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Abstract-Two-cofactor relations and their associated 
symmetry types have been studied for many years. While 
ordinary symmetries are simply transitive permitting them 
to be combined into clusters of variables, other types of 
symmetries have more complex transitivities. This paper 
shows how to convert the various types of symmetry into 
ordinary symmetries using state-space transformations. 
This permits the simple transitivity of ordinary symmetry 
to be extended to virtually any type of symmetry. 

1 Introduction 
Symmetric Boolean functions have been exploited in a 

number of different areas of design automation. [1-6] 
Research has progressed in a number of different directions, 
one of which is the identification and enumeration of the 
various types of symmetries that can exist between a pair of 
variables. [7-9] To identify these symmetries, one examines 
the relations between the cofactors of a Boolean function f . 

In virtually all cases, each relation is identified with a 
particular type of symmetry. Other avenues of research use 
group-theoretic definitions of symmetry, and include 
symmetries that cannot be defined in terms of variable pairs. 
[10-12] 

There are a number of different approaches to symmetry 
detection, not all of which are strictly cofactor based. (See [13, 
14] for example.) Although the cofactor relations still play an 
important role in defining symmetry types. 

Several researchers have examined the idea of variable 
pair transitivities ([15] for example). The transitive relations 
between various types of symmetric variable pairs are fairly 
complex, except for ordinary symmetries which are simply 
transitive. In this paper we will show how to extend the simple 
transitivity of ordinary symmetry to more general types of 
symmetry. These extensions will be used to create clustered 
variables which can be used in place of simple variables for 
symmetry detection. The use of clustered variables speeds up 
symmetry detection and enables us to detect symmetric 
variable pairs that do not manifest themselves as cofactor 
relations. We are able to extend transitivity to all known types 
of symmetric variable pairs, and we can extend our algorithm 
to handle new types of cofactor relations that, to the best of 
our knowledge, have never been used for symmetry detection. 

The output of our symmetry detection algorithm is a 
totally or partially symmetric function f  and a collection of 

corrective functions that must be applied to the inputs and 

outputs of f . In many cases these corrective functions are 

simple, but in some cases they are not. In our practical 
implementations of this algorithm, we have confined ourselves 
to the cases with simple corrective functions, but in this paper 
we will include some of  the details of the more complex 
cases. 

2 Cofactor Relations 
The cofactor of a Boolean function f  is found by setting 

one or more inputs to a constant value, either 0 or 1. In this 
paper, we designate cofactors using subscripts consisting of 0, 
1 and x. Suppose that f  is a four-input function, and we have 

set the first two variables to 1. This will produce the cofactor 

11xxf , which is a function of two variables. The ones and 

zeros designate the variables that have been replaced with 
constant values, and the x’s represent the remaining variables. 
When there is no opportunity for confusion, we will drop the 

x’s from the subscript and designate cofactors such as 11xxf  

as 11f . 

In most cases, symmetry detection is done using relations 
between two-variable cofactors. There are six such relations, 
which listed in Figure 1 with their associated symmetry types. 
These relations are called the classical relations. 

 
Type Condition 
Ordinary 

01 10f f  

Multi-Phase 
00 11f f  

Single-Variable a 
10 11f f  

Single Variable b 
01 11f f  

Multi-Phase Single Variable a 
00 01f f  

Multi-Phase Single Variable b 
00 10f f  

Figure 1. The Classical Relations. 
 
As shown in [16] the classical relations can be expressed 

in another form using the exclusive or function, which we 

designate as  . The ordinary relation, 01 10f f  becomes 

01 10 0f f  , and the multi-phase relation becomes 

00 11 0f f  , where 0  represents the zero function. 



A slightly more complex relation can be obtained by 
replacing the zero function with the constant-one function as 

in 01 10 1f f  . This gives us six new relations that are 

normally associated with six types of anti-symmetry. (The 
term anti-symmetry was introduced in [17]. Anti-symmetry is 
also known as skew symmetry [15] and negative symmetry 
[18].) These six new relations are given in Figure 2 along with 
their associated symmetries. 

 
Type Condition 
Anti 

01 10 1f f   

Anti Multi-Phase 
00 11 1f f   

Anti Single-Variable a 
10 11 1f f   

Anti Single Variable b 
01 11 1f f   

Anti Multi-Phase Single Variable a 
00 01 1f f   

Anti Multi-Phase Single Variable b 
00 10 1f f   

Figure 2. The Anti-Relations. 
 
Cofactor relations can be expanded in several ways, only 

a few of which have been investigated. The constant functions 

0  and 1  can be replaced with other functions to create 

relations of the form 01 10f f g   and the XOR operation 

can be replaced with another two-input function such as AND 

and OR to give relations of the form 01 10 0f f   and 

10 01f f g  . It is possible to use cofactors in more than 

two variables to detect higher-order symmetries between three 
or more variables. These types of relations have not been 
extensively studied. 

Relations between three or four two-variable cofactors 
give rise to the Kronecker symmetries. [9]. These relations use 
the XOR function, and are listed in Figure 3. Three and four 
cofactor relations can be extended in the same way as two-
cofactor relations. 

3 The State-Space 
In its most elementary form, the state-space of a Boolean 

function is an n-dimensional hypercube containing cofactors 
of the function with each dimension of the hypercube 
corresponding to an eliminated variable. In the extreme case, 
there will be one dimension for each input variable and the 
nodes will contain Boolean values. When symmetries are 
detected, two dimensions can be collapsed into a single 
dimension. The collapsed dimension corresponds to a 
clustered variable, and contains three or more nodes. We call 
this structure a hyperlinear structure to emphasize its non-
cubical nature. 

During symmetry detection new cofactors are computed 
and new symmetry tests are performed. The hyperlinear 
structure expands when new cofactors are computed, and 
collapses when symmetric variable pairs are detected. If the 

process runs to completion, the value of each node will be 
reduced to a single Boolean value. However, symmetry 
detection can be terminated at any point using either time or 
space constraints. This enables the detection process to be run 
in “anytime” fashion as in [18]. The process is adaptable to 
many existing algorithms, particularly those that already use 
cofactor relations for symmetry detection. It is especially well 
suited to techniques such as that detailed in [19], which use 
the cofactors that already exist in a ROBDD. 

 
Type Condition 

0K  
01 10 11 0f f f    

1K  
00 10 11 0f f f    

2K  
00 01 11 0f f f    

3K  
00 01 10 0f f f    

4K  
00 01 10 11 0f f f f     

0Anti-K  
01 10 11 1f f f    

1Anti-K  
00 10 11 1f f f    

2Anti-K  
00 01 11 1f f f    

3Anti-K  
00 01 10 1f f f    

4Anti-K  
00 01 10 11 1f f f f     

Figure 3. The Kronecker Relations. 
 
When a symmetry other than an ordinary symmetry is 

detected, a state-space transformation is applied to convert the 
symmetry to an ordinary symmetry. Corrective functions are 
then added to the functions input and output to compensate for 
the transformation. Any of the relations discussed in Section 2 
can be converted to ordinary symmetries, but in some cases 
the corrective functions are too complex for these relations to 
be useful. 

The technique described here is based on the technique 
presented in [20]. However in [20], symmetry is always forced 
to run to completion, only the classical relations are used, only 
input corrective functions are allowed, and the result is a state-
machine used for simulating the function. Here we extend the 
technique to general relations, permit both input and output 
corrective functions, and provide the result in a general form. 

4 Symmetry Detection 
The detection algorithm begins by computing four 

cofactors of the function and placing them in a two-
dimensional hypercube. Figure 4 illustrates how this would be 
done for the function abc abd acd bcd    and its four 

cofactors, 0 , cd , cd , and c d . The physical structure is 
a single-dimensional array which is indexed using a private 
indexing function to make it appear multi-dimensional. The 
use of a private indexing function permits the number of 
dimensions in the logical structure to change during the 
symmetry detection process. Furthermore, the logical structure 



can be indexed in unconventional ways to perform certain 
state-space transformations. 

It is obvious from Figure 4 that there is a an ordinary 
symmetry between variables a  and b . This causes the 
logical structure to collapse into a single dimension as in 
Figure 5. The vertices of Figure 5 are indexed by the number 
of ones in the input variables a  and b . 

 

 
Figure 4. The Array and Logical Structure. 

 

 
Figure 5. A Collapsed Logical Structure. 

 
Collapsing reduces the size and the number of 

dimensions, and it permits symmetric variable pairs to be 
combined into a single composite variable. Composite 
variables can be treated more or less like simple variables, 
thus simplifying the detection process. 

Testing for the other five classical relations can be done 
by selecting various pairs of nodes from the structure of 
Figure 5. However, rather than doing this, we modify the 
private indexing function and test for ordinary symmetry. For 
multi-phase symmetry, we modify the private indexing 
function to index one dimension in reverse order and test for 
ordinary symmetry. Figure 6 shows how reversing the second 
dimension of Figure 4 repositions the nodes. (The comparison 
is always between the node labeled “0,1” and the node labeled 
“1,0”, wherever these indices may appear.) Reversing the 
dimension is the same as negating the associated input 
variable. We call this the phase transformation. 

 

 
Figure 6. Reverse Indexing the Second Dimension. 

 
When a multi-phase symmetry is detected, the structure is 

collapsed using the phase transformation. This makes the 

transformation permanent for all future operations. To correct 
for the phase transformation it is necessary to place an inverter 
on the input representing the reversed dimension. 

To detect the single-variable symmetries it is necessary to 
reverse the indexing of odd-numbered rows or the odd-
numbered columns. (Rows and columns are numbered starting 
with zero.) We call this type of transformation the conjugate 
transformation. It is equivalent to transforming the inputs with 
a matrix is over the field GF2. (In GF2 there are two values 0, 
and 1 with AND replacing multiplication and XOR replacing 
addition. See [20] for the theoretical development.) Figure 7 
gives a matrix and shows the effect of multiplying the inputs 
by the given matrix. This results in testing for a single-
variable symmetry when comparing the nodes labeled “0,1” 
and “1,0”. Strictly speaking, the type of symmetry detected 
using the conjugate transformation is conjugate symmetry, not 
single-variable symmetry. Every single-variable symmetry is 
also a conjugate symmetry, but there are conjugate 
symmetries that do not manifest themselves as single-variable 
symmetries. (As in the function ab ac b c   , which has an 

ordinary symmetry between a  and b  and a conjugate 

symmetry between the composite pair ab  and the variable c
.) The conjugate transformation can detect these types of 
symmetries as well as single-variable symmetries. 

 

1 1

0 1

 
 
 

 

 
Figure 7. Reverse Indexing the Odd Rows. 

 
Again, the conjugate transformation is used during the 

collapse of the logical structure, making the transformation 
permanent. The matrix used during the detection is retained 
and used to construct the corrector function. If more than one 
conjugate symmetry is detected, the matrices are multiplied 
together in the order they are first used. To correct for 
conjugate transformations it is necessary to add one or more 
XOR gates to the inputs of the function. The final matrix is 
used to determine the inputs of these XOR gates. Each column 
of the matrix corresponds to an input of the transformed 
function, and each row corresponds to one of the original 
inputs. The outputs of these gates replace the original inputs. 
The columns of the transformation matrix determine the inputs 
of the XOR gates. 

There are two types of single-variable symmetries. 
Reversing the indexing of the odd rows gives one type, 
reversing the odd columns gives the other type. The multi-
phase single-variable symmetries can be tested by combining 
a phase transformation with a conjugate transformation. 



Detecting anti symmetries requires a transformation of the 
node contents, not just a transformation of indices. Correcting 
these sorts of transformations requires an output corrective 
function rather than an input corrective function. Figure 8 
shows the anti transformation required to detect an anti-
symmetry. Odd numbered rows of the hyperlinear structure 
are inverted. In Figure 8 it is not technically necessary to 
complement node 1,1, but doing so simplifies the corrector 
function. Like the previous transformations, anti 
transformations are temporary until a symmetry is detected, at 
which time the transformation becomes permanent. 

To correct the transformation of Figure 8, the output of 
the function must be XORed with variable corresponding to 
the vertical dimension. The anti transformation can be 
combined with the phase and conjugate transformations to 
detect all conditions listed in Figure 2.  

 
 

 
Figure 8. Anti-Symmetry Detection. 

 
Although our symmetry detection algorithms do not 

check for relations of the form 01 10f f g   we could 

easily adapt them to do so. Figure 9 shows the state-space 
transformation for detecting this type of relation. The function 
g  is XORed with the odd rows of the logical structure. Once 

a symmetry is detected, the logical structure is collapsed and 
the transformation becomes permanent. The corrective 

function for 01 10f f g   relations is shown in Figure 10, 

where F is the result of the state-space transformation and a  
is the input variable corresponding to the vertical dimension. 
The corrector function requires the computation of the 
function g  so it should be easy to compute, or a function that 

is already computed elsewhere in the circuit. 
 
 

 
Figure 9. Detection for Relation 01 10f f g  . 

 

For relations of the form 01 00 10 0f f f    the 

situation is more complex because the output corrector 
function must include at least one cofactor of the function. 

The two-dimensional structure and its state-space 
transformation, the K transformation, are shown in Figure 11. 
The corrector function is given in Figure 12. This function 

could be simplified by XORing node 1,1 with 00f , but this 

trick does not scale up to the more complex structures 
described in the next section. Combining the phase, conjugate, 
and anti transformations with the K transformation permits all 
relations given in Figure 3 to be tested. 

 

 
Figure 10. Output Correction for 01 10f f g   Relations. 

 
 

 
Figure 11. Structure for 01 00 10 0f f f    Relations. 

 

 
Figure 12. Corrector for 01 00 10 0f f f    Relations. 

 

5 More Complex Logical Structures 
As the number of variables represented in the logical 

structure increases, so does the complexity of the structure. In 
some algorithms, the search for symmetric variable pairs is 
done from the top down by starting over with the original 
function f  and computing new cofactors. Instead of doing 

this, our algorithm proceeds by computing the cofactors of the 
cofactors already in the structure. Figure 12 shows how the 
structure of Figure 4 can be expanded to three dimensions if 
no symmetry is detected between a  and b . 

 
In Figure 13, two comparisons are necessary to detect the 

symmetry between variables a  and b . Node 0,1,0 must be 
compared to node 1,0,0, and node 0,1,1 must be compared to 
node 1,0,1. There are now three pairs of variables that must be 
compared, ( , )a b , ( , )a c  and ( , )b c . Dimensions must be 

examined two at a time, and all planes in that pair of 
dimensions must be examined. 



 
Figure 13. Three Dimensions. 

 
When a symmetric pair is detected in a three-dimensional 

cube, it is collapsed as shown in Figure 14. In all further 
operations the two variables a  and b  will be treated as a 
composite variable taking the values 0, 1 and 2, corresponding 
to the number of ones in the two inputs. 

 

 
Figure 14.Collapsed 3-Dimensional Structure. 

 
Since all detected symmetries are converted to ordinary 

symmetries a complex analysis of symmetry transitivities is 
not needed. The primary problem is detecting symmetries with 
respect to composite variables. When comparing a composite 
variable to another variable, there will be more than one anti-
diagonal, as in Figure 14. To check for ordinary symmetry, it 
is necessary that all vertices along each diagonal have the 
same value. Node 0,1 will be compared to node 1,0 and node 
1,1 will be compared to node 2,0. It is permissible for different 
diagonals to have different values. 

When testing for skew and conjugate symmetries, 
reverse-indexing the dimension corresponding to a composite 
variable is equivalent to negating each individual variable in 
the composite. Thus reverse-indexing can be used to detect 
multi-phase and conjugate symmetries with respect to 
composite variables. 

For anti-symmetries and more general relations, we need 
the following theorem which clarifies the situation with 
respect to composite variables. 

 
Theorem 1. Given a Boolean function f , if the relation 

01 10 0 / 1f f   is true for variables a  and b  and if there 

is an ordinary symmetry between variables b  and c  then the 
relation same is true for variables a  and c . 
 

Proof. Let 000f  designate the cofactors of f  with respect to 

the variables a  b  and c  in that order. By assumption, 

01 10 0 / 1x xf f   which implies that 010 100 0 / 1f f   

and 011 101 0 / 1f f  . Because there is an ordinary 

symmetry between b  and c , 01 10x xf f , which implies that 

001 010f f  and 101 110f f . Substituting these into the 

previous two equations, we get 001 100 0 / 1f f   and 

011 110 0 / 1f f   which implies that 0 1 1 0 0 / 1x xf f  , 

the desired condition. 
 

Theorem 1 says that if a condition exists between any 
element of a composite variable c  and another variable v , 
then that condition exists between v  and every other member 
of c . Theorem 1 also applies to relations of the form 

01 10f f g   if g  is symmetric or if the variables b  and 

c  are adjacent. Theorem 2 gives us a similar result for the 
Kronecker relations. 

 
Theorem 2. Given a Boolean function f , if any of the 

relations 01 10 11 0 / 1f f f   , 01 10 00 0 / 1f f f    

01 11 00 0 / 1f f f   , 11 10 00 0 / 1f f f    or 

00 01 10 11 0 / 1f f f f     exists between variables a  

and b , and if an ordinary symmetry exists between variables 

b  and c , then the same relation also exists for variables a  
and c . 

 
The proof of Theorem 2 is essentially identical to that for 

Theorem 1. 
 
Theorems 1 and 2 are helpful in determining how to test 

for non-classical symmetries with composite variables. In 
Figure 14 we are comparing two composite variables, each of 
which consists of three mutually symmetric variables. Five 
diagonals must be compared. 

If there is an anti-symmetry between any two variables 
from the respective composites, Theorem 1 states that there 
must be a total of nine anti-symmetries, one for each pair of 
variables. If we break out each of these nine symmetries in the 
manner of the Theorem 1 proof, we see that the relation 

1x yf f   must exist between every pair of consecutive 

nodes along each diagonal. Another way of expressing the 

relation 1x yf f   is x yf f  , which implies that a 

cofactor and its complement must alternate along each 

diagonal. General relations of the form 01 10f f g 
 
are 

more complicated because the comparison involves cofactors 
of g , and if g  is not symmetric, the comparisons along a 

diagonal may not be uniform. 
For Kronecker symmetries, applying Theorem 2 shows 

that the relation must exist for every “square” of nodes along a 



diagonal. For example, for the relation 01 10 00 0f f f    

to be true between the composite variables of Figure 14, it is 

necessary that 01 10 00 0node node node   , 

20 21 10 0node node node   , 

21 02 01 0node node node   , etc. There are nine 

comparisons in all. 
In our comparison algorithm, we can detect Kronecker 

symmetries between composite variables, but we make no use 
of these symmetries in practical applications because the 
output-corrective functions are too complex. Not only do they 
involve cofactors of the function, but they are non-uniform. 
The corrective function for Figure 14 would require the 
computation of nine cofactors, one for each of the variable 
pairs. 

 

 
Figure 14. Comparing Composite variables. 

 
For anti-symmetries, the corrective function is simple. 

Any time an anti-symmetry is detected, the odd rows of the 
hyperlinear structure are inverted. The variables 
corresponding to these rows are added to an inversion list. 
Regardless of the number of anti-symmetries, a single XOR 
gate is used on the output of the function. The inputs to this 
gate are the output of the function and the variables on the 
inversion list. 

6 BDDs from State-Spaces 
At the end of the symmetry detection process we are left 

with the state space of a symmetric function and a list of 
elementary corrective functions. The state-space is converted 
to a BDD one dimension at a time. The first dimension of 
Figure 14 would be converted as shown in Figure 15. The 
leaf-nodes in this diagram are the columns of the state-space 
of Figure 14. Duplicate leaves are combined, nodes pointing 
to duplicate leaves are removed and the conversion proceeds 
in a recursive manner at the leaf nodes. This process is 
repeated until the leaves contain elementary Boolean values. 

7 Experimental Data 
To determine the effectiveness of our symmetry detection 

algorithms, we ran our algorithms on the ISCAS85 
benchmarks. [21] Each circuit was first partitioned into a 
collection of fanout-free networks, each one of which 
represents a single-output function. Because some of these 
fanout-free networks are extremely large, they were further 
partitioned into circuits with no more than eight inputs. Our 

partitioning algorithm is capable of using any number of 
inputs as a limit, but we find that a limit of eight tends to 
maximize the number of symmetries for most circuits. (This 
issue is discussed in greater depth in [20]). Figure 16 shows 
the total number of symmetries of each type detected by our 
algorithms. The K3 column contains the results for the 
positive three-cofactor relations, and K4 gives the results for 
the positive four-cofactor relation. 

 

 
Figure 15. Converting to BDDs. 

 
Although Figure 16 shows a number of Kronecker 

symmetries for some circuits, these results are misleading 
because of a phenomenon we call symmetry masking. 
Sometimes detecting one type of symmetry will prevent other 
types of symmetry from being detected. (Although sometimes 
the reverse is true, such as for c7552.) Figure 17 shows the 
number of classical symmetries detected when detection of 
Kronecker symmetries is suppressed. In several cases, the 
Kronecker symmetries are being detected at the cost of 
detecting classical symmetries (see c5315, for example). 
Because the corrective functions for classical symmetries are 
far simpler than those for Kronecker symmetries, it is clearly 
undesirable to detect Kronecker symmetries for these circuits. 

This phenomenon is far less pronounced for anti-
symmetries, as Figure 18 shows. In most cases the anti-
symmetries are detected with little or no suppression of 
classical symmetries. This is especially true for c6288, for 
which the number of detected symmetries almost doubles, 
without suppressing any classical symmetries. 

8 Conclusion 
We have presented a symmetry detection technique that 

permits the natural transitivity of classical symmetries to be 
extended to virtually any cofactor relation. For some types of 
relations, namely the multi-phase, single-variable and anti 
symmetries, the cost of this transitivity is negligible. For 
others, especially the Kronecker relations, the cost is higher. 

However, our experimental data suggests that detecting 
Kronecker symmetries may not provide a significant 
advantage, even if simple corrective functions could be found. 

One area that would bear further investigation is relations 

of the type 01 10f f g 
 
which have corrective functions 

that are not significantly more complex than those for anti-
symmetry. 

 
 



Circuit Classical Anti K3 K4 
c432 103 0 0 0 
c499 158 0 0 24 
c880 144 20 19 8 
c1355 142 104 0 0 
c1908 146 0 3 0 
c2670 356 34 0 1 
c3540 461 7 1 15 
c5315 588 32 12 82 
c6288 480 464 0 0 
c7552 959 89 32 0 
Figure 16. Results for all symmetry types. 

 
Circuit Classical 
c432 103 
c499 174 
c880 152 
c1355 142 
c1908 146 
c2670 358 
c3540 464 
c5315 669 
c6288 480 
c7552 953 

Figure 17. Classical Symmetries Alone. 
 

Circuit Classical Anti 
c432 103 0 
c499 174 0 
c880 152 19 
c1355 142 104 
c1908 146 0 
c2670 357 34 
c3540 463 5 
c5315 664 32 
c6288 480 464 
c7552 951 99 

Figure 18. Classical and Anti-Symmetries. 
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