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Abstract 

Dust temperature is a measure of the energy of the stochastic motion of a dust particle, and is a result of the 

combination of the Brownian motion and the fluctuations in the dust charge and confining electric field. A 

method using the equilibrium value of the mean square displacement was recently introduced to obtain the dust 

temperature experimentally. As a follow up, this paper investigates the relationship between the temperature 

derived from the mean square displacement technique and a technique using the probability distribution of the 

displacements obtained from random fluctuations of the dust particle. Experimental results indicate that the 

harmonic confinement potential acting on the dust particle can be obtained by combining the two methods, 

allowing the non-linear effect of the confining force to be investigated. The thermal expansion in a one-

dimensional vertical chain is discussed as a representative application as it is related to the non-linear 

confinement force, or the asymmetric confinement potential.   

 

1. Introduction 

The temperature of a dust particle in dusty plasma is a combination of Brownian motion and fluctuations of the 

electric field and dust charge [1 – 9]. Experimentally, the dust temperature can be derived from the Gaussian 

velocity distribution, where the dust velocity is usually calculated from the position difference between 

subsequent frames of high speed video of the particle motion. Recently, we introduced a dust temperature 

measurement technique based on the mean square displacement (MSD) method [10 – 14]. Important 

information, such as the dust particle resonance frequency, neutral drag coefficient and dust temperature, can be 

easily extracted from the MSD experimental data. Since the MSD calculation uses only the displacement of the 

particles from the initial image frame, the cumulative errors inherent to other methods generated from the 

calculation of velocity can be reduced. Another benefit is that using the equilibrium value of the MSD to 

calculate the dust temperature significantly reduces the influence of un-wanted continuous coherent oscillations 

in the system confinement [10]. 

The position fluctuation of a single dust particle confined in a harmonic potential can be described by the 

Langevin equation, which for one-dimensional motion [11] is given by ( )
0
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where m  is the mass,   is the Epstein friction coefficient [15], 0 is the resonance frequency, and ( )R t  is a 

random force. The MSD solution to Eq 1 is ( ) ( )2
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. Experimental data for a particle’s 

position fluctuation can be used to generate the MSD as a function of the elapsed time. A fit to this data using 



Eq 2 then allows determination of the experimental parameters such as dust temperature T , the Epstein drag 

coefficient  , and the resonance frequency 
0 . Since this technique is based solely on the fluctuating dust 

positions, it has the added benefit of requiring no external perturbation to the dusty plasma environment.  

For a two-particle system, the correlated Langevin equations can be separated into two independent Langevin 

equations by using of the center of mass (CM) coordinates and positions relative to the CM of the system. In 

this case, the equation of motion for the CM and relative coordinates exhibit a simple form similar to Eq 1. In 

this case, the Langevin equation of motion for the relative coordinates also reflects the interaction between the 

two particles, which contributes to the overall confinement potential. 

It is well known that approximating the confinement potential of an individual particle as a quadratic function 

of the displacement from equilibrium is generally adequate for small fluctuations or low dust temperature. 

However, for higher dust temperatures, or a confinement potential having significant asymmetry, non-linear 

effects can no longer be ignored. Additional terms of the form 2 3

2 3 ...B x B x+ + , where 
iB , 2, 3, ...i =  are 

constants, must to be added to Eq. 1 to model these forces more accurately. Obtaining a mathematical solution 

to the non-linear equation that arises for a particle under forced oscillation is complicated [16, 17]. To obtain an 

analytical solution of the non-linear Langevin equation with a random force term ( )R t  (as in Eq 1) is much 

more difficult. 

Experiments which allow one to obtain information about the non-linear response of dust particles, especially 

the non-linear interactions that can arise between dust particles, can yield deeper insight to the understanding of 

the dusty plasma properties. Asymmetric interaction forces acting on the dust particles, such as the ion drag 

force or the ion-focusing effect in the vertical direction [18, 19], are an area of increasing research interest [20].  

In this paper we present a technique for investigating the local confinement potential based on the distribution 

of dust particle position fluctuations and the MSD method. Section 2 provides the theoretical background for 

using the probability distribution function (PDF) of the particle positions to calculate the confining potential. 

Section 3 presents the results of applying these two methods to experimental data. A comparison of the position 

probability distribution and MSD techniques is presented in Section 4, and the feasibility of using these 

techniques to derive non-linear coefficients of the interaction force is discussed. Section 5 presents an 

application of using the obtained non-linear coefficient to study the one-dimensional thermal expansion 

coefficient. Conclusions are presented in Section 6. 

2. Theoretical background 

A two-particle correlation density distribution function ( )1 2f r r−
v v  represents a joint probability for the relative 

position between the two particles, with the corresponding pair correlation function defined as [21]

( )2 1 2 1 2 1 2, ,x x y yg r r r r r z z = − − − 
v

 (3) 

For a two-particle system, the particle pair has cylindrical symmetry. Anticipating our experimental conditions, 

we take, i xir r= , to represent the displacement from the horizontal direction (perpendicular to gravity) and 

i ih z=  to represent the position of each particle along the vertical direction (parallel to gravity). This allows Eq 

3 to be rewritten as, ( )  ( )  ( )2 1 2 1 2, , , , ,g r h f r r h h t f r h t= − − =  (4) 
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particle pairs are derived from potentials, the probability of finding a particle at any particular location is related 

to the potential energy distribution at that location. This can be described by Boltzmann’s equation [22 – 28],
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where 
0a  is a constant, ( ),r h  is the confining potential energy, 

Bk T  is the particle temperature and 

( ) ( ), , Br h r h k T =  is the dimensionless potential. 

For small displacements about the equilibrium position  ,x r h= , ( )x  can be expanded as
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where primes denote the derivative with respect to x , and 
ip  represents the 

thi coefficient of the polynomials. 

A convenient potential zero can be chosen such that 
0 0p =  and 

1 0p = . Thus for small displacements, the 

restoring force can be linearized and the potential ( ) 2

2x p x =  is quadratic in the displacement x , with 
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0 is the particle’s resonance frequency. In the following, we will focus on the 

vertical direction h , i.e., x h= . Substituting Eq 6 into Eq 5 yields
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where 
i i BP p k T=  and 

0P  and 
1P  are zero by the argument given above. Thus, for a linear restoring force, 

only 
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The coefficient 
2P  may be determined experimentally by fitting the probability distribution function (PDF) of a 

particle’s position with a Boltzmann distribution, as in Eq 5. When the resonance frequency 0  is determined 

employing some other experimental method, for example the MSD method, the particle temperature can then be 

derived using Eq 8 and the experimentally determined coefficient 2P .  

As noted above, the dust temperature Bk T  can also be derived by fitting the MSD calculated for a particle’s 

fluctuating position with an equation of the form shown in Eq 2 to determine the equilibrium value 
0A . The 

relationship between the value of 
0A  derived from the MSD and the coefficient 

2P  derived from the PDF is 

given by,
0 2
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which can then be employed to serve as a criterion for the validation of the experimental measurement of each 

value. 

Combining the temperature derived from 0A as obtained from the MSD method and the coefficient 2P  obtained 

from the PDF of the particle position, the confinement potential ( )h  can then be obtained from Eq 8. 



This method may be extended to investigate the non-linear effect of the dust particle confinement force by 

including the higher-order terms shown in equation Eq 7, which is now written as

( )
2

2 3 40

3 4 ...
2 B

m
h h P h P h

k T


 =  +  +  +  (10) 

The coefficients of the higher-order terms may be determined by fitting the dimensionless potential ( )h  , 

calculated from the pair correlation function obtained from the experimental data (Eq 7) with a cubic or higher 

order equation.   

3. Experimental application 

The experiment described here was performed in a modified gaseous electronics conference (GEC) radio-

frequency (RF) cell [29], filled with argon gas at a pressure of 13.3 Pa. An RF electrical field was produced by a 

pair of capacitively-coupled electrodes 8 cm in diameter, situated one above the other, and separated by a 

distance of 2.54 cm. The upper electrode was grounded, while the lower electrode was powered by a RF 

generator at a constant frequency of 13.56 MHz. The amplitude of the input RF signal ranged from 1.5 – 9.0 W. 

An open- ended glass box of dimension 10.5 mm × 10.5 mm × 12.5 mm (width × depth × height) with 2 mm 

wall thickness was placed at the center of the lower electrode. Melamine formaldehyde spheres having a 

manufacturer-specified mass density of 1.51 
3g cm and diameter of 8.89 μm were used. A dust dropper was 

employed to introduce the particles into the glass box, where they were illuminated by a vertical sheet of laser 

light. The particles’ positions were recorded at 500 frames per second (fps) using a side-mounted, high-speed 

CCD (Photron) camera and a microscope lens. Fig 1 shows sample raw data of the fluctuations of the particle 

positions. 

Because of the statistical nature of the correlation function, the sampling time for the experimental data must be 

long enough (
Samplingt → ) to ensure the accuracy of the results. Accordingly, our experimental data were 

collected using a high-speed camera at 500 fps for a total duration of at least 3 minutes for each experimental 

run.  

 

Fig 1. Fluctuations in the (a) – (c) horizontal and (d) – (f) vertical directions for a two-particle vertical 

chain with RF power 1.74 W, 4.35 W and 5.08 W respectively. The separations between the upper and 

lower particles shown in the figure are all vertical distances (both particles are at the same mean horizontal 

positions under all the power settings). The mean vertical separations are 480, 215 and 213 ( m ) for RF 

power 1.74 W, 4.35 W and 5.08 W respectively. 

Employing the particle position fluctuation data shown in Fig.1, the density distribution function and pair 

correlation function ( )2 1 2g h h−  derived from data collected at 1.74 W, 4.35 W and 5.08 W are shown in Fig 2. 



 

Fig 2. Comparison of experimental results for the distribution function ( )2 1 2 1 2,f r r h h− − collected at RF 

powers of (a) 1.74 W, (b) 4.35 W and (c) 5.08 W, and the corresponding pair correlation function ( )2g h  

at (d) – (f).  

The dimensionless potential ( )h   is calculated from ( )2g h  using Eq 7 with the resulting distribution fit 

employing a quadratic function as shown in Eq 8. The results for various power settings are shown in Fig 3. 

 

Fig 3. (a) – (c) Experimental dimensionless interaction potentials ( )h   (symbols) at RF powers of 1.74 

W, 4.35 W and 5.08 W. Quadratic fits are indicated by solid lines. Each ( )h   is calculated from the 

corresponding 2g shown in Fig 2 (d) – (f). 



The particle position data obtained from the experiment were also used to calculate the MSD as shown in Fig 4 

for various RF powers. The equilibrium value
0A and the resonance frequency

0 were then derived from the 

theoretical fit obtained using Eq 2. 



 



Fig 4. (a) MSD’s at RF power settings of 1.74 W, 4.35 W and 5.08 W. (b) Corresponding expanded view of 

(a) for 0.5  s (symbols) and corresponding theoretical fits (solid lines) obtained using Eq 2. (c) Details 

for 4.35 W and 5.08 W from (b). 

As indicated in Fig 4, the equilibrium value
0A increases as the RF power decreases. It can also clearly be seen 

that the oscillation frequency increases as the RF power increases. These data are shown over a range of RF 

powers from 1.5 – 7.4 W in Fig 5a, b. The experimentally derived equilibrium value of the MSD, 
0A , and the 

inverse of the quadratic coefficient 
2P , obtained from the dimensionless potential   are compared in Fig 5a. 

As shown, the values are almost identical across the RF power range. Thus, the two methods yield consistent 

results, as required by the relationship given in Eq 9. 

 



Fig 5. (a) Comparison of 
0A  and 

21 P as a function of RF power. (b) Resonance frequency 
0 2   derived 

from MSD method illustrated in Fig 4. (c) Dust temperature calculated from 2

0 0 2Bk T A m=  using the 

values from (a) and (b). The trend lines are shown to guide the eyes. 

The dust temperature can also be obtained from the MSD technique (Fig 5c), allowing the potential 

( ) ( ) ( )Bh k T h =  to be calculated. In the following analysis, 
2  and 

3  are used to represent quadratic and 

cubic polynomials, respectively, for the potential fits. 

4. Analysis and discussion 

As shown in Fig 5a, the experimental values for the equilibrium value 
0A  of the MSD and the inverse of the 

quadratic parameter 
2P  of the dimensionless potential   are almost identical, as predicted by Eq 9. It is 

important to note that the two techniques use entirely different statistical methods: the MSD technique is 

focused on the temporal correlations while the PDF method of using 
2g  is determined by the fluctuations 

shown in the distribution of the spatial separations between the two particles. Thus, the experimental results 

shown in Fig 5a confirm that the dust temperature derived from the MSD method represent the stochastic 

motions of the dust particle and are valid for use in the Boltzmann distribution (Eq 5) to determine the potential.  

The advantages of using the MSD technique over other methods to derive the dust temperature are discussed in 

detail in reference [10]. Additionally, the temporal distribution obtained from the MSD technique is self-

sufficient, i.e., the dust temperature can be directly calculated from the measured values of 
0A  and 

0 , while 

the spatial (Boltzmann) distribution measured from the PDF of the particle positions must rely on other 

techniques to provide a separate measurement of the oscillation frequency
0 so that the dust temperature T

can be calculated from 
2P . However, there is one important advantage of using the spatial distribution 

2g , the 

investigation of the non-linearity of the interaction force. 

As mentioned in Section 1, to include non-linear effects, the Langevin equation must be modified to include 

higher-order terms, ( )2 2 3

0 2 3 ...mx m x m x R t B x B x = − − + + + +&& &   (11) 

It is difficult to solve Eq 11 mathematically. Additionally, for random fluctuations of small amplitude, it is 

questionable whether the deviations in the MSD result caused by any such non-linear effects can be resolved 

experimentally. On the other hand, assuming a Boltzmann distribution representation for 2g  and fitting the 

dimensionless potential   employing a higher order polynomial, as expressed by Eqs 6 and 7, is simple, as 

shown in the example below.  

In the following discussion, sine the fluctuation amplitude is small, only the cubic term is included in the 

analysis. Therefore, the quadratic term remains the dominant term.  

The non-linear coefficients 3P  and 
3p  are derived from fitting the potential distributions ( )h  and ( )h , 

respectively. 3P  is derived by fitting the potential distribution ( )h obtained from the spatial correlation 2g , 

and ( ) ( ) ( )Bh k T h =  , which also requires a value of the temperature measured using the MSD method, is 

shown in Fig 6 (a) and (b) as a function of RF power. The potential is also shown as a function of the vertical 

particle separation in Fig 6c.  



   

Fig 6. (a) Cubic coefficient 
3p  of the dimensionless potential 

3  as a function of the applied RF power. 

(b) 
3p  of the confinement potential 

3  as a function of the applied RF power, and (c) 
3p  as a function of 

the separation between the two particles.  

As can be seen in Fig 6c, for large separation, i.e., 400h m , 
3p  is close to zero, implying that the potential 

is parabolic. For separations between 214 400h m  , 
3p  is negatively increasing in magnitude as the 

separation decreases. It is important to note that rapid sign change from negative to positive occurs as the 

particle separation decreases to ~ 214h m . Since the cubic parameter 
3p  represents the asymmetric shape of 

the confinement potential, its sign determines the ‘softer side’ of the potential. The implications of this will be 

discussed in the following section. 

5. One-dimensional thermal expansion coefficient 

One of the applications of the non-linear confinement force is to study the linear thermal expansion of a crystal 

structure. The linear thermal expansion of a one-dimensional crystal structure L  as a function of the 

temperature change T  is given by [30] 

0LL L T =    (12) 

where L is the linear thermal expansion coefficient, and 0L is the original length of the crystal. Figure 9 shows 

the thermal expansion in a Lennard-Jones potential [31]. 



 

Fig 7. The mean displacement 
meanL  (relative to the zero-temperature equilibrium position 

0L ) in a 

Lennard-Jones potential. The asymmetric potential, with the ‘softer side’ of the potential for 
0L L , 

causes the mean displacement to increase as the confined particle temperature increases. Similarly, the inset 

shows a parabolic potential (dashed) with a cubic function potential (solid) with the non-zero mean 

displacement indicated (dash-dot).   

As shown in Fig 7, a particle will be confined at the potential minimum located at 
0L when its temperature is 

0 0T = . As the particle temperature increases, the mean displacement will increase to 
0 meanL L L= + , 

indicating a positive coefficient of thermal expansion. For small displacements (low particle temperature), the 

asymmetric potential can be described by a cubic polynomial. The sign of the cubic parameter determines the 

direction of the softer side. As shown in the inset, a cubic potential with a negative 
3p  has a softer side for 

0h  , as is seen in a Lennard-Jones potential. The softer side will move to 0h   if the cubic parameter is 

positive. This will cause the mean displacement to decrease as temperature increases, which is the origin of 

negative thermal expansion [32 – 36]. Therefore, the cubic parameter 
3p  can be used to study the linear 

thermal expansion. Cubic fits to the experimentally measured potentials are shown in Fig 8 for two different 

particle separations on either side of the critical value of 214h m = shown in Fig 6c. At RF power 4.35 W, 

the particle separation is 215 m , and 3p  is negative, while the slightly smaller particle separation of 2.13 µm 

at 5.08 W yields a positive value of 3p .  

 

Fig 8. The mean displacement relative to the equilibrium point at different particle energy levels (kinetic 

temperature), calculated using the cubic potential obtained from experimental data (symbols). Solid lines 

are cubic fits of the potential for equilibrium separations of 480 µm (RF power 1.74 W), 215 µm (RF 

power 4.35 W) and 2.13 µm (RF power 5.08 W). The mean displacement at RF power 1.74 W, where the 

cubic coefficient is determined to be near zero, is almost expansion-less. 

As shown in Fig 8, the mean displacement meanh  is zero for a parabolic potential (
3 ~ 0p ) at RF power 1.74 W 

(dotted line). As the RF power is increased to 4.35 W, the particle separation decreases to 215 m , and the 



cubic parameter changes to a negative value. The corresponding mean displacement 
meanh  increases positively 

as the particle energy level increases, indicative of a positive thermal expansion. As the RF power is further 

increased to 5.08 W, the cubic parameter 
3p  changes to a positive value. The corresponding mean 

displacement 
meanh  increases negatively as the particle energy level increases, which is a negative thermal 

expansion. This sign change is most likely related to the ion focusing effect [18, 19]. Changing the system RF 

power has an effect on the ion Mach number, moving the ion focusing region. It is speculated that the ion 

focusing region may change from a location between the two particles to a location which is down stream of 

both particles. This is a subject of further investigation. 

6. Conclusions 

A comparison of experimentally determined temperatures and confinement potentials for an interacting pair of 

dust grains immersed in a complex plasma environment has been made using two different methods. The mean 

square displacement (MSD) method takes advantage of temporal correlations in the particles’ positions to 

determine the particles’ resonance frequency 0  from the evanescent oscillation (c.f. Fig 4).  

On the other hand, the probability distribution function (PDF) takes advantage of the spatial variations in the 

particles’ positions. The experimental results shown in Fig 5a confirm the theoretical equivalence of these two 

techniques. Therefore, either the MSD or the PDF method can be used to examine the dust temperature, 

although the PDF method requires the resonance frequency to be measured separately using a different 

technique.  

It is important to note that use of the PDF method offers the advantage that the potential derived experimentally 

is the actual local confinement potential, making no a priori assumptions about its form. Given small 

fluctuation amplitudes, the simplifying assumption that the confining force is linear may be made, allowing the 

potential to be treated as quadratic. The nonlinear effects of the confinement force can be investigated by 

including the contribution of an additional cubic term in the potential. The result shows that at large separation 

distances the nonlinear coefficient is almost zero. As the separation distance decreases the nonlinear coefficient 

becomes negative. Interestingly, a transition occurred at ~ 214h m where the nonlinear coefficient rapidly 

changes sign from negative to positive as the particle pair separation decreases. The asymmetric confinement 

potential is related to the structural linear thermal expansion when the cubic parameter of the confinement 

potential is not zero. When the sign of the cubic parameter of the asymmetric confinement potential is negative, 

the linear thermal expansion is normal, i.e., the structure dimension increases as the temperature increases. Our 

experimental result shows that a negative linear thermal expansion occurred as 214h m . The cause of this 

change is currently unclear and will be the subject of continued investigation. 
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