
ABSTRACT

On Quasi-dominant Weights and Hilbert Series of Determinantal Varieties

Jordan Alexander, Ph.D.

Chairperson: Markus Hunziker, Ph.D.

The coordinate rings of the classical determinantal varieties are each isomor-

phic to a classical invariant ring by Weyl’s fundamental theorems of invariant the-

ory. Since these rings are Cohen-Macaulay, their Hilbert series are rational functions

whose numerator polynomials have nonnegative integer coefficients. In the case of

general determinantal varieties, as well as in the case of symmetric determinantal

varieties, these numerator polynomials were shown to be equal to the Hilbert se-

ries of certain finite-dimensional highest weight modules and were given an explicit

combinatorial description. The current work extends these results to the alternating

determinantal varieties.

The proof of these results, in all three cases, relies on the fact that the coordi-

nate rings of the determinantal varieties carry the structure of a Wallach represen-

tation. The Hilbert series of the Wallach representation is a rational function whose

numerator polynomial is given by the Hilbert series of a finite-dimensional highest

weight module, and the Hilbert series of the determinantal variety is equal to the

Hilbert series of the Wallach representation. T. J. Enright and J. F. Willenbring

introduced the more general class of quasi-dominant weights and showed that if L is

a unitarizable highest weight module with quasi-dominant highest weight, then the



Hilbert series of L is of the form

HL(t) = R ·
HE(t)

(1− t)D
,

where R is a rational number, E is a finite-dimensional highest weight module, and

D is the Gelfand-Kirillov dimension of L. The set of quasi-dominant weights has an

interesting characterization in terms of parabolic category O and Kostant’s minimal

length coset representatives. We give a new characterization in terms of associated

varieties and show that the subset of quasi-dominant weights whose highest weight

modules occur in the setting of Howe dual pairs has a nice description in terms of

the highest weights of the “Howe dual” representations. Finally, we give some new

results on the number of quasi-dominant reduction points.
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CHAPTER ONE

Introduction

1.1 Hilbert Series and Resolutions

Hilbert’s famous papers of 1888-1893 changed the course of modern algebra

and invariant theory and set the stage for the development of modern algebraic

geometry. They established the finite generation of the invariant ring for a wide

class of groups by an existential proof, which was the first proof of its type. They

also provided a correspondence between the radical ideals of a polynomial ring over

an algebraically closed field K and the algebraic sets (or varieties) of affine n-space

over K. Two other landmark results in these papers, both motivated by invariant

theory, involve constructions that play an important role in the present work.

Let S be the polynomial ring K[x1, . . . , xn]. Given a finitely generated graded

S-module M =
⊕

i∈Z Mi, the function hM(i) = dimMi is called the Hilbert function

of M . The finite generation of M ensures that these dimensions are finite. Hilbert

showed that for large i the Hilbert function agrees with a ploynomial function of

degree ≤ n+ 1. The Hilbert series of M ,

HM(t) =
∑

i∈N

(dimMi)t
i.

gives the graded structure of M as a vector space. In representation theory, it serves

as a coarse invariant of highest weight modules. Both the Hilbert function and the

Hilbert series of M can be calculated by comparing M with free modules, which

leads us to another important object of study. A finite graded free resolution of a

finitely generated graded S-module M is an exact squence

0 → Fm → Fm−1 → · · · → F1 → F0 → M → 0
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of graded free modules with maps that take the d-th homogeneous component of

a module to the d-th homogeneous component of the next module. Hilbert’s other

result that plays a large role in what follows is his syzygy theorem, which asserts

the existence of such a resolution for every finitely generated graded S-module. As

a result, HM(t) can be found by computing
∑m

j=0 (−1)jHFj
(t).

1.2 Determinantal Varieties

Let (GR, KR) be an irreducible Hermitian symmetric pair, and denote the

corresponding complexified Lie algebras by (g, k). Then g has Cartan decomposition

k⊕ p, and g = p− ⊕ k⊕ p+ as a k-module. The closures of the K-orbits on p+ form

a chain of varieties

{0} = Y0 ⊂ Y1 ⊂ · · · ⊂ Yr = p+,

where r is the rank of the Hermitian symmetric space GR/KR. In the case of the

classical Hermitian symmetric pairs, the varieties Yk are the classical determinantal

varieties in the space Mp,q of general complex p × q matrices, the space Symn of

symmetric n×n matrices, and the space Altn of skew-symmetric (alternating) n×n

matrices, as displayed in Table 1.1.

Table 1.1. The classical determinantal varieties

K Yk r

S(GLp ×GLq) {x ∈ Mp,q | rk(x) ≤ k} min{p, q}

GLn {x ∈ Symn | rk(x) ≤ k} n

GLn {x ∈ Altn | rk(x) ≤ 2k} ⌊n
2
⌋

The coordinate rings C[Yk] turn out to be isomorphic to a classical invariant

ring by an argument involving Weyl’s fundamental theorems. Roger Howe observed

that these invariant rings carry the structure of the k-th Wallach representation

L = L(−kCζ), which is a unitary highest weight module. By a result of Hochster and
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Roberts [19], the modules L(−kCζ) are graded Cohen-Macaulay algebras generated

by elements in degree one, so their Hilbert series can be written as a rational function

whose numerator has positive integer coefficients and whose denominator has a pole

of order equal to the Krull dimension of L. In fact, they are of the form:

HL(t) =
HE(t)

(1− t)D
,

where E is a finite-dimensional simple highest weight module of a reduced Hermitian

symmetric pair related to L and D is the Gelfand-Kirllov dimension of L. The

correspondence between the families L and E in this context is referred to as the

Wonderful Correspondence. Special cases of the Wonderful Correspondence were

discovered by Enright and Willenbring for general and symmetric determinantal

varieties [13], and their results were extended by Enright and Hunziker [8]. This

result is new in the skew-symmetric determinantal variety case.

1.3 Quasi-dominant Weights

For the more general setting in which the highest weight of L is allowed to be

any quasi-dominant weight, a result called the Transfer Theorem gives the Hilbert

series of L in the same form as in the Wonderful Correspondence case, except that

the numerator polynomial is multiplied by a rational number [13], [8] (cf. [10]). The

key ingredient in the proof of this result is a comparison of the finite graded free

resolutions of L and E, which have equal length. The existence of these resolutions

is guaranteed by the Hilbert Syzygy Theorem, and their explicit description comes

from Enright’s results on the Lie algebra cohomology of p+ [7].

Quasi-dominant weights are exceptional for more reasons than the production

of an interesting Hilbert series. Their definition will be given in Section 2.6 in terms

of root data, but there are several other equivalent characterizations. For example,

the correspondence L → E mentioned above is a special case of a correspondence

L(λ) → L(µ) induced by equivalences of categories related to infinitesimal blocks

3



in parabolic category Op [11] (cf. [10]). In this context, L(µ) is finite-dimensional

precisely when λ is quasi-dominant. This is also equivalent to µ being the highest

weight in its orbit under a certain subgroup of the Weyl group. A new characteriza-

tion, which is described in Section 4, identifies the quasi-dominant weights as those

whose unitary highest weight module has a small associated variety (in the sense

of Theorem 4.1.1). Equivalently, the module associated to L(λ) via reductive dual

pairs has, in some sense, a small highest weight, as described in Section 4.2.
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CHAPTER TWO

Background

2.1 Hilbert Series

As in the introduction, let (GR, KR) be an irreducible Hermitian symmetric

pair of noncompact type with Lie algebras (gR, kR). Denote the complexified Lie

algebras (g, k), and fix a Cartan subalgebra h of both g and k. Then k has a one-

dimensional center z(k) ⊂ h. Take ∆ to be the corresponding roots of g, and take ∆c

to be the roots of k. Call the complementary set ∆nc so that ∆ = ∆c ∪∆nc. These

two sets are also referred to as the compact and noncompact roots, respectively.

Fix a positive root system ∆+, and define ∆+
c := ∆c ∩ ∆+ and ∆+

nc := ∆nc ∩ ∆+.

Then g = p− ⊕ k ⊕ p+ as a k-module, where the summands in the decomposition

are the −1, 0, and +1 eigenspaces of adz0 for a unique element z0 ∈ z(k). This

central element acts semisimply on any highest weight g-module M and gives the

following natural grading of M as a k-module. Define M0 to be the k-submodule of

M generated by a highest weight vector, and for i > 0 define Mi := p−Mi−1. Let

Ai := {
∑i

j=1 αj | each αj ∈ p−}. Then Mi is the (λ(z0)− i)-eigenspace for the action

of z0 on M and decomposes as the direct sum of weight spaces Mi = ⊕α∈Ai
gλ−α.

The Hilbert series of a highest weight module M is given by the formal power series

HM(t) =
∑

i∈N

dim(Mi)t
i. (2.1)

Example 2.1.1 (Generalized Verma module). Let λ ∈ h∗ be k-dominant integral,

and denote by Fλ the finite-dimensional simple k-module with highest weight λ.

Induce to a q := k ⊕ p+-module by letting p+ act by zero. Let U(g) denote the

universal enveloping algebra of g. Define the generalized Verma module N(λ) of
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highest weight λ by

N(λ) := U(g)⊗U(q) Fλ.

By the Poincaré-Birkhoff-Witt theorem, U(g) ∼= U(p−) ⊗ U(q) as vector spaces.

Since the nilradical p+ is abelian, we can identify U(p±) with the symmetric algebra

S(p±). In particular, we have the isomorphism of k-modules

N(λ) ∼= S(p−)⊗C Fλ.

The grading of N(λ) is given by N(λ)i ∼= S(p−)i ⊗ Fλ, so that

HN(λ)(t) =
dimFλ

(1− t)dim p−
.

2.2 Organization of Unitarizable Highest Weight Modules

We will obtain the Hilbert series of the classical determinantal varieties by

studying the Hilbert series of a special family of unitary highest weight modules.

In [17] and [18], Harish-Chandra showed that the nontrivial unitarizable highest

weight modules can be classified according to irreducible Hermitian symmetric pairs

of noncompact type. The list of all such pairs is given in Table 2.1 with the three

families of pairs occurring in a dual pair setting at the top (the dual pair setting will

be explained in Section 2.3). The filled in nodes in the Dynkin diagram represent

the unique simple noncompact root.

Here we recall the classification of unitarizable highest weight modules given

by Enright, Howe and Wallach [14] and discuss an alternate organization of the

reduction points in terms of vertices and cones. This cone decomposition, which will

be essential to the results communicated in Section 4, was introduced by Davidson,

Enright, and Stanke [4] §6.

Let Π = {α1, . . . , αn} be the set of simple roots in ∆+, labeled according to

Bourbaki [3]. Define Πc := Π∩∆c and Πnc := Π∩∆nc. Then |Πnc| = 1. Let ( , ) be

the nondegenerate bilinear form on h∗ induced by the Killing form on g. For α ∈ ∆,
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Table 2.1. Hermitian symmetric pairs of noncompact type

gR kR Dynkin diagram

su(p, q) s(u(p)⊕ u(q))

sp(n,R) u(n) <

so∗(2n) u(n)

so(2n− 1, 2) so(2n− 1)⊕ so(2) >

so(2n− 2, 2) so(2n− 2)⊕ so(2)

e6(−14) so(10)⊕ R

e7(−25) e6 ⊕ R

the coroot of α is α∨ := 2α/(α, α). The fundamental weights ω1, . . . , ωn are defined

by (ωi, α
∨
j ) = δi,j for αj ∈ Π with 1 ≤ i, j ≤ n. Take β to be the maximal root in ∆,

and let ζ be the element of h∗ that is orthogonal to ∆c and for which (ζ, β∨) = 1.

Then ζ is the i-th fundamental root, where αi is the noncompact simple root. Define

P+
c := {τ ∈ h∗ | (τ, α∨) ∈ Z≥0 for α ∈ Πc and (τ, α∨) = 0 for α ∈ Πnc}.

Denote by Λu the set of all weights that occur as the highest weight of a unitary

highest weight module. If λ ∈ Λu, then λ = τ + uζ for some τ ∈ P+
c and u ∈ R.

Another parametrization of the line τ+Rζ is useful for describing the set Λu∩(τ+Rζ).

For a fixed τ ∈ P+
c , define

λ0(τ) := τ − (τ + ρ, β∨)ζ. (2.2)

Then λ0(τ) is the unique point on the line τ + Rζ whose associated highest weight

module is a limit of discrete series module, which is equivalent to the property

that (λ0(τ) + ρ, β∨) = 0. The classification presented in [14] gives the weights

λ ∈ Λu ∩ (τ +Rζ) in the form λ0 + zζ. For a given line λ0 +Rζ, the set of values of
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z for which λ0+ zζ ∈ Λu has a continuous spectrum and a discrete set. The discrete

set is equally spaced and begins at the positive tail end of the continuous spectrum,

as illustrated in Figure 2.1.

· · ·
0
|

zr
| C | z2 z1

z

Figure 2.1. The set of unitary values for z

Let L(λ) denote the unique irreducible quotient of the generalized Verma mod-

ule N(λ). The values of z in the continuous spectrum give weights λ = λ0 + zζ for

which N(λ) = L(λ). The values zℓ in the discrete set give weights λ for which N(λ)

is reducible. The weights λ = λ0 + zℓζ are called the reduction points, and the

positive integer ℓ is called the level of reduction of L(λ). Define

Λr := {λ ∈ Λu | N(λ) 6= L(λ)},

the set of all reduction points. To give formulas for the reduction points, two root

systems were introduced that in some sense measure the singularity of τ with respect

to the compact roots. Define ∆c(τ) := {α ∈ ∆c | (τ, α∨) = 0} and take Ψ to be

the subroot system of ∆ generated by ±β and ∆c(τ). Then Q(τ) is the simple

component of Ψ that contains −β. If ∆ has two root lengths and there are short

compact roots α not orthogonal to Q(τ) for which (τ, α∨) = 1, take Φ to be the root

system generated by ±β, ∆c(τ), and all such α. Then R(τ) is the simple component

of Φ that contains −β. If ∆ only has one root length or no such α exists, take

R(τ) = Q(τ). Since these two systems are subsystems of ∆, they both contain

compact and non-compact roots and are the root system of a Hermitian symmetric

pair with −β playing the role of the noncompact simple root. The constant C in

Figure 2.1 depends only on the type of Hermitian symmetric pair. The constant r

is the real rank of Q(τ).
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Table 2.2. Constants for Hermitian symmetric pairs of noncompact type

gR r C h∨

su(p, q), n = p+ q − 1 min{p, q} 1 n+ 1

sp(n,R) n 1/2 n+ 1

so∗(2n) [n/2] 2 2n− 2

so(2, 2n− 2) 2 n− 2 2n− 2

so(2, 2n− 1) 2 n− 3/2 2n− 1

e6(−14) 2 3 12

e7(−25) 3 4 18

The real numbers zr, . . . , z1 were determined in [14] for each type of Hermitian

symmetric pair, and a uniform description was discovered by Hunziker and Bai in

[2]. The latter description utilizes the dual Coxeter number of g, which is h∨ :=

(ρ, β∨)+1. Using this description, the reduction points are the weights λ0+zℓζ with

zℓ = h∨
Q +

rR − rQ
2

− (ℓ− 1)C − 1, 1 ≤ ℓ ≤ rQ. (2.3)

Here rQ and rR denote the real rank of Q(τ) and R(τ), respectively, and h∨
Q is the

dual Coxeter number associated to Q(τ). Translating back to the original τ and

letting τ + uℓζ = λ0(τ) + zℓζ gives the equivalent description

uℓ = h∨
Q − h∨ +

rR − rQ
2

− (ℓ− 1)C − (τ, β∨), 1 ≤ ℓ ≤ rQ. (2.4)

The reduction points Λr were reorganized in [4] according to Q(τ), R(τ), vertices,

and cones in the following manner. From the formulation of Q(τ) and R(τ) and

the algorithm for computing them, it is apparent that certain reduction points will

share the same Q and R. The set of points for which this is true can be divided into

subsets according to the level of reduction, ℓ(τ). For a given triple (Q(τ), R(τ), ℓ(τ)),

9



the set of reduction points sharing the triple can be written λv + Cv for a vertex

λv = τv + (zℓ − (τv + ρ, β∨))ζ

and an associated cone, Cv. For λ = λ0 + zζ, we have (λ + ρ, β∨) = z. It follows

from (2.3) that preserving (λ+ ρ, β∨) preserves the level of reduction, so

Cv = {γ ∈ h∗ | (γ, α∨) ∈ Z≥0 for α ∈ ∆+
c , (γ,R(τv)) = 0, and (γ, β∨) = 0}.

For example, consider the case gR = su(p, q). Here Q = R = SU(p′, q′) with 1 ≤

p′ ≤ p and 1 ≤ q′ ≤ q. The cone Cv is given by

Cv = {

n−q′∑

i=p′

aiωi | ap = −ap′ − . . .− ap−1 − ap+1 − . . .− an−q′},

where each ai other than ap is a nonnegative integer.

2.3 Dual Pair Setting

The rich theory of reductive dual pairs intersects the study of Hermitian sym-

metric pairs of noncompact type in the cases gR = su(p, q), sp(n,R), so∗(2n). In

particular, let K ′
R be the compact Lie group associated to gR in Table 2.3, and

denote its complexification by K ′. Then there is a duality between the (uni-

Table 2.3. Objects involved in Howe duality

gR KR K ′
R C[Z]

su(p, q) U(p)× U(q) U(k) C[Mp,k ⊕Mk,q]

sp(n,R) Ũ(n) O(k) C[Mn,k]

so∗(2n) U(n) Sp(k) C[Mn,2k]

tary) irreducible representations of K ′ and a subset of the unitarizable simple high-

est weight modules of g. In fact, every reduction point occurs in this setting for

gR = su(p, q), sp(n,R). Table 2.3 also gives a set of matrices Z whose coordinate

10



ring gives a realization of this duality. In the table, Ũ(n) is the double cover given

by Ũ(n) := {(u, s) ∈ U(n)× C | det u = s2}. The group KR acts on Z as follows:

U(p)× U(q) � Mp,k ⊕Mk,q : ((u1, u2), (z1, z2)) 7→ (u1z1, z2u
−1
2 ),

Ũ(n) � Mn,k : ((u, s), z) 7→ uz,

U(n) � Mn,2k : (u, z) 7→ uz.

To extend the action of KR on C[Z] to a (g,KR)-action, the usual KR-action on C[Z]

is twisted in the following way:

U(p)× U(q) � C[Mp,k ⊕Mk,q] : ((u1, u2).f)(z) 7→ (det u1)
−kf(u−1

1 z1, z2u2),

Ũ(n) � C[Mn,k] : ((u, s), z) 7→ s−kf(u−1z),

U(n) � C[Mn,2k] : (u, z) 7→ (det u)−kf(u−1z).

The Lie algebra g can be embedded into D(Z)K , the algebra of K-invariant differ-

ential operators on Z with polynomial coefficients. Under this embedding, C[Z] is a

(g, KR)-module, and the image of g generates D(Z)K [20] (cf. [10]). Denote by K̂ ′

the isomorphism classes of irreducible unitary highest weight representations of K ′.

Theorem 2.3.1 (Howe duality). Let Σ := {σ ∈ K̂ ′ | HomK′(Vσ,C[Z]) 6= 0}. Then,

as a K ′ × (g, KR)-module,

C[Z] =
⊕

σ∈Σ

Vσ ⊗ V σ,

where V σ := HomK′(Vσ,C[Z]) is a simple highest weight module of g with V σ 6∼= V σ′

whenever σ 6= σ′. Furthermore, each module V σ is a unitary highest weight module,

i.e., the (g, KR)-module V σ is the Harish–Chandra module of a unitary highest weight

representation of GR.

Proof. Since C[Z] is a simple D(Z)-module, the result follows from a general duality

theorem of Goodman and Wallach [16], §4.2,4.6.
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2.4 Diagrams of Minimal Length Coset Representatives

The reflection sα : h∗ → h∗ is the linear map given by sα(λ) = λ − (λ, α∨)α,

and the Weyl group W is the group generated by the simple reflections sα with

α ∈ Π. The length of a Weyl group element w is denoted ℓ(w) and is defined to be

the length of the shortest expression of w in terms of simple reflections. Let WI be

the subgroup of W generated by sα with α ∈ Πc, and for w ∈ W define

Φw := Φ+ ∩ wΦ−,

the positive roots sent to negative roots by w−1. Kostant [25] showed that the set

IW := {w ∈ W | Φw ⊆ ∆+
nc}

is the set of minimal length coset representatives for WI\W , the right cosets of WI.

Remark 2.4.1. The notation for the sets WI and IW is motivated by the more

general setting of parabolic subalgebras, where I is an arbitrary subset of Π. In the

setting of Hermitian symmetric pairs, the subset I is always Πc.

The set IW is a poset via the Bruhat ordering, which is defined as follows.

For v, w ∈ IW , let v → w indicate the existence of a root α for which vsα = w

and ℓ(w) = ℓ(v) + 1. Then v ≤ w in the Bruhat ordering precisely when there is a

chain v = w1 → w2 → · · · → wm = w in IW . If, in the definition, we change vsα to

sαv, we obtain the same ordering. There is also a notion of weak Bruhat ordering,

which is identical to the Bruhat ordering with the caveat that α ∈ Π. However, the

Bruhat ordering and the weak Bruhat ordering coincide in the context of Hermitian

symmetric pairs of noncompact type.

The set of noncompact positive roots, ∆+
nc, is also a poset via the ordering

induced by the usual ordering on weights: µ ≤ λ if and only if µ − λ is a sum

of positive roots or zero. The Hasse diagrams of ∆+
nc were used by Jakobsen in

his classification of the unitarizable highest weight modules, and he showed that

12



each Hasse diagram is two-dimensional and can be drawn on a square lattice ([22]

Lemma 4.1). These Hasse diagrams have corresponding generalized Young diagrams

obtained by rotating the Hasse diagram 90◦ clockwise and fattening the nodes as in

Table 2.4.

The numbers attached to the edges of the Hasse diagram give the index of the

simple root that is added to the (noncompact root represented by the) bottom node

in order to obtain the (noncompact root represented by the) top node. Opposite

edges of a given square are understood to represent the same simple root. To un-

derstand the numbers in the boxes of the Young diagram, first notice that there is

a natural bijection between IW and ∆+
nc given by

w ↔ β, where Φw = {γ ∈ ∆+
nc | γ ≤ β}. (2.5)

In general, IW and ∆+
nc are not isomorphic as posets, i.e. their Hasse diagrams are

not isomorphic. However, in the notation of (2.5), we can use the Young diagram of

β to obtain a canonical reduced expression for w (in terms of ℓ(w) simple reflections)

in the following way. Suppose β ∈ ∆+
nc. Then there exist unique v, w ∈ IW for which

Φw = Φv∪̇β. It follows that ℓ(w) = ℓ(v) + 1 and w = vsα for α = v−1β ∈ Π. Given

w ∈ IW , the corresponding β ∈ ∆+
nc is represented by a node in the Hasse diagram

of ∆+
nc. Fill in the corresponding box of the Young diagram with the index of the

simple root v−1β. Once all the boxes have been filled in, the portion of the Young

diagram corresponding to Φw yields a reduced expression for any w ∈ IW . There is

a second canonical reduced expression for w in terms of noncompact positive roots

that is sometimes more convenient to use than the one just described. This is made

explicit in the following proposition.

Proposition 2.4.2 (cf. Enright-Hunziker-Pruett [10]). Let w ∈ IW and write

Φw = {β1, β2, . . . , βl}

13



Table 2.4. Hasse diagrams and generalized Young diagrams for ∆+
nc

gR Hasse diagram of ∆+
nc Young diagram

su(p, q)

αp = ǫp − ǫp+1

β = ǫ1 − ǫn+1

p− 1

···
2

1

p+ 1
···

n p p− 1 ··· 2 1

p+ 1 p ··· 3 2

··· ··· ··· ··· ···

n n− 1 ··· q + 1 q

sp(n,R)

αn = 2ǫn

β = 2ǫ1

n− 1

···
2

1

n− 1
···

2
1

n n− 1 ··· 2 1

n n− 1 ··· 2

··· ··· ···

n n− 1

n

so∗(2n)

αn = εn−1 + ǫn

β = ǫ1 + ε2

n− 2

···
2

1

n− 1
···

3
2

n n− 2 ··· 2 1

n− 1 n− 2 ··· 2

··· ··· ···

n n− 2

n− 1

14



so that for 1 ≤ j ≤ l, the set {β1, β2, . . . , βj} is a lower order ideal of ∆+
nc. Then

w = sf(β1)sf(β2) . . . sf(βl)

is a reduced expression for w. Furthermore, w = sβl
sβl−1

. . . sβ1
.

Note that in the case gR = so∗(2n) the bottom right box of the Young diagram

is n if n is even and is n− 1 if n is odd.

Example 2.4.3. Let gR = sp(3,R) and take w to be the longest element of IW .

The Hasse diagram and generalized Young diagram of IW are given in Figure 2.2.

2ε1

2ε2

2ε3

ε1 + ε2

ε2 + ε3

ε1 + ε3

3 2 1

3 2

3

Figure 2.2. Hasse diagram and Young diagram of the longest element in IW for sp(3,R)

It follows that w = s3s2s1s3s2s3 = s2ε1sε1+ε2s2ε2sε1+ε3sε2+ε3s3. Note that s1

and s3 commute (as do s2ε2 and sε1+ε3), so the ordering of the noncompact roots

in Proposition 2.4.2 is canonical up to the order of orthogonal roots that have the

same length.

Example 2.4.4. Let gR = so∗(8) and again let w to be the longest element of IW .

The associated diagrams of IW are then the ones displayed in Figure 2.3.

ε1 + ε2

ε2 + ε3

ε3 + ε4

ε1 + ε3

ε2 + ε4

ε1 + ε4

4 2 1

3 2

4

Figure 2.3. Hasse diagram and Young diagram of the longest element in IW for so∗(8)
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It follows that w = s4s2s1s3s2s4 = sε1+ε2sε1+ε3sε2+ε3sε1+ε4sε2+ε4s4. Here s1

and s3 commute, as do sε2+ε3 and sε1+ε4 .

2.5 Reduced Hermitian Symmetric Pairs and Resolutions

Every k-dominant weight λ gives rise to a reduced Hermitian symmetric pair

(Gλ, Kλ) in the following way. Define Ξλ := {α ∈ ∆ | (λ+ ρ, α∨) = 0} and

Ωλ := {γ ∈ ∆+
nc | (γ, α) = 0 ∀α ∈ Ξλ; γ is short if Ξλ contains a long root}. (2.6)

Define ∆+
λ,nc := {α ∈ Ωλ | (λ + ρ, α∨) ∈ Z>0}. Take Wλ to be the subgroup

of the Weyl group of (g, h) generated by the reflections sγ for which γ ∈ ∆+
λ,nc.

Then ∆λ := {α ∈ ∆ | sα ∈ Wλ} is an abstract root system with Weyl group

Wλ. Let ∆+
λ := ∆λ ∩ ∆+, ∆λ,c := ∆λ ∩ ∆c, and ∆+

λ,c := ∆λ,c ∩ ∆+. Take ρ

(respectively, ρλ) to be half the sum of the positive roots in ∆ (respectively, ∆λ).

Denote by gλ the semisimple part of the reductive Lie algebra with root system

∆λ and Cartan subalgebra h, and set kλ to be the reductive Lie subalgebra of gλ

with Cartan subalgebra gλ ∩ h and root system ∆λ,c. Then (gλ, kλ) is the pair of

complexified Lie algebras of an irreducible Hermitian symmetric pair of noncompact

type (Gλ, Kλ).

Example 2.5.1. Suppose gR = so∗(2n) and λ = −2kωn, the highest weight of

the k-th Wallach representation. Then λ + ρ = (n − k − 1, n − k − 2, . . . ,−k)

in Euclidean coordinates, and the positive roots orthogonal to λ + ρ are Ξ+
λ =

{εn−2k + εn, εn−2k+1 + εn−1, . . . , εn−k−1 + εn−k+1}. Since εn−k = 0 and εi ∈ Z>0 for

1 ≤ i ≤ n− 2k − 1, the sets Ωλ and ∆+
λ,nc are equal and are given by:

∆+
λ,nc = {εi + εj | 1 ≤ i < j with j ≤ n− 2k − 1 or j = n− k}.

The noncompact real form of gλ is gλ,R ∼= so∗(2(n− 2k)), and the Hasse diagram of

EWλ is displayed in Figure 2.4.
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εn−2k−1 + εn−k

εn−2k−2 + εn−2k−1

ε2 + ε3

ε1 + ε2

εn−2k−2 + εn−k

ε1 + εn−k

Figure 2.4. Hasse diagram of EWλ for gR = so∗(2n) with λ = −2kωn

Define subsets of the Weyl group by jW := {w ∈ W | ℓ(w) = j} and I,jW :=

IW∩ jW . Recall the “dot action” of w ∈ W on γ ∈ h∗ given by w.γ = w(γ+ ρ)− ρ.

In 1977, Lepowsky generalized a result of Bernstien-Gelfand-Gelfand by proving the

following result.

Theorem 2.5.2 (Lepowsky [26]). Let λ ∈ h∗ be g-dominant, and denote by Eλ the

finite-dimensional simple highest weight module with highest weight λ. Then there

exists an exact sequence of g-modules, 0 → Cp → · · · → C1 → C0 → Eλ → 0, with

Cj :=
⊕

w

N(w.λ),

where p = |∆+
nc| and the sum is over elements of I,jW.

For w ∈ Wλ, denote by ℓλ(w) the length of w with respect to the simple system

Πλ ⊂ ∆+
λ . Note that, in general, ℓλ(w) 6= ℓ(w). Define jWλ := {w ∈ Wλ | ℓλ(w) =

j} and E,jWλ := EWλ ∩ jWλ, where Πλ/E is the unique noncompact root in Πλ.

For any k-integral γ, let [γ]+ denote the unique k-dominant element in the WI-orbit

of γ. Define the “plus-dot” action of W on h∗ by w+. γ = [w(γ + ρ)]+ − ρ. In 2003,

Enright and Willenbring used Enright’s results on Lie algebra cohomology to obtain

resolutions for unitarizable highest weight modules that occur in a dual pair setting.

This work was extended by Enright and Hunziker in 2004 to obtain resolutions for

all unitarizable highest weight modules.
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Theorem 2.5.3 (Enright-Hunziker [8], cf. Enright-Willenbring [13]). Let L(λ) be

the unitarizable highest weight module with highest weight λ. Then there exists an

exact sequence of g-modules, 0 → Cλ
pλ

→ · · · → Cλ
1 → Cλ

0 → L(λ) → 0, with

Cλ
j :=

⊕

w

N(w+. λ),

where pλ = |∆+
λ,nc| and the sum is over E,jWλ.

2.6 The Transfer Theorem

In order to obtain homogeneous maps of degree 0 in the resolutions above, the

grading of N(w.λ) (respectively, N(w+. λ)) is shifted so that the i-th homogeneous

component of the original grading is the (λ(z0)−w.λ(z0) + i)-th homogeneous com-

ponent (respectively, the (λ(z0) − w+. λ(z0) + i)-th homogeneous component) of the

new grading. For a given Weyl group element w, define dw := (λ − w+. λ)(z0) =

(λ+ ρ− [w(λ+ ρ)]+)(z0). Since z0 is k-central, dw = (λ+ ρ− w(λ+ ρ))(z0).

Proposition 2.6.1 (cf. Enright-Hunziker [8]). Suppose L = L(λ) is a unitarizable

highest weight module. Then the Hilbert series of L is

HL(t) =
1

(1− t)p

∑

w

(−1)ℓλ(w) dim(Fw+. λ)t
dw ,

where p = |∆+
nc| and the sum is over w ∈ EWλ.

Proof. Apply the Euler-Poincaré method to the resolution in Theorem 2.5.3.

The following definition plays a central role in the remainder of this work.

Definition 2.6.2. A k-dominant integral weight λ is called quasi-dominant if

(λ+ ρ, γ∨) /∈ Z≤0 for all γ ∈ Ωλ.

When λ is quasi-dominant, µ = (λ+ ρ)|gλ∩h − ρλ is ∆+
λ -dominant.
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Proposition 2.6.3 (cf. Enright-Hunziker [8]). Suppose λ is quasi-dominant and

E = Eµ is the finite-dimensional simple gλ-module with highest weight µ = (λ +

ρ)|gλ∩h − ρλ. Then the Hilbert series of E is

HE(t) =
1

(1− t)pλ

∑

w

(−1)ℓλ(w) dim(Fkλ,w.µ)t
dw ,

where pλ = |∆+
λ,nc| and the sum is over w ∈ EWλ.

Proof. Apply the Euler-Poincaré method to the resolution in Theorem 2.5.2 and use

the fact that z0 ∈ gλ ∩ h, where µ+ ρλ = λ+ ρ.

These two propositions point toward a relationship between the Hilbert series

of L(λ) and that of Eµ. It is shown in [8] that the ratio dim(Fk,w+. λ)/ dim(Fkλ,w.µ) is

independent of w ∈ EWλ. This immediately gives the following theorem.

Theorem 2.6.4 (The Transfer Theorem – Enright-Hunziker [8] p. 623, cf. En-

right-Willenbring [13]). Suppose the irreducible highest weight representation L is

unitarizable with quasi-dominant highest weight λ. Let E be the finite-dimensional

simple gλ-module with highest weight µ = λ+ ρ− ρλ. Then

HL(t) = R ·
HE(t)

(1− t)D
,

where R = dim(Fk,λ)/ dim(Fkλ,µ) and D = |∆+
nc| − |∆+

λ,nc|.

It is worth noting here that D is the Gelfand-Kirillov dimension of L and that

the Bernstein degree of L is R · HE(1), which is R times the dimension of E as a

vector space.
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CHAPTER THREE

Hilbert Series of Determinantal Varieties

3.1 The Wonderful Correspondence

Let the constant C and the fundamental weight ζ be defined as in Section 2.2.

The simple highest weight module L(−kCζ), 1 ≤ k ≤ r−1, is refered to as the k-th

Wallach representation [28]. In 2003, Enright and Willenbring discovered some ex-

amples of Wallach representations that give R = 1 in the Transfer Theorem [12]. In

2004, Enright and Hunziker showed that for the cases gR = su(p, q), sp(n,R), so∗(2n),

the k-th Wallach representation gives R = 1, 1,
(
n−k−1

n

)−1
, respectively. The first re-

sult of this work is to show that one can modify the choice of the finite-dimensional

gλ-module E in the case gR = so∗(2n) to obtain R = 1 for each Wallach represen-

tation. The modification is motivated by the isomorphism of posets between the

positive noncompact roots of so∗(2m) and those of sp(m−1,R). In the proof of this

result it will be convenient to use Frobenius notation for integer partitions, so this

notation is introduced here.

Let ν = (n1, n2, . . .) be a partition and let ν ′ = (n′
1, n

′
2, . . .) be its dual partition,

whose Young diagram is the transpose of the Young diagram of ν. The length r of the

diagonal of the Young diagram of ν is called the Frobenius rank (or Durfee rank) of ν.

For 1 ≤ i ≤ r, define ai = ni− i+1 and bi = n′
i− i+1. Then (a1, . . . , ar | b1, . . . , br)

is called the Frobenius symbol of ν. The partition ν is uniquely determined by

its Frobenius symbol and we will, by abuse of notation, write ν = (a1, . . . , ar |

b1, . . . , br). For example,

•
• = (4, 3, 2) = (4, 2 | 3, 2).

Here the diagonal boxes are filled with dots for emphasis.
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Theorem 3.1.1. Let gR = so∗(2n) and set λ = −2kζ, 1 ≤ k ≤ ⌊n
2
⌋ − 1, so that the

simple highest weight module L = L(λ) is the k-th Wallach representation. Choose

g′R = sp(n−2k−1,R) and let E be the finite-dimensional g′-module of highest weight

µ = kζ ′. The Hilbert series of L is then

HL(t) =
HE(t)

(1− t)D
,

where D = |∆+
nc| − |∆′+

nc|.

Proof. Let w ∈ EWλ and w′ ∈ I′W ′ be the elements whose Young diagrams are

(a1, . . . , ar|1
r) in Frobenius notation. Set m = n− 2k− 1, and by abuse of notation

write [α] for the reflection sα. We will show that dimFk,w+. λ = dimFk′,w.µ, which

completes the proof when combined with the resolutions given in Theorem 2.5.2 and

the fact that (λ+ ρ)(z0) = (µ+ ρ′)(z0).

In Euclidean coordinates, λ+ρ = (n−k−1, n−k−2, . . . ,−k). By Proposition

2.4.2, w(λ+ρ) = Rr . . . R2R1(λ+ρ), with R1 = [εm+1−a1+εn−k] . . . [εm−1+εn−k][εm+

εn−k] and Ri = [εm+2−i−ai+εm+2−i] . . . [εm−i+εm+2−i][εm+1−i+εm+2−i] for 2 ≤ i ≤ r.

It follows that R1(λ + ρ) = (n − k − 1, . . . , â1 + k, . . . , k + 1, 0, k, . . . , 1,−(a1 +

k),−1, . . . ,−k), where the symbol ̂ denotes omission, and

Ri . . . R2R1(λ+ ρ) = (∗, . . . , ∗, 0,−ai − k, . . . ,−a2 − k, k, . . . ,−a1 − k,−1, . . . ,−k).

Here the entries ∗ are in {n−k−1, . . . , k+1}\{a1+k, . . . ai+k} and are in decreasing

order. In the setting of the theorem, the operation [·]+ : h∗ → h∗ orders the entries

of the pertinent weight in decreasing fashion, so

[Ri . . . R2R1(λ+ ρ)]+ = (∗, . . . , ∗,−ai − k,−ai−1 − k, . . . ,−a1 − k),

with the entries ∗ decreasing and in the set {n−k−1, . . . ,−k}\{a1+k, . . . , ai+k}.

Now we will make a similar calculation for the weight w′(µ + ρ′), where w′ ∈

I′W ′ has Young diagram (a1, . . . , ar|1
r) as above. In Euclidean coordinates, µ +
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ρ′ = (n − k − 1, . . . , k + 1). Here we have w′(µ + ρ′) = Rr . . . R2R1(µ + ρ′) with

Ri = [εm+2−i−ai + εm+1−i] . . . [εm−i + εm+1−i][2εm+1−i]. A quick calculation shows

that R1(µ+ ρ′) = (n− k − 1, . . . , â1 + k, . . . , k + 1,−(a1 + k)) and

Ri . . . R2R1(µ+ ρ′) = (∗, . . . , ∗,−ai − k,−ai−1 − k, . . . ,−a1 − k),

with the entries ∗ in decreasing order and in {n−k−1, . . . , k+1}\{a1+k, . . . , ai+k}.

Since w+. λ+ ρ differs from w′.µ+ ρ′ by its additional 2k+1 entries k, . . . ,−k,

the Weyl dimension formula gives dimFk,w+. λ = dimFk′,w′.µ · ABC/D, where

A =
[(n− 2k − 1) . . . (n− 1)][(n− 2k − 2) . . . (n− 2)] . . . [1 . . . (2k + 1)]

[a1 . . . (a1 + 2k)][a2 . . . (a2 + 2k)] . . . [ar . . . (ar + 2k)]
,

B = (2k)!(2k − 1)! . . . 1!,

C = [(ar + 2k) . . . (a1 + 2k)][(ar + 2k − 1) . . . (a1 + 2k − 1)] . . . [ar . . . a1],

D = (n− 1)!(n− 2)! . . . (n− 2k − 1)!.

After some refactoring, it is evident that ABC/D = 1, which proves the theorem.

Example 3.1.2. Let gR = so∗(12), and consider the first Wallach representation,

L(−2ω6). In this case, λ = −2ω6 is quasi-dominant, the real Lie algebra g′R is

sp(3,R), and the finite domensional simple g′-module E has highest weight µ = ω3.

The resolutions of L and E are identical when the highest weights w+. λ and w′.µ are

represented by the Young diagrams of w and w′, as given in Figure 3.1.

0 → Ne → N → N →

N

⊕

N

→ N → N → N → M → 0

Figure 3.1. Resolution of M = L(−2ω6) and M = Eω3

The Hilbert series of L (respectively, E) is presented below to illustrate the

Euler-Poincaré method. When calculating the degree of the numerators, it is helpful
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to note that the decomposition of g as a k-module under the adjoint action of z0 ∈ z(k)

implies εi(z0) = 1/2 for all i. As a result, dw = 1
2
|λ+ρ−w(λ+ρ)| = 1

2
|µ+ρ′−w′(µ+ρ′)|,

where |λ| sums up the Euclidean coordinates of λ.

1
(1−t)15

− 15t2

(1−t)15
+ 35t3

(1−t)15
− (21t

4+21t5

(1−t)15
) + 35t6

(1−t)15
− 15t7

(1−t)15
+ t9

(1−t)15
= HL(t)

1
(1−t)6

− 15t2

(1−t)6
+ 35t3

(1−t)6
− (21t

4+21t5

(1−t)6
) + 35t6

(1−t)6
− 15t7

(1−t)6
+ t9

(1−t)6
= HE(t)

It is now easy to verify that these Hilbert series agree with Theorem 3.1.1. Namely,

HL(t) =
HE(t)

(1− t)15−6
=

1 + 6t+ 6t2 + t3

(1− t)9
.

The new correspondence between L and E in the case that L is the k-th

Wallach representation in a dual pair setting is given in Table 3.1.

Table 3.1. The Wonderful Correspondence

gR −kCζ g′R kζ ′

su(p, q) −kωp su(p− k, q − k) kω′
p−k

sp(n,R) −k
2
ωn so∗(2(n− k + 1)) kω′

n−k+1

so∗(2n) −2kωn sp(n− 2k − 1,R) kω′
n−2k−1

Corollary 3.1.3 (cf. A-Hunziker-Willenbring [1]). Let L be the k-th Wallach repre-

sentation of highest weight −kCζ, 1 ≤ k ≤ r−1, and let E be the finite-dimensional

g′-representation of highest weight kζ ′ as given in Table 3.1. Then

HL(t) =
HE(t)

(1− t)D
,

where D = |∆+
nc| − |∆′+

nc|.

3.2 Determinantal Varieties

We will now follow the work of Enright and Hunziker [8] (cf. [10]) to obtain

an explicit description of the Hilbert series of the classical determinantal varieties.
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Recall from Table 2.3 the set of matrices Z, which in the case gR = su(p, q) (re-

spectively sp(n,R), so∗(2n)) is defined to be Mp,k ⊕Mk,q (respectively Mn,k,M2n,k).

Define a polynomial map π : Z → p+ by

π : Mp,k ⊕Mk,q → Mp,q, (z1, z2) 7→ z1z2,

π : Mn,k → Symn, z 7→ zzt,

π : Mn,2k → Altn, z 7→ zJzt,

where J is the 2k×2k block diagonal matrix whose blocks have the form

(
0 1
−1 0

)
.

Then π is KR-equivariant and constant on K ′
R-orbits. The varieties

Yk := π(Z) ⊂ p+

are the classical determinantal varieties. For K ′ = GLk (respectively Ok, Sp2k), the

determinantal variety Yk is the set of matrices in p+ whose rank is less than or equal

to k (respectively k, 2k). The coordinate rings C[Yk] carry the structure of the simple

unitarizable highest weight module L(−kCζ), the k-th Wallach representation.

Proposition 3.2.1 (cf. Enright-Hunziker-Pruett [10]). Set λ = −kCζ. Then

C[Yk] ∼= L(λ)⊗ F−λ

as a KR-module.

Proof. Notice that C[Z]K
′

= V triv is a highest weight module of g by Theorem 2.3.1.

The highest weight vector is the constant function 1 ∈ C[Z]K
′

. By the definition of

the twistedKR-action on C[Z]K
′

, the highest weight is λ = −kCζ. A straightforward

argument of classical invariant theory that makes use of Weyl’s First Fundamental

Theorem shows the induced map π∗ := f ◦π : C[Yk] → C[Z]K
′

to be an isomorphism

of algebras. As a KR-module, C[Yk] is isomorphic to the tensor product of L(λ) with

the one-dimensional highest weight module F−λ.
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Tensor the resolution of L(λ) in Theorem 2.5.3 to obtain the following minimal

graded free resolution of C[Yk], viewed as an S = S(p−)-module.

Theorem 3.2.2 (Enright-Hunziker [8] Thm. 31, cf. Enright-Hunziker-Pruett [10]

Thm. 7.6). Let λ = −kCζ. Then there exists an exact sequence of S-modules,

0 → S ⊗ Fpλ → . . . → S ⊗ F1 → S → C[Yk] → 0, with

Fj :=
⊕

w

Fw+. λ ⊗ F−λ,

where pλ = |∆+
λ,nc| and the sum is over w ∈ E,jWλ.

In order to calculate the Hilbert series of the coordinate rings of determinan-

tal varieties, we will need a result that uses Harish-Chandra’s strongly orthogonal

noncompact roots γ1, . . . , γr. To derive this set, let γ1 be the unique simple root in

∆+
nc and for 2 ≤ i ≤ r take γi to be the lowest root in ∆+

nc orthognal to γ1, . . . , γi−1.

For example, in the case su(p, q), γ1 = αp = εp − εp+1. The roots in ∆+
nc that are

not orthogonal to εp − εp+1 are the ones connected to it by a straight line in the

Hasse diagram of ∆+
nc. Thus, γ2 = αp + αp−1 + αp+1 = εp−1 − εp+2, and in general

γi = εp+1−i − εp+i for 1 ≤ i ≤ r.

Theorem 3.2.3 (Enright-Hunziker-Wallach [15] Thm. 3.1). Let (g, k) be an irre-

ducible complexified Hermitian symmetric pair, and let Ekζ be the finite-dimensional

g-module with highest weight kζ, where ζ is the fundamental weight that is orthogonal

to the compact roots. Then, as a k-module,

Ekζ ⊗ F−kζ =
⊕

k≥m1≥...≥mr≥0

F−m1γ1−...−mrγr ,

where γ1 < γ2 < . . . < γr are Harish-Chandra’s strongly orthogonal noncompact

roots with γ1 being the noncompact simple root.

For m ≥ 1 and ν = (ν1, . . . , νm) an integer partition with at most m parts,

let F
(m)
ν denote the simple GL(m,C)-module with highest weight ν1ε1 + . . .+ νmεm.

Then Theorems 3.2.2 and 3.2.3 combine to give the following Hilbert series.
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Corollary 3.2.4 (cf. Enright-Hunziker [8] Thm. 23, Thm. 32). Let Yk = {x ∈

Mp,q | rk x ≤ k} with 1 ≤ k ≤ min{p, q} − 1. Then

HC[Yk](t) =
1

(1− t)k(p+q−k)

∑

ν

(dimF (p−k)
ν )(dimF (q−k)

ν )t|ν|,

where the sum is over all partitions ν whose Young diagram fits inside a rectangle

of size min{p− k, q − k} × k.

Proof. Since g′R = su(p−k, q−k), we have r = min{p−k, q−k}. Harish-Chandra’s

strongly orthogonal roots are γi = εp−k+1−i − εp−k+i, 1 ≤ i ≤ r, and k′ = s(u(p −

k)⊕ u(q − k)), so Weyl’s dimension formula gives the product of dimensions in the

statement of the corollary. Recall that the (−1)-eigenspace of ad(z0) is p
−. It follows

that F−m1γ1−...−mrγr is contained in the |ν|-eigenspace of ad(z0).

Corollary 3.2.5 (cf. Enright-Hunziker [8] Thm. 24, Thm. 32). Let Yk = {x ∈

Symn | rk x ≤ k} with 1 ≤ k ≤ n− 1. Then

HC[Yk](t) =
1

(1− t)k(2n−k+1)/2

∑

ν

(dimF (n−k+1)
ν )t|ν|/2,

where the sum is over all partitions ν whose Young diagram has only columns of

even length and fits inside a rectangle of size (n− k + 1)× k.

Proof. In this case g′R = so∗(2(n− k+1)), r = ⌊n−k+1
2

⌋, and the strongly orthogonal

roots are γ1 = εn−k + εn−k+1, γ2 = εn−k−2 + εn−k−1, . . . , γr = ε1 + ε2. Furthermore,

k′ = u(2n− k + 1), and εi(z0) = 1/2 for 1 ≤ i ≤ n− k + 1.

Corollary 3.2.6 (cf. A-Hunziker-Willenbring [1]). Let Yk = {x ∈ Altn | rk x ≤ 2k}

with 1 ≤ k ≤ ⌊n/2⌋ − 1. Then

HC[Yk](t) =
1

(1− t)k(2n−2k−1)

∑

ν

(dimF (n−2k−1)
ν )t|ν|/2,

where the sum is over all partitions ν whose Young diagram has only rows of even

length and fits inside a rectangle of size (n− 2k − 1)× 2k.
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Proof. Here g′R = sp(n − 2k − 1,R), r = n − 2k − 1, and the strongly orthogonal

roots are γ1 = 2εr, γ2 = 2εr−1, . . . , γr = 2ε1. The Lie algebra k′ is u(n− 2k− 1), and

εi(z0) = 1/2 for 1 ≤ i ≤ n− 2k − 1.

Example 3.2.7. Let Y1 = {x ∈ Alt6 | rk x ≤ 2}. Then

HC[Y1](t) =
1

(1− t)9
(dimF 3

e + dimF 3t+ dimF 3t2 + dimF 3t3)

=
1 + 6t+ 6t2 + t3

(1− t)9

= 1 + 15t+ 105t2 + 490t3 + 1764t4 + · · ·

Example 3.2.8. Let Y1 = {x ∈ Sym8 | rkx ≤ 1}. Then

HC[Y1](t) =
1

(1− t)8
(dimF 8

e + dimF 8t+ dimF 8t2 + dimF 8t3 + dimF 8t4)

=
1 + 28t+ 35t2 + 28t3 + t4

(1− t)8

= 1 + 36t+ 295t2 + 1436t3 + 5175t4 + · · ·
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CHAPTER FOUR

Classification of Quasi-dominant Reduction Points

4.1 Classification

Denote the set of all quasi-dominant weights by Λq. Here we give a description

of Λ+
r := Λq ∩ Λr, the quasi-dominant reduction points. Define k(λ) to be the

nonnegative integer − (λ,β∨)
C

, and define a new root system S(τ) by pruning the

branches on the extended Dynkin diagram of ∆ according to Table 4.1. For gR 6=

su(p, q) and λ = λv +
∑

aiωi, let s =
∑

aj with the sum over coefficients aj for

which ωj 6= ζ. For gR = su(p, q) and λ = λv +
∑

aiωi, let s′ =
∑p−1

j=p′ aj and

s′′ =
∑n+1−q′

j=p+1 aj. The root system Q(τ) is listed in Table 4.1 when helpful.

Table 4.1. The root system S(τ)

gR Q(τ) S(τ)

su(p, q) SU(p− s′′, q − s′)

sp(n,R) Sp(n− s,R)

so∗(2n) SO∗(2(n− s))

so(2, 2n− 1) SO(2, 2n− 1)

so(2, 2n− 2) SO(2, 2n− 2) if s = 0

– SU(1, n− s) if s ≥ 1

e6(−14) EIII EIII

e7(−25) EV II EV II

– SO(2, 10) EV II if s = 0

– – SO(2, 10) if s = 1

– – SU(1, 7− s) if s ≥ 2
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Theorem 4.1.1. Suppose L = L(λ) is a unitarizable highest weight module and

λ = λ0(τ) + zℓζ is a reduction point. Then λ is quasi-dominant if and only if

k(λ) ≤ rS(τ) − 1,

where rS(τ) is the real rank of the root system S(τ) given in Table 4.1.

Proof. The Transfer Theorem implies that if λ ∈ Λq ∩ Λr then GKdimL(λ) <

dim p+. The work in Joseph [23] and Bai-Hunziker [2] then implies that the only

choices of the triple (gR, Q(τ), R(τ)) having quasi-dominant reduction points are the

ones listed in Table 4.2. For these cases, we consider a reduction point λ ∈ λv + Cv

and observe the conditions that determine quasi-dominance.

Case 1 (gR = su(p, q)). In this case, it suffices to take ωi = ε1 + · · · + εi and

ρ = (n, n − 1, . . . , 0). We have Q = R = SU(p′, q′) for integers 1 ≤ p′ ≤ p and

1 ≤ q′ ≤ q, so τv = ωp′ + ωn+1−q′ . From (2.2) and (2.3), one obtains

λ0(τv) = ωp′ + ωn+1−q′ − (n+ 2)ωp and zℓ = p′ + q′ − ℓ.

It follows from the defintion of Cv given in Section 2.2 that a reduction point λ,

written in Euclidean coordinates, has the form:

λ = (−k, . . . ,−k︸ ︷︷ ︸
p′

,−k − 1− s′1, . . . ,−k − 1− s′p−p′︸ ︷︷ ︸
p−p′

, 1 + s′′1, . . . , 1 + s′′q−q′︸ ︷︷ ︸
q−q′

, 0, . . . , 0︸ ︷︷ ︸
q′

),

with k = k(λ) = p+q−p′−q′+ℓ−1, s′i = ap′+· · ·+ap′+i−1, and s′′i = ap+i+· · ·+ap+q−q′ .

Let (λ+ ρ)i be the ith coordinate of λ+ ρ and let Θ be the intersection of the first

p coordinates of λ+ ρ with the last q coordinates of λ+ ρ. Recalling the definition

given in (2.6), one finds

Ωλ = {εi − εj | 1 ≤ i ≤ p, p+ 1 ≤ j ≤ p+ q, and (λ+ ρ)i, (λ+ ρ)j /∈ Θ}.

Note that (λ+ρ)p′−ℓ+1 = q′ and (λ+ρ)p+q−q′+ℓ = q′−ℓ are not in Θ, so two necessary

conditions for quasi-dominance are (λ+ ρ)1 ≥ (λ+ ρ)p+1 and (λ+ ρ)p ≥ (λ+ ρ)p+q.
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Since (λ+ ρ)p+q−q′ > (λ+ ρ)p′ and (λ+ ρ)p′+1 < (λ+ ρ)p+q−q′+1, the two conditions

are sufficient, so that λ is quasi-dominant precisely when −k + n ≥ s′′ + q and

−k − 1− s′ + q ≥ 0. This is equivalent to

k(λ) ≤ min{p− s′′, q − s′} − 1.

Case 2 (gR = sp(n,R)). Here Q = Sp(q,R) and R = Sp(r,R) for integers 1 ≤ q ≤

r ≤ n, so τv = ωq + ωr. From (2.2) and (2.3), one obtains

λ0(τv) = ωq − ωr − (n+ 2)ωn and zℓ =
1

2
(r + q + 1− ℓ).

It follows that a reduction point λ has the form:

λ =
(
−
k

2
, . . . ,−

k

2︸ ︷︷ ︸
q

,−
k

2
− 1, . . . ,−

k

2
− 1

︸ ︷︷ ︸
r−q

,−
k

2
− 2− s1, . . . ,−

k

2
− 2− sn−r

︸ ︷︷ ︸
n−r

)
,

with k = k(λ) = 2n − q − r + ℓ − 1 and si = ar + · · · + ar+i−1. Let Θ be the set

of coordinates (λ+ ρ)i for which −(λ+ ρ)i is also a coordinate of λ+ ρ. Note that

these entries could be positive, negative, or zero. Since ρ = (n, n− 1, . . . , 1),

Ωλ =





εi + εj | 1 ≤ i ≤ j ≤ n and (λ+ ρ)i, (λ+ ρ)j /∈ Θ

εi + εj | 1 ≤ i < j ≤ n and (λ+ ρ)i, (λ+ ρ)j /∈ Θ

if Ξλ does not contain (respectively, does contain) a long root. An immediate nec-

essary and sufficient condition for quasi-dominance is that all the negative entries

of λ + ρ, except possibly 1
2
(q + ℓ − r − 1), are in Θ. Note that (λ + ρ)r ≤ 0, so

−(λ + ρ)r + 1 > 0. Since −(λ + ρ)r + 1 /∈ Θ and −(λ + ρ)r + 1 < −(λ + ρ)n,

quasi-dominance of λ coincides with −(λ + ρ)n ≤ (λ + ρ)1. It follows that λ is

quasi-dominant if and only if

k(λ) ≤ n− s− 1.

Case 3 (gR = so∗(2n), n ≥ 4). In this case, the root system Q = R is either

SO∗(2p) for an integer 3 ≤ p ≤ n or SU(1, n − 1) with n even. We begin with
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Q = R = SO∗(2p), where τv = ωp and

λ0(τv) =





ωp − (2n− 1)ωn if 3 ≤ p ≤ n− 2

ωn−1 − (2n− 2)ωn if p = n− 1

−(2n− 3)ωn if p = n

.

This formula for λ0(τv) is not uniform because of the nature of the fundamental

weights. However, zℓ is always 2p− 2ℓ− 1, and λ ∈ Λr has the uniform description:

λ = (−k, . . . ,−k︸ ︷︷ ︸
p

,−k − 1− s1, . . . ,−k − 1− sn−p︸ ︷︷ ︸
n−p

),

with k = k(λ) = n − p + ℓ − 1 and si = ap + · · · + ap+i−1. Let Θ∗ be the set of

nonzero coordinates (λ+ ρ)i for which −(λ+ ρ)i is also a coordinate of λ+ ρ. The

Weyl vector is ρ = (n− 1, n− 2, . . . , 0), so one obtains

Ωλ = {εi + εj | 1 ≤ i < j ≤ n and (λ+ ρ)i, (λ+ ρ)j /∈ Θ∗}.

Note that the first p entries of λ+ρ are decreasing by 1 and contain 0, so a sufficient

condition for quasi-dominance is (λ + ρ)1 ≥ −(λ + ρ)n. Since the entry 0 is not in

Θ∗, the condition is necessary, so λ is quasi-dominant exactly when

k(λ) ≤

⌊
n− s

2

⌋
− 1.

Now consider Q = R = SU(1, n − 1) with n even, where τv = ω1, λ0(τv) =

ω1 − (2n− 2)ωn, and z1 = n− 1. A reduction point λ has the form:

λ =

(
−k +

a1 + 1

2
,−k −

a1 + 1

2
, . . . ,−k −

a1 + 1

2

)
,

with k = n
2
− 1. After calculating Ξλ, we have

Ωλ = {εi + εj | 1 ≤ i < j ≤ n and (λ+ ρ)i, (λ+ ρ)j /∈ Θ∗}.

Because (λ+ ρ)2 < −(λ+ ρ)n < (λ+ ρ)1 and −(λ+ ρ)n /∈ Θ∗, a necessary condition

for λ to be quasi-dominant is (λ + ρ)2 = −(λ + ρ)n−1. This condition is equivalent
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to a1 = 0, which is also a sufficient condition. Quasi-dominance is characterized by

k(λ) ≤

⌊
n− s

2

⌋
− 1.

Case 4 (gR = so(2, 2n − 1), n ≥ 2). We begin with the setting in which the root

systems are Q = SU(1, n− 1), R = SO(2, 2n− 1). Here τv = ωn,

λ0(τv) = ωn − (2n− 1)ω1 and zℓ =
3

2
ℓ− (ℓ− 2)n− 2.

A reduction point λ has the form λ = (1− n, 1/2, . . . , 1/2). In this case k(λ) = 1 and

ρ = (n − 1/2, n − 3/2, . . . , 1/2). Upon calculating Ξλ we have Ωλ = ∆+
nc = {ε1 ± εj |

2 ≤ j ≤ n}∪{ε1}. It follows that λ is quasi-dominant, and k(λ) ≤ 2− 1 is satisfied.

In the case Q = R = SO(2, 2n− 1), we have τv = 0,

λ0(τv) = −(2n− 2)ω1 and zℓ =
3

2
ℓ− (ℓ− 3)n−

7

2
.

A reduction point λ has the form λ = ((3/2 − n)k, 0, . . . , 0), with k = ℓ − 1. Here

Ξλ = ∅, so Ωλ = ∆+
nc. It follows that λ is quasi-dominant for both ℓ = 1 and ℓ = 2,

which both satisfy k(λ) ≤ 2− 1.

Case 5 (gR = so(2, 2n − 2), n ≥ 3). The case Q = R = SU(1, n − 1) occurs twice,

as described by

λ0(τv) =





ωn−1 − (2n− 2)ω1 if τv = ωn−1

ωn − (2n− 2)ω1 if τv = ωn

and z1 = n− 1.

A reduction point λ has the form:

λ =





(
3

2
− n−

an−1

2
,
1

2
+

an−1

2
, . . . ,

1

2
+

an−1

2
,−

1

2
−

an−1

2

)
if τv = ωn−1

(
3

2
− n−

an
2
,
1

2
+

an
2
, . . . ,

1

2
+

an
2

)
if τv = ωn

.
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In this setting k(λ) = 1 and ρ = (n− 1, n− 2, . . . , 0), from which it follows that

Ωλ =





{ε1 − εn} if τv = ωn−1 and an−1 = 0

∆+
nc if τv = ωn−1 and an−1 6= 0

{ε1 + εn} if τv = ωn and an = 0

∆+
nc if τv = ωn and an 6= 0

.

It follows that λ is quasi-dominant if and only if ai = 0 for i = n− 1, n.

For Q = R = SO(2, 2n− 2), we have τv = 0,

λ0(τv) = −(2n− 3)ω1 and zℓ = −(ℓ− 3)(n− 2) + 1.

If λ is a reduction point, then it has the form λ = (−(n − 2)k, 0, . . . , 0), where

k = ℓ− 1. A quick calculation gives

Ωλ =





∆+
nc = {ε1 ± εj | 2 ≤ j ≤ n} if ℓ = 1

{ε1 + εn−1} if ℓ = 2

.

It follows that λ is quasi-dominant for ℓ = 1 and ℓ = 2.

Case 6 (gR = e6(−14)). The quasi-dominant reduction points are λ = 0,−3ω1, as

given in [9]. These are the highest weights of the Wallach representations, and

k(λ) = 0, 1, respectively.

Case 7 (gR = e7(−25)). The quasi-dominant reduction points are λ = 0,−4ω7,−8ω7,

and ω6−10ω7, as given in [9]. The first three of these weights are the highest weights

of the Wallach representations, where Q = EV II . For these weights k(λ) = 0, 1, 2,

respectively. For the fourth weight, Q = SO(2, 10). A general weight in this setting

gives k(λ) = ℓ + 1, and it turns out that λ is quasi-dominant if and only if ℓ = 1

and s = 0.
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Table 4.2. Cone decomposition for quasi-dominant reduction points

gR Q(τ) Cv

su(p, q) SU(p′, q′) {

n+1−q′∑

i=p′

aiωi | ap = −

p−1∑

i=p′

ai −

n+1−q′∑

i=p+1

ai}

sp(n,R) Sp(q,R) {
n∑

i=r

aiωi | an = −
n−1∑

i=r

ai}

so∗(2n) SO∗(2p), 3 ≤ p ≤ n {
n∑

i=p

aiωi | an = −2
n−2∑

i=p

ai − an−1}

– SU(1, n− 1), n even {a1ω1 + anωn | an = −a1}

so(2, 2n− 1) SU(1, n− 1) ∅

– SO(2, 2n− 1) ∅

so(2, 2n− 2) SU(1, n− 1) {a1ω1 + anωn | a1 = −an}

so(2, 2n− 2) SU(1, n− 1) {a1ω1 + an−1ωn−1 | a1 = −an−1}

– SO(2, 2n− 2) ∅

e6(−14) EIII ∅

e7(−25) SO(2, 10) {a6ω6 + a7ω7 | a7 = −2a6}

– EV II ∅
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Corollary 4.1.2. There are only finitely many quasi-dominant weights in each cone.

In particular, each Hermitian symmetric pair has finitely many quasi-dominant re-

duction points.

For a fixed triple (gR, Q(τ), R(τ)), there exists a unique line λ0(τv) + zζ con-

taining all the vertices λv. The line has a distinct vertex for each level of reduction.

If R(τ) 6= ∆, each vertex has a corresponding cone of infinite length whose dimen-

sion is rkG − rkR(τ). The set of quasi-dominant reduction points can be viewed

geometrically as integral points in polytopes contained in these cones. In each case,

the polytope contains the vertex of the cone and is determined by either one or two

hyperplanes that separate the polytope from the rest of the cone.

Example 4.1.3. For the triple (sp(n,R), Sp(n−3,R), Sp(n−3,R)), quasi-dominant

reduction points are characterized by
∑3

i=1 an−i ≤ n − ℓ − 6. The set Λ+
r can be

represented by the integral points in the 3-simplex determined by the hyperplane

∑3
i=1 an−i = n− ℓ− 6, as in Figure 4.1.

an−1

an−2
an−3

Figure 4.1. Simplex containing Λ+
r for the triple (sp(n,R), Sp(n− 3,R), Sp(n− 3,R))

4.2 Quasi-dominance in Terms of Reductive Dual Pairs

The set of quasi-dominant reduction points also has a nice description in terms

of reductive dual pairs. Let Λr(k) denote the set of reduction points for which

k(λ) = k. Recall the notation for dual pairs given in Theorem 2.3.1. The sets Σ

and the highest weights of V σ were explicitly given in Kashiwara–Vergne [24] for

gR = su(p, q) and gR = sp(n,R), and we will follow their conventions.
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Quasi-dominant Highest Weights for su(p, q)

Let gR = su(p, q) and assume that k ≤ p ≤ q. Following Kashiwara–Vergne,

Σ ={(n1, . . . , ni, 0, . . . , 0,−mj , . . . ,−m1) | n1 ≥ · · · ≥ ni > 0,

m1 ≥ · · · ≥ mj > 0, 0 ≤ i ≤ q, 0 ≤ j ≤ p, i+ j ≤ k}.

If σ = (n1, . . . , ni, 0, . . . , 0,−mj , . . . ,−m1) ∈ Σ and V σ = L(λ), then

λ = (−k, . . . ,−k,−mj − k, . . . ,−m1 − k︸ ︷︷ ︸
p

, n1, . . . , ni, 0, . . . , 0︸ ︷︷ ︸
q

). (4.1)

Proposition 4.2.1. Let gR = su(p, q) and 0 ≤ k < min{p, q}. If λ ∈ Λr(k) is of the

form (4.1), then λ is quasi-dominant if and only if n1 ≤ p− k and m1 ≤ q − k.

Proof. In the language of Theorem 4.1.1, m1 = s′ + 1 and n1 = s′′ + 1.

Corollary 4.2.2. Let gR = su(p, q) and 0 ≤ k < min{p, q}. Then

|Λ+
r (k)| =

(
p+ q − k

k

)
.

Proof. Counting the number of elements in Λ+
r (k) is equivalent to counting the

number of k-tuples (n1, . . . , ni,m1, . . . ,mj) for which 0 < ni ≤ · · · ≤ n1, 0 ≤ mj ≤

· · · ≤ m1, 0 ≤ i ≤ k, j = k − i, n1 ≤ p− k, and m1 ≤ q − k. Fix i. The number of

i-tuples (n1, . . . , ni) with 0 < ni ≤ · · · ≤ n1 and n1 ≤ p−k is equal to the number of

paths in the (x, y)-plane from (0, 1) to (i, p−k) with unit-length steps only going up

or to the right. The total number of steps in each path is i+ p− k − 1, so the total

number of paths is
(
i+p−k−1

i

)
=

(
i+p−k−1
p−k−1

)
. Similarly, for each of these i-tuples there

are
(
q−i
k−i

)
=

(
q−i
q−k

)
j-tuples (m1, . . . ,mj) with 0 ≤ mj ≤ · · · ≤ m1 and m1 ≤ q− k. It

follows that |Λ+
r (k)| =

∑k
i=0

(
i+p−k−1
p−k−1

)(
q−i
q−k

)
, which is also equal to

(
p+q−k

k

)
.
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The number of quasi-dominant reduction points for a fixed 0 ≤ k ≤ r − 1 has

an interesting distribution. Figure 4.2 shows this distribution for gR = su(40, 50).

10 20 30

1´10
17

2´10
17

3´10
17

4´10
17

5´10
17

6´10
17

Figure 4.2. The numbers |Λ+
r (k)| for gR = su(40, 50)

Corollary 4.2.3. For gR = su(p, p),

|Λ+
r | = F2p+1,

where Fn denotes the n-th Fibonacci number.

Quasi-dominant Highest Weights for sp(n,R)

Let gR = sp(n,R) and assume that k ≤ n. Following Kashiwara–Vergne,

Σ = Ô(k). First consider the case when k is odd. Then −1 ∈ O(k) and O(k) ∼=

SO(k)×{±1}. Write k = 2l+1. Using the same conventions as in Kashiwara–Vergne,

we have Σ = {(m1, . . . ,ml; ε) | m1 ≥ · · · ≥ ml ≥ 0, ε = ±1}. If σ = (m1, . . . ,ml; ε)

with ε = (−1)m1+···+ml and V σ = L(λ), then

λ =
(
−

k

2
, . . . ,−

k

2
,−ml −

k

2
, . . . ,−m1 −

k

2

)
. (4.2)

If σ = (m1, . . . ,mj, 0 . . . , 0; ε) with mj 6= 0 and ε = (−1)m1+···+mj+1, then

λ =
(

−
k

2
, . . . ,−

k

2
,−

k

2
− 1, . . . ,−

k

2
− 1,−mj −

k

2
, . . . ,−m1 −

k

2︸ ︷︷ ︸
k−j

)
. (4.3)
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Proposition 4.2.4. Let gR = sp(n,R) and k = 2l + 1 < n. If λ ∈ Λr(k) is of the

form (4.2) or (4.3), then λ is quasi-dominant if and only if m1 ≤ n− k + 1.

Proof. The description of λ in the proof of Theorem 4.1.1 shows that m1 = 2+s.

Since the proofs of several several of the remaining corollaries in this section

are very similar to the proof of Corollary 4.2.2, they will be omitted.

Corollary 4.2.5. Let gR = sp(n,R) and k = 2l + 1 < n. Then

|Λ+
r (k)| = 2

(
n− l

l

)
.

Next consider the case when k is even. In this case, O(k) ∼= SO(k)⋉Z2. Write

k = 2l. Using the conventions of Kashiwara–Vergne, we have Σ = {(m1, . . . ,ml)± |

m1 ≥ · · · ≥ ml ≥ 0}. If ml 6= 0, then (m1, . . . ,ml)+ = (m1, . . . ,ml)−, otherwise

(m1, . . . ,ml)+ 6= (m1, . . . ,ml)−. If σ = (m1, . . . ,ml)+, then

λ =
(
−

k

2
, . . . ,−

k

2
,−ml −

k

2
, . . . ,−m1 −

k

2

)
. (4.4)

If σ = (m1, . . . ,mj, 0 . . .)− with mj 6= 0, then

λ =
(

−
k

2
, . . . ,−

k

2
,−

k

2
− 1, . . . ,−

k

2
− 1,−mj −

k

2
, . . . ,−m1 −

k

2︸ ︷︷ ︸
k−j

)
. (4.5)

Proposition 4.2.6. Let gR = sp(n,R) and k = 2l < n. If λ ∈ Λr(k) is of the form

(4.4) or (4.5), then λ is quasi-dominant if and only if m1 ≤ n− k + 1.

Corollary 4.2.7. Let gR = sp(n,R) and k = 2l < n. Then

|Λ+
r (k)| =

(
n− l + 1

l

)
+

(
n− l

l − 1

)
.

Corollary 4.2.8. For gR = sp(n,R),

|Λ+
r | = Fn+4 − (n+ 3).
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Let gR = so∗(2n) and assume that k ≤ ⌊n/2⌋. This case was not studied in

Kashiwara–Vergne, but it is well-known (see [20] or [13]) that k ≤ ⌊n/2⌋ implies

Σ = Ŝp(k). Furthermore, using the standard conventions, Σ = {(m1, . . . ,mk | m1 ≥

· · · ≥ mk ≥ 0}. If σ = (m1, . . . ,mk) and V σ = L(λ), then

λ = (−k, . . . ,−k,−mk − k, . . . ,−m1 − k). (4.6)

Proposition 4.2.9. Let gR = so∗(2n) and k < ⌊n/2⌋. If λ ∈ Λr(k) is of the form

(4.6), then λ is quasi-dominant if and only if m1 ≤ n− 2k − 1.

Proof. From the description of λ in the proof of Theorem 4.1.1, m1 = 1 + s.

Corollary 4.2.10. Let gR = so∗(2n) and k < ⌊n/2⌋. Then

|Λ+
r (k)| =

(
n− k − 1

k

)
+ δn,2k+2,

where δi,j is the Kronecker delta.

Corollary 4.2.11. Let gR = so∗(2n). Then

|Λ+
r | = Fn + (−1)n.

Remark 4.2.12. It is interesting that the bounds on m1 and n1 in the results of this

section are the same numbers listed in Table 3.1 for the Wonderful Correspondence.
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