
Extending Symmetric Variable-Pair Transitivities
Using State-Space Transformations

Peter M. Maurer
Dept. of Computer Science

Baylor University
Waco, Texas 76798

Abstract-Two-cofactor relations and their associated
symmetry types have been studied for many years. While
ordinary symmetries are simply transitive permitting them
to be combined into clusters of variables, other types of
symmetries have more complex transitivities. This paper
shows how to convert the various types of symmetry into
ordinary symmetries using state-space transformations.
This permits the simple transitivity of ordinary symmetry
to be extended to virtually any type of symmetry.

1 Introduction
Symmetric Boolean functions have been exploited in a

number of different areas of design automation. [1-6]
Research has progressed in a number of different directions,
one of which is the identification and enumeration of the
various types of symmetries that can exist between a pair of
variables. [7-9] To identify these symmetries, one examines
the relations between the cofactors of a Boolean function f .

In virtually all cases, each relation is identified with a
particular type of symmetry. Other avenues of research use
group-theoretic definitions of symmetry, and include
symmetries that cannot be defined in terms of variable pairs.
[10-12]

There are a number of different approaches to symmetry
detection, not all of which are strictly cofactor based. (See [13,
14] for example.) Although the cofactor relations still play an
important role in defining symmetry types.

Several researchers have examined the idea of variable
pair transitivities ([15] for example). The transitive relations
between various types of symmetric variable pairs are fairly
complex, except for ordinary symmetries which are simply
transitive. In this paper we will show how to extend the simple
transitivity of ordinary symmetry to more general types of
symmetry. These extensions will be used to create clustered
variables which can be used in place of simple variables for
symmetry detection. The use of clustered variables speeds up
symmetry detection and enables us to detect symmetric
variable pairs that do not manifest themselves as cofactor
relations. We are able to extend transitivity to all known types
of symmetric variable pairs, and we can extend our algorithm
to handle new types of cofactor relations that, to the best of
our knowledge, have never been used for symmetry detection.

The output of our symmetry detection algorithm is a
totally or partially symmetric function f and a collection of

corrective functions that must be applied to the inputs and

outputs of f . In many cases these corrective functions are

simple, but in some cases they are not. In our practical
implementations of this algorithm, we have confined ourselves
to the cases with simple corrective functions, but in this paper
we will include some of the details of the more complex
cases.

2 Cofactor Relations
The cofactor of a Boolean function f is found by setting

one or more inputs to a constant value, either 0 or 1. In this
paper, we designate cofactors using subscripts consisting of 0,
1 and x. Suppose that f is a four-input function, and we have

set the first two variables to 1. This will produce the cofactor

11xxf , which is a function of two variables. The ones and

zeros designate the variables that have been replaced with
constant values, and the x’s represent the remaining variables.
When there is no opportunity for confusion, we will drop the

x’s from the subscript and designate cofactors such as 11xxf

as 11f .

In most cases, symmetry detection is done using relations
between two-variable cofactors. There are six such relations,
which listed in Figure 1 with their associated symmetry types.
These relations are called the classical relations.

Type Condition
Ordinary

01 10f f

Multi-Phase
00 11f f

Single-Variable a
10 11f f

Single Variable b
01 11f f

Multi-Phase Single Variable a
00 01f f

Multi-Phase Single Variable b
00 10f f

Figure 1. The Classical Relations.

As shown in [16] the classical relations can be expressed

in another form using the exclusive or function, which we

designate as  . The ordinary relation, 01 10f f becomes

01 10 0f f  , and the multi-phase relation becomes

00 11 0f f  , where 0 represents the zero function.

A slightly more complex relation can be obtained by
replacing the zero function with the constant-one function as

in 01 10 1f f  . This gives us six new relations that are

normally associated with six types of anti-symmetry. (The
term anti-symmetry was introduced in [17]. Anti-symmetry is
also known as skew symmetry [15] and negative symmetry
[18].) These six new relations are given in Figure 2 along with
their associated symmetries.

Type Condition
Anti

01 10 1f f 

Anti Multi-Phase
00 11 1f f 

Anti Single-Variable a
10 11 1f f 

Anti Single Variable b
01 11 1f f 

Anti Multi-Phase Single Variable a
00 01 1f f 

Anti Multi-Phase Single Variable b
00 10 1f f 

Figure 2. The Anti-Relations.

Cofactor relations can be expanded in several ways, only

a few of which have been investigated. The constant functions

0 and 1 can be replaced with other functions to create

relations of the form 01 10f f g  and the XOR operation

can be replaced with another two-input function such as AND

and OR to give relations of the form 01 10 0f f  and

10 01f f g  . It is possible to use cofactors in more than

two variables to detect higher-order symmetries between three
or more variables. These types of relations have not been
extensively studied.

Relations between three or four two-variable cofactors
give rise to the Kronecker symmetries. [9]. These relations use
the XOR function, and are listed in Figure 3. Three and four
cofactor relations can be extended in the same way as two-
cofactor relations.

3 The State-Space
In its most elementary form, the state-space of a Boolean

function is an n-dimensional hypercube containing cofactors
of the function with each dimension of the hypercube
corresponding to an eliminated variable. In the extreme case,
there will be one dimension for each input variable and the
nodes will contain Boolean values. When symmetries are
detected, two dimensions can be collapsed into a single
dimension. The collapsed dimension corresponds to a
clustered variable, and contains three or more nodes. We call
this structure a hyperlinear structure to emphasize its non-
cubical nature.

During symmetry detection new cofactors are computed
and new symmetry tests are performed. The hyperlinear
structure expands when new cofactors are computed, and
collapses when symmetric variable pairs are detected. If the

process runs to completion, the value of each node will be
reduced to a single Boolean value. However, symmetry
detection can be terminated at any point using either time or
space constraints. This enables the detection process to be run
in “anytime” fashion as in [18]. The process is adaptable to
many existing algorithms, particularly those that already use
cofactor relations for symmetry detection. It is especially well
suited to techniques such as that detailed in [19], which use
the cofactors that already exist in a ROBDD.

Type Condition

0K
01 10 11 0f f f  

1K
00 10 11 0f f f  

2K
00 01 11 0f f f  

3K
00 01 10 0f f f  

4K
00 01 10 11 0f f f f   

0Anti-K
01 10 11 1f f f  

1Anti-K
00 10 11 1f f f  

2Anti-K
00 01 11 1f f f  

3Anti-K
00 01 10 1f f f  

4Anti-K
00 01 10 11 1f f f f   

Figure 3. The Kronecker Relations.

When a symmetry other than an ordinary symmetry is

detected, a state-space transformation is applied to convert the
symmetry to an ordinary symmetry. Corrective functions are
then added to the functions input and output to compensate for
the transformation. Any of the relations discussed in Section 2
can be converted to ordinary symmetries, but in some cases
the corrective functions are too complex for these relations to
be useful.

The technique described here is based on the technique
presented in [20]. However in [20], symmetry is always forced
to run to completion, only the classical relations are used, only
input corrective functions are allowed, and the result is a state-
machine used for simulating the function. Here we extend the
technique to general relations, permit both input and output
corrective functions, and provide the result in a general form.

4 Symmetry Detection
The detection algorithm begins by computing four

cofactors of the function and placing them in a two-
dimensional hypercube. Figure 4 illustrates how this would be
done for the function abc abd acd bcd   and its four

cofactors, 0 , cd , cd , and c d . The physical structure is
a single-dimensional array which is indexed using a private
indexing function to make it appear multi-dimensional. The
use of a private indexing function permits the number of
dimensions in the logical structure to change during the
symmetry detection process. Furthermore, the logical structure

can be indexed in unconventional ways to perform certain
state-space transformations.

It is obvious from Figure 4 that there is a an ordinary
symmetry between variables a and b . This causes the
logical structure to collapse into a single dimension as in
Figure 5. The vertices of Figure 5 are indexed by the number
of ones in the input variables a and b .

Figure 4. The Array and Logical Structure.

Figure 5. A Collapsed Logical Structure.

Collapsing reduces the size and the number of

dimensions, and it permits symmetric variable pairs to be
combined into a single composite variable. Composite
variables can be treated more or less like simple variables,
thus simplifying the detection process.

Testing for the other five classical relations can be done
by selecting various pairs of nodes from the structure of
Figure 5. However, rather than doing this, we modify the
private indexing function and test for ordinary symmetry. For
multi-phase symmetry, we modify the private indexing
function to index one dimension in reverse order and test for
ordinary symmetry. Figure 6 shows how reversing the second
dimension of Figure 4 repositions the nodes. (The comparison
is always between the node labeled “0,1” and the node labeled
“1,0”, wherever these indices may appear.) Reversing the
dimension is the same as negating the associated input
variable. We call this the phase transformation.

Figure 6. Reverse Indexing the Second Dimension.

When a multi-phase symmetry is detected, the structure is

collapsed using the phase transformation. This makes the

transformation permanent for all future operations. To correct
for the phase transformation it is necessary to place an inverter
on the input representing the reversed dimension.

To detect the single-variable symmetries it is necessary to
reverse the indexing of odd-numbered rows or the odd-
numbered columns. (Rows and columns are numbered starting
with zero.) We call this type of transformation the conjugate
transformation. It is equivalent to transforming the inputs with
a matrix is over the field GF2. (In GF2 there are two values 0,
and 1 with AND replacing multiplication and XOR replacing
addition. See [20] for the theoretical development.) Figure 7
gives a matrix and shows the effect of multiplying the inputs
by the given matrix. This results in testing for a single-
variable symmetry when comparing the nodes labeled “0,1”
and “1,0”. Strictly speaking, the type of symmetry detected
using the conjugate transformation is conjugate symmetry, not
single-variable symmetry. Every single-variable symmetry is
also a conjugate symmetry, but there are conjugate
symmetries that do not manifest themselves as single-variable
symmetries. (As in the function ab ac b c   , which has an

ordinary symmetry between a and b and a conjugate

symmetry between the composite pair ab and the variable c
.) The conjugate transformation can detect these types of
symmetries as well as single-variable symmetries.

1 1

0 1

 
 
 

Figure 7. Reverse Indexing the Odd Rows.

Again, the conjugate transformation is used during the

collapse of the logical structure, making the transformation
permanent. The matrix used during the detection is retained
and used to construct the corrector function. If more than one
conjugate symmetry is detected, the matrices are multiplied
together in the order they are first used. To correct for
conjugate transformations it is necessary to add one or more
XOR gates to the inputs of the function. The final matrix is
used to determine the inputs of these XOR gates. Each column
of the matrix corresponds to an input of the transformed
function, and each row corresponds to one of the original
inputs. The outputs of these gates replace the original inputs.
The columns of the transformation matrix determine the inputs
of the XOR gates.

There are two types of single-variable symmetries.
Reversing the indexing of the odd rows gives one type,
reversing the odd columns gives the other type. The multi-
phase single-variable symmetries can be tested by combining
a phase transformation with a conjugate transformation.

Detecting anti symmetries requires a transformation of the
node contents, not just a transformation of indices. Correcting
these sorts of transformations requires an output corrective
function rather than an input corrective function. Figure 8
shows the anti transformation required to detect an anti-
symmetry. Odd numbered rows of the hyperlinear structure
are inverted. In Figure 8 it is not technically necessary to
complement node 1,1, but doing so simplifies the corrector
function. Like the previous transformations, anti
transformations are temporary until a symmetry is detected, at
which time the transformation becomes permanent.

To correct the transformation of Figure 8, the output of
the function must be XORed with variable corresponding to
the vertical dimension. The anti transformation can be
combined with the phase and conjugate transformations to
detect all conditions listed in Figure 2.

Figure 8. Anti-Symmetry Detection.

Although our symmetry detection algorithms do not

check for relations of the form 01 10f f g  we could

easily adapt them to do so. Figure 9 shows the state-space
transformation for detecting this type of relation. The function
g is XORed with the odd rows of the logical structure. Once

a symmetry is detected, the logical structure is collapsed and
the transformation becomes permanent. The corrective

function for 01 10f f g  relations is shown in Figure 10,

where F is the result of the state-space transformation and a
is the input variable corresponding to the vertical dimension.
The corrector function requires the computation of the
function g so it should be easy to compute, or a function that

is already computed elsewhere in the circuit.

Figure 9. Detection for Relation 01 10f f g  .

For relations of the form 01 00 10 0f f f   the

situation is more complex because the output corrector
function must include at least one cofactor of the function.

The two-dimensional structure and its state-space
transformation, the K transformation, are shown in Figure 11.
The corrector function is given in Figure 12. This function

could be simplified by XORing node 1,1 with 00f , but this

trick does not scale up to the more complex structures
described in the next section. Combining the phase, conjugate,
and anti transformations with the K transformation permits all
relations given in Figure 3 to be tested.

Figure 10. Output Correction for 01 10f f g  Relations.

Figure 11. Structure for 01 00 10 0f f f   Relations.

Figure 12. Corrector for 01 00 10 0f f f   Relations.

5 More Complex Logical Structures
As the number of variables represented in the logical

structure increases, so does the complexity of the structure. In
some algorithms, the search for symmetric variable pairs is
done from the top down by starting over with the original
function f and computing new cofactors. Instead of doing

this, our algorithm proceeds by computing the cofactors of the
cofactors already in the structure. Figure 12 shows how the
structure of Figure 4 can be expanded to three dimensions if
no symmetry is detected between a and b .

In Figure 13, two comparisons are necessary to detect the

symmetry between variables a and b . Node 0,1,0 must be
compared to node 1,0,0, and node 0,1,1 must be compared to
node 1,0,1. There are now three pairs of variables that must be
compared, (,)a b , (,)a c and (,)b c . Dimensions must be

examined two at a time, and all planes in that pair of
dimensions must be examined.

Figure 13. Three Dimensions.

When a symmetric pair is detected in a three-dimensional

cube, it is collapsed as shown in Figure 14. In all further
operations the two variables a and b will be treated as a
composite variable taking the values 0, 1 and 2, corresponding
to the number of ones in the two inputs.

Figure 14.Collapsed 3-Dimensional Structure.

Since all detected symmetries are converted to ordinary

symmetries a complex analysis of symmetry transitivities is
not needed. The primary problem is detecting symmetries with
respect to composite variables. When comparing a composite
variable to another variable, there will be more than one anti-
diagonal, as in Figure 14. To check for ordinary symmetry, it
is necessary that all vertices along each diagonal have the
same value. Node 0,1 will be compared to node 1,0 and node
1,1 will be compared to node 2,0. It is permissible for different
diagonals to have different values.

When testing for skew and conjugate symmetries,
reverse-indexing the dimension corresponding to a composite
variable is equivalent to negating each individual variable in
the composite. Thus reverse-indexing can be used to detect
multi-phase and conjugate symmetries with respect to
composite variables.

For anti-symmetries and more general relations, we need
the following theorem which clarifies the situation with
respect to composite variables.

Theorem 1. Given a Boolean function f , if the relation

01 10 0 / 1f f  is true for variables a and b and if there

is an ordinary symmetry between variables b and c then the
relation same is true for variables a and c .

Proof. Let 000f designate the cofactors of f with respect to

the variables a b and c in that order. By assumption,

01 10 0 / 1x xf f  which implies that 010 100 0 / 1f f 

and 011 101 0 / 1f f  . Because there is an ordinary

symmetry between b and c , 01 10x xf f , which implies that

001 010f f and 101 110f f . Substituting these into the

previous two equations, we get 001 100 0 / 1f f  and

011 110 0 / 1f f  which implies that 0 1 1 0 0 / 1x xf f  ,

the desired condition.

Theorem 1 says that if a condition exists between any
element of a composite variable c and another variable v ,
then that condition exists between v and every other member
of c . Theorem 1 also applies to relations of the form

01 10f f g  if g is symmetric or if the variables b and

c are adjacent. Theorem 2 gives us a similar result for the
Kronecker relations.

Theorem 2. Given a Boolean function f , if any of the

relations 01 10 11 0 / 1f f f   , 01 10 00 0 / 1f f f  

01 11 00 0 / 1f f f   , 11 10 00 0 / 1f f f   or

00 01 10 11 0 / 1f f f f    exists between variables a

and b , and if an ordinary symmetry exists between variables

b and c , then the same relation also exists for variables a
and c .

The proof of Theorem 2 is essentially identical to that for

Theorem 1.

Theorems 1 and 2 are helpful in determining how to test

for non-classical symmetries with composite variables. In
Figure 14 we are comparing two composite variables, each of
which consists of three mutually symmetric variables. Five
diagonals must be compared.

If there is an anti-symmetry between any two variables
from the respective composites, Theorem 1 states that there
must be a total of nine anti-symmetries, one for each pair of
variables. If we break out each of these nine symmetries in the
manner of the Theorem 1 proof, we see that the relation

1x yf f  must exist between every pair of consecutive

nodes along each diagonal. Another way of expressing the

relation 1x yf f  is x yf f  , which implies that a

cofactor and its complement must alternate along each

diagonal. General relations of the form 01 10f f g 

are

more complicated because the comparison involves cofactors
of g , and if g is not symmetric, the comparisons along a

diagonal may not be uniform.
For Kronecker symmetries, applying Theorem 2 shows

that the relation must exist for every “square” of nodes along a

diagonal. For example, for the relation 01 10 00 0f f f  

to be true between the composite variables of Figure 14, it is

necessary that 01 10 00 0node node node   ,

20 21 10 0node node node   ,

21 02 01 0node node node   , etc. There are nine

comparisons in all.
In our comparison algorithm, we can detect Kronecker

symmetries between composite variables, but we make no use
of these symmetries in practical applications because the
output-corrective functions are too complex. Not only do they
involve cofactors of the function, but they are non-uniform.
The corrective function for Figure 14 would require the
computation of nine cofactors, one for each of the variable
pairs.

Figure 14. Comparing Composite variables.

For anti-symmetries, the corrective function is simple.

Any time an anti-symmetry is detected, the odd rows of the
hyperlinear structure are inverted. The variables
corresponding to these rows are added to an inversion list.
Regardless of the number of anti-symmetries, a single XOR
gate is used on the output of the function. The inputs to this
gate are the output of the function and the variables on the
inversion list.

6 BDDs from State-Spaces
At the end of the symmetry detection process we are left

with the state space of a symmetric function and a list of
elementary corrective functions. The state-space is converted
to a BDD one dimension at a time. The first dimension of
Figure 14 would be converted as shown in Figure 15. The
leaf-nodes in this diagram are the columns of the state-space
of Figure 14. Duplicate leaves are combined, nodes pointing
to duplicate leaves are removed and the conversion proceeds
in a recursive manner at the leaf nodes. This process is
repeated until the leaves contain elementary Boolean values.

7 Experimental Data
To determine the effectiveness of our symmetry detection

algorithms, we ran our algorithms on the ISCAS85
benchmarks. [21] Each circuit was first partitioned into a
collection of fanout-free networks, each one of which
represents a single-output function. Because some of these
fanout-free networks are extremely large, they were further
partitioned into circuits with no more than eight inputs. Our

partitioning algorithm is capable of using any number of
inputs as a limit, but we find that a limit of eight tends to
maximize the number of symmetries for most circuits. (This
issue is discussed in greater depth in [20]). Figure 16 shows
the total number of symmetries of each type detected by our
algorithms. The K3 column contains the results for the
positive three-cofactor relations, and K4 gives the results for
the positive four-cofactor relation.

Figure 15. Converting to BDDs.

Although Figure 16 shows a number of Kronecker

symmetries for some circuits, these results are misleading
because of a phenomenon we call symmetry masking.
Sometimes detecting one type of symmetry will prevent other
types of symmetry from being detected. (Although sometimes
the reverse is true, such as for c7552.) Figure 17 shows the
number of classical symmetries detected when detection of
Kronecker symmetries is suppressed. In several cases, the
Kronecker symmetries are being detected at the cost of
detecting classical symmetries (see c5315, for example).
Because the corrective functions for classical symmetries are
far simpler than those for Kronecker symmetries, it is clearly
undesirable to detect Kronecker symmetries for these circuits.

This phenomenon is far less pronounced for anti-
symmetries, as Figure 18 shows. In most cases the anti-
symmetries are detected with little or no suppression of
classical symmetries. This is especially true for c6288, for
which the number of detected symmetries almost doubles,
without suppressing any classical symmetries.

8 Conclusion
We have presented a symmetry detection technique that

permits the natural transitivity of classical symmetries to be
extended to virtually any cofactor relation. For some types of
relations, namely the multi-phase, single-variable and anti
symmetries, the cost of this transitivity is negligible. For
others, especially the Kronecker relations, the cost is higher.

However, our experimental data suggests that detecting
Kronecker symmetries may not provide a significant
advantage, even if simple corrective functions could be found.

One area that would bear further investigation is relations

of the type 01 10f f g 

which have corrective functions

that are not significantly more complex than those for anti-
symmetry.

Circuit Classical Anti K3 K4
c432 103 0 0 0
c499 158 0 0 24
c880 144 20 19 8
c1355 142 104 0 0
c1908 146 0 3 0
c2670 356 34 0 1
c3540 461 7 1 15
c5315 588 32 12 82
c6288 480 464 0 0
c7552 959 89 32 0
Figure 16. Results for all symmetry types.

Circuit Classical
c432 103
c499 174
c880 152
c1355 142
c1908 146
c2670 358
c3540 464
c5315 669
c6288 480
c7552 953

Figure 17. Classical Symmetries Alone.

Circuit Classical Anti
c432 103 0
c499 174 0
c880 152 19
c1355 142 104
c1908 146 0
c2670 357 34
c3540 463 5
c5315 664 32
c6288 480 464
c7552 951 99

Figure 18. Classical and Anti-Symmetries.

References

[1] C. E. Shannon, "The synthesis of two-terminal switching
circuits," Bell System Technical Journal, Vol.28, No.1,
pp. 59-98, 1949.

[2] C. R. Edwards and S. L. Hurst, "A digital synthesis
procedure under function symmetries and mapping
methods," IEEE Transactions on Computers, Vol.27,
No.11, pp. 985-997, 1978.

[3] D. Moller, P. Molitor, R. Drechsler and J. W. G. U.
Frankfurt, "Symmetry based variable ordering for
ROBDDs," IFIP Workshop on Logic and Architecture
Synthesis, pp. 47-53, 1994.

[4] C. Scholl, D. Moller, P. Molitor and R. Drechsler, "BDD
minimization using symmetries," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, Vol.18, No.2, pp. 81-100, 1999.

[5] T. Sasao, "A new expansion of symmetric functions and
their application to non-disjoint functional
decompositions for LUT type FPGAs," IEEE
International Workshop on Logic Synthesis, pp. 105-110,
2000.

[6] V. N. Kravets and K. A. Sakallah, "Constructive library-
aware synthesis using symmetries," Design Automation
and Test in Europe, pp. 208-213, 2000.

[7] C. C. Tsai and M. Marek-Sadowska, "Boolean functions
classification via fixed polarity Reed-Muller forms,"
IEEE Transactions on Computers, Vol.46, No.2, pp. 173-
186, 1997.

[8] M. Chrzanowska-Jeske, "Generalized symmetric
variables," The 8th IEEE International Conference on
Electronics, Circuits and Systems, pp. 1147-1150, Vol. 3,
2001.

[9] M. Chrzanowska-Jeske, A. Mishchenko and J. R. Burch,
"Linear Cofactor Relationships in Boolean Functions,"
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol.25, No.6, pp. 1011-
1023, 2006.

[10] P. M. Maurer, "An application of group theory to the
analysis of symmetric gates," Department of Computer
Science, Baylor University, Waco, TX 76798, 2009.

[11] V. N. Kravets and K. A. Sakallah, "Generalized
symmetries in boolean functions," IEEE International
Conference on Computer Aided Design, pp. 526-532,
2000.

[12] J. Mohnke, P. Molitor and S. Malik, "Limits of using
signatures for permutation independent Boolean
comparison," Formal Methods Syst. Des., Vol.21, No.2,
pp. 167-191, 2002.

[13] C. C. Tsai and M. Marek-Sadowska, "Detecting
symmetric variables in boolean functions using
generalized reed-muller forms," IEEE International
Symposium on Circuits and Systems, pp. 287-290, Vol. 1,
1994.

[14] S. L. Hurst, "Detection of symmetries in combinatorial
functions by spectral means," IEE Journal on Electronic
Circuits and Systems, Vol.1, No.5, pp. 173-180, 1977.

[15] C. C. Tsai and M. Marek-Sadowska, "Generalized Reed-
Muller forms as a tool to detect symmetries," IEEE
Transactions on Computers, Vol.45, No.1, pp. 33-40,
1996.

[16] M. Chrzanowska-Jeske, "Generalized symmetric and
generalized pseudo-symmetric functions," Proceedings of
the 6th IEEE International Conference on Electronics,
Circuits and Systems, pp. 343-346, Vol. 1, 1999.

[17] J. Rice and J. Muzio, "Antisymmetries in the realization
of boolean functions," IEEE International Symposium on
Circuits and Systems, pp. 69-72, Vol. 4, 2002.

[18] N. Kettle and A. King, "An anytime algorithm for
generalized symmetry detection in ROBDDs," IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol.27, No.4, pp. 764-777, 2008.

[19] D. Moller, J. Mohnke and M. Weber, "Detection of
symmetry of boolean functions represented by ROBDDs,"
IEEE International Conference on Computer-Aided
Design, pp. 680-684, 1993.

[20] P. M. Maurer, "Conjugate Symmetry," Formal Methods
Syst. Des., Vol.38, No.3, pp. 263-288, 2011.

[21] F. Brglez, P. Pownall and R. Hum. Accelerated ATPG
and fault grading via testability analysis. Presented at
Proceedings of IEEE Int. Symposium on Circuits and
Systems.

