found in [26, p. 71].

Note that each of the theorems from this chapter so far can be directly extended

to Lagrangian symmetrizable differential expressions of the form

η[y](x) =
1

w

n∑
j=0

(−1)j
(
aj(x)y(j)(x)

)(j)
, x ∈ I, (1.4)
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where w(x) ∈ C2n(I) and w(x) > 0 for all x ∈ I. The operator w(x)η[y] is formally

symmetric, and the function w(x) is called a symmetry factor for the expression

η[·]. The Hilbert space used for self-adjoint extension theory in this case would be

L2((a, b), w) and the maximal operator T1 in L2((a, b), w), generated by η[·] is defined

to be

T1[y] = η[y]

D(T1) =
{
y : (a, b)→ C | y(i) ∈ ACloc(a, b), j = 0, 1, . . . , 2n− 1;

y, η[y] ∈ L2((a, b), w)
}
.

1.3 Examples of Lagrangian Symmetrizable Differential Expressions

Example 1.17. Consider the Jacobi expression defined by

τJ [y] := −(1− x2)y′′ +
(
α− β + (α + β + 2)x

)
y′ + ky,

where x ∈ (−1, 1) and α, β > −1. The nth Jacobi polynomial P
(α,β)
n (x) satisfies the

equation

τJ [P (α,β)
n ] =

(
k + n(n+ α + β + 1)

)
P (α,β)
n .

The Jacobi expression cannot be put in the symmetric form (1.1) directly. However,

multiplying τJ by the symmetry factor w(x) = (1− x)α(1 + x)β yields the following:

`J [y](x) :=(1− x)α(1 + x)βτJ [y](x)

=−
(

(1− x)α+1(1 + x)β+1y′(a)
)′

+ k(1− x)α(1 + x)βy(x).

Notice that the correct setting for the Jacobi expression is not L2(−1, 1) (unless

α = β = 0), but rather the weighted Lebesgue space L2((−1, 1); (1−x)α(1+x)β). In

this space, the maximal and minimal operators associated with the Jacobi expression

are generated by

τJ [·] = (1− x)−α(1 + x)−β`J [·].
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Example 1.18. Now consider the Laguerre expression defined by

τL[y] := −xy′′ + (x− 1− α)y′ + ky,

where x ∈ (0,∞) and α > −1. Then the nth Laguerre polynomial L
(α)
n (x) satisfies

τL[L(α)
n ] = (n+ k)L(α)

n .

As with the Jacobi expression, the Laguerre expression requires multiplication by a

symmetry factor in order to be written as a symmetric expression. In this case, the

symmetry factor is w(x) = xαe−x, which yields

`L[y](x) :=xαe−xτL[y](x)

= −
(
xα+1e−xy′(x)

)′
+ kxαe−xy(x).

The proper setting for the Laguerre expression is the space L2((0,∞);xαe−x)

and the maximal and minimal operators in this space associated with the Laguerre

expression are generated by

τL[·] = x−αex`L[·].

Example 1.19. For our last example, consider the Hermite expression defined by

τH [y] := −y′′ + 2xy′ + ky,

where x ∈ (−∞,∞). Then the nth Hermite polynomial Hn(x) satisfies the equation

τH [Hn] = (k + 2n)Hn.

Like the Jacobi and Laguerre expressions, the Hermite expression must be multiplied

by a symmetry factor, w(x) = e−x
2
, to obtain

`H [y](x) :=e−x
2

τH [y](x)

=−
(
e−x

2

y′(x)
)′

+ ke−x
2

y(x).

7



The proper setting to use is the space L2((−∞,∞); e−x
2
). The maximal and

minimal operators in this space associated with the Hermite expression are generated

by the expression

τH [·] = ex
2

`H [·].

1.4 Deficiency Spaces and von Neumman Formula

Let S be a symmetric operator in H, a Hilbert space. Define

D+ := {f ∈ D(S∗) | S∗f = if}

and

D− := {f ∈ D(S∗) | S∗f = −if} ,

where i =
√
−1.

Definition 1.20. The space D+ is called the positive deficiency space of S and D−

is called the negative deficiency space of S. The dimension of D+ is the positive

deficiency index of S and the dimension of D− is called the negative deficiency index

of S.

We use the notation n± := dimD±. It is the case that any complex number λ

with Im(λ) > 0 can be used in place of i in the above definitions.

If S is a symmetric operator in the Hilbert space H, then we define a new

inner product on the space D(S∗) by

(x, y)∗ := (x, y) + (S∗x, S∗y).

It can be shown that D(S∗) is a Hilbert space with this inner product ( [4, p. 1225]).

Now we are equipped to state von Neumann’s formula.

Theorem 1.21. Let A be a symmetric operator in a Hilbert space H. Then D(S),

D+, and D− are closed orthogonal subspaces in (D(S∗), (·, ·)∗) and

D(S∗) = D(S)⊕D+ ⊕D−. (1.5)
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The proof of this result can be found in [4, p. 1227].

In the special case when S is the minimal operator T0, then equation (1.5)

becomes

D(T1) = D(T0)⊕D+ ⊕D−.

In the next result, which can be found in [4], we will see that the deficiency spaces

play an important role in determining self-adjoint extensions of the minimal operator

T0.

Theorem 1.22. Let S be a symmetric operator in a Hilbert space H. Let D′ ⊂ D+⊕D−

be a closed subspace and define D by D := D
(
S
)
⊕ D′. Then, the restriction of S∗

to the subspace D is self-adjoint if and only if D′ is the graph of an isometry that

maps D+ onto D−.

An important consequence of Theorem 1.22 is the following theorem:

Theorem 1.23. Let S be a symmetric operator in a Hilbert space H. Then S has

self-adjoint extensions in H if and only if its deficiency indices are equal, in other

words, n+ = n−. Additionally, if n+ = n− = 0, then the only self-adjoint extension

of S is S = S∗.

The proof of this result can be found in [4, p. 1230].

Now we move back to finding self-adjoint extensions of the minimal operator

T0 in L2(I). Note that since for any λ ∈ C, the equation `[y] = λy has a basis

of 2n solutions, the deficiency indices n+ and n− of T0 are both finite. Since the

coefficients ak of `[·] as defined in (1.1) are real-valued, a function f is a solution of

`[y] = iy if and only if f is a solution of `[y] = −iy. Likewise, if {f1, f2, . . . , fm}

is a basis for D+, then
{
f 1, f 2, . . . , fm

}
must in fact be a basis for D−. Therefore,

the positive and negative deficiency indices are equal. However, in general, if the

coefficients of the expression `[·] are complex-valued, then the deficiency indices are

9



not necessarily equal. Now we state a result relating the properties of the endpoints

a and b of the interval I to the deficiency indices n+ and n−.

Theorem 1.24. Let T0 be the minimal operator in L2(I) generated by the expression

`[·], where I = (a, b).

(i) If both a and b are regular endpoints, then n± = 2n.

(ii) If one of the endpoints is singular, then 0 ≤ n+ = n− ≤ 2n. Indeed, for any

integer m such that 0 ≤ m ≤ 2n, `[·] can be constructed so that n± = m. If

exactly one of the endpoints a or b is singular, then n ≤ n+ = n− ≤ 2n.

The proof of part (i) can be found in [26, p. 66] and the proof of part (ii) can

be found in [26, p. 69 and 71].

Now let c ∈ I. Then c is a regular point of `[·]. Let T−0 be the minimal operator

generated by `[·] on the interval (a, c) and let T+
0 be the minimal operator generated

by `[·] on the interval (c, b). Also let (m−,m−) denote the deficiency indices of T−0

in L2(a, c) and let (m+,m+) denote the deficiency indices for T+
0 in L2(c, b).

Theorem 1.25. The deficiency index of the minimal operator T0 in L2(a, b) is (m,m)

where

m = m+ +m− − 2n

and 2n is the order of the expression `[·]. In addition, m is independent of the choice

of c ∈ I.

The proof of this theorem can be found in [14, p. 353]. Since the point c ∈ I

is a regular point of `[·], all solutions of the equation `[y] = ±iy must belong to

L2(c − ε, c] for all 0 < ε < c − a. Thus, m− is equal to the number of solutions of

`[y] = ±iy that are in L2(a, a+ δ] for sufficiently small δ. Likewise, m+ is the same

as the number of solutions of `[y] = ±iy that are in L2[b− δ, b) for sufficiently small

δ > 0. This provides motivation for the next few definitions.

10



Definition 1.26. The expression `[·] is said to be in the limit-p case at x = a in

L2(I) if there are exactly p solutions of `[y] = ±iy that are in L2(a, a+ ε) for some

sufficiently small ε > 0. On the other hand, `[·] is said to be in the limit-q case at

x = b in L2(I) if there are exactly q solutions of `[y] = ±iy that are in L2(b − ε, b)

for some sufficiently small ε > 0.

If the order of the expression `[·] is two, then the limit-2 case is often called

the limit circle case and the limit-1 case is often called the limit point case. This

notation comes from Weyl’s paper [32]. The limit circle and limit point terminology

come from the geometry Weyl used in his analysis of the number of L2 solutions

of the second-order Sturm-Liouville equation. In this second-order case, he showed

that if `[y] = λ0y is limit-point at the endpoint a or b for a certain λ0 ∈ C, then

`[y] = λy is limit-point at a or b for all λ ∈ C. Weyl also showed an analogous result

for the limit-circle case when `[·] is order 2.

Combining the definitions of limit-p case and limit-q case with Theorem 1.25,

we can now find the deficiency index of the minimal operator T0 in L2(I) once we

determine the limit case for both endpoints a and b of the interval I. The Method

of Frobenius may be used to determine the number of Lebesgue square-integrable

solutions near a regular singular endpoint, which will be defined below. For more

on the Method of Frobenius, see [17, p. 396-404].

Consider the differential equation

L[y](x) =
n∑
j=0

bj(x)y(j)(x) = 0, (1.6)

for x ∈ J where J ⊂ R is an open interval, bj : J → R for j = 0, 1 . . . , n, and

bj(x) 6= 0 for all x ∈ J . Suppose a, b ∈ J with a < b.

Definition 1.27. If x = a > −∞ and if

(x− a)nL[y](x)

bn(x)
=

n∑
j=0

(x− a)jcj(x)y(j)(x), (1.7)

11



where cn(x) ≡ 1 and each cj(x) is analytic in some neighborhood of x = a for

j = 0, 1, . . . , n− 1, then x = a is called a regular singular point of L[·]. There is an

analogous definition for x = b <∞ as a regular singular point.

In the case where a = −∞ (or where b =∞), we use the transformation x = 1
t

to express L[·] in the form
n∑
j=0

tjcj(t)y
(j)(t),

where, as before, cn(t) ≡ 1 and cj(t) is analytic in some neighborhood of t = 0 for

each j. In this case, we say that x =∞ is a regular singular point of L[·].

Definition 1.28. If an endpoint is not a regular singular endpoint of L[·], then we say

it is an irregular singular point.

Frobenius created a useful tool for determining a basis of n solutions of the

homogeneous equation (1.6), which expands each solution around a regular singular

point. An important part of the Method of Frobenius is the indicial equation.

Definition 1.29. The indicial equation at x = a associated with equation (1.7) is:

n∑
j=0

P (r, j)cj = 0, (1.8)

where cj = cj(a) and P (r, j) =
r!

(r − j)!
, for j = 0, 1, . . . , n.

In this method, each of the n roots of (1.8) determines a solution of the dif-

ferential equation given in (1.6), even when roots have a multiplicity greater than

one.

1.4.1 Examples

Example 1.30. Legendre Example

Consider the Legendre differential equation given by

M
(1)
k [y](x) :=

(
(1− x)2y′(x)

)′
+ ky (1.9)
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defined in the interval (−1, 1). Both endpoints x = ±1 are regular singular points

of M
(1)
k [·], as will be shown. Near x = −1, we have

(x+ 1)2M
(1)
k [y](x)

−(1− x2)
=(x+ 1)2y′′(x) + (x+ 1)

(
−2x

1− x

)
y′(x)

+

(
−k(x+ 1)

1− x

)
y(x).

So,

c0(x) =
−k(x+ 1)

1− x
,

c1(x) =
−2x

1− x
,

c2(x) =1.

Near the endpoint x = 1, we have

(x− 1)2M
(1)
k [y](x)

−(1− x)2
=(x− 1)2y′′(x) + (x+ 1)

(
2x

1 + x

)
y′(x)

+

(
k(x− 1)

x+ 1

)
y(x),

so we have

c0(x) =
k(x− 1)

x+ 1
,

c1(x) =
2x

1 + x
,

c2(x) =1.

All points x ∈ (−1, 1) are regular points. Now we will solve the indicial equations

at x = −1 and x = 1.

The indicial equation at x = −1 is

0 =
2∑
j=0

P (r, j)cj

=
r!

(r − 0)!

(
−k(−1 + 1)

1− (−1)

)
+

r!

(r − 1)!

(
−2(−1)

1− (−1)

)
+

r!

(r − 2)!

=r + r(r − 1) = r2.
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Thus, the indicial equation at x = −1 has a root of multiplicity 2 at r = 0. There-

fore, from the method of Frobenius, a basis of solutions of the differential equation

M
(1)
k [y] = around x = −1 is {y1, y2} where

y1(x) =
∞∑
j=0

aj(x+ 1)j, a0 6= 0,

y2(x) = ln |x+ 1|
∞∑
j=0

aj(x+ 1) +
∞∑
j=0

bj(x+ 1)j, b0 6= 0.

Both of these series converge for |x+ 1| < 2.

The indicial equation at x = +1 is

0 =
2∑
j=0

P (r, j)cj

=
r!

(r − 0)!

(
k(1− 1)

1 + 1)

)
+

r!

(r − 1)!

(
2(1)

1 + 1

)
+

r!

(r − 2)!

=r + r(r − 1)

=r2.

Hence, just as with x = −1, the indicial equation at x = +1 has a root of multiplicity

2 at r = 0. Thus, a basis of solutions of M
(1)
k [y] = 0 around x = +1 is {y1, y2}

where y1 and y2 are given by

y1(x) =
∞∑
j=0

aj(x− 1)j, a0 6= 0,

y2(x) = ln |x− 1|
∞∑
j=0

aj(x− 1)j +
∞∑
j=0

bj(x− 1)j, b0 6= 0.

Both of these series converge for |x− 1| < 2.

With these bases for solutions at x = ±1, it is clear that all solutions of

M
(1)
k [y] = 0 are Lebesgue square-integrable near the endpoints x = ±1. Therefore,

M
(1)
k [·] is in the limit-circle case at both endpoints, and thus, by applying Theorem

1.25, we see that the deficiency index of the minimal operator generated by M
(1)
k [·]

is (2, 2).
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Example 1.31. Krall-Legendre

Consider the fourth-order Krall-Legendre differential expression M
(2)
k [·] defined by

M
(2)
k [y](x) =

(
(1− x2)2y′′(x)

)′′ − ((4A(1− x2) + 8)y′(x)
)′

+ ky(x)

on the interval (−1, 1). It will be shown that both x = +1 and x = −1 are regular

singular endpoints, and all x ∈ (−1, 1) are regular points.

Since, near x = 1, we can write

(x+ 1)4M
(2)
k [y](x)

(1− x2)2
=

(
k(x+ 1)2

(1− x)2

)
y(x) +

(
8Ax(x+ 1)

(1− x)2

)
(x+ 1)y′(x)

+

(
4Ax2 + 12x2 + 4− 4A

(1− x)2

)
(x+ 1)2y′′(x)

+

(
−8x

1− x

)
(x+ 1)3y′′′(x) + (x+ 1)4y(4)(x),

and we see that x = −1 is a regular singular endpoint of M
(2)
k [·] with

c0(x) =
k(x+ 1)2

(1− x)2
,

c1(x) =
8Ax(x+ 1)

(1− x)2
,

c2(x) =
4Ax2 + 12x2 + 4− 4A

(1− x)2
,

c3(x) =
−8x

1− x
,

c4(x) =1.

Therefore, the indicial equation at x = −1 is

0 =
4∑
j=0

P (r, j)cj

=
r!

(r − 0)!

(
k(−1 + 1)2

(1− (−1))2

)
+

r!

(r − 1)!

(
8A(−1)(−1 + 1)

(1− (−1))2

)
+

r!

(r − 2)!

(
4(A(−1)2 + 12(−1)2 + 4− 4A

(1− (−1))2

)
+

r!

(r − 3)!

(
−8(−1)

(1− (−1))

)
+

r!

(r − 4)!

=r(r − 1)(4) + r(r − 1)(r − 2)(4) + r(r − 1)(r − 2)(r − 3)
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=r(r − 1)[4 + (r − 2)(4) + (r − 2)(r − 3)]

=r(r − 1)(r2 − r − 2)

=r(r − 1)(r − 2)(r + 1).

So, a basis of solutions to M
(2)
k [y](x) = 0 around x = −1 is given by {y1, y2, y3, y4}

where

y1(x) =
∞∑
j=0

aj(x+ 1)j+2,

y2(x) =
∞∑
j=0

bj(x+ 1)j+1 + ln(x− 1)
∞∑
j=0

b′j(x+ 1)j+1,

y3(x) =
∞∑
j=0

cj(x+ 1)j + 2 ln(x+ 1)
∞∑
j=0

c′j(x+ 1)j+2

y4(x) =
∞∑
j=0

dj(x+ 1)j−1 + 3 ln(x+ 1)
∞∑
j=0

d′j(x+ 1)j,

and each of these series converges for |x + 1| < 2. Note that the solutions y1, y2,

and y3 are Lebesgue-square integrable near the endpoint x = −1. However, the

solution y4 is not Lebesgue-square integrable near x = −1, we see that fourth-order

Krall-Legendre differential expression M
(2)
k [·] is in the limit-3 case at the endpoint

x = −1.

There is a similar analysis at the endpoint x = +1. In fact, M
(2)
k [·] is in the

limit-3 case at x = +1 as well. Hence, since M
(2)
k [·] is in the limit-3 case at both

endpoints, we see from Theorem 1.25 that the deficiency index of the minimal op-

erator generated by the differential expression M
(2)
k [·] in the Hilbert space L2(−1, 1)

is (2, 2).

1.5 The Classical Glazman-Krein-Naimark Theorem

Before we state the important Glazman-Krein-Naimark theorem, we first need

to state one more definition. Let X be a vector space and M1 ⊂ M2 be subspaces

of X.
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Definition 1.32. The set {x1, x2, . . . , xn} ⊂ M2 is said to be linearly independent

modulo M1 if
n∑
j=1

αjxj ∈M1

implies that αj = 0, for j = 1, 2, . . . , n.

Then if A ⊂ M2 is a maximal linearly independent set modulo M1 and β =

card(A), then dimM2 = β mod M1.

It can easily be seen that if the set {x1, x2, . . . , xn} ⊂ M2 is a linearly inde-

pendent set, then it is a maximal linearly independent set modulo M1 if and only

if

M2 = M1 u span {x1, x2, . . . , xn} .

If {x1, x2, . . . , xn} ⊂M2 is linearly independent modulo M1, then it is also a linearly

independent set in the vector space X; however, the converse is not necessarily true.

We now state the important Glazman-Krien-Naimark theorem, the proof of which

can be found in [26].

Theorem 1.33 (GKN Theorem). Suppose the deficiency index of the minimal operator

T0 in L2(a, b) generated by the expression `[·] is (m,m).

(i) Let S be a self-adjoint extension of T0 in L2(a, b). Then there exists a set

{w1, w2, . . . , wm} ⊂ D(S) that is linearly independent modulo D(T0) such

that

S[y] =`[y]

D(S) =

{
y ∈ D(T1) | [wj, y]

∣∣∣b
a

= 0, j = 1, 2, . . . , m

}
. (1.10)

Here, [·, ·] is the sesquilinear form defined in (1.2).

(ii) Suppose {w1, w2, . . . , wm} ⊂ D(T ) is linearly independent modulo D(T0)

with

[wj, wk]|ba = 0, j = 1, 2, . . . , m.
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Define an operator S in L2(a, b) by

S[y] =`[y]

D(S) =

{
y ∈ D(T1) | [wj, y]

∣∣∣b
a

= 0, j = 1, 2, . . . , m

}
.

Then S is a self-adjoint extension of T0.

This theorem provides a recipe for constructing self-adjoint extensions of the

minimal operator.

Definition 1.34. The conditions

[wj, wk]|ba = 0, j = 1, 2, . . . , m

given in (1.10) are known as Glazman-Naimark boundary conditions and the func-

tional

[wj, · ]
∣∣∣b
a

: D(T )→ C (1.11)

is called a boundary value for T0. It is called a separated boundary condition such

that [wj, y]
∣∣∣b
a

= 0 is independent of a or b for all y ∈ D(S). If (1.11) is not a separated

boundary condition, it is then called a mixed boundary condition.

The GKN theorem can be generalized for arbitrary symmetric operators, as

in [4].
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CHAPTER TWO

The Everitt-Littlejohn-Loveland Approach to the Spectral Study of the Krall
Sixth-Order Differential Expression

For more on this topic, see [25] and [8].

2.1 Nonclassical Differential Equations

In 1938, H. L. Krall [19], the father of Allan Krall and the supervisor of

Littlejohn at Pennsylvania State University, found three fourth-order nonclassical

differential equations of the form

4∑
i=1

(
i∑

j=0

`ijx
j

)
y(i)(x) = λny(x)

having orthogonal polynomial solutions {pn} corresponding to {λn}, where, neces-

sarily,

λn =
4∑
j=0

P (n, j)`ij,

and

P (n, j) =
n!

(n− j)!
.

The three differential equations were classified as follows:

Table 2.1. Three fourth-order nonclassical differential equations
Weight Interval Name

e−x +
1

A
δ(x) [0,∞) Laguerre type

(1− x)α +
1

A
δ(x), [0, 1] Jacobi type

(α > −1)

1 +
1

A
δ(x+ 1) +

1

A
δ(x− 1) [−1, 1] Legendre type
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Note that the Jacobi polynomials are usually defined on the interval [−1, 1]. How-

ever, in this case, the fourth-order Jacobi type differential equation is simpler on

[0, 1]. The differential equation could be considered on [−1, 0] with the weight

(1 + x)β + 1
B
δ(x).

In the third case, the Legendre type polynomials, we note that if the jumps at

the endpoints x = ±1 are different, then the order of the differential equation jumps

from four to six, which yields the Krall sixth-order differential equation.

2.2 The Sixth-Order Krall Differential Equation

The Krall sixth-order differential equation is given by

`6[y](x) =
(
x2 − 1

)3
y(6) + 18

(
x2 − 1

)2
y(5)

+
(
x2 − 1

) (
(3A+ 3B + 96)x2 − 3A− 3B − 36

)
y(4)

+ (24A+ 24B + 168)x
(
x2 − 1

)
y(3)

+
(

(12AB + 42A+ 42B + 72)x2 + (12B − 12A)x

− (12AB + 30A+ 30B + 72)
)
y′′

+ ((24AB + 12A+ 12B)x+ (12B − 12A)) y′

=λny,

(2.1)

where A,B > 0 and

λn = n(n− 1)
(
n4 + 2n3 + (3A+ 3B − 1)n2 + (3A+ 3B − 2)n+ 12AB

)
. (2.2)

In Lagrangian symmetric form, the differential equation becomes

`6[y](x) =−
((

1− x2
)3
y(3)
)(3)

+
((

1− x2
) (

12 + (3A+ 3B + 6)
(
1− x2

))
y′′
)′′

−
((

(−6A− 6B − 12AB)x2

+ (12A− 12B)x+ (12AB + 18A+ 18B + 24)) y′)
′
.

One solution to `6[y] = λny is y(x) = Kn(x) (n ∈ N0), where

Kn(x) =
n∑
j=0

(−1)b
j
2c(2n− j)!Q(n, j)xn−j

2n+1(n−
⌊
j+1
2

⌋
)!
⌊
j
2

⌋
!(n− j)!(n2 + n+ A+B)

, (2.3)

20



is the nth Krall polynomial. Here

Q(n, j) =
2 + (−1)j

2

(
(n4 + (2A+ 2B − 1)n2 + 4AB) + 2j(n2 + n+ A+B)

)
+

1− (−1)j

2
(4B − 4A).

The Krall polynomials were first studied by Littlejohn [23]. The Krall polynomials

{Kn} form a complete orthogonal set in L2([−1, 1];W (x)) where

W (x) =
1

A
δ(x+ 1) +

1

B
δ(x− 1) + 1.

The maximal domain for `6[·] in L2(−1, 1) is

∆ =
{
f : (−1, 1)→ C|f (j) ∈ ACloc(−1, 1) (j = 0, 1, 2, 3, 4, 5);

f, `6[f ] ∈ L2(−1, 1)
}
.

(2.4)

On ∆, we have Green’s Formula∫ 1

−1
`6[f ](x)g(x)dx−

∫ 1

−1
f(x)`6[g](x)dx = [f, g] (x)

∣∣∣1
−1
.

Here [f, g] (x) is the skew-symmetric sesquilinear form defined by

[f, g] (x) =

(
−
((

1− x2
)3
f (3)(x)

)′′
+
((

1− x2
) (

12 + α
(
1− x2

))
f ′′(x)

)′
− π(x)f ′(x)

)
g(x)

−
(
−
((

1− x2
)3
g(3)(x)

)′′
+
((

1− x2
) (

12 + α
(
1− x2

))
g′′(x)

)′
− π(x)g′(x)

)
f(x)

−
(
−
((

1− x2
)3
f (3)(x)

)′
+
(
1− x2

) (
12 + α

(
1− x2

))
f ′′(x)

)
g′(x)

+

(
−
((

1− x2
)3
g(3)(x)

)′
+
(
1− x2

) (
12 + α

(
1− x2

))
g′′(x)

)
f ′(x)

−
(
1− x2

)3 (
f (3)(x)g′′(x)− g(3)(x)f ′′(x)

)
,

(2.5)

where

α = 3A+ 3B + 6
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and

π(x) = (−6A− 6B − 12AB)x2 + (12A− 12B)x+ (12AB + 18A+ 18B + 24) .

(2.6)

We wish to study `6[y] not in L2(−1, 1) but in L2([−1, 1];W (x)).

We note that L2([−1, 1];W (x)) = L2
µ[−1, 1], where

L2
µ[−1, 1] =

{
f : [−1, 1]→ C |

∫ 1

−1
|f | dµ <∞, f is Lebesgue measurable

}
,

where

dµ =

(
1

A
δ(x+ 1) +

1

B
δ(x− 1) + 1

)
dx

and µ is the non-decreasing function

µ(x) =


−1− 1

A
, x ≤ −1

x, −1 < x < 1

1 + 1
B
, x ≥ 1.

Then L2
µ[−1, 1] is a Hilbert space with inner product

(f, g)µ :=

∫
[−1,1]

f(t)g(t)dµ(t)

=
f(−1)g(−1)

A
+

∫ 1

−1
f(t)g(t)dt+

f(1)g(1)

B
.

(2.7)

Note that L2
µ[−1, 1] ≈ L2(−1, 1)⊕ C2, which will be important in Chapter Five.

The endpoints x = ±1 are regular singular endpoints of `6[y]. At both end-

points x = ±1, the indicial equation is given by

(r − 3)(r − 2)(r − 1)2r(r + 1) = 0,

and `6[y] is limit-5 at x = ±1. The six Frobenius solutions to `6[y] = 0 at x = 1 are

y3(x) =(x− 1)
∞∑
n=0

an(x− 1)n, a0 6= 0,

y2(x) =(x− 1)2 (log |x− 1|)
∞∑
n=0

hn(x− 1)n + (x− 1)2
∞∑
n=0

bn(x− 1)n, b0 6= 0,
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y1(x) =(x− 1) (log |x− 1|)2
∞∑
n=0

tn(x− 1)n

+ (x− 1) (log |x− 1|)
∞∑
n=0

jn(x− 1)n + (x− 1)
∞∑
n=0

cn(x− 1)n, c0 6= 0,

ŷ1(x) =(x− 1) (log |x− 1|)3
∞∑
n=0

tn(x− 1)n

+ 3(x− 1) (log |x− 1|)2
∞∑
n=0

jn(x− 1)n

+ 3(x− 1) (log |x− 1|)
∞∑
n=0

cn(x− 1)n + (x− 1)
∞∑
n=0

dn(x− 1)n, d0 6= 0,

y0(x) = (log |x− 1|)4
∞∑
n=0

kn(x− 1)n + (log |x− 1|)3
∞∑
n=0

ln(x− 1)n

+ (log |x− 1|)2
∞∑
n=0

mn(x− 1)n + (log |x− 1|)
∞∑
n=0

fn(x− 1)n

+
∞∑
n=0

en(x− 1)n, e0 6= 0,

y−1(x) =(x− 1)−1 (log |x− 1|)5
∞∑
n=0

pn(x− 1)n

+ (x− 1)−1 (log |x− 1|)4
∞∑
n=0

qn(x− 1)n

+ (x− 1)−1 (log |x− 1|)3
∞∑
n=0

rn(x− 1)n

+ (x− 1)−1 (log |x− 1|)2
∞∑
n=0

sn(x− 1)n

+ (x− 1)−1 (log |x− 1|)
∞∑
n=0

gn(x− 1)n

+ (x− 1)−1
∞∑
n=0

hn(x− 1)n, h0 6= 0.

These six solutions can be simplified to the forms

y3(x) =(x− 1)3
∞∑
n=0

an(x− 1)n, a0 6= 0, (2.8)

y2(x) =(x− 1)2
∞∑
n=0

bn(x− 1)n
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+ (x− 1)2 log |x− 1|
∞∑
n=1

cn(x− 1)n, b0, c1 6= 0, (2.9)

y1(x) =(x− 1)
∞∑
n=0

dn(x− 1)n, dn 6= 0, (2.10)

ŷ1(x) =(x− 1)
∞∑
n=0

en(x− 1)n

+ 3(x− 1) log |x− 1|
∞∑
n=0

fn(x− 1)n, e0, f0 6= 0, (2.11)

y0(x) =
∞∑
n=0

gn(x− 1)n + 4 log |x− 1|
∞∑
n=1

hn(x− 1)n, g0, h1 6= 0, (2.12)

y−1(x) =(x− 1)−1
∞∑
n=0

jn(x− 1)n

+ 5(x− 1)−1 log |x− 1|
∞∑
n=1

kn(x− 1)n, j0, k1 6= 0. (2.13)

All the series converge for |x − 1| < 2. The five solutions that belong to ∆ are

y3, y2, y1, ŷ1, y0. Furthermore, four of these solutions, y3, y2, y1, y0, satisfy

y′′ ∈ L2(−1, 1),

but

ŷ1 6∈ L2(−1, 1),

and so ŷ1 will cause a problem in [·, ·], as defined in (2.5). Therefore, ŷ1 must be

eliminated from the domain of the self-adjoint operator we will construct.

We will analogously denote the five solutions of `6[·] at x = −1 which are in

L2(−1, 1) by z3, z2, z1, ẑ1 and z0. Denote the solution of `6[·] that is not in L2(−1, 1)

at the endpoint x = −1 by z−1.

2.3 Basic Properties of the Maximal Domain

In [25], Loveland proved properties of the maximal domain ∆ of `6[·]. In order

to state this theorem, we must first define an important function:

Λ[f ](x) = −
((

1− x2
)3
f (3)(x)

)′
+
(
1− x2

) (
12 + α

(
1− x2

))
f ′′(x). (2.14)
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Theorem 2.1. Let f, g ∈ ∆. Then

(i) f ′ ∈ L2(−1, 1);

(ii) f ∈ AC[−1, 1];

(iii) lim
x→±1

(1− x2)sf (s)(x) = 0 for s = 1, 2, 3;

(iv) 1 ∈ ∆ and lim
x→±1

[f, 1](x) = lim
x→±1

[Λ′[f ](x)− π(x)f ′(x)];

(v) (1− x2) ∈ ∆ and lim
x→1

[f, 1− x2](x) = 2Λ[f ](1)− 48(A+ 2)f(1),

lim
x→−1

[f, 1− x2](x) = −2Λ[f ](−1) + 48(B + 2)f(−1);

(vi) (1− x2)2 ∈ ∆ and lim
x→±1

[f, (1− x2)2](x) = ±192f(±1);

(vii) h± ∈ ∆ where h± ∈ C6(−1, 1) are defined by

h+(x) =


0 x near− 1

1
8
(A+ 2)(1− x2)2 ln(1− x2) + 1

2
(1− x2) ln(1− x2) x near 1,

h−(x) =


1
8
(B + 2)(1− x2)2 ln(1− x2) + 1

2
(1− x2) ln(1− x2) x near − 1

0 x near 1.

and

lim
x→+1

[f, h+](x) = + 4[8A+ 3B − 4]f(1) + lim
x→+1

(
− Λ[f ](x)h′+(x) + 32f ′(x)

− (1− x2)3
(
f (3)(x)h′′+(x)− h(3)+ (x)f ′′(x)

))
,

lim
x→−1

[f, h−](x) =− 4[8B + 3A− 4]f(−1) + lim
x→−1

(
− Λ[f ](x)h′−(x)

+ 32f ′(x)− (1− x2)3
(
f (3)(x)h′′−(x)− h(3)− (x)f ′′(x)

))
;

(viii) (1−x2)3 ∈ ∆ and lim
x→±1

[f, (1−x2)3](x) = 0; hence, (1−x2)3 is in the domain

of the minimal operator in L2(−1, 1);
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(ix)

lim
x→±1

[f, g] (x) = [f, 1] (±1)g(±1)− [g, 1] (±1)f(±1)

+ lim
x→±1

(
− Λ[f ](x)g′(x) + Λ[g](x)f ′(x)

−
(
1− x2

)3 (
f (3)(x)g′′(x)− g(3)(x)f ′′(x)

) )
.

The proof of this result is omitted, but the proofs of parts (i)-(iii) depend on

a result by R. S. Chisholm and Everitt [3].

Since ŷ1 ∈ ∆ but ŷ′′1 6∈ L2(−1, 1), we see that Theorem 2.1 is as strong as

possible. It was expected that there would be a restriction δ of ∆ such that f (3) ∈

L2(−1, 1) whenever f ∈ δ. To construct the space δ, we first define e± ∈ C6[−1, 1]

by

e+(x) =


0 x near − 1

1
2
(1− x2) + 1

8
(A+ 2)(1− x2)2 x near 1

(2.15)

and

e−(x) =


−1

2
(1− x2)− 1

8
(B + 2)(1− x2)2 x near − 1

0 x near 1.

(2.16)

Then e± ∈ ∆. We can now define δ, a restriction of ∆, by

δ := {f ∈ ∆ | [f, e+](1) = [f, e−](−1) = 0} . (2.17)

In [25], the following result is shown:

Lemma 2.2. Let f ∈ ∆. Then f ∈ δ if and only if Λ[f ](±1) = 0, where Λ is as

defined in (2.14).

The following properties of δ are given in [25]:

Theorem 2.3. Let f, g ∈ δ. Then
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(i) f (3) ∈ L2(−1, 1);

(ii) f (s) ∈ AC[−1, 1], for s = 0, 1, 2;

(iii) lim
x→±1

[
(1− x2)3f (3)(x)

](s)
= 0, for s = 1, 2;

(iv) lim
x→±1

(1− x2)f (3)(x) = 0;

(v) lim
x→±1

(1− x2)3f (3)(x)g′′(x) = 0;

(vi) 1 ∈ δ, lim
x→+1

[f, 1](x) = −24f ′′(1)− 24(A+ 1)f ′(1), and

lim
x→−1

[f, 1](x) = 24f ′′(−1)− 24(B + 1)f ′(−1);

(vii) (1− x2) ∈ δ, lim
x→+1

[
f, 1− x2

]
(x) = −48(A+ 2)f(1), and

lim
x→−1

[
f, 1− x2

]
(x) = 48(B + 2)f(−1);

(viii) (1− x2)2 ∈ δ and lim
x→±1

[
f, (1− x2)2

]
(x) = ±192f(±1);

(ix) (1− x2)3 ∈ δ and lim
x→±1

[
f, (1− x2)3

]
(x) = 0;

(x)

lim
x→+1

[f, g](x) =− 24 [f ′′(1)g(1)− g′′(1)f(1)]

− 24(A+ 1) [f ′(1)g(1)− g′(1)f(1)] ;

lim
x→−1

[f, g](x) = + 24 [f ′′(−1)g(−1)− g′′(−1)f(−1)]

− 24(B + 1) [f ′(−1)g(−1)− g′(−1)f(−1)] .

Then, by part (vi) of Theorem 2.3, for f ∈ δ, we have

[f, 1](1) = −24f ′′(1)− 24(A+ 1)f ′(1)

and

[f, 1](−1) = 24f ′′(−1)− 24(B + 1)f ′(−1).
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2.4 Constructing a Self-Adjoint Operator

The Everitt-Littlejohn-Loveland approach to studying `6[·] and, in particular,

for finding the self-adjoint operator T generated by `6[·] in L2
µ[−1, 1], is to first

study `6[·] in L2(−1, 1), not L2
µ[−1, 1]. In fact, we study `6[·] on ∆ and check ∆

for “smoothness” properties. This approach worked in previous work by Everitt

and Littlejohn in their study of H. L. Krall’s three 4th-order equations. From this

analysis of ∆, the second step is to define T in L2
µ[−1, 1] on a (dense) subspace D(T )

by using what we learned about smoothness of functions in ∆.

Define the operator T in L2
µ[−1, 1] by

T [f ](x) :=


24A

(
f ′′(−1)− (B + 1)f ′(−1)

)
x = −1

`6[f ](x) −1 < x < 1

24B
(
f ′′(1) + (A+ 1)f ′(1)

)
x = 1

D(T ) =δ.

In [25], the author proves the following result:

Theorem 2.4. T is symmetric in L2
µ[−1, 1] and T ≥ 0.

Proof. Let f, g ∈ D(T ). Then, by Theorem 2.3, we can write Green’s formula as∫ 1

−1
`6[f ](t)g(t)dt =[f, 1](1)g(1)− [g, 1](1)f(1)− [f, 1](−1)g(−1)

+ [g, 1](−1)f(−1) +

∫ 1

−1
`6[g](t)f(t)dt.

Then, from the definition of the inner product in L2
µ[−1, 1] given in (2.7), we have

(T [f ], g)µ =
T [f ](1)g(1)

B
+

∫ 1

−1
`6[f ](t)g(t)dt+

T [f ](−1)g(−1)

A

=− 24 (f ′′(1) + (A+ 1)f ′(1)) g(1) + 24 (f ′′(1) + (A+ 1)f ′(1)) g(1)

− 24 (g′′(1) + (A+ 1)g′(1)) f(1)− 24 (f ′′(−1)− (B + 1)f ′(−1)) g(−1)
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+ 24 (g′′(−1)− (B + 1)g′(−1)) f(−1)

+

∫ 1

−1
`6[g(t)f(t)dt+ 24 (f ′′(−1)− (B + 1)f ′(−1)) g(−1) (2.18)

=
T [g](1)f(1)

B
+

∫ 1

−1
`6[g](t)f(t)dt+

T [g](−1)f(−1)

A

= (f, T [g])µ .

Therefore, the operator T is Hermitian. Since C∞0 [−1, 1] ⊂ D(T ) and C∞0 [−1, 1] is

dense in L2
µ[−1, 1], we see that D(T ) is dense in L2

µ[−1, 1]. Hence, T is symmetric

in L2
µ[−1, 1]. Using properties of δ given in Theorem 2.3, Dirichlet’s formula∫ b

a

(
(1− x2)3f (3)(x)g(3)(x) + (1− x2)(12 + α(1− x2))f ′′(x)g′′(x)

+ π(x)f ′(x)g′(x)
)
dx

=−
(
− [(1− x2)3f (3)(x)]′′ +

[
(1− x2)(12 + α(1− x2))f ′′(x)

]′
− π(x)f ′(x)

)
g(x)

∣∣∣b
a

+
(
− [(1− x2)3f (3)(x)]′ + (1− x2)(12 + α(1− x2))f ′′(x)

)
g′(x)

∣∣∣b
a

+ (1− x2)3f (3)(x)g′′(x)
∣∣∣b
a

+

∫ b

a

`6[f ](x)g(x)dx

(2.19)

becomes, for f, g ∈ δ,∫ 1

−1
`6[g](t)f(t)dt =

∫ 1

−1

{
(1− t2)3f (3)(t)g(3)(t)

+ (1− t2)(12 + α(1− t2))f ′′(t)g′′(t) + π(t)f(t)g′(t)
}
dt

+ 24 (g′′(1) + (A+ 1)g′(1)) f(1)

− 24 (g′′(−1)− (B + 1)g′(−1)) f(−1).

Combining this with (2.18), we have

(T [f ], g)µ =

∫ 1

−1

{
(1− t2)3f (3)(t)g(3)(t)

+ (1− t2)(12 + α(1− t2))f ′′(t)g′′(t) + π(t)f ′(t)g′(t)
}
dt.
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Since, on the interval (−1, 1),

(1− x2)3
∣∣f (3)(x)

∣∣2 + (1− x2)(12 + α(1− x2)) |f ′′(x)|2 + π(x) |f ′(x)|2 ≥ 0,

we have

(T [f ], f)µ =

∫ 1

−1

{
(1− t2)3

∣∣f (3)(t)
∣∣2 + (1− t2)(12 + α(1− t2)) |f ′′(t)|2

+ π(t) |f ′(t)|2
}
dt

≥ 0.

Thus, T is bounded below by 0.

Now define a related operator A in L2(−1, 1) by

A[f ] =`6[f ]

D(A) = {f ∈ ∆ | [f, e−](−1) = [f, e+](1) = [f, 1−](−1) = [f, 1+](1) = 0} ,

where 1± ∈ C6[−1, 1] are defined by

1+ :=


1 for x near 1

0 for x near − 1

and

1− :=


0 for x near 1

1 for x near − 1.

In [25], the following result is proven about the operator A:

Theorem 2.5. A is self-adjoint in L2(−1, 1). Furthermore, A ≥ 0.

Proof. Since `6[·] is limit-5 at both x = ±1, the Naimark theory for constructing self-

adjoint operators requires, in the separated case, two boundary conditions at each
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endpoint. Since the four functions 1± and e± are linearly independent modulo the

minimal domain of `6[·] in L2(−1, 1) and satisfy the Naimark symmetry conditions

[e±, e±](±1) = [1±, 1±](±1) = [e±, 1±](±1) = 0,

we see that A is self-adjoint.

Since D(A) ⊂ δ, it follows from Dirichlet’s formula (2.19) and Theorem 2.3

that

(A[f ], f) =

∫ 1

−1
`6[f ](t)f(t)dt

=

∫ 1

−1

{
(1− t2)3

∣∣f (3)(t)
∣∣2 + (1− t2)(12 + α(1− t2)) |f ′′(t)|2

+ π(t) |f ′(t)|2
}
dt

≥0.

In order to prove that the operator T is self-adjoint, we first introduce yet

another related operator, B:

B[f ] :=


24A (f ′′(−1)− (B + 1)f ′(−1)) x = −1

`6[f ](x) −1 < x < 1

−24B (f ′′(1) + (A+ 1)f ′(1)) x = 1

D(B) :=δ.

Theorem 2.6. B is self-adjoint in L2
µ[−1, 1].

The proof of this result relies on properties of the operator A and of the

solutions of `6[·]. Recall that the solutions at x = 1, y3, y2, y1, ŷ1, y1, and y−1, were

given by (2.8) through (2.13) and the solutions at x = −1 are z3, z2, z1, ẑ1, z0, and

z−1. Note that y3, y2, y1, ŷ1, y1 are linearly dependent on z3, z2, z1, ẑ1, z0. The proof

constructs the unique linearly independent functions ϕ+, ϕ− ∈ δ that are linear

31



combinations of z3, z2, z1, ẑ1, z0. These two functions, and the resolvent operator of

A, which exists, is bounded, and maps L2(−1, 1) onto D(A), are critical components

of the proof of the above result.

With the above results, we can now state this chapter’s main result.

Theorem 2.7. T is self-adjoint in L2
µ[−1, 1].

The proof of this theorem relies on the properties of the operators A and B.

We can now use this result to give a characterization of the spectrum of the operator

T , as stated in [25]:

Theorem 2.8. (i) The Krall polynomials {Kn}∞n=0, as defined in (2.3), form a

complete set of orthogonal eigenfunctions for the self-adjoint operator T in

L2
µ[−1, 1].

(ii) The spectrum of T in L2
µ[−1, 1] is given by

σ(T ) = {λn | n = 0, 1, 2, . . .} ,

where λn is as defined in (2.2). So, T has a discrete spectrum that is bounded

below and all eigenvalues of T are simple.

The proof is omitted, but can be found in [25], but the proof of part (ii)

follows from the fact that T is self-adjoint (and so the residual spectrum is empty)

and that {λn} has no finite accumulation points (and so the continuous spectrum is

empty [28]).
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CHAPTER THREE

Extended GKN Theory

The Glazman-Krein-Naimark Theorem, Theorem 1.33, can be generalized to

an arbitrary closed symmetric operator with equal and finite deficiency indices in

an arbitrary Hilbert space. This generalization is stated in the GKN-EM Theorem,

Theorem 3.22, which will be discussed in this chapter, and is an application of

general complex symplectic theory developed by Everitt and Markus. This theory

and its applications to linear ordinary differential equations and partial differential

equations was developed by W. N. Everitt and L. Markus in the papers [10], [11], [12],

and [13].

The motivation and framework of this extended theory is nicely summed up

in this quote from Everitt, Littlejohn, and Wellman in [9]:

The GKN theory provides a recipe, in theory, for determining
all self-adjoint extensions in the Hilbert space L2(I;w) of formally
symmetric differential expressions of the form

`2r[y](u) =
1

w(u)

r∑
j=0

(−1)j(qj(u)y(j)(u))(j) (u ∈ I) (3.1)

on some open interval I = (a, b); we assume here that w > 0 and each
coefficient qj is sufficiently differentiable on I. This theory works
well in developing the spectral theory for the second-order classical
differential equations of Jacobi, Laguerre, and Hermite.

However, for nonclassical symmetric differential equations (3.1)
with orthogonal polynomial solutions, the appropriate right-definite
setting is a Hilbert-Sobolev space S with orthogonalizing Sobolev
inner product

〈f, g〉 =

∫ b

a

f(u)g(u)w(u)du+

p∑
j=0

(
αjf

(j)(a)g(j)(a)

+ βjf
(j)(b)g(j)(b)

)
.

(3.2)

The Sobolev space S has the form L2(I;w) ⊕ Ck for some k ≤ 2p.
Develop a general GKN-type theory for this setting; in particular,
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provide a ‘recipe’ for determining the self-adjoint operator having
the orthogonal polynomials as eigenfunctions.

Bochner’s 1929 Classification Theorem [2] states that the only orthogonal poly-

nomials, with respect to a positive measure on the real line, that satisfy second-order

differential equations are the Laguerre, Jacobi, and Hermite. In [19,20], H. L. Krall

asked if there were other orthogonal polynomials that satisfy higher order differential

equations. As mentioned in Chapter Two, Krall found three fourth-order differen-

tial equations, found in Table 2.1, that admit non-classical orthogonal polynomials.

However, classical GKN theory does not apply directly to these equations because

of the jumps of the orthogonalizing weight distribution at one or both endpoints in

the interval or orthogonality. This requires a new theory, which culminates in the

GKN-EM Theorem 3.22.

In [24], the authors build up to and state the GKN-EM Theorem in an extended

Hilbert space (see theorem 5.4 at the end of this chapter). The results in the rest

of this chapter, especially sections 3.2 and 3.3, are from [24], though many of the

proofs are provided in this chapter. Motivation for the authors of [24] came from

the work H. L. Krall [19, 20] and A. M. Krall [18], which concerned orthogonal

polynomials being eigenfunctions of symmetric differential expressions. Some of

their contributions resulted in [7] and [9]. The Legendre type self-adjoint operator

was constructed in [5] and [6] and was more motivation for [24].

For the rest of this chapter, (H, 〈·, ·〉)H will be a Hilbert space with its asso-

ciated inner product, T0 : D(T0) ⊆ H → H will be an arbitrary closed, symmetric,

linear operator in H, and T1 : D(T1) ⊆ H → H will be a linear operator such that

T ∗1 = T0 ⊆ T ∗0 = T1.

We call T1 the ‘maximal’ operator and T0 the ‘minimal’ operator.
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3.1 Complex Symplectic Geometry

Definition 3.1. A complex symplectic space S is a complex vector space with a con-

jugate bilinear complex-valued function [· : ·] : S × S → C satisfying the following

properties:

(i) [c1x1 + c2x2 : y] = c1[x1 : y] + c2[x2 : y],

(ii) [x : y] = −[y : x],

(iii) [x : S] = 0 =⇒ x = 0 (non-degenerate condition).

We call [· : ·] a (non-degenerate) symplectic form.

Complex symplectic spaces are generalizations of classical real symplectic spaces

of Lagrangian and Hamiltonian mechanics, see [15] for more. We note that while

real symplectic spaces cannot be odd-dimensional, complex symplectic spaces can.

Indeed, for every n ∈ N, there exists complex symplectic spaces of dimension n.

Both real and complex symplectic spaces have the notion of Lagrangian sub-

spaces.

Definition 3.2. A subspace L of a complex symplectic space S is called Lagrangian if

[L : L] = 0; that is to say, when

[x : y] = 0 for all x, y ∈ L.

A Lagrangian L ⊆ S is called a complete Lagrangian when

x ∈ S and [x : L] = 0 =⇒ x ∈ L.

The next result gives a characterization of complete Lagrangian subspaces.

Lemma 3.3. A Lagrangian subspace L ⊆ S is a complete Lagrangian subspace if and

only if

L = {x ∈ S | [x : y] = 0, y ∈ L} .
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Proof. Let S be a complex symplectic space and suppose L ⊆ S is a complete La-

grangian subspace of S. Then, by the definition of complete Lagrangian, it can be

seen that

{x ∈ S | [x : y] = 0, y ∈ L} ⊆ L.

However, since L is Lagrangian, if x ∈ L, then [x : y] = 0 for all y ∈ L. Therefore,

L ⊆ {x ∈ S | [x : y] = 0, y ∈ L} ,

and thus

L = {x ∈ S | [x : y] = 0, y ∈ L} .

Conversely, if L is a Lagrangian subspace given by

L ⊆ {x ∈ S | [x : y] = 0, y ∈ L} ,

then is is clear that L is complete.

An important step in moving forward with the work of Everitt and Markus

is to generalize the skew-symmetric bilinear form [·, ·]|βα given by Green’s formula in

(1.3):

Definition 3.4. [x, y]H := 〈T1x, y〉H − 〈x, T1y〉H for x, y ∈ D(T1).

In [13], Everitt and Markus show that the quotient space

S′ := D(T1)/D(T0) (3.3)

with the zero element 0 = D(T0) and endowed with the form [·, ·]H , is a complex

symplectic space. Since

def(T0) = dim(D+) = dim(D−)

and

T1 = D(T0) +D+ +D−,
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we see that

def(S′) = 2 def(T0).

In fact, the space S′ can be viewed, by von Neumann’s Theorem 1.21, as an isomor-

phic copy of the orthogonal sum of D+ and D−, the deficiency spaces of T0. Everitt

and Markus call the quotient space S′ the boundary space of T0. The elements of the

boundary space are cosets

x = {x+D(T0)}

for x ∈ D(T1). The element x ∈ D(T1) is called the representative vector of the coset

{x+D(T0)}. We next consider the projection from φ : D(T1)→ S′ given by

φ(x) = {x+D(T0)} .

Lemma 3.5. A collection of cosets {φtj}dj=1 ⊂ D(T1), is a basis for a subspace of

dimension d of the boundary space S′ if and only if the representative vectors {tj}dj=1

satisfy
d∑
j=1

αjtj ∈ D(T0) =⇒ αj = 0

for j = 1, 2, . . . , d; which is to say, {tj}dj=1 is linearly independent modulo D(T0).

Proof. The proof follows from the fact that the condition
∑d

j=1 αjtj ∈ D(T0) is

equivalent to the equation
∑d

j=1 αjφtj = 0.

The next result will generalize the characterization of the domain of the min-

imal operator T0.

Lemma 3.6. D(T0) = {x ∈ D(T1) | [x, y]H = 0 ∀y ∈ D(T1)} .

Proof. Let x ∈ D(T1) and suppose that

[x, y]H = 0

for all y ∈ D(T1). Then

〈T1y, x〉H = 〈y, T1x〉H
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since [x, y]H = −[y, x]H . Therefore, x ∈ D(T ∗1 ) = D(T0). To prove the converse, let

x ∈ D(T0). Since T ∗0 = T1 and T0x = T1x, we observe that

〈T1x, y〉H = 〈T0x, y〉H = 〈x, T1y〉H

for all y ∈ D(T1). Hence, for every y ∈ D(T1), we have

[x, y]H = 〈T1x, y〉H − 〈x, T1y〉H = 0,

and the proof is complete.

This lemma allows us to equip the boundary space S′ with a complex symplec-

tic form.

Definition 3.7. The boundary space symplectic form is given by

[φx : φy]S′ := [x, y]H (3.4)

for all x, y ∈ D(T1).

The next result extends Lemma 3.5.

Proposition 3.8. A collection of cosets {φtj}dj=1 form a basis for a d-dimensional

Lagrangian subspace of the boundary space S′ if and only if the representative vectors

{tj}dj=1 satisfy

(a)
d∑
j=1

αjtj ∈ D(T0) =⇒ αj = 0

for j = 1, . . . , d; and

(b)

[ti, tj]H = 0

for all i, j = 1, . . . , d.
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These two conditions are especially important when d = def(T0), and so we

will define sets with these properties as GKN sets:

Definition 3.9. A collection of vectors {tj | j = 1, . . . , def(T0)} ⊆ D(T1) is called a

GKN set for T0 if

(i) the set {tj | j = 1, . . . , def(T0)} is linearly independent modulo the minimal

domain D(T0), which is to say

if

def(T0)∑
j=1

αjtj ∈ D(T0) then αj = 0 for j = 1, . . . , def(T0);

and

(ii) the set {tj | j = 1, . . . , def(T0)} satisfies the symmetry conditions

[ti, tj]H = 0

for all i, j = 1, . . . , def(T0).

If G ⊆ D(T1) is a GKN set for T0, then a non-empty, proper subset P ⊂ G is called

a partial GKN set.

We now focus on characterizing complete Lagrangians. Everitt and Markus

showed in [13] that complete Lagrangians L exist and that

dim L = def(T0). (3.5)

Indeed, we have the following result.

Lemma 3.10. With def(T0) < ∞, a Lagrangian subspace L ⊆ S′ is complete if and

only if each of the two conditions hold:

(i) dim L = def(T0);

(ii) L = {φx | [φx : φtj]S′ = 0 (j = 1, 2, . . . , def(T0))} for some GKN set

{tj | j = 1, . . . , def(T0)}.
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Moreover, in this case,

φ−1L = {x ∈ D(T1) | [x, tj]H = 0 ∀j = 1, 2, . . . , def(T0)} . (3.6)

Proof. First suppose that L ⊆ S is a complete Lagrangian. Then, by (3.5), we have

condition (i). Now we will establish condition (ii).

By Lemma 3.3, we have that

L = {φx | [φx : φy]S′ = 0 (φy ∈ L)} . (3.7)

Now let {φtj | j = 1, 2, . . . , def(T0)} be a basis for L.

Then the set {tj | j = 1, 2, . . . , def(T0)} is a GKN set for T0 by Proposition

3.8. So, by (3.7), it follows that

L = {φx | [φx : φtj]S′ = 0 (j = 1, 2, . . . , def(T0))} ,

which establishes condition (ii). Finally, using Definition 3.4 and the above equality,

we see that

φ−1L = {x ∈ D(T1) | [x, tj]H = 0 (j = 1, 2, . . . , def(T0))} .

To show that converse is true, suppose conditions (i) and (ii) hold. Then we

see that L is a subspace of S. Also, (3.6) follows from condition (ii), and

[φti : φtj]S′ = [ti, tj]H = 0

since {tj | j = 1, 2, . . . , def(T0)} is a GKN set for T0.

It can be seen that L is Lagrangian by taking linear combinations of elements of

{tj | j = 1, 2, . . . , def(T0)}. Lastly, by (3.5), we see that L is a complete Lagrangian,

completing the proof.

In [13], Everitt and Markus state an important characterization of self-adjoint

extensions of T0 in connection with complete Lagrangian subspaces L of S′ in the

following result.
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Theorem 3.11 (The Finite-Dimensional GKN-EM Theorem). Let T0 and T1 be, re-

spectively, the minimal and maximal operators as defined at the beginning of Chapter

Three and let S′ be given by (3.3). There exists a one-to-one correspondence between

the set {T} of all self-adjoint extensions of T0 and the set {L} of all complete La-

grangians L ⊆ S′. More specifically,

(a) if T is a self-adjoint operator with T0 ⊆ T ⊆ T1, then

L := {φx ∈ S′ | x ∈ D(T )}

is a complete Lagrangian subspace of S′ of dimension def(T0). Moreover,

φ−1L = D(T ).

(b) If L is a complete Lagrangian subspace of S′, then L has dimension def(T0).

Define

D(T ) = {x ∈ D(T1) | φx ∈ L} .

Then the operator T : D(T ) ⊆ H → H given by

Tx =T1x

x ∈D(T )

is a self-adjoint operator satisfying T0 ⊆ T ⊆ T1. Moreover, φ−1L = D(T ).

We can now state and prove an important consequence of this result by com-

bining Theorem 3.11 with Lemma 3.3 and Lemma 3.10. In fact, the next result is

an exact generalization of the classical GKN Theorem stated in Theorem 1.33.

Theorem 3.12 (The Finite-Dimensional Symplectic GKN-EM Theorem). Suppose T0

and T1 are linear operators satisfying the conditions set forth in Chapter Two and

[·, ·]H is the symplectic form defined in Definition 3.4. In particualr, we assume T0

has equal and finite deficiency indices denoted by def(T0).
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(i) If the operator T : D(T ) ⊆ H → H is self-adjoint and satisfies

T0 ⊆ T ⊆ T1,

then there exists a GKN set {tj | j = 1, . . . , def(T0)} ⊆ D(T1) of T0 such

that

D(T ) = {x ∈ D(T1) | [x, tj]H = 0 (j = 1, . . . , def(T0))} . (3.8)

(ii) If {tj | j = 1, . . . , def(T0)} ⊆ D(T1) is a GKN set for T0, then the operator

T : D(T ) ⊆ H → H given by

Tx =T1x (3.9)

x ∈ D(T ) = {x ∈ D(T1) | [x, tj]H = 0 (j = 1, . . . , def(T0))} (3.10)

is self-adjoint and satisfies

T0 ⊆ T ⊆ T1.

Proof. (i): If the operator T : D(T ) ⊆ H → H is self-adjoint and T is such that

T0 ⊆ T ⊆ T1, then

L = {φx ∈ S′ | x ∈ D(T )}

is a complete Lagrangian subspace of S′ and has dimension def(T0) by Theorem 3.11.

Then

φ−1L = D(T ). (3.11)

So, there must exist a GKN set {tj | j = 1, 2, . . . def(T0)} for T0, by Lemma 3.10,

such that

L = {φx | [φx : φtj]S′ = 0 (j = 1, 2, . . . , def(T0))}

and

φ−1L = {x ∈ D(T1) | [x, tj]H = 0 (j = 1, 2, . . . , def(T0))} . (3.12)

We can now obtain (3.8) by comparing (3.11) and (3.12).

42



(ii): Now suppose that we have a GKN set {tj | j = 1, 2, . . . , def(T0)} for T0

and let

L = {φx | [φx : φtj]S′ = 0 (j = 1, 2, . . . , def(T0))} . (3.13)

Then, by Lemma 3.10, we see that L is a complete Lagrangian subspace of S′ and

has dimension def(T0).

Now define the operator T : D(T0) ⊆ H → H as in (3.9) and (3.10). Then

L = {φx | x ∈ D(T0)}

by (3.10) and (3.13). Therefore,

D(T ) = φ−1L = {x ∈ D(T1) | φx ∈ L} .

Hence, by Theorem 3.11, T is self-adjoint and T0 ⊆ T ⊆ T1.

There are a few noteworthy remarks to be made about this theorem. First,

note that if H = L2(I;w), T0 is the minimal operator, and T1 is the maximal op-

erator generated by the differential expression given in (1.4), then Theorem 3.12 is

exactly Theorem 1.33, the classical GKN theorem. The Finite-Dimensional Sym-

plectic GKN-EM theorem extends the classical GKN theorem to a general Hilbert

space for any closed symmetric operator with equal deficiency indices. As with the

classical GKN setting, the conditions

[x, tj]H = 0 for j = 1, . . . , def(T0)

are called ‘boundary conditions.’ If the deficiency indices of T0 are 0, then no such

boundary conditions exist and thus the only self-adjoint extension of T0 is T1, the

maximal operator (which is equal to T0 in this case).

3.2 The Extended Space H ⊕W

Recall that the operator T0 is a closed and symmetric operator such that

T0 : D(T0) ⊆ H → H with equal and finite deficiency indices def(T0). Its adjoint is

the operator T1, which satisfies T ∗1 = T0 ⊆ T ∗0 = T1.

43



Let (W, 〈·, ·〉W ) be a finite-dimensional complex inner product space. Recall

that (H, 〈·, ·〉H) is a complex Hilbert space. We will call H the base space and W

the extension space. Now define H ⊕W , the direct sum of the base space and the

extension space, as the Hilbert space defined by

H ⊕W = {(x, a) | x ∈ H, a ∈ W}

with inner product

〈(x, a), (y, b)〉H⊕W := 〈x, y〉H + 〈a, b〉W

and associated norm

‖(x, a)‖2H⊕W = ‖x‖2H + ‖a‖2W .

We will call H ⊕W the extended space. A critical assumption that we will maintain

throughout this dissertation is that

dim(W ) ≤ def(T0). (3.14)

Now we will build a continuum of maximal and minimal operators in the extended

space H ⊕W .

First, fix a partial GKN set

{tj | j = 1, . . . , dim(W )} ⊆ D(T1).

Then T1, the maximal operator in the base space H, is symmetric on the space

∆0 := D(T0) + span {tj | j = 1, . . . , dim(W )} ⊆ D(T1).

Note that T1 in general is not symmetric on D(T1). Let

{ξj | j = 1, . . . , dim(W )} ⊆ W

be an orthonormal basis of the base space W . Now define the operator Ψ : ∆0 → W

by

Ψ(tj) =ξj (j = 1, . . . , dim(W ))

44



Ψ(s) =0 (s ∈ D(T0)).

We can now extend Ψ to ∆0 as follows:

Ψ

s+

dim(W )∑
j=1

αjtj

 =

dim(W )∑
j=1

αjξj.

Note that Ψ maps the GKN set {tj | j = 1, . . . , dim(W )} ⊆ D(T1) onto W . Also

define the linear transformation Ω : D(T1)→ W by

Ωx :=

dim(W )∑
j=1

[x, tj]Hξj (x ∈ D(T1)). (3.15)

Finally, fix an arbitrary self-adjoint operator B : W → W. We are now in a position

to define the maximal and minimal operators in the extended space.

Definition 3.13. The maximal operator in the extended space H ⊕W , T̂1 : D(T̂1) ⊆

H ⊕W → H ⊕W , is defined by

T̂1(x, a) = (T1x,Ba− Ωx) (3.16)

(x, a) ∈ D(T̂1) := {(x, a) | x ∈ D(T1), a ∈ W} . (3.17)

Definition 3.14. The minimal operator in the extended space, T̂0 : D(T̂0) ⊆ H⊕W →

H ⊕W , is defined by

T̂0(x, a) = (T1x,Ba) (3.18)

(x, a) ∈ D(T̂0) := {(x,Ψx) | x ∈ ∆0} . (3.19)

Note that if x ∈ ∆0, then Ωx = 0. Also note that if (x,Ψx) ∈ D(T̂0), then

(x,Ψx) ∈ D(T̂1). In this case, Ωx = 0 and so

T̂1(x,Ψx) = (T1x,BΨx− Ωx) = (T1x,BΨx) = T̂0(x,Ψx).

Hence, we see that

T̂0 ⊆ T̂1.
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The terms “maximal” and “minimal” are indeed appropriate for the operators

T̂1 and T̂0. D(T̂1) is the largest linear manifold in the extended Hilbert space H⊕W

on which an operator representation of T1 makes sense. Additionally, it will later be

shown in Theorem 3.17 that
(
T̂0

)∗
= T̂1, and so the term “minimal” makes sense

for T̂0.

Proposition 3.15. The extension J : D(J) ⊆ H → H of the minimal operator T0

defined by

Jx :=T1x

x ∈ D(J) :=∆0

is a closed symmetric operator.

The proof of this result can be found in [24]. This proposition shows that T1

is a closed, symmetric operator on ∆0.

Theorem 3.16. The operator T̂0 is a closed, densely defined symmetric operator in

H ⊕W .

The result, as proved in [24], leads to the next critical result.

Theorem 3.17.
(
T̂0

)∗
= T̂1.

For the proof of this theorem, see [24]. By combining the previous two the-

orems, we obtain the following fundamental operator relationship between T̂0 and

T̂1.

Theorem 3.18. T̂0 = T̂0 ⊆
(
T̂0

)∗
= T̂1.

The proof of this can be found in [24]. With this result, we can now apply the

Stone-von Neumann theory to the minimal operator in the extended space T̂0. So,

we can now define the positive and negative deficiency spaces of T̂0 in H ⊕W .
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Definition 3.19 (Deficiency Spaces in the Extended Space H ⊕W ).

Y± :=
{

(x, a) ∈ D(T̂1) | T̂1(x, a) = ±i(x, a)
}
.

Lemma 3.20. (x, a) ∈ Y± if and only if x ∈ X± and a = (B ∓ iI)−1 Ωx. Moreover,

the deficiency indices of T̂0 are equal and finite and satisfy def(T̂0) = def (T0).

Proof. Let (x, a) ∈ Y±. Then, by definition, T1x = ±ix and Ba− Ωx = ±ia. Then

x ∈ X± and a = (B ∓ iI)−1 Ωx. Conversely, let x ∈ X± and a = (B ∓ iI)−1. Then

Ba− Ωx = ±ia and thus T̂1(x, a) = ±i(x, a). Therefore, the mappings

X± → Y±

x→
(
x, (B ∓ iI)−1 Ωx

)
are vector space isomorphisms and dim (X±) = dim (Y±). Hence, the deficiency

indices of T̂0, the minimal operator in the extended space, are finite and equal with

dim (Y+) = dim (Y−) <∞, (3.20)

which completes the proof.

Equation 3.20 guarantees that the GKN-EM theorem will apply to T̂0.

Definition 3.21 (General Symplectic Form).

[(x, a), (y, b)]H⊕W := [x, y]H − 〈Ωx, b〉W + 〈a,Ωy〉W (3.21)

for (x, a), (y, b) ∈ D(T̂1), where [·, ·]H is the symplectic form defined in (3.4) and the

mapping Ω is defined in (3.15).

3.3 The GKN-EM Theorem in the Extended Space H ⊕W

We can now state the GKN-EM Theorem in H ⊕W , which applies the GKN-

EM Theorem to the minimal operator T̂0 in the extended space H ⊕W and charac-

terizes all self-adjoint extensions of T̂0 in H ⊕W .
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Theorem 3.22 (GKN-EM Theorem in H ⊕W ). We have the following assumptions

and definitions:

(i) T0 and T1 are, respectively, the minimal and maximal operators in the Hilbert

space (H, 〈·, ·〉H), called the base (complex) Hilbert space, with domains D(T0)

and D(T1); T0 is a closed, symmetric operator satisfying T0 ⊆ T1 with

T ∗0 = T1 and T ∗1 = T0;

(ii) The deficiency indices of T0 are assumed to be equal and finite and denoted

by def(T0);

(iii) [·, ·]H is the symplectic form given by

[x, y]H = 〈T1x, y〉H − 〈x, T1y〉H (x, y ∈ D(T1));

(iv) (W, 〈·, ·〉W ), the extension space, is a finite-dimensional complex Hilbert space

with dimW ≤ def(T0) and orthonormal basis

{ξj | j = 1, . . . , dimW};

(v) B : W → W is a fixed self-adjoint operator;

(vi) H⊕W , the extended space, is the Hilbert space defined by H⊕W = {(x, a) |

x ∈ H, a ∈ W} with inner product

〈(x, a), (y, b)〉H⊕W := 〈x, y〉H + 〈a, b〉W ;

(vii) P = {tj | j = 1, . . . , dimW} is a partial GKN set for T0;

(viii) ∆0 = D(T0) + span{tj | j = 1, . . . , dimW};

(ix) Ψ : ∆0 → W is defined to be

Ψ

(
x0 +

dimW∑
j=1

αjtj

)
=

dimW∑
j=1

αjξj (x0 ∈ D(T0));
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(x) Ω : D(T1)→ W is given by

Ωx =
dimW∑
j=1

[x, tj]Hξj;

(xi) T̂0 : D(T0) ⊆ H ⊕W → H ⊕W is the minimal operator in H ⊕W defined

by

T̂0(x, a) = (T1x,Ba)

(x, a) ∈ D(T̂0) = {(x,Ψx) | x ∈ ∆0} ;

(xii) T̂1 : D(T̂1) ⊆ H ⊕W → H ⊕W is the maximal operator in H ⊕W defined

by

T̂1(x, a) = (T1x,Ba− Ωx)

D(T̂1) = {(x, a) | x ∈ D(T1); a ∈ W} ;

(xiii) [·, ·]H⊕W is the symplectic form given by

[(x, a), (y, b)]H⊕W := [x, y]H − 〈Ωx, b〉W + 〈a,Ωy〉W ,

for ((x, a), (y, b)) ∈ D(T̂1).

With the above definitions and assumptions, we obtain the following result:

(a) T̂0 is a closed, symmetric operator satisfying T̂0 ⊆ T̂1 with (T̂0)
∗ = T̂1 and

(T̂1)
∗ = T̂0;

(b) The deficiency indices of T̂0 are equal and finite and def(T̂0) = def(T0);

(c) Suppose T̂ is a self-adjoint extension of T̂0 satisfying T̂0 ⊆ T̂ ⊆ T̂1. Then

there exists a GKN set {(xj, aj) | j = 1, . . . , def(T0)} ⊆ D(T̂1) such that

T̂ (x, a) = (T1x,Ba− Ωx)

D(T̂ ) =
{

(x, a) ∈ D(T̂1) | [(x, a), (xj, aj)]H⊕W = 0 (j, 1, . . . , def(T0))
}
.
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(d) If T̂ is defined as above where {(xj, aj) | j = 1, . . . , def(T0)} ⊆ D(T̂1) is a

GKN set, then T̂ is a self-adjoint extension of T̂0 in H ⊕W .
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CHAPTER FOUR

Variations on the Fourier Self-Adjoint Operator in an Extended Hilbert Space

In this chapter, we illustrate several examples of the application of the GKN-

EM Theorem in H ⊕ W to construct self-adjoint operators in extended Hilbert

spaces.

Consider the Fourier differential expression

`F [y](u) = −y′′(u) (u ∈ [a, b])

where [a, b] is a compact interval. The base space is H = L2[a, b] and we will work

with either C or C2 as the extension space.

The maximal operator T1 : D(T1) ⊂ H → H generated by `F is defined by

T1x = `F [x]

D(T1) =
{
x : [a, b]→ C | x, x′ ∈ AC[a, b];x′′ ∈ L2[a, b]

}
and the minimal operator T0 : D(T0) ⊂ H → H is given by

T0x = `F [x]

D(T0) = {x ∈ D(T1) | x(a) = x′(a) = x(b) = x′(b) = 0} .

The symplectic form in H associated with T1 is

[x, y]H = x(b)y′(b)− x′(b)y(b) + x′(a)y(a)− x(a)y′(a)

for x, y ∈ D(T1).

4.1 One-Dimensional Extension Spaces

We will first consider the one-dimensional extension space W = C with inner

product 〈z1, z2〉W = z1z2 for z1, z2 ∈ W . We will use {ξ1 = 1} as a basis for W .
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Every self-adjoint operator B : W → W has the form αz, where α ∈ R. For the

following one-dimensional extension space examples, fix such a B.

Example 4.1. Our first example with a one-dimensional extension space will incor-

porate continuity at b as a result of the boundary conditions.

Define t1 ∈ D(T1) by

t1(u) =


0 u near a

1 u near b.

Claim 4.2. {t1} is a partial GKN set for T0.

Proof. Since t1(b) = 1 6= 0, t1 6∈ D(T0). So, if ct1 ∈ D(T0), then c = 0. Also,

[t1, t1]H = t′1(a)t1(a)− t′1(b)t1(b) + t1(b)t
′
1(b)− t1(a)t

′
1(a) = 0

because t1(a) = t′1(b) = 0. Therefore, {t1} is a partial GKN set for T0.

With the partial GKN set above, we have ∆0 = D(T0) + span{t1} and so

Ψ : ∆0 → W is defined by Ψ(t0 + ct1) = c. Also, for x ∈ D(T1),

Ωx = [x, t1]Hξ1

=
(
x′(a)t1(a)− x′(b)t1(b) + x(b)t

′
1(b)− x(a)t

′
1(a)

)
· 1

= 0− x′(b) + 0− 0

= −x′(b).

The symplectic form [·, ·]H⊕W in H ⊕W = L2[a, b]⊕ C is given by

[(x, c1), (y, c2)]H⊕W = [x, y]H − 〈Ωx, c2〉W + 〈c1,Ωy〉W

= x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

+ x′(b)c2 − c1y′(b)

for x, y ∈ H and c1, c2 ∈ W .
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Therefore, the minimal operator T̂0 : D(T̂0) ⊆ H ⊕W → H ⊕W is defined by

T̂0(x, z) = (T1x,Bz) = (−x′′, αz),

D(T̂0) = {(x,Ψx) | x ∈ ∆0}

and so

T̂0(x,Ψx) = (T1x,BΨx) = (−x′′, αΨx).

The maximal operator T̂1 : D(T̂1) ⊆ H ⊕W → H ⊕W is defined by

T̂1(x, c) = (T1x,Bc− Ωx)

= (−x′′, αc+ x′(b)),

D(T̂1) = {(x, c) | x ∈ D(T1), c ∈ C} .

Now define x1, x2 ∈ D(T1) by

x1(u) =


0 u near a

u− b u near b,

x2(u) =


u− a u near a

0 u near b.

Claim 4.3. {(x1, 0), (x2, 0)} is a GKN set for T̂0 in H ⊕W .

Proof. It will first be shown that {(x1, 0), (x2, 0)} is linearly independent modulo

D(T̂0). To do so, define f1, f2 ∈ D(T1)\D(T0) by f1(u) = u and f2(u) = u2. Let

α, β ∈ C. If α(x1, 0) + β(x2, 0) ∈ D(T̂0), then

[(f1, 0), (αx1 + βx2, 0)]H⊕W = [(f2, 0), (αx1 + βx2, 0)]H⊕W = 0.

Since,

[(f1, 0), (αx1 + βx2, 0)]H⊕W =[f1, αx1 + βx2]H
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=f ′1(a)(αx1(a) + βx2(a))− f ′1(b)(αx1(b) + βx2(b))

+ f1(b)(αx′1(b) + βx′2(b))− f1(a)(αx′1(a) + βx′2(a))

=bα− aβ

and

[(f2, 0), (αx1 + βx2, 0)]H⊕W =[f2, αx1 + βx2]H

=f ′2(a)(αx1(a) + βx2(a))− f ′2(b)(αx1(b) + βx2(b))

+ f2(b)(αx′1(b) + βx′2(b))− f2(a)(αx′1(a) + βx′2(a))

=b2α− a2β,

we have 0 = bα− aβ = b2α− a2β. Therefore, α = β = 0. Hence, {(x1, 0), (x2, 0)} is

linearly independent modulo D(T̂0).

Now we will show that [(xi, 0), (xj, 0)]H⊕W = 0 for i, j = 0. We have

[(x1, 0), (x1, 0)]H⊕W =x′1(a)x1(a)− x′1(b)x1(b) + x1(b)x
′
1(b)− x1(a)x′1(a)

+ x′1(b)(0)− (0)x′1(b)

=0,

[(x1, 0), (x2, 0)]H⊕W =x′1(a)x2(a)− x′1(b)x2(b) + x1(b)x
′
2(b)− x1(a)x′2(a)

+ x′1(b)(0)− (0)x′2(b)

=0,

and

[(x2, 0), (x2, 0)]H⊕W =x′2(a)x2(a)− x′2(b)x2(b) + x2(b)x
′
2(b)− x2(a)x′2(a)

+ x′2(b)(0)− (0)x′2(b)

=0.

Therefore, {(x1, 0), (x2, 0)} is a GKN set for T̂0.
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Note that, for x ∈ H and c ∈ W ,

[(x, c), (x1, 0)]H⊕W =x′(a)x1(a)− x′(b)x1(b) + x(b)x′1(b)− x(a)x′1(a)

+ x′(b)(0)− cx′1(b)

=x(b)− c

and

[(x, c), (x2, 0)]H⊕W =x′(a)x2(a)− x′(b)x2(b) + x(b)x′2(b)− x(a)x′2(a)

+ x′(b)(0)− cx′2(b)

=− x(a).

Therefore, if [(x, c), (x1, 0)]H⊕W = 0, then x(b) = c and if [(x, c), (x2, 0)]H⊕W = 0,

then x(a) = 0.

Now we can define a self-adjoint operator T̂ : D(T̂ ) ⊆ H ⊕W → H ⊕W by

T̂ (x, c) =(T1x,Bc− Ωx)

=(−x′′, αc+ x′(b)),

D(T̂ ) =
{

(x, c) ∈ D(T̂1) | x(b)− c = −x(a) = 0
}
.

However, since x(b) = c, we can write this as

T̂ (x, (x(b)) =(−x′′, αx(b) + x′(b)),

D(T̂ ) = {(x, x(b)) | x(a) = 0, x ∈ D(T1)} .

As a result, we can see that continuity at the endpoint x = b is forced by the

boundary conditions. The operator T̂ in H⊕W is self-adjoint in H⊕W by Theorem

3.22.

Example 4.4. This example is similar to the previous one, but incorporates x(a) in

the boundary conditions instead of x(b).
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Define t1(u) ∈ D(T1) by

t1(u) =


1 u near a

0 u near b.

Then {t1} is a partial GKN set for T0. The proof is analogous to the proof of

Claim 4.2. With this partial GKN set, we can define ∆0 = D(T0) + span{t1} and

Ψ : ∆0 → W by Ψ(t0 + ct1) = c for t0 ∈ D(T0). We also define, for x ∈ D(T1),

Ωx =[x, t1]Hξ1

=x′(a)t1(a)− x′(b)t1(b) + x(b)t
′
1(b)− x(a)t

′
1(a)

=x′(a).

Therefore, we define [·, ·]H⊕W by

[(x, c1), (y, c2)]H⊕W =[x, y]H − 〈Ωx, c2〉W + 〈c1,Ωy〉W

=x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

− x′(a)c2 + c1y
′(a).

We define the minimal operator Ŝ0 : D(Ŝ0) ⊆ H ⊕W → H ⊕W by

Ŝ0(x, c) =(T1x,Bc) = (−x′′, αx)

D(Ŝ0) = {(x,Ψx) | x ∈ ∆0} .

Thus, Ŝ0(x,Ψx) = (−x′′, αΨx).

We also define the maximal operator Ŝ1 : D(Ŝ1) ⊆ H ⊕W → H ⊕W by

Ŝ1(x, c) =(T1x,Bc− Ωx) = (−x′′, αc− x′(a)),

D(Ŝ1) = {(x, c) | x ∈ D(T1), c ∈ C} .

Now we need a GKN set for Ŝ0. Define y1, y2 ∈ D(T1) by

y1(u) =


u− a u near a

0 u near b,
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y2(u) =


0 u near a

u− b u near b.

Claim 4.5. {(y1, 0), (y2, 0)} is a GKN set for Ŝ0.

Proof. Define f1, f2 ∈ D(T1)\D(S0) by

f1(u) =u

f2(u) =u2,

and let α, β ∈ C. Then, if α(y1, 0) + β(y2, 0) ∈ D(Ŝ0), we have

[(f1, 0), (αy1 + βy2, 0)]H⊕W = [(f2, 0), (αy1 + βy2, 0)]H⊕W = 0

for c1, c2 ∈ C. Note that

[(f1, 0), (αy1 + βy2, 0)]H⊕W =[f1, αy1 + βy2]H

=f ′1(a)(αy1(a) + βy2(a))− f ′1(b)(αy1(b) + βy2(b))

+ f1(b)(αy′1(b) + βy′2(b))− f1(a)(αy′1(a) + βy′2(a))

=bβ − aα,

and

[(f2, 0), (αy1 + βy2, 0)]H⊕W =[f2, αy1 + βy2]H

=f ′2(a)(αy1(a) + βy2(a))− f ′2(b)(αy1(b) + βy2(b))

+ f2(b)(αy′1(b) + βy′2(b))− f2(a)(αy′1(a) + βy′2(a))

=b2β − a2α.

Hence, 0 = bβ − aα and 0 = b2β − a2α, and solving this system of equations yields

α = β = 0. Therefore, {(y1, 0), (y2, 0)} is linearly independent modulo D(Ŝ0). It

remains to be shown that [(yi, 0), (yj, 0)]H⊕W = 0 for i, j = 1, 2. However, since
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[(yi, 0), (yj, 0)]H⊕W = [yi, yj]H , it suffices to show that [yi, yj]H = 0 for i, j = 1, 2:

[y1, y1]H =y1(b)y
′
1(b)− y′1(b)y1(b) + y′1(a)y1(a)− y1(a)y′1(a)

=0,

[y1, y2]H =y1(b)y
′
2(b)− y′1(b)y2(b) + y′1(a)y2(a)− y1(a)y′2(a)

=0,

[y2, y2]H =y2(b)y
′
2(b)− y′2(b)y2(b) + y′2(a)y2(a)− y2(a)y′2(a)

=0.

Thus, [(yi, 0), (yj, 0)]H⊕W is a GKN set for Ŝ0.

For any (x, c) ∈ D(Ŝ0), we have

[(x, c), (y1, 0)]H⊕W =x′(a)y1(a)− x′(b)y1(b) + x(b)y′1(b)− x(a)y′1(a)

− x′(a)(0) + cy′1(a)

=− x(a) + c

and

[(x, c), (y2, 0)]H⊕W =x′(a)y2(a)− x′(b)y2(b) + x(b)y′2(b)− x(a)y′2(a)

− x′(a)(0) + cy′2(a)

=x(b).

So, if 0 = [(x, c), (y1, 0)]H⊕W = 0, then c = x(a). Likewise, if [(x, c), (y2, 0)]H⊕W = 0,

then x(b) = 0.

Now define Ŝ : D(Ŝ) ⊆ H ⊕W → H ⊕W by

Ŝ(x, c) =(T1x,Bc− Ωx)

=(−x′′, αc− x′(a)),

D(Ŝ) =
{

(x, c) ∈ D(T̂1) | −x(a) + c = x(b) = 0
}
.
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This can be rewritten as

Ŝ(x, x(a)) =(−x′′,−αx(a)− x′(a)),

D(Ŝ) = {(x, x(a)) | x(b) = 0, x ∈ D(T1)} .

The operator Ŝ is self-adjoint in H ⊕W by Theorem 3.22 the GKN-EM Theorem

in H ⊕W .

For our last example with a one-dimensional extensions space, we pick a more

complex function for our partial GKN set in H by switching the roles of y1 and t1

in the previous example.

Example 4.6. Define t1 ∈ D(T1) by

t1(u) =


u− a u near a

0 u near b.

Claim 4.7. {t1} is a partial GKN set for T0.

Proof. Since t′1(a) = 1 6= 0, we have that t1 ∈ D(T1)\D(T0). So, if αt1 ∈ D(T0),

then we obtain α = 0. Hence, {t1} is linearly independent modulo D(T0). Also note

that

[t1, t1]H =t′1(a)t1(a)− t′1(b)t1(b) + t1(b)t
′
1(b)− t1(a)t

′
1(a)

=0.

Therefore, {t1} is a partial GKN set for T0.

With the above partial GKN set, we have ∆0 = D(T0) + span{t1} and Ψ :

∆0 → W defined by

Ψ(t0 + ct1) = c

for t0 ∈ D(T0) and c ∈ W . For x ∈ D(T1), define Ω by

Ωx =[x, t1]H(ξ1)
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=x′(a)t1(a)− x′(b)t1(b) + x(b)t
′
1(b)− x(a)t

′
1(a)

=− x(a).

Note that in the previous two examples, Ω involved x′ at one of the endpoints, but

here, Ω involves x instead.

The symplectic form [·, ·]H⊕W can be defined, in this case, by

[(x, c1), (y, c2)]H⊕W =[x, y]H − 〈Ωx, c2〉W + 〈c1,Ωy〉W

=x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

+ x(a)c2 − c1y(a).

The minimal operator in R̂0 : D(R̂0) ⊆ H ⊕W → H ⊕W is defined by

R̂0(x, c) =(T1x,Bc) = (−x′′, αc),

D(R̂0) = {(x,Ψx) | x ∈ ∆0} .

So, R̂0(x, c) = (−x′′, αΨx).

The maximal operator R̂1 : D(R̂1) ⊆ H ⊕W → H ⊕W is defined by

R̂1(x, c) =(T1x,Bc− Ωx)

=(−x′′, αc+ x(a)),

D(R̂1) = {(x, c) | x ∈ D(T1), c ∈ C} .

Now define x1, x2 ∈ D(T1) by

x1(u) =


1 u near a

0 u near b,

x2(u) =


0 u near a

u− b u near b.

Claim 4.8. {(x1, 0), (x2, 0)} is a GKN set for R̂0.
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Proof. First, note that since x1(a) = 1 6= 0 and x′2(b) = 1 6= 0, we have that

x1, x2 ∈ D(T1)\D(T0). Now define f1, f2 ∈ D(T1)\D(T0) by

f1(u) =u

f2(u) =u2.

So, if α(x1, 0) + β(x2, 0) ∈ D(R̂0), then

[(f1, 0), (αx1 + βx2, 0)]H⊕W = [(f2, 0), (αx1 + βx2, 0)]H⊕W = 0.

So,

[(f1, 0), (αx1 + βx2, 0)]H⊕W =[f1, αx1 + βx2]H

=f ′1(a)(αx1(a) + βx2(a))− f ′1(b)(αx1(b) + βx2(b))

+ f1(b)(αx′1(b) + βx′2(b))− f1(a)(αx′1(a) + βx′2(a))

=f ′1(a)(α) + f1(b)(β)

=α + bβ

and

[(f2, 0), (αx1 + βx2, 0)]H⊕W =[f2, αx1 + βx2]H

=f ′2(a)(αx1(a) + βx2(a))− f ′2(b)(αx1(b) + βx2(b))

+ f2(b)(αx′1(b) + βx′2(b))− f2(a)(αx′1(a) + βx′2(a))

=f ′2(a)(α) + f2(b)(β)

=2aα + b2β.

This implies that 0 = α + bβ and 0 = 2aα + b2β. Thus, α = β = 0, and so

{(x1, 0), (x2, 0)} is linearly independent modulo D(R̂0).

It remains to be shown that 0 = [(xi, 0), (xj, 0)]H⊕W = [xi, xj]H for i, j = 1, 2:

[x1, x1]H =x′1(a)x1(a)− x′1(b)x1(b) + x1(b)x
′
1(b)− x1(a)x′1(a)

61



=0,

[x1, x2]H =x′1(a)x2(a)− x′1(b)x2(b) + x1(b)x
′
2(b)− x1(a)x′2(a)

=0,

[x2, x2]H =x′2(a)x2(a)− x′2(b)x′2(b) + x2(b)x
′
2(b)− x2(a)x′2(a)

=0.

Therefore, {(x1, 0), (x2, 0)} is a GKN set for R̂0.

For (x, c) ∈ D(R̂1), we have

[(x, c), (x1, 0)]H⊕W =x′(a)x1(a)− x′(b)x1(b) + x(b)x′1(b)− x(a)x′1(a)

+ x(a)(0)− cx1(a)

=x′(a)− c

and

[(x, c), (x2, 0)]H⊕W =x′(a)x2(a)− x′(b)x2(b) + x(b)x′2(b)− x(a)x′2(a)

+ x(a)(0)− cx2(a)

=x(b).

So, if [(x, c), (x1, 0)]H⊕W = 0 and [(x, c), (x2, 0)]H⊕W = 0, then x′(a) = c and x(b) =

0.

We can now define R̂ : D(R̂) ⊆ H ⊕W → H ⊕W by

R̂(x, c) =(T1x,Bc− Ωx)

=(−x′′, αc+ x(a)),

D(R̂) =
{

(x, c) ∈ D(R̂1) | x′(a)− c = x(b) = 0
}
.

Since x′(a) = c, this can be written as

R̂(x, x′(a)) =(−x′′, αx′(a) + x(a)),
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D(R̂) = {(x, x′(a)) | x ∈ D(T1), x(b) = 0} .

This operator R̂ is self-adjoint by Theorem 3.22.

4.2 Two-Dimensional Extension Spaces

We now turn our attention to a few examples with a two-dimensional extension

extension space. Let W = C2 with inner product

〈(z1, z2), (z′1, z′2)〉W =
z1z
′
1

M
+
z2z
′
2

N
,

where M,N > 0. Define ξ1 = (
√
M, 0) and ξ2 = (0,

√
N). Then {ξ1, ξ2} is an

orthonormal basis for W . Using this inner product, every self-adjoint operator B :

W → W has the form

B =

 α β

β N
M

γ

 ,

where α, γ ∈ R and β ∈ C. For the following examples, fix such a matrix B.

Example 4.9. In this example, we will construct a self-adjoint operator in H ⊕W =

L2[a, b]⊕ C2 with continuity at both endpoints x = a and x = b.

Define t1, t2 ∈ D(T1) by

t1(u) =


√
M u near a

0 u near b,

t2(u) =


0 u near a

√
N u near b.

Claim 4.10. {t1, t2} is a GKN set for T0 in H.

Proof. Note that since t1(a) =
√
M 6= 0 and t2(b) =

√
N 6= 0, we see that t1, t2 ∈

D(T1)\D(T0). So, if c1t1 + c2t2 ∈ D(T0), then c1t1(a) + c2t2(a) = 0. However,

c1t1(a) + c2t2(a) = c1
√
M , so we must have c1 = 0. Likewise, we must have c1t1(b) +
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c2t2(b) = 0, but c1t1(b) + c2t2(b) = c2
√
N , so c2 = 0. Therefore, {t1, t2} is linearly

independent modulo D(T0). Then, since

[t1, t1]H =t′1(a)t1(a)− t′1(b)t1(b) + t1(b)t
′
1(b)− t1(a)t

′
1(a)

=0,

[t1, t2]H =t′1(a)t2(a)− t′1(b)t2(b) + t1(b)t
′
2(b)− t1(a)t2(a)

=0,

[t2, t2]H =t′2(a)t2(a)− t′2(b)t2(b) + t2(b)t
′
2(b)− t2(a)t

′
2(a)

=0,

{t1, t2} is a GKN set for T0 in H.

Now we can define ∆0 = D(T0) + span{t1, t2} and define Ψ : ∆0 → W by

Ψ(t0 + c1t1 + c2t2) =c1ξ1 + c2ξ2

=c1

(√
M, 0

)
+ c2

(
0,
√
N
)

=
(
c1
√
M, c2

√
N
)
,

for t0 ∈ D(T0). Note that for x ∈ D(T1), we have

[x, t1]H =x′(a)t1(a)− x′(b)t1(b) + x(b)t
′
1(b)− x(a)t

′
1(a)

=
√
Mx′(a)

and

[x, t2]H =x′(a)t2(a)− x′(b)t2(b) + x(b)t
′
2(b)− x(a)t

′
2(a)

=−
√
Nx′(b).

So, we define Ω, for x ∈ D(T ), by

Ωx =[x, t1]ξ1 + [x, t2]Hξ2
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=
√
Mx′(a)

(√
M, 0

)
−
√
Nx′(b)

(
0,
√
N
)

=(Mx′(a),−Nx′(b)).

The symplectic form in H ⊕W with {t1, t2} as the GKN set for T0 is given by

[(x, (c1, c2)), (y, (c
′
1, c
′
2))]H⊕W =[x, y]H − 〈Ωx, (c′1, c′2)〉W + 〈(c1, c2),Ωy〉W

=x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

− 〈(Mx′(a),−Nx′(b)), (c′1, c′2)〉W

+ 〈(c1, c2), (My′(a),−Ny′(b))〉W

=x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

−
(
Mx′(a)c′1

M
− Nx′(b)c′2

N

)
+

(
c1My′(a)

M
− c2Ny

′(b)

N

)
=x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

− x′(a)c′1 + x′(b)c′2 + c1y
′(a)− c2y′(b),

for (x, (c1, c2)), (y, (c
′
1, c
′
2)) ∈ H ⊕W .

We are now ready to define the minimal and maximal operators in H ⊕W .

Define Û0 : D(Û0) ⊆ H ⊕W → H ⊕W by

Û0(x, (c1, c2)) =(T1x,B(c1, c2))

=(−x′′,B(c1, c2)),

D(Û0) = {(x,Ψx) | x ∈ ∆0} ,

and so

Û0(x,Ψx) =
(
−x′′,B

(
c1
√
M, c2

√
N
))

.

Define Û1 : D(Û1) ⊆ H ⊕W → H ⊕W by

Û1(x, (c1, c2)) = (−x′′,B(c1, c2)− Ωx)
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=
(
− x′′,B(c1, c2)− (Mx′(a),−Nx′(b))

)
,

D(Û1) =
{

(x, (c1, c2)) | x ∈ D(T1), (c1, c2) ∈ C2
}
.

Now define x1, x2 ∈ D(Û1) by

x1(u) =


√
M(u− a) u near a

0 u near b,

x2(u) =


0 u near a

√
N(u− b) u near b.

Claim 4.11. {(x1, (0, 0)), (x2, (0, 0))} is a GKN set for Û0 in H ⊕W .

Proof. If α(x1, (0, 0))+β(x2, (0, 0)) ∈ D(Û0), where α, β ∈ C, then (αx1+βx2, (0, 0)) ∈

D(Û0). So, by the definition ofD(Û0), we have that Ψ(αx1+βx2) = (0, 0). Therefore,

αx1 + βx2 ∈ D(T0). Thus,

[f, αx1 + βx2]H = 0

for every f ∈ D(T1).

Now define f1, f2 ∈ D(T1)\D(T0) by

f1(u) =u,

f2(u) =u2.

Then we have

[f1, αx1 + βx2]H =f ′1(a)(αx1(a) + βx2(a))− f ′1(b)(αx1(b) + βx2(b))

+ f1(b)(αx′1(b) + βx′2(b))− f1(a)(αx′1(a) + βx′2(a))

=f1(b)
(
β
√
N
)
− f1(a)

(
α
√
M
)

=bβ
√
N − aα

√
M

and

[f2, αx1 + βx2]H =f ′2(a)(αx1(a) + βx2(a))− f ′2(b)(αx1(b) + βx2(b))
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+ f2(b)(αx′1(b) + βx′2(b))− f2(a)(αx′1(a) + βx′2(a))

=f2(b)
(
β
√
N
)
− f2(a)

(
α
√
M
)

=b2β
√
N − a2α

√
M.

Solving the system of equations

0 =bβ
√
N − aα

√
M,

0 =b2β
√
N − a2α

√
M

yields α = 0 and β = 0. Therefore, {(x1, (0, 0)), (x2, (0, 0))} is linearly independent

modulo D(Û0).

It remains to be shown that 0 = [(xi, (0, 0)), (xj, (0, 0))]H⊕W for i, j = 1, 2:

[(x1, (0, 0)), (x1, (0, 0))]H⊕W =[x1, x1]H

=x′1(a)x1(a)− x′1(b)x1(b) + x1(b)x
′
1(b)− x1(a)x′1(a)

=0,

[(x1, (0, 0)), (x2, (0, 0))]H⊕W =[x1, x2]H

=x′1(a)x2(a)− x′1(b)x2(b) + x1(b)x
′
2(b)− x1(a)x′2(a)

=0,

[(x2, (0, 0)), (x2, (0, 0))]H⊕W =[x2, x2]H

=x′2(a)x2(a)− x′2(b)x2(b) + x2(b)x
′
2(b)− x2(a)x′2(a)

=0.

Hence, {(x1, (0, 0)), (x2, (0, 0))} is a GNK set for Û0 in H ⊕W .

Note that

Ωx1 = (Mx′1(a),−Nx′1(b))

=
(
M3/2, 0

)
,
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and

Ωx2 = (Mx′2(a),−Nx′2(b))

=
(
0,−N3/2

)
.

We also have, for x ∈ D(T1) and (c1, c2) ∈ C2,

[(x, (c1, c2)), (x1, (0, 0))]H⊕W =x′(a)x1(a)− x′(b)x1(b) + x(b)x′1(b)− x(a)x′1(a)

− x′(a)(0) + x′(b)(0) + c1x
′
1(a)− c2x′1(b)

=− x(a)
√
M + c1

√
M

and

[(x, (c1, c2)), (x2, (0, 0))]H⊕W =x′(a)x2(a)− x′(b)x2(b) + x(b)x′2(b)− x(a)x′2(a)

− x′(a)(0) + x′(b)(0) + c1x
′
2(a)− c2x′2(b)

=x(b)
√
N − c2

√
N.

So, if 0 = [(x, (c1, c2)), (x1, (0, 0))]H⊕W , then c1 = x(a). Likewise, c2 = x(b) if

0 = [(x, (c1, c2)), (x2, (0, 0))]H⊕W .

Define Û : D(Û) ⊆ H ⊕W → H ⊕W by

Û(x, (c1, c2)) = (T1x,B(c1, c2)− Ωx)

=
(
− x′′,B(c1, c2)− (Mx′(a),−Nx′(b))

)
,

D(Û) =
{

(x, (c1, c2)) ∈ D(Û1) | −x(a)
√
M + c1

√
M = 0,

x(b)
√
N − c2

√
N = 0

}
.

This can be rewritten as

Û(x, (x(a), x(b))) =
(
− x′′,B(x(a), x(b))− (Mx′(a),−Nx′(b))

)
,

D(Û) = {(x, (x(a), x(b)) | x ∈ D(T1)} .

Then Û is self-adjoint in H ⊕W by Theorem 3.22.
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This next example will switch the roles of {t1, t2} and {x1, x2} from the pre-

vious example.

Example 4.12. Define t1, t2 ∈ D(T0) by

t1(u) =


√
M(u− a) u near a

0 u near b,

t2(u) =


0 u near a

√
N(u− b) near b.

Claim 4.13. {t1, t2} is a GKN set for T0.

Proof. This claim follows directly from the proof of Claim 4.11. Since t′1(a) =
√
M 6= 0 and t′2(b) =

√
N 6= 0, we have that t1, t2 6∈ D(T0). If αt1 + βt2 ∈ D(T0),

then [f, αt1 + βt2]H = 0 for all f ∈ D(T1). Define f1, f2 ∈ D(T1)\D(T0) by

f1(u) =u,

f2(u) =u2.

Then,

[f1, αt1 + βt2]H =f ′1(a)(αt1(a) + βt2(a))− f ′1(b)(αt1(b) + βt2(b))

+ f1(b)(αt′1(b) + βt′2(b))− f1(a)(αt′1(a) + βt′2(a))

=f1(b)
(
β
√
N
)
− f1(a)

(
α
√
M
)

=bβ
√
N − aα

√
M

and

[f2, αt1 + βt2]H =f ′2(a)(αt1(a) + βt2(a))− f ′2(b)(αt1(b) + βt2(b))

+ f2(b)(αt′1(b) + βt′2(b))− f2(a)(αt′1(a) + βt′2(a))

=f2(b)
(
β
√
N
)
− f2(a)

(
α
√
M
)
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=b2β
√
N − a2α

√
M.

By solving the system of equations

0 =bβ
√
N − aα

√
M,

0 =b2β
√
N − a2α

√
M,

we must have α = 0 and β = 0. Thus, {t1, t2} is linearly independent modulo D(T0).

It now will be shown that 0 = [ti, tj]H for i, j = 1, 2:

[t1, t1]H =t′1(a)t1(a)− t′1(b)t1(b) + t1(b)t
′
1(b)− t1(a)t

′
1(a)

=0,

[t1, t2]H =t′1(a)t2(a)− t′1(b)t2(b) + t1(b)t
′
2(b)− t1(a)t

′
2(a)

=0,

[t2, t2]H =t′2(a)t2(a)− t′2(b)t2(b) + t2(b)t
′
2(b)− t2(a)t

′
2(a)

=0

since t1(a) = t1(b) = t′1(b) = t2(a) = t2(b) = t′2(a) = 0. Therefore, {t1, t2} is a GNK

set for T0 in H.

Now define ∆0 by ∆0 = D(T0) + span{t1, t2}. Then Ψ : ∆0 → W is defined by

Ψ(t0 + c1t1 + c2t2) = c1ξ1 + c2ξ2 =
(
c1
√
M, c2

√
N
)
.

Since , for x ∈ D(T1),

[x, t1]H =x′(a)t1(a)− x′(b)t1(b) + x(b)t
′
1(b)− x(a)t

′
1(a)

=−
√
Mx(a)

and

[x, t2]H =x′(a)t2(a) + x′(b)t2(b) + x(b)t
′
2(b)− x(a)t

′
2(a)

70



=
√
Nx(b),

we can now define Ω by

Ωx =[x, t1]Hξ1 + [x, t2]Hξ2

=−
√
Mx(a)

(√
M, 0

)
+
√
Nx(b)

(
0,
√
N
)

= (−Mx(a), Nx(b)) ,

for x ∈ D(T1).

The symplectic form in H ⊕W is given by

[(x, (c1, c2)), (y, (c
′
1, c
′
2))]H⊕W =[x, y]H − 〈Ωx, (c′1, c′2)〉W + 〈(c1, c2),Ωy〉W

=x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

+ x(a)c′1 − x(b)c′2 − c1y(a)− c2y(b),

for (x, (c1, c2)), (y, (c
′
1, c
′
2)) ∈ H ⊕W .

The minimal operator V̂0 : D(V̂0) ⊆ H ⊕W → H ⊕W is defined by

V̂0(x, (c1, c2)) =(T1x,B(c1, c2))

=(−x′′,B(c1, c2)),

D(V̂0) = {(x,Ψx) | x ∈ ∆0} .

Rewriting this we have

V̂0(x,Ψx) =
(
−x′′,B

(
c1
√
M, c2

√
N
))

.

The maximal operator V̂1 : D(V̂1) ⊆ H ⊕W → H ⊕W is defined by

V̂1(x, (c1, c2)) =(T1x,B(c1, c2)− Ωx)

=
(
− x′′,B(c1, c2)− (−Mx(a), Nx(b))

)
,

D(T̂1) =
{

(x, (c1, c2)) | x1 ∈ D(T1), (c1, c2) ∈ C2
}
.
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Now define x1, x2 ∈ D(T1) by

x1(u) =


√
M u near a

0 u near b,

x2(u) =


0 u near a

√
N u near b.

Claim 4.14. {(x1, (0, 0)), (x2, (0, 0))} is a GKN set for V̂0 in H ⊕W .

Proof. This claim mostly follows from the proof of Claim 4.10. If α(x1, (0, 0)) +

β(x2, (0, 0)) = (αx1βx2, (0, 0)) ∈ D(V̂0), then αx1 + βx2 ∈ D(T0) since Ψ(αx1 +

βx2) = (0, 0). So, for all f ∈ D(T1),

[f, αx1 + βx2]H = 0.

Define f1, f2 ∈ D(T1)\D(T0) by

f1(u) =u,

f2(y) =u2.

Then we have

[f1, αx1 + βx2]H =f ′1(a)(αx1(a) + βx2(a))− f ′1(b)(αx1(b) + βx2(b))

+ f1(b)(αx′1(b) + βx′2(b))− f1(a)(αx′1(a) + βx′2(a))

=f ′1(a)
(
α
√
M
)
− f ′1(b)

(
β
√
N
)

=α
√
M − β

√
N

and

[f2, αx1 + βx2]H =f ′2(a)(αx1(a) + βx2(a))− f ′2(b)(αx1(b) + βx2(b))

+ f2(b)(αx′1(b) + βx′2(b))− f2(a)(αx′1(a) + βx′2(a))
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=f ′2(a)
(
α
√
M
)
− f ′2(b)

(
β
√
N
)

=2aα
√
M − 2bβ

√
N.

So, we have

0 =α
√
M − β

√
N,

0 =2aα
√
M − 2bβ

√
N,

and thus α = 0 and β = 0. Hence, {(x1(0, 0)), (x2, (0, 0))} is linearly independent

modulo D(V̂0).

It now remains to be shown that 0 = [(xi, (0, 0)), (xj, (0, 0))]H⊕W = [xi, xj]H

for i, j = 1, 2:

[x1, x1]H =x′1(a)x1(a)− x′1(b)x1(b) + x1(b)x
′
1(b)− x1(a)x′1(a)

=0,

[x1, x2]H =x′1(a)x2(a)− x′1(b)x2(b) + x1(b)x
′
2(b)− x1(a)x2(a)

=0,

[x2, x2]H =x′2(a)x2(a)− x′2(b)x2(b) + x2(b)x
′
2(b)− x2(a)x′2(a)

=0

since x′1(a) = x′2(a) = x′1(b) = x′2(b) = 0. So {(x1, (0, 0)), (x2, (0, 0))} is a GKN set

for V̂0 in H ⊕W .

For (x, (c1, c2)) ∈ D(V̂1), we have

[(x, (c1, c2)), (x1, (0, 0))]H⊕W =x′(a)x1(a)− x′(b)x1(b) + x(b)x1(b)− x(a)x′1(a)

+ x(a)(0)− x(b)(0)− c1x1(a) + c2x1(b)

=x′(a)
√
M −

√
Mc1

and

[(x, (c1, c2)), (x2, (0, 0))]H⊕W =x′(a)x2(a)− x′(b)x2(b) + x(b)x2(b)− x(a)x′2(a)
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+ x(a)(0)− x(b)(0)− c1x2(a) + c2x2(b)

=− x′(b)
√
N + c2

√
N.

So, if 0 = [(x, (c1, c2)), (x1, (0, 0))]H⊕W = [(x, (c1, c2)), (x2, (0, 0))]H⊕W , then c1 =

x′(a) and c2 = x′(b).

Define V̂ : D(V̂ ) : D(V̂ ) ⊆ H ⊕W → H ⊕W by

V̂ (x, (c1, c2)) =(T1x,B(c1, c2)− Ωx)

=
(
− x′′,B(c1, c2)− (Mx(a), Nx(b))

)
D(V̂ ) =

{
(x, (c1, c2)) ∈ D(V̂1) | x′(a)

√
M − c1

√
M = 0,

−x′(b)
√
N + c2

√
N = 0

}
= {(x, (x′(a), x′(b)) | x ∈ D(T1)} .

The operator V̂ is self-adjoint in H ⊕W by Theorem 3.22.

Example 4.15. In our final two-dimensional extension space, we will construct an

operator that has both x(a) and x′(b) involved in the boundary conditions. This

will be done by combining elements of the GKN sets for D(T0) and D(T̂0) in the

previous example.

Define t1, t2 ∈ D(T1) by

t1(u) =


√
M u near a

0 u near b,

t2(u) =


0 u near a

√
N(u− b) u near b.

Claim 4.16. {t1, t2} is a GKN set for T0.

Proof. Since t1(a) =
√
M 6= 0 and t′1(b) =

√
N 6= 0, t1, t2 6∈ D(T0). If c1t1 + c2t2 ∈

D(T0), then c1t1(a) + c2t2(a) = c1
√
M = 0 and c1t

′
1(b) + c2t

′
2(b) = c2

√
N = 0.
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Therefore, c1 = c2 = 0 and {t1, t2} is linearly independent modulo D(T0). We also

have that

[t1, t1]H =t′1(a)t1(a)− t′1(b)t1(b) + t1(b)t
′
1(b)− t1(a)t

′
1(a) = 0,

[t1, t2]H =t′1(a)t2(a)− t′1(b)t2(b) + t1(b)t
′
2(b)− t1(a)t

′
2(a) = 0,

[t2, t2]H =t′2(a)t2(a)− t′2(b)t2(b) + t2(b)t
′
2(b)− t2(a)t

′
2(a) = 0.

Thus, {t1, t2} is a GKN set for D(T0) in H.

As before, we can define ∆0 by ∆0 = D(T0) + span{t1, t2}, and Ψ : ∆0 → W

is defined by

Ψ(t0 + c1t1 + c2t2) = c1ξ1 + c2ξ2 =
(
c1
√
M, c2

√
N
)

for t0 ∈ D(T0).

Since, for x ∈ D(T1),

[x, t1]H =x′(a)t1(a)− x′(b)t1(b) + x(b)t
′
1(b)− x(a)t

′
1(a)

=
√
Mx′(a)

and

[x, t2]H =x′(a)t2(a)− x′(b)t2(b) + x(b)t
′
2(b)− x(a)t

′
2(a)

=
√
Nx(b),

we can define Ω by

Ωx =[x, t1]Hξ1 + [x, t2]Hξ2

=
√
Mx′(a)

(√
M, 0

)
+
√
Nx(b)

(
0,
√
N
)

= (Mx′(a), Nx(b)) ,

for any x ∈ D(T1).
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The symplectic form in H ⊕W is given by

[(x, (c1, c2)), (y, (c
′
1, c
′
2))]H⊕W =[x, y]H − 〈Ωx, (c′1, c′2)〉W + 〈(c1, c2),Ωy〉W

x′(a)y(a)− x′(b)y(b) + x(b)y′(b)− x(a)y′(a)

− x′(a)c′1 − x(b)c′2 + c1y
′(a) + c2y(b),

for (x, (c1, c2)), (y, (c
′
1, c
′
2)) ∈ H ⊕W .

We will now define Q̂0 and Q̂1, the minimal and maximal operators in H⊕W .

Define the minimal operator Q̂0 : D(Q̂0) ⊆ H ⊕W → H ⊕W by

Q̂0(x, (c1, c2)) = (T1x,B(c1, c2))

=(−x′′,B(c1, c2)),

D(Q̂0) = {(x,Ψx) | x ∈ ∆0} ,

and so Q̂0(x,Ψx) =
(
−x′′,B

(
c1
√
M, c2

√
N
))

. Define the maximal operator Q̂1 :

D(Q̂1) ⊆ H ⊕W → H ⊕W by

Q̂1(x, (c1, c2)) =(T1x,B(c1, c2)− Ωx)

=
(
− x′′,B(c1, c2)− (Mx′(a), Nx(b))

)
,

D(Q̂1) =
{

(x, c1, c2)) | x ∈ D(T1), (c1, c2) ∈ C2
}
.

Now define x1, x2 ∈ D(T1)\D(T0) by

x1(u) =


0 u near a

√
N u near b,

x2(u) =


√
M(u− a) u near a

0 u near b.

Claim 4.17. {(x1, (0, 0)), (x2, (0, 0))} is a GKN set for Q̂0 in H ⊕W .

Proof. It will first be shown that {(x1, (0, 0)), (x2, (0, 0))} is linearly independent
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modulo D(Q̂0). If α(x1, (0, 0)) + β(x2, (0, 0)) = (αx1 + βx2, (0, 0)) ∈ D(Q̂0), then

Ψ(αx1 + βx2) = (0, 0). Hence, αx1 + βx2 ∈ D(T0). So, for any f ∈ D(Q̂0),

[f, αx1 + βx2]H = 0.

Define f1, f2 ∈ D(T0)\D(T0) by

f1(u) = u and f2(u) = u2.

Then

[f1, αx1 + βx2]H =f ′1(a)(αx1(a) + βx2(a))− f ′1(b)(αx1(b) + βx2(b))

+ f1(b)(αx′1(b) + βx′2(b))− f1(a)(αx′1(a) + βx′2(a))

=− f ′1(b)
(
α
√
N
)
− f1(a)

(
β
√
M
)

=− α
√
N − aβ

√
M

and

[f2, αx1 + βx2]H =f ′2(a)(αx1(a) + βx2(a))− f ′2(b)(αx1(b) + βx2(b))

+ f2(b)(αx′1(b) + βx′2(b))− f2(a)(αx′1(a) + βx′2(a))

=− f ′2(b)
(
α
√
N
)
− f2(a)

(
β
√
M
)

=− 2bα
√
N − a2β

√
M,

and so solving the system of equations

0 =− α
√
N − aβ

√
M

0 =− 2bα
√
N − a2β

√
M

yields α, β = 0. Hence, {(x1, (0, 0)), (x2, (0, 0))} is linearly independent modulo

D(Q̂0).

It remains to be shown that [(xi, (0, 0)), (xj, (0, 0))]H⊕W = [xi, xj]H = 0 for

i, j = 1, 2:

[x1, x1]H =x′1(a)x1(a)− x′1(b)x1(b) + x1(b)x
′
1(b)− x1(a)x′1(a) = 0
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[x1, x2]H =x′1(a)x2(a)− x′1(b)x2(b) + x1(b)x
′
2(b)− x1(a)x′2(a) = 0

[x2, x2]H =x′2(a)x2(a)− x′2(b)x2(b) + x2(b)x
′
2(b)− x2(a)x′2(a) = 0.

Therefore, {(x1, (0, 0)), (x2, (0, 0))} is a GKN set for Q̂0.

Note that, for (c1, c2) ∈ C2 and x ∈ D(T1), we have

[(x, (c1, c2)), (x1, (0, 0))]H⊕W =x′(a)x1(a)− x′(b)x1(b) + x(b)x′1(b)− x(a)x′1(a)

− x′(a)(0)− x(b)(0) + c1x
′
1(a) + c2x1(b)

=− x′(b)
√
N + c2

√
N,

and

[(x, (c1, c2)), (x2, (0, 0))]H⊕W =x′(a)x2(a)− x′(b)x2(b) + x(b)x′2(b)− x(a)x′2(a)

− x′(a)(0)− x(b)(0) + c1x
′
2(a) + c2x2(b)

=− x(a)
√
M + c1

√
M.

So, if

[(x, (c1, c2)), (x1, (0, 0))]H⊕W = 0

and

[(x, (c1, c2)), (x2, (0, 0))]H⊕W = 0,

then c1 = x(a) and c2 = x′(b).

Define the operator Q̂ : D(Q̂) ⊆ H ⊕W → H ⊕W by

Q̂(x, (c1, c2)) =(T1x,B(c1, c2)− Ωx)

=
(
− x′′,B(c1, c2)− (Mx′(a), Nx(b))

)
,

D(Q̂) =
{

(x, (c1, c2)) ∈ D(Q̂1) | −x′(b)
√
N + c2

√
N = 0,

−x(a)
√
M + c1

√
M
}
.
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Equivalently,

Q̂(x, (x(a), x′(b))) =
(
− x′′,B(x(a), x′(b))− (Mx′(a), Nx(b))

)
,

D(Q̂) = {(x, (x(a), x′(b))) | x ∈ D(T1)} .

Then, by Theorem 3.22, Q̂ is self-adjoint in H ⊕W .
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CHAPTER FIVE

A Self-Adjoint Operator Generated by the Sixth-Order Krall Differential
Expression in the Extended Space L2[−1, 1]⊕ C2 with the Krall Polynomials as

Eigenfunctions

In this chapter, we will construct a self-adjoint operator generated by the

sixth-order Krall differential expression in the extended space L2[−1, 1]⊕C2 having

the Krall polynomials as eigenfunctions. We will do so by applying the extended

GKN-EM Theorem developed in Chapter Three to the sixth-order Krall differential

expression.

5.1 The Extension Space

Let the extension space be W = C2 and define the inner product 〈·, ·〉W by

〈(a, b), (a′, b′)〉W :=
aa′

A
+
bb
′

B
,

where A and B are as in (2.1). Now define ξ1 = (
√
A, 0) and ξ2 = (0,

√
B). Then

{ξ1, ξ2} is an orthonormal basis for W .

Every self-adjoint operator B : W → W has the form

B =

 δ β

−βB
A

γ

 ,

where δ, γ ∈ R and β ∈ C.

The inner product in the extended space H ⊕W is now given by

〈(f, (a1, b1)), (g, (a2, b2))〉H⊕W = 〈f, g〉H + 〈(a1, b1), (a2, b2)〉W .

5.2 A Partial GKN Set for T0

Define P = {t1, t2} ⊆ C6[−1, 1] where

t1(x) =


√
A x near − 1

0 x near 1
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and

t2(x) =


0 x near − 1

√
B x near 1

are each real-valued and in ∆.

Lemma 5.1. P is a partial GKN set for T0.

Proof. It will first be shown that P is linearly independent modulo D(T0).

Let f ∈ ∆, where ∆ is defined in (2.4), and c1, c2 ∈ C. Then

[f, c1t1 + c2t2]H =c1[f, t1]H + c2[f, t2]H

=− c1
√
A (Λ′[f ](−1)− π(−1)f ′(−1))

+ c2
√
B (Λ′[f ](1)− π(1)f ′(1)) ,

where π(x) is defined as in (2.6), [·, ·]H := [·, ·] as given in (2.5), and Λ[·] is given in

(2.14). Now define f1, f2 ∈ ∆ by, f1, f2 ⊂ C6[−1, 1]

f1(x) =


0 x near − 1

x near 1

and

f2(x) =


x near − 1

0 near 1

and both are real-valued.

Then we have

[f1, c1t1 + c2t2]H =− c1
√
A (Λ′[f1](−1)− π(−1)f ′1(−1))

+ c2
√
B (Λ′[f1](1)− π(1)f ′1(1))

=c2
√
Bπ(1)

=c2
√
B (24A+ 24AB + 24)
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and

[f2, c1t1 + c2t2]H =− c1
√
A (Λ′[f2](−1)− π(−1)f ′2(−1))

+ c2
√
B (Λ′[f2](1)− π(1)f ′2(1))

=c1
√
Aπ(−1)

=c1
√
A (24B + 24) .

Solving the system of equations

[f1, c1t1 + c2t2]H =0

[f2, c1t1 + c2t2]H =0

yields c1 = 0 and c2 = 0. Therefore, P = {t1, t2} is linearly independent modulo

D(T0).

It remains to be shown that [t1, t1]H = [t1, t2]H = [t2, t2]H = 0:

[t1, t1]H =[t1, t1](1)− [t1, t1](−1)

=
√
A[t1, 1](1)−

√
A[t1, 1](−1)

=0−
√
A (Λ′[t1](−1)− π(−1)t′1(−1))

=0;

[t1, t2]H =[t1, t2](1)− [t1, t2](−1)

=
√
B[t1, 1](1)−

√
B[t1, 1](−1)

=0−
√
B (Λ′[t1](−1)− π(−1)t′1(−1))

=0;

[t2, t2]H =[t2, t2](1)− [t2, t2](−1)

=
√
B[t2, 1](1)−

√
B[t2, 1](−1)

=
√
B (Λ′[t2](1)− π(1)t′2(1))− 0

=0

82



by the properties of ∆ stated in Theorem 2.1. Thus, P = {t1, t2} is a partial GKN

set for T0.

Now that we have a partial GKN set for T0, we can define ∆0, Ψ, and Ω as

follows: define ∆0 by ∆0 := D(T0) + span{t1, t2}, define Ψ : ∆0 → W by

Ψ(f0 + α1t1 + α2t2) = α1ξ1 + α2ξ2

=
(
α1

√
A,α2

√
B
)
,

where f0 ∈ D(T0), and define Ω : ∆→ W by

Ωf = [f, t1]Hξ1 + [f, t2]Hξ2

= −
√
A[f, 1](−1)ξ1 +

√
B[f, 1](1)ξ2

= (−A[f, 1](−1), B[f, 1](1)) .

5.3 The Maximal and Minimal Operators in the Extended Space H ⊕W

Note that Theorem 3.22 gives a one-parameter family of self-adjoint operators.

By fixing the operator B, we will be working with one specific self-adjoint operator,

namely the self-adjoint operator that has the Krall polynomials as eigenfunctions.

A computation involving the Krall polynomials show that B = 0. Then the

minimal operator in H ⊕W , T̂0 : D(T̂0) ⊆ H ⊕W → H ⊕W , is defined by

T̂0 (f, (a, b)) = (T1f, 0)

D(T̂0) = {(f,Ψf) | f ∈ ∆0} .

So, we can write T̂0 as T̂0(f,Ψf) = (T1f, 0).

The maximal operator in H ⊕W , T̂1 : D(T̂1) ⊆ H ⊕W → H ⊕W , is defined

by

T̂1 (f, (a, b)) = (T1f,−Ωf)

D(T̂1) = {(f, (a, b)) | f ∈ ∆, (a, b) ∈ W}.

Therefore, T̂1 (f, (a, b)) =
(
T1f, (−A[f, 1](−1),−B[f, 1](1))

)
.
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The symplectic form [·, ·]H⊕W is given by

[(f, (a1, b1)), (g, (a2, b2))]H⊕W = [f, g]H − 〈Ωf, (a2, b2)〉W + 〈(a1, b1),Ωg〉W

for (f, (a1, b1)), (g, (a2, b2)) ∈ D
(
T̂1

)
.

5.4 A GKN Set for T̂0 in H ⊕W

Define y1, y2, y3, y4 ⊆ C6[−1, 1] to be real-valued such that

y1(x) =


0 x near − 1

(1− x2)2 x near 1,

y2(x) =


(1− x2)2 x near − 1

0 x near 1,

y3(x) =


0 x near − 1

1− x2 x near 1,

y4(x) =


1− x2 x near − 1

0 x near 1.

(5.1)

Then each yi ∈ ∆.

Remark 5.2. Note that, by parts (v) and (vi) of Theorem 2.1, we have, for f ∈ ∆,

[f, y1]H = [f, (1− x2)2](1) = 192f(1)

[f, y2]H = −[f, (1− x2)2](−1) = 192f(−1)

[f, y3]H = [f, 1− x2](1) = 2Λ[f ](1)− 48(A+ 2)f(1)

[f, y4]H = −[f, 1− x2](−1) = 2Λ[f ](−1)− 48(B + 2)f(−1).

Lemma 5.3. {yi, (0, 0))}4i=1 is a GKN set for T̂0 in H ⊕W .

Proof. It will first be shown that {yi, (0, 0))}4i=1 is linearly independent modulo

D(T̂0). Since [(yi, (0, 0)), (yj, (0, 0))]H⊕W = [yi, yj]H for i, j = 1, 2, 3, 4, it is suffi-

cient to show that {yi}4i=1 is linearly independent modulo D(T0).
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Let f ∈ ∆ and c1, c2, c3, c4 ∈ C. Then

[f, c1y1 + c2y2 + c3y3 + c4y4]H =c1[f, y1]H + c2[f, y2]H + c3[f, y3]H + c4[f, y4]H

=192c1f(1) + 192c2f(−1)

+ c3 (2Λ[f ](1)− 48(A+ 2)f(1))

+ c4 (2Λ[f ](−1)− 48(B + 2)f(−1)) .

Define f1, f2 ⊂ C6[−1, 1] to be real-valued such that

f1(x) =


1 x near − 1

0 x near 1,

f2(x) =


0 x near − 1

1 x near 1.

Then each fi ∈ ∆ and

[f1, c1y1 + c2y2 + c3y3 + c4y4]H = 192c2 − 48(B + 2)c4

and

[f2, c1y1 + c2y2 + c3y3 + c4y4]H = 192c1 − 48(A+ 2)c3.

Now define h±(x) as in Theorem 2.1 (vii) by

h+(x) =


0 x near − 1

1
8
(A+ 2)(1− x2)2 ln(1− x2) + 1

2
(1− x2) ln(1− x2) x near 1,

h−(x) =


1
8
(B + 2)(1− x2)2 ln(1− x2) + 1

2
(1− x2) ln(1− x2) x near − 1

0 x near 1.

By Theorem 2.1 part (vii), h± ∈ ∆. Note that near x = 1,

h′+(x) = ln(1− x2)
(
−1

2
(A+ 2)x(1− x2)− x

)
− 1

4
(A+ 2)x(1− x2)− x
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and

h′′+(x) =(A+ 2)x2 +
2x2

1− x2
+ ln(1− x2)

(
−1

2
(A+ 2)(1− 3x2)− 1

)
− 1

4
(A+ 2)(1− 3x2)− 1.

So, near x = 1, we have

Λ[h+](x) =−
((

1− x2
)3
h
(3)
+ (x)

)′
+
(
1− x2

) (
12 + α

(
1− x2

))
h′′+(x)

=(12 + α(1− x2))

(
(1− x2)(A+ 2)x2 + 2x2

+ (1− x2) ln(1− x2)
(
−1

2
(A+ 2)(1− 3x2)− 1

)
− 1

4
(1− x2)(A+ 2)(1− 3x2)− (1− x2)

)
,

so Λ[h+](1) = 24 and

[h+, c1y1 + c2y2 + c3y3 + c4y4]H = 48c3.

Likewise, near x = −1, we have

h′−(x) = ln(1− x2)
(
−1

2
(B + 2)x(1− x2)− x

)
− 1

4
(B + 2)x(1− x2)− x

and

h′′−(x) =(B + 2)x2 +
2x2

1− x2
+ ln(1− x2)

(
−1

2
(B + 2)(1− 3x2)− 1

)
− 1

4
(B + 2)(1− 3x2)− 1.

So,

Λ[h−](x) =−
((

1− x2
)3
h
(3)
− (x)

)′
+
(
1− x2

) (
12 + α

(
1− x2

))
h′′−(x)

=(12 + α(1− x2))

(
(1− x2)(B + 2)x2 + 2x2

+ (1− x2) ln(1− x2)
(
−1

2
(B + 2)(1− 3x2)− 1

)
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− 1

4
(1− x2)(B + 2)(1− 3x2)− (1− x2)

)
near x = −1, so Λ[h−](−1) = 24, and

[h−, c1y1 + c2y2 + c3y3 + c4y4]H = 48c4.

By solving the system of equations

[f1, c1y1 + c2y2 + c3y3 + c4y4]H = 0

[f2, c1y1 + c2y2 + c3y3 + c4y4]H = 0

[h+, c1y1 + c2y2 + c3y3 + c4y4]H = 0

[h−, c1y1 + c2y2 + c3y3 + c4y4]H = 0,

or equivalently,

0 = 192c2 − 48(B + 2)c4

0 = 192c1 − 48(A+ 2)c3

0 = 48c3

0 = 48c4,

we have c1 = c2 = c3 = c4 = 0. Therefore, {yi}4i=1 is linearly independent modulo

D(T0) and {yi, (0, 0))}4i=1 is linearly independent modulo D(T̂0).

Now it will be shown that [(yi, (0, 0)), (yj, (0, 0))]H⊕W = [yi, yj]H = 0 for i, j =

1, 2, 3, 4. Using Remark 5.2, we have

[y1, y1]H = 192y1(1)

= 0,

[y1, y2]H = 192y1(−1)

= 0,

[y1, y3]H = −[y3, y1]H
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= −192y3(1)

= 0,

[y1, y4]H = −[y4, y1]H

= −192y4(1)

= 0,

[y2, y2]H = 192y2(−1)

= 0,

[y2, y3]H = −[y3, y2]H

= −192y3(−1)

= 0,

[y2, y4]H = −[y4, y2]H

= −192y4(−1)

= 0,

[y3, y3]H = 2Λ[y3](1)− 48(A+ 2)y3(1)

= 0,

[y3, y4]H = 2Λ[y3](−1)− 48(B + 2)y3(−1)

= 0,

[y4, y4]H = 2Λ[y4](−1)− 48(B + 2)y4(−1)

= 0.

Thus, {(yi, (0, 0))}4i=1 is a GKN set for T̂0.

Now recall the functions e± defined in (2.15) and (2.16) as

e+(x) =


0 x near − 1

1
2
(1− x2) + 1

8
(A+ 2)(1− x2)2 x near 1
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and

e−(x) =


−1

2
(1− x2)− 1

8
(B + 2)(1− x2)2 x near − 1

0 x near 1.

Note that e+ and e− are linear combinations of y1, y2, y3, and y4, so e+, e− ∈ ∆

and [f, yi]H = 0 ⇐⇒ [f, e+]H = [f, e−]H = 0 for f ∈ ∆.

In fact, we define

δ := {f ∈ ∆ | [f, e+](1) = [f, e−](−1) = 0}. (5.2)

Then, by part (vi) of Theorem 2.3, for f ∈ δ, we have

[f, 1](1) = −24f ′′(1)− 24(A+ 1)f ′(1)

and

[f, 1](−1) = 24f ′′(−1)− 24(B + 1)f ′(−1).

So, for f ∈ δ,

Ωf = (−A[f, 1](−1), B[f, 1](1))

=
(
− 24Af ′′(−1) + 24(AB + A)f ′(−1),−24Bf ′′(1)− 24(AB +B)f ′(1)

)
.

Also note that

Ωe+ =[e+, t1]Hξ1 + [e+, t2]Hξ2

=
1

2
[1− x2, t1](1)ξ1 +

1

8
(A+ 2)[(1− x2)2, t1](1)ξ1

+
1

2
[1− x2, t2](1)ξ2 +

1

8
(A+ 2)[(1− x2)2, t2](1)ξ2

=

(
1

2
A[1− x2, 1](1) +

1

8
(AB + 2B)[(1− x2)2, 1](1),

1

2
B[1− x2, 1](1) +

1

8
(AB + 2B)[(1− x2)2, 1](1)

)
=

(
24A+ 24A2 + 24A+

1

8
(A2 + 2A)(−192),
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24B + 24(AB +B) +
1

8
(AB + 2B)(−192)

)
=(0, 0).

Likewise,

Ωe− =[e−, t1]Hξ1 + [e−, t2]Hξ2

=
1

2
[1− x2, t1](−1)ξ1 +

1

8
(B + 2)[(1− x2)2, t1](−1)ξ1

+
1

2
[1− x2, t2](−1)ξ2 +

1

8
(B + 2)[(1− x2)2, t2](−1)ξ2

=

(
1

2
A[1− x2, 1](−1) +

1

8
A(B + 2)[(1− x2)2, 1](−1),

1

2
B[1− x2, 1](−1) +

1

8
B(B + 2)[(1− x2)2, 1](−1)

)
= (−24AB − 48A+ 24AB + 48A,−24AB − 48B + 24AB + 48B)

=(0, 0).

Note that by Remark 5.2, Ωy1 = (0,−192B) and Ωy2 = (−192A, 0). So, if f ∈ δ, or

equivalently [f, (a, b)), (yi, (0, 0))]H⊕W = [f, yi]H = 0 for i = 1, 2, 3, 4, then

0 =[(f, (a, b)), (y1, (0, 0))]H⊕W

=[f, y1]H − 〈Ωf, (0, 0)〉W + 〈(a, b),Ωy1〉W

=192f(1)− 192Bb

B

=192f(1)− 192b,

and b = f(1).

Similarly, if f ∈ δ, then

0 =[(f, (a, b)), (y2, (0, 0))]H⊕W

=[f, y2]H − 〈Ωf, (0, 0)〉W + 〈(a, b),Ωy2〉W

=192f(−1)− 192Aa

A

=192f(−1)− 192a,

and a = f(−1).
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5.5 A Self-Adjoint Operator in H ⊕W

We are now in a position to define a self-adjoint operator in the extended space

H ⊕W = L2(−1, 1)⊕ C2. Define T̂ : D(T̂ ) ⊆ H ⊕W → H ⊕W by

T̂ (f, (a, b)) = (T1f,−Ωf)

=

(
T1f,

(
24Af ′′(−1)− 24(AB + A)f ′(−1),

24Bf ′′(1) + 24(AB +B)f ′(1)
))

,

D(T̂ ) =

{
(f, (a, b)) ∈ D

(
T̂1

)
| [(f, (a, b)), (yj, (0, 0))]H⊕W = 0,

(j = 1, 2, 3, 4)

}
.

Then T̂ is self-adjoint in H ⊕W by Theorem 3.22.

From the above calculations, namely a = f(−1) and b = f(1), the form and

domain of T̂ simplify to:

T̂
(
f, (f(−1), f(1))

)
=

(
T1f,

(
24Af ′′(−1)− 24(AB + A)f ′(−1),

24Bf ′′(1) + 24(AB +B)f ′(1)
))

D(T̂ ) =
{(
f, (f(−1), f(1))

)
| f ∈ δ

}
.

Note that the definition of the domain of T̂ shows that the boundary conditions

force continuity at the endpoints x = ±1.

5.6 The Krall Polynomials as Eigenfunctions

Recall that the Krall polynomials {Pn}∞n=0, as defined in (2.3) are given by

Kn(x) =
n∑
j=0

(−1)b
j
2c(2n− j)!Q(n, j)xn−j

2n+1(n−
⌊
j+1
2

⌋
)!
⌊
j
2

⌋
!(n− j)!(n2 + n+ A+B)

,

where

Q(n, j) =
2 + (−1)j

2

(
(n4 + (2A+ 2B − 1)n2 + 4AB) + 2j(n2 + n+ A+B)

)
+

1− (−1)j

2
(4B − 4A).
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We will show that the Krall polynomials are actually eigenfunctions of T̂ . Note

that {Kn}∞n=0 satisfy `[Kn] = λKn. Also,

`[Kn](1) = 24BK ′′n(1) + (24AB + 24B)K ′n(1)

and

`[Kn](−1) = 24AK ′′n(−1) + (24AB − 24A)K ′n(−1).

So,

[Kn, 1](1) =Λ′[Kn](1)− π(1)K ′n(1)

=− 24K ′′(1)− (24A+ 24)K ′(1),

and

[Kn, 1](−1) =Λ′[Kn](−1)− π(−1)K ′n(−1)

=24K ′′n(−1)− (24B + 24)K ′n(−1).

Then we have

−B[Kn, 1](1) = `[Kn](1)

and

A[Kn, 1](−1) = `[Kn](−1).

Also note that

[Kn, e+]H =[Kn, e+](1)

=
1

2
[Kn, 1− x2](1) +

1

8
(A+ 2)[Kn, (1− x2)2](1)

=
1

2
(2Λ[Kn](1)− 48(A+ 2)Kn(1)) +

1

8
(A+ 2)(192)Kn(1)

=− 24(A+ 2)K(1) + 24(A+ 2)Kn(1)

=0

and

[Kn, e−]H =− [Kn, e−](−1)
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=
1

2
[Kn, 1− x2](−1) +

1

8
(B + 2)[Kn, (1− x2)2](−1)

=
1

2
(2Λ[Kn](−1)− 48(B + 2)Kn(−1)) +

1

8
(B + 2)(192)Kn(−1)

=− 24(B + 2)Kn(−1) + 24(B + 2)Kn(−1)

=0.

Thus, {Kn}∞n=0 ⊂ δ and
{(
Kn, (Kn(−1), Kn(1))

)}∞
n=0
⊂ D(T̂ ). Then

T̂
(
Kn, (Kn(−1), Kn(1))

)
=
(
T1Kn, (24AK ′′n(−1)− 24(AB + A)K ′n(−1),

24BK ′′n(1) + 24(AB +B)K ′n(1))
)

=
(
`[Kn], (`[Kn](−1), `[Kn](1))

)
=λ
(
Kn, (Kn(−1), Kn(1))

)
.

Therefore, {Kn}∞n=0 are eigenfunctions of T̂ .

5.7 Another Self-Adjoint Operator Generated by the Sixth-Order Krall Differential
Expression

We construct another self-adjoint operator generated by the sixth-order Krall

differential expression in H ⊕W = L2(−1, 1) ⊕ C2 by selecting an different partial

GKN set for T0. We keep everything independent of the original GKN set the

same, especially the GKN set for T̂0: {(yi, (0, 0))}4i=1. This allows us to still use the

properties of δ provided in Theorem 2.3.

Define Q = {t1, t2} where

t1(x) =


0 x near − 1

x− 1 x near 1

and

t2(x) =


x+ 1 x near − 1

0 x near 1.
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Note that for f ∈ ∆,

[f, t1]H =[f, t1](1)

=[f, x− 1](1)

=[f, x](1)− [f, 1](1)

=− [x, 1](1)f(1)− Λ[f ](1)

=− (Λ′[x](1)− π(1)) f(1)− Λ[f ](1)

=π(1)f(1)− Λ[f ](1)

= (−6A− 6B − 12AB + 12A− 12B + 12AB + 18A+ 18B + 24) f(1)

− Λ[f ](1)

=24(A+ 1)f(1)− Λ[f ](1)

and

[f, t2]H =− [f, t2](−1)

=− [f, x+ 1](−1)

=− [f, x](−1)− [f, 1](−1)

=[x, 1](−1)f(−1) + Λ[f ](−1)

= (Λ′[x](−1)− π(−1)) f(−1) + Λ[f ](−1)

=− π(−1)f(−1) + Λ[f ](−1)

=− (−6A− 6B − 12AB − 12A+ 12B + 12AB + 18A+ 18B + 24) f(−1)

+ Λ[f ](−1)

=− 24(B + 1) + Λ[f ](−1).

Claim 5.4. Q = {t1, t2} is a partial GKN set for T0.

Proof. Let f ∈ ∆ and c1, c2 ∈ C. Then

[f, c1t1 + c2t2]H =c1[f, t1]H + c2[f, t2]H
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=c1 (24(A+ 1)f(1)− Λ[f ](1))− c2 (24(B + 1)f(−1) + Λ[f ](−1)) .

Now define f1, f2 ∈ ∆ by

f1(x) =


0 x near − 1

x x near 1,

f2(x) =


x x near − 1

0 x near 1.

Then [f1, c1t1 + c2t2]H = 24c1(A+ 1) and [f2, c1t1 + c2t2]H = 24c2(B+ 1). Therefore,

if [f1, c1t1 + c2t2]H = [f2, c1t1 + c2t2]H = 0, then c1 = c2 = 0. Thus, Q is linearly

independent modulo D(T0).

Since

[t1, t1]H =24(A+ 1)t1(1)− Λ[t1](1)

=0

[t1, t2]H =− 24(B + 1)t1(−1) + Λ[t1](−1)

=0

[t2, t2]H =− 24(B + 1)t2(−1) + Λ[t2](−1)

=0,

Q is a partial GKN set for T0.

Since ξ1 =
(√

A, 0
)

, ξ2 =
(

0,
√
B
)

, and ∆0 = D(T0) + span{t1, t2}, we can

define Ω : D(T1)→ W by

Ωf =[f, t1]Hξ1 + [f, t2]Hξ2

=
(√

A(24(A+ 1)f(1)− Λ[f ](1)),
√
B(−24(B + 1)f(−1) + Λ[f ](−1))

)
.

Once again, we choose the self-adjoint operator in W to be B = 0 and define {yi}4i=1

as in (5.1). Then Ŝ0 : D(Ŝ0) ⊆ H ⊕W → H ⊕W , the minimal operator in H ⊕W ,
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is defined by

Ŝ0(f, (a, b)) =(T1f, 0)

D(Ŝ0) = {(f,Ψf) | f ∈ ∆} .

Hence, Ŝ0(f,Ψf) = (T1f, 0).

The maximal operator in H ⊕W , Ŝ1 ⊆ H ⊕W → H ⊕W , is defined by

Ŝ1(f, (a, b)) = (T1f,−Ωf)

=
(
T1f,

(
−
√
A(24(A+ 1)f(1)− Λ[f ](1)),

−
√
B(−24(B + 1)f(−1) + Λ[f ](−1))

))
D(Ŝ1) = {(f, (a, b)) | f ∈ D(T1), (a, b) ∈ W} .

Note that Ωyi = 0 for i = 1, 2, 3, 4 and {yi, (0, 0))}4i=1 is a GKN set for Ŝ0 by Lemma

5.3 . So, for f ∈ δ,

[(f, (a, b)), (y1, (0, 0))]H⊕W =[f, y1]H − 〈Ωf, (0, 0)〉W + 〈(a, b),Ωy1〉W

=[f, y1]H

=192f(1)

by Theorem 2.3. Since [(f, (a, b)), (y1, (0, 0))]H⊕W = 0, we must have f(1) = 0.

Likewise,

[(f, (a, b)), (y2, (0, 0))]H⊕W =[f, y2]H − 〈Ωf, (0, 0)〉W + 〈(a, b),Ωy2〉W

=[f, y2]H

=192f(−1).

Therefore, f(−1) = 0 since [(f, (a, b)), (y2, (0, 0))]H⊕W = 0.

Then Ŝ : D(Ŝ) ⊆ H ⊕W → H ⊕W defined by

Ŝ(f, (a, b)) =
(
T1f,

(√
AΛ[f ](1),−

√
BΛ[f ](−1)

))
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D(Ŝ) =
{

(f, (a, b)) ∈ D
(
Ŝ1

)
| f ∈ δ, f(−1) = f(1) = 0

}
is self-adjoint in H ⊕W by Theorem 3.22. So, we have found another self-adjoint

operator generated by the sixth-order Krall differential expression in the extended

Hilbert space L2[−1, 1]⊕ C2.
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CHAPTER SIX

Conclusion

In Chapter Four, we applied the GKN-EM Theorem in H ⊕W to find various

self-adjoint operators in extended Hilbert spaces. This demonstrates the power of

this extended GKN Theorem. In order to find these self-adjoint operators, it was

necessary to appropriately define the functions Ω and Ψ. We also needed to choose

adequate GKN sets for both T0 in the base space and for T̂0 in the extension space.

Note that the GKN-EM Theorem in H ⊕W results in a one-parameter family of

self-adjoint operators, where the parameter is the self-adjoint operator B : W → W .

In this dissertation, we always chose a specific self-adjoint operator B in order to

obtain a self-adjoint operator with certain desired properties.

In Chapter Two and Chapter Five, we studied the Krall differential expres-

sion in a weighted L2 space where the weight had jumps at both endpoints. This

differential expression has the Krall orthogonal polynomials as eigenfunctions in the

weighted L2 space. We found that, in an extended Hilbert space, the self-adjoint

operator generated by the sixth-order Krall differential expression in the extended

Hilbert space L2[−1, 1]⊕ C2 is given by

T̂
(
f, (f(−1), f(1))

)
=

(
T1f,

(
24Af ′′(−1)− 24(AB + A)f ′(−1),

24Bf ′′(1) + 24(AB +B)f ′(1)
))

D(T̂ ) =
{(
f, (f(−1), f(1))

)
| f ∈ δ

}
,

where T1 is the maximal operator generated by the Krall differential expression in

L2[−1, 1] and δ is the domain of the self-adjoint operator in L2
µ[−1, 1] generated by

this expression. We also found a second self-adjoint operator in L2[−1, 1] ⊕ C2 by

changing the GKN set for T0. For both of these self-adjoint operators, we chose
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B = 0 for the self-adjoint operator in the extension space C2. Since the GKN-EM

Theorem in H⊕W yields a one-family parameter of self-adjoint operators, choosing

any other self-adjoint operator B would have yielded another self-adjoint operator

in L2[−1, 1]⊕ C2.

This Krall differential expression is a special case of differential operators with

the following inner product:

(f, g) = M1f(0)g(0) +M2f
′(0)g′(0) +

∫ ∞
0

f(x)g(x)w(x) dx.

By placing restrictions on the coefficients M1 and M2, we obtain four different dif-

ferential expressions.

When M1 = M2 = 0, then the resulting differential expression is a second-

order expression. In fact, we have the classical second-order Laguerre differential

expression in the space L2((0,∞);xαe−x) defined by

`[y](x) :=
1

xαe−x
(
−(xα+1e−xy′(x))′ + kxαe−xy(x)

)
for x ∈ (0,∞). This self-adjoint operator generated by the Laguerre differential

expression in L2((0,∞);xαe−x) has the Laguerre orthogonal polynomials as eigen-

functions.

When M1 > 0 and M2 = 0, and the interval is (−1, 1) instead of (0,∞),

the resulting differential expression is the fourth-order Laguerre-type differential

expression given by

`[y](x) :=
((

1− x2
)2
y′′(x)

)′′
−
(
8 + 4A(1− x2)y′(x)

)′
+ ky(x),

where k ≥ 0 is a fixed parameter and x ∈ (−1, 1). The associated inner product is

given by

(f, g) =
f(1)g(1)

2
+
A

2

∫ 1

−1
f(x)g(x) dx+

f(−1)g(−1)

2
.

In fact, the self-adjoint operator generated by the fourth-order Laguerre-type differ-

ential expression has the Laguerre-type orthogonal polynomials as eigenfunctions.
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As noted above, the Krall sixth-order differential expression is a special case

of this situation. With the Laguerre-type differential expression, the jumps at both

endpoints are 1
2
. However, by choosing jumps at the endpoints that are not equal,

we obtain a sixth-order differential expression: the Krall differential expression.

The case where M1 = 0 and M2 > 0 results in an eighth-order differential

expression. Note that this is the first case where we have a jump in the derivative

at the endpoints, rather than a jump in the function.

When we have M1,M2 > 0, we obtain a tenth-order Laguerre-Sobolev differ-

ential expression. It is this expression that we will work with in the future. We hope

to find a self-adjoint operator generated by this differential operator in an extended

Hilbert space. To do so, we must use the GKN-EM Theorem in H⊕W . This entails

choosing suitable GKN sets for the minimal operators generated by this differential

expression in the the base space and in the extended space. Note that the self-adjoint

operator found in Chapter Five relied on analysis that had been done by Loveland

on the self-adjoint operator in L2
µ[−1, 1]. Similar analysis in the base space must be

done for this expression before we can analyze it in an extended space.

100



BIBLIOGRAPHY

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert space,
Parts I and II, Scottish Academic Press, Pitman Advanced Publishing Pro-
gram, London, U.K. 1981.
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