
 
 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Genome-wide analysis of codon usage in Mycobacteriophage and S. aureus 

 

Ian Nicholas Boys 

 

Director: Tamarah Adair, Ph.D. 

 

 

The molecular genetics of microbial life, including viruses and bacteria, is of 

great relevance to medicine, evolutionary theory, and other areas of science. Here, we 

study the implications of codon bias, the non-random usage of synonymous codons, and 

GC3, the frequency of codons with guanine or cytosine in the third nucleotide position. 

Biased codon usage frequently is the result of adaptation for optimal expression, 

reflecting tRNA abundance. It has previously been suggested that GC3 is similarly of 

functional significance, with implications for transcription and translation. We make use 

of the HHMI’s mycobacteriophage genome database to analyze trends in codon bias and 

GC3 content in a diverse set of viruses with a common host. To this end we utilize 

genome landscapes to observe trends in genome-wide GC3 usage, and find that patterns 

in GC3 content can be informative in the difficult process of unraveling the complex 

relationships between mycobacteriophages. Similarly, we show that codon bias is 

likewise informative, though it in some instances contradicts the evidence provided by 

GC3 analysis. In a second portion of the study, we investigate the relationship between 

codon bias, GC3 content, and gene expression in S. aureus BUSA 2288. We find that 

codon bias is correlated with gene expression in S. aureus, suggesting that it does indeed 

reflect selection for expression. GC3 is, however, not tied to any trend in expression. 
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CHAPTER ONE 
 

Introduction 

 

 

General Overview of Investigation 

 

 The molecular study of microbial life, including viruses and bacteria, is an 

important field of science.  Basic research in this area has advanced our understanding of 

as diverse subjects as the mechanisms of disease, the interplay of organisms within the 

environment, and the means by which organisms are capable of adapting over time. In 

this study, we investigate codon usage, an integral part of molecular genetic studies, in 

two microbial systems. Specifically, we study the relationships between codon bias, the 

non-random usage of synonymous codons, and GC3, the frequency of codons with 

guanine or cytosine in the third nucleotide position. We make use of the Science 

Education Alliance’s mycobacteriophage genome database, hosted at phagesdb.org, to 

analyze trends in codon bias and GC3 content in a diverse set of viruses with a common 

host. In a second portion of the study, we investigate the relationship between codon bias, 

GC3 content, and gene expression in the bacterial pathogen, Staphylococcus aureus. 

 

Phage Genomics 

 

Bacteriophages, a group of bacteria-infecting viruses, are the largest known group 

of biological entities in the biosphere and may in fact be the largest source of genetic 

diversity on the earth (Hatfull et al., 2010). Phages have been developing and evolving 

for perhaps as long as their prokaryotic hosts, allowing such diversity to arise. 

Additionally, phages frequently exchange genetic material both with each other and with 
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their bacterial hosts, extending their already-impressive genetic diversity. Besides 

promoting diversity, the prevalence of such horizontal transfer has given rise to a great 

degree of mosaicism, or genomic composition resulting from two or more sources of 

genetic material, within their population as a whole (Pedulla et al., 2003).  

 Mycobacteriophages are a diverse group of viruses that exhibit the general trends 

of diversity and mosaicism shown by phages, at large. Mycobacteriophages can infect a 

wide range of bacterial hosts, including a number of disease-causing bacteria such as M. 

leprae and M. tuberculosis, the bacteria respectively responsible for forms of leprosy and 

tuberculosis, as well as innocuous bacteria, such as the model organism M. smegmatis, a 

common non-pathogenic soil bacterium. All mycobacteriophages isolated and studied 

thus far are dsDNA phages of the tailed morphotypes siphoviridae and myoviridae 

(Hatfull et al., 2008). As of early 2015, over 5800 mycobacteriophages have been 

isolated, over 800 of which have been sequenced, with over 400 annotated and available 

in GenBank with Mycobacterium smegmatis mc2 155 as their common host 

(phagesdb.org). This collection provides for study a diverse group of phages that have the 

potential to be in genetic communication (Pope et al., 2011).  

 The mycobacteriophage population is large and diverse. Individual phage 

genomes range from just under 41.5 kbp to over 164.5 kbp and contain a large variety of 

individual genes. As of late 2012, the time of database access for much of the data used 

in this study, there were 3631 unique groups of related genes, phamilies, which had been 

identified in the mycobacteriophage population (Cresawn et al., 2011). As more phages 

are isolated and sequenced, this number continues to increase. Such diversity among the 

gene phamilies reflects the diversity of the phages themselves. With such a large and 
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diverse population of phages, it is imperative that some scheme of classification be 

applied in order to facilitate the accessibility of the genetic information that has been 

obtained, as well as to assess and explore the genetic relationships between phages and 

their individual genes. To meet these needs, a cluster-based classification system was 

established. Traditionally, cluster designations are made primarily with reference to 

pairwise alignment as well as the number and order of shared genes. Classification of 

mycobacteriophages has given rise to twenty one clusters of phages, many of which 

contain subclusters that reflect the varying degrees of similarity between phages in each 

cluster (Pope et al., 2011)(PhagesDB.org). 

With respect to the observed relationships between phages, three categories have 

been described: first, there are cases where there is evidence of a clear relationship 

between phages; second, there are cases where there are no easily-assessed relationships 

between phages; and third, there are cases in which the evidence is mixed, such as when 

certain portions of phage genomes appear to be related, while others do not (Hatfull et al., 

2010). In order to accommodate the wide degree of variability in phage-phage 

relationships, four primary comparative techniques have been applied in the assessment 

of inter-phage relationships and phage clustering. These include dotplot analysis, 

comparison of average nucleotide identity (ANI), assessment of related gene families, 

and assessment of synteny (conserved gene order). These genome clustering techniques 

can be grouped in two general categories:  nucleotide-level and gene-level analysis.  

In the case of nucleotide-level analysis, the primary technique that is used is 

dotplot analysis, an assessment of overall sequence similarity between two genomes. If a 

dotplot of two aligned phage genomes indicates similarity that spans for over 50% of the 
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smaller of the two genomes, they are assigned to the same cluster. A secondary technique 

is a comparison of ANI between phages, a criterion that generally supports relationships 

indicated by dotplot analysis. No explicit parameters are established for ANI comparison, 

though like-clustered phages often share 80-98% ANI, whereas phages from different 

clusters may share only 53-59% ANI (Hatfull et al., 2010).  

With regard to gene-level analysis, the number of phams (related genes) that are 

shared by different phages is indicative of genomic relationship and in most cases 

supports the data from dotplot and ANI analysis. A second gene-level analysis is that of 

genomic synteny, or conserved gene order, which for mycobacteriophages is conducted 

via Phamerator, a purpose-developed genome browser maintained by Steve Cresawn of 

James Madison University (Cresawn et al., 2011). The use of pairwise alignment and the 

correlation of regions of genomic similarity and gene loci provide a means of assessing 

past transfers of genetic material, an indicator of relatedness (Hatfull et al., 2010).  

While these four techniques provide a robust means of exploring the genomic 

relationships among phages, there are certain instances in which their application still 

yields ambiguous results. For example, Mycobacteriophage Patience, a phage isolated in 

South Africa by members of the University of Kqazulu-Natal, was designated as a 

singleton, a phage that is not considered to be a member of any cluster (phagesdb.org). 

This decision was made because the evidence provided from standard techniques did not 

provide enough justification for its inclusion in a cluster, though it did show significant 

similarity to members of cluster H. As a result of an in-depth study of the genomics of 

Patience, it was suggested that the regions of similarity between Patience and other 

phages may reflect recent acquisitions via horizontal transfer (Pope et al., 2014). Due to 
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this degree of ambiguity, other means of comparing phage genomes, using codon usage 

and GC3 content, are being explored. 

 

Staphylococcus aureus: Significance, Diversity, and Genomics 

 

 Staphylococcus aureus is a low-G+C Gram-positive bacteria in the Phylum 

Firmicutes, Class Bacilli and Family Staphylococcacea.   S. aureus is a nonmotile cocci 

that frequently colonizes the human body and, while most S. aureus strains are 

commensals, at times they may become pathogenic and present a threat to their host. The 

recent proliferation of multidrug-resistant strains of S. aureus has placed great strain on 

the healthcare industry and has led to an increased incidence of death from staph 

infections, earning it a designation of a ‘serious’ hazard level (the second-highest 

possible) by the CDC (CDC, 2013). In light of this trend towards antibiotic resistant 

strains, alternative antibacterial treatments, including phage therapy, are being 

investigated (Rose et al., 2014). Phage therapy, which is a common means of treatment 

for bacterial diseases in parts of the former USSR, depends upon lytic phages to infect 

and lyse their bacterial hosts (Thiel, 2004). It is somewhat hindered by the fact that many 

phages have a very specific host range, necessitating further research into the factors that 

affect the host specificity and virulence of phages (Rose et al., 2014). 

 To date, several lineages of S. aureus have been identified that exhibit diversity in 

genetic content and host-specificity. These contain ten that are known to infect humans, 

six of which can also infect other animals (Sung et al., 2008). S. aureus strains contain 

numerous mobile genetic elements (MGEs), including prophages and plasmids, which in 

most cases make up 15-20% of the bacterial genome (Lindsay, 2014). Some of these 

MGEs have been identified as the source of antibiotic resistance observed in some 



6 
 

strains, necessitating their further study (Alibayov et al., 2014). Rapid horizontal transfer 

of these MGEs has been observed in co-colonization, showing the ease with which 

resistance genes can be transferred (McCarthy et al., 2014).  

Pathogenicity islands, MGEs comprised of prophage-derived, conserved regions 

of S. aureus chromosomal DNA that are responsible for pathogenesis, exist in S. aureus 

and other microbial pathogens (Alibayov et al., 2014). The transfer of MGEs is most-

often facilitated by transduction via helper phages, as direct transformation and 

conjugation are rare in S. aureus (Lindsay, 2014). S. aureus Pathogenicity islands 

(SaPi’s) most-frequently provide staph with the ability to produce superantigens and 

other toxins that are responsible for the onset of toxic shock syndrome (Alibayov et al., 

2014).  

 The nature of phages specific to S. aureus is two-fold; while they can serve as 

therapeutic agents, they also are agents in the transfer of genetic material. This duality 

presents a challenge to phage therapy. It has been suggested that codon bias and other 

genomic characteristics can be used to identify staph phages that are likely to have high 

therapeutic efficacy without presenting a risk of unwanted horizontal gene transfer or 

introduction of virulence factors (Bishal et al., 2012). 

 

Codon Bias: Significance, Applications, and Measures 

 

 The study of codon bias, the skewed usage of synonymous codons, is an 

important component of genomic studies. Codon bias is enabled by the redundancy 

inherent in genetic code, as there exist 64 possible codons to code for only 20 amino 

acids. Thus, for most amino acids one of the possible codons can be disproportionately 

favored in a genetic sequence. It has been demonstrated that this biased codon usage is of 
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functional significance (Lawrence et al., 2002). Most importantly, it has been linked to 

selection for optimized expression (through increased translational efficiency), reflecting 

the pool of available tRNA molecules expressed by a given organism (Ikemura, 1981). 

Further, codon bias has been shown to result from a combination of factors. These factors  

include optimization for recombination, mRNA stability, and mutational pressure, the 

general trend among bacteria towards either GC-rich or GC-poor – but not intermediary – 

genomes (Behura and Severson, 2013). Codon bias is preserved among evolutionarily-

linked organisms, and thus serves as a useful tool in the study of evolutionary and 

functional processes (Lawrence et al., 2002).  

There are several ways to measure the degree by which synonymous codons are 

used in a non-random fashion. One of the oldest measures, the Effective Number of 

Codons (Nc or ENc) is a scale that provides a measure of bias across all codons (Wright, 

1990). It is calculated for any given coding sequence through the following formula:  

 

𝐸𝑁𝑐 = 2 + (
9

𝐹2
) + (

1

𝐹3
) + (

5

𝐹4
) + (

3

𝐹6
)   (1) 

 

The denominators, F2, F3, F4, and F6, represent the average homozygosity 

(analogous to allelic homozygosity in population genetics) of the codons with 2, 3, 4, and 

6 synonymous codons, respectively (Wright, 1990). The more-biased the usage, the 

higher the homozygosity, and thus the lower the ENc. Calculated in this fashion, ENc 

values can range from 20 (highly biased codon usage) to 61 (neutral, unbiased codon 

usage) for any given genetic sequence. As a summary statistic, the measure is most-

appropriate for genes of a length that gives a good probability that, assuming nonbiased 
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usage, each codon could be used once (e.g., genes with a length of 61 or longer, 

permitting all non-stop codons to be used once, assuming completely balanced codon  

usage of all codons) (Wright, 1990). For shorter genes, bias tends to be overestimated.  

ENc can be plotted as a function of GC3 frequency, the frequency of third-

position nucleotides in a genetic sequence that are either guanine or cytosine (Wright, 

1990). An expected (bias-neutral) ENc value can be calculated for any given genic GC3 

value, by the following formula (Wright, 1990). This formula produces a curve that is 

useful for visually comparing the codon bias of different genetic sequences.  

  

    (2) 

 

Where experimental ENc (equation one) deviates from the expected value 

(equation two), it is suggested that selectional bias is present. ENc, as a measurement of 

selectional bias, is conserved among viral genes that are of shared origin or are tuned for 

expression in a specific host (van Hemert et al., 2007a).  

ENc is not without limitations, in that it is calculated in a fashion independent of 

other genomic data. It does not compare any given gene’s bias to that of those throughout 

the rest of the genome, sometimes limiting its comparative use (Lawrence et al., 2002). 

Thus, it is sometimes favorable to make use of other measures of codon bias that are 

derived in a different manner. Other measures of bias include the Codon Adaption Index 

(CAI), and the Adaptive Codon Enrichment (ACE).  

CAI is derived from the Relative Synonymous Codon Usage (RSCU) for each 

amino acid. The RSCU is calculated for a set of highly-expressed genes, which is used as 

22 )31(3

29
32

GCGC
GC=ENce



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a benchmark for bias (Comeron and Aguadé, 1998). Other genes’ codon usage is 

compared to this, providing a CAI that represents how biased a gene is for expression by 

a specific organism. While more-directly tied to expression, and thus of greater functional 

correlation than ENc, CAI necessitates expression data, and is thus not well-suited for 

large-scale genomic analyses of organisms for which expression data is not readily 

available (Lawrence et al., 2002).  

ACE circumvents many of the issues inherent to both ENc and CAI, as it provides 

a statistic that can be tuned to any specific genome without the requirement for 

expression data (Lawrence et al., 2002). Iterative algorithms can be used to provide a set 

of genes within a genome that are predicted to be highly expressed, and, since these 

algorithms can be applied to multiple genomes, ACE can be used to compare 

intergenomic data (Lawrence et al., 2002). This makes ACE attractive when working 

with diverse genomic data, as it can provide a means of comparing bias between different 

genomes in a more-robust manner than can ENc. 

However, ENc remains a widely-used indicator of bias, and is well-suited for 

large-scale analyses of genomic data (Comeron and Aguadé, 1998). Unlike CAI, 

expression data is not required for its calculation, and it is more-readily calculated than 

ACE, which depends upon other analyses to predict the population of genes that are 

optimized for expression in a given genome (Lawrence et al., 2002). Given these 

advantages, and in light of the fact that mycobacteriophage genomes share much 

similarity, in part negating the advantage of ACE, we make use of ENc in this study. 
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GC3: A Genomic Feature of Significance 

 

 Studies of GC3, the frequency of codons with guanine or cytosine in the third 

nucleotide position for any genetic sequence, have suggested that it may be of functional 

significance. Due to the degeneracy of the genetic code, base substitutions at the third 

nucleotide position have a lower probability of resulting in missense mutations that 

would impact protein function. Therefore, alterations to the third base pair are commonly 

believed to present less of a barrier to a gene’s adaptation to reflect overall trends in 

organismal codon usage (Palidwor et al., 2010). Thus, it has been suggested that biased 

usage at the third nucleotide position results predominantly as a direct result of codon 

optimization for organismal tRNA abundancy (Palidwor et al., 2010) (Ikemura, 1981).  

Despite this, studies have demonstrated that GC3 exhibits non-random trends at 

both the genic and genomic level that may be independent of codon bias (Tatarinova et 

al., 2010). There exist many possible explanations concerning the functional purpose 

behind such trends in GC3 content, as discussed below. 

In their 2010 study, Palidwor et al. developed a model of codon usage that 

describes a large proportion of GC3 variance for human, prokaryotic, and plant genes as a 

result of GC content alone (Palidwor et al., 2010). They show that in most cases, GC3 

exhibits a linear relationship with overall GC content. They note the exception that for 

codons with G/C-alternatives in the first nucleotide position, Arginine and Leucine, this 

trend is not as significant (Palidwor et al., 2010).  

In their 2014 study of over 35,000 prokaryotic genomes, Babbitt et al work to 

explain why degeneracy may have developed as it did, with most degeneracy involving 

the third nucleotide position (Babbitt et al., 2014).  Degeneracy appears to be tied to GC 



11 
 

content in the third position (GC3), with 2- and 3-fold degenerate codons biased most 

commonly toward C. They suggest that a possible reason for this may be DNA stability, 

as such bias prefers a more stable phosphate linkage between positions two and three in 

the nucleotide. Higher GC3 content also increases the size of the minor groove, 

increasing DNA flexibility. In their study, GC3 was shown to correlate with changes in 

intrinsic DNA flexibility both in individual genes and across the entire genome, 

accounting for over 50% of the observed trends in flexibility. The unique nature of the 

third codon position leads them to suggest that the third nucleotide may have been an 

addition to an archaic two-nucleotide code that hypothetically existed. Thus, they propose 

that trends in GC3 usage are the result of a change in the genetic code that is buried deep 

in evolutionary history, and that optimization of DNA flexibility may be a reason behind 

observed trends in GC3 content. 

 In their 2013 study, Takuno et al observe a correlation between GC3 content and 

methylation patterns in the rice, thale cress, bee, and human genomes. Their analysis 

showed a strong negative correlation (r = -0.67, P < 0.0001) between GC3 and CpG 

methylation (Tatarinova et al., 2010). Further, they propose that there may be a 

transcriptional basis for genic trends in GC3 content, as they observe that GC3 frequently 

increases over the length of a many genes. Specifically, they suggest that increases in 

GC3 may increase transcriptional efficiency, allowing quick bursts of gene expression. 

They note that in A. thaliana, housekeeping genes have relatively-low GC3 content and 

are highly-methylated, which has previously been shown to decrease mutation rates 

(Takuno and Gaut, 2012). The reduction of mutation rates in essential, optimized genes is 

expected to be advantageous, potentially implicating GC3 in this evolutionary process. 
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 Trends in GC3 usage in viral genomes have been studied to a lesser extent than 

those of their prokaryotic and eukaryotic counterparts, though a number of telling 

observations have been made. A study of Astroviridae, a genus of ssRNA viruses, 

suggests that host nucleotide composition (and codon bias) is the driving force behind 

viral codon bias (van Hemert et al., 2007b). A study of Begomoviruses, a genus of 

dicotyledon-tropic ssDNA viruses, indicated that their codon usage was likewise host-

dependent, suggesting that this trend is widespread among viral groups (Xu et al., 2008). 

A large-scale study of the four serotypes of dengue virus, a member of the ssRNA 

family Flaviviridae, implicated mutational bias and purifying selection as the driving 

forces behind viral codon selection (Lara-Ramirez et al., 2014). Specifically, it was noted 

that the third nucleotide position appeared to be under the greatest pressure, as it 

exhibited the strongest correlation with codon bias, hinting at possible functional 

significance (Lara-Ramirez et al., 2014). 

 In their 2008 study of a diverse set of bacteriophages that infect E. coli, P. 

aeruginosa, and L. lactis, Lucks et al showed that viral codon bias and GC3 may be 

linked to transcriptional efficiency or mRNA stability, and thus expression of viral genes, 

during infection (Lucks et al., 2008). They found that structural proteins showed the 

greatest similarity to host GC3 and codon usage, suggesting that genes that must be 

highly-expressed may be under pressure to reflect such characteristics. This conclusion is 

supported by a study that showed that GC3 correlates with a drastic increase in 

transcriptional efficiency in human cell culture (Plotkin and Kudla, 2011).  
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Aims of Investigation 

 

 It has been demonstrated that GC3 and codon bias are of functional significance. 

In this study, we explore the implications of both genomic features in 

Mycobacteriophages and S. aureus. We hypothesize that both GC3 and codon bias (as 

measured by ENc) are of functional significance in phages, and that they will therefore 

exhibit non-random trends in related phages. As part of exploring this hypothesis, we 

investigate the relationship of singleton Mycobacteriophage Patience and cluster H 

phages with a focus on GC3 and ENc. Further, we hypothesize that GC3 and ENc will 

influence gene expression in S. aureus.    
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CHAPTER TWO 
 

Methods 

 

 

Source of Sequences and Database Versions 

 

Phage genome data used in this study were sourced from the Phamerator 

database, a phage-specific genomic database maintained by Steve Cresawn of James 

Madison University (Cresawn et al., 2011). For the phage genome-based portion of this 

study, the date of access for the database was May 19th, 2012. Genomic data were 

retrieved from the database in FastA format through the use of a Python script. Only 

coding sequences were used in this study. For the pham and gene-based segments of this 

study, data was retrieved on various dates during the fall of 2014 using the standalone 

Phamerator program (available freely at phagesdb.org) or through use of NCBI BLAST 

(Altschul et al., 1990). 

 Genomic data for S. aureus strain N315 were retrieved from EnsemblBacteria 

(EBI). The sequence used was submitted by Kuroda et al (Kuroda et al., 2001). RNA-Seq 

data were obtained from a previous study of blue-light sensitivity of S. aureus isolate 

BUSA2288. RNA was extracted, enriched, and purified from two sets of 24 1mL dark-

grown (control) cultures that were pooled before submission to OSHSC for analysis on 

an Illumia MiSeq sequencer. RNA-Seq data were imported into GeneSifter 

(PerkinElmer), an online microarray and sequence analysis package for organization and 

analysis.  
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Calculation and Analysis of Codon Usage Statistics and Codon Bias 

 

 Open-source and purpose-developed tools (code available upon request) were 

used to analyze both S. aureus and phage genomic data. Codon usage frequencies were 

calculated at the genomic level by summing the codon usage in all annotated genes using 

self-developed Perl and C++ programs. Raw frequencies were compared without any 

form of weighting to compensate for amino acid abundancy. GC3, the number of codons 

with guanine or cytosine in the third nucleotide position, was calculated in the same 

manner for all called genes for all phages that were analyzed. Codon usage statistics for 

each gene, genome, and cluster of phages were analyzed. The purpose-developed codon 

analysis suite, Codoninator, was used to identify genes that differed from mean GC3 

values by a given margin (typically set at plus or minus two standard deviations), 

facilitating identification of genes of interest.  

For every phage or S. aureus gene, the Effective Number of Codons (ENc) was 

calculated through the use of CodonW (John Peden, maintained at 

http://sourceforge.net/projects/codonw), a program that conducts codon-based analysis of 

genetic sequences. There was a subset of S. aureus genes (16 of the total of 2951) for 

which the ENc could not be calculated, owing to the presence of an internal stop codon. 

This set of genes was considered irrelevant for the current study and excluded from 

analysis.  

S. aureus transcripts were separated into expression brackets based on the order of 

magnitude of their transcript count (detection number). Since overall expression levels 

varied between the two replicates by nearly an order of magnitude for most genes, the 
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replicate with the greatest range of transcript levels was selected for analysis. This 

provided the best resolution when comparing transcript levels. The separation of data into 

brackets provided sets of 64, 576, 1180, 543, and 157 transcripts (10^5 to 10^1) for 

analysis. A chi-squared analysis of these expression brackets, comparing observed to 

expected ENc, as calculated by the below formula, was performed. Expected ENc, a 

value specific to each genic GC3 value, assumes completely balanced usage of 

synonymous codons, and provides a benchmark against which to measure observed 

codon bias (Wright, 1990).  

  

    (2) 

 

GraphPad Prism was used to perform a correlation analysis of variance from 

expected ENc, GC3, and expression level. Correlations were assessed for significance by 

two-tailed t-tests with a cutoff of P < 0.05. 

A dotplot was generated using the program Gepard (Jan Krumseik, maintained at 

http://www.helmholtz-muenchen.de/en/mips/services/analysis-tools/gepard/index.html). 

 

Genome Landscape Generation and Description 

 

 Genome landscapes are a measure of the relative change in a specific 

measurement throughout an entire genome (Lucks et al., 2008). In this study, they served 

as a means of comparing genomes and assessing the relatedness of phages. Since GC3 

genome landscapes are calculated with reference to a reading frame, only coding 

sequences are included as input. The same technique applies to the generation of GC1, 

22 )31(3

29
32

GCGC
GC=ENce



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GC2, and overall GC landscapes, though for GC landscapes the calculation must be 

performed on the nucleotide, not codon, level, to account for GC at each position. The 

interspersed non-coding sequences, which in bacteriophages make up only a small 

portion of the genome, are ignored. GC3 Genome Landscapes are generated by assigning 

a binary value to each codon: 0 if its third nucleotide position is comprised of adenine or 

thymine (AT) and 1 if it is comprised of guanine or cytosine (GC). For each each codon, 

the binary value is added to a cumulative genome-wide sum up to that point, and the 

genome-wide average GC3 frequency is subtracted from the sum (Lucks et al., 2008). 

 

 

                 (3)  

 

This summary statistic generates a graph in which upward slopes are indicative of 

regions of relatively-high GC3, when compared to the genome-wide average, and in 

which downward slopes indicate lower-than-average GC3. An example of GC3 

landscape generation can be found in Appendix A. In this study, the GC1/2/3 

(collectively referred to as GCX) landscapes were generated through the use of a Perl 

script. Data in the form of a list of cGCX values (the raw value, representative of change 

in GCX for each location in the genome) were output for statistical processing. Cluster-

wide cGCX averages were generated for each cluster, and a comparable control, 

comprised of sixteen randomly-selected phages from the HHMI database, was used as a 

benchmark for statistical comparison. 

 In this study, landscapes were normalized based on genome length in order to 

facilitate comparison of different viral genomes. All landscapes were treated as if they 

  
m

=i

GC3GC3i=cGC3
1
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were the same length, permitting comparison between landscapes of different lengths. 

Landscapes were produced by sampling the cGC3 level one-hundred times at regular 

intervals. Landscapes with more-frequent samplings were also explored, and were not 

found to be of improved comparative utility. Alternately, raw genome landscapes can be 

produced for comparison of specific features in genomes of different lengths.  

 Cluster average landscapes were produced by taking the mean value for each 

landscape of the hundred loci in all phages within a cluster. Similarity of landscapes 

within a cluster was determined by calculating the standard deviation for each landscape 

locus and then averaging all hundred samplings that produced the overall landscape to 

attain a value representative of the entire genome. 

 

Analysis of S. aureus strain N315 Transcript Levels, GC3, and ENc 

 

  Transcription levels were linked to CodonW data (GC3, ENc, and other bias 

statistics) through the ID conversion utility included as a part of DAVID (NIAID, NIH), a 

bioinformatics package (Huang et al., 2007). The cross-referenced data were analyzed 

using a combination of Microsoft Excel and GraphPad Prism. Except where otherwise 

noted, Pearson’s correlations were tested for statistical significance using a two-tailed t-

test with a cutoff at P < 0.05.  
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CHAPTER THREE 

 

Results 

 

 

Comparative Bacteriophage Codon Usage Analysis 

 

 In order to compare overall codon usage between phages and clusters, codon 

usage frequencies were calculated for each phage. The frequencies were found to be 

similar among like-clustered phages, likely reflecting an increase in shared genomic 

content of such groups. With regard to singleton Patience, Patience's codon usage 

frequencies were compared with the average frequencies of each cluster. A mean percent 

difference (MPD) among codon frequencies was calculated by averaging the percent 

differences between Patience and the averages of the various clusters for each individual 

codon (Table 1). An example of calculating the mean percent difference between two 

codon usage tables can be found in Appendix B. The difference in codon usage between 

Patience and cluster H was 38.8%, whereas for the next-closest cluster, L, the difference 

was 46.1%. Other clusters differed even further than cluster L, with some, such as 

clusters B, C, I, K, O, P, and Q differing by more than 70%. 
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Table 1. Mean Percent Difference of all Codon Usage Ratios between Patience and all Clusters. 

This analysis shows that Patience's codon usage was most similar to those of cluster H. 

 

Cluster MPD Cluster MPD 

 A 71.649 

 

J 52.900 

B 81.192 K 77.384 

C 81.433 L 46.089 

D 50.252 M 64.524 

E 68.373 N 75.109 

F 50.495 O 79.049 

G 76.374 P 83.069 

H 38.842 Q 79.565 

I 79.497   

 

 

 In order to assess the similarity of the ENc values of selected clusters, the overall 

variance (σ2) of genome-wide ENc values (calculated per gene) for all phages in each 

cluster was calculated (Table 2). An artificial control cluster consisting of a sample of 

sixteen randomly-selected phages was used to assess the significance of the calculated 

variance. Most clusters, such as D, G, L, and P, exhibited extensive similarity among 

their ENc values, as indicated by their having a variance among their ENc values that was 

separated from that of the control group by an entire order of magnitude or more. Some 

clusters, however, had a variance that was within an order of magnitude of that of the 

control, indicative of less similarity. Following this approach, it was determined that 

clusters A, B, I, and K were more diverse than the others. The variance among all of the 

ENc values of cluster H changed from 0.94 to 13.25 when Patience was included as a 
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member, a jump of two orders of magnitude to a value that was barely below that of the 

control, 14.67.   

 

Table 2. ENc Variance for all Clusters. Clusters differed widely in the range of similarity in ENc 

values among their members. 

 

 Cluster ENc σ2 Cluster ENc σ2   

A 3.84 K 1.85 

B 4.24 L 0.14 

C 0.22 M 0.58 

D 0.01 N 0.29 

E 0.20 O 0.18 

F 0.25 P 0.10 

G 0.08 Q 0.05 

H 0.94 H + Patience 13.25 

I 5.20 Control 14.67 

J 0.29   

 

 

 The average of all the observed ENc values (formula 1) was compared to the 

average of all the expected ENc values, as calculated from the genic GC3 frequencies 

(formula 2), in order to assess selectional bias within the clusters (Table 3). All clusters 

besides A, E, M, N, and Q had average ENc values that deviated from their expected ENc 

values by more than the control group did from its expected value. This deviation 

suggests the presence of some form of selectional bias in the codon usage of many 

phages. 

 

 



22 
 

Table 3. Expected and Actual ENc Values for all Clusters. Difference from expected ENc is an 

indicator of codon bias. 

 

Cluster/Singleton Average ENc Expected ENc Difference 

A 38.92 38.22 0.70 

B 35.59 36.88 -1.29† 

C 34.78 36.54 -1.76† 

D 44.66 42.05 2.60† 

E 38.50 38.38 0.12 

F 46.08 42.70 3.39† 

G 36.67 37.86 -1.19† 

H 48.36 46.93 1.43† 

I 36.18 37.11 -0.93† 

J 45.11 41.42 3.69† 

K 36.46 37.23 -0.77† 

L 46.00 44.58 1.42† 

M 40.56 39.94 0.63 

N 37.64 37.83 -0.19 

O 35.99 36.92 -0.93† 

P 35.92 37.00 -1.08† 

Q 36.81 37.34 -0.54 

Patience 55.45 60.73 5.28† 

Control Group 39.99 39.29 0.70 

† - Values that are of a greater magnitude than the control 

 

A visual comparison of Patience and cluster H ENc and GC3 values highlights 

this difference in codon usage between the phages (Figure 1). Typically, Patience's genes 

are of a lower GC3 content and higher ENc, when compared to those of cluster H phages. 

This indicates that while Patience may be most similar to cluster H phages, it still differs 

from cluster H in terms of codon bias and GC3 content. 
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Figure 1. ENc v GC3 Plots for Cluster H Phages and Patience A comparison of the ENc vs. GC3 

plots for all genes of Patience and cluster H phages highlights some of the differences between 

Patience and other cluster H phages.  

 

Genome Landscapes as a Tool for the Study of Phage Genomics 

 

 While our primary interest was GC3, we additionally explored the use of GC1 and 

GC2 landscapes in visualizing phage genomes. Landscapes were calculated using the 

summary statistic described in formula 3 for GC1, GC2, and GC3. A comparison of the 

standard deviations among the different landscapes within a cluster was used to 

determine which landscape would be best-suited for comparative purposes (Table 4). 

There was no consistent pattern found for the GCX landscapes in terms of amount of 

variability as calculated by averaging variance at each landscape locus within a cluster. In 

most cases, such as in clusters C, E, and O, GC3 was more variable than GC1 or GC2, 

however occasionally (Cluster Q) GC1 or GC2 had similar variability. GC3 was selected 

as the primary landscape for study, since GC3 has been shown to be functionally-relevant 
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in previous studies (Zheng et al., 2014)(Tatarinova et al., 2010)(Babbitt et al., 

2014)(Lara-Ramirez et al., 2014).  

 

Table 4.  Standard Deviation of GC1/2/3 for Select Clusters 

 

Cluster 

 C D E F G J M N O P Q 

GC1 17.74 9.92 12.09 24.68 9.03 31.41 24.66 18.02 9.96 10.85 4.01 

GC2 21.09 8.80 17.50 17.23 6.51 41.01 14.07 11.63 9.79 10.01 9.95 

GC3 42.33 11.52 33.02 38.21 11.34 56.97 66.65 20.46 21.14 14.74 9.56 

 

 

 The GC3 genome landscapes of like-clustered phages exhibited similarity. Cluster 

F is one of the most diverse clusters and was thus chosen as a point of focus when 

investigating the utility of genome landscapes for clustering (Hatfull et al., 2008). A 

comparison of the graph of the average GC3 landscape of cluster F and those of F-cluster 

members Llij and Dorothy shows that, while individual phages differ to a degree from the 

average, as a whole their upward and downward trends generally reflect that of the 

cluster, indicating a similar distribution of GC3-rich regions throughout their genomes 

(Figure 2).  
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Figure 2. Cluster F GC3 Genome Landscapes: Genomic Similarity A comparison of cluster 

F's average GC3 landscape and those of two of its members, Llij and Dorothy, demonstrates that 

cluster average landscapes are representative of those of individual cluster members, preserving 

many of their defining characteristics. Note that when reading GC3 genome landscapes, upward 

slopes indicate genomic regions with higher-than-average GC3, whereas downward slopes 

indicate regions of lower-than-average GC3. 

 

Some clusters have a greater degree of diversity than others, which has prompted 

the further division of their members into subclusters. When the cluster B subcluster GC3 

landscapes are superimposed, both the diversity among and similarity between the 

different subclusters are apparent (Figure 3). While the graphs deviate from one another 

substantially, the slopes of the different subclusters are often correlated. For example, in 

the 60% to 85% range, all subclusters experience a steep upward slope, indicative of high 

genomic GC3 content, which is then followed by a steep downward slope towards the 

90% range of the genome, indicative of lower-than-average GC3 content. In this and 

other cases, the relationships between subclusters become apparent upon close 

examination of their landscapes. 
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Figure 3. Cluster B Genome Landscapes by Subcluster: Related Landscapes A comparison 

of all subcluster GC3 Landscapes of cluster B demonstrates that subclusters share similar 

genomic features, despite their increased genetic distance.  

 

Since the genome landscapes of like-clustered phages are similar, it follows that 

they can be used to evaluate relationships between phages that are not included in the 

same cluster, potentially highlighting genomic links that may not be suggested by a 

phage's cluster designation. One such case is the relationship between singleton Patience 

and cluster H. A graph of the GC3 landscapes of Patience and cluster H subcluster 

averages shows a high degree of similarity between the GC3 landscapes of Patience and 

those of cluster H (Figure 4). There are, however, regions in which trends in GC3 content 

are nearly the opposite of those of cluster H phages, such as in the region surrounding 

40% of the distance through the genome. 
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Figure 4. Cluster H and Patience Genome Landscapes: Evidence for Relationships The GC3 

landscape of phage Patience is similar to those of cluster H throughout much of its genome, 

lending support to the notion that Patience may be related to cluster H phages.  

 

This suggests that GC3 landscapes may be a useful tool in identifying genomic 

relationships that may not be obvious through the use of other techniques. A 

measurement of the standard deviation of each point along the normalized GC3 

landscapes was taken for each cluster (Table 5). With Patience added to cluster H, the 

standard deviation within cluster H shifted from 34.754 to 37.470, a value that was still 

less than that exhibited by certain other clusters and subclusters. Comparison with a 

control cluster of sixteen randomly-selected phages validated this technique as a 

measurement of relatedness of genomes, as the control exhibited a standard deviation of 

73.234, which was outside of the bounds of all established clusters and subclusters. 
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Table 5. GC3 Landscape Standard Deviations. Analysis of the GC3 landscapes showed that 

Patience's GC3 landscape was similar to those of the phages in cluster H. 
 

Cluster and Subcluster GC3 Landscape Standard Deviations 

 Full sub1 sub2 sub3 sub4 sub5 sub6 sub7 sub8 sub9 sub10 +P 

A 66.547† 28.247 29.900 14.765 11.372 33.645 18.565 19.065 14.226  24.337  

B 23.852 13.482 7.539 15.723 14.647        

C 42.326† 38.231†           

D 11.529            

E 33.022            

F 38.212† 33.187 21.797          

G 11.339            

H 34.754 27.236          37.470 

I 37.159 12.448           

J 56.965†            

K 25.929 14.905 28.342 28.342 13.906 24.222       

L 25.986 9.360 22.513          

M 66.654†            

N 20.456            

O 21.142            

P 14.743            

Q 9.569            

Ctrl 73.234†            

† – value that is higher than that of cluster H with Patience included as a member 

+P – with Patience included in the cluster 

 

 

Comparative Analysis of Pham GC, GC1, GC2, and GC3  
 

 In order to ascertain whether GC3 and GC are conserved at the genic level, 

average pham (gene family) GC/GC3 was compared with the pham size (indicative of the 

degree of conservation of a pham among known phages) by means of Pearson 

correlations. A strong correlation (r = 0.414, P = 0.0134) between the number of pham 

members and GC3 was detected. Similarly, a strong correlation (r = 0.445, P = 0.0074) 

between GC and number of pham members was detected. A weaker correlation (r = 
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0.367, P = 0.03) was found between number of members and GC2, and none was found 

for GC1. Further, while a strong correlation between standard deviation of average pham 

GCX values and number of pham members was found for both GC1 and GC2 (r = 0.468, 

P = 0.0046 and r = 0.552, P = 0.0006, respectively), no such trend was observed for 

either GC or GC3. 

 

 

Genome-Wide Pham Synteny and Dotplot Analysis 
 

 Further evidence of a relationship between Patience and cluster H phages comes 

from the application of traditional clustering techniques. Classic techniques, such as 

dotplot analysis of Patience and cluster H phages and an analysis of genome-wide pham 

synteny indicated a weak relationship between Patience and cluster H. A dotplot 

demonstrates a degree of base-pair similarity between Patience and cluster H phages 

(Figure 5). Patience has regions of its genome that share identity with those of both 

Predator, an H1 phage, and Barnyard, an H2 phage. Such regions of alignment, however, 

do not span at least 50% of the shorter phage’s genome, as would be required to 

designate it a member of cluster H under the current clustering guidelines. 
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Figure 5. Dotplot of Patience and cluster H Phages Predator and Barnyard A dotplot analysis of 

Patience and cluster H phages Predator and Barnyard indicates a degree of similarity in between 

Patience's genome and those of H-cluster phages. Diagonal lines indicate genomic regions in 

which base pairs match between two genomes.  

 

Additionally, a comparison of the pham maps of Patience and H-cluster phages 

showed that Patience shares 39 of its 110 phams with at least one cluster H phage (Figure 

6). Perhaps more striking is that, of these 39 phams, 18 are unique to Patience and cluster 

H, appearing in no other clusters, a factor that supports the possibility of their having 

been in genetic communication, either directly or through an intermediary.  
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Figure 6. Annotated Pham Map of Patience and Cluster H This annotated pham map 

shows the synteny of shared phams between Patience and cluster H. Portrayed is a map of the full 

genomes of Patience and cluster H phages Predator, Konstantine, and Barnyard. Lines connect 

common phams, and circles indicate the exclusivity of the shared phams. Phams marked by a 

white circle are phams that are unique to Patience and cluster H. Phams marked by a black circle 

are those that are shared with at least one phage from another cluster. 
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S. aureus Gene Expression Compared to Genomic Features 

 

Our investigation of S. aureus genomics centered on comparison between mRNA 

transcription levels (representative of gene expression), genomic measures of codon bias 

(ENc), and GC3. Pearson’s correlations were calculated for each set of measures (GC3 

and transcript count, ENc and transcript count, etc.) and significance was tested by a two-

tailed t-test. 

A weak, negative correlation between observed ENc and expression level was 

detected (r = -0.1551 P <0.0001). This supports the idea that codon bias, as measured by 

ENc, reflects optimization for gene expression in S. aureus. To further investigate this 

trend, the relationship between variance from expected ENc and transcription levels, a 

measure of selectional bias, and expression was assessed, and a weak positive correlation 

was observed (r = 0.1925 P < 0.0001).   

 

 

Figure 7. Comparison of read count (representative of transcript abudance) and ENc for all 

expressed S. aureus genes. The group of genes with a high ENc of 50 or more, representative of 

very unbiased codon usage, do not contain any genes that are expressed at as high of levels as 

those with lower ENc.  
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 A chi-squared analysis of ENc values for S. aureus N315 transcripts was 

conducted (Table 6). Transcripts were separated into five categories based on expression 

level, by order of magnitude. Expected ENc was calculated based on transcript GC3. A 

significant (P < 0.01) deviation from the expected ENc was calculated for the most-

highly expressed set of genes, indicating the presence of selectional bias in highly-

expressed genes. No other groups deviated significantly from the expected ENc.  

 

Table 6. Summary of Chi-squared Analysis of ENc for Genes Grouped by Expression Level. 

Only the transcripts that were detected at the highest level were found to differ significantly from 

the expected value. While not part of a general trend, individual genes in lower expression 

brackets did exhibit substantial variation from expected ENc. 

 

Bracket n P < 0.01 

log5 64 yes 

log4 576 - 

log3 1180 - 

log2 543 - 

log1 157 - 

 

 

A similar analysis of GC3 showed no correlation between GC3 and expression (r 

= 0.02081, P = 0.2859) (Figure 8). Most genes, regardless of expression level, fell within 

a GC3 range of roughly 0.1 to 0.3. 
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Figure 8. Comparison of Read Count (Transcript Abudance) and GC3 for All Expressed S. 

aureus Genes. No significant correlation was detected, though there are some outliers of potential 

interest.  
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CHAPTER FOUR 

 

Discussion 

 

 

Strengths and Weaknesses of Mycobacteriophage Clustering 

 

 The relationships between Mycobacteriophages are of a complex nature. Many 

phages exhibit extensive synteny and base-per-base nucleotide similarity, indicative of 

either shared evolutionary history or genetic exchange, but it is pertinent that other 

techniques for evaluating the relatedness of phages be explored. The cluster-based 

approach to categorizing the relationships between phages is limited in that it in some 

cases cannot account for the degree of mosaicism observed in different groups of phages 

that are related at some level, either by common ancestry or through horizontal gene 

transfer. We believe that the additional, codon-based methods outlined in this study can 

be used in conjunction with standard techniques to further enhance the investigation of 

inter-phage relationships, either as a component of, or separately from, the established 

clustering system. As an example, traditional techniques provide insufficient evidence to 

classify Patience as a cluster H phage, but, when taken along with evidence provided by 

analysis of codon usage and GC3 landscapes, they provide support for a stronger 

relationship between Patience and cluster H.  

A 2014 study of Mycobacteriophage Patience concluded that it likely recently 

acquired via horizontal transfer the means of infecting mycobacterial species. The authors 

believe that Patience evolved in a low-GC environment before acquiring the required 

mechanisms for host expansion. They identify signs of recent, rapid adaptation – 
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including frameshifts to produce novel proteins, and codon bias in highly-expressed 

genes that reflects that of mycobacterial hosts (Pope et al., 2014). This rapid adaptation to 

a new host range could explain the conflicting nature of the evidence for a relationship 

between Patience and other mycobacteriophages, such as those of cluster H.  

 

Genome Landscapes as a Tool to Identify Cryptic Relationship among Bacteriophages 

 

In this study, we show that genome landscapes present a novel way of visually 

comparing phage genomes, and that they can provide information pertinent to the 

investigation of the relationships between phages. In order to facilitate the use of genome 

landscapes for clustering, it would be useful to develop statistical techniques which could 

better quantify the data presented by the landscapes, so that objective comparison could 

be implemented. The aforementioned method of using the deviation in cGC3 at various 

locations across the genome as a measure of relatedness is a starting point in this process, 

but a more sophisticated technique that perhaps takes into account the mosaicism that is 

observed in many phages would be preferable. If a specific, concrete guideline for 

comparison, comparable to those used in existing clustering methods (such as the 50% 

nucleotide similarity requirement in dotplot analysis), could be developed, genome 

landscapes could serve a much-more definitive purpose in genomic clustering. One 

promising approach would be the development of profile-Hidden Markov Models 

(profile-HMMs) that operate similarly to gene family predictors but instead utilize 

changes in GC3 in order to model families of related phages (Yoon, 2009).  

 One issue with the method developed here is that it relies upon normalized 

landscapes, and thus compares genomes of varied lengths with no direct consideration for 

their differences. Non-normalized clusters can easily be generated, but were not well-
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suited for this study. The control cluster assay suggested that it is improbable that phages 

of different lengths, when normalized, will seem artificially similar, since trends in GC3 

usage are unique phage-to-phage, but this would need to be addressed in any formalized 

comparative model.  

 As they stand, landscapes are most useful as an alternate method of presenting 

genomic data in order to aid in subjective decisions. As shown in the case of Patience 

and cluster H, genome landscapes can provide evidence for relationships between phages 

that may otherwise not be apparent. By providing a novel means of visualizing 

relationships between phages, genome landscapes may help indicate the existence of 

relationships between genomes that have on the nucleotide level been separated by a 

significant degree of divergence.  

 Additionally, genome landscapes and codon-bias analysis may provide useful 

information in the exploration of the relationships between related clusters. For example, 

Phamerator indicates a likely relationship between clusters I and P over large segments of 

their genomes – analysis of genome landscapes and codon usage and bias within such 

related regions could prove to be informative in the larger investigation of bacteriophage 

genomics. 

 

Interpreting ENc Values as Indicators of Relatedness 

 

Similarity between the ENc values of phages generally reflects and affirms 

traditionally determined cluster relationships. However, an analysis of ENc did not 

indicate a relationship between Patience and cluster H, as its ENc value deviates greatly 

from those of other H-cluster phages. This is likely related to the fact that Patience has 

very low GC content, which results in an average GC3 frequency of 0.498, which is 
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much lower than that of all other phages referenced in this study. Most clusters have 

average GC3 frequencies that range from 0.75 to 0.85. Cluster H phages also have low 

GC3 frequencies, with an average of 0.655, a value that, while low, is not nearly as low 

as that of Patience.  

When looking at ENc as an indicator of codon bias by checking deviation from 

expected ENc, it was shown that Patience exhibited a great degree of such deviation, 

indicating that biased codon usage was indeed present throughout its genome. Cluster H, 

however, deviated by a lesser degree than Patience, possibly suggesting divergent 

selectional pressures, again placing ENc-based analysis in contrast with the evidence 

provided by the codon ratios and genome landscapes that suggest a strong relationship 

between Patience and cluster H. This contradiction further underscores the complexity of 

the relationships between phages.  

Of interest, it was observed that clusters with less variance in ENc (Table 2) 

among all their genes generally had a greater level of bias, as indicated by deviation from 

expected ENc (Table 3). Initial analysis points to a possible negative correlation (r = -

0.2616, P = 0.2481), though more-robust analysis would be required to confirm this 

relationship. Such a relationship, if verified, could implicate maintenance of codon bias 

among phages, as measured by ENc, as a driving force in their evolution. 

 

Evidence for Pham-Wide Conservation of GC3 and GC 

 

 An analysis of GCX and GC statistics for phams that are shared by Patience with 

at least one other phage (n = 48) supports the hypothesis that GC3 content is under 

selective pressure. Strong correlations between the degree by which a pham is shared and 

both GC (r = 0.445, P = 0.0074) and GC3 (r = 0.414, P = 0.0134) were found, indicating 
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that GC3 is higher among more widely-conserved phams, suggesting a functional 

significance. A weaker correlation was found for GC2, and none was found for GC1, 

suggesting less of a functional role for these two nucleotide positions. GC1 and GC2 

were found to vary more among phams with more members, where no such relationship 

was found for GC or GC3. This lack of an increase in variation with pham size suggests a 

non-random distribution of GC and GC3 within phams, again suggesting possible 

functional significance. While this relationship merits further investigation, it should be 

noted that all phage genomes are not sequenced, so data concerning the degree by which 

phams are shared within the current sample could be an inaccurate representation of the 

greater population of Mycobacteriophages. Sampling bias, either resulting from the 

geographic distribution of collection sites or from the implemented isolation technique, 

could potentially skew the representation towards a specific subpopulation of phages.  

 

Functional Implications of GC3 and ENc in S. aureus 

 

Our analysis did not reveal any relationship between transcript abundancy and 

genic GC3 in S. aureus. However, the hypothesis that GC3 may impact translational 

efficiency remains untested, and in our opinion merits investigation. A relationship was, 

however, detected between codon bias (as indicated by deviation from expected ENc) 

and transcript abundancy. Most genes within the highly-expressed bracket are 

housekeeping genes associated with transcription, translation, metabolism, and 

maintenance of homeostasis. Other highly-expressed genes included Protein A (an IgG-

binding virulence factor), a cation antiporter, and cold-shock protein A. All of these are 

genes of significance to normal biological function of S. aureus, which follows their 

showing a significant deviation from their expected ENc.  
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We looked for correlations between GC3/ENc and transcript abundance with no 

regard for differential expression among different classes of genes. Housekeeping genes, 

virulence genes, prophage genes, and other classes of genes would all be expected to be 

expressed at different levels, regardless of GC3 and ENc. Further, different classes of 

genes would be separately up or down-regulated depending upon growth conditions. It 

could be informative to test for correlations between GC3/ENc and transcript abundance 

within such classes of genes, so as to reduce the probability that any impact on expression 

is masked by differences in gene expression as a result of gene function.   

As previously mentioned, when comparing GC3 with transcript abudancy, no 

overt trend was discovered. However, there exist some outliers, such as BAB42721, a 

high-GC3, highly-expressed (GC3 of 0.5, count of 33470), short (33 residues), gene of no 

known function. BLAST results indicate similarity to short sequences found in other S. 

aureus genomes. Another outlier, BAB43876, has a high GC3 (0.407), is short (55 

residues) and is translated at medium-high levels (count of 8702). It shows a high 

deviation (variance of 1.831) from expected ENc, indicating possible selectional 

pressure. As noted, however, ENc can be skewed for short (less than 61-residue) 

peptides, a factor that could explain this deviation. It displays wide homology among 

Staphylococcus species, and some homologous proteins are suggested to be toxins (S. 

aureus Pepa1 Chain A) (Sayed et al., 2012). Another outlier is BAB43169, which also 

has a high GC3 (0.422), yet shows completely-balanced codon usage (ENc = 61). It is 

transcribed at medium levels (count of 1577) and is identified as a ligase. Another outlier 

with high GC3 (0.459), high codon bias (ENc variance of 4.68), yet low expression 

(transcript count of 12) is BAB43349, a hypothetical protein of no known function. 
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While not providing evidence for a general role for GC3 in S. aureus, such outliers may 

indicate certain cases in which GC3 does in some way influence expression.  

 

Shortcomings and Further Steps 

 

 While this study provides some evidence for significance of GC3 within 

Mycobacteriophages, primarily through analysis of conservation of patterns in GC3 

among phages, it fails to suggest why this may be the case. It would be of benefit to 

conduct a controlled analysis of the influence of GC3 upon transcription and translation 

in phages. An experiment utilizing tools to create recombinant phages with GC3 variants 

(high, low, and control) of a known gene would provide a means of assessing the 

influence of GC3 on transcription and translation. Bacteriophage Recombineering of 

Electroporated DNA (BRED), a recombineering technique, has been used to insert EGFP 

into D29 phage, and a similar experiment with GC3-high and GC3-low EGFP variants 

would provide a simple means of assaying such effects, if any (Marinelli et al., 2008) (da 

Silva et al., 2013).  

 The section of the study concerning S. aureus provided preliminary evidence that 

there is no link between GC3 and translation in the bacterium. More replicates, as well as 

techniques to assay any impact on translation (such as MS) would further the study. A 

recombineering experiment similar to the one proposed above would also be beneficial, 

in that it would allow for a controlled means of assaying the impact of GC3 on expression 

in isolation. 
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APPENDIX A 

Genome Landscape Example 

 

 

 Genome landscapes are visual representations of trends in a measurement, such as 

GC3, throughout a genome. The following example will demonstrate the generation of a 

GC3 genome landscape for a short coding sequence. For reference, formula 3 is included 

below. 

 

 

                 (3)  

 

Given the sequence AAT.GGC.GTG.GGC.GCG.ATA.GTA.GAA, an algorithm 

to generate GC3 landscapes will first calculate the overall GC3 frequency of the 

sequence. In this case, four of the eight codons are GC3, so the mean GC3 is 0.5. 

The assignment of binary values for each codon will then proceed. A GC3 codon 

is assigned a 1, and an AT3 codon is assigned a 0. 

 

Table A.1 Example Codon Binary Assignments 

Position 0 1 2 3 4 5 6 7 

Codon AAT GGC GTG GGC GCG ATA GTA GAA 

Value 0 1 1 1 1 0 0 0 

 

  
m

=i

GC3GC3i=cGC3
1
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 The cGC3 (landscape value) is then calculated for each position along the 

landscape by equation 3. 

 

Table A.2 Example Landscape Generation 

Position Value 𝐆𝐂𝟑𝐢 – 𝐆𝐂𝟑̅̅ ̅̅ ̅̅  cGC3 

0 0 (0 + 0) – 0.5 -0.5 

1 1 (-0.5 + 1) – 0.5 0.0 

2 1 (0 + 1) – 0.5 0.5 

3 1 (0.5 + 1) – 0.5 1.0 

4 1 (1 + 1) – 0.5 1.5 

5 0 (1.5 + 0) – 0.5 1.0 

6 0 (1.0 + 0) – 0.5 0.5 

7 0 (0.5 + 0) – 0.5 0.0 

 

 

 The above example generates the following landscape.  

 



45 
 

 

Figure A.1 Example GC3 Genome Landscape 
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APPENDIX B 

Mean Percent Difference Example 

 

 

 The mean percent difference in codon frequencies was used to compare codon 

usage among phages. The following is a simplified example of the calculation, detailing 

its use in a hypothetical four-codon genetic system.  

 

Table B.1 Example Genome Codon Frequencies 

 Genome 1 Genome 2 

Codon A B C D A B C D 

Frequency 20% 15% 55% 10% 15% 25% 40% 20% 

 

 First, the percent difference would be calculated for each pair of codons, per 

equation four, below. 

%𝐷𝑖𝑓𝑓 =  
|𝑥−𝑦|

(
𝑥+𝑦

2
)
    (4) 

 For the example data set, this provides the following result. 
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Table B.2 Example Percent Difference Calculation 

Percent Difference  

Codon A B C D 

Freq. 1 20.0% 15.0% 55.0% 10.0% 

Freq. 2 15.0% 25.0% 40.0% 20.0% 

% Diff. 28.6% 50.0% 31.6% 66.7% 

 

 Next, the mean percent difference is calculated by taking the arithmetic mean of 

all calculated percent differences. In this example, the result is 44.23%.  
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