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We discuss various notions of the shadowing property on non-compact spaces. In

the first part, we discuss the shadowing property acting on general sequence spaces.

We develop criteria upon the weights of the space in which shadowing of particu-

lar types of orbits occurs. Then we move on to operators acting on Fréchet spaces,

and show that an system exhibits the shadowing property if its Waelbroeck spec-

trum misses the unit circle. Additionally, we discuss the non-uniform pseudo-orbit

tracing property, a variant of the shadowing property which allows for different error

tolerances depending on where a point lies in the space.
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CHAPTER ONE

Preliminaries

1.1 An Overview

The shadowing property has been of recent interest in the study of dynamical

systems. The motivation behind this property is simple. Imagine that we have a

system, (X, f), and wish to study it using computers. Now computers must sometimes

use approximations (think using 3.14 in place of π), all of which come with a small

error term. As our system evolves over time, we are left with a question: Do these

error terms grow out of control? Are we left with a situation in which the true

mathematical solutions are incompatible with these approximate solutions?

If the system exhibits the shadowing property, then we can ensure that these errors

do not grow out of control. In fact, there have been many results within the realm

of compact metric spaces about what implies the shadowing property and what the

shadowing property implies. In this dissertation, we examine the lesser viewed setting

of noncompact spaces. We focus in particular on Fréchet spaces, a generalization of

Banach spaces, each of which we define later.

To begin, we examine the concrete case of shifts on sequence spaces. Shift spaces

encompass a well-studied set of spaces, and are often the topic of study in discrete

dynamical systems as well as in symbolic dynamics. Shifts of finite type are a partic-

ularly widely studied in symbolic dynamics, as they describe the dynamics of finite-
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state machines, which in turn describe systems that can be in one of only a finite

number of states at any given time.

As we seek to be as general as possible, we discuss backwards weighted shift maps

acting on sequence spaces. These maps take in a sequence of scalars, either real

or complex numbers, and output the sequence with the first term removed and with

each subsequent term multiplied by some constant, called a weight, which varies based

upon the location of the term in the sequence.

In Chapter Two, we put conditions upon the weights of the map that guarantee

the shadowing property or some variant of it. It is important to note that we will

be studying pseudo-orbits whose elements are sequences in their own right; that is,

sequences of sequences. We first discuss uniformly bounded pseudo-orbits, that is

pseudo-orbits in which the terms of all sequences in the pseudo-orbit are bounded

by a single constant M . From there, we move on to consider bounded pseudo-orbits,

that is pseudo-orbits comprised of sequences all bounded by the same constant M ,

yet whose terms may not be all bounded by the same constant.

Once we have accomplished the above, in Chapter Three we move onto linear

operators acting on general Fréchet spaces. In light of Bernardes, et al. [4], we seek

to connect the shadowing property to the spectrum of the operator. Hence, we begin

by discussing what makes a suitable definition of the spectrum of a Fréchet space

operator, as applying the usual definition of the spectrum to a Fréchet space operator

fails to maintain some of the nice properties exhibited on Banach space operators,

such as the spectrum being a closed set.
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Once we have a suitable definition of the spectrum in this setting, we place cri-

teria upon the spectrum that allow us to know if a system exhibits the shadowing

property. In similar fashion to Bernardes et al., these conditions revolve around the

hyperbolicity of the operator, that is, whether or not the spectrum intersects the unit

circle.

Lastly, in Chapter Four, we examine other forms of shadowing relevant to the

non-compact setting. In particular, we develop a notion of shadowing called the non-

uniform pseudo-orbit tracing property. This property considers pseudo-orbits with

error tolerance based upon location in the space. As an example, a point’s distance

from the boundary of a manifold may be in direct correlation with how precise we

require the pseudo-orbit to be; the closer to the boundary, the more exact, for instance.

We list some immediate results of the definition of this property, as well as explore its

relationship to a slight variant of the same property; one in which there are certain

points where no error tolerance is permitted.

From there, we explore the relationship of the non-uniform pseudo-orbit trac-

ing property property of a space to the system’s compactification, if it has one. In

particular, we explore what assumptions we can put on the compactification of the

system in order to show that if the compactified system exhibits the shadowing prop-

erty, then the original system exhibits the non-uniform pseudo-orbit tracing property.

Ultimately, we end with a result regarding the average shadowing property of a back-

wards weighted shift map on a sequence space.
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1.2 Dynamical Systems

Now we wish to discuss how functions acting on the space transform the space.

More specifically, we seek to be able to discuss how a function acting on the space

transitions a point through the space. This is the study of dynamical systems.

Definition 1.2.1. A dynamical system is a pair (X, f), where X is a space and

f : X → X is a continuous function acting on the space.

In order to discuss the dynamics of the space, one must be able to talk about how

a point moves through space. This brings up the notion of the orbit of a point.

Definition 1.2.2. Let (X,T ) be a dynamical system, and let x ∈ X. Then the

orbit of x under T is the set O(x, T ) := {T nx | n ∈ ω}.

Orbits are particularly important in the study of the long term behavior of the

system. Orbits may contain only one point as in the case of fixed points, contain

finitely many distinct points as in the case of periodic or preperiodic points, or contain

infinitely many distinct points. In the last case, a point’s orbit could intersect every

open set of the system, in which case we would say that the point has a dense orbit.

Now in the study of dynamical systems, there are many desired properties that

guarantee certain properties in the space. We give the following as examples of certain

properties that may be desired:

Definition 1.2.3. A dynamical system (X,T ) is topologically transitive if for every

pair of non-empty open sets U, V ⊂ X, there exists k > 0 such that T k(U) ∩ V 6= ∅.
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Topological transitivity tells us that points from one arbitrary open set eventually

move under iteration to any other arbitrary open set. This notion was first studied

by G. D. Birkhoff in the 1920s for flows, as mentioned by Kolyada and Snoha [15].

Interestingly, the notion of topological transitivity does not necessarily imply nor

is implied by the existence of a dense orbit. Kolyada and Snoha provide examples of

a space which has a dense orbit yet is not topologically transitive and a space which

is topologically transitive yet does not have a dense orbit in their work [15]. Under

the additional assumption of no isolated points, we may show that the existence of

a dense orbit implies topological transitivity, while the additional assumptions of the

space being separable and second category give us that topological transitivity implies

the existence of a dense orbit.

If every iterate of a map is topologically transitive, we have a stronger condition

than topological transitivity.

Definition 1.2.4. A dynamical system (X,T ) is totally transitive if T k is transitive

for all k ≥ 1.

Now knowing the idea of topological transitivity, it is natural to wonder if given a

topologically transitive system (X,T ), whether or not (X×X,T ×T ) is topologically

transitive.

Definition 1.2.5. A dynamical system (X,T ) is topologically weakly mixing if

(X ×X,T × T ) is transitive.

If a system is topologically weakly mixing, then it is topologically transitive. It

was an open question for some time as to whether a topologically transitive system
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was weakly mixing. An answer was given in the negative, as shown by Block and

Coppel [5].

While topological transitivity guarantees that any arbitrary open set eventually

met any other arbitrary open set under iteration, there was no guarantee that the

two sets remained intertwined.

Definition 1.2.6. A dynamical system (x, T ) is topologically mixing if for every

pair of non-empty open sets U, V ⊂ X, there is K ∈ N such that T k(U) ∩ V 6= ∅ for

all k ≥ K.

All of the above properties describe how points move throughout the space X

under the action of T , and how much a given map “mixes” the points in the space.

In fact, all of these properties are preserved if the space undergoes a continuous

deformation, known as a topological conjugacy.

Definition 1.2.7. Let (X, f) and (Y, g) be two dynamical systems. The systems

are said to be topologically conjugate if there exists a homeomorphism h : Y → X

such that f ◦ h = h ◦ g, and we say that h is a topological conjugation.

If a property is preserved under conjugacy, that is, if a system (X, f) exhibits the

property and if (X, f) is topologically conjugate to (Y, g), then (Y, g) also exhibits

the property, we say that it is a topological property.

1.3 Linear Dynamical Systems

In order to begin our discussion on the dynamics of linear operators acting on

infinite dimensional Fréchet spaces, we must first discuss why we choose such a setting
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to begin with. We begin this discussion by defining the types of spaces that we will

be working with for this dissertation.

Definition 1.3.1. A topological vector space (TVS) is a vector space X over a field

K endowed with a topology such that vector addition and scalar multiplication, that

is the maps +: X ×X → X and · : K×X → X, are continuous.

The first examples encountered of topological vector spaces are the spaces ofM×N

matrices with real entries acting as a vector space over the reals. Arguably the most

often encountered topological vector spaces are Banach spaces. First, we define what

it means for a space to be complete.

Definition 1.3.2. A sequence 〈xn〉n∈ω is said to be a Cauchy sequence if for all

ε > 0, there exists some number N ∈ N such that for all m,n > N , d(xm, xn) < ε.

A metric space X is said to be complete if every Cauchy sequence in X has a limit

point in X.

We now define what it means for a space to be a Banach space.

Definition 1.3.3. A Banach space X is a complete normed vector space.

Banach spaces are a foundational element in the study of functional analysis.

Many powerful theorems exist in this setting, such as the Hahn-Banach theorem, the

Open Mapping Theorem, and the Closed Graph Theorem. These spaces and the maps

acting on them have a large body of work associated to them, as they encompass a

large class of spaces. For the purpose of this dissertation, all of the spaces which we

consider will be metric spaces whose metric may not be given by a norm. Due to
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this, the spaces we consider will not necessarily be Banach spaces. This leads us to

the definition of a Fréchet space. First, we define two notions of convexity.

Definition 1.3.4. A set U in a topological vector space X is said to be convex if

for any two points x, y ∈ U , the point (1− t)x+ ty is an element of U for all scalars

t ∈ [0, 1]. A topological vector space X is locally convex if the origin has a basis of

convex neighborhoods.

Definition 1.3.5. A topological vector space X is a Fréchet space if it is locally

convex and complete with respect to some translation-invariant metric.

The requirement for the metric to be translation-invariant tells us that given any

three points x, y, z ∈ X, then d(x+ z, y + z) = d(x, y).

Fréchet spaces are generalizations of Banach spaces. Therefore, all Hilbert and

Banach spaces are Fréchet spaces. Importantly, not all authors require that a Fréchet

space be locally convex. For the purposes of this dissertation, we will require local

convexity of the spaces.

As noted by Grosse-Erdmann and Peris [12], the topology of a Fréchet space is

generated by an increasing (pn(x) ≤ pm(x) for all n ≤ m and all x ∈ X) sequence of

seminorms 〈pn〉, with metric given by

d(x, y) =
∞∑
i=1

1

2i
min{1, pi(x− y)}.

This sequence is also supposed to be separating, meaning that pn(x) = 0 for all n ∈ N

implies that x = 0 [12].
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With respect to this metric, we are able to define a functional ‖ · ‖ : X → R≥0

given by

‖x‖ =
∞∑
i=1

1

2i
min{1, pi(x)}.

Importantly, this is not necessarily a norm, as it is generated through an increasing

sequence of seminorms. Therefore, we call this an F-norm. An F-norm has the

following characteristics for all x, y ∈ X and λ ∈ R, as discussed by Grosse-Erdmann

and Manguillot [12]:

1) ‖λx‖ ≤ (|λ|+ 1)‖x‖.

2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

3) ‖x‖ = 0 implies that x = 0.

4) limλ→0 ‖λx‖ = 0.

Many theorems that hold on Banach spaces hold on Fréchet spaces. For instance,

we still have the Open Mapping Theorem, the Closed Graph Theorem, and the Hahn-

Banach Theorem. The first two of these theorems involves a continuous function,

called an operator, acting on the space. We formalize this notion below.

Definition 1.3.6. Let X and Y be Fréchet spaces. A continuous linear map T :

X → Y is called an operator. L(X, Y ) denotes the space of all such operators. If

X = Y , then we simplify this notation to L(X) and state that T is an operator on

X.
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Unlike their Banach space counterparts, we are unable to associate a norm to

operators acting on a Fréchet space. We now mention a criterion that shows whether

or not a map between two Fréchet spaces is indeed an operator:

Proposition 1.3.7. Let X and Y be Fréchet spaces with defining increasing se-

quences of seminorms 〈pn〉n∈ω and 〈qn〉n∈ω, respectively. Then a linear map T : X →

Y is an operator if and only if, for any m ≥ 1, there are n ≥ 1 and M > 0 such that

qm(Tx) ≤Mpn(x), x ∈ X.

Recall that space of M ×N matrices acting as a topological vector space over the

reals. Each M ×N matrix A may also be viewed as a linear operator A : RN → RM .

We now define what it means for an operator to be linear.

Definition 1.3.8. Given a dynamical system (X,T ), we say that T is a linear

operator if for any vectors x, y ∈ X and scalars a, b ∈ K, we have that

T (ax+ by) = aT (x) + bT (y).

Example 1.3.9. The differential operator,

D : f → f ′,

is an operator when acting on H(C), the space of entire functions. We define our

increasing sequence of seminorms by

pn(f) = sup
|z|≤n
|f(z)|.
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Example 1.3.10. Let K = R or C. Then

`p :=

{
x = 〈xn〉n∈ω ∈ Kω;

∞∑
n=0

|xn|p <∞

}
, 1 ≤ p <∞

and

c0 :=
{
x = 〈xn〉n∈ω ∈ Kω; lim

n→∞
xn = 0

}
are Banach spaces. The backward shift B : X → X, with X = `p or c0, defined by

B(x1, x2, . . .) = (x2, x3, . . .)

is an operator on X with ‖B‖ = 1.

The space of all sequences, Kω, is a Fréchet space when endowed with the increas-

ing sequence of seminorms defined by

pn(x) = sup
0≤k≤n

|xk|, x = 〈xk〉k∈ω .

B : Kω → Kω is an operator as well.

Lastly, we define the following.

Definition 1.3.11. Given a dynamical system (X,T ), we say that (X,T ) is chaotic

if (X,T ) has a dense orbit and there exists a dense set of period points under T .

In essence, the notion of chaos tells us that minor changes to initial inputs results

in wildly different phenomena in the long term. A common pop culture reference

to this is the so-called “butterfly effect”, where Lorenz posits that the small change

in the atmosphere caused by the flap of a butterfly’s wings in Brazil could cause a

tornado in Texas [17].
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Importantly, given a finite space KN for some N ∈ ω, a linear operator T acting

on KN may be regarded as a matrix. Therefore, as Grosse-Erdmann states, “the dy-

namics of linear operators on a finite dimensional space X = KN are easy to describe,

thanks to the Jordan decomposition theorem.” [12]. In fact, Grosse-Erdmann shows

that there are no hypercyclic linear operators (linear operators in which some point

of X has a dense orbit) on KN , and hence on any finite-dimensional Fréchet space,

thereby making the study of such systems rather restricted.

One may then be led to believe that requiring an operator to be linear may prove

to be restricting as well. Fortunately, this is not the case. In fact, according to

Grosse-Erdmann,

“. . . every continuous map on a compact metric space is conjugate to the
restriction of a linear operator on some invariant set. Even more strik-
ingly, the same opearator can be taken for all nonlinear systems, and the
operator is even chaotic. In other words: the dynamics of any (compact)
non-linear dynamical system can be described by the dynamics of a single
chaotic operator.” [12]

Therefore, linear chaos exists in the infinite dimensional setting, and is in fact a

very powerful tool to describe the dynamics of even more complicated systems.

1.4 The Shadowing Property

As mentioned before, the shadowing property gives us a way of knowing whether

the approximate orbits of a system, which often appear when studying dynamics

using computers, are reasonably well followed by a true orbit of the system. Given

an operator T acting on some metric space X, we define the following:
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Definition 1.4.1. For a system (X,T ), a δ-pseudo-orbit is a sequence 〈xn〉n∈ω that

satisfies d(Txn, xn+1) < δ for all n ∈ ω. A point z ∈ X is said to ε-shadow a

δ-pseudo-orbit 〈xn〉n∈ω if d(T nz, xn) < ε for all n ∈ ω.

Definition 1.4.2. A system (X,T ) is said to have the shadowing property if for all

ε > 0, there exists δ > 0 such that every δ-pseudo-orbit 〈xn〉n∈ω in X is ε-shadowed

by some point z ∈ X.

Much of this theory originated in the late 1960s and 1970s. Anosov and Bowen

were the first to research the subject, where Anosov used it to study geodesic flows

on closed Reimannian manifolds [1] and Bowen used it to study Axiom A diffeomor-

phisms [8]. A widely known result, arrived at independently by both Anosov and

Bowen, in this area of research is the Shadowing Lemma, which we state here:

Lemma 1.4.3. The Shadowing Lemma [Anosov and Bowen] Let Λ be a hyperbolic

invariant set of a diffeomorphism f acting on a metric space X. There exists a

neighborhood U of Λ with the following property: for any ε > 0, there exists δ > 0,

such that any (finite or infinite) δ-pseudo-orbit that stays in U also stays in a ε-

neighborhood of some true orbit.

As we shall see later, hyperbolicity and the shadowing property are deeply related

ideas. Historically, Bowen utilized his knowledge of the shadowing property in order

to study Markov partitions [7]. Conley used the shadowing property to prove that if

the chain recurrent set of a diffeomorphisim is hyperbolic, then the periodic points

are dense in the chain recurrent set [10]. Later, topological conjugacy results for

perturbations of diffeomorphisms with hyperbolic sets were proved by Walters [24]
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using the shadowing property. While much more has been done in the study of the

shadowing property, we begin with some examples of two systems; one exhibiting the

shadowing property and the other not.

Example 1.4.4. Consider X = Z with the map f(x) = x + 1 acting on it. Given

any ε > 0 and taking δ to be any number less than or equal to 1, we have that any

δ-pseudo-orbit is in fact a true orbit. Therefore this system exhibits the shadowing

property.

Example 1.4.5. Consider Y = {2n : n ∈ Z} and g(y) = 2y. Notice that any true

orbit 〈gn(y)〉n∈ω grows infinitely large as n grows towards infinity. However, given any

δ > 0, there exists an M ∈ Z such that if m < M , then d(g(2m), 2m) < δ. Therefore,

for any m < M , the fixed sequence 〈2m〉n∈ω constitutes a δ-pseudo-orbit that cannot

be shadowed by a true orbit.

The above two examples provide an illustration of two spaces that are topologically

conjugate (take φ : Y → X given by φ(y) = log2(y)). Therefore, we have shown that

the shadowing property is indeed a metric property, not a topological property. This

means that the shadowing property depends heavily upon the metric of the space.

One is not in general guaranteed to retain the shadowing property if the underlying

space undergoes a continuous deformation.

Requiring that the conjugacy is uniformly continuous is an example of how one

could preserve the shadowing property. This scenario would arise if the spaces in

question were compact, as the a continuous function on a compact space is uniformly
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continuous. If the conjugacy is not uniformly continuous, then the shadowing property

may or may not be preserved.

As mentioned, the presence of the shadowing property in a given dynamical system

on a compact metric space implies many things. For instance, we have the following

due to Kulczycki et al. [16]:

Theorem 1.4.6. Let X be a compact metric space. If T : X → X is a continuous

map with the shadowing property, then the following conditions are equivalent:

1) (X,T ) is totally transitive,

2) (X,T ) is topologically weakly mixing,

3) (X,T ) is topologically mixing,

4) (X,T ) is surjective and has the specification property,

5) (X,T ) is surjective and has the almost specification property,

6) (X,T ) is surjective and has the asymptotic average shadowing property,

7) (X,T ) is surjective and has the average shadowing property,

Moreover, if T is c-expansive, that is if for every distinct pair x, y ∈ X, there exists

an N ∈ N such that d(TNx, TNy) ≥ c, then any of the above conditions is equivalent

to the periodic specification property of (X,T ).

The specification property, according to Karl Sigmund, roughly states that “one

can approximate distinct pieces of orbits by single periodic orbits with a certain
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uniformity” [21]. In general we have that (3) =⇒ (2) =⇒ (1) [12], but the converse

implications will not necessarily hold without the presence of the shadowing property.

As encountered above, there are many various notions of the shadowing property.

Each of these variants has their own notion for what constitutes a pseudo-orbit and

what it means for an orbit to shadow a given pseudo-orbit. In the meantime, we

mention the limit shadowing property and thick shadowing property as examples

here.

Definition 1.4.7. Let (X,T ) be a dynamical system with an operator acting on it.

A sequence 〈xn〉n∈ω is a limit pseudo-orbit if limn→∞ d(Txn, xn+1) = 0. We say that

(X,T ) exhibits the limit shadowing property if for any limit pseudo-orbit 〈xn〉n∈ω,

there exists some point z ∈ X such that limn→∞ d(T nz, xn) = 0.

Limit shadowing is distinct from the shadowing property in the sense that it stud-

ies pseudo-orbits whose error terms converge to zero and requires that a shadowing

point converges to the pseudo-orbit asymptotically. This property in conjunction

with other assumptions can be used to show that a system exhibits the shadowing

property. For instance, Kawaguchi showed that if a continuous self-map f of a com-

pact metric space X has the limit shadowing property, then the restriction of f to

the non-wandering set exhibits the shadowing property [13].

Definition 1.4.8. Let (X,T ) be a dynamical system. A set A is said to have lower

density 1 if

lim inf
n→∞

|A ∩ {1, 2, . . . , n}|
n

= 1.
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A sequence 〈xn〉n∈ω is a thick δ-pseudo-orbit if there is a set A with lower density 1

such that d(Txn, xn+1) < δ for all n ∈ A.

We say that (X,T ) exhibits the thick shadowing property if for all ε > 0, there

exists some δ > 0 such that any thick δ-pseudo-orbit 〈xn〉n∈ω is thickly shadowed by

a point z ∈ X, that is there is a set B ⊆ N that contains arbitrarily large intervals

such that d(T nz, xn) < ε for all n ∈ B.

In general, the presence of one variant of the shadowing property does not guar-

antee the presence of another variant. This is due to the fact that oftentimes the

definitions of what constitutes a pseudo-orbit are quite different or incompatible with

each other. While not much may be said in general about the equivalence of any of

these various notions on their face, we do know that under certain conditions con-

clusions may be drawn. William Brian, Jonathan Meddaugh, and Brian Raines [9]

provide a proof that it is possible under certain assumptions to demonstrate that

different versions of the shadowing property are equivalent, showing that under the

assumption of chain transitivity that the shadowing property is equivalent to the

thick shadowing property.

Theorem 1.4.9. [Brian, Meddaugh & Raines] Let (X, f) be a compact dynamical

system. If (X, f) is chain transitive, then the following properties are equivalent:

1) shadowing (i.e., (N,N)-shadowing).

2) thick shadowing (i.e., (D, T )-shadowing).

3) (T , T )-shadowing.
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4) (N, T )-shadowing.

More theorems in this vain provided by Lee and Sakai may be found in [20] and

[14], where they show that if a system is expansive, then many notions of shadowing

are equivalent, such as the shadowing property and the limit shadowing property.

Importantly, they assume that space is compact.

In summary, the shadowing property and its variants are properties that ensure

that the dynamics of approximate orbits are modeled by true orbits. We now begin

our study of the shadowing property and its variants in the setting of Fréchet spaces.
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CHAPTER TWO

Shadowing in Weighted Shifts

2.1 Preliminaries

Let K be a field (typically R or C). A space X is called a sequence space if it is

a subspace of Kω =
{
x = 〈xn〉n∈ω : xn ∈ K

}
. An operator T acting on a sequence

space X is a weighted backwards shift if there is a sequence of weights 〈βj〉j∈ω in

K such that T : X → X is given by T (〈xn〉n∈ω) = 〈βnxn+1〉n∈ω. A notable class

sequence spaces are the `p spaces, defined in the previous chapter. Weighted shifts

are particularly nice operators on these spaces, as many properties rely solely upon

the weights of the map. For instance, a well-defined operator T : `p → `p must have

that supn∈ω |βn| <∞.

A larger class of sequence spaces are the weighted `p spaces. We define this in the

following manner.

Definition 2.1.1. Let K = R or C. Then for wi ∈ K for all i ∈ ω, the weighted `p

sequence space is given by

X = `p (wi) :=

{
x = 〈xi〉i∈ω ∈ Kω;

∞∑
i=0

wi|xi|p <∞

}
, 1 ≤ p <∞

Now, consider the weighted space `1
(

1
2i

)
, which has a norm given by

‖x‖ =
∑∞

i=0
1
2i
|xi|. If we expand to a general sequence space X, where the sequences

do not have to be summable, we can take the norm from `1
(

1
2i

)
and use it on X

to generate an extended metric on the space, that is a metric in which the distance
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between two points is allowed to be infinite, where

d(x, y) =
∞∑
i=0

1

2i
|xi − yi|.

For the remainder of the chapter, we will be working on spaces in which the distance

of two points may be infinite, requiring the use of the above extended metric.

As we will be working with sequences of sequences in our examination of the

shadowing property, we end this section with a note on notation. We will reserve

overline notation to denote only sequences, and will be using the notation xnm to

denote the m-th term of the sequence xn.

2.2 The Shadowing Property

The first question we explore is whether there are conditions under which a back-

wards weighted shift operator T has the shadowing property. In fact, one can easily

show that a shift of this type exhibits the shadowing property when the weights of

the operator have a supremum of less than 1
2
. This is due to the fact that if T is a

contraction (meaning there exists a real number k ∈ [0, 1) such that for any x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y)) then (X,T ) exhibits the shadowing property. This is a known

result, and we include the proof for completeness.

Proposition 2.2.1. Let (X,T ) be a dynamical system, and suppose that there is

an L ∈ (0, 1) such that d(Tx, Ty) < L · d(x, y) for all x, y ∈ X. Then (X,T ) exhibits

the shadowing property.
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Proof. Let ε > 0 be given, and define δ = (1−L) · ε. Let 〈xn〉n∈ω be a δ-pseudo-orbit.

Notice that for all n ∈ N, we have that

d(T nx0, xn) = d(T (T n−1x0), xn)

≤ d
(
T (T n−1x0), T (xn−1)

)
+ d(xn, T (xn−1))

< L · d
(
T n−1x0, xn−1

)
+ δ

= L · d
(
T n−1x0, xn−1

)
+ (1− L) · ε

= L ·
(
d
(
T n−1x0, xn−1

)
− ε
)

+ ε.

Therefore, we have that

d(T nx0, xn)− ε < L ·
(
d
(
T n−1x0, xn−1

)
− ε
)
.

But then, by induction, we have that

d(T nx0, xn)− ε < Ln ·
(
d(x0, x0

)
− ε
)
.

Therefore, we have that

d(T nx0, xn) < Ln ·
(
d(x0, x0

)
− ε
)

+ ε

= ε · (1− Ln) < ε

Theorem 2.2.2. If T is a weighted backwards shift on X such that supj∈ω |βj| < 1
2
,

then (X,T ) exhibits the shadowing property.

21



Proof. Let T be as in the statement. Let β = supj∈ω |βj| < 1
2
. Notice that for any

two points x and y in X, we have the following:

‖Tx− Ty‖ =
∞∑
i=0

1

2i
|βi| · |xi+1 − yi+1| ≤ 2β

∞∑
i=1

1

2i
|xi − yi|

≤ 2β
∞∑
i=0

1

2i
|xi − yi| = 2βd(x, y).

Since 2β < 1, T is a contraction. Therefore, (X,T ) exhibits the shadowing property.

Another scenario which provides the shadowing property for an operator T is if

the operator uniformly, under enough iterations, maps every sequence to the zero

sequence. Recall that T is nilpotent if T n = 0 for some n ∈ ω.

Theorem 2.2.3. If a weighted backwards shift operator T on X is nilpotent, then

(X,T ) exhibits the shadowing property.

Proof. Let n ∈ ω be such that T n = 0. Let ε > 0 be given. By continuity of T and its

iterates, choose δ > 0 such that δ < ε
n+1

and if d(x, y) < δ, then d(T kx, T ky) < ε
n+1

for all k ≤ n. Let 〈xn〉∞n=0 be a δ-pseudo-orbit. Defining z = x0, we have that

d(Tmz, xm) ≤ d(Tmz, Tmx0) +
m−1∑
j=0

d(Tm−jxj, T
m−(j+1)xj+1).

Now, if m ≤ n, then we have

d(Tmz, xm) < 0 +
mε

n+ 1
< ε
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If m > n, notice that

d(Tmz, xm) ≤ d(Tmz, Tmx0) +
m−1∑
j=0

d(Tm−jxj, T
m−(j+1)xj+1)

=
m−1∑

j=m−n

d(Tm−jxj, T
m−(j+1)xj+1),

as T is nilpotent. But then

d(Tmz, xm) <
nε

n+ 1
< ε.

Thus z ε-shadows 〈xn〉∞n=0, proving that (X,T ) has the shadowing property.

The above two theorems have shown that weighted shifts with sufficiently small

weights have the shadowing property. We now show that weighted shifts with weights

that grow sufficiently fast have the shadowing property.

Theorem 2.2.4. Let T be a weighted backwards shift operator on X. If

sup
n∈N

n∑
i=0

2i∏n
j=i |βj|

<∞,

then (X,T ) exhibits the shadowing property.

Proof. Suppose T is as above, and let ε > 0 be given. Suppose also that

supn∈N
∑n

i=0
2i∏n

j=i |βj |
= S and let δ = ε

2S
.

Given a δ-pseudo-orbit 〈xn〉∞n=0, define a point z by z0 = x00 and zn =
xn0∏n−1
i=0 |βi|

.

Notice the following:

d(T nz, xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
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≤
∞∑
i=0

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 βj

− xni

∣∣∣∣∣
≤

∞∑
i=0

1

2i

(
i−1∑
k=0

1∏i−1
j=k |βj|

∣∣∣xi+n−kk − βkxi+n−(k+1)k+1

∣∣∣)

<

∞∑
i=0

1

2i

(
i−1∑
k=0

1∏i−1
j=k |βj|

2kδ

)
<
∞∑
i=0

1

2i

(
i−1∑
k=0

2k∏i−1
j=k |βj|

ε

2S

)

=
ε

2

∞∑
i=0

1

2i

(
1

S

i−1∑
k=0

2k∏i−1
j=k |βj|

)
<
ε

2

∞∑
i=0

1

2i
= ε

As ε and 〈xn〉 were arbitrary, (X,T ) exhibits the shadowing property.

2.3 Shadowing in a General Sequence Space in which supj∈ω |βj| <∞

The preceding theorems present us with criteria upon the weights in which the

shadowing property is guaranteed. While the first two theorems guarantee the prop-

erty if the weights are sufficiently small, the third criterion requires the weights βj to

grow at a rate on the order of 2j. In particular, this criterion will not hold if there

exists an M ∈ N such that |βj| < M for all j ∈ ω. This provides a stark contrast

with the case for the Banach space `p, as an operator in which this criterion holds is

not well-defined. It is worth noting that in a general sequence space X, if the weights

tend to infinity, the operator exhibiting this will fail to be continuous, but it will still

be well-defined.

In order to discuss the shadowing property on a general sequence space in which

the operator has bounded weights, i.e. supn∈ω |βn| <∞, the following definition will

prove useful. For x ∈ Kω, define the galaxy of the sequence, Gx, as all sequences y

that are only a finite distance from x, i.e.

Gx = {y : d(x, y) <∞}.
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Notice that G0 is just `1
(

1
2i

)
, because for x ∈ G0, we have that

d(x, 0) =
∞∑
i=0

1

2i
|xi| <∞,

which is exactly the criterion to be a member of `1
(

1
2i

)
. Also, if z ∈ Gx ∩ Gy, then

Gx = Gy, as d(x, y) ≤ d(x, z) + d(z, y) <∞.

Now an important fact that will help us talk about pseudo-orbits 〈xn〉∞n=0 not

contained within G0 is as follows.

Lemma 2.3.1. 〈xn〉∞n=0 is a δ-pseudo-orbit if and only if 〈xn − T ny〉∞n=0 is a δ-

pseudo-orbit for every point y ∈ X.

Proof. Notice the following:

d
(
T (xn−1 − T n−1y), xn − T ny

)
= d
(
Txn−1 − T ny, xn − T ny

)
= d
(
Txn−1, xn

)
Thus 〈xn − T ny〉∞n=0 is a δ-pseudo-orbit if and only if 〈xn〉∞n=0 is.

This result allows us to think about pseudo-orbits as being centered about the

orbit of a point. Combined with the fact that if y ∈ Gx, then Ty ∈ GTx, due to

d (Tx, Ty) =
∞∑
i=0

|βi|
2i
|xi+1 − yi+1|

≤
∞∑
i=0

supi∈ω |βi|
2i

|xi+1 − yi+1|

= 2

(
sup
i∈ω
|βi|
) ∞∑

i=1

1

2i
|xi − yi|

≤ 2

(
sup
i∈ω
|βi|
) ∞∑

i=0

1

2i
|xi − yi|
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= 2

(
sup
i∈ω
|βi|
)
d (x, y) <∞

we can now think of pseudo-orbits as being contained within the orbit of the galaxy

of some point.

2.4 Shadowing of Uniformly Bounded Pseudo-Orbits

As we now generalize to a weighted shift where the supremum of the weights is

allowed to be infinite, we consider weaker versions of the shadowing property. This

shift in our focus is due to the fact that sequences may now “jump” between orbits

of galaxies, as there exist sequences of weights that make the distance of the image

of two points infinitely far apart, whereas their original distance was finite.

Example 2.4.1. Let Y = `1
(

1
2i

)
and let T : Y → Y a weighted shift with

βi = 2i. Then defining 0 = 〈0〉i∈ω and 1 = 〈1〉i∈ω, we have that d
(
0, 1
)

= 2, yet

d
(
T
(
0
)
, T
(
1
))

=∞.

We begin by defining the following:

Definition 2.4.2. We call a pseudo-orbit 〈xn〉 M-uniformly bounded if M ∈ N,

|xnm| < M for all n,m ∈ ω, that is that every entry of every sequence is bounded by

M .

We shall say that (X,T ) exhibits the uniformly bounded pseudo-orbit tracing prop-

erty (UBPOTP) if for any ε > 0 and M ∈ N, there exists a δ > 0 such that for any

M -uniformly bounded δ-pseudo-orbit 〈xn〉, there exists a point z ∈ X such that z

ε-shadows the pseudo-orbit.

26



For the remainder of this chapter, we assume that X is a general sequence space

with extended metric given by

d(x, y) =
∞∑
i=0

1

2i
|xi − yi|.

The following lemma will prove useful in demonstrating that certain weighted shifts

exhibit the UBPOTP.

Lemma 2.4.3. Let T be a weighted backwards shift operator on X with |βj| ≥ 1

for all j ∈ ω, and let ε > 0, M ∈ N be given. Then there exists an L such that if

〈xn〉n∈ω is an M -uniformly bounded pseudo-orbit, then the point z defined by z0 = x00

and zn =
xn0∏n−1
j=0 |βj |

has the property that

d(T nz, xn) ≤
L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣+
ε

2
.

Proof. Let ε > 0 and M ∈ N be given. Notice that there exists an L ∈ N such that

2M
∑∞

i=0
1
2i
< 2M

∑L
i=0

1
2i

+ ε
2
, as the series converges. Let 〈xn〉n∈ω be an M -uniformly

bounded pseudo-orbit. Then, with z defined as above, we have that∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣ ≤
∣∣∣∣∣ 1∏i−1

j=0 |βj|
xi+n0

− xni

∣∣∣∣∣ < M∏i−1
j=0 |βj|

+M ≤ 2M.

Thus, for all n ∈ ω, we have that

d(T nz,xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
=

L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣+
∞∑

i=L+1

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
<

L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣+ 2M
∞∑

i=L+1

1

2i
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<

L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣+
ε

2
.

Theorem 2.4.4. Suppose that T is a weighted backwards shift operator on X with

|βj| ≥ 1 for all j ∈ ω. Then (X,T ) exhibits the UBPOTP.

Proof. Let M, ε > 0 be given. Take L ∈ N that accompanies M and ε from Lemma

2.4.3. Now, define β = min
{∏i−1

j=0 |βj| | 0 ≤ i ≤ L
}

and let δ = ε
4

β
2L(L+1)

. Let 〈xn〉

be an M -uniformly bounded δ-pseudo-orbit, and define a point z by taking z0 = x00

and zn =
xn0∏n−1
j=0 |βj |

.

By the above lemma, we will then have that

d(T nz, xn) ≤
L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣+
ε

2
.

Notice the following for all i ≤ L:∣∣∣∣∣ 1∏i−1
j=0 |βj|

xi+n0
− xni

∣∣∣∣∣ ≤
∣∣∣∣∣ 1∏i−1

j=0 |βj|
xi+n0

− 1∏i−1
j=1 |βj|

xi+n−11

∣∣∣∣∣
+

∣∣∣∣∣ 1∏i−1
j=1 |βj|

xi+n−11 −
1∏i−1

j=2 |βj|
xi+n−22

∣∣∣∣∣
+ · · ·+

∣∣∣∣ 1

|βi−1|
xn+1i−1

− xni
∣∣∣∣

≤ δ

(
1∏i−1

j=0 |βj|
+

2∏i−1
j=1 |βj|

+ · · ·+ 2i−1

|βi−1|

)

≤ δ
L∑
i=0

2i

β
<
ε

4
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Thus, we have that

L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣ < ε

4

L∑
i=0

1

2i
<
ε

2

This shows us that d(T nz, xn) < ε. Thus (X,T ) exhibits the UBPOTP.

This result extends nicely to the following situation.

Theorem 2.4.5. Suppose that T is a weighted backwards shift operator on X with

infi∈N
∏i−1

j=0 |βj| > 0. Then (X,T ) exhibits the UBPOTP.

Proof. Let M, ε > 0 be given, and assume that β = infi∈N
∏i−1

j=0 |βj|. Take L ∈ N

associated to M and ε such that

∞∑
i=0

1

2i

(
M(β + 1)

β

)
≤

L∑
i=0

1

2i

(
M(β + 1)

β

)
+
ε

2
.

. Define δ = ε
4

β
2L(L+1)

. Let 〈xn〉 be an M -uniformly bounded δ-pseudo-orbit, define a

point z by taking z0 = x00 and zn =
xn0∏n−1
j=0 |βj |

. Notice the following:

d(T nz, xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
≤

∞∑
i=0

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 |βj|

− xni

∣∣∣∣∣
<

∞∑
i=0

1

2i

∣∣∣∣xi+n0

β
− xni

∣∣∣∣
<

∞∑
i=0

1

2i

(
M

β
+M

)

=
∞∑
i=0

1

2i

(
M(β + 1)

β

)

≤
L∑
i=0

1

2i

(
M(β + 1)

β

)
+
ε

2
.

29



In a similar argument to the above theorem, it is easily shown that our defined

point z will indeed ε-shadow the given pseudo-orbit.

Now we show that even if the infinum of magnitude of the product of the weights

is equal to zero, a weighted shift (X,T ) exhibits the UBPOTP.

Lemma 2.4.6. Suppose that T is a weighted backwards shift operator on X with

|βj| > 0 for all j ∈ ω and let M, ε > 0 be given. Moreover, assume that
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

converges and that infi∈N
∏i−1

j=0 |βj| = 0. Then there exists an L ∈ N dependent on

M , ε, and the weights βj such that if 〈xn〉 is an M -uniformly bounded pseudo-orbit,

then the point z defined by z0 = x00 and zn =
xn0∏n−1
j=0 |βj |

has the property that

d(T nz, xn) <
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

2
.

Proof. Let M, ε > 0 be given. Since our assumption of the sum converging would not

hold if
∏i−1

j=0 |βj| = 0 for some finite i, we do not concern ourselves with this situation.

Therefore, the proof can be split into two cases:

Case 1:
∏i−1

j=0 |βj| Converges to 0. In this case, define L1 and L2 as follows.

L1 :
i−1∏
j=0

|βj| < 1 for all i ≥ L1

L2 : 2M
∞∑
i=0

1

2i
1∏i−1

j=0 |βj|
< 2M

L2∑
i=0

1

2i
1∏i−1

j=0 |βj|
+
ε

2
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Let L = L1 + L2, and let 〈xn〉n∈ω be a M -uniformly bounded pseudo-orbit. Let z

be defined as above. We will use the fact that for i ≥ L1, we have the following:

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣ =
1

2i

∣∣∣∣∣∣
(∏i+n−1

j=i βj

)
∏i+n−1

j=0 |βj|
xi+n0

− xni

∣∣∣∣∣∣
≤ 1

2i

∣∣∣∣∣∣
(∏i+n−1

j=i βj

)
∏i+n−1

j=0 βj
xi+n0

− xni

∣∣∣∣∣∣
=

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 βj

− xni

∣∣∣∣∣
=

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
<

1

2i
1∏i−1

j=0 |βj|
(2M)

Then, for all n ∈ ω, we have that

d(T nz, xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
=

(
L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
)

+

(
∞∑

i=L+1

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
)

<

(
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
)

+

(
∞∑

i=L+1

1

2i
1∏i−1

j=0 |βj|
(2M)

)

<

L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

2

Case 2:
∏i−1

j=0 |βj| Does Not Converge to 0. Let A =
{
i ∈ N :

∏i−1
j=0 |βj| < 1

}
and B =

{
i ∈ N :

∏i−1
j=0 |βj| ≥ 1

}
. By the fact that A and B are subsets of ω and

both
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

and
∑∞

i=0
1
2i

converge, define L ∈ N such that

∑
i∈A

1

2i
1∏i−1

j=0 |βj|
≤

∑
i∈A∩[0,L]

1

2i
1∏i−1

j=0 |βj|
+

ε

8M
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and

∑
i∈B

1

2i
≤

∑
i∈B∩[0,L]

1

2i
+

ε

8M
.

Let 〈xn〉n∈ω be an M -uniformly bounded pseudo-orbit, and define z as above.

Notice the following:

d(T nz, xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
=
∞∑
i=0

1

2i

∣∣∣∣∣∣
(∏i+n−1

j=i βj

)
∏i+n−1

j=0 |βj|
xi+n0

− xni

∣∣∣∣∣∣
≤

∞∑
i=0

1

2i

∣∣∣∣∣∣
(∏i+n−1

j=i βj

)
∏i+n−1

j=0 βj
xi+n0

− xni

∣∣∣∣∣∣
=
∞∑
i=0

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 βj

− xni

∣∣∣∣∣
≤
∑
i∈A

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 βj

− xni

∣∣∣∣∣+
∑
i∈B

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 βj

− xni

∣∣∣∣∣
=
∑
i∈A

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
∑
i∈B

1

2i

∣∣∣∣∣ xi+n0∏i−1
j=0 βj

− xni

∣∣∣∣∣
<
∑
i∈A

1

2i
1∏i−1

j=0 |βj|
(2M) +

∑
i∈B

1

2i
(2M)

< 2M

(∑
i∈A

1

2i
1∏i−1

j=0 |βj|
+
∑
i∈B

1

2i

)

But then we have that

d(T nz, xn) < 2M

 ∑
i∈A∩[0,L]

1

2i
1∏i−1

j=0 |βj|
+

ε

8M
+

∑
i∈B∩[0,L]

1

2i
+

ε

8M


= 2M

 ∑
i∈A∩[0,L]

1

2i
1∏i−1

j=0 |βj|
+

∑
i∈B∩[0,L]

1

2i

+
ε

2
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Then we must have that

d(T nz, xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
<

L∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣+
ε

2

Theorem 2.4.7. Suppose that T is a weighted backwards shift operator on X with

|βj| > 0 for all j ∈ ω. Moreover, assume that
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

converges. Then (X,T )

exhibits the UBPOTP.

Proof. Let M, ε > 0 be given. Now as the result is shown if infi∈N
∏i−1

j=0 |βj| > 0,

assume that infi∈N
∏i−1

j=0 |βj| = 0. Take L from the above lemma, and define

β = min
{∏i−1

j=0 |βj| | 0 ≤ i ≤ L
}

and let δ = ε
4

β
2L(L+1)

. Let 〈xn〉 be an M -uniformly

bounded δ-pseudo-orbit and let z be defined as in Lemma 2.4.6. Then, by the lemma,

we must have that

d(T nz, xn) <
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

2

.

From there, notice that for all i ≤ L:

1∏i−1
j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣ ≤ 1∏i−1
j=0 |βj|

|xi+n0
− β0xi+n−11|

+
1∏i−1

j=0 |βj|
|β0xi+n−11 − β0β1xi+n−22|+ · · ·

+
1∏i−1

j=0 |βj|

∣∣∣∣∣
(
i−2∏
j=0

βj

)
xn+1i−1

−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
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≤ δ

(
1∏i−1

j=0 |βj|
+

2∏i−1
j=1 |βj|

+ · · ·+ 2i−1

|βi−1|

)

≤ δ
L∑
i=0

2i

β
<
ε

4

Therefore we must have that

d(T nz, xn) <
ε

4

L∑
i=0

1

2i
+
ε

2
<
ε

2
+
ε

2
= ε.

Thus (X,T ) exhibits the UBPOTP.

As a special case, the same result holds for any space `1
(

1
2i

)
. This is due to the

fact that `1
(

1
2i

)
is a subset of our general sequence space X.

Corollary 2.4.8. Suppose that T is a weighted backwards shift operator on `1
(

1
2i

)
with |βj| > 0 for all j ∈ ω. Moreover, assume that

∑∞
i=0

1
2i

1∏i−1
j=0 |βj |

< ∞. Then(
`1
(

1
2i

)
, T
)

exhibits the UBPOTP.

Proof. Let T be a weighted backwards shift on `1
(

1
2i

)
. Let ε > 0, M ∈ N be given.

Let δ > 0 be defined as Theorem 2.4.7, and let 〈xn〉n∈ω be an M -uniformly bounded

δ-pseudo-orbit. Notice that 〈xn〉n∈ω is also an M -uniformly bounded δ-pseudo-orbit

in the general sequence space X from Theorem 2.4.7, and so the point z given by the

theorem will ε-shadow 〈xn〉n∈ω in X.

In order to prove the corollary, we must show that z ∈ `1
(

1
2i

)
. To this end, notice

that

∞∑
i=0

1

2i
|zi| = x00 +

∞∑
i=1

1

2i

∣∣∣∣∣ xi0∏i−1
j=0 |βj|

∣∣∣∣∣
= x00 +

∞∑
i=1

1

2i
1∏i−1

j=0 |βj|
|xi0|
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< x00 +M
∞∑
i=1

1

2i
1∏i−1

j=0 |βj|

<∞

Therefore z ∈ `1
(

1
2i

)
.

It is important to note that if the above condition of
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

< ∞ does

not hold, the UBPOTP can fail.

Theorem 2.4.9. Suppose that T is the weighted backwards shift on X with weights

βj = 1
2

for all j ∈ ω. Then (X,T ) does not exhibit the UBPOTP.

Proof. Let ε = 1, and δ > 0 be given. Define a δ-pseudo-orbit 〈xn〉 as follows: for all

n ∈ ω, let

xn =

〈
δ

2
, δ, 4δ, · · · , 2k−1δ, 0, · · ·

〉
,

where k ∈ N is an integer such that 1
k
< δ

4
.

Now, suppose that a point z ∈ X shadows 〈xn〉. Then, since d(z, x0) < 1, we

must have that

∣∣∣∣δ2 − z0
∣∣∣∣+

∣∣∣∣δ2 − 1

2
z1

∣∣∣∣+

∣∣∣∣δ2 − 1

4
z2

∣∣∣∣+ · · ·+
∣∣∣∣δ2 − 1

2k
zk

∣∣∣∣ < 1.

Therefore, there must exist an i ≤ k such that
∣∣ δ
2
− 1

2i
zi
∣∣ < 1

k
< δ

4
. But then

1
2i
zi >

δ
4

or zi > δ2i−2. Thus

‖z‖ =
∞∑
i=0

1

2i
|zi| >

δ

4
.
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Now, as d(T kz, xk) < 1, we must have that

∣∣∣∣δ2 − 1

2k
zk

∣∣∣∣+

∣∣∣∣δ2 − 1

2k+1
zk+1

∣∣∣∣+

∣∣∣∣δ2 − 1

2k+2
zk+2

∣∣∣∣+ · · ·+
∣∣∣∣δ2 − 1

22k
z2k

∣∣∣∣ < 1.

Therefore, there must exist an i ≤ k such that
∣∣ δ
2
− 1

2k+i
zk+i

∣∣ < 1
k
< δ

4
. But then

1
2k+i

zk+i >
δ
4

or zk+i > δ2k+i−2. Thus

‖z‖ =
∞∑
i=0

1

2i
|zi| ≥

δ

4
+
δ

4
=
δ

2
.

But then, for every interval [k, 2k], k ∈ ω, there exists an entry zk+i, i ≤ k, such

that |zk+i| ≥ δ2k+i−2. Thus we must have that

‖z‖ =
∞∑
i=0

1

2i
|zi| ≥

∞∑
i=0

δ

4
=∞.

But then, since ‖xn‖ = kδ
2

for all n ∈ ω, we must have that d(z, x0) =∞. Thus there

is no point which shadows 〈xn〉.

2.5 Shadowing of Bounded Pseudo-Orbits

We now wish to move away from uniformly bounded pseudo-orbits to a more

general setting.

Definition 2.5.1. We call a sequence 〈xn〉 in Kω M-bounded if, for M ∈ N, ‖xn‖ <

M for all n ∈ ω.
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Notice that if given ε > 0 and xn ∈ Kω with ‖xn‖ < M for some M ∈ N, then

there must exist an L(n,ε) ∈ N such that

∞∑
i=0

1

2i
|xni | ≤

L(n,ε)∑
i=0

1

2i
|xni |+

ε

4
.

Definition 2.5.2. We shall call a pseudo-orbit 〈xn〉n∈ω (M,W, ε)-bounded if ‖xn‖ <

M for all n ∈ ω and ifW is an upper bound of
{
L(n,ε)

}
. We call a pseudo-orbit strongly

bounded if for all ε > 0, there is a finite M and W such that it is (M,W, ε)-bounded.

We say that (X,T ) exhibits the strongly bounded pseudo-orbit tracing property

(SBPOTP), or shadowing of (M,W, ε)-bounded pseudo-orbits, if for all ε > 0, M and

W ∈ N, there exists a δ > 0 such that for all (M,W, ε)-bounded δ-pseudo-orbits

〈xn〉n∈ω, there exists a z ∈ X such that z ε-shadows 〈xn〉n∈ω.

It is of worth to note that the existence of such a supremum does not imply that

a bounded pseudo-orbit is uniformly bounded. This is due to the fact that the jth

coordinate of any sequence x is multiplied by 1
2j

when calculating the norm of x.

Therefore, for any M ∈ N, there exists an N ∈ N such that for all j > N , M
2j
< ε

4
.

Thus it is rather easy to formulate a pseudo-orbit such that supn∈N L(n,M) exists yet

which is not uniformly bounded.

Lemma 2.5.3. Suppose that T is a weighted backwards shift operator on X with

|βj| > 0 for all j ∈ ω. Moreover, assume that
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

< ∞. Let ε > 0,

M, and W ∈ N be given. Then there exists an L ∈ N such that if 〈xn〉 is an (M,W, ε)-

bounded pseudo-orbit, then the point z defined by z0 = x00 and zn =
xn0∏n−1
j=0 |βj |

has
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the property that

d(T nz, xn) <
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

2
.

Proof. Let ε > 0 and M ∈ N be given. As
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

<∞, there exists an α ∈ N

such that

M
∞∑
i=0

1

2i
1∏i−1

j=0 |βj|
≤M

α∑
i=0

1

2i
1∏i−1

j=0 |βj|
+
ε

4

Let L = max{W,α}. Let 〈xn〉n∈ω be an (M,W, ε)-bounded pseudo-orbit, and

define a point z as above. Then we must have the following:

d(T nz, xn) =
∞∑
i=0

1

2i

∣∣∣∣∣
(
i+n−1∏
j=i

βj

)
zi+n − xni

∣∣∣∣∣
≤

L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
+

∞∑
i=L+1

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
≤

L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
+

∞∑
i=L+1

1

2i
1∏i−1

j=0 |βj|
|xi+n0

|+
∞∑

i=L+1

1

2i
|xni |

But then we have that

∞∑
i=L+1

1

2i
1∏i−1

j=0 |βj|
|xi+n0

| ≤M

∞∑
i=α+1

1

2i
1∏i−1

j=0 |βj|

<
ε

4
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and that

∞∑
i=L+1

1

2i
|xni | ≤

∞∑
i=W+1

1

2i
|xni |

<
ε

4

Therefore, we ultimately see that

d(T nz, xn) <
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

4
+
ε

4

=
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

2

Theorem 2.5.4. Suppose that T is a weighted backwards shift operator on X with

|βj| > 0 for all j ∈ ω. Moreover, assume that
∑∞

i=0
1
2i

1∏i−1
j=0 |βj |

< ∞. Then (X,T )

exhibits the SBPOTP.

Proof. Let ε > 0 and M and W ∈ N be given. Define

β = min
{∏i−1

j=0 |βj| | 0 ≤ i ≤ L
}

, where L is taken from the above lemma, and let

δ = ε
4

β
2L(L+1)

.

Let 〈xn〉 be an (M,W, ε)-bounded δ-pseudo-orbit, and define z as in the lemma

above. Then, by the lemma, we will then have that

d(T nz, xn) <
L∑
i=0

1

2i
1∏i−1

j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣+
ε

2
.

But then, we must have that for all i ≤ L:

1∏i−1
j=0 |βj|

∣∣∣∣∣xi+n0
−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
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≤ 1∏i−1
j=0 |βj|

|xi+n0
− β0xi+n−11|

+
1∏i−1

j=0 |βj|
|β0xi+n−11 − β0β1xi+n−22 |+ . . .

. . .+
1∏i−1

j=0 |βj|

∣∣∣∣∣
(
i−2∏
j=0

βj

)
xn+1i−1

−

(
i−1∏
j=0

βj

)
xni

∣∣∣∣∣
=

1∏i−1
j=0 |βj|

|xi+n0
− β0xi+n−11|+

1∏i−1
j=1 |βj|

|xi+n−11 − β1xi+n−22|+ . . .

. . .+
1

|βi−1|
∣∣xn+1i−1

− βi−1xni
∣∣

<
1∏i−1

j=0 |βj|
δ +

1∏i−1
j=1 |βj|

2δ + . . .+
1

|βi−1|
2i−1δ

= δ

(
1∏i−1

j=0 |βj|
+

2∏i−1
j=1 |βj|

+ · · ·+ 2i−1

|βi−1|

)

≤ δ
L∑
i=0

2i

β
<
ε

4

But then we have that

d(T nz, xn) <
ε

4

L∑
i=0

1

2i
+
ε

2
<
ε

2
+
ε

2
= ε

Thus (X,T ) exhibits the SBPOTP.

A special case of these theorems, yet again, is that `p spaces. Yet again this is

due to `1 being a subspace of our general sequence space X.

Theorem 2.5.5. Suppose that T is a weighted backwards shift operator on `1
(

1
2i

)
with |βj| ≥ 0 for all j ∈ ω. Moreover, assume that

∑∞
i=0

1
2i

1∏i−1
j=0 |βj |

< ∞. Then(
`1
(

1
2i

)
, T
)

exhibits the SBPOTP.

Based on the definitions, we have the following somewhat trivial relationship.
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Theorem 2.5.6. Given a weighted backwards shift operator T acting on the space

X, the shadowing property implies the SBPOTP, and the SBPOTP implies the

UBPOTP.
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CHAPTER THREE

Shadowing on Fréchet Spaces

3.1 Introduction

As menctioned earlier, much has been done in the realm of Banach spaces in

the exploration of the shadowing property, such as [4] and [3]. For instance, in

“Expansivity and Shadowing in Linear Dynamics”, the authors provided work which

linked the hyperbolicity of an operator to the presence of various forms of shadowing.

A theorem due to the pair is presented below:

Theorem 3.1.1. [Bernardes and Messaoudi] Every invertible hyperbolic operator

T on a Banach space X has the shadowing property, the limit shadowing property

and the `p shadowing property for all 1 ≤ p <∞.

In particular, with regards to the last chapter, the pair arrives at the following:

Theorem 3.1.2. [Bernardes and Messaoudi] Let X = `p (N) (1 ≤ p <∞) or X =

c0 (N), let w = (wn)n∈N be a bounded sequence of nonzero scalars and consider the

unilateral weighted backward shift

Bw : (xn)n∈N ∈ X 7→ (wn+1xn+1)n∈N ∈ X.

Then Bw has the positive shadowing property if and only if one of the following

conditions holds:

1) limn→∞ supk∈N |wkwk+1 · . . . · wk+n|
1
n < 1, or
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2) limn→∞ infk∈N |wkwk+1 · . . . · wk+n|
1
n > 1.

It is important to notice that weighted backwards shifts are not invertible, so that

the above theorem is not a corollary of the first theorem. From this second result,

we have the following, which is a natural generalization of the above theorem based

upon our previous work.

Theorem 3.1.3. Let X be a general sequence space, T a weighted shift operator

on X such that supj∈ω βj < ∞. Then T has the shadowing property if and only if

one of the following holds:

1) limn→∞ supk∈N |wkwk+1 · . . . · wk+n|
1
n < 1

2
.

2) limn→∞ infk∈N |wkwk+1 · . . . · wk+n|
1
n > 1

2
.

Proof. Let X be a sequence space, and let ε > 0 be given. Let T a weighted shift

acting on X with supj∈ω βj < ∞. Write X =
⋃
n∈I Gzn , the disjoint union of all

distinct galaxies of X, where zn is a representative of each galaxy and I is some

indexing set. Notice that G0 has the shadowing property if and only if one the

conditions of theorem holds, due to Theorem 3.1.0.2.

Let 〈xn〉∞n=0 be a δ-pseudo-orbit, where δ is arbitrary. Now x0 ∈ GzN for some N .

Consider the δ-pseudo-orbit 〈xn − T nzN〉∞n=0. As xn ∈ GTnzN for all n ∈ ω, we have

that 〈xn − T nzN〉∞n=0 ⊆ G0. Let y ∈ G0 ε-shadow the pseudo-orbit 〈xn − T nzN〉∞n=0.

Notice the following:

d(xn, T
n (y + zN)) = d(xn, T

ny + T nzN) = d(xn − T nzN , T ny) < ε

Thus the point 〈y + zN〉∞n=0 ε-shadows the pseudo-orbit 〈xn〉∞n=0.
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Notice that the criterion is changed from conditions one and two being less than or

greater than 1, respectively, to being less than or greater that 1
2
. This is a consequence

of us using the metric associated with the weighted space `1
(

1
2i

)
.

In this paper, extend this result to Fréchet spaces, which, as noted earlier, are

generalizations of Banach spaces. To do this, we must use different notions of the

spectrum of an operator. We conclude with results similar to the ones presented by

Bernardes et al. using different notions of the spectrum of an operator, such as the

Waelbroek and continuous spectrum.

3.2 Preliminaries

Bernardes et al. effectively solved the question of whether a linear operator acting

on a Banach space exhibits the shadowing property, with the property being com-

pletely determined by the spectrum of the operator. As we move away from the

setting of Banach spaces, we may lose the “nice” properties associated with the usual

definition of the spectrum, such as the fact that the spectrum of a bounded linear

operator acting on a Banach space is always a compact, nonempty set. For instance,

there are operators acting on Fréchet spaces which have an empty spectrum, a spec-

trum that is not closed, and most certainly a spectrum which is unbounded. Perhaps

as importantly, it isn’t immediately clear if we retain nice decomposition theorems

on these spaces, most of which relied heavily upon the definition of the spectrum.

We define the spectrum of a bounded linear operator on a Banach space here for

reference:
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Definition 3.2.1. For an operator T on a Banach space X, we define the resolvent

of T , ρ(T ), as the set of all λ ∈ C for which the operator (λI − T )−1 is a bounded

linear operator. The spectrum of T , σ(T ), is defined as σ(T ) = C \ ρ(T ).

Given a bounded linear operator on a Banach space, its spectrum is always closed,

bounded (and therefore compact), and nonempty in C. For bounded linear operators,

it is well known through a consequence of the Bounded Inverse Theorem that the

spectrum consists precisely of the complex numbers λ for which λI−T is not bijective.

The above concerns lead to a couple of different notions of the spectrum of an

operator acting on a Fréchet space. The first idea is to change what we require out

of the operator (λI−T )−1 for λ to be included in ρ(T ). In Spectral Radii of Bounded

Operators on Topological Vector Spaces [22], Troitsky defines multiple notions of the

spectrum:

Definition 3.2.2. Let T be a linear operator on a topological vector space. For

λ ∈ C, we say that λ ∈ ρl(T ) if λI −T is invertible in the algebra of linear operators.

We say that λ ∈ ρc(T ) if the inverse of λI − T is continuous. The spectral sets σl(T )

and σc(T ) are definied to be the complements of the reslovent sets ρl(T ) and ρc(T ),

respectively.

It is worthy of note that this is different than the usual notion of the “continuous

spectrum”, which is normally defined as the set of all complex numbers for which the

operator λI − T is injective and has dense range, yet is not surjective.

The other notion of the spectrum we will use is the Waelbroeck spectrum, denoted

σω(T ). This spectrum is defined as follows:
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Definition 3.2.3. Let Ĉ be the one-point compactification of the complex plane.

λ ∈ Ĉ is an element of the resolvent set ρω(T ) if and only if there is a neighborhood

Vλ of λ in Ĉ such that there is a function µ→ Rµ on Vλ ∩ C to L(X) satisfying, for

each µ ∈ Vλ ∩ C, the conditions

1) Rµ(µI − T ) = (µI − T )Rµ = I, and

2) {Rµ : µ ∈ Vλ ∩ C} is bounded in L(X).

The Waelbroeck spectrum of T , σω(T ) is defined as σω(T ) = Ĉ \ ρω(T ).

On a Fréchet space, there are examples which show that these notions of spectra

are not necessarily equal, as noted in [19]. The usual notion of the spectrum and the

Waelbroeck spectrum are equal on a certain classes of operators, such as completely

bounded operators and compact operators. In fact, Maeda [18] shows that for oper-

ators in the algebra of the identity operator with completely bounded operators, a

subalgebra of the linear operators on a locally convex space, the usual notion of the

spectrum and the Waelbroeck spectrum are equal and are even compact subsets of

C.

The definition of the Waelbroeck spectrum has the advantage that it is a closed

set which contains the usual spectrum of an operator as noted in [6]. Moreover, if X

is a Banach space, then σ(T ) = σω(T ).

As we will be concerned with where the different notions of the spectra are

contained within the complex plane, we define D ⊂ C = {z ∈ C : ‖z‖ < 1} and

T ⊂ C = {z ∈ C : ‖z‖ = 1} .
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Lastly, as defining a single norm on the operator, such as for bounded linear

operators on Banach spaces, no longer makes sense, we define the following, due to

[22]:

Definition 3.2.4. Let T be an operator on a seminormed vector space (X, p). As

in the case with normed spaces, p generates an operator seminorm p(T ) defined by

p(T ) = sup
p(x)6=0

p(Tx)

p(x)
.

More generally, let T : X → Y be a linear operator between two seminormed spaces

(X, p) and (Y, q). Then we define a mixed operator seminorm associated with p and

q via

mp,q(T ) = sup
p(x)6=0

q (Tx)

p(x)
.

Troitsky notes that this is just “a measure of how far in the sminorm q the points

of the p-unit ball can go under T .” [22]. This may mean that mpq(T ) is infinite, as

T may not be a bounded operator. Troitsky also mentions how the mixed operator

seminorm may be used to give a criterion upon when an operator is continuous.

Proposition 3.2.5. [Troitsky] Let T be an operator from Fréchet spaces X to Y ,

and let P and Q denote the generating families of seminorms, respectively. Then T is

continuous if an only if for every q ∈ Q, there exists p ∈ P such that mp,q(T ) is finite.

In his paper, Troitsky defines the spectral radii for each of his different spectra.

This is defined to be the distance for which the radius of a neighborhood about

zero must be larger than in order to capture all elements of the spectrum. For
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the continuous spectrum of an operator T on a space X with generating family of

seminorms P , Troitsky shows that the spectral radius, rc(T ), is given by

rc(T ) = sup
q∈P

inf
p∈P

lim sup
n→∞

n

√
mp,q(T n).

3.3 Shadowing on Fréchet Spaces

Lemma 3.3.1. If T is a linear operator acting on a Fréchet space X such that

σω(T ) ⊆ D, then there exists constants t ∈ (0, 1) and C ≥ 1 such that mpn,pm(T k) <

C · tk.

Proof. First, assume that σω(T ) ⊆ D and let P be the generating family of seminorms

on the space. Then σc(T ) ⊆ D as well. Then by the spectral radius formula for

operators on Fréchet spaces, we have that

sup
q∈P

inf
p∈P

lim sup
n→∞

n

√
sup
p(x)=1

q(T nx) < 1.

Therefore, there exists a t < 1 such that

sup
q∈P

inf
p∈P

lim sup
n→∞

n

√
sup
p(x)=1

q(T nx) < t.

Noting that the generating family of seminorms is taken to be increasing, that is

pn(x) ≤ pm(x) for all x ∈ X,n < m, we have that this is equivalent to

lim
m→∞

lim
n→∞

lim sup
k→∞

k

√
sup

pn(x)=1

pm(T kx) < t.

Therefore, there exists some M ∈ N such that

lim
n→∞

lim sup
k→∞

k

√
sup

pn(x)=1

pm(T kx) < t
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for all m ≥M . Now we also must have that there exists an N ∈ N such that

lim sup
k→∞

k

√
sup

pn(x)=1

pm(T kx) < t

for all m ≥M,n ≥ N . Similarly, there must exist a K ∈ N such that

k

√
sup

pn(x)=1

pm(T kx) < t

for all m ≥M,n ≥ N, k ≥ K. Therefore, we must have that

sup
pn(x)=1

pm(T kx) < tk

for all m ≥M,n ≥ N, k ≥ K. Therefore, there exists a C ∈ N such that

mpn,pm(T k) = sup
pn(x)=1

pm(T kx) < Ctk

for all m,n, k ∈ ω.

Theorem 3.3.2. Let T be an operator acting on a Fréchet space X. Suppose that

σω(T ) ⊂ D. Then T exhibits the shadowing property, as well as the limit shadowing

property.

Proof. Let ε > 0 be given. There exists an L ∈ N such that
∑∞

i=0
1
2i
<
∑L

i=0
1
2i

+ ε
2
.

Now as T is a contraction, there exists a constant C ∈ N and a t ∈ (0, 1) such that

pi(T )n < C · tn for all n ∈ ω. Let δ = (1−t)ε
4C·2L , and let 〈xn〉n∈ω be a δ-pseudo-orbit.

Notice then that

d(T nx0, xn) =
∞∑
i=0

1

2i
min

(
1, pi(T

nx0 − xn)
)
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<

L∑
i=0

1

2i
pi(T

nx0 − xn) +
ε

2

≤
L∑
i=0

1

2i
(
pi(T

nx0 − T n−1x1) + pi(T
n−1x1 − T n−2x2) + . . .

. . .+ pi(Txn−1 − xn)
)

+
ε

2

≤
L∑
i=0

1

2i
(
pi(T )n−1pi(Tx0 − x1) + pi(T )n−2pi(Tx1 − x2) + . . .

. . .+ pi(Txn−1 − xn)
)

+
ε

2

=
L∑
i=0

1

2i

(
n−1∑
k=0

pi(T )n−1−kpi(Txk − xk+1)

)
+
ε

2

<
L∑
i=0

1

2i

(
n−1∑
k=0

C · tn−1−kpi(Txk − xk+1)

)
+
ε

2

Now since d(Txk, xk+1) < δ = (1−t)ε
4C·2L , we must have that

pi(Txk − xk+1) <
(1− t)ε

4C
.

Therefore, we have that

d(T nx0, xn) <
L∑
i=0

1

2i

(
n−1∑
k=0

C · tn−1−k (1− t)ε
4C

)
+
ε

2

=
L∑
i=0

1

2i

(
(1− t)ε

4

n−1∑
k=0

tn−1−k

)
+
ε

2

<
L∑
i=0

1

2i

(
(1− t)ε

4

∞∑
k=0

tk

)
+
ε

2

=
L∑
i=0

1

2i

(
(1− t)ε

4
· 1

1− t

)
+
ε

2

=
ε

4

L∑
i=0

1

2i
+
ε

2
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< ε

Therefore, we have shown that (X,T ) exhibits the shadowing property.

To see that (X,T ) exhibits the limit shadowing property, let 〈xn〉n∈ω ⊆ X be such

that d(Txn, xn+1)→ 0 as n→∞. Let ε > 0 be given. We show that for this ε, there

exists some N ∈ N such that for all n > N , d(T nx0, xn) < ε. To this end, notice the

following for all j < n:

d(T nx0, xn) =
∞∑
i=0

1

2i
min

(
1, pi(T

nx0 − xn)
)

≤
L∑
i=0

1

2i
min

(
1, pi(T

nx0 − xn)
)

+
ε

2

≤
L∑
i=0

1

2i
pi(T

nx0 − xn) +
ε

2

≤
L∑
i=0

1

2i

(
pi(T

nx0 − T n−1x1) + pi(T
n−1x1 − T n−2x2) + . . .

. . .+ pi(Txn−1 − xn)
)

+
ε

2

≤
L∑
i=0

1

2i

(
pi(T )n−1pi(Tx0 − x1) + pi(T )n−2pi(Tx1 − x2) + . . .

. . .+ pi(Txn−1 − xn)
)

+
ε

2

=
L∑
i=0

1

2i

(
n−1∑
k=0

pi(T )kpi(Txn−k−1 − xn−k)

)
+
ε

2

<
L∑
i=0

1

2i

(
n−1∑
k=0

C · tkpi(Txn−k−1 − xn−k)

)
+
ε

2

=
L∑
i=0

C

2i

(
j∑

k=0

(tk · pi(Txn−k−1 − xn−k)

+
n∑

k=j+1

(tk · pi(Txn−k−1 − xn−k))

)
+
ε

2
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≤
L∑
i=0

C

2i

(
sup

0≤k≤j
pi(Txn−k−1 − xn−k) ·

j∑
k=0

tk

+ sup
k∈ω

pi(Txn−k−1 − xn−k) ·
n∑

k=j+1

tk

)
+
ε

2

Let Mi = max
(

1
1−t , supk∈ω pi(Txk − xk+1

)
. Fix ji ∈ ω such that∑∞

k=ji+1 t
k < ε

8CMi
. Clearly as i increases, so does Mi and hence ji. Now since

pi(Txl − xl+1) → 0 as l → ∞, there exists some Ni such that if n ≥ Ni, then

pi(Txn − xn+1) <
ε

8CMi
. Let N = max (N0, . . . , NL). But then, if n > N + ji + 1,

sup
0≤k≤ji

pi(Txn−k−1 − xn−k) ·
ji∑
k=0

tk + sup
k∈ω

pi(Txk − xk+1) ·
n∑

k=ji+1

tk

<
ε

8CMi

·
ji∑
k=0

tk + sup
k∈ω

pi(Txk − xk+1) ·
ε

8CMi

≤ ε

8CMi

· 2Mi

<
ε

4C

If we let j = max(j0, . . . , jL), by the above note, we must have that if n > N+j+1,

then d(T nx0, xn) < ε. As ε was arbitrary, this shows that

lim
n→∞

d(T nx0, xn) = 0.

This shows that (X,T ) exhibits the limit shadowing property.
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Now when working on a compact space, the shadowing property is equivalent to

the ability to shadow arbitrarily long pseudo-orbits. We define this property here,

and then provide a proof of the aforementioned result.

Definition 3.3.3. A system (X,T ) is said to exhibit shadowing of arbitrarily long

pseudo-orbits if for all ε > 0, there exists δ > 0 such that every finite δ-pseudo-orbit

〈xn〉 in X is ε-shadowed by some point z ∈ X.

Theorem 3.3.4. Let X be a compact space and T : X → X be an operator. Then

(X,T ) exhibits the shadowing property if and only if (X,T ) exhibits shadowing of

arbitrarily long pseudo-orbits.

Proof. Let (X,T ) be as above, and let ε > 0 be given. If (X,T ) exhibits the shadowing

property, then there exists a δ such that any δ-pseudo-orbit 〈xi〉i∈ω is ε-shadowed by

some point z ∈ X. Notice that if given an arbitrarily long δ-pseudo-orbit 〈xi〉ni=0, one

can extend this to an infinite δ-pseudo-orbit 〈yi〉i∈ω defined by:

yi =


xi i ≤ n

T i−n (xn) i > n

Thus 〈yi〉i∈ω is a δ-pseudo-orbit, and hence there exists a point z ∈ X that ε-shadows

it. But then z ε-shadows 〈xi〉ni=0. Therefore, as this is true for any n ∈ ω, (X,T )

exhibits shadowing of arbitrarily long pseudo-orbits.

Now suppose that (X,T ) exhibits shadowing of arbitrarily long pseudo-orbits, and

let ε > 0 be given. Take δ > 0 from ε
2
-arbitrarily-long shadowing.
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Let 〈xi〉i∈ω be a δ-pseudo-orbit. For each n ≥ 1, let zn ∈ X be the point that

ε
2
-shadows 〈xi〉ni=0. We have that zn ∈ B ε

2
(x0) for all n ∈ ω. As B ε

2
(x0) is compact,

there is a subsequence
〈
znj
〉
j∈ω of 〈zn〉n∈ω that converges to a point z ∈ B ε

2
(x0).

As T i(zn) ∈ B ε
2
(xi) for all n ≥ 1 and i ≤ n, and by continuity of T i for all i ∈ N,

we must have that T i(z) ∈ B ε
2
(xi) ⊂ Bε(xi) for all i ∈ ω. But then z ε-shadows

〈xi〉i∈ω.

As we move to the noncompact setting, we unfortunately lose this equivalence.

However this property is still worth exploring, and we do so in the following.

Theorem 3.3.5. Let T be an operator acting on a Fréchet space X. Suppose that

σω(T ) ⊂ Ĉ \ D. Then T exhibits shadowing of arbitrarily long pseudo-orbits.

Proof. Let ε > 0 be given. Notice that since 0 /∈ σω(T ), we must have that T is

invertible, since (T − 0 · I)−1 = T−1 exists and is continuous.

As σω(T ) ⊂ Ĉ \ D, we must have that σω(T−1) ⊂ D. Therefore, by previous

theorem, T−1 exhibits the shadowing property. Let δ be given from the definition of

ε
C·2L+2 -shadowing on T−1, where C is the constant from the first lemma and L is a

constant such that
∑∞

i=0
1
2i
<
∑L

i=0
1
2i

+ ε
2
. Let 〈xn〉n∈ω be a T δ-pseudo-orbit. Let

N ∈ N. Define
〈
yNn
〉
n∈ω as follows:

yN0 = TxN T−1yN0 = xN

yN1 = TxN−1 T−1yN1 = xN−1

...

yNN = Tx0 T−1yNN = x0
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yNN+1 = x0 T−1yNN+1 = T−1x0

yNN+2 = T−1x0 T−1yNN+2 = T−2x0

...

In general,

yNi =


TxN−i i ≤ N

T−i+N+1x0 i > N

Notice that by definition, we have that d(T−1yNn , y
N
n+1) < δ for all n ∈ ω. Therefore,

there must exist some zN ∈ X such that d(T−nzN , yNn ) < ε
C·2L+2 for all n ∈ ω. Let

xN = T−(N+1)zN . For m ≤ N , notice the following:

d(TmxN , xm) = d(Tm(T−(N+1)zN), xm) = d(Tm−N−1zN , xm)

=
∞∑
i=0

1

2i
min

(
1, pi(T

m−N−1zN − xm)
)

=
∞∑
i=0

1

2i
min

(
1, pi(T

−1(Tm−NzN − Txm))
)

≤
L∑
i=0

1

2i
min

(
1, pi(T

−1)pi(T
m−NzN − Txm))

)
+
ε

2

<
L∑
i=0

1

2i
min

(
1, Ct · pi(Tm−NzN − Txm))

)
+
ε

2

Defining k = N −m, so that m = N − k, we see that

d(TmxN , xm) <
L∑
i=0

1

2i
min

(
1, Ct · pi(T−kzN − TxN−k))

)
+
ε

2
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<

L∑
i=0

1

2i
min

(
1, C · pi(T−kzN − yNk ))

)
+
ε

2

Now since d(T−nzN , yNn ) < ε
C·2L+2 for all n ∈ ω, we must have that

C · pi(T−kzN − yNk ) < ε
4

for k ≤ L. But then:

d(TmxN , xm) <
L∑
i=0

1

2i
min

(
1,
ε

4

)
+
ε

2

=
ε

4

L∑
i=0

1

2i
+
ε

2
< ε

Unfortunately proofs regarding the shadowing property for the case above on

Banach spaces relied heavily upon the linearity of the norm on the Banach space.

When expanding to a Fréchet space, the F-norm associated with the space is not

linear, and hence such a proof strategy was unavailable to the author.

The last theorem is a result of the following proposition, which can be found in

[23].

Proposition 3.3.6. [Vasilescu] Let X be a Fréchet space and T : X → X a linear

operator. Suppose that σω(T ) = F1 ∪ F2, where F1 and F2 are closed and disjoint

subsets of Ĉ, the one-point compactification of the complex plane. Then the space

X is a direct sum of two closed subspaces X1 and X2 with the following properties:

1) T

(
dom

(
T
∣∣
Xj

))
⊂ Xj for j = 1, 2.

2) σω

(
T
∣∣
Xj

)
= Fj for j = 1, 2.
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Proposition 3.3.6 allows us decompose (X,T ) into two systems. We will use this

theorem to consider the case in which the spectrum of T acting on the first subspace

is contained within the unit circle while and the spectrum of T acting on the second

subspace lies outside the closure of the unit circle.

Theorem 3.3.7. Let T be an operator acting on a Fréchet space X. Suppose that

σω(T ) ∩ T = ∅. Then (X,T ) exhibits shadowing of arbitrarily long pseudo-orbits.

Proof. Let σ1 = σω(T )∩D and σ2 = σω(T )∩
(
Ĉ\D

)
. Now these sets form a partition

of σω(T ) into two nonempty closed sets. Therefore, by the above decomposition, there

are T -invariant closed subspaces X1 and X2 of X such that

X = X1 ⊕X2 σω

(
T
∣∣
X1

)
= σ1 σω

(
T
∣∣
X2

)
= σ2

By Theorem 3.3.2, we have that
(
X1, T

∣∣
X1

)
exhibits the shadowing property, while

by Theorem 3.3.5,
(
X2, T

∣∣
X2

)
exhibits shadowing of arbitrarily long pseudo-orbits.

Let ε > 0 and N > 0 be given, and let δ = min{δ1, δ2} where δ1 comes from

ε
2
-shadowing on X1 and δ2 comes from ε

2
-shadowing of N -long pseudo-orbits on X2.

Let 〈xi〉Ni=0 be a N -long δ-pseudo-orbit. As X can be decomposed into X1⊕X2, write

〈xi〉Ni=0 = 〈xi1 + xi2〉
N
i=0.

Now as T

(
dom

(
T
∣∣
Xj

))
⊂ Xj for j = 1, 2, we have that

〈
xij
〉N
i=0

is completely

contained in X1 for j = 1 and X2 for j = 2. Therefore there points z1 ∈ X1 and

z2 ∈ X2 that z ε
2
-shadow 〈xi1〉

N
i=0 and 〈xi2〉

N
i=0, respectively. But then the point

z = z1 + z2 ε-shadows 〈xi〉Ni=0 by the triangle inequality. Therefore, (X,T ) exhibits

shadowing of arbitrarily long pseudo-orbits.
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Note that it is not immediately obvious as to whether this result holds for σc(T ).

The heart of the result comes from the ability to decompose the space into two

invariant subspaces, which has been done classically using the Waelbroeck spectrum.

While there are larger classes for which a similar decomposition theorems exist (see

[2]), hinting at a larger class of operators for which the above result holds, work still

may be done to hopefully show that the result is true when σc(T ) ∩ T = ∅.
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CHAPTER FOUR

Other Notions of Shadowing

Now we seek to generalize the shadowing property into other variants of shad-

owing. As mentioned in the first chapter, there are many variants of the shadowing

property. In this chapter, we develop a new notion of shadowing in noncompact

spaces. Lastly, we come back to the spaces mentioned in Chapter Two and present a

result regarding the average shadowing property and pseudo-orbits of weighted shifts.

4.1 Non-Uniform Pseudo-Orbit Tracing Properties

We begin by defining the non-uniform pseudo-orbit tracing property.

Definition 4.1.1. Let (X,T ) be a metric space, and let δε : X → (0, 1] be a (not

necessarily continuous) function. We call 〈xi〉i∈ω a δε-non-uniform-pseudo-orbit if

d (T (xi), xi+1) < δε(xi) for all i ∈ ω.

A system (X,T ) is said to have the non-uniform pseudo-orbit tracing property

(NUPOTP) if for all ε > 0, there exists a function δε : X → (0, 1] such that for

every δε-non-uniform pseudo-orbit 〈xi〉i∈ω, there exists a point z ∈ X such that

d(T i(z), xi) < ε for all i ∈ ω.

This property allows consideration of pseudo-orbits with different error tolerances

based upon where each point is located within the space as opposed to a single error

tolerance. For instance, perhaps it is necessary that near the boundary of a manifold,
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pseudo-orbits must be more precise, whereas far from the boundary such precision is

no longer needed.

Example 4.1.2. Consider again the space Y = {2n : n ∈ Z} and g(y) = 2y. As we

have discussed earier in Example 1.4.5, (Y, g) does not exhibit the shadowing property.

It does, however, exhibit the NUPOTP. For any ε > 0, we define δε (2n) = 1
2n

. By

this definition, any δε-pseudo-orbit 〈yi〉i∈ω is a true orbit, as

{
y ∈ Y : d (g (2n) , y) <

1

2n

}
= {g (2n)} .

. Therefore the point y0 shadows 〈yi〉i∈ω trivially.

Now, we want to ensure that this definition is relatable to the shadowing property.

Note that the shadowing property is achieved if each function δε has a positive lower

bound.

Proposition 4.1.3. If (X,T ) exhibits the NUPOTP, with 〈δε〉ε>0 a family of func-

tions witnessing it, and we have that infx∈X δε(x) > 0 for all ε > 0, then (X,T )

exhibits the shadowing property.

Proof. Let ε > 0 be given. Take δ = infx∈X δε(x) > 0, and let 〈xn〉n∈ω be a δ-pseudo-

orbit. Notice that d(Txn, xn+1) < δ ≤ δε(xn), so that 〈xn〉n∈ω is a δε-pseudo-orbit.

Therefore, by the NUPOTP, there exists a point z ∈ X that ε-shadows 〈xn〉n∈ω. Thus

(X,T ) also exhibits the shadowing property.

As a corollary to the above, we have the following.
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Corollary 4.1.4. If X is compact and δε can be chosen to be continuous for all

ε > 0, then (X,T ) witnesses the shadowing property.

Proof. Let ε > 0 be given. As the continuous image of a compact set is compact,

we have that δε(X) is a compact subset of (0, 1]. Therefore there exists some point

a ∈ (0, 1] such that 0 < a < infx∈X δε(x). Thus, by 4.1.3, (X,T ) witnesses the

shadowing property.

Within the definition of the NUPOTP, there was room to be more general and

more specific with our requirements on the δε functions. For instance, one may wish

to have all of the functions be continuous so that no brash jumps in error tolerance

requirements occurs. Alternatively, there may be points in the space where no error

may be permitted, requiring that δε at those points be equal to zero. We now define

variants of the NUPOTP describing these two situations.

Definition 4.1.5. A system (X,T ) is said to have the continuous non-uniform

pseudo-orbit tracing property (CNUPOTP) if for all ε > 0, there exists a continuous

function δε : X → (0, 1] such that for every δε-non-uniform pseudo-orbit 〈xi〉i∈ω, there

exists a point z ∈ X such that d(T i(z), xi) < ε for all i ∈ ω.

Definition 4.1.6. A system (X,T ) is said to have the non-uniform pseudo-orbit

tracing property* (NUPOTP*) if for all ε > 0, there exists a function δε : X → [0, 1]

such that for every δε-non-uniform pseudo-orbit 〈xi〉i∈ω, there exists a point z ∈ X

such that d(T i(z), xi) < ε for all i ∈ ω.
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Notice that the CNUPOTP is stronger than the NUPOTP, which in turn is

stronger than the NUPOTP*. We will now examine the relationship between the

shadowing property, CNUPOTP, the NUPOTP, and the NUPOTP* properties. In

this pursuit, we have the following.

Proposition 4.1.7. Let (X,T ) be a dynamical system.

1) If (X,T ) exhibits the shadowing property, then (X,T ) exhibits the CNUPOTP.

2) If (X,T ) exhibits the CNUPOTP, then (X,T ) exhibits the NUPOTP.

3) If (X,T ) exhibits the NUPOTP, then (X,T ) exhibits the NUPOTP*.

Proof. Let ε > 0 be given.

If (X,T ) exhibits the shadowing property, then there exists δ > 0 witnessing

ε-shadowing. Define δε = δ. As δε is constant (and hence continuous) and any δε-

pseudo-orbit is ε-shadowed, then (X,T ) exhibits the CNUPOTP.

If (X,T ) exhibits the CNUPOTP, then the same δε witnessing the CNUPOTP

satisfies the requirements of the NUPOTP. If, lastly, (X,T ) exhibits the NUPOTP,

then the same δε witnessing the NUPOTP satisfies the requirements of the NUPOTP*.

We now show some examples of spaces where some of the above properties hold

while others do not. Conveniently, all of our examples will revolve around the double
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tent map T : R→ R, which is given by

T (x) =



−1+
√
5

2
(x+ 2) if x ≤ −1

1+
√
5

2
x if −1 ≤ x ≤ 1

−1+
√
5

2
(x− 2) if x ≥ 1

The following counterexamples will arise from restricting the domain of T to

particular subsets of the real line.

Example 4.1.8. Let X =
[
−1+

√
5

2
, 0
)
∪
(

0, 1+
√
5

2

]
, T : X → X given above. Then

(X,T ) exhibits the CNUPOTP (and hence the NUPOTP and the NUPOTP*), but

does not witness the shadowing property.

Proof. Notice that each closed interval
[
−1+

√
5

2
, 0
]

and
[
0, 1+

√
5

2

]
exhibits the shad-

owing property by [11]. Therefore, if given an ε > 0, one may define continuous

functions δ±ε , where δ−ε :
[
−1+

√
5

2
, 0
]
→ (0, 1] and δ±ε , where δ+ε :

[
0, 1+

√
5

2

]
→ (0, 1],

that witness the CNUPOTP by Proposition 4.1.7. But then, the continuous function

δε(x) =



1+
√
5

2
−1

2
· δ−ε (x) if x ≤ −1

1+
√
5

2
−1

2
|x| · δ−ε (x) if −1 ≤ x < 0

1+
√
5

2
−1

2
|x| · δ+ε (x) if 0 < x ≤ 1

1+
√
5

2
−1

2
· δ+ε (x) if x ≥ 1

,

will satisfy the requirements of the CNUPOTP on (X,T ).
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To show this, let ε > 0 be given with ε < 1
2
, and let 〈xn〉n∈ω be a δε-non-uniform

pseudo-orbit. We claim that 〈xn〉n∈ω is entirely contained in either
[
−1+

√
5

2
, 0
)

or(
0, 1+

√
5

2

]
.

To this end, notice that for n ∈ ω, we have that d (Txn, xn+1) < δε(xn). If

xn ∈
[
−1+

√
5

2
,−1

]
or xn ∈

[
1, 1+

√
5

2

]
, then as δ±ε (xn) < 1, we must have that xn+1 ∈[

−1+
√
5

2
, 0
)

or xn+1 ∈
(

0, 1+
√
5

2

]
, respectively. If xn ∈ (−1, 0), then d (Txn, xn+1) <

|xn|, so that xn+1 ∈
[
−1+

√
5

2
, 0
)

, as Txn = 1+
√
5

2
xn < xn. A similar argument shows

that if xn ∈ (0, 1), then xn+1 ∈
(

0, 1+
√
5

2

]
. Therefore, for all n ∈ ω, if xn ∈

[
−1+

√
5

2
, 0
)

or if xn ∈
(

0, 1+
√
5

2

]
, then so is xn+1, respectively. Therefore, any δε-non-uniform

pseudo-orbit is necessarily contained in either
[
−1+

√
5

2
, 0
)

or
(

0, 1+
√
5

2

]
.

Assume that 〈xn〉n∈ω is completely contained in
[
−1+

√
5

2
, 0
)

. As δε(xn) ≤ δ−ε (xn),

〈xn〉n∈ω is a δ−ε -non-uniform pseudo-orbit. Therefore, there exists some z ∈
[
−1+

√
5

2
, 0
]

that ε-shadows it.

We show that z 6= 0. Notice that if xn ∈ (−1, 0), then xn+1 < xn. This is due to

the fact that

d(Txn, xn) = xn −
1 +
√

5

2
xn =

(
1− 1 +

√
5

2

)
xn =

(
1 +
√

5

2
− 1

)
|xn|,

so that since d(Txn, xn+1) < δε(xn) <
1+
√
5

2
−1

2
|xn| = 1

2
· d(Txn, xn), we have that

xn+1 < xn. Due to this, there exists some number N ∈ N such that xN ≤ −1. But

then d(xN , 0) ≥ 1 > ε, so that z 6= 0. Therefore z ∈
[
−1+

√
5

2
, 0
)

.

A similar argument can be constructed if 〈xn〉n∈ω is contained in
(

0, 1+
√
5

2

]
. There-

fore (X,T ) exhibits the CNUPOTP.
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Despite this, for given ε > 0, no fixed δ can be picked that will satisfy the require-

ments of the shadowing property. This is due to the fact that any positive δ would

permit points close to 0 to switch sides as above.

More explicitly, let ε = 1
8
, and fix 0 < δ < 1. Now for sufficiently small δ and any

point x ∈ X such that d(x, 0) < δ
1+
√
5
, we have that d(Tx, 0) < δ

2
. Let x0 be one of

these such points, and let x1 = −x0. Note that this is possible because

d(Tx0,−x0) ≤ d(Tx0, 0) + d(0,−x0) <
δ

2
+

δ

1 +
√

5
< δ.

Define a pseudo-orbit 〈xn〉n∈ω in this manner, with xn = x0 if n is even and xn = −x0

if n is odd.

Now suppose that there is a point z ∈ X that 1
8
-shadows this pseudo-orbit. Then

z ∈
(

0, 1+
√
5

2

]
or z ∈

[
−1+

√
5

2
, 0
)

. Either way, eventually there is an n such that

d(T nz, 0) > 1
2
, so that

d(T nz, xn) ≥
∣∣d(T nz, 0)− d(0, xn)

∣∣ > 1

2
− δ

1 +
√

5
>

1

2
− 1

1 +
√

5
>

1

8
.

Example 4.1.9. Let X = [−2, 2], T : X → X given above. Then (X,T ) exhibits

the NUPOTP*, but not the NUPOTP (and hence not the CNUPOTP nor shadow-

ing).

Proof. The points x = ±2 get mapped to x = 0, which allows a pseudo-orbit to

“switch sides”, after forcing any shadowing point to be on one side of the space.
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More explicitly, assume that (X,T ) exhibits the NUPOTP. Let ε = 1
2
, and let

δε : X → (0, 1]. Define a δε-pseudo-orbit in the following manner: Let x0 = 2. Now

x1 must come from a neighborhood of radius δε(x0) > 0 about the point Tx0 = 0. As

this radius is positive, x1 can therefore be either positive or negative. Take x1 to be

negative and within this neighborhood. Define xn = T n−1x1 for n ≥ 2.

No point z ∈ X will be able to shadow 〈xn〉n∈ω, as since d(z, x0) <
1
2
, we must

have that z > 0. But as T maps nonnegative values to nonnegative values, and since

xn = Tn−1x1 eventually is less than or equal to −1
2
, we have that d(T nz, xn) ≥ 1

2
.

To summarize, we encode the above information into two helpful charts. The

first indicates implications under the criteria of the referenced propositions, while the

second indicates the existence of counterexamples.
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CNUPOTP NUPOTP*

NUPOTP

(1)

(3) [Compact]

(2) [infx∈X δε(x) > 0]

(1) (1)

Figure 4.1: (1) Proposition 4.1.7, (2) Proposition 4.1.3, (3) Corollary 4.1.4

Shadowing

CNUPOTP NUPOTP*

NUPOTP

(c)
X

(b)
X

(a)

X

(b)
X

(b)
X

Figure 4.2: (a) Example 4.1.2 , (b) Example 4.1.9, (c) Example 4.1.8
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4.2 CNUPOTP and Compactifications

As stated, much work has been done in examining the shadowing property on

compact spaces. The notion of a compactification provides a way to bridge the gap

between the metric spaces we have studied and this field of work.

Definition 4.2.1. A compactification of a topological space X is a compact space

X̂ containing X.

We now consider systems which have a compactification and ask the following:

What relationship does the shadowing property on a compactification of a system

have with the the non-uniform shadowing property on the original space? We first

consider one-point compactifications and show that for isometric embeddings, exis-

tence of the shadowing property on the one-compactification proves the existence of

the non-uniform shadowing property on the original space if the compactifying point

is attracting or repelling.

Proposition 4.2.2. Suppose that a system
(

(X, d) , T
)

has a one-point compacti-

fication
((

X̂, d̂
)
, T̂
)

where T̂
∣∣
X

= T , T̂ (∞) =∞ and d̂
∣∣
X×X = d. If

1) d̂
(
T̂ (x),∞

)
> d̂(x,∞) for all x ∈ X

2) (X̂, T̂ , d̂) exhibits the shadowing property,

then
(

(X, d) , T
)

exhibits the CNUPOTP.

Proof. Let ε > 0 be given, and choose δ > 0 to witness ε-shadowing on
((

X̂, d̂
)
, T̂
)

.

Let ηx = d̂(T̂ x,∞) − d̂(x,∞) > 0, and define δε(x) = min
(

1, ηx
2
, d(x,Tx)

2

)
· δ. Notice

that this is continuous, as ηx and d(x, Tx) are continuous.
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Let 〈xi〉i∈ω be a δε-pseudo-orbit. As this is also a δ-pseudo-orbit under T̂ , then

there is a point z ∈ X̂ that ε-shadows it. If z 6= ∞, then we are done, because then

there is a point in the original space that ε-shadows the pseudo-orbit.

Suppose that z =∞. Then d̂(∞, xi) < ε for all i ∈ ω. Also, we have the following:

d̂(∞, xi+1) ≥
∣∣d̂(T̂ xi, xi+1)− d̂(∞, T̂ xi)

∣∣
=
∣∣d̂(T̂ xi, xi+1)− d̂(∞, xi)− ηxi

∣∣
> d̂(∞, xi) +

ηxi
2
,

as δε(xi) <
ηxi
2

. Therefore we have that

d̂(∞, xi) > d̂(∞, x0) +
1

2

i−1∑
j=0

ηxj .

Now ηxj > 0 for all j ∈ ω. If ηxj > k > 0 for some k for all j ∈ ω, then we reach

our contradiction, as the distance would grow beyond epsilon.

Assume then that ηxj → 0 as j →∞. As X̂ is a compact space, 〈xi〉i∈ω contains a

convergent subsequence
〈
xij
〉
j∈ω with ηxij → 0 as j →∞. Say xij → x ∈ X̂. By the

continuity of d̂, we must have that ηx = 0. But then d̂(T̂ x,∞) = d̂(x,∞). Therefore,

x =∞. This cannot be the case by the definitions of δε and 〈xi〉i∈ω.

Proposition 4.2.3. Suppose that a system
(

(X, d) , T
)

has a one-point compact-

ification
((

X̂, d̂
)
, T̂
)

where T̂
∣∣
X

= T , T̂ (∞) =∞, and d̂
∣∣
X×X = d. If

1) d̂
(
T̂ (x),∞

)
< d̂ (x,∞) for all x ∈ X

2) (X̂, T̂ , d̂) exhibits the shadowing property,

then
(

(X, d) , T
)

exhibits the CNUPOTP.
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Proof. Let ε > 0 be given, and choose δ > 0 to witness ε-shadowing on
((

X̂, d̂
)
, T̂
)

.

Let ηx = d̂ (x,∞) − d̂
(
T̂ (x),∞

)
. Define δε(x) = min

(
1, ηx

2

)
· δ. Notice that this is

continuous, as ηx is continuous.

Let 〈xn〉n∈ω ⊂ X be a δε-pseudo-orbit. Notice that this is a δ-pseudo-orbit in X̂,

so that there exists a point z ∈ X̂ such that d̂
(
T̂ nz, xn

)
< ε for all n ∈ ω. If z ∈ X,

then we are done.

Assume that z =∞. Notice that for all n ∈ N,

d̂(∞, xn+1) ≤ d̂(T̂ xn, xn+1) + d̂(∞, T̂ xn)

= d̂(T̂ xn, xn+1) + d̂(∞, xn)− ηxn

< d̂(∞, xn)− ηxn
2

< d̂(∞, xn).

But then, notice the following:

d(T nx0, xn) = d̂(T nx0, xn)

≤ d̂(T nx0,∞) + d̂(∞, xn)

< d̂(x0,∞) + d̂(∞, x0)

<
ε

2
+
ε

2
= ε

Therefore we find that
(

(X, d) , T
)

exhibits the CNUPOTP.

We now seek to expand our view beyond systems with a one-point compactifica-

tion, beginning with the case of both an attracting and repelling point.
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Proposition 4.2.4. Suppose that
(

(X, d) , T
)

has a two-point compactification((
X̂, d̂

)
, T̂
)

with X̂ = X ∪ {∞a} ∪ {∞b}. Suppose that there exist disjoint open

neighborhoods Bra(∞a) and Brb(∞b) in X̂ such that

1) d̂
(
T̂ x,∞a

)
< d̂ (x,∞a) for all x ∈ Bra(∞a)

2) d̂
(
T̂ x,∞b

)
> d̂(x,∞b) for all x ∈ Brb

Then if
((

X̂, d̂
)
, T̂
)

exhibits the shadowing property,
(

(X, d) , T
)

exhibits the

CNUPOTP.

Proof. Let ε > 0 be given. Let ηax = d̂ (x,∞a)− d̂
(
T̂ x,∞a

)
> 0 and ηbx = d̂(T̂ x,∞)−

d̂(x,∞) > 0. Define δε(x) = min
(

1, η
a
x

2
, η

b
x

2
, d(x,Tx)

2

)
· δ, where δ comes from the

definition of ε
2

shadowing on X̂, where ε < min (ra, rb). Yet again, δε is continuous,

since ηax, η
b
x, and d(x, Tx) are all continuous.

Notice that the requirements of 4.2.3 are satisfied in Bra(∞a) and the requirements

of 4.2.2 are satisfied in Brb(∞b). Therefore, the result is attained if 〈xn〉 is completely

contained in either Bra(∞a) or Brb(∞b).

Therefore, all that is left to consider is a pseudo-orbit that is not completely

contained in one of the two neighborhoods. If 〈xn〉n∈ω is such a pseudo-orbit, let xN

be the first term that is not in either neighborhood. As 〈xn〉n∈ω is a δ-pseudo-orbit

of
((

X̂, d̂
)
, T̂
)

, there exists a point ẑ ∈ X̂ such that d̂(T̂ nẑ, zn) < ε
2

for all n ∈ ω.

Notice that d̂(∞j, xN) > ε for j = a or j = b because ε < min (ra, rb), so that ẑ ∈ X.

Therefore
(

(X, d) , T
)

exhibits the CNUPOTP by previous results.
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