
ABSTRACT

On Functions Related to the Spectral Theory of Sturm–Liouville Operators

Jonathan Stanfill, Ph.D.

Mentor: Fritz Gesztesy, Ph.D.

Functions related to the spectral theory of differential operators have been ex-

tensively studied due to their many applications in mathematics and physics. In this

dissertation, we will consider spectral ζ-functions, ζ-regularized functional determi-

nants, and Donoghue m-functions associated with Sturm–Liouville operators. We

apply our results to an array of examples, including regular Schrödinger operators

as well as Jacobi and generalized Bessel operators in the singular context.

We begin by employing a recently developed unified approach to the computa-

tion of traces of resolvents and ζ-functions to efficiently compute values of spectral

ζ-functions at positive integers associated with regular (three-coefficient) self-adjoint

Sturm–Liouville differential expressions τ . Furthermore, we give the full analytic

continuation of the ζ-function through a Liouville transformation and provide an

explicit expression for the ζ-regularized functional determinant in terms of a partic-

ular set of a fundamental system of solutions of τy = zy.

Next we turn to Donoghue m-functions. Assuming the standard local inte-

grability hypotheses on the coefficients of the singular Sturm–Liouville differential

equation τ , we study all corresponding self-adjoint realizations in L2((a, b); rdx) and

systematically construct the associated Donoghue m-functions in all cases where τ

is in the limit circle case at least at one interval endpoint a or b.



Finally, we construct Donoghuem-functions for the Jacobi differential operator

in L2
(
(−1, 1); (1− x)α(1 + x)βdx

)
associated with the differential expression τα,β =

−(1 − x)−α(1 + x)−β(d/dx)
(
(1 − x)α+1(1 + x)β+1

)
(d/dx), x ∈ (−1, 1), α, β ∈ R,

whenever at least one endpoint, x = ±1, is in the limit circle case. In doing so,

we provide a full treatment of the Jacobi operator’s m-functions corresponding to

coupled boundary conditions whenever both endpoints are in the limit circle case.
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CHAPTER ONE

Introduction

1.1 Background and Motivation

Our research is focused on functions related to the spectral theory of differential

operators. The analysis of these objects is of widespread interest since in many areas

of mathematics and physics one is often confronted with the problem of extracting

relevant information from the spectrum of differential operators. In one dimension,

these differential operators are often Sturm–Liouville operators associated with the

second-order differential expression

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R. (1.1.1)

The investigation of such problems naturally leads to the primary focus of this disser-

tation: the spectral ζ-function, ζ-regularized functional determinant, and Donoghue

m-function. Though these objects will be our main focus, the heat kernel and Weyl–

Titchmarsh–Kodaira m-function will play a role in the analysis and motivation of

this research project. A description of each is given next.

The spectral ζ-function represents a generalization of the more familiar Rie-

mann ζ-function in which the integers are replaced by the non-vanishing positive

eigenvalues of a differential operator: Suppose S is a self-adjoint operator in a Hilbert

space, H, bounded from below, satisfying (S − zIH)
−1 ∈ B1(H) (i.e., trace class)

for some (and hence for all) z ∈ ρ(S), the resolvent set of S. Then one denotes the

spectrum of S by σ(S) = {λj}j∈J and defines the spectral ζ-function of the operator,

S, as

ζ(s;S) :=
∑
j∈J
λj ̸=0

λ−sj (1.1.2)

1



Figure 1.1. Stephen Hawking [102]
Figure 1.2: Left: G. H. Hardy, Right: John
E. Littlewood [97]

with J ⊂ Z an appropriate index set where eigenvalues are counted according to their

multiplicity and Re(s) > 0 sufficiently large such that the sum converges absolutely.

The spectral ζ-function is of fundamental importance for the analysis of com-

plex powers of elliptic operators and for the study of ζ-regularized functional deter-

minants, formally defined as exp(−ζ ′(0;S)). This topic includes Stephen Hawking

(Figure 1.1) as one of its original investigators applying the functional determinant

as a regulator in physical problems in [94], though many of the mathematical meth-

ods used can be traced back to G. H. Hardy and J. E. Littlewood (Figure 1.2) in [90]

(see also [157]). The analytic continuation of the ζ-function is used in studying the

small time asymptotic behavior of the trace of the heat kernel, which is the fun-

damental solution to the heat equation on a manifold endowed with appropriate

boundary conditions. This small time asymptotic behavior is used in order to ex-

tract geometric information about the underlying manifold (see, e.g., [106,115]) and

in spectral analysis thanks to a relation that exists between the heat equation and

the Atiyah-Singer index theorem (see [8, 9]).

The widespread use of both of these functions in physics can be found espe-

cially in the area of quantum field theory (see, e.g., [45, 46]). Many characteristics

of quantum fields are encoded in the effective action (see, e.g., [45]) which is a func-

tional that describes how the classical equations of motion are modified by quantum

2



Figure 1.3. Hermann Weyl [98] Figure 1.4. Edward Titchmarsh [99]

effects. The effective action can be expressed in terms of the ζ-regularized functional

determinant of an elliptic operator and, therefore, spectral zeta function techniques

are particularly suitable for its analysis. Zeta regularization methods continue to

prove useful in cosmology to include investigating the Casimir effect related to the

cosmological constant. Emilio Elizalde recently published a review [54] of spectral

zeta functions and the cosmos as part of the special issue “The Casimir Effect: From

a Laboratory Table to the Universe” discussing the entire history of this subject to

date.

The Weyl and Donoghue m-functions are indispensable tools in the spectral

analysis of self-adjoint extensions, T , of Sturm–Liouville differential operators (see,

e.g., [15, Ch. 6], [78,182]). The Weyl m-function was first studied by Hermann Weyl

(Figure 1.3) and its relation to spectral theory was later investigated by Edward

Titchmarsh (Figure 1.4), who found a simple formula to determine the associated

spectral measure. This formula was also discovered by Kunihiko Kodaira (Figure

1.5) around the same time (see [118, 119]); hence, the general terminology Weyl–

Titchmarsh–Kodaira m-function (for more details and references, see [15, Introd.]).

William F. Donoghue (Figure 1.6) introduced the analogue of the Donoghue m-

function studied here in [49] and used it to settle certain inverse spectral problems.

Interest in Weyl and Donoghue m-functions arises from the fact that they are gener-

3



Figure 1.5. Kunihiko Kodaira [100] Figure 1.6. William F. Donoghue [101]

alized Nevanlinna–Herglotz functions and an analog of the Stieltjes inversion formula

applied to them yields that the spectrum (and its subdivisions) of T is related to

the singularity structure of the m-functions on the real line.

1.2 Content of the Dissertation

We begin our analysis in Chapter Two by employing a recently developed uni-

fied approach to the computation of traces of resolvents and ζ-functions to efficiently

compute values of spectral ζ-functions at positive integers associated with regular

(three-coefficient) self-adjoint Sturm–Liouville differential expressions τ . Depending

on the underlying boundary conditions, we express the ζ-function values in terms

of a fundamental system of solutions of τy = zy and their expansions about the

spectral point z = 0. Furthermore, under strengthened hypotheses, we give the full

analytic continuation of the ζ-function through a Liouville transformation and pro-

vide an explicit expression for the ζ-regularized functional determinant in terms of

a particular set of this fundamental system of solutions. An array of examples illus-

trating the applicability of these methods is provided, including regular Schrödinger

operators with zero, piecewise constant, and a linear potential on a compact interval.

We turn to the topic of Donoghue m-functions in Chapter Three. Let
.
A be a

densely defined, closed, symmetric operator in the complex, separable Hilbert space

H with equal deficiency indices and denote by Ni = ker
(( .
A
)∗ − iIH

)
, dim (Ni) =

4



k ∈ N ∪ {∞}, the associated deficiency subspace of
.
A. If A denotes a self-adjoint

extension of
.
A in H, the Donoghue m-operator MDo

A,Ni
( · ) in Ni associated with the

pair (A,Ni) is given by

MDo
A,Ni

(z) = zINi
+ (z2 + 1)PNi

(A− zIH)
−1PNi

∣∣
Ni
, z ∈ C\R, (1.2.1)

with INi
the identity operator inNi, and PNi

the orthogonal projection inH ontoNi.

Assuming the standard local integrability hypotheses on the coefficients p, q, r, we

study all self-adjoint realizations corresponding to the singular differential expression

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R, (1.2.2)

in L2((a, b); rdx). As the principal aim of this chapter, we systematically construct

the associated Donoghue m-functions (resp., 2× 2 matrices) in all cases where τ is

in the limit circle case at least at one interval endpoint a or b.

Finally, in Chapter Four we construct Donoghue m-functions for the Jacobi

differential operator in L2
(
(−1, 1); (1−x)α(1+x)βdx

)
associated with the differential

expression

τα,β = −(1− x)−α(1 + x)−β(d/dx)
(
(1− x)α+1(1 + x)β+1

)
(d/dx),

x ∈ (−1, 1), α, β ∈ R,
(1.2.3)

whenever at least one endpoint, x = ±1, is in the limit circle case. In doing so,

we provide a full treatment of the Jacobi operator’s m-functions corresponding to

coupled boundary conditions whenever both endpoints are in the limit circle case, a

topic not covered in the literature.

1.3 Attributions

Each publication used throughout this dissertation employed multiple roles

crucial to rigorous mathematical research, including: planning, organization, su-

pervision, literary research, citation, notation, proofs, applications, LATEX coding,

5



styling and formatting, development, construction, proofreading, editing, submis-

sion, and revision.

Below we provide, in alphabetical order, the names of all authors listed within

each publication used:

• Guglielmo Fucci

• Fritz Gesztesy

• Klaus Kirsten

• Lance Littlejohn

• Roger Nichols

• Mateusz Piorkowski

• Jonathan Stanfill

Furthermore, we confirm that each author contributed equally in all areas of research

given above, and are listed alphabetically in each publication. Finally, we note that

Chapters Two and Four were reproduced with permission from Springer Nature.
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CHAPTER TWO

Spectral ζ-Functions and ζ-Regularized Functional Determinants for Regular 
Sturm–Liouville Operators

The content of this chapter relies on (but is not identical to) the paper pub-
lished as: G. Fucci, F. Gesztesy, K. Kirsten, and J. Stanfill, Spectral ζ-Functions and 
ζ-Regularized Functional Determinants for Regular Sturm–Liouville Operators, Res. 

Math. Sci. 8, No. 61; 44 pp. (2021).

2.1 Introduction

The principal motivation for this chapter is to illustrate how a recently de-

veloped unified a pproach t o t he c omputation o f Fredholm d eterminants, t races of 

resolvents, and ζ-functions in [74] can be used to efficiently compute certain values 

of spectral ζ-functions associated with regular Sturm–Liouville operators as well as 

give the full analytic continuation of the ζ-function through a Liouville transfor-

mation and finally p rovide a n e xplicit e xpression f or t he ζ -regularized functional 

determinant.

In Section 2.2 we begin by outlining the background for regular self-adjoint 

Sturm–Liouville operators on bounded intervals, that is, operators in L2((a, b); rdx) 

with separated and coupled boundary conditions and the associated spectral ζ-

functions. Under appropriate hypotheses on the Sturm–Liouville operator associated 

with three-coefficient differential expressions of the  type τ = r−1[−(d/dx)p(d/dx) + 

q], certain values of the spectral ζ-function can be found via complex contour inte-

gration techniques to be equal to residues of explicit functions involving a canonical 

system of fundamental solutions ϕ(z, · , a) and θ(z, · , a) of τy = zy for separated 

or coupled boundary conditions. Moreover, the zeros with respect to the parameter 

z of ϕ, θ, and some of their (boundary condition dependent) linear combinations

7



are precisely the eigenvalues corresponding to the underlying operator, including

multiplicity.

In Section 2.3 we provide a series expansion for ϕ(z, · , a) and θ(z, · , a) about

z = 0 using Volterra integral equations associated with the general three-coefficient

regular self-adjoint Sturm–Liouville operator. This method leads to an expansion

in powers of z of the fundamental solutions and their z-derivative involving their

values at z = 0 and the appropriate Volterra Green’s function. We also investigate

the |z| → ∞ asymptotic expansion of the characteristic function appearing in the

complex integral representation of the spectral ζ-function given in Section 2.2. This

asymptotic expansion is then exploited in order to construct the analytic contin-

uation of the spectral ζ-function and to obtain an explicit expression for the zeta

regularized functional determinant.

Section 2.4 contains the main theorems that allow for the calculation of the val-

ues of spectral ζ-functions of general regular Sturm–Liouville operators on bounded

intervals as ratios of series expansions of (boundary condition dependent) solutions

of τy = zy about z = 0. In particular, we consider separated boundary conditions

when zero is not an eigenvalue, or, when it is (necessarily) a simple eigenvalue, and

coupled boundary conditions when either zero is not an eigenvalue, or, an eigenvalue

of multiplicity (necessarily) at most two. (For more details in this context see [74]

as well as [84, Ch. 3], [179, Sect. 8.4], [180, Sect. 13.2], and [182, Ch. 4].)

We continue by providing some examples in Section 2.5 illustrating the main

theorems and corollaries of Section 2.4 and the zeta regularized functional determi-

nant given in Section 2.3. In particular, we present the case of Schrödinger operators

with zero potential imposing Dirichlet, Neumann, periodic, antiperiodic, and Krein–

von Neumann boundary conditions. We then consider positive (piecewise) constant

and negative constant potentials for Dirichlet boundary conditions, and finally the

case of a linear potential.

8



Here we summarize some of the basic notation used in this chapter. If A is a

linear operator mapping (a subspace of) a Hilbert space into another, then dom(A)

and ker(A) denote the domain and the kernel (i.e., null space) of A. The spectrum,

point spectrum, and resolvent set of a closed linear operator in a separable complex

Hilbert space, H, will be denoted by σ( · ), σp( · ), and ρ( · ) respectively. If S is self-

adjoint in H, the multiplicity of an eigenvalue z0 ∈ σp(S) is denoted m(z0;S) (the

geometric and algebraic multiplicities of S coincide in this case). The proper setting

for our investigations is the Hilbert space L2((a, b); rdx), which we will occasionally

abbreviate as L2
r((a, b)). The spectral ζ-function of a self-adjoint linear operator S

is denoted by ζ(s;S). In addition, trH(T ) denotes the trace of a trace class operator

T ∈ B1(H) and detH(IH − T ) the Fredholm determinant of IH − T .

For consistency of notation, throughout this chapter we will follow the conven-

tional notion that derivatives annotated with superscripts are understood as with

respect to x and derivatives with respect to ξ will be abbreviated by . = d/dξ. We

also employ the notation N0 = N ∪ {0}.

2.2 Background on Self-Adjoint Regular Sturm–Liouville Operators

In the first part of this section we briefly recall basic facts on regular Sturm–

Liouville operators and their self-adjoint boundary conditions. This material is stan-

dard and well-known, hence we just refer to some of the standard monographs on

this subject, such as, [15, Sect. 6.3], [84, Ch. 3], [104, Sect. II.5], [149, Ch. V], [179,

Sect. 8.4], [180, Sect. 13.2], [182, Ch. 4]. In the second part we discuss Fredholm

determinants, traces of resolvents, and spectral ζ-functions associated with these

regular Sturm–Liouville problems. For background as well as relevant material in

this context we refer to [5], [12], [30], [31], [37], [48], [50], [61], [62], [63], [64], [65], [69],

[74], [88], [95], [105], [128], [129], [130], [132], [141], [143], [144], [153], [161], [172], [174,

Sects. 5.4, 5.5, 6.3], [178].
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Throughout our discussion of regular Sturm–Liouville operators we make the

following assumptions:

Hypothesis 2.2.1. Let (a, b) ⊂ R be a finite interval and suppose that p, q, r are

(Lebesgue ) measurable functions on (a, b) such that the following items (i)–(iii) hold:

(i) r > 0 a.e. on (a, b), r ∈ L1((a, b); dx).

(ii) p > 0 a.e. on (a, b), 1/p ∈ L1((a, b); dx).

(iii) q is real-valued a.e. on (a, b), q ∈ L1((a, b); dx).

Given Hypothesis 2.2.1, we now study Sturm–Liouville operators associated

with the general, three-coefficient differential expression τ of the type,

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R. (2.2.1)

We start with the notion of minimal and maximal L2((a, b); rdx)-realizations

associated with the regular differential expression τ on the finite interval (a, b) ⊂ R.

Throughout this chapter the inner product in L2((a, b); rdx) is defined by

(f, g)L2((a,b);rdx) =

ˆ b

a

r(x)dx f(x)g(x), f, g ∈ L2((a, b); rdx). (2.2.2)

Assuming Hypothesis 2.2.1, the differential expression τ of the form (2.2.1) on

the finite interval (a, b) ⊂ R is called regular on [a, b]. The corresponding maximal

operator Tmax in L2((a, b); rdx) associated with τ is defined by

Tmaxf = τf,

f ∈ dom(Tmax) =
{
g ∈ L2((a, b); rdx)

∣∣ g, g[1] ∈ AC([a, b]); (2.2.3)

τg ∈ L2((a, b); rdx)
}
,

and the corresponding minimal operator Tmin in L2((a, b); rdx) associated with τ is

given by

Tminf = τf,

f ∈ dom(Tmin) =
{
g ∈ L2((a, b); rdx)

∣∣ g, g[1] ∈ AC([a, b]); (2.2.4)

10



g(a) = g[1](a) = g(b) = g[1](b) = 0; τg ∈ L2((a, b); rdx)
}
.

Here (with ′ := d/dx)

y[1](x) = p(x)y′(x), (2.2.5)

denotes the first quasi-derivative of a function y on (a, b), assuming that y, py′ ∈

ACloc((a, b)).

Assuming Hypothesis 2.2.1 so that τ is regular on [a, b], the following is well-

known (see, e.g., [15, Sect. 6.3], [84, Sect. 3.2], [104, Sect. II.5], [149, Ch. V], [179,

Sect. 8.4], [180, Sect. 13.2], [182, Ch. 4]): Tmin is a densely defined, closed operator

in L2((a, b); rdx), moreover, Tmax is densely defined and closed in L2((a, b); rdx), and

T ∗
min = Tmax, Tmin = T ∗

max. (2.2.6)

Moreover, Tmin ⊂ Tmax = T ∗
min, and hence Tmin is symmetric, while Tmax is not.

The next theorem describes all self-adjoint extensions of Tmin (cf., e.g., [180,

Sect. 13.2], [182, Ch. 4]).

Theorem 2.2.2. Assume Hypothesis 2.2.1 so that τ is regular on [a, b]. Then the

following items (i)–(iii) hold:

(i) All self-adjoint extensions Tα,β of Tmin with separated boundary conditions are of

the form

Tα,βf = τf, α, β ∈ [0, π),

f ∈ dom(Tα,β) =
{
g ∈ dom(Tmax)

∣∣ g(a) cos(α) + g[1](a) sin(α) = 0; (2.2.7)

g(b) cos(β)− g[1](b) sin(β) = 0
}
.

Special cases: α = 0 (i.e., g(a) = 0) is called the Dirichlet boundary condition at a;

α = π
2
, (i.e., g[1](a) = 0) is called the Neumann boundary condition at a (analogous

facts hold at the endpoint b).

(ii) All self-adjoint extensions Tφ,R of Tmin with coupled boundary conditions are of

11



the type

Tφ,Rf = τf,

f ∈ dom(Tφ,R) =

{
g ∈ dom(Tmax)

∣∣∣∣
 g(b)

g[1](b)

 = eiφR

 g(a)

g[1](a)

}
,

(2.2.8)

where φ ∈ [0, π), and R is a real 2× 2 matrix with det(R) = 1 (i.e., R ∈ SL(2,R)).

Special cases: φ = 0, R = I2 (i.e., g(b) = g(a), g[1](b) = g[1](a)) are called periodic

boundary conditions; similarly, φ = 0, R = −I2 (i.e., g(b) = −g(a), g[1](b) =

−g[1](a)) are called antiperiodic boundary conditions.

(iii) Every self-adjoint extension of Tmin is either of type (i) (i.e., separated ) or of

type (ii) (i.e., coupled ).

Next we state some of the most pertinent concepts and results summarized

from [74] (in particular, Section 3) and will then illustrate how this permits one to

effectively calculate certain values for the spectral ζ-functions of the regular Sturm–

Liouville operators considered.

For this purpose we introduce the fundamental system of solutions θ(z, x, a),

ϕ(z, x, a) of τy = zy defined by

θ(z, a, a) = ϕ[1](z, a, a) = 1, θ[1](z, a, a) = ϕ(z, a, a) = 0, (2.2.9)

such that

W (θ(z, · , a), ϕ(z, · , a)) = 1, (2.2.10)

noting that for fixed x, each is entire with respect to z. Here the Wronskian of f

and g, for f, g ∈ ACloc((a, b)), is defined by

W (f, g)(x) = f(x)g[1](x)− f [1](x)g(x). (2.2.11)

12



Furthermore, we introduce the boundary values for g, g[1] ∈ AC([a, b]), see [148,

Ch. I], [182, Sect. 3.2],

Uα,β,1(g) = g(a) cos(α) + g[1](a) sin(α),

Uα,β,2(g) = g(b) cos(β)− g[1](b) sin(β),

(2.2.12)

in the case (i) of separated boundary conditions in Theorem 2.2.2, and

Vφ,R,1(g) = g(b)− eiφR11g(a)− eiφR12g
[1](a),

Vφ,R,2(g) = g[1](b)− eiφR21g(a)− eiφR22g
[1](a),

(2.2.13)

in the case (ii) of coupled boundary conditions in Theorem 2.2.2. Moreover, we

define the characteristic functions

Fα,β(z) = det

Uα,β,1(θ(z, · , a)) Uα,β,1(ϕ(z, · , a))

Uα,β,2(θ(z, · , a)) Uα,β,2(ϕ(z, · , a))

 , (2.2.14)

and

Fφ,R(z) = det

Vφ,R,1(θ(z, · , a)) Vφ,R,1(ϕ(z, · , a))

Vφ,R,2(θ(z, · , a)) Vφ,R,2(ϕ(z, · , a))

 . (2.2.15)

Notational Convention. To describe all possible self-adjoint boundary conditions

associated with self-adjoint extensions of Tmin effectively, we will frequently employ

the notation TA,B, FA,B, λA,B,j, j ∈ J , etc., where A,B represents α, β in the

case of separated boundary conditions and φ,R in the context of coupled boundary

conditions.

By construction, eigenvalues of TA,B are determined via FA,B(z) = 0, with

multiplicity of eigenvalues of TA,B corresponding to multiplicity of zeros of FA,B,

and FA,B(z) is entire with respect to z. In particular, for Tα,β, that is, for separated

boundary conditions, one has

Fα,β(z) = cos(α)[− sin(β) ϕ[1](z, b, a) + cos(β) ϕ(z, b, a)]

− sin(α)[− sin(β) θ[1](z, b, a) + cos(β) θ(z, b, a)], α, β ∈ [0, π),

(2.2.16)
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and for Tφ,R, that is, for coupled boundary conditions, one has for φ ∈ [0, π) and

R ∈ SL(2,R),

Fφ,R(z) = eiφ
(
R12θ

[1](z, b, a)−R22θ(z, b, a) +R21ϕ(z, b, a)−R11ϕ
[1](z, b, a)

)
+ e2iφ + 1. (2.2.17)

Next we will demonstrate that FA,B( · ) is an entire function of order 1/2 and

finite type, independent of the boundary conditions chosen. This result is used

when considering convergence of the complex contour integral representation of the

spectral ζ-function for large values of the spectral parameter z.

For this purpose we recall the following facts (see, e.g., [20, Ch. 2], [131, Ch. I]):

Supposing that F ( · ) is entire, one introduces

MF (R) = sup
|z|=R

|F (z)|, R ∈ [0,∞). (2.2.18)

Then the order ρF of F is defined by

ρF = lim sup
R→∞

ln(ln(MF (R)))/ ln(R) ∈ [0,∞) ∪ {∞}. (2.2.19)

In addition, if ρF > 0, the type τF of F is defined as

τF = lim sup
R→∞

ln(MF (R))/R
ρF ∈ [0,∞) ∪ {∞}, (2.2.20)

and, in obvious notation, F is called of order ρF > 0 and of finite type τF if τF ∈

[0,∞).

Thus, F is of finite order ρF ∈ [0,∞) if and only if for every ε > 0, but for no

ε < 0,

MF (R) =
R→∞

O
(
exp

(
RρF+ε

))
, (2.2.21)

and F is of positive and finite order ρF ∈ (0,∞) and finite type τF ∈ [0,∞) if and

only if for every ε > 0, but for no ε < 0,

MF (R) =
R→∞

O
(
exp

(
(τF + ε)RρF

))
. (2.2.22)
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By definition, if Fj are entire of order ρj, j = 1, 2, then the order of F1F2 does

not exceed the larger of ρ1 and ρ2.

For F entire we also introduce the zero counting function

NF (R) = #
(
ZF ∩D(0;R)

)
, R ∈ (0,∞), (2.2.23)

where # denotes cardinality and ZF represents the set of zeros of F counting mul-

tiplicity (i.e., NF (R) counts the number of zeros of F in the closed disk of radius

R > 0 centered at the origin).

Remark 2.2.3. Assuming Hypothesis 2.2.1, then all solutions ψ(z, · ) of the regu-

lar Sturm–Liouville problem (τy)(z, x) = zy(z, x), z ∈ C, x ∈ [a, b], satisfying

z-independent initial conditions

ψ(z, x0) = c0, ψ[1](z, x0) = c1, (2.2.24)

for some x0 ∈ [a, b] and some (c0, c1) ∈ C2, together with ψ[1](z, · ), for any fixed

x ∈ [a, b], are entire functions of z of order at most 1/2. Indeed, as shown in

[10, Sect. 8.2] (see also [140], [182, Theorem 2.5.3]), upon employing a Prüfer-type

transformation, one obtains

|z||ψ(z, x)|2 +
∣∣ψ[1](z, x)

∣∣2 ⩽ C(x0) exp

(
|z|1/2

ˆ max(x0,x)

min(x0,x)

dt
[
|p(t)|−1 + |r(t)|

]
+ |z|−1/2

ˆ max(x0,x)

min(x0,x)

dt |q(t)|
)
, z ∈ C, x0, x ∈ [a, b]. (2.2.25)

In particular, (2.2.16) and (2.2.17) yield that FA,B is an entire function of order at

most 1/2 for any self-adjoint boundary condition represented by A,B, that is,

ρFA,B
⩽ 1/2. (2.2.26)

Given Hypothesis 2.2.1, one infers that TA,B ⩾ ΛA,BIL2
r((a,b))

for some ΛA,B ∈ R,

with purely discrete spectrum, and hence ZFA,B
(R) ⊂ [ΛA,B, R] the elements of

ZFA,B
(R) being precisely the eigenvalues of TA,B in the interval [max(−R,ΛA,B), R].

Employing the theory of Volterra operators in Hilbert spaces (and under some ad-
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ditional lower boundedness hypotheses on q) in [86, Chs. VI, VII], alternatively,

using oscillation theoretic methods in [11], it is shown that the eigenvalue counting

function NFA,B
associated with TA,B satisfies

NFA,B
(λ) =

λ→∞
π−1

ˆ b

a

dx [r(x)/p(x)]1/2λ1/2[1 + o(1)]. (2.2.27)

Ignoring finitely many nonpositive eigenvalues of TA,B, equivalently, splitting off the

factors in the infinite product representation associated with nonpositive zeros of

FA,B, that is, replacing FA,B by

F̃A,B(z) = CA,B
∏
j∈N,

λA,B,j>0

[1− (z/λA,B,j)] (2.2.28)

with

NF̃A,B
(λ) =

λ→∞
π−1

ˆ b

a

dx [r(x)/p(x)]1/2λ1/2[1 + o(1)], (2.2.29)

implies (cf. [20, Theorem 4.1.1], [176], [177]),

ln
(
F̃A,B(λ)

)
=

λ→∞

ˆ b

a

dx [r(x)/p(x)]1/2λ1/2[1 + o(1)]. (2.2.30)

Thus,

ρFA,B
= ρF̃A,B

⩾ 1/2, (2.2.31)

and hence by (2.2.26),

ρFA,B
= 1/2. (2.2.32)

Moreover, by (2.2.25), FA,B is of order 1/2 and finite type. Finally, we also mention

that (2.2.27) implies that

λA,B,j =
j→∞

[ˆ b

a

dx [r(x)/p(x)]1/2
]−2

π2j2[1 + o(1)] (2.2.33)

(cf. also the discussion in [164, Sects. 1.11, 9.1], [182, Sect. 4.3]). ⋄

The following theorem (see [74, Thm. 3.4]) directly relates the function FA,B to

Fredholm determinants and traces (see [85, Ch. IV], [158, Sect. XIII.17], [169], [170,

Ch. 3], [171, Ch. 3] for background).
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Theorem 2.2.4. Assume Hypothesis 2.2.1 and denote by Tα,β and Tφ,R the self-adjoint

extensions of Tmin as described in cases (i) and (ii) of Theorem 2.2.2, respectively.

(i) Suppose z0 ∈ ρ(Tα,β), then

detL2
r((a,b))

(
IL2

r((a,b))
− (z − z0)(Tα,β − z0IL2

r((a,b))
)−1

)
= Fα,β(z)/Fα,β(z0), z ∈ C.

(2.2.34)

In particular,

trL2
r((a,b))

(
(Tα,β − zIL2

r((a,b))
)−1

)
= −(d/dz) ln(Fα,β(z)), z ∈ ρ(Tα,β). (2.2.35)

(ii) Suppose z0 ∈ ρ(Tφ,R), then

detL2
r((a,b))

(
IL2

r((a,b))
− (z − z0)(Tφ,R − z0IL2

r((a,b))
)−1

)
= Fφ,R(z)/Fφ,R(z0), z ∈ C.

(2.2.36)

In particular,

trL2
r((a,b))

(
(Tφ,R − zIL2

r((a,b))
)−1

)
= −(d/dz) ln(Fφ,R(z)), z ∈ ρ(Tφ,R). (2.2.37)

Given these preparations, we let TA,B denote the self-adjoint extension of Tmin

with either separated (Tα,β) or coupled (Tφ,R) boundary conditions as described

in cases (i) and (ii) of Theorem 2.2.2. One recalls (see, e.g., [74]), the spectral

ζ-function of the operator, TA,B, is defined as

ζ(s;TA,B) :=
∑
j∈J
λj ̸=0

λ−sA,B,j, (2.2.38)

with J ⊂ Z an appropriate index set counting eigenvalues according to their mul-

tiplicity and Re(s) > 0 sufficiently large such that (2.2.38) converges absolutely.

Applying Theorem 2.2.4, it was shown in [74] that for Re(s) > 0 sufficiently large,

ζ(s;TA,B) =
1

2πi

‰
γ

dz z−s
(
d

dz
ln(FA,B(z))− z−1m(0;TA,B)

)
=

1

2πi

‰
γ

dz z−s
(
d

dz
ln(FA,B(z))− z−1m0

)
,

(2.2.39)

where m(0;TA,B) = m0 is the multiplicity of zero as an eigenvalue of TA,B and γ is

a simple contour enclosing σ(TA,B)\{0} in a counterclockwise manner so as to dip
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under (and hence avoid) the point 0 (cf. Figure 2.1). Here, following [116] (see

also [117]), we take

Rψ = {z = teiψ | t ∈ [0,∞)}, ψ ∈ (π/2, π), (2.2.40)

to be the branch cut of z−s, and, once again, eigenvalues will be determined via

FA,B(z) = 0, with the multiplicity of eigenvalues of TA,B corresponding to the mul-

tiplicity of zeros of FA,B.

To continue the computation of (2.2.39) and deform the contour γ as to “hug”

the branch cut Rψ (cf. Figure 2.2) requires knowledge of the asymptotic behavior of

FA,B(z) as |z| → ∞, which in turn demands Re(s) > 1/2 for large-z convergence (cf.

Remark 2.2.3). Furthermore, if one is interested in the calculation of the value of

the spectral zeta function at positive integers, the following method provides a very

simple way of obtaining those values. In fact, by letting s = n, n ∈ N, in (2.2.39),

one no longer needs a branch cut for the fractional powers of z−s given in Figures 2.1
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and 2.2. This reduces the integral along the curve γ to a clockwise oriented integral

along the circle Cε, centered at zero with radius ε > 0 (cf. Figure 2.3). Letting

s = n also ensures that m0 (the multiplicity of zero as an eigenvalue of TA,B) does

not contribute to the integral in (2.2.39). Hence,

ζ(n;TA,B) = − 1

2πi

‰
Cε

dz z−n
d

dz
ln(FA,B(z))

= −Res

[
z−n

d

dz
ln(FA,B(z)); z = 0

]
, n ∈ N.

(2.2.41)

Thus, determining an expansion of FA,B(z) about z = 0 enables one to ef-

fectively compute ζ(n;TA,B). In addition, by (2.2.16), (2.2.17), FA,B(z) is a linear

combination of θ, θ[1], ϕ, and ϕ[1] for each boundary condition considered, so it

suffices to find the expansion of each of these functions individually.

2.3 Expansion in z for Fundamental Solutions, Asymptotic Expansion, and the
Zeta Regularized Functional Determinant

2.3.1 Expansion in z for Fundamental Solutions

Assuming Hypothesis 2.2.1 throughout this section, we discuss next the ex-

pansion in z about z = 0 for the solutions ϕ(z, · , a) and θ(z, · , a) of τy = zy,

ϕ(z, x, a) = ϕ(0, x, a) + z

ˆ x

a

r(x′)dx′ g(0, x, x′)ϕ(z, x′, a), (2.3.1)

θ(z, x, a) = θ(0, x, a) + z

ˆ x

a

r(x′)dx′ g(0, x, x′)θ(z, x′, a), (2.3.2)

z ∈ C, x ∈ [a, b],

employing the following expression for the Volterra Green’s function

g(0, x, x′) = θ(0, x, a)ϕ(0, x′, a)− θ(0, x′, a)ϕ(0, x, a), x, x′ ∈ [a, b]. (2.3.3)

That (2.3.1) and (2.3.2) indeed represent solutions of τy = zy is clear from applying

τ to either side, moreover, the initial conditions (2.2.9) are readily verified.

Iterating these integral equations establishes the power series expansions

ϕ(z, x, a) =
∞∑
m=0

zmϕm(x), z ∈ C, x ∈ [a, b], (2.3.4)
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where

ϕ0(x) = ϕ(0, x, a),

ϕ1(x) =

ˆ x

a

r(x1)dx1 g(0, x, x1)ϕ(0, x1, a),

ϕk(x) =

ˆ x

a

r(x1)dx1 g(0, x, x1)

ˆ x1

a

r(x2)dx2 g(0, x1, x2) . . .

. . .

ˆ xk−1

a

r(xk)dxk g(0, xk−1, xk)ϕ(0, xk, a), k ∈ N,

(2.3.5)

and

θ(z, x, a) =
∞∑
m=0

zmθm(x), z ∈ C, x ∈ [a, b], (2.3.6)

where

θ0(x) = θ(0, x, a),

θ1(x) =

ˆ x

a

r(x1)dx1 g(0, x, x1)θ(0, x1, a),

θk(x) =

ˆ x

a

r(x1)dx1 g(0, x, x1)

ˆ x1

a

r(x2)dx2 g(0, x1, x2) . . .

. . .

ˆ xk−1

a

r(xk)dxk g(0, xk−1, xk)θ(0, xk, a), k ∈ N.

(2.3.7)

Analogously one obtains

ϕ[1](z, x, a) =
∞∑
m=0

zmϕ[1]
m (x), z ∈ C, x ∈ [a, b], (2.3.8)

where

ϕ
[1]
0 (x) = ϕ[1](0, x, a),

ϕ
[1]
1 (x) =

ˆ x

a

r(x1)dx1 g
[1](0, x, x1)ϕ(0, x1, a),

ϕ
[1]
k (x) =

ˆ x

a

r(x1)dx1 g
[1](0, x, x1)

ˆ x1

a

r(x2)dx2 g(0, x1, x2) . . .

. . .

ˆ xk−1

a

r(xk)dxk g(0, xk−1, xk)ϕ(0, xk, a), k ∈ N,

(2.3.9)

using the abbreviation

g[1](0, x, x1) = θ[1](0, x, a)ϕ(0, x1, a)− θ(0, x1, a)ϕ
[1](0, x, a). (2.3.10)
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Similarly, one finds from (2.3.6)

θ[1](z, x, a) =
∞∑
m=0

zmθ[1]m (x), z ∈ C, x ∈ [a, b], (2.3.11)

where

θ
[1]
0 (x) = θ[1](0, x, a),

θ
[1]
1 (x) =

ˆ x

a

r(x1)dx1 g
[1](0, x, x1)θ(0, x1, a),

θ
[1]
k (x) =

ˆ x

a

r(x1)dx1 g
[1](0, x, x1)

ˆ x1

a

r(x2)dx2 g(0, x1, x2) . . .

. . .

ˆ xk−1

a

r(xk)dxk g(0, xk−1, xk)θ(0, xk, a), k ∈ N.

(2.3.12)

2.3.2 Asymptotic Expansion of the Characteristic Function

Next we investigate the |z| → ∞ asymptotic expansion of the function FA,B(z)

in order to provide an analytic continuation of the spectral ζ-function, ζ(s;TA,B), and

compute the zeta regularized functional determinant. We first strengthen Hypothesis

2.2.1 by introducing the following assumptions on p, q, r following [74, Sect. 3].

These additional assumptions are necessary in order to perform a Liouville-type

transformation.

Hypothesis 2.3.1. Let (a, b) ⊂ R be a finite interval and suppose that p, q, r are

(Lebesgue ) measurable functions on (a, b) such that the following items (i)–(iv) hold:

(i) r > 0 a.e. on (a, b), r ∈ L1((a, b); dx).

(ii) p > 0 a.e. on (a, b), 1/p ∈ L1((a, b); dx).

(iii) q is real-valued a.e. on (a, b), q ∈ L1((a, b); dx).

(iv) pr and (pr)′/r are absolutely continuous on [a, b], and for some ε > 0, pr ⩾ ε

on [a, b].

The variable transformations (cf. [133, p. 2]),

ξ(x) =
1

c

ˆ x

a

dt [r(t)/p(t)]1/2, ξ(x) ∈ [0, 1] for x ∈ [a, b], (2.3.13)
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ξ′(x) = c−1[r(x)/p(x)]1/2 > 0 a.e. on (a, b), (2.3.14)

u(z, ξ) = [p(x(ξ))r(x(ξ))]1/4y(z, x(ξ)), (2.3.15)

with c > 0 given by

c =

ˆ b

a

dt [r(t)/p(t)]1/2, (2.3.16)

transform the Sturm–Liouville problem (τy(z, · ))(x) = zy(z, x), x ∈ (a, b), into

−..u(z, ξ) + V (ξ)u(z, ξ) = c2zu(z, ξ), ξ ∈ (0, 1), (2.3.17)

and abbreviating

ν(ξ) = [p(x(ξ))r(x(ξ))]1/4, (2.3.18)

one verifies that

V (ξ) =

..
ν (ξ)

ν(ξ)
+ c2

q(x)

r(x)

= − c2

16

1

p(x)r(x)

[
(p(x)r(x))′

r(x)

]2
+
c2

4

1

r(x)

[
(p(x)r(x))′

r(x)

]′
+ c2

q(x)

r(x)
,

(2.3.19)

and

V ∈ L1((0, 1); dξ), (2.3.20)

as guaranteed by Hypothesis 2.3.1.

In order to construct the asymptotic expansion of FA,B(z) we begin by assum-

ing Hypothesis 2.3.1, but note that throughout the construction of the expansion

stronger assumptions will be necessary, all of which will be addressed once the final

asymptotic expansion is given.

When applying the Liouville transformation the boundary conditions undergo

a similar transformation. In fact, setting

Q(ξ) = [(pr)′/r](x(ξ)) (2.3.21)

one can write u(z, ξ).
u(z, ξ)

 =M(ξ)

 y(z, x(ξ))

y[1](z, x(ξ))

 , (2.3.22)
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where

M(ξ) =

 ν(ξ) 0

(c/4)ν(ξ)−1Q(ξ) cν(ξ)−1

 , ξ ∈ [0, 1], detC2(M( · )) = c. (2.3.23)

Employing relation (2.3.22), the separated boundary conditions for the func-

tion g( · ) in Theorem 2.2.2 (i) transform into separated boundary conditions for the

transformed function v( · ) as follows,cos(α) sin(α)

0 0

M(0)−1

v(0).
v(0)

+

 0 0

cos(β) − sin(β)

M(1)−1

v(1).
v(1)

 ,

(2.3.24)

where α, β ∈ [0, π), and the inverse matrix M−1( · ) has the form

M(ξ)−1 =

 ν(ξ)−1 0

−(1/4)ν(ξ)−1Q(ξ) c−1ν(ξ)

 , ξ ∈ [0, 1], (2.3.25)

or, more explicitly,

c−1ν(0) sin(α)
.
v(0) + ν(0)−1

[
cos(α)− 4−1 sin(α)Q(0)

]
v(0) = 0,

−c−1ν(1) sin(β)
.
v(1) + ν(1)−1

[
cos(β) + 4−1 sin(β)Q(1)

]
v(1) = 0.

(2.3.26)

With the help of relation (2.3.22) the coupled boundary conditions for g( · ) in

Theorem 2.2.2 (ii) transform into coupled boundary conditions for v( · ) viav(1).
v(1)

 = eiφR̃

v(0).
v(0)

 , φ ∈ [0, π), (2.3.27)

where

R̃ =M(1)−1RM(0) ∈ SL(2,R) (2.3.28)

is of the form

R̃11 = ν(0)−1ν(1)
[
R11 − 4−1Q(0)R12

]
, R̃12 = c−1ν(0)ν(1)R12,

R̃21 = cν(0)−1ν(1)−1
[
R21 − 4−1Q(0)R22 + 4−1Q(1)R11 − (16)−1Q(0)Q(1)R12

]
,

R̃22 = ν(0)ν(1)−1
[
R22 + 4−1Q(1)R12

]
. (2.3.29)
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The fundamental system of solutions ϕ(z, · , a) and θ(z, · , a) of τy = zy sat-

isfying (2.2.9) is transformed into the set of solutions Φ(z, · , 0) and Θ(z, · , 0) of

(2.3.17) satisfying the conditions

Φ(z, 0, 0) = 0,
.
Φ(z, 0, 0) = cν(0)−1, (2.3.30)

Θ(z, 0, 0) = ν(0),
.
Θ(z, 0, 0) = 4−1cν(0)−1Q(0), (2.3.31)

where, once again, the derivatives of Φ(z, ξ, 0) and Θ(z, ξ, 0) are understood with

respect to the variable ξ (cf. (2.3.17)) and one notes that for fixed ξ, each is entire

with respect to z. By writing a generic solution of (2.3.17) as a linear combination

of Φ(z, ξ, 0) and Θ(z, ξ, 0) and by imposing the separated boundary conditions in

(2.3.26) one obtains the following characteristic function

Fα,β(z) = sin(α)
{
c−1ν(1) sin(β)

.
Θ(z, 1, 0)

− ν(1)−1
[
cos(β) + 4−1 sin(β)Q(1)

]
Θ(z, 1, 0)

}
+ cos(α)

{
− c−1ν(1) sin(β)

.
Φ(z, 1, 0)

+ ν(1)−1
[
cos(β) + 4−1 sin(β)Q(1)

]
Φ(z, 1, 0)

}
, z ∈ C.

(2.3.32)

The zeros of Fα,β(z) represent, including multiplicity, the eigenvalues λA,B,j, j ∈ J , of

the original Sturm–Liouville problem τy = zy endowed with the separated boundary

conditions in (2.2.7). By repeating this argument for coupled boundary conditions

(2.2.8) one obtains the characteristic function

Fφ,R̃(z) = eiφ
{
2 cos(φ)−

[
c−1ν(0)R̃11 + 4−1ν(0)−1Q(0)R̃12

] .
Φ(z, 1, 0)

+
[
c−1ν(0)R̃21 + 4−1ν(0)−1Q(0)R̃22

]
Φ(z, 1, 0)

+ R̃12ν(0)
−1
.
Θ(z, 1, 0)− R̃22ν(0)

−1Θ(z, 1, 0)
}
, z ∈ C.

(2.3.33)

Remark 2.3.2. Explicit computations confirm that in the case of separated as well

as coupled boundary conditions one finds

Fα,β(z) = Fα,β(z), z ∈ C, (2.3.34)

Fφ,R(z) = Fφ,R̃(z), z ∈ C. (2.3.35)
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As an example we now consider the case of the Krein–von Neumann extension

(see, e.g., [68] and the literature cited therein for details):

Example 2.3.3. The Krein–von Neumann boundary conditions in terms of the vari-

able x ∈ [a, b] are characterized by imposing the coupled boundary conditions φ = 0,

R = RK (cf., e.g., [74, eq. (3.35)]) with

RK =

 θ(0, b, a) ϕ(0, b, a)

θ[1](0, b, a) ϕ[1](0, b, a)

 . (2.3.36)

In terms of ξ ∈ [0, 1], these conditions transform into φ = 0 and R̃ = R̃K with

R̃K =

ν(0)−1
[
Θ(0, 1, 0)− 4−1Q(0)Φ(0, 1, 0)

]
c−1ν(0)Φ(0, 1, 0)

ν(0)−1
[ .
Θ(0, 1, 0)− 4−1Q(0)

.
Φ(0, 1, 0)

]
c−1ν(0)

.
Φ(0, 1, 0)

 . (2.3.37)

Using these parameters in (2.3.33), one obtains the characteristic function

F0,R̃K
(z) = 2− c−1

[ .
Φ(0, 1, 0)Θ(z, 1, 0) + Θ(0, 1, 0)

.
Φ(z, 1, 0)

− Φ(0, 1, 0)
.
Θ(z, 1, 0)−

.
Θ(0, 1, 0)Φ(z, 1, 0)

]
, z ∈ C,

(2.3.38)

to be compared with (see [74, eq. (3.36), (3.37)])

F0,RK
(z) = 2−

[
ϕ[1](0, b, a)θ(z, b, a) + θ(0, b, a)ϕ[1](z, b, a)

− ϕ(0, b, a)θ[1](z, b, a)− θ[1](0, b, a)ϕ(z, b, a)
]
, z ∈ C.

(2.3.39)

In order to obtain a large-z asymptotic expansion of the functions (2.3.32) and

(2.3.33), we need the asymptotic expansion of the transformed fundamental set of

solutions Φ(z, ξ, 0) and Θ(z, ξ, 0). To this end, and since the principal results we are

focused on in this section are of a local nature with respect to ξ ∈ [0, 1], we now

envisage that V ( · ) is continued in a sufficiently smooth and compactly supported

manner to a function on R (by a slight abuse of notation still abbreviated by V ),

V ∈ CN
0 (R) ∩ C∞((−∞,−1) ∪ (2,∞)), (2.3.40)

for N ∈ N to be determined later on. In addition, we consider the associated Weyl–

Titchmarsh (resp., Jost) solutions u±(z, · ) such that for all x0 ∈ R,
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u+(z, · ) ∈ L2([x0,∞); dξ), u−(z, · ) ∈ L2((−∞, x0]; dξ), Im
(
z1/2

)
> 0. (2.3.41)

Writing

u±(z, ξ) = exp

{ˆ ξ

0

dt S±(z, t)

}
, S±(z, ξ) =

.
u±(z, ξ)

u±(z, ξ)
, ξ ∈ R, Im

(
z1/2

)
⩾ 0

(2.3.42)

(the compact support hypothesis on V on R, more generally, a suitable short-range,

i.e., integrability assumption on V , permits the continuous extension of S±(z, · ) to

Im
(
z1/2

)
⩾ 0), one infers that S±(z, · ) satisfy the Riccati differential equation

.
S(z, ξ) + S±(z, ξ)

2 − V (ξ) + c2z = 0, ξ ∈ R, Im
(
z1/2

)
⩾ 0. (2.3.43)

In addition, S±(z, ξ) represent the half-line Weyl–Titchmarsh functions on [ξ,+∞),

respectively, (−∞, ξ], in particular, for each ξ ∈ R, ±S±( · , ξ) are Nevanlinna–

Herglotz functions on C+ (i.e., analytic on C+ with strictly positive imaginary part

on C+).

Inserting the formal asymptotic expansion

S±(z, · ) =
|z|→∞

Im(z1/2)⩾0

±icz1/2 +
∞∑
j=1

(∓1)jSj( · )z−j/2 (2.3.44)

into the Riccati equation (2.3.43) yields the recursion relation

S1(ξ) = [i/(2c)]V (ξ), S2(ξ) = [1/4c2]
.
V (ξ),

Sj+1(ξ) = −[i/(2c)]

[ .
Sj(ξ) +

j−1∑
k=1

Sk(ξ)Sj−k(ξ)

]
, j ∈ N, ξ ∈ R.

(2.3.45)

The first few terms Sj( · ) explicitly read

S3(ξ) =
[
i
/(

8c3
)][

V 2(ξ)−
..
V (ξ)

]
,

S4(ξ) = −
[
1/16c4

][
V (3)(ξ)− 4V (ξ)

.
V (ξ)

]
,

S5(ξ) =
[
i
/(

32c5
)][

2V 3(ξ)− 5
.
V (ξ)2 − 6V (ξ)

..
V (ξ) + V (4)(ξ)

]
,

etc.

(2.3.46)

See [72, Sects. 5, 6] for a variety of closely related asymptotic expansions.
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Assuming (2.3.40), the formal asymptotic expansion (2.3.43) turns into an

actual asymptotic expansion of the the type (see [23]),

S±(z, ξ) =
|z|→∞

Im(z1/2)⩾0

±icz1/2 +
N∑
j=1

(∓1)jSj(ξ)z
−j/2 + o

(
|z|−N/2

)
, (2.3.47)

with the o
(
|z|−N/2

)
-term uniform with respect to ξ ∈ [0, 1].

Remark 2.3.4. There is an enormous literature available in connection with asymp-

totic high-energy expansions of Weyl–Titchmarsh m-functions (see, e.g., the de-

tailed list in [32]) and the associated spectral function, however, much less can

be found in connection with (local) uniformity of the error term o
(
|z|−N/2

)
with

respect to x in expansions of the type (2.3.47). Notable exceptions are, for in-

stance, [23], [36], [96], [111], [165], [166]. In particular, [23] (see [137, Sects. 1.4, 3.1])

and [36] use the theory of transformation operators, while [96] and [111] employ

a detailed analysis of the Riccati equation (2.3.43), and [165], [166] iterate an un-

derlying Volterra integral equation. In addition, we note that the compact support

hypothesis on V can be relaxed to the condition
ˆ
R
(1 + |x|)dx

∣∣V (ℓ)(x)
∣∣ <∞, 0 ⩽ ℓ ⩽ N. (2.3.48)

The correct asymptotic behavior as |z| → ∞ of any solution u(z, · ) to (2.3.17)

is given as a linear combination of u±(z, · ),

u(z, ξ) = A(z)u+(z, ξ) + B(z)u−(z, ξ), Im(z) > 0, ξ ∈ [0, 1], (2.3.49)

and one notices that the solutions u±(z, · ) satisfy the initial conditions

u±(z, 0) = 1,
.
u±(z, 0) = S±(z, 0), Im(z) > 0. (2.3.50)

Since W (u+(z, · ), u−(z, · ))(ξ) ̸= 0, ξ ∈ [0, 1], one infers that

S+(z, 0)− S−(z, 0) ̸= 0, Im(z) > 0. (2.3.51)

Imposing the initial conditions (2.3.30) and (2.3.31) on the function (2.3.49),

one obtains an expression for Φ(z, · , 0) and Θ(z, · , 0) suitable for an asymptotic
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expansion. For instance, in the case of Φ(z, ξ, 0) one obtains

Φ(z, ξ, 0) =
cν(0)−1

S−(z, 0)− S+(z, 0)
exp

( ˆ ξ

0

dη S−(z, η)

)
×

[
1− exp

( ˆ ξ

0

dη [S+(z, η)− S−(z, η)]

)]
.

(2.3.52)

Furthermore, for large values of z, with Im(z) > 0, (2.3.47) implies

exp

( ˆ ξ

0

dη [S+(z, η)− S−(z, η)]

)
=

|z|→∞
Im(z1/2)⩾0

exp
(
2icz1/2ξ

)
exp

(
− 2

N∑
n=1

z−n+(1/2)

ˆ ξ

0

dη S2n−1(η)

)
(2.3.53)

× [1 + o
(
z−N+1/2

)
].

Since the integrals on the right-hand side of (2.3.53) are finite, one finds

exp

(
− 2

N∑
n=1

z−n+1/2

ˆ ξ

0

dη S2n−1(η)

)
=

|z|→∞
Im(z1/2)⩾0

O(1), (2.3.54)

uniformly in ξ ∈ [0, 1]. Relations (2.3.47) and (2.3.53) permit one to conclude that

exp

( ˆ ξ

0

dη [S+(z, η)− S−(z, η)]

)
=

|z|→∞
Im(z1/2)⩾0

O
(
e2icz

1/2)
, (2.3.55)

uniformly for ξ ∈ [0, 1], and therefore,

Φ(z, ξ, 0) =
|z|→∞

Im(z1/2)⩾0

cν(0)−1

S−(z, 0)− S+(z, 0)
exp

( ˆ ξ

0

dη S−(z, η)

)[
1 +O

(
e2icz

1/2)]
.

(2.3.56)

Similar arguments permit one to derive the following expressions:

Θ(z, ξ, 0) =
|z|→∞

Im(z1/2)⩾0

(c/4)ν(0)−1Q(0)− ν(0)S+(z, 0)

S−(z, 0)− S+(z, 0)
exp

( ˆ ξ

0

dη S−(z, η)

)

×
[
1 +O

(
e2icz

1/2)]
, (2.3.57)

.
Φ(z, ξ, 0) =

|z|→∞
Im(z1/2)⩾0

cν(0)−1S−(z, 1)

S−(z, 0)− S+(z, 0)
exp

( ˆ ξ

0

dη S−(z, η)

)[
1 +O

(
e2icz

1/2)]
,

(2.3.58)
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.
Θ(z, ξ, 0) =

|z|→∞
Im(z1/2)⩾0

[(c/4)ν(0)−1Q(0)− ν(0)S+(z, 0)]S−(z, 1)

S−(z, 0)− S+(z, 0)

× exp

( ˆ ξ

0

dη S−(z, η)

)[
1 +O

(
e2icz

1/2)]
, (2.3.59)

uniformly with respect to ξ ∈ [0, 1].

Utilizing the expressions (2.3.57)–(2.3.59) in (2.3.32) and (2.3.33) we obtain

FA,B(z) =
|z|→∞

Im(z1/2)⩾0

1

S−(z, 0)− S−(z, 0)
exp

( ˆ 1

0

dη S−(z, η)

)
(2.3.60)

× [jA,B + kA,BS+(z, 0) + ℓA,BS−(z, 1) +mA,BS+(z, 0)S−(z, 1)]

×
[
1 +O

(
e2icz

1/2)]
.

The first line on the right-hand side of (2.3.60) is entirely independent of boundary

conditions, in particular, it does not distinguish between separated and coupled

boundary conditions. In contrast, the terms jA,B, kA,B, ℓA,B, and mA,B in the second

line on the right-hand side of (2.3.60) encode the specific information about the

boundary conditions imposed. In the case of separated boundary conditions, where

A,B represents α, β as in (2.2.7) one obtains

jα,β = − c

ν(0)ν(1)
[cos(β) + (1/4) sin(β)Q(1)] [cos(α)− (1/4) sin(α)Q(0)] ,

kα,β = −ν(0)
ν(1)

sin(α) [cos(β) + (1/4) sin(β)Q(1)] ,

ℓα,β =
ν(1)

ν(0)
sin(β) [cos(α)− (1/4) sin(α)Q(0)] , (2.3.61)

mα,β = (1/c)ν(0)ν(1) sin(α) sin(β).

In the case of coupled boundary conditions, where A,B represents φ, R̃ as in (2.3.27),

(2.3.29), one infers

jφ,R̃ = −eiφR̃21, kφ,R̃ = −eiφR̃22, ℓφ,R̃ = eiφR̃11, mφ,R̃ = eiφR̃12. (2.3.62)

For the purpose of the analytic continuation of the spectral ζ-function, one

needs the large-z asymptotic expansion of ln(FA,B(z)) rather than of FA,B(z). For
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this reason we will focus next on the derivation of the large-z asymptotic expansion

of the expression

ln(FA,B(z)) =
|z|→∞

Im(z1/2)⩾0

− ln
(
S+(z, 0)− S−(z, 0)

)
+

ˆ 1

0

dη S−(z, η)

+ ln
(
jA,B + kA,BS+(z, 0) + ℓA,BS−(z, 1) +mA,BS+(z, 0)S−(z, 1)

)
(2.3.63)

+O
(
e2icz

1/2)
.

We can now use the expansion (2.3.43) in (2.3.60) to obtain a large-z asymptotic

expansion of (2.3.63). We start with the part of (2.3.63) that is independent of the

boundary conditions. For the integral in (2.3.63) one finds

ˆ 1

0

dη S−(z, η) =
|z|→∞

Im(z1/2)⩾0

−iz1/2c+
N∑
m=1

z−m/2
ˆ 1

0

dη Sm(η) + o
(
z−N/2

)
. (2.3.64)

For the first term in (2.3.63) one concludes that

S+(z, 0)− S−(z, 0) =
|z|→∞

Im(z1/2)⩾0

2icz1/2
(
1 + (i/c)

N∑
j=1

S2j−1(0)z
−j
)
+ o

(
z−N+1/2

)
.

(2.3.65)

Relation (2.3.65) permits one to write

ln
(
S+(z, 0)− S−(z, 0)

)
=

|z|→∞
Im(z1/2)⩾0

ln(2ic) + 2−1 ln(z) +
N∑
m=1

D2m−1z
−m + o

(
z−N

)
,

(2.3.66)

where the terms D2m−1 are determined through the formal asymptotic expansion

ln

(
1 + (i/c)

∞∑
m=1

S2m−1(0)z
−m

)
=

∞∑
j=1

Djz
−j. (2.3.67)
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We refer to (2.4.7)–(2.4.9) for a recursive formula for Dj in terms of (i/c)S2m−1(0).

The first few Dj explicitly read

D1 = −V (0)
/[
2c2

]
, D2 =

[..
V (0)− 2V (0)2

]/[
8c4

]
,

D3 = −
[
3V (4)(0)− 24V (0)

..
V (0)− 15

.
V (0)2 + 16V (0)3

]/[
96c6

]
,

D4 =
(
128c8

)−1[
V (6)(0) + 48V (0)2

..
V (0)− 20

..
V (0)2 − 12V (0)V (4)(0)

+ 60V (0)
.
V (0)2 − 28V (3)(0)

.
V (0)− 16V (0)4

]
,

etc.

(2.3.68)

Computing the asymptotic expansion of the last logarithmic term in (2.3.63),

namely the term which depends on the boundary conditions, is somewhat more

involved. By using the asymptotic expansion (2.3.43) it is not difficult to find

jA,B + kA,BS−(z, 0) + ℓA,BS+(z, 1)

=
|z|→∞

Im(z1/2)⩾0

−icz1/2(ℓA,B − kA,B) +
N∑
m=0

∆mz
−m/2 + o

(
z−N/2

)
,

(2.3.69)

where

∆0 = jA,B, ∆m = ℓA,BSm(1) + (−1)mkA,BSm(0), m ∈ N, (2.3.70)

and

mA,BS−(z, 0)S+(z, 1) =
|z|→∞

Im(z1/2)⩾0

mA,Bc
2z

(
1 +

N∑
m=2

Λmz
−m/2

)
+ o

(
z−(N−2)/2

)
,

(2.3.71)

where

Λm =
m∑
ℓ=0

Ω−
ℓ (0)Ω

+
m−ℓ(1), m ∈ N, m ⩾ 2, (2.3.72)

with

Ω−
0 (0) = Ω+

0 (1) = 1, Ω+
j (x) = (−1)jΩ−

j (x) = (i/c)Sj−1(x), j ∈ N. (2.3.73)
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The first few Λm have the explicit form,

Λ2 = −2−1c−2[V (1) + V (0)], Λ3 = −i4−1c−3
[ .
V (1) +

.
V (0)

]
,

Λ4 = 8−1c−4
[..
V (1) +

..
V (0)− V (0)2 − V (1)2 + 2V (1)V (0)

]
,

Λ5 = i(16)−1c−5
[
V (3)(0)− V (3)(1)− 2V (0)

(
2
.
V (0) +

.
V (1)

)
+ 2V (1)

[ .
V (0) + 2

.
V (1)

]]
,

etc.

(2.3.74)

This finally implies

jA,B + kA,BS−(z, 0) + ℓA,BS+(z, 1) +mA,BS−(z, 0)S+(z, 1)

=
|z|→∞

Im(z1/2)⩾0

N∑
m=−2

Γmz
−m/2 + o

(
z−N/2

)
,

(2.3.75)

where

Γ−2 = mA,Bc
2, Γ−1 = −ic(ℓA,B − kA,B),

Γm = ∆m +mA,Bc
2Λm+2, m ∈ N0.

(2.3.76)

Let Γk0 with k0 ∈ Z and k0 ⩾ −2, be the first non-vanishing term of the series

in (2.3.75). Since Γk0 ̸= 0 one can write

ln
(
jA,B + kA,BS−(z, 0) + ℓA,BS+(z, 1) +mA,BS−(z, 0)S+(z, 1)

)
(2.3.77)

=
|z|→∞

Im(z1/2)⩾0

ln(Γk0)− (k0/2) ln(z) + ln

(
1 +

N∑
m=1

[Γm+k0/Γk0 ]z
−m/2 + o

(
z−N/2

))
,

which, in turn, yields

ln
(
jA,B + kA,BS−(z, 0) + ℓA,BS+(z, 1) +mA,BS−(z, 0)S+(z, 1)

)
=

|z|→∞
Im(z1/2)⩾0

ln(Γk0)− (k0/2) ln(z) +
N∑
j=1

Πjz
−j/2 + o

(
z−N/2

)
,

(2.3.78)

where the terms Πj are obtained via the formal asymptotic expansion

ln

(
1 +

∞∑
m=1

[Γm+k0/Γk0 ]z
−m/2

)
=

∞∑
j=1

Πjz
−j/2. (2.3.79)
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Once again we refer to (2.4.7)–(2.4.9) for a recursive determination of Πj in terms

of Γm+k0/Γk0 . The first few Πm are explicitly of the form,

Π1 = Γ1+k0/Γk0 , Π2 = 2−1Γ−2
k0

[
2Γk0Γk0+2 − Γ2

k0+1

]
,

Π3 = 3−1Γ−3
k0

[
Γ3
k0+1 − 3Γk0Γk0+2Γk0+1 + 3Γ2

k0
Γk0+3

]
, (2.3.80)

Π4 = −4−1Γ−4
k0

[
Γ4
k0+1 − 4Γk0Γk0+2Γ

2
k0+1 + 4Γ2

k0
Γk0+3Γk0+1

+ 2Γ2
k0

(
Γ2
k0+2 − 2Γk0Γk0+4

) ]
,

etc.

More explicit expressions for Πm in terms of the potential V and its derivatives can

be obtained with a simple computer program once the index k0 has been determined.

Finally, we can provide the large-z asymptotic expansion of the logarithm of

the characteristic function in the form

ln(FA,B(z)) =
|z|→∞

Im(z1/2)⩾0

−icz1/2 − 2−1(k0 + 1) ln(z) + ln(Γk0/(2ic))

+
N∑
m=1

Ψmz
−m/2 + o

(
z−N/2

)
,

(2.3.81)

where

Ψ2n =

ˆ 1

0

dη S2n(η)−D2n−1 +Π2n, n ∈ N,

Ψ2n+1 =

ˆ 1

0

dη S2n+1(η) + Π2n+1, n ∈ N0.

(2.3.82)

2.3.3 Analytic Continuation of the Spectral Zeta Function and the Zeta Regularized
Functional Determinant

In order to perform the analytic continuation of the spectral ζ-function, we

need investigate the specific behavior for z ↓ 0 and |z| → ∞. The characteris-

tic function FA,B(z) is constructed as a linear combination of the basis functions

ϕ(z, · , a) and θ(z, · , a) (or equivalently the transformed basis functions Φ(z, · , 0)

and Θ(z, · , 0)) and their first quasi-derivatives. We have proved that ϕ(z, · , a) and

θ(z, · , a), and consequently Φ(z, · , 0) and Θ(z, · , 0), have a small-z asymptotic ex-
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pansion in the form of a power series in the variable z in Section 2.3.1. This implies

that FA,B(z) has a small-z asymptotic expansion of the form

FA,B(z) = Fm0z
m0 +

∞∑
m=m0+1

Fmz
m, (2.3.83)

where m0 ∈ {0, 1, 2} represents the multiplicity of the zero eigenvalue and Fm0 ̸= 0.

The asymptotic expansion (2.3.83) suggests that the appropriate characteristic func-

tion to use in the integral representation of the spectral ζ-function is z−m0FA,B(z)

rather than simply FA,B(z) (obviously the two coincide when no zero eigenvalue is

present). In this case it is easy to verify that

d

dz
ln
(
FA,B(z)z

−m0
)

=
|z|↓0

O(1). (2.3.84)

From the large-z asymptotic expansion (2.3.81) of the characteristic function,

namely,

ln(FA,B(z)) =
|z|→∞

Im(z1/2)⩾0

−icz1/2 − [(k0 + 1)/2] ln(z) + ln(Γk0/(2ic))

+
N∑
m=1

Ψmz
−m/2 + o

(
|z|−N/2

)
,

(2.3.85)

one readily infers that

d

dz
ln(FA,B(z)z

−m0) =
|z|→∞

Im(z1/2)⩾0

O
(
|z|−1/2

)
. (2.3.86)

The asymptotic behaviors in (2.3.84) and (2.3.86) justify deforming the contour

γ in the integral representation (2.2.39) to one that surrounds the branch cut Rψ

as shown in Figure 2.2. This contour deformation leads to the following integral

representation (with ψ introduced in (2.2.40))

ζ(s;TA,B) = eis(π−ψ)π−1 sin(πs)

ˆ ∞

0

dt t−s
d

dt
ln
(
FA,B(te

iψ)t−m0e−im0ψ
)
, (2.3.87)

which is valid in the region 1/2 < Re(s) < 1. To obtain the analytic continuation

of (2.3.87) to the left of the abscissa of convergence Re(s) = 1/2 we subtract and

then add N terms of the large-z asymptotic expansion of ln
(
FA,B(te

iψ)t−m0e−im0ψ
)
.
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This process leads to the following expression of the spectral ζ-function

ζ(s;TA,B) = Z(s, A,B) +
N∑

j=−1

hj(s, A,B), (2.3.88)

which is valid in the region −(N + 1)/2 < Re(s) < 1. The explicit form of the

functions in the analytically continued expression of ζ(s;TA,B) in (2.3.88) is

Z(s, A,B) = eis(π−ψ)π−1 sin(πs)

ˆ ∞

0

dt t−s
d

dt

{
ln
(
FA,B(te

iψ)t−m0e−im0ψ
)

−H(t− 1)

[
− ict1/2eiψ/2 − [((k0 + 1)/2) +m0] ln(t) (2.3.89)

−
[
((k0 + 1)/2) +m0

]
iψ + ln(Γk0/(2ic)) +

N∑
n=1

Ψne
−inψ/2t−n/2

]}
,

where H(s) =


1, s > 0,

0, s < 0,

represents the Heaviside function, and

h−1(s, A,B) = −ieis(π−ψ)π−1 sin(πs)c eiψ/2/(2s− 1),

h0(s, A,B) = −(k0 + 1 + 2m0)e
is(π−ψ)(2πs)−1 sin(πs),

hn(s, A,B) = −eis(π−ψ)π−1 sin(πs)[n/(2s+ n)]e−inψ/2Ψn, n ∈ N.

(2.3.90)

Given the expression (2.3.88) we are now able to compute the zeta regularized

functional determinant in terms of ζ ′(0;TA,B) as in [74, Thm. 2.9]. For the purpose

of computing ζ ′(0;TA,B), it is sufficient to set N = 0 in (2.3.88) to obtain

ζ ′(0;TA,B) = Z ′(0, A,B) + h′−1(0, A,B) + h′0(0, A,B). (2.3.91)

By computing the derivative with respect to s of (2.3.89) and the first two

expressions in (2.3.90) at s = 0 one obtains the remarkably simple formula

ζ ′(0;TA,B) = iπn− ln(2c|Fm0/Γk0|), (2.3.92)

where n is the number of strictly negative eigenvalues of TA,B.
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2.4 Computing Spectral Zeta Function Values and Traces for Regular
Sturm–Liouville Operators

We have now completed the necessary preparations to give the main theo-

rem for computing values of the spectral ζ-function for self-adjoint regular Sturm–

Liouville operators when imposing either separated or coupled boundary conditions.

When zero is not an eigenvalue we also find an expression for computing the trace

of the inverse Sturm–Liouville operator.

Theorem 2.4.1. Assume Hypothesis 2.2.1, denote by TA,B the self-adjoint extension

of Tmin with either separated or coupled boundary conditions as described in Theorem

2.2.2, and let m0 = 0, 1, 2, denote the multiplicity of zero as an eigenvalue of TA,B

(with m0 = 0 denoting zero is not an eigenvalue). Suppose that FA,B(z) given in

(2.2.39) has the series expansion,

FA,B(z) =
∞∑
j=0

ajz
j, 0 ⩽ |z| sufficiently small. (2.4.1)

Then,

ζ(n;TA,B) = −Res

[
z−n

d

dz
ln(FA,B(z)); z = 0

]
= −n bn, n ∈ N, (2.4.2)

where

b1 = a1+m0/am0 ,

bj = [aj+m0/am0 ]−
j−1∑
ℓ=1

[ℓ/j][aj−ℓ+m0/am0 ]bℓ, j ∈ N, j ⩾ 2.
(2.4.3)

In particular, if zero is not an eigenvalue of TA,B, then

trL2
r((a,b))

(
T−1
A,B

)
= ζ(1;TA,B) = −a1/a0. (2.4.4)

Proof. The residue in equation (2.4.2) coincides with the z−1 coefficient of the Lau-

rent expansion, in the neighborhood of z = 0, of the integrand in (2.2.41). By using

the expansion (2.4.1) one obtains, for |z| ⩾ 0 sufficiently small and for n ∈ N, that

z−n
d

dz
ln(FA,B(z)) = z−n

d

dz
ln

( ∞∑
j=0

ajz
j

)
. (2.4.5)
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Since z = 0 can be an eigenvalue of multiplicity at most 2, the expansion can be

rewritten as follows,

z−n
d

dz
ln(FA,B(z)) = z−n

d

dz
ln

( ∞∑
j=m0

ajz
j

)

= z−n
d

dz

(
ln
(
am0z

m0
)
+ ln

(
1 +

∞∑
j=1

[aj+m0/am0 ]z
j

))

= m0z
−n−1 + z−n

d

dz
ln

(
1 +

∞∑
j=1

[aj+m0/am0 ]z
j

)
. (2.4.6)

Since n ∈ N, the term m0z
−n−1 never contributes to the residue and the only con-

tribution comes from the zn coefficient of the small-|z| asymptotic expansion of the

logarithm on the right-hand side. This expansion can be obtained by making use of

the fact that if F has the analytic expansion

F (z) =
∞∑
m=1

cmz
m, 0 ⩽ |z| sufficiently small, (2.4.7)

then

ln(1 + F (z)) =
∞∑
m=1

dmz
m, 0 ⩽ |z| sufficiently small, (2.4.8)

where

d1 = c1, dj = cj −
j−1∑
ℓ=1

[ℓ/j]cj−ℓdℓ, j ∈ N, j ⩾ 2. (2.4.9)

By using (2.4.8) one obtains

ln

(
1 +

∞∑
j=1

[aj+m0/am0 ]z
j

)
=

∞∑
j=1

bjz
j, (2.4.10)

with the coefficients bj given by equation (2.4.3). From the last expansion one finally

obtains

z−n
d

dz
ln(FA,B(z)) = z−n

d

dz
ln

( ∞∑
j=1

ajz
j

)
=

∞∑
j=1

jbjz
j−n−1. (2.4.11)

This is the Laurent expansion, and from it one can deduce that

Res

[
z−n

d

dz
ln(FA,B(z)); z = 0

]
= n bn, n ∈ N, (2.4.12)

proving (2.4.2).
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Assertion (2.4.4) about the trace of the inverse operator when z = 0 is not an

eigenvalue is obtained by noting

− d

dz
ln(FA,B(z))

∣∣∣∣
z=0

= −d1 = −a1/a0 (2.4.13)

from the analytic expansions (2.4.7) and (2.4.8), and applying Theorem 2.2.4.

This theorem allows one to utilize the series expansions found in the previous

section in order to express the ζ-function values for each of the boundary conditions

considered.

2.4.1 Computing Spectral Zeta Function Values and Traces for Separated Boundary
Conditions

We begin by applying Theorem 2.4.1 to find an expression for ζ(n;Tα,β) when

imposing separated boundary conditions.

Theorem 2.4.2. Assume Hypothesis 2.2.1, consider Tα,β as described in Theorem

2.2.2 (i), and let m0 = 0, 1, denote the multiplicity of zero as an eigenvalue of Tα,β.

Then,

ζ(n;Tα,β) = −Res

[
z−n

d

dz
ln(Fα,β(z)); z = 0

]
= −n bn, n ∈ N, (2.4.14)

where

b1 =
cos(α)

[
cos(β)ϕ1+m0(b)− sin(β)ϕ

[1]
1+m0

(b)
]
− sin(α)

[
cos(β)θ1+m0(b)− sin(β)θ

[1]
1+m0

(b)
]

cos(α)
[
cos(β)ϕm0(b)− sin(β)ϕ

[1]
m0(b)

]
− sin(α)

[
cos(β)θm0(b)− sin(β)θ

[1]
m0(b)

] ,

bj =
cos(α)

[
cos(β)ϕj+m0(b)− sin(β)ϕ

[1]
j+m0

(b)
]
− sin(α)

[
cos(β)θj+m0(b)− sin(β)θ

[1]
j+m0

(b)
]

cos(α)
[
cos(β)ϕm0(b)− sin(β)ϕ

[1]
m0(b)

]
− sin(α)

[
cos(β)θm0(b)− sin(β)θ

[1]
m0(b)

]
−

j−1∑
ℓ=1

(
ℓ

j

)
cos(α)

[
cos(β)ϕj−ℓ+m0(b)− sin(β)ϕ

[1]
j−ℓ+m0

(b)
]
− sin(α)

[
cos(β)θj−ℓ+m0(b)− sin(β)θ

[1]
j−ℓ+m0

(b)
]

cos(α)
[
cos(β)ϕm0(b)− sin(β)ϕ

[1]
m0(b)

]
− sin(α)

[
cos(β)θm0(b)− sin(β)θ

[1]
m0(b)

] bℓ,

j ∈ N, j ⩾ 2. (2.4.15)

In particular, if zero is not an eigenvalue of Tα,β, then

trL2
r((a,b))

(
T−1
α,β

)
= ζ(1;Tα,β) (2.4.16)
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= −
cos(α)

[
cos(β) ϕ1(b)− sin(β) ϕ

[1]
1 (b)

]
− sin(α)

[
cos(β) θ1(b)− sin(β) θ

[1]
1 (b)

]
cos(α)

[
cos(β) ϕ0(b)− sin(β) ϕ

[1]
0 (b)

]
− sin(α)

[
cos(β) θ0(b)− sin(β) θ

[1]
0 (b)

] .
Proof. One substitutes (2.3.4), (2.3.6), (2.3.8), and (2.3.11) into equation (2.2.16)

for α, β ∈ [0, π) to find

Fα,β(z) =
∞∑
m=0

{
cos(α)

[
cos(β) ϕm(b)− sin(β) ϕ[1]

m (b)
]

− sin(α)
[
cos(β) θm(b)− sin(β) θ[1]m (b)

]}
zm.

(2.4.17)

From (2.4.17) one proves the assertion by applying Theorem 2.4.1 with

ak = cos(α)
[
cos(β) ϕk(b)− sin(β) ϕ

[1]
k (b)

]
− sin(α)

[
− sin(β) θ

[1]
k (b) + cos(β) θk(b)

]
, k ∈ N.

(2.4.18)

We now give a few corollaries that will be of use in the context of specific

boundary conditions. One notes that for Dirichlet boundary conditions one has

α = β = 0 and for Neumann boundary conditions one has α = β = π/2.

Corollary 2.4.3 (Dirichlet boundary conditions). Assume Hypothesis 2.2.1, consider

T0,0 as described in case Theorem 2.2.2 (i), and let m0 = 0, 1, denote the multiplicity

of zero as an eigenvalue of T0,0. Then,

ζ(n;T0,0) = −Res

[
z−n

d

dz
ln(F0,0(z)); z = 0

]
= −n bn, n ∈ N, (2.4.19)

where

b1 = ϕ1+m0(b)/ϕm0(b),

bj = [ϕj+m0(b)/ϕm0(b)]−
j−1∑
ℓ=1

[ℓ/j][ϕj−ℓ+m0(b)/ϕm0(b)]bℓ, j ∈ N, ⩾ 2.
(2.4.20)

In particular, if zero is not an eigenvalue of T0,0, then

trL2
r((a,b))

(
T−1
0,0

)
= ζ(1;T0,0) = −ϕ1(b)/ϕ0(b). (2.4.21)

Proof. Take α = β = 0 in Theorem 2.4.2.
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In particular, one finds explicitly for n = 2, 3, 4, when zero is not an eigenvalue

of T0,0:

ζ(2;T0,0) = −2b2 = −2

[
ϕ2(b)

ϕ0(b)
− [ϕ1(b)]

2

2[ϕ0(b)]2

]
,

ζ(3;T0,0) = −3b3 = −3

[
ϕ3(b)

ϕ0(b)
− ϕ1(b)ϕ2(b)

[ϕ0(b)]2
+

[ϕ1(b)]
3

3[ϕ0(b)]3

]
, (2.4.22)

ζ(4;T0,0) = −4b4 = −4

[
ϕ4(b)

ϕ0(b)
− ϕ1(b)ϕ3(b)

[ϕ0(b)]2
− [ϕ2(b)]

2

2[ϕ0(b)]2
+

[ϕ1(b)]
2ϕ2(b)

[ϕ0(b)]3
− [ϕ1(b)]

4

4[ϕ0(b)]4

]
.

One also finds explicitly for n = 2, 3, 4, when zero is a simple eigenvalue of T0,0:

ζ(2;T0,0) = −2b2 = −2

[
ϕ3(b)

ϕ1(b)
− [ϕ2(b)]

2

2[ϕ1(b)]2

]
,

ζ(3;T0,0) = −3b3 = −3

[
ϕ4(b)

ϕ1(b)
− ϕ2(b)ϕ3(b)

[ϕ1(b)]2
+

[ϕ2(b)]
3

3[ϕ1(b)]3

]
, (2.4.23)

ζ(4;T0,0) = −4b4 = −4

[
ϕ5(b)

ϕ1(b)
− ϕ2(b)ϕ4(b)

[ϕ1(b)]2
− [ϕ3(b)]

2

2[ϕ1(b)]2
+

[ϕ2(b)]
2ϕ3(b)

[ϕ1(b)]3
− [ϕ2(b)]

4

4[ϕ1(b)]4

]
.

Corollary 2.4.4 (Dirichlet boundary condition at a). Assume Hypothesis 2.2.1, con-

sider T0,β as described in Theorem 2.2.2 (i), and let m0 = 0, 1, denote the multiplicity

of zero as an eigenvalue of T0,β. Then,

ζ(n;T0,β) = −Res

[
z−n

d

dz
ln(F0,β(z)); z = 0

]
= −n bn, n ∈ N, (2.4.24)

where

b1 =
cos(β)ϕ1+m0(b)− sin(β)ϕ

[1]
1+m0

(b)

cos(β)ϕm0(b)− sin(β)ϕ
[1]
m0(b)

,

bj =
cos(β)ϕj+m0(b)− sin(β)ϕ

[1]
j+m0

(b)

cos(β)ϕm0(b)− sin(β)ϕ
[1]
m0(b)

−
j−1∑
ℓ=1

[ℓ/j]
cos(β)ϕj−ℓ+m0(b)− sin(β)ϕ

[1]
j−ℓ+m0

(b)

cos(β)ϕm0(b)− sin(β)ϕ
[1]
m0(b)

bℓ, j ∈ N, j ⩾ 2.

(2.4.25)

In particular, if zero is not an eigenvalue of T0,β, then

trL2
r((a,b))

(
T−1
0,β

)
= ζ(1;T0,β) = −cos(β)ϕ1(b)− sin(β)ϕ

[1]
1 (b)

cos(β)ϕ0(b)− sin(β)ϕ
[1]
0 (b)

. (2.4.26)

Proof. Take α = 0 in Theorem 2.4.2.

40



Corollary 2.4.5 (Dirichlet boundary condition at b). Assume Hypothesis 2.2.1, con-

sider Tα,0 as described in Theorem 2.2.2 (i), and let m0 = 0, 1, denote the multiplicity

of zero as an eigenvalue of Tα,0. Then,

ζ(n;Tα,0) = −Res

[
z−n

d

dz
ln(Fα,0(z)); z = 0

]
= −n bn, n ∈ N, (2.4.27)

where

b1 =
cos(α)ϕ1+m0(b)− sin(α)θ1+m0(b)

cos(α)ϕm0(b)− sin(α)θm0(b)
,

bj =
cos(α)ϕj+m0(b)− sin(α)θj+m0(b)

cos(α)ϕm0(b)− sin(α)θm0(b)

−
j−1∑
ℓ=1

[ℓ/j]
cos(α)ϕj−ℓ+m0(b)− sin(α)θj−ℓ+m0(b)

cos(α)ϕm0(b)− sin(α)θm0(b)
bℓ, j ∈ N, j ⩾ 2.

(2.4.28)

In particular, if zero is not an eigenvalue of Tα,0, then

trL2
r((a,b))

(
T−1
α,0

)
= ζ(1;Tα,0) = −cos(α)ϕ1(b)− sin(α)θ1(b)

cos(α)ϕ0(b)− sin(α)θ0(b)
. (2.4.29)

Proof. Take β = 0 in Theorem 2.4.2.

Corollary 2.4.6 (Neumann boundary conditions). Assume Hypothesis 2.2.1, consider

Tπ/2,π/2 as described in Theorem 2.2.2 (i), and let m0 = 0, 1, denote the multiplicity

of zero as an eigenvalue of Tπ/2,π/2. Then,

ζ(n;Tπ/2,π/2) = −Res

[
z−n

d

dz
ln(Fπ/2,π/2(z)); z = 0

]
= −n bn, n ∈ N, (2.4.30)

where

b1 = θ
[1]
1+m0

(b)
/
θ[1]m0

(b), (2.4.31)

bj = θ
[1]
j+m0

/
(b)θ[1]m0

(b)−
j−1∑
ℓ=1

[ℓ/j]
[
θ
[1]
j−ℓ+m0

(b)
/
θ[1]m0

(b)
]
bℓ, j ∈ N, j ⩾ 2.

In particular, if zero is not an eigenvalue of Tπ/2,π/2, then

trL2
r((a,b))

(
T−1
π/2,π/2

)
= ζ(1;Tπ/2,π/2) = −θ[1]1 (b)

/
θ
[1]
0 (b). (2.4.32)

Proof. Take α = β = π/2 in Theorem 2.4.2.

These are only a few of the most considered separated boundary conditions

that have been singled out. One can also consider Neumann boundary conditions at
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only one endpoint, or any other combination of separated boundary conditions, by

referring back to Theorem 2.4.2 with the appropriate values chosen for α, β ∈ [0, π).

2.4.2 Computing Spectral Zeta Function Values and Traces for Coupled Boundary
Conditions

We now apply Theorem 2.4.1 to find values of ζ(n;Tφ,R) when imposing cou-

pled boundary conditions. Notice that according to [68], zero is an eigenvalue of

multiplicity 2 only for the Krein–von Neumann extension.

Theorem 2.4.7. Assume Hypothesis 2.2.1, consider Tφ,R as described in Theorem

2.2.2 (ii), and let m0 = 0, 1, denote the multiplicity of zero as an eigenvalue of Tφ,R.

Then,

ζ(n;Tφ,R) = −Res

[
z−n

d

dz
ln(Fφ,R(z)); z = 0

]
= −n bn, n ∈ N, (2.4.33)

where for m0 = 0,

b1 =
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

,

bj =
eiφ

(
R12θ

[1]
j (b)−R22θj(b) +R21ϕj(b)−R11ϕ

[1]
j (b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

(2.4.34)

−
j−1∑
ℓ=1

ℓ

j

eiφ
(
R12θ

[1]
j−ℓ(b)−R22θj−ℓ(b) +R21ϕj−ℓ(b)−R11ϕ

[1]
j−ℓ(b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

bℓ,

j ∈ N, j ⩾ 2,

and for m0 = 1,

b1 =
eiφ

(
R12θ

[1]
2 (b)−R22θ2(b) +R21ϕ2(b)−R11ϕ

[1]
2 (b)

)
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

) ,
bj =

eiφ
(
R12θ

[1]
j+1(b)−R22θj+1(b) +R21ϕj+1(b)−R11ϕ

[1]
j+1(b)

)
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

) (2.4.35)

−
j−1∑
ℓ=1

ℓ

j

eiφ
(
R12θ

[1]
j−ℓ+1(b)−R22θj−ℓ+1(b) +R21ϕj−ℓ+1(b)−R11ϕ

[1]
j−ℓ+1(b)

)
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

) bℓ,

j ∈ N, j ⩾ 2.
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In particular, if zero is not an eigenvalue of Tφ,R, then

trL2
r((a,b))

(
T−1
φ,R

)
= ζ(1;Tφ,R)

=
−eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

.
(2.4.36)

Proof. Substituting (2.3.4), (2.3.6), (2.3.8), and (2.3.11) into equation (2.2.17) yields

Fφ,R(0) = eiφ
(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1. (2.4.37)

Thus, the coefficient of the zm term for m ⩾ 1 in the series is given by

eiφ
(
R12θ

[1]
m (b)−R22θm(b) +R21ϕm(b)−R11ϕ

[1]
m (b)

)
. (2.4.38)

Hence, assertions (2.4.34) and (2.4.35) follow from Theorem 2.4.1 with

a0 = eiφ
(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1,

ak = eiφ
(
R12θ

[1]
k (b)−R22θk(b) +R21ϕk(b)−R11ϕ

[1]
k (b)

)
, k ∈ N.

(2.4.39)

Next, we provide corollaries regarding the most common coupled boundary

conditions, periodic and antiperiodic as well as the Krein-von Neumann extension.

Corollary 2.4.8 (Periodic boundary conditions). Assume Hypothesis 2.2.1, consider

T0,I2 as described in Theorem 2.2.2 (ii), and let m0 = 0, 1, denote the multiplicity of

zero as an eigenvalue of T0,I2. Then,

ζ(n;T0,I2) = −Res

[
z−n

d

dz
ln(F0,I2(z)); z = 0

]
= −n bn, n ∈ N, (2.4.40)

where for m0 = 0,

b1 =
[
− θ1(b)− ϕ

[1]
1 (b)

]/[
− θ0(b)− ϕ

[1]
0 (b) + 2

]
, (2.4.41)

bj =
−θj(b)− ϕ

[1]
j (b)

−θ0(b)− ϕ
[1]
0 (b) + 2

−
j−1∑
ℓ=1

ℓ

j

−θj−ℓ(b)− ϕ
[1]
j−ℓ(b)

−θ0(b)− ϕ
[1]
0 (b) + 2

bℓ, j ∈ N, j ⩾ 2,

and for m0 = 1,

b1 =
[
θ2(b) + ϕ

[1]
2 (b)

]/[
θ1(b) + ϕ

[1]
1 (b)

]
, (2.4.42)
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bj =
θj+1(b) + ϕ

[1]
j+1(b)

θ1(b) + ϕ
[1]
1 (b)

−
j−1∑
ℓ=1

ℓ

j

θj−ℓ+1(b) + ϕ
[1]
j−ℓ+1(b)

θ1(b) + ϕ
[1]
1 (b)

bℓ, j ∈ N, j ⩾ 2.

In particular, if zero is not an eigenvalue of T0,I2, then

trL2
r((a,b))

(
T−1
0,I2

)
= ζ(1;T0,I2) =

[
θ1(b) + ϕ

[1]
1 (b)

]/[
− θ0(b)− ϕ

[1]
0 (b) + 2

]
. (2.4.43)

Proof. Take φ = 0 and R = I2 in Theorem 2.4.7.

Corollary 2.4.9 (Antiperiodic boundary conditions). Assume Hypothesis 2.2.1, con-

sider T0,−I2 as described in Theorem 2.2.2 (ii), and let m0 = 0, 1, denote the multi-

plicity of zero as an eigenvalue of T0,−I2. Then,

ζ(n;T0,−I2) = −Res

[
z−n

d

dz
ln(F0,−I2(z)); z = 0

]
= −n bn, n ∈ N, (2.4.44)

where for m0 = 0,

b1 =
[
θ1(b) + ϕ

[1]
1 (b)

]/[
θ0(b) + ϕ

[1]
0 (b) + 2

]
, (2.4.45)

bj =
θj(b) + ϕ

[1]
j (b)

θ0(b) + ϕ
[1]
0 (b) + 2

−
j−1∑
ℓ=1

ℓ

j

θj−ℓ(b) + ϕ
[1]
j−ℓ(b)

θ0(b) + ϕ
[1]
0 (b) + 2

bℓ, j ∈ N, j ⩾ 2,

and for m0 = 1,

b1 =
[
θ2(b) + ϕ

[1]
2 (b)

]/[
θ1(b) + ϕ

[1]
1 (b)

]
, (2.4.46)

bj =
θj+1(b) + ϕ

[1]
j+1(b)

θ1(b) + ϕ
[1]
1 (b)

−
j−1∑
ℓ=1

ℓ

j

θj−ℓ+1(b) + ϕ
[1]
j−ℓ+1(b)

θ1(b) + ϕ
[1]
1 (b)

bℓ, j ∈ N, j ⩾ 2.

In particular, if zero is not an eigenvalue of T0,−I2, then

trL2
r((a,b))

(
T−1
0,−I2

)
= ζ(1;T0,−I2) = −

[
θ1(b) + ϕ

[1]
1 (b)

]/[
θ0(b) + ϕ

[1]
0 (b) + 2

]
. (2.4.47)

Proof. Take φ = 0 and R = −I2 in Theorem 2.4.7.

Corollary 2.4.10 (Krein-von Neumann extension). Assume Hypothesis 2.2.1, con-

sider T0,RK
the Krein-von Neumann extension of Tmin with

φ = 0, RK =

 θ(0, b, a) ϕ(0, b, a)

θ[1](0, b, a) ϕ[1](0, b, a)

 , (2.4.48)
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and let m0 = 2, denote the multiplicity of zero as an eigenvalue of T0,RK
. Then,

ζ(n;T0,RK
) = −Res

[
z−n

d

dz
ln(F0,RK

(z)); z = 0

]
= −n bn, n ∈ N, (2.4.49)

where

b1 =
ϕ0(b)θ

[1]
3 (b)− ϕ

[1]
0 (b)θ3(b) + θ

[1]
0 (b)ϕ3(b)− θ0(b)ϕ

[1]
3 (b)

ϕ0(b)θ
[1]
2 (b)− ϕ

[1]
0 (b)θ2(b) + θ

[1]
0 (b)ϕ2(b)− θ0(b)ϕ

[1]
2 (b)

,

bj =
ϕ0(b)θ

[1]
j+2(b)− ϕ

[1]
0 (b)θj+2(b) + θ

[1]
0 (b)ϕj+2(b)− θ0(b)ϕ

[1]
j+2(b)

ϕ0(b)θ
[1]
2 (b)− ϕ

[1]
0 (b)θ2(b) + θ

[1]
0 (b)ϕ2(b)− θ0(b)ϕ

[1]
2 (b)

−
j−1∑
ℓ=1

ℓ

j

ϕ0(b)θ
[1]
j−ℓ+2(b)− ϕ

[1]
0 (b)θj−ℓ+2(b) + θ

[1]
0 (b)ϕj−ℓ+2(b)− θ0(b)ϕ

[1]
j−ℓ+2(b)

ϕ0(b)θ
[1]
2 (b)− ϕ

[1]
0 (b)θ2(b) + θ

[1]
0 (b)ϕ2(b)− θ0(b)ϕ

[1]
2 (b)

bℓ,

j ∈ N, j ⩾ 2. (2.4.50)

Proof. As shown in [34, Example 3.3], the resulting operator T0,RK
represents the

Krein–von Neumann extension of Tmin. Take φ = 0 and R = RK (as defined

by (2.4.48)) in Theorem 2.4.7, denoting ϕ0(b) = ϕ(0, b, a), ϕ
[1]
0 (b) = ϕ[1](0, b, a),

θ0(b) = θ(0, b, a), and θ
[1]
0 (b) = θ[1](0, b, a) as before, for simplicity.

2.5 Examples

In this section, we provide an array of examples illustrating our approach for

computing spectral ζ-function values of regular Schrödinger operators starting with

the simplest case of q = 0, then a positive (piecewise) constant potential, followed

by a constant negative potential, and ending with the case of a linear potential.

Throughout this section we suppose that

p = r = 1 a.e. on (a, b) (2.5.1)

which leaves the potential coefficient q ∈ L1((a, b); dx), q real-valued, and hence

leaves us with the differential expression

τ = −
(
d2/dx2

)
+ q(x), x ∈ (a, b). (2.5.2)
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2.5.1 The Example q=0

We start by providing examples for calculating spectral ζ-function values for

the simple case q(x) = 0, x ∈ (a, b), imposing various boundary conditions. In this

case τy = −y′′ = zy has the following linearly independent solutions,

ϕ(z, x, a) = z−1/2 sin
(
z1/2(x− a)

)
, θ(z, x, a) = cos

(
z1/2(x− a)

)
, z ∈ C.

(2.5.3)

Hence,

ϕ(z, b, a) =
∞∑
m=0

zmϕm(b), z ∈ C, ϕk(b) =
(−1)k

(2k + 1)!
(b− a)2k+1, k ∈ N,

θ(z, b, a) =
∞∑
m=0

zmθm(b), z ∈ C, θk(b) =
(−1)k

(2k)!
(b− a)2k, k ∈ N, (2.5.4)

ϕ′(z, b, a) =
∞∑
m=0

zmϕ′
m(b), z ∈ C, ϕ′

k(b) = − (−1)k

(k + 1)!
(b− a)k+1, k ∈ N,

θ′(z, b, a) =
∞∑
m=0

zmθ′m(b), z ∈ C, θ′k(b) =
(−1)k

k!
(b− a)k, k ∈ N.

One can explicitly write the corresponding expressions for Fα,β(z) and Fφ,R(z)

for this example to find for α, β ∈ [0, π),

Fα,β(z) = cos(α)
[
− sin(β) cos

(
z1/2(b− a)

)
+ cos(β)z−1/2 sin

(
z1/2(b− a)

)]
− sin(α)

[
sin(β) z1/2 sin

(
z1/2(b− a)

)
+ cos(β) cos

(
z1/2(b− a)

)]
, (2.5.5)

and for φ ∈ [0, π), R ∈ SL(2,R),

Fφ,R(z) = eiφ
[
−R12z

1/2 sin
(
z1/2(b− a)

)
−R22 cos

(
z1/2(b− a)

)
+R21z

−1/2 sin
(
z1/2(b− a)

)
−R11 cos

(
z1/2(b− a)

)]
+ e2iφ + 1. (2.5.6)

We provide an explicit expression for ζ(1;TA,B) since it only involves the first

few coefficients of the small-z expansion. In the case of separated boundary condi-
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tions one obtains

a0 = cos(α)((b− a) cos(β)− sin(β))− sin(α) cos(β),

a1 = cos(α)

(
1

2
(b− a)2 sin(β)− 1

6
(b− a)3 cos(β)

)
+ sin(α)

(
1

2
(b− a)2 cos(β)− (b− a) sin(β)

)
,

a2 = sin(α)

(
1

6
(b− a)3 sin(β)− 1

24
(b− a)4 cos(β)

)
+ cos(α)

(
1

120
(b− a)5 cos(β)− 1

24
(b− a)4 sin(β)

)
.

(2.5.7)

If Tα,β does not have a zero eigenvalue, then a0 ̸= 0 and, hence, one finds from

(2.4.4),

trL2
r((0,b))

(
T−1
α,β

)
= ζ(1;Tα,β) = (2.5.8)

cos(α) (3(b− a)2 sin(β)− (b− a)3 cos(β)) + sin(α) (3(b− a)2 cos(β)− 6(b− a) sin(β))

6 sin(α) cos(β)− 6 cos(α)((b− a) cos(β)− sin(β))
.

If, instead, Tα,β has a zero eigenvalue then a0 = 0 and one finds

ζ(1;Tα,β) = (2.5.9)

− sin(α) (20(b− a)3 sin(β)− 5(b− a)4 cos(β))− cos(α) ((b− a)5 cos(β)− 5(b− a)4 sin(β))

cos(α) (60(b− a)2 sin(β)− 20(b− a)3 cos(β)) + sin(α) (60(b− a)2 cos(β)− 120(b− a) sin(β)) .

In the case of coupled boundary conditions one finds

a0 = eiφ((b− a)R21 −R11 −R22) + e2iφ + 1,

a1 = eiφ
(
−1

6
(b− a)3R21 +

1

2
(b− a)2R11 +

1

2
(b− a)2R22 + (a− b)R12

)
, (2.5.10)

a2 = eiφ
(

1

120
(b− a)5R21 −

1

24
(b− a)4R11 −

1

24
(b− a)4R22 +

1

6
(b− a)3R12

)
.

Once again, if zero is not an eigenvalue of Tφ,R, a0 ̸= 0 and one finds

trL2
r((0,b))

(
T−1
φ,R

)
= ζ(1;Tφ,R)

=
eiφ (R21(b− a)3 − 3(b− a)2R11 − 3(b− a)2R22 + 6(b− a)R12)

6eiφ((b− a)R21 −R11 −R22) + 6e2iφ + 6
.

(2.5.11)
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If, on the other hand, zero is an eigenvalue of Tφ,R with multiplicity one, then a0 = 0

and

ζ(1;Tφ,R) =
(b− a)5R21 − 5(b− a)4R11 − 5(b− a)4R22 + 20(b− a)3R12

20(b− a)3R21 − 60(b− a)2R11 − 60(b− a)2R22 + 120(b− a)R12

.

(2.5.12)

If zero is an eigenvalue of Tφ,R with multiplicity two, we refer to the Krein–von

Neumann extension, see Example 2.5.5.

Finally we give the form of the zeta regularized functional determinant for this

example. As z ↓ 0, one obtains

Fα,β(z) = (b− a) cos(α) cos(β)− sin(α + β) +O(z), (2.5.13)

which implies that for particular values of α and β one finds a zero eigenvalue. For

now we will assume that no zero eigenvalue is present and hence we consider the

following set of parameters

A = {(α, β) ∈ (0, π)× (0, π) | (b− a) cos(α) cos(β)− sin(α + β) ̸= 0}. (2.5.14)

For (α, β) ∈ A one infers, by construction, that m0 = 0 and hence, sin(α) sin(β) ̸= 0.

The latter condition implies that in (2.3.92) one must set k0 = −2. By using (2.5.13),

one obtains

ζ ′(0;Tα,β) = − ln

(∣∣∣∣ 2Fα,β(0)

sin(α) sin(β)

∣∣∣∣)
= − ln

(∣∣∣∣2(b− a) cos(α) cos(β)− 2 sin(α + β)

sin(α) sin(β)

∣∣∣∣) , (2.5.15)

which coincides with [74, Eq. (3.72)].

Furthermore, as z ↓ 0, one obtains

Fφ,R(z) = eiφ[(b− a)R21 −R11 −R22] + e2iφ + 1 +O(z), (2.5.16)

which implies that for particular choices of φ and R one finds a zero eigenvalue. For

now we will assume that no zero eigenvalue is present and hence we consider the
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following set of parameters

B = {φ ∈ (0, π), R ∈ SL(2,R) | eiφ[(b− a)R21 −R11 −R22] + e2iφ + 1 ̸= 0}.

(2.5.17)

For (φ,R) ∈ B we have, by construction, that m0 = 0. Making the additional

assumption R12 ̸= 0 implies that in (2.3.92) one must set k0 = −2. By using

(2.5.16), one obtains

ζ ′(0;Tφ,R̃) = − ln
(∣∣∣2Fφ,R̃(0)/R12

∣∣∣)
= − ln

(∣∣∣∣2[(b− a)R21 −R11 −R22] + 4 cos(φ)

R12

∣∣∣∣) . (2.5.18)

If R12 = 0, then since R ∈ SL(2,R), by assumption R11 ̸= −R22 which implies that

in (2.3.92) one must set k0 = −1. By once again using (2.5.16), one obtains

ζ ′(0;Tφ,R̃) = − ln

(∣∣∣∣ 2Fφ,R̃(0)

R11 +R22

∣∣∣∣)
= − ln

(∣∣∣∣2[(b− a)R21 −R11 −R22] + 4 cos(φ)

R11 +R22

∣∣∣∣) . (2.5.19)

The following examples, each with different boundary conditions, will illus-

trate how the main theorems and corollaries of the previous section can be used to

effectively compute the spectral ζ-function values of the operator, TA,B, for n ∈ N.

Example 2.5.1 (Dirichlet boundary conditions). Consider the case α = β = 0. Then

the operator T0,0 has eigenvalues and eigenfunctions given by

λk = k2π2
/
(b− a)2, yk(x) = λ

−1/2
k sin

(
λ
1/2
k (x− a)

)
, k ∈ N (2.5.20)

(in particular, z = 0 is not an eigenvalue of T0,0), and

F0,0(z) = z−1/2 sin
(
z1/2(b− a)

)
, z ∈ C. (2.5.21)
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Applying Corollary 2.4.3 with m0 = 0 one finds for n = 1, 2, 3, 4,

ζ(1;T0,0) = (b− a)2π−2

∞∑
k=1

k−2 = trL2
r((a,b))

(
T−1
0,0

)
= (b− a)2/6,

ζ(2;T0,0) = (b− a)4/90,

ζ(3;T0,0) = (b− a)6/945,

ζ(4;T0,0) = (b− a)8/9450.

(2.5.22)

Next, we explicitly compute the zeta regularized functional determinant with

Dirichlet boundary conditions. Since no zero eigenvalue is present and Γ0 = −(b−a),

one obtains

ζ ′(0;T0,0) = − ln[2F0,0(0)] = − ln[2(b− a)]. (2.5.23)

One can corroborate the values found in Example 2.5.1 by utilizing the follow-

ing relation of ζ(s;T0,0) with the Riemann ζ-function (see, e.g., [13], [47] for some

background)

ζ(s;T0,0) = (b− a)2sπ−2sζ(2s), Re(s) > 1/2. (2.5.24)

By using [87, 0.2333], the last expression allows us to find for s = n ∈ N,

ζ(n;T0,0) = 22n−1(b− a)2n|B2n|/[(2n)!], (2.5.25)

where B2n is the 2nth Bernoulli number (cf. [1, Ch. 23]).

Example 2.5.2 (Neumann boundary conditions). Consider the case α = β = π/2.

Then the operator Tπ/2,π/2 has eigenvalues and eigenfunctions given by

λk = k2π2/(b− a)2, yk(x) = cos
(
λ
1/2
k (x− a)

)
, k ∈ N0 (2.5.26)

(in particular, z = 0 is a simple eigenvalue of Tπ/2,π/2) and

Fπ/2,π/2(z) = −z1/2 sin
(
z1/2(b− a)

)
, z ∈ C. (2.5.27)

50



Applying Corollary 2.4.6 with m0 = 1 one finds for n = 1, 2, 3, 4,

ζ(1;Tπ/2,π/2) = (b− a)2π−2

∞∑
k=1

k−2 = (b− a)2/6,

ζ(2;Tπ/2,π/2) = (b− a)4/90,

ζ(3;Tπ/2,π/2) = (b− a)6/945,

ζ(4;Tπ/2,π/2) = (b− a)8/9450.

(2.5.28)

Noting that the series expression for ζ(s;Tπ/2,π/2) in (2.2.38) sums only over

non-zero eigenvalues, and that the eigenvalues for Dirichlet and Neumann boundary

conditions only differ by zero being an eigenvalue for the latter, but not the former,

the same expressions apply as in Example 2.5.1, which is reflected in equations

(2.5.22) and (2.5.28) yielding the same values.

Example 2.5.3 (Periodic boundary conditions). Consider the case φ = 0, R = I2.

Then the operator T0,I2 has eigenvalues given by

λk = (2k)2π2/(b− a)2, k ∈ N0. (2.5.29)

In particular, z = 0 is a simple eigenvalue of T0,I2 and all other eigenvalues of T0,I2

are of multiplicity 2, and

F0,I2(z) = −2 cos
(
z1/2(b− a)

)
+ 2, z ∈ C. (2.5.30)

Applying Corollary 2.4.8 with m0 = 1 one finds for n = 1, 2, 3, 4,

ζ(1;T0,I2) = 2(b− a)2π−2

∞∑
k=1

(2k)−2 = (b− a)2/12,

ζ(2;T0,I2) = (b− a)4/720,

ζ(3;T0,I2) = (b− a)6/30240,

ζ(4;T0,I2) = (b− a)8/1209600.

(2.5.31)

Here, once again, one can verify the values found in Example 2.5.3 by utilizing

the following relation of ζ(s;T0,I2) with the Riemann ζ-function,

ζ(s;T0,I2) = 21−2sπ−2s(b− a)2sζ(2s), Re(s) > 1/2. (2.5.32)
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By using [87, 0.2333], the last expression allows one to find for s = n ∈ N,

ζ(n;T0,I2) = (b− a)2n|B2n|/[(2n)!]. (2.5.33)

Example 2.5.4 (Antiperiodic boundary conditions). Consider the case φ = 0, R =

−I2. Then the operator T0,−I2 has eigenvalues given by

λk = (2k − 1)2π2/(b− a)2, k ∈ N. (2.5.34)

In particular, z = 0 is not an eigenvalue of T0,−I2 and all eigenvalues of T0,−I2 are

of multiplicity 2, and

F0,−I2(z) = 2 cos
(
z1/2(b− a)

)
+ 2, z ∈ C. (2.5.35)

Applying Corollary 2.4.9 with m0 = 0 one finds for n = 1, 2, 3, 4,

ζ(1;T0,−I2) = 2(b− a)2π−2

∞∑
k=1

(2k − 1)−2 = trL2
r((a,b))

(
T−1
0,−I2

)
= (b− a)2/4,

ζ(2;T0,−I2) = (b− a)4/48,

ζ(3;T0,−I2) = (b− a)6/480,

ζ(4;T0,−I2) = [17/80640](b− a)8.

(2.5.36)

One can verify the values found in Example 2.5.4 by utilizing the following

relation,

ζ(s;T0,−I2) = 2(b− a)2sπ−2s
∑
k∈N

(2k − 1)−2s =
(
1− 2−2s

)
2(b− a)2sπ−2sζ(2s),

Re(s) > 1/2, (2.5.37)

which in turn by using either [87, 0.2335] on the first equality or [87, 0.2333] on the

second allows one to find for s = n ∈ N,

ζ(n;T0,−I2) = (22n − 1)(b− a)2n|B2n|/[(2n)!]. (2.5.38)
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Example 2.5.5 (Krein–von Neumann boundary conditions). Consider the case φ = 0,

R = RK, with

RK =

 θ(0, b, a) ϕ(0, b, a)

θ[1](0, b, a) ϕ[1](0, b, a)

 =

1 b− a

0 1

 . (2.5.39)

As shown in [34, Example 3.3], the resulting operator T0,RK
represents the Krein–

von Neumann extension of Tmin. For more on the Krein–von Neumann extension,

including an extensive discussion of eigenvalues and eigenfunctions, see [3] or [7].

From (2.2.17) with φ = 0, R = RK defined as in (2.5.39),

F0,RK
(z) = (a− b)z1/2 sin

(
z1/2(b− a)

)
− 2 cos

(
z1/2(b− a)

)
+ 2, z ∈ C. (2.5.40)

Using the series expansions in (2.5.40), one finds

F0,RK
(z) =

z↓0

[
(b− a)4/12

]
z2 +O

(
z3
)
, (2.5.41)

so that z = 0 is a zero of multiplicity two of F0,RK
(z) and hence an eigenvalue of

multiplicity two of T0,RK
(coinciding with what was found in [7] and noted in [74,

Example 3.7]). Applying Corollary 2.4.10 with m0 = 2 gives

ζ(1;T0,RK
) = (b− a)2/15,

ζ(2;T0,RK
) = [11/12600](b− a)4,

ζ(3;T0,RK
) = (b− a)6/54000,

ζ(4;T0,RK
) = [457/317520000](b− a)8.

(2.5.42)

2.5.2 Examples of Nonnegative (Piecewise) Constant Potentials

Next we provide examples for calculating spectral ζ-function values considering

a positive (piecewise) constant potential q, imposing Dirichlet boundary conditions.

Example 2.5.6. Let V0 ∈ (0,∞), consider q(x) = V0, x ∈ (a, b), and denote by T0,0

the associated Schrödinger operator with Dirichlet boundary conditions at a and b
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(i.e., α = β = 0). Then,

ϕ(z, x, a) = (z − V0)
−1/2 sin

(
(z − V0)

1/2(x− a)
)
,

θ(z, x, a) = cos
(
(z − V0)

1/2(x− a)
)
, x ∈ (a, b), z ∈ C.

(2.5.43)

Furthermore, the eigenvalues and eigenfunctions for T0,0 with q(x) = V0 > 0, x ∈

(a, b), are given by

λk = k2π2/(b− a)−2 + V0,

yk(x) = (λk − V0)
−1/2 sin

(
(λk − V0)

1/2(x− a)
)
, k ∈ N

(2.5.44)

(in particular, z = 0 is not an eigenvalue of T0,0), and

F0,0(z) = (z − V0)
−1/2 sin

(
(z − V0)

1/2(b− a)
)
, z ∈ C. (2.5.45)

Applying Corollary 2.4.3 with m0 = 0 one finds for n = 1, 2, 3 (the expression for

n = 4 is significantly longer and hence is omitted here),

ζ(1;T0,0) =
∞∑
k=1

[
k2π2

(b− a)2
+ V0

]−1

= trL2
r((a,b))

(
T−1
0,0

)
=

[
V

1/2
0 (b− a) coth

(
V

1/2
0 (b− a)

)
− 1

]/
(2V0),

ζ(2;T0,0) =
V

1/2
0 (b− a) sinh

(
2V

1/2
0 (b− a)

)
− 2 cosh

(
2V

1/2
0 (b− a)

)
+ 2V0(b− a)2 + 2

8V 2
0 sinh2

(
V

1/2
0 (b− a)

) ,

ζ(3;T0,0) =
(
64V 3

0 sinh2
(
V

1/2
0 (b− a)

))−1[
12V0(b− a)2 − 16 cosh

(
2V

1/2
0 (b− a)

)
+ 16 + V

1/2
0 (b− a)

(
8a2V0 − 16abV0 + 8b2V0 − 3

)
coth

(
V

1/2
0 (b− a)

)
− 3aV

1/2
0 cosh

(
3V

1/2
0 (b− a)

)(
sinh

(
V

1/2
0 (b− a)

))−1

+ 3bV
1/2
0 cosh

(
3V

1/2
0 (b− a)

)(
sinh

(
V

1/2
0 (b− a)

))−1]
. (2.5.46)

Taking the limit V0 ↓ 0 of (2.5.46) recovers the expressions in Example 2.5.1.

Remark 2.5.7. One can also verify the expressions found in Example 2.5.6 by means

of the one-dimensional Epstein ζ-function given by

ζE(s;m
2) =

∞∑
k=−∞

(
k2 +m2

)−s
, m2 ̸= 0, s > 1/2 (2.5.47)
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(see, e.g., the classical sources [56], [57], [113], and [53, Sect. 1.1.3], [55, Sects. 1.2.2,

5.3.2], [114], [115, Ch. 3, App. A], and the extensive list of references therein). Now

one finds that ζ(s;T0,0) in Example 2.5.6 can be written in the form

ζ(s;T0,0) =
∞∑
k=1

[
k2π2

(b− a)2
+ V0

]−s
= (b− a)2sπ−2s

∞∑
k=1

[
k2 +m2

]−s
= 2−1(b− a)2sπ−2s

[
ζE(s;m

2)−m−2s
]
, s > 1/2,

(2.5.48)

where

m2 = (b− a)2V0π
−2 > 0. (2.5.49)

Then the following formula for the analytic continuation of ζE(s;m
2) in s for m ̸=

0,−1,−2, . . . (see [53, Sect. 4.1.1])

ζE(s;m
2) = π1/2Γ(s−

1
2
)

Γ(s)
m1−2s +

4πs

Γ(s)
m1/2−s

∞∑
n=1

ns−1/2Ks−1/2(2πmn),

s ̸= (1/2)− ℓ, ℓ ∈ N0, s ∈ C,

(2.5.50)

where Kµ( · ) is the modified Bessel function of the second kind (see for example [1,

Chs. 9-10]), can be used to explicitly verify the expressions found in Example 2.5.6.

We verify the expressions for ζ(1;T0,0) and ζ(2;T0,0) next. From (2.5.50) one

has, using the fact that K1/2(z) = π1/2(2z)−1/2e−z,

ζE(1;m
2) = πm−1 + 4πm−1/2

∞∑
n=1

n1/2π1/2(4πmn)−1/2e−2πmn

= πm−1 + 2πm−1

∞∑
n=1

e−2πmn = πm−1 + 2πm−1 1

e2πm − 1

=
π

m
coth(πm). (2.5.51)

Thus, from (2.5.48) and (2.5.49) one obtains, in accordance with Example 2.5.6,

ζ(1;T0,0) =
(b− a)2

2π2

(
ζE(1;m

2)−m−2
)
=

(b− a)2

2π2

(
πm coth(πm)− 1

m2

)
=

[
V

1/2
0 (b− a) coth

(
V

1/2
0 (b− a)

)
− 1

]/
(2V0). (2.5.52)
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Next we verify the expression for ζ(2;T0,0) by first noting that

d

dm

(
ζE(s;m

2)
)
= −2smζE(s+ 1;m2), (2.5.53)

which implies the functional equation

ζE(s+ 1;m2) = − 1

2sm

d

dm

(
ζE(s;m

2)
)
. (2.5.54)

From (2.5.51) and (2.5.54) with s = 1 one has

ζE(2;m
2) = − π

2m

d

dm

(
coth(πm)

m

)
=
π sinh(2πm) + 2π2m

4m3 sinh2(πm)
. (2.5.55)

Thus from (2.5.48) and (2.5.49) one obtains

ζ(2;T0,0) =
(b− a)4

2π4

(
ζE(2;m

2)−m−4
)

=
(b− a)4

2π4

(
π sinh(2πm) + 2π2m

4m3 sinh2(πm)
− 1

m4

)
(2.5.56)

=
V

1/2
0 (b− a) sinh

(
2V

1/2
0 (b− a)

)
− 2 cosh

(
2V

1/2
0 (b− a)

)
+ 2V0(b− a)2 + 2

8V 2
0 sinh2

(
V

1/2
0 (b− a)

) ,

again in accordance with Example 2.5.6. All other positive integer values can be

found recursively by means of (2.5.51) and the functional equation (2.5.54). ⋄

Next, we turn to the case of a nonnegative piecewise constant potential (a

potential well):

Example 2.5.8. Let c, d ∈ (a, b), c < d, V0 ∈ (0,∞), consider

q(x) =


0 x ∈ (a, c),

V0 x ∈ (c, d),

0 x ∈ (d, b),

(2.5.57)

and denote by T0,0 the associated Schrödinger operator with Dirichlet boundary con-

ditions at a and b. Then, for z ∈ C,

ϕ(z, x, a) = z−1/2 sin
(
z1/2(x− a)

)
, x ∈ (a, c),

θ(z, x, a) = cos
(
z1/2(x− a)

)
, x ∈ (a, c),

ϕ(z, x, a) = cos
(
z1/2(c− a)

)
(z − V0)

−1/2 sin
(
(z − V0)

1/2(x− c)
)
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+ z−1/2 sin
(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(x− c)
)
, x ∈ (c, d),

θ(z, x, a) = −z1/2 sin
(
z1/2(c− a)

)
(z − V0)

−1/2 sin
(
(z − V0)

1/2(x− c)
)

+ cos
(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(x− c)
)
, x ∈ (c, d),

ϕ(z, x, a) =

[
cos

(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)

− (z − V0)
1/2z−1/2 sin

(
z1/2(c− a)

)
sin

(
(z − V0)

1/2(d− c)
)]

× z−1/2 sin
(
z1/2(x− d)

)
(2.5.58)

+

[
cos

(
z1/2(c− a)

)
(z − V0)

−1/2 sin
(
(z − V0)

1/2(d− c)
)

+ z−1/2 sin
(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)]

cos
(
z1/2(x− d)

)
,

x ∈ (d, b),

θ(z, x, a) = −
[
z1/2 sin

(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)

+ (z − V0)
1/2 cos

(
z1/2(c− a)

)
sin

(
(z − V0)

1/2(d− c)
)]

× z−1/2 sin
(
z1/2(x− d)

)
+

[
− z1/2 sin

(
z1/2(c− a)

)
(z − V0)

−1/2 sin
(
(z − V0)

1/2(d− c)
)

+ cos
(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)]

cos
(
z1/2(x− d)

)
,

x ∈ (d, b).

In particular,

ϕ(z, b, a) =
∞∑
m=0

zmϕm(b), z ∈ C, (2.5.59)

where

ϕ0(b) =
[
cosh

(
V

1/2
0 (d− c)

)
+ V

1/2
0 (c− a) sinh

(
V

1/2
0 (d− c)

)]
(b− d)

+ V
−1/2
0 sinh

(
V

1/2
0 (d− c)

)
+ (c− a) cosh

(
V

1/2
0 (d− c)

)
,

ϕ1(b) =
(
6V

3/2
0

)−1{
3
[(
aV0(c− d)− c2V0 + cdV0 − 1

)
sinh

(
V

1/2
0 (c− d)

)
(2.5.60)

+ V
1/2
0 (c− d) cosh

(
V

1/2
0 (c− d)

)]
+ V0

[
sinh

(
V

1/2
0 (d− c)

)
(aV0(b− d)
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− bcV0 + cdV0 − 3) + V
1/2
0 (3a− b− 3c+ d) cosh

(
V

1/2
0 (d− c)

)]
× (b− d)2

[
V

1/2
0 sinh

(
2V

1/2
0 (d− c)

)
+ cosh

(
2V

1/2
0 (d− c)

)]
+ V

3/2
0 (a− c)3

}
,

etc.

By construction, ϕ(z, a, a) = 0, so eigenvalues are given by solving ϕ(z, b, a) = 0, or,

equivalently, by solving

tan
(
z1/2(b− d)

)
(2.5.61)

=
−z cos

(
z1/2(c− a)

)
sin

(
(z − V0)

1/2(d− c)
)
−

√
z(z − V0) sin

(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)√

z(z − V0) cos
(
z1/2(c− a)

)
cos

(
(z − V0)1/2(d− c)

)
− (z − V0) sin

(
z1/2(c− a)

)
sin

(
(z − V0)1/2(d− c)

) .
From (2.2.16), one has

F0,0(z) =

[
cos

(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)

− (z − V0)
1/2 sin

(
z1/2(c− a)

)
z1/2

sin
(
(z − V0)

1/2(d− c)
)]sin (z1/2(b− d)

)
z1/2

+

[
cos

(
z1/2(c− a)

)
(z − V0)

−1/2 sin
(
(z − V0)

1/2(d− c)
)

(2.5.62)

+ z−1/2 sin
(
z1/2(c− a)

)
cos

(
(z − V0)

1/2(d− c)
)]

cos
(
z1/2(b− d)

)
,

z ∈ C.

Hence, applying Corollary 2.4.3 with m0 = 0 one explicitly finds the sum of the

inverse of these eigenvalues, namely

ζ(1;T0,0) = trL2
r((a,b))

(
T−1
0,0

)
= −ϕ1(b)/ϕ0(b) (2.5.63)

= −
{
6V0

[
(V0(c− a)(b− d) + 1) sinh

(
V

1/2
0 (d− c)

)
− V

1/2
0 (a− b− c+ d) cosh

(
V

1/2
0 (d− c)

)]}−1

×
{
3
[(
aV0(c− d)− c2V0 + cdV0 − 1

)
sinh

(
V

1/2
0 (c− d)

)
+ V

1/2
0 (c− d) cosh

(
V

1/2
0 (c− d)

)]
+V0

[
sinh

(
V

1/2
0 (d− c)

)
(aV0(b− d)− bcV0 + cdV0 − 3) + V

1/2
0 (3a− b− 3c+ d) cosh

(
V

1/2
0 (d− c)

)]
×(b− d)2

[
V

1/2
0 sinh

(
2V

1/2
0 (d− c)

)
+ cosh

(
2V

1/2
0 (d− c)

)]
+ V

3/2
0 (a− c)3

}
.
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Taking the limits c ↓ a and d ↑ b of (2.5.63) recovers the expression in Example

2.5.6. Furthermore, taking the limit V0 ↓ 0 recovers the same expression as in

Example 2.5.1. The expression for n = 2 is significantly longer and hence it is

omitted here.

2.5.3 Example of a Negative Constant Potential

Next, we derive spectral ζ-function values for the case of a negative constant

potential. This case is dealt with separately since the question as to whether z = 0

is an eigenvalue of T0,0 depends on the actual constant value of the potential.

Example 2.5.9. Let V0 ∈ (0,∞), consider q(x) = −V0, x ∈ (a, b), and denote by T0,0

the associated Schrödinger operator with Dirichlet boundary conditions at a and b.

Then,

ϕ(z, x, a) = (z + V0)
−1/2 sin

(
(z + V0)

1/2(x− a)
)
,

θ(z, x, a) = cos
(
(z + V0)

1/2(x− a)
)
, z ∈ C.

(2.5.64)

Furthermore, eigenvalues and eigenfunctions for T0,0 with q(x) = −V0 < 0, x ∈

(a, b), are given by

λk =
k2π2

(b− a)2
− V0, yk(x) = (λk + V0)

−1/2 sin
(
(λk + V0)

1/2(x− a)
)
, k ∈ N,

(2.5.65)

where one notes that due to q(x) = −V0 < 0, z = 0 is an eigenvalue of T0,0 for

certain values of V0. Specifically, if one has

V0 = k2π2/(b− a)2, for some k ∈ N, (2.5.66)

then z = 0 is a simple eigenvalue of T0,0. Otherwise, z = 0 is not an eigenvalue of

T0,0. Moreover,

F0,0(z) = (z + V0)
−1/2 sin

(
(z + V0)

1/2(b− a)
)
, z ∈ C. (2.5.67)
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Applying Corollary 2.4.3 with m0 = 0 when V0 ̸= k2π2/(b−a)2, k ∈ N, one finds for

n = 1, 2, 3 (the expression for n = 4 is significantly longer and hence is omitted),

ζ(1;T0,0) =
∞∑
k=1

[
k2π2

(b− a)2
− V0

]−1

= trL2
r((a,b))

(
T−1
0,0

)
=

[
V

1/2
0 (a− b) cot

(
V

1/2
0 (b− a)

)
+ 1

]/
(2V0),

ζ(2;T0,0) =
V

1/2
0 (b− a) sin

(
2V

1/2
0 (b− a)

)
+ 2 cos

(
2V

1/2
0 (b− a)

)
+ 2V0(b− a)2 − 2

8V 2
0 sin2

(
V

1/2
0 (b− a)

) ,

ζ(3;T0,0) =
(
64V 3

0 sin2
(
V

1/2
0 (b− a)

))−1[− 12V0(b− a)2 − 16 cos
(
2V

1/2
0 (b− a)

)
+ 16− V

1/2
0 (b− a)

(
8a2V0 − 16abV0 + 8b2V0 − 3

)
cot

(
V

1/2
0 (b− a)

)
− 3aV

1/2
0 cos

(
3V

1/2
0 (b− a)

)(
sin

(
V

1/2
0 (b− a)

))−1

+ 3bV
1/2
0 cos

(
3V

1/2
0 (b− a)

)(
sin

(
V

1/2
0 (b− a)

))−1]
. (2.5.68)

When V0 = k20π
2/(b − a)2 for some k0 ∈ N, applying Corollary 2.4.3 with

m0 = 1 one finds for n = 1, 2 (the expressions for n = 3, 4 are significantly longer

and hence are omitted here),

ζ(1;T0,0) =
∞∑
k=1
k ̸=k0

[
k2π2

(b− a)2
− V0

]−1

=
π2

(b− a)2

∞∑
k=1
k ̸=k0

[
k2 − k20

]−1

=

(
V0(b− a)2 − 3

)
sin

(
V

1/2
0 (a− b)

)
+ 3V

1/2
0 (a− b) cos

(
V

1/2
0 (a− b)

)
4V0

(
sin

(
V

1/2
0 (b− a)

)
+ V

1/2
0 (a− b) cos

(
V

1/2
0 (b− a)

)) ,

ζ(2;T0,0) =
1

24V 2
0

(
sin

(
V

1/2
0 (b− a)

)
+ V

1/2
0 (a− b) cos

(
V

1/2
0 (b− a)

))
×

{
2
[
3
(
5− 2V0(b− a)2

)
sin

(
V

1/2
0 (a− b)

)
− V

1/2
0 (b− a)(V0(b− a)2 − 15) cos

(
V

1/2
0 (a− b)

)]
+ 3

(
sin

(
V

1/2
0 (b− a)

))−1[(
V0(b− a)2 − 3) sin

(
V

1/2
0 (a− b)

)
− 3V

1/2
0 (b− a) cos

(
V

1/2
0 (a− b)

)]
×

[
sin

(
V

1/2
0 (b− a)

)
− V

1/2
0 (b− a) cos

(
V

1/2
0 (b− a)

)]}
. (2.5.69)

Taking the limit V0 ↓ 0 of (2.5.68) recovers the expressions in Example 2.5.1.
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Remark 2.5.10. In the case z = 0 is not an eigenvalue, one can verify these results

via the method outlined in Remark 2.5.7. Namely, letting

m2 = −(b− a)2V0π
−2 < 0 (2.5.70)

so that

m = (i/π)(b− a)V
1/2
0 (2.5.71)

in (2.5.52) and (2.5.56), one verifies the expressions for n = 1, 2 as before. ⋄

2.5.4 Example of a Linear Potential

We finish with an example for calculating spectral ζ-function values for the

linear potential, q(x) = x, x ∈ (a, b).

Example 2.5.11. Consider q(x) = x, x ∈ (a, b), and denote by T0,0 the associated

Schrödinger operator with Dirichlet boundary conditions at a and b. Then, noting

that W (Ai,Bi)(x) = π−1 (cf. [1, Eq. 10.4.10]), one finds

ϕ(z, x, a) = π[Ai(a− z) Bi(x− z)− Bi(a− z)Ai(x− z)], (2.5.72)

θ(z, x, a) = −π[Ai′(a− z) Bi(x− z)− Bi′(a− z)Ai(x− z)], z ∈ C, (2.5.73)

where Ai( · ) and Bi( · ) represent the Airy functions of the first and second kind,

respectively (cf. [1, Sect. 10.4]). In particular, substituting z = 0 in (2.5.72) yields

ϕ0(x) = π[Ai(a) Bi(x)− Bi(a)Ai(x)], θ0(x) = −π[Ai′(a) Bi(x)− Bi′(a)Ai(x)],

(2.5.74)

and thus the Volterra Green’s function becomes

g(0, x, x′) = π[Ai(x) Bi(x′)− Ai(x′) Bi(x)]. (2.5.75)

Hence,

ϕ(z, b, a) =
∞∑
m=0

zmϕm(b), z ∈ C, (2.5.76)
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where

ϕ0(b) = π[Ai(a) Bi(b)− Bi(a)Ai(b)],

ϕ1(b) = π2

ˆ b

a

dx1 [Ai(b) Bi(x1)− Ai(x1) Bi(b)][Ai(a) Bi(x1)− Bi(a)Ai(x1)]

= π2
{
Ai(a)Ai(b)

[
Bi′(a)2 − Bi′(b)2

]
+ Bi(a) Bi(b)

[
Ai′(a)2 − Ai′(b)2

]
(2.5.77)

+ [Ai′(b) Bi′(b)− Ai′(a) Bi′(a)][Bi(a)Ai(b) + Ai(a) Bi(b)]
}
,

etc.

Furthermore, one has by construction, ϕ(z, a, a) = 0, so eigenvalues are given

by solving ϕ(z, b, a) = 0, or, equivalently, by solving Ai(a − z) Bi(b − z) = Bi(a −

z)Ai(b− z). In particular, the characteristic function is given by

F0,0(z) = π[Ai(a− z) Bi(b− z)− Bi(a− z)Ai(b− z)], z ∈ C. (2.5.78)

If zero is not an eigenvalue, applying Corollary 2.4.3 with m0 = 0 one does find the

sum of the inverse of these eigenvalues, namely

ζ(1;T0,0) = trL2
r((a,b))

(
T−1
0,0

)
= −ϕ1(b)/ϕ0(b)

= π[Bi(a)Ai(b)− Ai(a) Bi(b)]−1
{
Ai(a)Ai(b)

[
Bi′(a)2 − Bi′(b)2

]
+ Bi(a) Bi(b)

[
Ai′(a)2 − Ai′(b)2

]
(2.5.79)

+ [Ai′(b) Bi′(b)− Ai′(a) Bi′(a)][Bi(a)Ai(b) + Ai(a) Bi(b)]
}
.
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CHAPTER THREE

Donoghue m-functions for Singular Sturm–Liouville Operators

The content of this chapter relies on (but is not identical to) the paper sub-
mitted as: F. Gesztesy, L. L. Littlejohn, R. Nichols, M. Piorkowski, and J. Stanfill, 

Donoghue m-functions for Singular Sturm–Liouville Operators, 35pp.

3.1 Introduction

To set the stage we briefly discuss abstract Donoghue m-functions following

[78] (see also [73], [77]). Given a self-adjoint extension A of a densely defined,

closed, symmetric operator
.
A in H (a complex, separable Hilbert space) with equal

deficiency indices and the deficiency subspace Ni of
.
A in H, with

Ni = ker
(( .
A
)∗ − iIH

)
, dim (Ni) = k ∈ N ∪ {∞}, (3.1.1)

the Donoghue m-operator MDo
A,Ni

( · ) ∈ B(Ni) associated with the pair (A,Ni) is

given by

MDo
A,Ni

(z) = PNi
(zA+ IH)(A− zIH)

−1PNi

∣∣
Ni

= zINi
+ (z2 + 1)PNi

(A− zIH)
−1PNi

∣∣
Ni
, z ∈ C\R,

(3.1.2)

with INi
the identity operator in Ni, and PNi

the orthogonal projection in H onto

Ni. The special case k = 1, was discussed in detail by Donoghue [49]; for the case

k ∈ N we refer to [82].

More generally, given a self-adjoint extension A of
.
A in H and a closed, linear

subspace N of Ni, the Donoghue m-operator MDo
A,N ( · ) ∈ B(N ) associated with the

pair (A,N ) is defined by

MDo
A,N (z) = PN (zA+ IH)(A− zIH)

−1PN
∣∣
N

= zIN + (z2 + 1)PN (A− zIH)
−1PN

∣∣
N , z ∈ C\R,

(3.1.3)

with IN the identity operator in N and PN the orthogonal projection in H onto N .
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Since MDo
A,N (z) is analytic for z ∈ C\R and satisfies (see [78, Theorem 5.3])

[Im(z)]−1Im
(
MDo

A,N (z)
)
⩾ 2

[(
|z|2 + 1

)
+
[(
|z|2 − 1

)2
+ 4(Re(z))2

]1/2]−1

IN ,

z ∈ C\R, (3.1.4)

MDo
A,N ( · ) is a B(N )-valued Nevanlinna–Herglotz function. Thus, MDo

A,N ( · ) admits

the representation

MDo
A,N (z) =

ˆ
R
dΩDo

A,N (λ)

[
1

λ− z
− λ

λ2 + 1

]
, z ∈ C\R, (3.1.5)

where the B(N )-valued measure ΩDo
A,N ( · ) satisfies

ΩDo
A,N (λ) = (λ2 + 1)(PNEA(λ)PN

∣∣
N ), (3.1.6)ˆ

R
dΩDo

A,N (λ) (1 + λ2)−1 = IN , (3.1.7)

ˆ
R
d(ξ,ΩDo

A,N (λ)ξ)N = ∞ for all ξ ∈ N\{0}, (3.1.8)

with EA( · ) the family of strongly right-continuous spectral projections of A in H.

Operators of the type MDo
A,N ( · ) and some of its variants have attracted con-

siderable attention in the literature. They appear to go back to Krein [122] (see

also [123]), Saakjan [168], and independently, Donoghue [49]. The interested reader

can find a wealth of additional information in the context of (3.1.2)–(3.1.8) in [4],

[6], [16]– [19], [24], [25]– [29], [38]– [44], [73]– [82], [83], [93], [124], [126], [134], [135],

[136], [138], [142], [145]– [147], [154], [156], [167], and the references therein.

Without going into further details (see [78, Corollary 5.8] for details) we note

that the prime reason for the interest in MDo
A,Ni

( · ) lies in the fundamental fact that

the entire spectral information of A contained in its family of spectral projections

EA( · ), is already encoded in the B(Ni)-valued measure ΩDo
A,Ni

( · ) (including multi-

plicity properties of the spectrum of A) if and only if
.
A is completely non-self-adjoint

in H (that is, if and only if
.
A has no invariant subspace on which it is self-adjoint,

see [78, Lemma 5.4]).
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We also note that a particularly attractive feature of the Donoghuem-operator,

that distinguishes it from the Weyl–Titchmarsh–Kodaira m-operator, consists of the

explicit appearance of the resolvent (A − zIH)
−1, z ∈ C\R, in its definition (3.1.2)

(resp., (3.1.3)).

We conclude these introductory remarks with a brief sketch of the relation

betweenMDo
A,N ( · ) and an associated γ-field, familiar from the abstract theory of self-

adjoint extensions of closed symmetric operators in connection with the notion of

boundary triplets. To keep the discussion as short as possible, we restrict ourselves in

the following to a relatively prime pair (A1, A2) of self-adjoint extensions of a closed

symmetric operator
.
A with equal (finite or infinite) deficiency indices

(
such that

dom(A1)∩dom(A2) = dom
( .
A
))
. We start by recalling Krein’s resolvent formula as

described in [77],

(A2 − zIH)
−1 = (A1 − zIH)

−1 (3.1.9)

+ γA1,Ni
(z)

[
tan(α1,2)−MDo

A1,Ni
(z)

]−1
γA1,Ni

(z)∗, z ∈ ρ(A1) ∩ ρ(A2),

where the γ-field γA1,Ni
( · ) is given by

γA1,Ni
(z) = (A1 − iIH)(A1 − zIH)

−1PNi
, z ∈ ρ(A1),

γA1,Ni
(z)∗ = PNi

(A1 + iIH)(A1 − zIH)
−1, z ∈ ρ(A1),

(3.1.10)

and the operator α1,2 in Ni is introduced via

e−2iα1,2 = −CA2C
−1
A1

∣∣
Ni
, (3.1.11)

where CB denotes the (unitary) Cayley transform of the self-adjoint operator B in

H, that is,

CB = (B + iIH)(B − iIH)
−1, (3.1.12)

and one notes that Ni is an invariant subspace for CA2C
−1
A1

.
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One then verifies the following formulas, familiar from the theory of boundary

triplets (see, e.g., [15, Sect. 2.3]),

γA1,Ni
(z) = (A1 − ζIH)(A1 − zIH)

−1γA1,Ni
(ζ), z, ζ ∈ ρ(A1), (3.1.13)

MDo
A1,Ni

(z)−MDo
A1,Ni

(ζ)∗ =
(
z − ζ

)
γA1,Ni

(ζ)∗γA1,Ni
(z), z, ζ ∈ ρ(A1), (3.1.14)

MDo
A1,Ni

(z)∗ =MDo
A1,Ni

(z), z ∈ ρ(A1), (3.1.15)

(z − ζ1)(ζ1 − ζ2)(ζ2 − z) γA1,Ni
(ζ1)

∗(A1 − zIH)
−1γA1,Ni

(ζ2)

= (ζ1 − ζ2)M
Do
A1,Ni

(z) + (z − ζ2)M
Do
A1,Ni

(ζ1) + (ζ1 − z)MDo
A1,Ni

(ζ2), (3.1.16)

z, ζ1, ζ2 ∈ ρ(A1).

In the remainder of this chapter and the next, we will exclusively focus on the

particular case N = Ni = ker
(( .
A
)∗ − iIH

)
and develop a self-contained approach

to constructing Donoghue m-functions (resp., 2 × 2 matrices) for singular Sturm–

Liouville operators on arbitrary intervals (a, b) ⊆ R. More precisely, assuming the

standard local integrability hypotheses on the coefficients p, q, r (cf. Hypothesis 3.2.1)

we study all self-adjoint L2((a, b); rdx)-realizations corresponding to the differential

expression

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R, (3.1.17)

and systematically determine the underlying Donoghue m-functions in all cases

where τ is in the limit circle case at least at one interval endpoint a or b.

Turning to the content of each section, we discuss the necessary background

in connection with minimal Tmin and maximal Tmax operators, self-adjoint exten-

sions, etc., corresponding to (3.1.17) in the underlying Hilbert space L2((a, b); rdx)

in Section 3.2. In particular, we recall the discussion of boundary values in terms of

appropriate Wronskians, especially, in the case where Tmin is bounded from below

(utilizing principal and nonprincipal solutions). Our strategy for the construction of

Donoghue m-functions consists of first constructing them for the Friedrichs exten-
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sion of Tmin and then employing Krein-type resolvent formulas to derive Donoghue

m-functions for the remaining self-adjoint extensions of Tmin. These Krein-type

resolvent formulas use the Friedrichs extension as a reference operator and then

explicitly characterize the resolvents of all the remaining self-adjoint extensions of

Tmin in terms of the Friedrichs extension and the deficiency subspaces for Tmin.

Hence Sections 3.3 and 3.4 derive Krein-type resolvent formulas for singular Sturm–

Liouville operators in the case where τ has one, respectively, two, interval endpoints

in the limit circle case. Donoghue m-functions corresponding to the case where τ is

in the limit circle case in precisely one interval endpoint are derived in Section 3.5;

the case where τ is in the limit circle case at a and b is treated in detail in Section

3.6. We conclude this chapter with an illustration of a generalized Bessel operator

in Section 3.7 where a = 0, b ∈ (0,∞) ∪ {∞}, and τ takes on the explicit form,

τδ,ν,γ = x−δ
[
− d

dx
xν

d

dx
+

(2 + δ − ν)2γ2 − (1− ν)2

4
xν−2

]
,

δ > −1, ν < 1, γ ⩾ 0, x ∈ (0, b).

(3.1.18)

Finally, we comment on some of the basic notation used throughout this chap-

ter and the next. If T is a linear operator mapping (a subspace of) a Hilbert space

into another, then dom(T ) and ker(T ) denote the domain and kernel (i.e., null space)

of T . The spectrum and resolvent set of a closed linear operator in a Hilbert space

will be denoted by σ( · ) and ρ( · ), respectively. Moreover, we typically abbrevi-

ate L2((a, b); rdx) as L2
r((a, b)) in various subscripts involving the identity operator

IL2
r((a,b))

and the scalar product ( · , · )L2
r((a,b))

(linear in the second argument) and

associated norm ∥ · ∥L2
r((a,b))

in L2((a, b); rdx).

3.2 Some Background

In this section we briefly recall the basics of singular Sturm–Liouville operators.

The material is standard and can be found, for instance, in [15, Ch. 6], [35, Chs. 8,
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9], [51, Sects. 13.6, 13.9, 13.10], [52], [84, Ch. 4], [104, Ch. III], [149, Ch. V], [150],

[155, Ch. 6], [175, Ch. 9], [179, Sect. 8.3], [180, Ch. 13], [182, Chs. 4, 6–8].

Throughout this section we make the following assumptions:

Hypothesis 3.2.1. Let (a, b) ⊆ R and suppose that p, q, r are (Lebesgue ) measurable

functions on (a, b) such that the following items (i)–(iii) hold:

(i) r > 0 a.e. on (a, b), r ∈ L1
loc((a, b); dx).

(ii) p > 0 a.e. on (a, b), 1/p ∈ L1
loc((a, b); dx).

(iii) q is real-valued a.e. on (a, b), q ∈ L1
loc((a, b); dx).

Given Hypothesis 3.2.1, we study Sturm–Liouville operators associated with

the general, three-coefficient differential expression τ of the form

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R. (3.2.1)

If f ∈ ACloc((a, b)), then the quasi-derivative of f is defined to be f [1] := pf ′.

Moreover, the Wronskian of two functions f, g ∈ ACloc((a, b)) is defined by

W (f, g)(x) = f(x)g[1](x)− f [1](x)g(x) for a.e. x ∈ (a, b). (3.2.2)

The following result is useful for computing weighted integrals of products of

solutions of (τ − z)y = 0: Assume Hypothesis 3.2.1 and let z1, z2 ∈ C with z1 ̸= z2.

If y(zj, · ) is a solution of (τ − zj)y = 0, j ∈ {1, 2}, then for all a < α < β < b,

ˆ β

α

r(x)dx y(z1, x)y(z2, x) =
W (y(z1, · ), y(z2, · ))

∣∣β
α

z1 − z2
. (3.2.3)

Definition 3.2.2. Assume Hypothesis 3.2.1. Given τ as in (3.2.1), the maximal op-

erator Tmax in L2((a, b); rdx) associated with τ is defined by

Tmaxf = τf,

f ∈ dom(Tmax) =
{
g ∈ L2((a, b); rdx)

∣∣ g, g[1] ∈ ACloc((a, b)); (3.2.4)

τg ∈ L2((a, b); rdx)
}
.
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The preminimal operator
.
Tmin in L2((a, b); rdx) associated with τ is defined by

.
Tminf = τf,

f ∈ dom
( .
Tmin

)
=

{
g ∈ L2((a, b); rdx)

∣∣ g, g[1] ∈ ACloc((a, b)); (3.2.5)

supp (g) ⊂ (a, b) is compact; τg ∈ L2((a, b); rdx)
}
.

One can prove that
.
Tmin is closable, and one then defines the minimal operator

Tmin as the closure of
.
Tmin.

For f, g ∈ dom(Tmax), one can prove that the following limits exist:

W (f, g)(a) = lim
x↓a

W (f, g)(x) and W (f, g)(b) = lim
x↑b

W (f, g)(x). (3.2.6)

In addition, one can prove the following basic fact:

Theorem 3.2.3. Assume Hypothesis 3.2.1. Then( .
Tmin

)∗
= Tmax, (3.2.7)

and hence Tmax is closed and Tmin =
.
Tmin is given by

Tminf = τf,

f ∈ dom(Tmin) =
{
g ∈ L2((a, b); rdx)

∣∣ g, g[1] ∈ ACloc((a, b)); (3.2.8)

for all h ∈ dom(Tmax), W (h, g)(a) = 0 = W (h, g)(b); τg ∈ L2((a, b); rdx)
}

=
{
g ∈ dom(Tmax)

∣∣W (h, g)(a) = 0 = W (h, g)(b) for all h ∈ dom(Tmax)
}
.

Moreover,
.
Tmin is essentially self-adjoint if and only if Tmax is symmetric, and then

.
Tmin = Tmin = Tmax.

Regarding self-adjoint extensions of Tmin one has the following first result.

Theorem 3.2.4. Assume Hypothesis 3.2.1. An extension T̃ of
.
Tmin or of Tmin =

.
Tmin

is self-adjoint if and only if

T̃ f = τf, (3.2.9)

f ∈ dom
(
T̃
)
=

{
g ∈ dom(Tmax)

∣∣W (f, g)(a) = W (f, g)(b) for all f ∈ dom
(
T̃
)}
.
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The celebrated Weyl alternative then can be stated as follows:

Theorem 3.2.5 (Weyl’s Alternative).

Assume Hypothesis 3.2.1. Then the following alternative holds: Either

(i) for every z ∈ C, all solutions u of (τ − z)u = 0 are in L2((a, b); rdx) near b

(resp., near a),

or,

(ii) for every z ∈ C, there exists at least one solution u of (τ − z)u = 0 which is not

in L2((a, b); rdx) near b (resp., near a). In this case, for each z ∈ C\R, there exists

precisely one solution ub (resp., ua) of (τ − z)u = 0 (up to constant multiples) which

lies in L2((a, b); rdx) near b (resp., near a).

This yields the limit circle/limit point classification of τ at an interval endpoint

as follows.

Definition 3.2.6. Assume Hypothesis 3.2.1.

In case (i) in Theorem 3.2.5, τ is said to be in the limit circle case at b (resp., a).

(Frequently, τ is then called quasi-regular at b (resp., a).)

In case (ii) in Theorem 3.2.5, τ is said to be in the limit point case at b (resp., a).

If τ is in the limit circle case at a and b then τ is also called quasi-regular on (a, b).

The next result links self-adjointness of Tmin (resp., Tmax) and the limit point

property of τ at both endpoints. Here, and throughout, we shall employ the notation

Nz = ker
(
Tmax − zIL2

r((a,b))

)
, z ∈ C. (3.2.10)

Theorem 3.2.7. Assume Hypothesis 3.2.1, then the following items (i) and (ii) hold:

(i) If τ is in the limit point case at a (resp., b), then

W (f, g)(a) = 0 (resp., W (f, g)(b) = 0) for all f, g ∈ dom(Tmax). (3.2.11)
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(ii) Let Tmin =
.
Tmin. Then

n±(Tmin) = dim
(
N±i

)

=



2 if τ is in the limit circle case at a and b,

1 if τ is in the limit circle case at a

and in the limit point case at b, or vice versa,

0 if τ is in the limit point case at a and b.

(3.2.12)

In particular, Tmin = Tmax is self-adjoint if and only if τ is in the limit point case

at a and b.

All self-adjoint extensions of Tmin are then described as follows:

Theorem 3.2.8. Assume Hypothesis 3.2.1 and that τ is in the limit circle case at a

and b (i.e., τ is quasi-regular on (a, b)). In addition, assume that vj ∈ dom(Tmax),

j = 1, 2, satisfy

W (v1, v2)(a) = W (v1, v2)(b) = 1, W (vj, vj)(a) = W (vj, vj)(b) = 0, j = 1, 2.

(3.2.13)

(E.g., real-valued solutions vj, j = 1, 2, of (τ − λ)u = 0 with λ ∈ R, such that

W (v1, v2) = 1.) For g ∈ dom(Tmax) we introduce the generalized boundary values

g̃1(a) = −W (v2, g)(a), g̃1(b) = −W (v2, g)(b),

g̃2(a) = W (v1, g)(a), g̃2(b) = W (v1, g)(b).

(3.2.14)

Then the following items (i)–(iii) hold:

(i) All self-adjoint extensions Tα,β of Tmin with separated boundary conditions are of

the form

Tα,βf = τf, α, β ∈ [0, π), (3.2.15)

f ∈ dom(Tα,β) =

{
g ∈ dom(Tmax)

∣∣∣∣ cos(α)g̃1(a) + sin(α)g̃2(a) = 0,

cos(β)g̃1(b) + sin(β)g̃2(b) = 0

}
.
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(ii) All self-adjoint extensions Tφ,R of Tmin with coupled boundary conditions are of

the type

Tφ,Rf = τf,

f ∈ dom(Tφ,R) =

{
g ∈ dom(Tmax)

∣∣∣∣
g̃1(b)
g̃2(b)

 = eiφR

g̃1(a)
g̃2(a)

}
,

(3.2.16)

where φ ∈ [0, π), and R is a real 2× 2 matrix with det(R) = 1 (i.e., R ∈ SL(2,R)).

(iii) Every self-adjoint extension of Tmin is either of type (i) (i.e., separated ) or of

type (ii) (i.e., coupled ).

Remark 3.2.9. (i) If τ is in the limit point case at one endpoint, say, at the endpoint

b, one omits the corresponding boundary condition involving β ∈ [0, π) at b in

(3.2.15) to obtain all self-adjoint extensions Tα of Tmin, indexed by α ∈ [0, π). (In

this case item (iii) in Theorem 3.2.8 is vacuous.) In the case where τ is in the limit

point case at both endpoints, all boundary values and boundary conditions become

superfluous as in this case Tmin = Tmax is self-adjoint.

(ii) In the special case where τ is regular on the finite interval [a, b], choose vj ∈

dom(Tmax), j = 1, 2, such that

v1(x) =


θ0(λ, x, a), for x near a,

θ0(λ, x, b), for x near b,

v2(x) =


ϕ0(λ, x, a), for x near a,

ϕ0(λ, x, b), for x near b,

(3.2.17)

where ϕ0(λ, · , d), θ0(λ, · , d), d ∈ {a, b}, are real-valued solutions of (τ − λ)u = 0,

λ ∈ R, satisfying the boundary conditions

ϕ0(λ, a, a) = θ
[1]
0 (λ, a, a) = 0, θ0(λ, a, a) = ϕ

[1]
0 (λ, a, a) = 1,

ϕ0(λ, b, b) = θ
[1]
0 (λ, b, b) = 0, θ0(λ, b, b) = ϕ

[1]
0 (λ, b, b) = 1.

(3.2.18)

Then one verifies that

g̃1(a) = g(a), g̃1(b) = g(b), g̃2(a) = g[1](a), g̃2(b) = g[1](b), (3.2.19)
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and hence Theorem 3.2.8 recovers the well-known special regular case.

(iii) In connection with (3.2.14), an explicit calculation demonstrates that for g, h ∈

dom(Tmax),

g̃1(d)h̃2(d)− g̃2(d)h̃1(d) = W (g, h)(d), d ∈ {a, b}, (3.2.20)

interpreted in the sense that either side in (3.2.20) has a finite limit as d ↓ a and

d ↑ b. Of course, for (3.2.20) to hold at d ∈ {a, b}, it suffices that g and h lie locally

in dom(Tmax) near x = d.

(iv) Clearly, g̃1, g̃2 depend on the choice of vj, j = 1, 2, and a more precise notation

would indicate this as g̃1,v2 , g̃2,v1 , etc.

(v) One can supplement the characterization (3.2.8) of dom(Tmin) by

Tminf = τf,

f ∈ dom(Tmin) =
{
g ∈ dom(Tmax)

∣∣ g̃1(a) = g̃2(a) = g̃1(b) = g̃2(b) = 0
}
.

(3.2.21)

Next, we determine when two self-adjoint extensions of Tmin are relatively

prime with respect to Tmin.

Definition 3.2.10. If T and T ′ are self-adjoint extensions of a symmetric operator S,

then the maximal common part of T and T ′ is the operator CT,T ′ defined by

CT,T ′u = Tu, u ∈ dom(CT,T ′) = {f ∈ dom(T ) ∩ dom(T ′) |Tf = T ′f}. (3.2.22)

Moreover, T and T ′ are said to be relatively prime with respect to S if CT,T ′ = S.

Theorem 3.2.11. Assume Hypothesis 3.2.1.

(i) If α, α′, β, β′ ∈ [0, π) with α ̸= α′ and β ̸= β′, then Tα,β and Tα′,β′ are relatively

prime with respect to Tmin.

(ii) If α, β, β′ ∈ [0, π) with β ̸= β′, then the maximal common part of Tα,β and Tα,β′

is the restriction of Tmax to the subspace{
g ∈ dom(Tmax)

∣∣ cos(α)g̃1(a) + sin(α)g̃2(a) = 0, g̃1(b) = g̃2(b) = 0
}
. (3.2.23)
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(iii) If α, α′, β ∈ [0, π) with α ̸= α′, then the maximal common part of Tα,β and Tα′,β

is the restriction of Tmax to the subspace{
g ∈ dom(Tmax)

∣∣ g̃1(a) = g̃2(a) = 0, cos(β)g̃1(b) + sin(β)g̃2(b) = 0
}
. (3.2.24)

(iv) Let α, β ∈ [0, π), φ ∈ [0, π), R = (Rj,k)
2
j,k=1 ∈ SL(2,R), and define

d(α, β,R) = cos(α) cos(β)R1,2 + cos(α) sin(β)R2,2

− sin(α) cos(β)R1,1 − sin(α) sin(β)R2,1.

(3.2.25)

If d(α, β,R) ̸= 0, then Tα,β and Tφ,R are relatively prime with respect to Tmin. If

d(α, β,R) = 0, then the maximal common part of Tα,β and Tφ,R is the restriction of

Tmax to the subspace{
g ∈ dom(Tφ,R)

∣∣ cos(α)g̃1(a) + sin(α)g̃2(a) = 0
}
. (3.2.26)

(v) Let φ, η ∈ [0, π) and R, S ∈ SL(2,R). If det
(
ei(η−φ)SR−1 − IC2

)
̸= 0, then Tφ,R

and Tη,S are relatively prime with respect to Tmin. If det
(
ei(η−φ)SR−1− IC2

)
= 0, so

that 1 is an eigenvalue of ei(η−φ)SR−1 with corresponding eigenspace V1 ⊂ C2, then

the maximal common part of Tφ,R and Tη,S is the restriction of Tmax to the subspace{
g ∈ dom(Tφ,R)

∣∣ (g̃1(b), g̃2(b))⊤ ∈ V1

}
. (3.2.27)

Proof. To prove (i), it suffices to show that f ∈ dom(Tα,β) ∩ dom(Tα′,β′) implies

f ∈ dom(Tmin). If f ∈ dom(Tα,β) ∩ dom(Tα′,β′), thencos(α) sin(α)

cos(α′) sin(α′)


f̃1(a)
f̃2(a)

 =

0

0

 , (3.2.28)

cos(β) sin(β)

cos(β′) sin(β′)


f̃1(b)
f̃2(b)

 =

0

0

 . (3.2.29)

The determinants of the 2×2 coefficient matrices in (3.2.28) and (3.2.29) are sin(α−

α′) and sin(β − β′), respectively. Since the assumptions on α, α′, β, and β′ imply

α − α′, β − β′ ∈ (−π, π)\{0}, it follows that the coefficient matrices in (3.2.28)
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and (3.2.29) are invertible. Hence, f̃1(a) = f̃2(a) = f̃1(b) = f̃2(b) = 0, and the

characterization of dom(Tmin) in (3.2.21) implies f ∈ dom(Tmin).

The proofs of (ii) and (iii) are similar, so we only provide the proof of (ii)

here. Let D denote the set in (3.2.24). To prove (ii), it suffices to show dom(Tα,β)∩

dom(Tα,β′) = D. If f ∈ dom(Tα,β) ∩ dom(Tα,β′), then cos(α)f̃1(a) + sin(α)f̃2(a) = 0

and (3.2.29) holds. As in the proof of (i), the determinant of the 2 × 2 coefficient

matrix in (3.2.29) is nonzero. Therefore, f̃1(b) = f̃2(b) = 0, and it follows that

f ∈ D. Conversely, if f ∈ D, then it is clear that f simultaneously belongs to

dom(Tα,β) and dom(Tα,β′).

The proof of (iv) begins with a general observation about functions in the

intersection dom(Tα,β) ∩ dom(Tφ,R). If f ∈ dom(Tα,β) ∩ dom(Tφ,R), then

cos(α)f̃1(a) + sin(α)f̃2(a) = 0,

cos(β)f̃1(b) + sin(β)f̃2(b) = 0,

(3.2.30)

and

f̃1(b) = eiφR1,1f̃1(a) + eiφR1,2f̃2(a),

f̃2(b) = eiφR2,1f̃1(a) + eiφR2,2f̃2(a).

(3.2.31)

Applying (3.2.31) in (3.2.30) yields a set of boundary conditions that may be recast

in matrix form as cos(α) sin(α)

cos(β)R1,1 + sin(β)R2,1 cos(β)R1,2 + sin(β)R2,2


f̃1(a)
f̃2(a)

 =

0

0

 . (3.2.32)

The determinant of the 2× 2 coefficient matrix in (3.2.32) is d(α, β,R).

If d(α, β,R) ̸= 0, then (3.2.32) implies f̃1(a) = f̃2(a) = 0. In turn, (3.2.31)

implies f̃1(b) = f̃2(b) = 0. Hence, f ∈ dom(Tmin), and it follows that Tα,β and Tφ,R

are relatively prime with respect to Tmin.

To complete the proof of (iv), it remains to show that the set in (3.2.26), call

it D, coincides with dom(Tα,β) ∩ dom(Tφ,R) when d(α, β,R) = 0. The containment
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dom(Tα,β) ∩ dom(Tφ,R) ⊂ D follows immediately from the definitions of Tα,β, Tφ,R,

and D. To prove the reverse containment, let f ∈ D, so that f ∈ dom(Hφ,R) and

f satisfies the boundary condition at a in (3.2.30). The proof is then reduced to

showing f satisfies the boundary condition at b in (3.2.30). In order to do this, one

distinguishes the cases α ̸= 0 and α = 0. If α ̸= 0, one uses d(α, β,R) = 0, the

conditions in (3.2.31), and sin(α)f̃2(a) = − cos(α)f̃1(a) to compute

e−iφ sin(α)
[
cos(β)f̃1(b) + sin(β)f̃2(b)

]
(3.2.33)

= [cos(β)R1,1 + sin(β)R2,1] sin(α)f̃1(a)

− [cos(β)R1,2 + sin(β)R2,2] cos(α)f̃1(a)

= −d(α, β,R)f̃1(a)

= 0.

Since e−iφ sin(α) ̸= 0 when α ̸= 0, (3.2.33) implies f satisfies the boundary condition

at b in (3.2.30). If α = 0, then f̃1(a) = 0, and (3.2.31) simplifies. One then computes

cos(β)f̃1(b) + sin(β)f̃2(b) = eiφ[cos(β)R1,2 + sin(β)R2,2]f̃2(a) (3.2.34)

= eiφd(0, β, R)f̃2(a)

= 0,

so f satisfies the boundary condition at b in (3.2.30).

To prove (v), let f ∈ dom(Tφ,R) ∩ dom(Tη,S), so thatf̃1(b)
f̃2(b)

 = eiηS

f̃1(a)
f̃2(a)

 and

f̃1(b)
f̃2(b)

 = eiφR

f̃1(a)
f̃2(a)

 . (3.2.35)

Using the invertibility of eiφR to solve the second equation in (3.2.35) for the vector(
f̃1(a), f̃2(a)

)⊤
and substituting into the first equation in (3.2.35) yields

[
ei(η−φ)SR−1 − IC2

]f̃1(b)
f̃2(b)

 =

0

0

 . (3.2.36)
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If det
(
ei(η−φ)SR−1 − IC2

)
̸= 0, then (3.2.36) implies f̃1(b) = f̃2(b) = 0. In turn, the

invertibility of eiφR and the second equation in (3.2.35) yields f̃1(a) = f̃2(a) = 0.

Hence, f ∈ dom(Tmin), and it follows that Tφ,R and Tη,S are relatively prime with

respect to Tmin.

Now, suppose that det
(
ei(η−φ)SR−1 − IC2

)
= 0, so that 1 is an eigenvalue

of ei(η−φ)SR−1 with corresponding eigenspace V1. Let D denote the subspace in

(3.2.27). To complete the proof of (v), it suffices to show the subspace D coincides

with dom(Tφ,R)∩dom(Tη,S). To this end, let f ∈ dom(Tφ,R)∩dom(Tη,S), so that both

equalities in (3.2.35) hold. In particular, (3.2.36) holds due to the invertibility of

eiφR, and one concludes that
(
f̃1(b), f̃2(b)

)⊤ ∈ V1. Therefore, f ∈ D. Conversely, if

f ∈ D, then f ∈ dom(Tφ,R), and one only needs to show f ∈ dom(Tη,S) to complete

the proof. Using the boundary conditions implied by the inclusion f ∈ dom(Tφ,R)

(i.e., the second equality in (3.2.35)), one computes

eiηS

f̃1(a)
f̃2(a)

 = ei(η−φ)SR−1

f̃1(b)
f̃2(b)

 =

f̃1(b)
f̃2(b)

 , (3.2.37)

where the last equality in (3.2.37) follows from the fact that
(
f̃1(b), f̃2(b)

)⊤ ∈ V1 by

the assumption f ∈ D. The equality in (3.2.37) implies f ∈ dom(Tη,S).

Finally, we turn to the characterization of generalized boundary values in the

case where Tmin is bounded from below following [75] and [150].

We recall the basics of oscillation theory with particular emphasis on principal

and nonprincipal solutions, a notion originally due to Leighton and Morse [127] (see

also Rellich [159], [160] and Hartman and Wintner [92, Appendix]). Our outline

below follows [33], [51, Sects. 13.6, 13.9, 13.10], [84, Ch. 7], [91, Ch. XI], [150], [182,

Chs. 4, 6–8].

Definition 3.2.12. Assume Hypothesis 3.2.1.

(i) Fix c ∈ (a, b) and λ ∈ R. Then τ − λ is called nonoscillatory at a (resp., b), if
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every real-valued solution u(λ, · ) of τu = λu has finitely many zeros in (a, c) (resp.,

(c, b)). Otherwise, τ − λ is called oscillatory at a (resp., b).

(ii) Let λ0 ∈ R. Then Tmin is called bounded from below by λ0, and one writes

Tmin ⩾ λ0IL2
r((a,b))

, if(
u, [Tmin − λ0IL2

r((a,b))
]u
)
L2((a,b);rdx)

⩾ 0, u ∈ dom(Tmin). (3.2.38)

The following is a key result.

Theorem 3.2.13. Assume Hypothesis 3.2.1. Then the following items (i)–(iii) are

equivalent:

(i) Tmin (and hence any symmetric extension of Tmin) is bounded from below.

(ii) There exists a ν0 ∈ R such that for all λ < ν0, τ − λ is nonoscillatory at a and

b.

(iii) For fixed c, d ∈ (a, b), c ⩽ d, there exists a ν0 ∈ R such that for all λ < ν0,

τu = λu has (real-valued ) nonvanishing solutions ua(λ, · ) ̸= 0, ûa(λ, · ) ̸= 0 in

the neighborhood (a, c] of a, and (real-valued ) nonvanishing solutions ub(λ, · ) ̸= 0,

ûb(λ, · ) ̸= 0 in the neighborhood [d, b) of b, such that

W (ûa(λ, · ), ua(λ, · )) = 1, ua(λ, x) = o(ûa(λ, x)) as x ↓ a, (3.2.39)

W (ûb(λ, · ), ub(λ, · )) = 1, ub(λ, x) = o(ûb(λ, x)) as x ↑ b, (3.2.40)
ˆ c

a

dx p(x)−1ua(λ, x)
−2 =

ˆ b

d

dx p(x)−1ub(λ, x)
−2 = ∞, (3.2.41)

ˆ c

a

dx p(x)−1ûa(λ, x)
−2 <∞,

ˆ b

d

dx p(x)−1ûb(λ, x)
−2 <∞. (3.2.42)

Definition 3.2.14. Assume Hypothesis 3.2.1, suppose that Tmin is bounded from below,

and let λ ∈ R. Then ua(λ, · ) (resp., ub(λ, · )) in Theorem 3.2.13 (iii) is called a

principal (or minimal ) solution of τu = λu at a (resp., b). A real-valued solution

(ua(λ, · ) (resp., (ub(λ, · )) of τu = λu linearly independent of ua(λ, · ) (resp., ub(λ, · ))

is called nonprincipal at a (resp., b). In particular, ûa(λ, · ) (resp., ûb(λ, · )) in

(3.2.39)–(3.2.42) are nonprincipal solutions at a (resp., b).

78



Next, we revisit in Theorem 3.2.8 how the generalized boundary values are

utilized in the description of all self-adjoint extensions of Tmin in the case where

Tmin is bounded from below.

Theorem 3.2.15 ( [75, Theorem 4.5]). Assume Hypothesis 3.2.1 and that τ is in the

limit circle case at a and b (i.e., τ is quasi-regular on (a, b)). In addition, assume

that Tmin ⩾ λ0I for some λ0 ∈ R, and denote by ua(λ0, · ) and ûa(λ0, · ) (resp.,

ub(λ0, · ) and ûb(λ0, · )) principal and nonprincipal solutions of τu = λ0u at a (resp.,

b), satisfying

W (ûa(λ0, · ), ua(λ0, · )) = W (ûb(λ0, · ), ub(λ0, · )) = 1. (3.2.43)

Introducing vj ∈ dom(Tmax), j = 1, 2, via

v1(x) =


ûa(λ0, x), for x near a,

ûb(λ0, x), for x near b,

v2(x) =


ua(λ0, x), for x near a,

ub(λ0, x), for x near b,

(3.2.44)

one obtains for all g ∈ dom(Tmax),

g̃(a) = −W (v2, g)(a) = g̃1(a) = −W (ua(λ0, · ), g)(a) = lim
x↓a

g(x)

ûa(λ0, x)
,

g̃(b) = −W (v2, g)(b) = g̃1(b) = −W (ub(λ0, · ), g)(b) = lim
x↑b

g(x)

ûb(λ0, x)
,

(3.2.45)

g̃ ′(a) = W (v1, g)(a) = g̃2(a) = W (ûa(λ0, · ), g)(a) = lim
x↓a

g(x)− g̃(a)ûa(λ0, x)

ua(λ0, x)
,

g̃ ′(b) = W (v1, g)(b) = g̃2(b) = W (ûb(λ0, · ), g)(b) = lim
x↑b

g(x)− g̃(b)ûb(λ0, x)

ub(λ0, x)
.

(3.2.46)

In particular, the limits on the right-hand sides in (3.2.45), (3.2.46) exist.

Remark 3.2.16. The notion of “generalized boundary values” in (3.2.14) and (3.2.45),

(3.2.46) corresponds to “boundary values for τ” in the sense of [51, p. 1297, 1304–

1307], see also [70, Sect. 3], [71, p. 57]. ⋄
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The Friedrichs extension TF of Tmin now permits a particularly simple char-

acterization in terms of the generalized boundary values g̃(a), g̃(b) as derived by

Niessen and Zettl [150](see also [81], [107], [108], [112], [139], [160], [163], [181]):

Theorem 3.2.17. Assume Hypothesis 3.2.1 and that τ is in the limit circle case at a

and b (i.e., τ is quasi-regular on (a, b)). In addition, assume that Tmin ⩾ λ0I for

some λ0 ∈ R. Then the Friedrichs extension TF = T0,0 of Tmin is characterized by

TFf = τf, f ∈ dom(TF ) =
{
g ∈ dom(Tmax)

∣∣ g̃(a) = g̃(b) = 0
}
. (3.2.47)

Remark 3.2.18. (i) As in (3.2.20), one readily verifies for g, h ∈ dom(Tmax),

g̃(d)h̃ ′(d)− g̃ ′(d)h̃(d) = W (g, h)(d), d ∈ {a, b}, (3.2.48)

again interpreted in the sense that either side in (3.2.48) has a finite limit as d ↓ a

and d ↑ b.

(ii) As always in this context (cf. Remark 3.2.9 (i)), if τ is in the limit point case

at one (or both) interval endpoints, the corresponding boundary conditions at that

endpoint are dropped in Theorems 3.2.15 and 3.2.17. ⋄

3.3 Krein Resolvent Identities: One Limit Circle Endpoint

Assuming that τ is in the limit circle case at a and in the limit point case at b,

we derive in this section the Krein resolvent formulas for all self-adjoint extensions

of Tmin using the Friedrichs extension as the reference operator.

Hypothesis 3.3.1. In addition to Hypothesis 3.2.1 assume that τ is in the limit circle

case at a and in the limit point case at b. Moreover, for z ∈ ρ(T0), let ψ(z, · ) denote

the unique solution to (τ−z)y = 0 that satisfies ψ(z, · ) ∈ L2
r((a, b)) and ψ̃(z, a) = 1.

Assume Hypothesis 3.3.1. By Theorem 3.2.8 or Theorem 3.2.15, the following

statements (i) and (ii) hold.
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(i) If α ∈ [0, π), then the operator Tα defined by

Tαf = Tmaxf,

f ∈ dom(Tα) = {g ∈ dom(Tmax) | cos(α)g̃(a) + sin(α)g̃ ′(a) = 0}
(3.3.1)

is a self-adjoint extension of Tmin.

(ii) If T is a self-adjoint extension of Tmin, then T = Tα for some α ∈ [0, π).

Statements analogous to (i) and (ii) hold if τ is in the limit point case at a and in

the limit circle case at b; for brevity we omit the details.

Choosing α = 0 in (3.3.1) yields the self-adjoint extension T0 with a Dirichlet-

type boundary condition at a:

dom(T0) = {g ∈ dom(Tmax) | g̃(a) = 0}. (3.3.2)

Since the coefficients p, q, and r are real-valued, the solution ψ(z, · ) has the

following conjugation property:

ψ(z, · ) = ψ(z, · ), z ∈ ρ(T0). (3.3.3)

Theorem 3.3.2. Assume Hypothesis 3.3.1. If α ∈ (0, π), then T0 and Tα are relatively

prime with respect to Tmin. Moreover, for each z ∈ ρ(T0) ∩ ρ(Tα), the scalar

kα(z) = − cot(α)− ψ̃ ′(z, a) (3.3.4)

is nonzero and

(Tα− zIL2
r((a,b))

)−1 = (T0 − zIL2
r((a,b))

)−1 + kα(z)
−1(ψ(z, · ), · )L2

r((a,b))
ψ(z, · ). (3.3.5)

Proof. The claims follow as a direct application of [2, Theorem 3.4] which is stated

in terms of boundary conditions bases and the Lagrange bracket. The condition

W (ûa(λ0, · ), ua(λ0, · )) = 1 (3.3.6)

implies

{ua(λ0, · ), ûa(λ0, · )} is a boundary condition basis at x = a (3.3.7)
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in the sense of [2, Definition 2.15] and [182, Definition 10.4.3]. The generalized

boundary values take the form

[g, ua(λ0, · )](a) = g̃(a), [g, ûa(λ0, · )](a) = −g̃ ′(a), (3.3.8)

where [ · , · ] denotes the Lagrange bracket:

[f, g](x) = f(x)(pg′)(x)− (pf ′)(x)g(x), x ∈ (a, b). (3.3.9)

Using the boundary condition basis in (3.3.7) and the identities in (3.3.8), the claims

now follow from [2, Theorem 3.4] after a standard reparametrizion of the self-adjoint

extensions (3.3.1) to fit the parametrization used in [2, Theorem 2.19].

3.4 Krein Resolvent Identities: Two Limit Circle Endpoints

Assuming that τ is in the limit circle case at a and b, we now derive the

Krein resolvent formulas for all self-adjoint extensions of Tmin using once more the

Friedrichs extension as the reference operator (in this context we also refer to [34]).

Hypothesis 3.4.1. In addition to Hypothesis 3.2.1 assume that τ is in the limit circle

case at a and b. Moreover, for z ∈ ρ(T0,0), let {uj(z, · )}j=1,2 denote solutions to

τu = zu which satisfy the boundary conditions

ũ1(z, a) = 0, ũ1(z, b) = 1,

ũ2(z, a) = 1, ũ2(z, b) = 0.

(3.4.1)

Assume Hypotheses 3.4.1. By Theorem 3.2.8 or Theorem 3.2.15, the following

statements (i)–(iii) hold.

(i) If α, β ∈ [0, π), then the operator Tα,β defined by

Tα,βf = Tmaxf, (3.4.2)

f ∈ dom(Tα,β) =

{
g ∈ dom(Tmax)

∣∣∣∣ cos(α)g̃(a) + sin(α)g̃ ′(a) = 0,

cos(β)g̃(b) + sin(β)g̃ ′(b) = 0

}
,

is a self-adjoint extension of Tmin.

82



(ii) If φ ∈ [0, π) and R ∈ SL(2,R), then the operator Tφ,R defined by

Tφ,Rf = Tmaxf, (3.4.3)

f ∈ dom(Tφ,R) =

{
g ∈ dom(Tmax)

∣∣∣∣
 g̃(b)

g̃ ′(b)

 = eiφR

 g̃(a)

g̃ ′(a)

}
,

is a self-adjoint extension of Tmin.

(iii) If T is a self-adjoint extension of Tmin, then T = Tα,β for some α, β ∈ [0, π) or

T = Tφ,R for some φ ∈ [0, π) and some R ∈ SL(2,R).

Notational Convention. To describe all possible self-adjoint boundary conditions

associated with self-adjoint extensions of Tmin effectively, we will frequently employ

the notation TA,B, M
Do
A,B( · ), etc., where A,B represents α, β in the case of separated

boundary conditions and φ,R in the context of coupled boundary conditions.

Choosing α = β = 0 in (3.4.2) yields the self-adjoint extension with Dirichlet-

type boundary conditions at a and b:

dom(T0,0) = {g ∈ dom(Tmax) | g̃(a) = g̃(b) = 0}. (3.4.4)

Since the coefficients of the Sturm–Liouville differential expression are real,

the following conjugation property holds:

uj(z, · ) = uj(z, · ), z ∈ ρ(T0,0), j ∈ {1, 2}. (3.4.5)

Applying (3.4.1), one computes

W (u1(z, · ), u2(z, · )(a) = −ũ ′
1(z, a),

W (u1(z, · ), u2(z, · )(b) = ũ ′
2(z, b), z ∈ ρ(T0,0).

(3.4.6)

In particular, since the Wronskian of two solutions is constant,

ũ ′
2(z, b) = −ũ ′

1(z, a), z ∈ ρ(T0,0). (3.4.7)

Theorem 3.4.2. Assume Hypothesis 3.4.1. Then the following statements (i)–(v)

hold.

(i) If α, β ∈ (0, π), then T0,0 and Tα,β are relatively prime with respect to Tmin.
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Moreover, for each z ∈ ρ(T0,0) ∩ ρ(Tα,β) the matrix

Kα,β(z) =

cot(β) + ũ ′
1(z, b) −ũ ′

1(z, a)

ũ ′
2(z, b) − cot(α)− ũ ′

2(z, a)

 (3.4.8)

is invertible and

(Tα,β − zIL2
r((a,b))

)−1 = (T0,0 − zIL2
r((a,b))

)−1

+
2∑

j,k=1

[
Kα,β(z)

−1
]
j,k
(uj(z, · ), · )L2

r((a,b))
uk(z, · ). (3.4.9)

(ii) If β ∈ (0, π), then the maximal common part of T0,0 and T0,β is the restriction

of Tmax to the set

S1 = {y ∈ dom(Tmax) | ỹ(a) = ỹ(b) = ỹ ′(b) = 0}. (3.4.10)

Moreover, for each z ∈ ρ(T0,0) ∩ ρ(T0,β) the scalar

K0,β(z) = cot(β) + ũ ′
1(z, b) (3.4.11)

is nonzero and

(T0,β − zIL2
r((a,b))

)−1 (3.4.12)

= (T0,0 − zIL2
r((a,b))

)−1 +K0,β(z)
−1(u1(z, · ), · )L2

r((a,b))
u1(z, · ).

(iii) If α ∈ (0, π), then the maximal common part of T0,0 and Tα,0 is the restriction

of Tmax to the set

S2 = {y ∈ dom(Tmax) | ỹ(a) = ỹ(b) = ỹ ′(a) = 0}. (3.4.13)

Moreover, for each z ∈ ρ(T0,0) ∩ ρ(Tα,0) the scalar

Kα,0(z) = − cot(α)− ũ ′
2(z, a) (3.4.14)

is nonzero and

(Tα,0 − zIL2
r((a,b))

)−1 (3.4.15)

= (T0,0 − zIL2
r((a,b))

)−1 +Kα,0(z)
−1(u2(z, · ), · )L2

r((a,b))
u2(z, · ).
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(iv) If R1,2 ̸= 0, then T0,0 and Tφ,R are relatively prime with respect to Tmin. More-

over, for each z ∈ ρ(T0,0) ∩ ρ(Tφ,R) the matrix

Kφ,R(z) =


−R2,2

R1,2

+ ũ ′
1(z, b)

e−iφ

R1,2

− ũ ′
1(z, a)

eiφ

R1,2

+ ũ ′
2(z, b) −R1,1

R1,2

− ũ ′
2(z, a)

 (3.4.16)

is invertible and

(Tφ,R − zIL2
r((a,b))

)−1 = (T0,0 − zIL2
r((a,b))

)−1 (3.4.17)

+
2∑

j,k=1

[
Kφ,R(z)

−1
]
j,k
(uj(z, · ), · )L2

r((a,b))
uk(z, · ).

(v) If R1,2 = 0, then the maximal common part of Tφ,R and T0,0 is the restriction of

Tmax to the set

Sφ,R = {y ∈ dom(Tmax) | ỹ(a) = ỹ(b) = 0, ỹ ′(b) = eiφR2,2ỹ
′(a)}. (3.4.18)

Moreover, for each z ∈ ρ(T0,0) ∩ ρ(Tφ,R), the scalar

kφ,R(z) = −R2,1R2,2 − eiφR2,2ũ
′
φ,R(z, a) + ũ ′

φ,R(z, b) (3.4.19)

is nonzero, and

(Tφ,R − zIL2
r((a,b))

)−1 = (T0,0 − zIL2
r((a,b))

)−1

+ kφ,R(z)
−1(uφ,R(z, · ), · )L2

r((a,b))
uφ,R(z, · ),

(3.4.20)

where

uφ,R(ζ, · ) = e−iφR2,2u2(ζ, · ) + u1(ζ, · ), ζ ∈ ρ(T0,0). (3.4.21)

Proof. Statements (i)–(v) are direct applications of the Krein identities for singular

Sturm–Liouville operators obtained in [2] which are stated in terms of boundary

conditions bases and the Lagrange bracket. The conditions

W (ûa(λ0, · ), ua(λ0, · )) = W (ûb(λ0, · ), ub(λ0, · )) = 1 (3.4.22)

imply that

{uc(λ0, · ), ûc(λ0, · )} is a boundary condition basis at x = c for c ∈ {a, b} (3.4.23)
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in the sense of [2, Definition 2.15] and [182, Definition 10.4.3]. The generalized

boundary values take the form

[g, ua(λ0, · )](a) = g̃(a), [g, ub(λ0, · )](b) = g̃(b),

[g, ûa(λ0, · )](a) = −g̃ ′(a), [g, ûb(λ0, · )](b) = −g̃ ′(b),

(3.4.24)

where [ · , · ] denotes the Lagrange bracket (see (3.3.9)). Using the boundary con-

dition bases in (3.4.23) and the identities in (3.4.24), statements (i)–(v) now follow

from [2, Theorems 4.4, 4.5, 4.6, and 4.7] after a standard reparametrizion of the self-

adjoint extensions (3.4.2) and (3.4.3) to fit the parametrization used in [2, Theorem

2.20].

Remark 3.4.3. As an illustration of Theorem 3.4.2, we consider the Krein extension,

T0,RK
, under the additional assumption that Tmin ⩾ εI

L2
r((a,b))

for some ε > 0. Then

applying [68, Thm. 3.5 (ii)] and Theorem 3.4.2 (iv), one computes for the matrix

K0,RK
in (3.4.16),

K0,RK
(z) =

ũ
′
1(z, b)− ũ ′

1(0, b) ũ ′
1(0, a)− ũ ′

1(z, a)

ũ ′
2(z, b)− ũ ′

2(0, b) ũ ′
2(0, a)− ũ ′

2(z, a)

 , z ∈ ρ(T0,0) ∩ ρ(T0,RK
),

(3.4.25)

where we note that 0 ∈ σ(T0,RK
). ⋄

3.5 Donoghue m-functions: One Limit Circle Endpoint

In this section we construct the Donoghue m-functions in the case where τ is

in the limit circle case at precisely one endpoint (which we choose to be a without

loss of generality). We first focus on the Friedrichs extension of Tmin and then

use the Krein resolvent formulas from Section 3.3 to treat all remaining self-adjoint

extensions of Tmin.

Throughout this section we shall assume that Hypothesis 3.3.1 holds so that τ

is in the limit circle case at a and in the limit point case at b. We begin by obtaining a

general expression for the Donoghuem-function of an arbitrary self-adjoint extension
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Tα of Tmin in terms of a unit vector ϕ(i, · ) ∈ Ni. This general expression will then

be made more explicit in terms of ψ(i, · ) (cf. Hypothesis 3.3.1) in the analysis below.

The Donoghue m-function for Tα is given by (see, e.g., [78, Eq. (5.5)])

MDo
Tα,Ni

(z) = PNi

(
zTα + IL2

r((a,b))

)
(Tα − zIL2

r((a,b))
)−1PNi

∣∣
Ni

= zINi
+
(
z2 + 1

)
PNi

(Tα − zIL2
r((a,b))

)−1PNi

∣∣
Ni
, z ∈ C\R, (3.5.1)

where PNi
denotes the orthogonal projection onto Ni. According to (3.5.1),

MDo
Tα,Ni

(z) ∈ B(Ni), z ∈ C\R, and MDo
Tα,Ni

(±i) = ±iINi
. (3.5.2)

The unit vector ϕ(i, · ) spans the one-dimensional subspace Ni, so the orthogonal

projection onto Ni is

PNi
= (ϕ(i, · ), · )L2

r((a,b))
ϕ(i, · ). (3.5.3)

Thus, the action of MDo
Tα,Ni

( · ) may be computed directly in terms of ϕ(i, · ) as

follows:

MDo
Tα,Ni

(z)f (3.5.4)

=
[
zINi

+
(
z2 + 1

)
PNi

(Tα − zIL2
r((a,b))

)−1PNi

∣∣
Ni

]
f

= zf +
(
z2 + 1

)
PNi

(Tα − zIL2
r((a,b))

)−1f

=
(
ϕ(i, · ),

[
zINi

+
(
z2 + 1

)
(Tα − zIL2

r((a,b))
)−1

]
f
)
L2
r((a,b))

ϕ(i, · )

=
(
ϕ(i, · ),

[
zINi

+
(
z2 + 1

)
(Tα − zIL2

r((a,b))
)−1

]
ϕ(i, · )

)
L2
r((a,b))

× (ϕ(i, · ), f)L2
r((a,b))

ϕ(i, · )

=
[
z +

(
z2 + 1

)(
ϕ(i, · ), (Tα − zIL2

r((a,b))
)−1ϕ(i, · )

)
L2
r((a,b))

]
× (ϕ(i, · ), f)L2

r((a,b))
ϕ(i, · ), f ∈ Ni, z ∈ C\R,

where one uses f = (ϕ(i, · ), f)L2
r((a,b))

ϕ(i, · ) to obtain the fourth equality in (3.5.4).

Hence,

MDo
Tα,Ni

(z) =
[
z +

(
z2 + 1

)(
ϕ(i, · ), (Tα − zIL2

r((a,b))
)−1ϕ(i, · )

)
L2
r((a,b))

]
(3.5.5)

× (ϕ(i, · ), · )L2
r((a,b))

ϕ(i, · )
∣∣
Ni
, z ∈ C\R.
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In order to determine MDo
Tα,Ni

( · ) in terms of ψ(i, · ), one must compute the fixed

inner product in (3.5.5). That is, one must compute(
ϕ(i, · ), (Tα − zIL2

r((a,b))
)−1ϕ(i, · )

)
L2
r((a,b))

, z ∈ C\R. (3.5.6)

In light of (3.5.2), it suffices to compute (3.5.6) under the additional assumption

that z ̸= ±i. We will first do this for the Dirichlet-type extension T0 (cf. (3.3.2)).

3.5.1 The Donoghue m-function MDo
T0,Ni

( · ) for T0

Here we shall consider the Dirichlet-type self-adjoint extension T0 of Tmin.

Assuming Hypothesis 3.3.1 and taking

Tα = T0 and ϕ(i, · ) := ∥ψ(i, · )∥−1
L2
r((a,b))

ψ(i, · ), (3.5.7)

we shall compute the inner product (3.5.6) and use (3.5.5) to obtain an explicit

expression for the Donoghue m-function MDo
T0,Ni

( · ) for T0 in terms of ψ(i, · ).

For the purposes of evaluating the inner product (3.5.6), we introduce the

generalized Cayley transform of T0,

U0,z,z′ = (T0 − z′IL2
r((a,b))

)(T0 − zIL2
r((a,b))

)−1 (3.5.8)

= IL2
r((a,b))

+ (z − z′)(T0 − zIL2
r((a,b))

)−1, z, z′ ∈ ρ(T0),

which forms a bijection from Nz′ to Nz. One verifies that

U0,z,z′ψ(z
′, · ) = ψ(z, · ), z, z′ ∈ ρ(T0). (3.5.9)

In fact, for fixed z, z′ ∈ ρ(T0), one uses the fact that U0,z,z′ maps into Nz to write

U0,z,z′ψ(z
′, · ) = c0ψ(z, · ) (3.5.10)

for some scalar c0 ∈ C. The second equality in (3.5.8) then implies

U0,z,z′ψ(z
′, · ) = ψ(z′, · ) + (z − z′)(T0 − zIL2

r((a,b))
)−1ψ(z′, · ), (3.5.11)

so that

[U0,z,z′ψ(z
′, · )] (̃a) = ψ̃(z′, a) = 1. (3.5.12)
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Taking the generalized boundary value at a throughout (3.5.10) and using (3.5.12)

yields c0 = 1 in (3.5.10), and (3.5.9) follows.

Let z ∈ C\R with z ̸= ±i be fixed. Applying (3.5.8), one computes:(
ϕ(i, · ), (T0 − zIL2

r((a,b))
)−1ϕ(i, · )

)
L2
r((a,b))

(3.5.13)

=

(
ψ(i, · ), (T0 − zIL2

r((a,b))
)−1ψ(i, · )

)
L2
r((a,b))

∥ψ(i, · )∥2L2
r((a,b))

=
(ψ(i, · ), [U0,z,i − IL2

r((a,b))
]ψ(i, · ))L2

r((a,b))

(z − i)∥ψ(i, · )∥2L2
r((a,b))

=
1

i− z
+

(ψ(i, · ), ψ(z, · ))L2
r((a,b))

(z − i)∥ψ(i, · )∥2L2
r((a,b))

.

Furthermore, by (3.2.3) and Theorem 3.2.7 (i),

(ψ(i, · ), ψ(z, · ))L2
r((a,b))

=

ˆ b

a

r(x)dxψ(−i, x)ψ(z, x) (3.5.14)

= −W (ψ(−i, · ), ψ(z, · ))|ba
z + i

=
ψ̃ ′(z, a)− ψ̃ ′(−i, a)

z + i
,

where we have used that since τ is in the limit point case at b and ψ(−i, · ), ψ(z, · ) ∈

dom(Tmax), an application of Theorem 3.2.7 (i) yields

W (ψ(−i, · ), ψ(z, · ))(b) = 0, (3.5.15)

and by Hypothesis 3.3.1, ψ̃(−i, a) = ψ̃(z, a) = 1, so that

W (ψ(−i, · ), ψ(z, · ))(a) = ψ̃ ′(z, a)− ψ̃ ′(−i, a). (3.5.16)

Therefore, (3.5.13)–(3.5.16) yield(
ϕ(i, · ), (T0 − zIL2

r((a,b))
)−1ϕ(i, · ))L2

r((a,b))
=

1

i− z
+

ψ̃ ′(z, a)− ψ̃ ′(−i, a)(
z2 + 1

)
∥ψ(i, · )∥2L2

r((a,b))

.

(3.5.17)

By (3.2.3), Hypothesis 3.3.1, and the limit point assumption at b,

∥ψ(i, · )∥2L2
r((a,b))

=

ˆ b

a

r(x)dxψ(−i, x)ψ(i, x) = −W (ψ(−i, · ), ψ(i, · ))|ba
2i

=
1

2i

[
ψ̃ ′(i, a)− ψ̃ ′(−i, a)

]
= Im

(
ψ̃ ′(i, a)

)
. (3.5.18)
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Applying (3.5.17) in (3.5.4) and taking simplifications and (3.5.18) into ac-

count, one obtains the following fact.

Theorem 3.5.1. Assume Hypothesis 3.3.1. The Donoghue m-function MDo
T0,Ni

( · ) :

C\R → B(Ni) for T0 satisfies

MDo
T0,Ni

(±i) = ±iINi
,

MDo
T0,Ni

(z) =

[
− i+

ψ̃ ′(z, a)− ψ̃ ′(−i, a)
Im

(
ψ̃ ′(i, a)

) ]
INi

, z ∈ C\R, z ̸= ±i.
(3.5.19)

3.5.2 The Donoghue m-function for Self-Adjoint Extensions Other Than T0

The Donoghue m-function for T0 was computed explicitly in Theorem 3.5.1. If

Tα, α ∈ (0, π), is any other self-adjoint extension of Tmin, then the resolvent identity

in Theorem 3.3.2 may be used to obtain an explicit representation of the Donoghue

m-function MDo
Tα,Ni

( · ) for Tα.

Theorem 3.5.2. Assume Hypothesis 3.3.1 and let α ∈ (0, π). The Donoghue m-

function MDo
Tα,Ni

( · ) : C\R → B(Ni) for Tα satisfies

MDo
Tα,Ni

(±i) = ±iINi
,

MDo
Tα,Ni

(z) =MDo
T0,Ni

(z) (3.5.20)

+ (i− z)
ψ̃ ′(z, a)− ψ̃ ′(−i, a)
cot(α) + ψ̃ ′(z, a)

(ψ(z, · ), · )L2
r((a,b))

ψ(i, · )
∣∣∣∣
Ni

,

z ∈ C\R, z ̸= ±i.

Proof. Let α ∈ (0, π) be fixed. By (3.5.2),MDo
Tα,Ni

(±i) = ±iINi
. In order to establish

(3.5.20), let z ∈ C\R, z ̸= ±i, be fixed. Considering (3.5.1) and invoking (3.3.5),

one obtains

MDo
Tα,Ni

(z) =MDo
T0,Ni

(z) +
(
z2 + 1

)
kα(z)

−1(ψ(z, · ), · )L2
r((a,b))

PNi
ψ(z, · )

∣∣
Ni

(3.5.21)

=MDo
T0,Ni

(z)

+
(
z2 + 1

)
kα(z)

−1(ψ(i, · ), ψ(z, · ))L2
r((a,b))

(ψ(z, · ), · )L2
r((a,b))

ψ(i, · )
∣∣
Ni
.
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Using (3.5.14) in (3.5.21), one obtains

MDo
Tα,Ni

(z) =MDo
T0,Ni

(z) (3.5.22)

+ (z − i)
ψ̃ ′(z, a)− ψ̃ ′(−i, a)

kα(z)
(ψ(z, · ), · )L2

r((a,b))
ψ(i, · )

∣∣∣∣
Ni

.

Finally, (3.5.20) follows from (3.5.22) after using the form for kα(z) in (3.3.4).

3.6 Donoghue m-functions: Two Limit Circle Endpoints

The construction of Donoghue m-functions in the case where τ is in the limit

circle case at a and b is the primary aim of this section. Once more we first focus

on the Friedrichs extension of Tmin and then use the Krein resolvent formulas from

Section 3.4 to treat all remaining self-adjoint extensions of Tmin.

Throughout this section, we shall assume that Hypothesis 3.4.1 holds so that

τ is in the limit circle case at a and b. We begin by obtaining a general expression

for the Donoghue m-function of an arbitrary self-adjoint extension TA,B of Tmin in

terms of an orthonormal basis for Ni. Recall that the Donoghue m-function for TA,B

is given by (see, e.g., [78, Eq. (5.5)])

MDo
TA,B ,Ni

(z) = PNi
(zTA,B + IL2

r((a,b))
)(TA,B − zIL2

r((a,b))
)−1PNi

∣∣
Ni

(3.6.1)

= zINi
+
(
z2 + 1

)
PNi

(TA,B − zIL2
r((a,b))

)−1PNi

∣∣
Ni
, z ∈ C\R,

where PNi
denotes the orthogonal projection onto Ni with MDo

TA,B ,Ni
(z) ∈ B(Ni),

z ∈ C\R, and

MDo
TA,B ,Ni

(±i) = ±iINi
. (3.6.2)

Let {vj}j=1,2 be an orthonormal basis for the subspace Ni. The orthogonal

projection onto Ni is

PNi
=

2∑
k=1

(vk, · )L2
r((a,b))

vk. (3.6.3)
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Therefore, the action of MDo
TA,B ,Ni

( · ) may be computed directly in terms of

{vj}j=1,2 as follows:

MDo
TA,B ,Ni

(z)f =
[
zINi

+
(
z2 + 1

)
PNi

(TA,B − zIL2
r((a,b))

)−1PNi

∣∣
Ni

]
f (3.6.4)

= zf +
(
z2 + 1

)
PNi

(TA,B − zIL2
r((a,b))

)−1f

=
2∑
j=1

(
vj,

[
zINi

+
(
z2 + 1

)
(TA,B − zIL2

r((a,b))
)−1

]
f
)
L2
r((a,b))

vj

=
2∑

j,k=1

(
vj,

[
zINi

+
(
z2 + 1

)
(TA,B − zIL2

r((a,b))
)−1

]
vk
)
L2
r((a,b))

(vk, f)L2
r((a,b))

vj

=
2∑

j,k=1

[
zδj,k +

(
z2 + 1

)(
vj, (TA,B − zIL2

r((a,b))
)−1vk

)
L2
r((a,b))

]
(vk, f)L2

r((a,b))
vj,

f ∈ Ni, z ∈ C\R,

where one uses f =
∑2

j=1(vj, f)L2
r((a,b))

vj to obtain the fourth equality in (3.6.4).

Hence,

MDo
TA,B ,Ni

(z) (3.6.5)

=
2∑

j,k=1

[
zδj,k +

(
z2 + 1

)(
vj, (TA,B − zIL2

r((a,b))
)−1vk

)
L2
r((a,b))

]
(vk, · )L2

r((a,b))
vj
∣∣
Ni
,

z ∈ C\R.

In order to determine MDo
TA,B ,Ni

( · ) in terms of the orthonormal basis {vj}j=1,2, one

must compute the fixed inner products in (3.6.5). That is, one must compute(
vj, (TA,B − zIL2

r((a,b))
)−1vk

)
L2
r((a,b))

, j, k ∈ {1, 2}, z ∈ C\R. (3.6.6)

In light of (3.6.2), it suffices to compute (3.6.6) under the additional assumption

that z ̸= ±i. We will first do this for the Dirichlet-type extension T0,0 (cf. (3.4.4)).

3.6.1 The Donoghue m-function MDo
T0,0,Ni

( · ) for T0,0

Here we shall consider the Dirichlet-type self-adjoint extension T0,0 of Tmin.

Assuming Hypothesis 3.4.1 and taking the orthonormal basis for Ni obtained by
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applying the Gram–Schmidt process to {uj(i, · )}j=1,2, we shall compute the inner

products (3.6.6) and use (3.6.5) to obtain an explicit expression for the Donoghue

m-function MDo
T0,0,Ni

( · ) for T0,0.

In the analysis below, it will be convenient to also introduce an orthonormal

basis for N−i. To set the stage for applying Gram–Schmidt to {uj(±i, · )}j=1,2, one

applies (3.2.3) and (3.4.1), to compute

(uj(±i, · ), uk(±i, · ))L2
r((a,b))

=

ˆ b

a

r(x)dx uj(±i, x)uk(±i, x)

=

ˆ b

a

r(x)dx uj(∓i, x)uk(±i, x) =
W

(
uj(∓i, · ), uk(±i, · )

)∣∣b
a

∓i− (±i)

= ∓ 1

2i
W

(
uj(∓i, · ), uk(±i, · )

)∣∣b
a

= ∓ 1

2i

{
ũj(∓i, b)ũ ′

k(±i, b)− ũ ′
j(∓i, b)ũk(±i, b)

−
[
ũj(∓i, a)ũ ′

k(±i, a)− ũ ′
j(∓i, a)ũk(∓i, a)

]}
= ∓ 1

2i

{
ũ ′
k(±i, b)δj,1 − ũ ′

j(∓i, b)δk,1

−
[
ũ ′
k(±i, a)δj,2 − ũ ′

j(∓i, a)δk,2
]}
, j, k ∈ {1, 2}. (3.6.7)

In particular, (3.6.7) implies

(u1(±i, · ), u2(±i, · ))L2
r((a,b))

= ∓ 1

2i

[
ũ ′
2(±i, b) + ũ ′

1(∓i, a)
]

= ∓ 1

2i

[
ũ ′
2(±i, b)− ũ ′

2(∓i, b)
]
= ∓ 1

2i

[
ũ ′
2(±i, b)− ũ ′

2(±i, b)
]

= ∓Im
(
ũ ′
2(±i, b)

)
= (u2(±i, · ), u1(±i, · ))L2

r((a,b))
, (3.6.8)

and ∥∥u1(±i, · )∥∥2

L2
r((a,b))

= ∓ 1

2i

[
ũ ′
1(±i, b)− ũ ′

1(∓i, b)
]

= ∓ 1

2i

[
ũ ′
1(±i, b)− ũ ′

1(±i, b)
]
= ∓Im

(
ũ ′
1(±i, b)

)
, (3.6.9)∥∥u2(±i, · )∥∥2

L2
r((a,b))

= ± 1

2i

[
ũ ′
2(±i, a)− ũ ′

2(∓i, a)
]

= ± 1

2i

[
ũ ′
2(±i, a)− ũ ′

2(±i, a)
]
= ±Im

(
ũ ′
2(±i, a)

)
. (3.6.10)
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Applying the Gram–Schmidt process to {uj(±i, · )}j=1,2 then yields an orthonormal

basis {vj(±i, · )}j=1,2 for N±i as follows:

v1(±i, · ) = c1(±i)u1(±i, · ), (3.6.11)

v2(±i, · ) = c2(±i)
[
u2(±i, · )−

(u1(±i, · ), u2(±i, · ))L2
r((a,b))

∥u1(±i, · )∥2L2
r((a,b))

u1(±i, · )
]

(3.6.12)

= c2(±i)
[
u2(±i, · )−

Im
(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)u1(±i, · )],
where

c1(±i) = ∥u1(±i, · )∥−1
L2
r((a,b))

=
[
∓ Im

(
ũ ′
1(±i, b)

)]−1/2
, (3.6.13)

c2(±i) =
∥∥∥∥u2(±i, · )− Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)u1(±i, · )∥∥∥∥−1

L2
r((a,b))

(3.6.14)

=

[
± Im

(
ũ ′
2(±i, a)

)
±

[
Im

(
ũ ′
2(±i, b)

)]2
Im

(
ũ ′
1(±i, b)

) ]−1/2

,

and the equality Im
(
ũ ′
2(−i, b)

)/
Im

(
ũ ′
1(−i, b)

)
= Im

(
ũ ′
2(i, b)

)/
Im

(
ũ ′
1(i, b)

)
has been

applied. Based on (3.4.5), one infers that

cj(i) = cj(−i), j ∈ {1, 2}. (3.6.15)

In addition, by taking conjugates throughout (3.6.11)–(3.6.14) and applying (3.4.5),

one obtains

vj(±i, · ) = vj(∓i, · ), j ∈ {1, 2}. (3.6.16)

Taking the orthonormal basis {vj(i, · )}j=1,2 forNi in (3.6.5) then yields the following

expression for the Donoghue m-function MDo
T0,0,Ni

( · ) for T0,0:

MDo
T0,0,Ni

(z) (3.6.17)

=
2∑

j,k=1

[
zδj,k +

(
z2 + 1

)(
vj(i, · ), (T0,0 − zIL2

r((a,b))
)−1vk(i, · )

)
L2
r((a,b))

]
× (vk(i, · ), · )L2

r((a,b))
vj(i, · )

∣∣
Ni
, z ∈ C\R.

In the special cases z = ±i, one obtains (cf. (3.6.2))

MDo
T0,0,Ni

(±i) = ±iINi
. (3.6.18)
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Thus, to obtain an explicit representation for MDo
T0,0,Ni

( · ), it remains to evaluate the

inner products(
vj(i, · ), (T0,0 − zIL2

r((a,b))
)−1vk(i, · )

)
L2
r((a,b))

, j, k ∈ {1, 2},

z ∈ C\R, z ̸= ±i.
(3.6.19)

For the purposes of evaluating the inner products (3.6.19), we introduce the gener-

alized Cayley transform of T0,0,

U0,0,z,z′ = (T0,0 − z′IL2
r((a,b))

)(T0,0 − zIL2
r((a,b))

)−1 (3.6.20)

= IL2
r((a,b))

+ (z − z′)(T0,0 − zIL2
r((a,b))

)−1, z, z′ ∈ ρ(T0,0),

which forms a bijection from Nz′ to Nz. One verifies that

U0,0,z,z′uj(z
′, · ) = uj(z, · ), j ∈ {1, 2}, z, z′ ∈ ρ(T0,0). (3.6.21)

In fact, for fixed z, z′ ∈ ρ(T0,0), one uses the fact that U0,0,z,z′ maps into Nz to write

U0,0,z,z′uj(z
′, · ) = αj,1u1(z, · ) + αj,2u2(z, · ), j ∈ {1, 2}, (3.6.22)

for some scalars αj,k ∈ C, j, k ∈ {1, 2}. The second equality in (3.6.20) then implies

U0,0,z,z′uj(z
′, · ) = uj(z

′, · ) + (z − z′)(T0,0 − zIL2
r((a,b))

)−1uj(z
′, · ),

j ∈ {1, 2},
(3.6.23)

so that

[U0,0,z,z′uj(z
′, · )] (̃x) = ũj(z

′, x), x ∈ {a, b}, j ∈ {1, 2}. (3.6.24)

Evaluating (3.6.22) and (3.6.24) at a yields α1,2 = 0 and α2,2 = 1. Similarly, eval-

uating (3.6.22) and (3.6.24) at b yields α1,1 = 1 and α2,1 = 0. Hence, (3.6.21)

follows.

We will now calculate the inner products (3.6.19). Let

z ∈ C\R be fixed with z ̸= ±i. (3.6.25)

The system {vj(z, · )}j=1,2 defined by

vj(z, · ) = U0,0,z,ivj(i, · ), j ∈ {1, 2}, (3.6.26)
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is a basis for the subspace Nz. Applying (3.6.11)–(3.6.12) and (3.6.21) in (3.6.26),

one obtains

v1(z, · ) = c1(i)u1(z, · ),

v2(z, · ) = c2(i)

[
u2(z, · )−

Im
(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)u1(z, · )]. (3.6.27)

The inner products (3.6.19) can be recast in terms of {vj(z, · )}j=1,2 as follows:(
vj(i, · ), (T0,0 − zIL2

r((a,b))
)−1vk(i, · )

)
L2
r((a,b))

=
1

z − i
(vj(i, · ), [U0,0,z,i − IL2

r((a,b))
]vk(i, · ))L2

r((a,b))
(3.6.28)

=
1

i− z
δj,k +

1

z − i
(vj(i, · ), vk(z, · ))L2

r((a,b))
, j, k ∈ {1, 2}.

In turn, by (3.2.3) and (3.6.16), one obtains

(vj(i, · ), vk(z, · ))L2
r((a,b))

=

ˆ b

a

r(x)dx vj(−i, x)vk(z, x)

= −
W

(
vj(−i, · ), vk(z, · )

)∣∣b
a

z + i
, j, k ∈ {1, 2}. (3.6.29)

Using (3.6.29), one recasts (3.6.28) as(
vj(i, · ), (T0,0 − zIL2

r((a,b))
)−1vk(i, · )

)
L2
r((a,b))

=
1

i− z
δj,k −

W
(
vj(−i, · ), vk(z, · )

)∣∣b
a

1 + z2
, j, k ∈ {1, 2}.

(3.6.30)

After substituting (3.6.30) in (3.6.17) and taking cancellations into account, one

obtains

MDo
T0,0,Ni

(z) (3.6.31)

=
2∑

j,k=1

[
− iδj,k −W

(
vj(−i, · ), vk(z, · )

)∣∣b
a

]
(vk(i, · ), · )L2

r((a,b))
vj(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i.

The Wronskians

Wj,k(z) := W (vj(−i, · ), vk(z, · ))
∣∣b
a
, z ∈ C\R, z ̸= ±i, (3.6.32)
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that appear in (3.6.31) can be computed by applying (3.4.1) and (3.6.27). One

obtains for z ∈ C\R, z ̸= ±i:

W1,1(z) = [c1(i)]
2
[
ũ ′
1(z, b)− ũ ′

1(−i, b)
]
, (3.6.33)

W1,2(z) = c1(i)c2(i)

{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(−i, b)− ũ ′

1(z, b)
]

(3.6.34)

+ ũ ′
2(z, b) + ũ ′

1(−i, a)

}
,

W2,1(z) = −c1(i)c2(i)

{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, b)− ũ ′

1(−i, b)
]

(3.6.35)

+ ũ ′
2(−i, b) + ũ ′

1(z, a)

}
,

W2,2(z) = [c2(i)]
2

{[
ũ ′
2(−i, b)− ũ ′

2(z, b) (3.6.36)

+
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, b)− ũ ′

1(−i, b)
]]Im(

ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)
+ ũ ′

2(−i, a)− ũ ′
2(z, a) +

Im
(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, a)− ũ ′

1(−i, a)
]}
.

The relations (3.6.18) and (3.6.31)–(3.6.36) now yield an explicit representation for

the Donoghue m-function MDo
T0,0,Ni

( · ) for T0,0.

Theorem 3.6.1. Assume Hypothesis 3.4.1 and let {vj(i, · )}j=1,2 be the orthonormal

basis for Ni defined in (3.6.11)–(3.6.14). The Donoghue m-function MDo
T0,0,Ni

( · ) :

C\R → B(Ni) for T0,0 satisfies

MDo
T0,0,Ni

(±i) = ±iINi
,

MDo
T0,0,Ni

(z) = −
2∑

j,k=1

[iδj,k +Wj,k(z)](vk(i, · ), · )L2
r((a,b))

vj(i, · )
∣∣
Ni
, (3.6.37)

= −iINi
−

2∑
j,k=1

Wj,k(z)
(
vk(i, · ), ·

)
L2
r((a,b))

vj(i, · )
∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the matrix
(
Wj,k( · )

)2
j,k=1

is given by (3.6.33)–(3.6.36).
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3.6.2 The Donoghue m-function for Self-Adjoint Extensions Other Than T0,0

The Donoghuem-functionMDo
T0,0,Ni

( · ) for T0,0 was computed explicitly in The-

orem 3.6.1. If TA,B is any other self-adjoint extension of Tmin, then the resolvent

identities in Theorem 3.4.2 may be used to obtain an explicit representation of the

Donoghue m-function for TA,B.

We begin with the case when either TA,B = Tα,β for α, β ∈ (0, π) or TA,B = Tφ,R

for some φ ∈ [0, π), R ∈ SL(2,R), with R1,2 ̸= 0. In this case, items (i) and (iv) in

Theorem 3.4.2 imply

(TA,B − zIL2
r((a,b))

)−1 = (T0,0 − zIL2
r((a,b))

)−1 (3.6.38)

+
2∑

j,k=1

[
KA,B(z)

−1
]
j,k
(uj(z, · ), · )L2

r((a,b))
uk(z, · ),

z ∈ ρ(T0,0) ∩ ρ(TA,B),

where KA,B( · ) = Kα,β( · ) or KA,B( · ) = Kφ,R( · ) (cf. (3.4.8) and (3.4.16)) according

to whether TA,B = Tα,β or TA,B = Tφ,R, respectively. Employing (3.6.38) in (3.6.1),

one obtains the following representation for the Donoghue m-function MDo
TA,B ,Ni

( · )

of TA,B:

MDo
TA,B ,Ni

(z) (3.6.39)

= zINi
+
(
z2 + 1

)
PNi

(T0,0 − zIL2
r((a,b))

)−1PNi

∣∣
Ni

+
(
z2 + 1

)[ 2∑
j,k=1

[
KA,B(z)

−1
]
j,k
(uj(z, · ), · )L2

r((a,b))
PNi

uk(z, · )
]∣∣∣∣

Ni

=MDo
T0,0,Ni

(z) +
(
z2 + 1

) 2∑
j,k=1

[
KA,B(z)

−1
]
j,k
(uj(z, · ), · )L2

r((a,b))
PNi

uk(z, · )
∣∣
Ni
,

z ∈ C\R.

In light of (3.6.2), to obtain a final expression for MDo
TA,B ,Ni

( · ), one must compute

PNi
uk(z, · ), k ∈ {1, 2}, for z ∈ C\R, z ̸= ±i. Let z ∈ C\R, z ̸= ±i. Invoking the
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orthonormal basis {vj(i, · )}j=1,2 for Ni defined in (3.6.11)–(3.6.14), one obtains

PNi
uk(z, · ) =

2∑
ℓ=1

(vℓ(i, · ), uk(z, · ))L2
r((a,b))

vℓ(i, · ), k ∈ {1, 2}. (3.6.40)

By (3.2.3) ,(
vℓ(i, · ), uk(z, · )

)
L2
r((a,b))

=

ˆ b

a

r(x)dx vℓ(−i, x)uk(z, x) (3.6.41)

= −W (vℓ(−i, · ), uk(z, · ))|ba
z + i

, ℓ, k ∈ {1, 2}.

The Wronskians

WKr
ℓ,k (z) := W (vℓ(−i, · ), uk(z, · ))|ba, ℓ, k ∈ {1, 2}, (3.6.42)

that appear in (3.6.41) can be computed by applying (3.4.1) and (3.6.11)–(3.6.12).

One obtains:

WKr
1,1 (z) = c1(i)

[
ũ ′
1(z, b)− ũ ′

1(−i, b)
]
, (3.6.43)

WKr
1,2 (z) = c1(i)

[
ũ ′
2(z, b) + ũ ′

1(−i, a)
]
, (3.6.44)

WKr
2,1 (z) = ṽ2(−i, b)ũ ′

1(z, b)− ṽ ′
2(−i, b)− ṽ2(−i, a)ũ ′

1(z, a) (3.6.45)

= −c2(i)
{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, b)− ũ ′

1(−i, b)
]
+ ũ ′

2(−i, b) + ũ ′
1(z, a)

}
,

WKr
2,2 (z) = ṽ2(−i, b)ũ ′

2(z, b)− ṽ2(−i, a)ũ ′
2(z, a) + ṽ ′

2(−i, a) (3.6.46)

= −c2(i)
{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
2(z, b) + ũ ′

1(−i, a)
]
+ ũ ′

2(z, a)− ũ ′
2(−i, a)

}
.

Therefore, (3.6.40) may be recast as

PNi
uk(z, · ) = − 1

z + i

2∑
ℓ=1

WKr
ℓ,k (z)vℓ(i, · ), k ∈ {1, 2}. (3.6.47)

By combining (3.6.39) and (3.6.47), one obtains

MDo
TA,B ,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.48)

+ (i− z)
2∑

j,k,ℓ=1

[
KA,B(z)

−1
]
j,k
WKr
ℓ,k (z)(uj(z, · ), · )L2

r((a,b))
vℓ(i, · )

∣∣
Ni
.

These considerations are summarized next.
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Theorem 3.6.2. Assume Hypothesis 3.4.1 and let {vj(i, · )}j=1,2 be the orthonormal

basis for Ni defined in (3.6.11)–(3.6.14). The following items (i) and (ii) hold.

(i) If α, β ∈ (0, π), then the Donoghue m-function MDo
Tα,β ,Ni

( · ) : C\R → B(Ni) for

Tα,β satisfies

MDo
Tα,β ,Ni

(±i) = ±iINi
,

MDo
Tα,β ,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.49)

+ (i− z)
2∑

j,k,ℓ=1

[
Kα,β(z)

−1
]
j,k
WKr
ℓ,k (z)(uj(z, · ), · )L2

r((a,b))
vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the matrices Kα,β( · ) and
(
WKr
ℓ,k ( · )

)2
ℓ,k=1

are given by (3.4.8) and (3.6.43)–

(3.6.46), respectively.

(ii) If φ ∈ [0, π) and R ∈ SL(2,R) with R1,2 ̸= 0, then the Donoghue m-function

MDo
Tφ,R,Ni

( · ) : C\R → B(Ni) for Tφ,R satisfies

MDo
Tφ,R,Ni

(±i) = ±iINi
,

MDo
Tφ,R,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.50)

+ (i− z)
2∑

j,k,ℓ=1

[
Kφ,R(z)

−1
]
j,k
WKr
ℓ,k (z)(uj(z, · ), · )L2

r((a,b))
vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the matrices Kφ,R( · ) and
(
WKr
ℓ,k ( · )

)2
ℓ,k=1

are given by (3.4.16) and (3.6.43)–

(3.6.46), respectively.

It remains to compute the Donoghue m-functions for T0,β and Tα,0 with α, β ∈

(0, π) and Tφ,R for φ ∈ [0, π) and R ∈ SL(2,R) with R1,2 = 0.

Theorem 3.6.3. Assume Hypothesis 3.4.1 and let {vj(i, · )}j=1,2 be the orthonormal

basis for Ni defined in (3.6.11)–(3.6.14). The following items (i)− (iii) hold.

(i) If α ∈ (0, π), then the Donoghue m-function MDo
Tα,0,Ni

( · ) : C\R → B(Ni) for Tα,0
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satisfies

MDo
Tα,0,Ni

(±i) = ±iINi
,

MDo
Tα,0,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.51)

+
z − i

cot(α) + ũ ′
2(z, a)

(u2(z, · ), · )L2
r((a,b))

2∑
ℓ=1

WKr
ℓ,2 (z)vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the scalars
{
WKr
ℓ,2 ( · )

}
ℓ=1,2

are given by (3.6.44) and (3.6.46).

(ii) If β ∈ (0, π), then the Donoghue m-function MDo
T0,β ,Ni

( · ) : C\R → B(Ni) for

T0,β satisfies

MDo
T0,β ,Ni

(±i) = ±iINi
,

MDo
T0,β ,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.52)

− z − i

cot(β) + ũ ′
1(z, b)

(u1(z, · ), · )L2
r((a,b))

2∑
ℓ=1

WKr
ℓ,1 (z)vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the scalars
{
WKr
ℓ,1 ( · )

}
ℓ=1,2

are given by (3.6.43) and (3.6.45).

(iii) If φ ∈ [0, π) and R ∈ SL(2,R) with R1,2 = 0, then the Donoghue m-function

MDo
Tφ,R,Ni

( · ) : C\R → B(Ni) for Tφ,R satisfies

MDo
Tφ,R,Ni

(±i) = ±iINi
,

MDo
Tφ,R,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.53)

− z − i

kφ,R(z)
(uφ,R(z, · ), · )L2

r((a,b))

2∑
ℓ=1

[
e−iφR2,2W

Kr
ℓ,2 (z) +WKr

ℓ,1 (z)
]
vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the scalar kφ,R( · ) and the matrix
(
WKr
ℓ,k ( · )

)2
ℓ,k=1

are given by (3.4.19) and

(3.6.43)–(3.6.46), respectively.
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Proof. To prove item (i), let α ∈ (0, π). By (3.6.2), MDo
Tα,0,Ni

(±i) = ±iINi
. In order

to establish (3.6.51), let z ∈ C\R, z ̸= ±i, be fixed. Taking TA,B = Tα,0 in (3.6.1)

and invoking (3.4.15), one obtains

MDo
Tα,0,Ni

(z) =MDo
T0,0,Ni

(z) +
(
z2 + 1

)
Kα,0(z)

−1(u2(z, · ), · )L2
r((a,b))

PNi
u2(z, · )

∣∣
Ni
.

(3.6.54)

Using (3.6.47) with k = 2 in (3.6.54), one obtains

MDo
Tα,0,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.55)

+ (i− z)Kα,0(z)
−1(u2(z, · ), · )L2

r((a,b))

2∑
ℓ=1

WKr
ℓ,2 (z)vℓ(i, · )

∣∣
Ni
.

Hence, (3.6.51) follows from (3.6.55) by applying the precise form for Kα,0(z) given

in (3.4.14). This completes the proof of item (i).

To prove item (ii), let β ∈ (0, π). By (3.6.2), MDo
T0,β ,Ni

(±i) = ±iINi
. In order

to establish (3.6.52), let z ∈ C\R, z ̸= ±i, be fixed. Taking TA,B = T0,β in (3.6.1)

and invoking (3.4.12), one obtains

MDo
T0,β ,Ni

(z) =MDo
T0,0,Ni

(z) +
(
z2 + 1

)
K0,β(z)

−1(u1(z, · ), · )L2
r((a,b))

PNi
u1(z, · )

∣∣
Ni
.

(3.6.56)

Using (3.6.47) with k = 1 in (3.6.56), one obtains

MDo
T0,β ,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.57)

+ (i− z)K0,β(z)
−1(u1(z, · ), · )L2

r((a,b))

2∑
ℓ=1

WKr
ℓ,1 (z)vℓ(i, · )

∣∣
Ni
.

Hence, (3.6.52) follows from (3.6.57) by applying the precise form for K0,β(z) given

in (3.4.11). This completes the proof of item (ii).

To prove item (iii), let φ ∈ [0, π) and R ∈ SL(2,R) with R1,2 = 0. By (3.6.2),

MDo
Tφ,R,Ni

(±i) = ±iINi
. In order to establish (3.6.53), let z ∈ C\R, z ̸= ±i, be fixed.

Taking TA,B = Tφ,R in (3.6.1) and invoking (3.4.20), one obtains

MDo
Tφ,R,Ni

(z) =MDo
T0,0,Ni

(z) (3.6.58)
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+
(
z2 + 1

)
kφ,R(z)

−1(uφ,R(z, · ), · )L2
r((a,b))

PNi
uφ,R(z, · )

∣∣
Ni
.

By (3.6.41) and (3.6.42),

PNi
uφ,R(z, · ) =

2∑
ℓ=1

(
vℓ(i, · ), e−iφR2,2u2(z, · ) + u1(z, · )

)
L2
r((a,b))

vℓ(i, · )

= − 1

z + i

2∑
ℓ=1

[
e−iφR2,2W

Kr
ℓ,2 (z) +WKr

ℓ,1 (z)
]
vℓ(i, · ). (3.6.59)

Finally, (3.6.53) follows by combining (3.6.58) and (3.6.59).

3.7 A Generalized Bessel-Type Operator Example

As an illustration of these results, we consider the following explicitly solvable

generalized Bessel-type equation following the analysis in [79] (see also [68]). Let

a = 0, b ∈ (0,∞) ∪ {∞}, and consider

p(x) = xν , r(x) = xδ, q(x) =
(2 + δ − ν)2γ2 − (1− ν)2

4
xν−2,

δ > −1, ν < 1, γ ⩾ 0, x ∈ (0, b).

(3.7.1)

Then

τδ,ν,γ = x−δ
[
− d

dx
xν

d

dx
+

(2 + δ − ν)2γ2 − (1− ν)2

4
xν−2

]
,

δ > −1, ν < 1, γ ⩾ 0, x ∈ (0, b),

(3.7.2)

is singular at the endpoint x = 0 (since the potential, q is not integrable near x = 0),

regular at x = b when b ∈ (0,∞), and in the limit point case at x = b when b = ∞.

Furthermore, τδ,ν,γ is in the limit circle case at x = 0 if 0 ⩽ γ < 1 and in the limit

point case at x = 0 when γ ⩾ 1.

Solutions to τδ,ν,γu = zu are given by (cf. [109], [110, No. 2.162, p. 440])

y1,δ,ν,γ(z, x) = x(1−ν)/2Jγ
(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ ⩾ 0, (3.7.3)

y2,δ,ν,γ(z, x) =


x(1−ν)/2J−γ

(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ /∈ N0,

x(1−ν)/2Yγ
(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ ∈ N0,

γ ⩾ 0, (3.7.4)
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where Jµ( · ), Yµ( · ) are the standard Bessel functions of order µ ∈ R (cf. [1, Ch. 9]).

In the following we assume that

γ ∈ [0, 1) (3.7.5)

to ensure the limit circle case at x = 0. In this case it suffices to focus on the general-

ized boundary values at the singular endpoint x = 0 following [75]. For this purpose

we introduce principal and nonprincipal solutions u0,δ,ν,γ(0, · ) and û0,δ,ν,γ(0, · ) of

τδ,ν,γu = 0 at x = 0 by

u0,δ,ν,γ(0, x) = (1− ν)−1x[1−ν+(2+δ−ν)γ]/2, γ ∈ [0, 1),

û0,δ,ν,γ(0, x) =


(1− ν)[(2 + δ − ν)γ]−1x[1−ν−(2+δ−ν)γ]/2, γ ∈ (0, 1),

(1− ν)x(1−ν)/2 ln(1/x), γ = 0,

δ > −1, ν < 1, x ∈ (0, 1).

(3.7.6)

Remark 3.7.1. Since the singularity of q at x = 0 renders τδ,ν,γ singular at x = 0

(unless, of course, γ = (1−ν)/(2+ δ−ν), in which case τδ,ν,(1−ν)/(2+δ−ν) is regular at

x = 0), there is a certain freedom in the choice of the multiplicative constant in the

principal solution u0,δ,ν,γ of τδ,ν,γu = 0 at x = 0. Our choice of (1 − ν)−1 in (3.7.6)

reflects continuity in the parameters when comparing to boundary conditions in the

regular case (cf. [75, Remark 3.12 (ii)]), that is, in the case δ > −1, ν < 1, and

γ = (1− ν)/(2 + δ − ν) treated in [60]. ⋄

The generalized boundary values for g ∈ dom(Tmax,δ,ν,γ) are then of the form

g̃(0) = −W (u0,δ,ν,γ(0, · ), g)(0) (3.7.7)

=


limx↓0 g(x)

/[
(1− ν)[(2 + δ − ν)γ]−1x[1−ν−(2+δ−ν)γ]/2], γ ∈ (0, 1),

limx↓0 g(x)
/[
(1− ν)x(1−ν)/2 ln(1/x)

]
, γ = 0,

g̃ ′(0) = W (û0,δ,ν,γ(0, · ), g)(0) (3.7.8)

104



=



limx↓0
[
g(x)− g̃(0)(1− ν)[(2 + δ − ν)γ]−1x[1−ν−(2+δ−ν)γ]/2]
/[
(1− ν)−1x[1−ν+(2+δ−ν)γ]/2], γ ∈ (0, 1),

limx↓0
[
g(x)− g̃(0)(1− ν)x(1−ν)/2 ln(1/x)

]
/[
(1− ν)−1x(1−ν)/2

]
, γ = 0.

Next, introducing the standard normalized (at x = 0) fundamental system of

solutions ϕδ,ν,γ(z, · , 0), θδ,ν,γ(z, · , 0) of τδ,ν,γu = zu, z ∈ C, that is real-valued for

z ∈ R and entire with respect to z ∈ C by

ϕ̃δ,ν,γ(z, 0, 0) = 0, ϕ̃ ′
δ,ν,γ(z, 0, 0) = 1,

θ̃δ,ν,γ(z, 0, 0) = 1, θ̃ ′
δ,ν,γ(z, 0, 0) = 0, z ∈ C,

(3.7.9)

one obtains explicitly,

ϕδ,ν,γ(z, x, 0) = (1− ν)−1(2 + δ − ν)γΓ(1 + γ)z−γ/2y1,δ,ν,γ(z, x),

δ > −1, ν < 1, γ ∈ [0, 1), z ∈ C, x ∈ (0, b), (3.7.10)

θδ,ν,γ(z, x, 0) =



(1− ν)(2 + δ − ν)−γ−1γ−1Γ(1− γ)zγ/2y2,δ,ν,γ(z, x), γ ∈ (0, 1),

(1− ν)(2 + δ − ν)−1[−πy2,δ,ν,0(z, x)

+(ln(z)− 2 ln(2 + δ − ν) + 2γE)y1,δ,ν,0(z, x)], γ = 0,

δ > −1, ν < 1, z ∈ C, x ∈ (0, b), (3.7.11)

W (θδ,ν,γ(z, · , 0), ϕδ,ν,γ(z, · , 0)) = 1, z ∈ C, (3.7.12)

where Γ( · ) denotes the Gamma function, and γE = 0.57721 . . . represents Euler’s

constant.

We now turn to the cases of computing Donoghue m-functions for the gen-

eralized Bessel operator in general on the infinite interval and for the Krein–von

Neumann extension on the finite interval.

Example 3.7.2 (Infinite Interval). Let b = ∞. We begin by finding ψ0,δ,ν,γ(z, · )

described in Hypothesis 3.3.1 for this example.
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Since τδ,ν,γ is in the limit point case at ∞ (actually, it is in the strong limit

point case at infinity since q is bounded on any interval of the form [R,∞), R > 0,

and the strong limit point property of τδ,ν,γ=(1−ν)/(2+δ−ν) has been shown in [60]), to

find the Weyl–Titchmarsh solution and m-function corresponding to the Friedrichs

(resp., Dirichlet) boundary condition at x = 0, one considers the requirement

ψ0,δ,ν,γ(z, · ) = θδ,ν,γ(z, · , 0) +m0,δ,ν,γ(z)ϕδ,ν,γ(z, · , 0) ∈ L2((0,∞);xδdx),

z ∈ C\[0,∞). (3.7.13)

This implies

ψ0,δ,ν,γ(z, x) =



i(1− ν)(2 + δ − ν)−γ−1γ−1Γ(1− γ) sin(πγ)zγ/2

×x(1−ν)/2H(1)
γ

(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ ∈ (0, 1),

iπ(1− ν)/(2 + δ − ν)x(1−ν)/2

×H(1)
0

(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ = 0,

δ > −1, ν < 1, z ∈ C\[0,∞), x ∈ (0,∞), (3.7.14)

m0,δ,ν,γ(z) =



−e−iπγ(1− ν)2(2 + δ − ν)−2γ−1γ−1

×[Γ(1− γ)/Γ(1 + γ)]zγ, γ ∈ (0, 1),

(1− ν)2/(2 + δ − ν)

×[iπ − ln(z) + 2 ln(2 + δ − ν)− 2γE], γ = 0,

(3.7.15)

δ > −1, ν < 1, z ∈ C\[0,∞),

where H
(1)
µ ( · ) is the Hankel function of the first kind and of order µ ∈ R (cf. [1,

Ch. 9]). In particular, it is immediate from (3.7.13) and (3.7.9) that ψ̃0,δ,ν,γ(z, 0) = 1.

We mention that the results (3.7.14) and (3.7.15) coincide with the ones obtained

in [75] when δ = ν = 0 and [60] when γ = (1− ν)/(2 + δ − ν).

Substituting the explicit form of ψ0,δ,ν,γ(z, · ) given in (3.7.14) into Theorems

3.5.1 and 3.5.2 yields the Friedrichs extension Donoghue m-function, MDo
T0,δ,ν,γ ,Ni

(z),
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and the Donoghue m-function for all other self-adjoint extensions, MDo
Tα,δ,ν,γ ,Ni

(z),

α ∈ (0, π), respectively. In particular, since ψ̃ ′
0,δ,ν,γ(z, 0) = m0,δ,ν,γ(z) one finds from

Theorem 3.5.1 and (3.7.15),

MDo
T0,δ,ν,γ ,Ni

(z) =

[
− i+

m0,δ,ν,γ(z)−m0,δ,ν,γ(−i)
Im(m0,δ,ν,γ(i))

]
INi

=


{
− i− [sin(πγ/2)]−1e−iπγ

(
zγ − e3iπ/2

)}
INi

, γ ∈ (0, 1),

{−i+ (2/π)[(3iπ/2)− ln(z)]}INi
, γ = 0,

δ > −1, ν < 1, z ∈ C\[0,∞), (3.7.16)

where the branch of the logarithm is chosen so that ln(−i) = 3iπ/2. Thus, by

Theorem 3.5.2 with α ∈ (0, π),

MDo
Tα,δ,ν,γ ,Ni

(z) =MDo
T0,δ,ν,γ ,Ni

(z) + (i− z)
m0,δ,ν,γ(z)−m0,δ,ν,γ(−i)

cot(α) +m0,δ,ν,γ(z)

× (ψ0,δ,ν,γ(z, · ), · )L2
r((a,b))

ψ0,δ,ν,γ(i, · )
∣∣
Ni
, (3.7.17)

δ > −1, ν < 1, γ ∈ [0, 1), z ∈ C\R.

Example 3.7.3 (Finite Interval). Let b ∈ (0,∞). It is well known that Tmin,δ,ν,γ ⩾

εIL2
r((a,b))

for some ε > 0 (see, e.g., the simpler case δ = ν = 0 treated in [80, Thm.

5.1]). Thus, the Krein–von Neumann extension T0,RK ,δ,ν,γ of Tmin,δ,ν,γ is of the form

(see [68, Example 4.1])

T0,RK ,δ,ν,γf = τδ,ν,γf, (3.7.18)

f ∈ dom(T0,RK ,δ,ν,γ) =

{
g ∈ dom(Tmax,δ,ν,γ)

∣∣∣∣
 g(b)

g[1](b)

 = RK,δ,ν,γ

 g̃(0)

g̃ ′(0)

}
,
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where

RK,δ,ν,γ =



b[ν−1−(2+δ−ν)γ]/2

×


1− ν

(2 + δ − ν)γ
b1−ν

1

1− ν
b1−ν+(2+δ−ν)γ

(1− ν)2

2(2 + δ − ν)γ
− 1− ν

2

[
1

2
+

(2 + δ − ν)γ

2(1− ν)

]
b(2+δ−ν)γ

 ,

γ ∈ (0, 1), (1− ν) ln(1/b)b(1−ν)/2
1

1− ν
b(1−ν)/2

(1− ν)2 ln(1/b)− 2(1− ν)

2
b(ν−1)/2 1

2
b(ν−1)/2

 , γ = 0,

δ > −1, ν < 1. (3.7.19)

One now explicitly finds the solutions in (3.4.1) for this example by choosing

u1,δ,ν,γ(z, x) = ϕδ,ν,γ(z, x, 0)/ϕδ,ν,γ(z, b, 0),

u2,δ,ν,γ(z, x) = θδ,ν,γ(z, x, 0)− [θδ,ν,γ(z, b, 0)/ϕδ,ν,γ(z, b, 0)]ϕδ,ν,γ(z, x, 0), (3.7.20)

δ > −1, ν < 1, γ ∈ [0, 1), x ∈ (0, b),

from which substituting (3.7.20) into (3.6.27) yields the expressions for vj,δ,ν,γ(z, · ),

j = 1, 2. Finally, substituting the expressions for uj,δ,ν,γ(z, · ), vj,δ,ν,γ(z, · ), j =

1, 2, and the explicit form of K0,RK ,δ,ν,γ(z) given in (3.4.25) (utilizing (3.7.6)) into

Theorems 3.6.1 and 3.6.2 yields the Friedrichs extension Donoghue m-function,

MDo
T0,0,δ,ν,γ ,Ni

(z), and the Krein extension Donoghue m-function, MDo
T0,RK,δ,ν,γ ,Ni

(z), re-

spectively.

108



CHAPTER FOUR

The Jacobi Operator and its Donoghue m-functions

The content of this chapter relies on (but is not identical to) the paper pub-
lished as: F. Gesztesy, M. Piorkowski, and J. Stanfill, The Jacobi operator and its 
Donoghue m-functions, Conference Proceedings of IWOTA, Lancaster, UK, 2021, Y. 
Choi, G. Blower, and M. Daws (eds.), Operator Theory: Advances and Applications, 

Birkhäuser, Springer (to appear).

4.1 Introduction

This chapter should be regarded as a sequel to the recent [76] (the content of

the previous chapter) in which the Donoghue m-function was derived for singular

Sturm–Liouville operators. To illustrate the theory, we now apply it to a repre-

sentative example, the Jacobi differential operator associated with L2
(
(−1, 1); (1 −

x)α(1 + x)βdx
)
-realizations of the the differential expression,

τα,β = −(1− x)−α(1 + x)−β(d/dx)
(
(1− x)α+1(1 + x)β+1

)
(d/dx),

x ∈ (−1, 1), α, β ∈ R,
(4.1.1)

whenever at least one endpoint, x = ±1, is in the limit circle case (see, e.g. [1,

Ch. 22], [14], [21], [58, Sect. 23], [103, Ch. 4], [121, Sects. VII.6.1, XIV.2], [152,

Ch. 18], [173, Ch. IV]). In particular, this provides a full treatment of m-functions

corresponding to coupled boundary conditions whenever both endpoints are in the

limit circle case, a new result.

Turning to the content of each section, we recall the Donoghue m-functions

in the two limit circle and one limit circle endpoint cases in Sections 4.2 and 4.3,

respectively. The Jacobi operator and its Donoghue m-functions are the topic of

Section 4.4, with Sections 4.5–4.7 providing a detailed treatment of solutions of the

Jacobi differential equation and the associated hypergeometric differential equations.
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4.2 Donoghue m-functions: Two Limit Circle Endpoints

The Donoghue m-functions in the case where τ is in the limit circle case at a

and b is the primary topic of this section following [76, Sect. 6].

Hypothesis 4.2.1. In addition to Hypothesis 3.2.1 assume that τ is in the limit circle

case at a and b. Moreover, for z ∈ ρ(T0,0), let {uj(z, · )}j=1,2 denote solutions to

τu = zu which satisfy the boundary conditions

ũ1(z, a) = 0, ũ1(z, b) = 1,

ũ2(z, a) = 1, ũ2(z, b) = 0.

(4.2.1)

Assume Hypotheses 4.2.1. By Theorem 3.2.8 or Theorem 3.2.15, the following

statements (i)–(iii) hold.

(i) If γ, δ ∈ [0, π), then the operator Tγ,δ defined by

Tγ,δf = Tmaxf, (4.2.2)

f ∈ dom(Tγ,δ) =

{
g ∈ dom(Tmax)

∣∣∣∣ cos(γ)g̃(a) + sin(γ)g̃ ′(a) = 0,

cos(δ)g̃(b) + sin(δ)g̃ ′(b) = 0

}
,

is a self-adjoint extension of Tmin.

(ii) If φ ∈ [0, π) and R ∈ SL(2,R), then the operator Tφ,R defined by

Tφ,Rf = Tmaxf, (4.2.3)

f ∈ dom(Tφ,R) =

{
g ∈ dom(Tmax)

∣∣∣∣
 g̃(b)

g̃ ′(b)

 = eiφR

 g̃(a)

g̃ ′(a)

}
,

is a self-adjoint extension of Tmin.

(iii) If T is a self-adjoint extension of Tmin, then either T = Tγ,δ for some γ, δ ∈ [0, π),

or T = Tφ,R for some φ ∈ [0, π) and some R ∈ SL(2,R).

Notational Convention. To describe all possible self-adjoint boundary conditions

associated with self-adjoint extensions of Tmin effectively, we will frequently employ
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the notation TA,B, M
Do
A,B( · ), etc., where A,B represents γ, δ in the case of separated

boundary conditions and φ,R in the context of coupled boundary conditions.

Choosing γ = δ = 0 in (4.2.2) yields the self-adjoint extension with Dirichlet-

type boundary conditions at a and b, equivalently, the Friedrichs extension TF of

Tmin:

dom(T0,0) = dom(TF ) = {g ∈ dom(Tmax) | g̃(a) = g̃(b) = 0}. (4.2.4)

Since the coefficients of the Sturm–Liouville differential expression are real,

the following conjugation property holds:

uj(z, · ) = uj(z, · ), z ∈ ρ(T0,0), j ∈ {1, 2}. (4.2.5)

Applying (4.2.1), one computes

W (u1(z, · ), u2(z, · )(a) = −ũ ′
1(z, a),

W (u1(z, · ), u2(z, · )(b) = ũ ′
2(z, b), z ∈ ρ(T0,0).

(4.2.6)

In particular, since the Wronskian of two solutions is constant,

ũ ′
2(z, b) = −ũ ′

1(z, a), z ∈ ρ(T0,0). (4.2.7)

We begin by recalling the orthonormal basis for N±i given by {vj(±i, · )}j=1,2,

v1(±i, · ) = c1(±i)u1(±i, · ), (4.2.8)

v2(±i, · ) = c2(±i)
[
u2(±i, · )−

(u1(±i, · ), u2(±i, · ))L2((a,b);rdx)

∥u1(±i, · )∥2L2((a,b);rdx)

u1(±i, · )
]

(4.2.9)

= c2(±i)
[
u2(±i, · )−

Im
(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)u1(±i, · )],
with

c1(±i) = ∥u1(±i, · )∥−1
L2((a,b);rdx) =

[
∓ Im

(
ũ ′
1(±i, b)

)]−1/2
, (4.2.10)

c2(±i) =
∥∥∥∥u2(±i, · )− Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)u1(±i, · )∥∥∥∥−1

L2((a,b);rdx)

(4.2.11)

=

[
± Im

(
ũ ′
2(±i, a)

)
±

[
Im

(
ũ ′
2(±i, b)

)]2
Im

(
ũ ′
1(±i, b)

) ]−1/2

.
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The Donoghue m-function MDo
TA,B ,Ni

( · ) with TA,B any self-adjoint extension of

Tmin is provided next (cf. Theorems 6.1–6.3 in [76]).

Theorem 4.2.2. Assume Hypothesis 4.2.1 and let {vj(i, · )}j=1,2 be the orthonormal

basis for Ni defined in (4.2.8)–(4.2.11). The Donoghue m-function MDo
T0,0,Ni

( · ) :

C\R → B(Ni) for T0,0 satisfies

MDo
T0,0,Ni

(±i) = ±iINi
,

MDo
T0,0,Ni

(z) = −
2∑

j,k=1

[iδj,k +Wj,k(z)](vk(i, · ), · )L2((a,b);rdx)vj(i, · )
∣∣
Ni
, (4.2.12)

= −iINi
−

2∑
j,k=1

Wj,k(z)
(
vk(i, · ), ·

)
L2((a,b);rdx)

vj(i, · )
∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the matrix
(
Wj,k( · )

)2
j,k=1

, z ∈ C\R, z ̸= ±i, is given by

W1,1(z) = [c1(i)]
2
[
ũ ′
1(z, b)− ũ ′

1(−i, b)
]
, (4.2.13)

W1,2(z) = c1(i)c2(i)

{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(−i, b)− ũ ′

1(z, b)
]

(4.2.14)

+ ũ ′
2(z, b) + ũ ′

1(−i, a)

}
,

W2,1(z) = −c1(i)c2(i)

{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, b)− ũ ′

1(−i, b)
]

(4.2.15)

+ ũ ′
2(−i, b) + ũ ′

1(z, a)

}
,

W2,2(z) = [c2(i)]
2

{[
ũ ′
2(−i, b)− ũ ′

2(z, b) (4.2.16)

+
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, b)− ũ ′

1(−i, b)
]]Im(

ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)
+ ũ ′

2(−i, a)− ũ ′
2(z, a) +

Im
(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, a)− ũ ′

1(−i, a)
]}
.

Furthermore, the following items (i)–(v) hold.

(i) If γ, δ ∈ (0, π), then the Donoghue m-function MDo
Tγ,δ,Ni

( · ) : C\R → B(Ni) for
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Tγ,δ satisfies

MDo
Tγ,δ,Ni

(±i) = ±iINi
,

MDo
Tγ,δ,Ni

(z) =MDo
T0,0,Ni

(z) (4.2.17)

+ (i− z)
2∑

j,k,ℓ=1

[
Kγ,δ(z)

−1
]
j,k
WKr
ℓ,k (z)(uj(z, · ), · )L2((a,b);rdx)vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the invertible matrix Kγ,δ( · ) and
(
WKr
ℓ,k ( · )

)2
ℓ,k=1

are given by

Kγ,δ(z) =

cot(δ) + ũ ′
1(z, b) −ũ ′

1(z, a)

ũ ′
2(z, b) − cot(γ)− ũ ′

2(z, a)

 , (4.2.18)

WKr
1,1 (z) = c1(i)

[
ũ ′
1(z, b)− ũ ′

1(−i, b)
]
, (4.2.19)

WKr
1,2 (z) = c1(i)

[
ũ ′
2(z, b) + ũ ′

1(−i, a)
]
, (4.2.20)

WKr
2,1 (z) = ṽ2(−i, b)ũ ′

1(z, b)− ṽ ′
2(−i, b)− ṽ2(−i, a)ũ ′

1(z, a) (4.2.21)

= −c2(i)
{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
1(z, b)− ũ ′

1(−i, b)
]
+ ũ ′

2(−i, b) + ũ ′
1(z, a)

}
,

WKr
2,2 (z) = ṽ2(−i, b)ũ ′

2(z, b)− ṽ2(−i, a)ũ ′
2(z, a) + ṽ ′

2(−i, a) (4.2.22)

= −c2(i)
{
Im

(
ũ ′
2(i, b)

)
Im

(
ũ ′
1(i, b)

)[ũ ′
2(z, b) + ũ ′

1(−i, a)
]
+ ũ ′

2(z, a)− ũ ′
2(−i, a)

}
.

(ii) If φ ∈ [0, π) and R ∈ SL(2,R) with R1,2 ̸= 0, then the Donoghue m-function

MDo
Tφ,R,Ni

( · ) : C\R → B(Ni) for Tφ,R satisfies

MDo
Tφ,R,Ni

(±i) = ±iINi
,

MDo
Tφ,R,Ni

(z) =MDo
T0,0,Ni

(z) (4.2.23)

+ (i− z)
2∑

j,k,ℓ=1

[
Kφ,R(z)

−1
]
j,k
WKr
ℓ,k (z)(uj(z, · ), · )L2((a,b);rdx)vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,
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where
(
WKr
ℓ,k ( · )

)2
ℓ,k=1

is once again given in (4.2.19)–(4.2.22) and the invertible ma-

trix Kφ,R( · ) is given by

Kφ,R(z) =


−R2,2

R1,2

+ ũ ′
1(z, b)

e−iφ

R1,2

− ũ ′
1(z, a)

eiφ

R1,2

+ ũ ′
2(z, b) −R1,1

R1,2

− ũ ′
2(z, a)

 . (4.2.24)

(iii) If γ ∈ (0, π), then the Donoghue m-function MDo
Tγ,0,Ni

( · ) : C\R → B(Ni) for

Tγ,0 satisfies

MDo
Tγ,0,Ni

(±i) = ±iINi
,

MDo
Tγ,0,Ni

(z) =MDo
T0,0,Ni

(z) (4.2.25)

+
z − i

cot(γ) + ũ ′
2(z, a)

(u2(z, · ), · )L2((a,b);rdx)

2∑
ℓ=1

WKr
ℓ,2 (z)vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where cot(γ)+ ũ ′
2(z, a) ̸= 0 and the scalars

{
WKr
ℓ,2 ( · )

}
ℓ=1,2

are given by (4.2.20) and

(4.2.22).

(iv) If δ ∈ (0, π), then the Donoghue m-function MDo
T0,δ,Ni

( · ) : C\R → B(Ni) for T0,δ

satisfies

MDo
T0,δ,Ni

(±i) = ±iINi
,

MDo
T0,δ,Ni

(z) =MDo
T0,0,Ni

(z) (4.2.26)

− z − i

cot(δ) + ũ ′
1(z, b)

(u1(z, · ), · )L2((a,b);rdx)

2∑
ℓ=1

WKr
ℓ,1 (z)vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where cot(δ) + ũ ′
1(z, b) ̸= 0 and the scalars

{
WKr
ℓ,1 ( · )

}
ℓ=1,2

are given by (4.2.19) and

(4.2.21).

(v) If φ ∈ [0, π) and R ∈ SL(2,R) with R1,2 = 0, then the Donoghue m-function
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MDo
Tφ,R,Ni

( · ) : C\R → B(Ni) for Tφ,R satisfies

MDo
Tφ,R,Ni

(±i) = ±iINi
,

MDo
Tφ,R,Ni

(z) =MDo
T0,0,Ni

(z) (4.2.27)

− z − i

kφ,R(z)
(uφ,R(z, · ), · )L2((a,b);rdx)

2∑
ℓ=1

[
e−iφR2,2W

Kr
ℓ,2 (z) +WKr

ℓ,1 (z)
]
vℓ(i, · )

∣∣
Ni
,

z ∈ C\R, z ̸= ±i,

where the matrix
(
WKr
ℓ,k ( · )

)2
ℓ,k=1

is once again given in (4.2.19)–(4.2.22) and the

nonzero scalar kφ,R( · ) is given by

kφ,R(z) = −R2,1R2,2 − eiφR2,2ũ
′
φ,R(z, a) + ũ ′

φ,R(z, b), (4.2.28)

where

uφ,R(ζ, · ) = e−iφR2,2u2(ζ, · ) + u1(ζ, · ), ζ ∈ ρ(T0,0). (4.2.29)

Remark 4.2.3. For the Krein extension, T0,RK
, under the additional assumption that

Tmin ⩾ εI
L2((a,b);rdx)

for some ε > 0, applying [68, Theorem 3.5 (ii)], one computes for

the matrix K0,RK
,

K0,RK
(z) =

ũ
′
1(z, b)− ũ ′

1(0, b) ũ ′
1(0, a)− ũ ′

1(z, a)

ũ ′
2(z, b)− ũ ′

2(0, b) ũ ′
2(0, a)− ũ ′

2(z, a)

 , z ∈ ρ(T0,0) ∩ ρ(T0,RK
);

(4.2.30)

in this case one has 0 ∈ σ(T0,RK
). ⋄

4.3 Donoghue m-functions: One Limit Circle Endpoint

In this section we recall the Donoghue m-functions in the case where τ is in

the limit circle case at precisely one endpoint (which we choose to be a without loss

of generality) following [76, Sect. 5].

Hypothesis 4.3.1. In addition to Hypothesis 3.2.1 assume that τ is in the limit circle

case at a and in the limit point case at b. Moreover, for z ∈ ρ(T0), let ψ(z, · )
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denote the unique solution to (τ −z)y = 0 that satisfies ψ(z, · ) ∈ L2((a, b); rdx) and

ψ̃(z, a) = 1.

Assume Hypothesis 4.3.1. By Theorem 3.2.8 or Theorem 3.2.15, the following

statements (i) and (ii) hold.

(i) If γ ∈ [0, π), then the operator Tγ defined by

Tγf = Tmaxf,

f ∈ dom(Tγ) = {g ∈ dom(Tmax) | cos(γ)g̃(a) + sin(γ)g̃ ′(a) = 0},
(4.3.1)

is a self-adjoint extension of Tmin.

(ii) If T is a self-adjoint extension of Tmin, then T = Tγ for some γ ∈ [0, π).

Statements analogous to (i) and (ii) hold if τ is in the limit point case at a and in

the limit circle case at b; for brevity we omit the details.

Choosing γ = 0 in (4.3.1) yields the self-adjoint extension T0 with a Dirichlet-

type boundary condition at a:

dom(T0) = {g ∈ dom(Tmax) | g̃(a) = 0}. (4.3.2)

Since the coefficients p, q, and r are real-valued, the solution ψ(z, · ) has the

following conjugation property:

ψ(z, · ) = ψ(z, · ), z ∈ ρ(T0). (4.3.3)

We now turn to the Donoghue m-function MDo
Tγ ,Ni

( · ) with Tγ any self-adjoint

extension of Tmin (cf. Theorems 5.1 and 5.2 in [76]).

Theorem 4.3.2. Assume Hypothesis 4.3.1 and let γ ∈ [0, π). The Donoghue m-

function MDo
Tγ ,Ni

( · ) : C\R → B(Ni) for Tγ satisfies

MDo
Tγ ,Ni

(±i) = ±iINi
, γ ∈ [0, π),

MDo
T0,Ni

(z) =

[
− i+

ψ̃ ′(z, a)− ψ̃ ′(−i, a)
Im

(
ψ̃ ′(i, a)

) ]
INi

, z ∈ C\R, z ̸= ±i,

MDo
Tγ ,Ni

(z) =MDo
T0,Ni

(z) (4.3.4)
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+ (i− z)
ψ̃ ′(z, a)− ψ̃ ′(−i, a)
cot(γ) + ψ̃ ′(z, a)

(ψ(z, · ), · )L2((a,b);rdx)ψ(i, · )
∣∣∣∣
Ni

,

γ ∈ (0, π), z ∈ C\R, z ̸= ±i.

4.4 The Jacobi Operator and its Donoghue m-functions

We now turn to the principal topic of this chapter, the Jacobi differential

expression

τα,β = −(1− x)−α(1 + x)−β(d/dx)
(
(1− x)α+1(1 + x)β+1

)
(d/dx),

x ∈ (−1, 1), α, β ∈ R,
(4.4.1)

that is, in connection with Section 3.2 one now has

a = −1, b = 1,

p(x) = pα,β(x) = (1− x)α+1(1 + x)β+1, q(x) = qα,β(x) = 0, (4.4.2)

r(x) = rα,β(x) = (1− x)α(1 + x)β, x ∈ (−1, 1), α, β ∈ R

(see, e.g. [1, Ch. 22], [14], [21], [58, Sect. 23], [103, Ch. 4], [121, Sects. VII.6.1,

XIV.2], [152, Ch. 18], [173, Ch. IV]).

L2-realizations of τα,β are thus most naturally associated with the Hilbert

space L2((−1, 1); rα,βdx). However, occasionally the weight function is absorbed

into the Hilbert space leading to an equivalent differential expression in the Hilbert

space L2((−1, 1); dx) (cf. [51, p. 1510–1520], [58, Sect. 37], [89]). For more recent

developments see, for instance, [59], [66], [67], [120], [125].

To decide the limit point/limit circle classification of τα,β at the interval end-

points ±1, it suffices to note that if y1 is a given solution of τy = 0, then a 2nd

linearly independent solution y2 of τy = 0 is obtained via the standard formula

y2(x) = y1(x)

ˆ x

c

dx′ p(x′)−1y1(x
′)−2, c, x ∈ (a, b). (4.4.3)

Returning to the concrete Jacobi case at hand, one can choose

y1(x) = 1, x ∈ (−1, 1),
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y2(x) =

ˆ x

0

dx′ (1− x′)−1−α(1 + x′)−1−β, x ∈ (−1, 1), (4.4.4)

=



2−1−αβ−1(1 + x)−β[1 +O(1 + x)] +O(1), α ∈ R, β ∈ R\{0}, as x ↓ −1,

−2−1−α ln(1 + x) +O(1), α ∈ R, β = 0, as x ↓ −1,

2−1−βα−1(1− x)−α[1 +O(1− x)] +O(1), α ∈ R\{0}, β ∈ R, as x ↑ +1,

−2−1−β ln(1− x) +O(1), α = 0, β ∈ R, as x ↑ +1.

Thus, one has the classification,

τα,β is



regular at −1 if and only if α ∈ R, β ∈ (−1, 0),

in the limit circle case and singular at −1 if and only if

α ∈ R, β ∈ [0, 1),

in the limit point case at −1 if and only if α ∈ R, β ∈ R\(−1, 1),

regular at +1 if and only if α ∈ (−1, 0), β ∈ R,

in the limit circle case and singular at +1 if and only if

α ∈ [0, 1), β ∈ R,

in the limit point case at +1 if and only if α ∈ R\(−1, 1), β ∈ R.
(4.4.5)

The maximal and preminimal operators, Tmax,α,β and Tmin,0,α,β, associated to τα,β in

L2((−1, 1); rα,βdx) are then given by

Tmax,α,βf = τα,βf,

f ∈ dom(Tmax,α,β) =
{
g ∈ L2((−1, 1); rα,βdx)

∣∣ g, g[1] ∈ ACloc((−1, 1));

τα,βg ∈ L2((−1, 1); rα,βdx)
}
, (4.4.6)

and

Tmin,0,α,βf = τα,βf,

f ∈ dom(Tmin,0,α,β) =
{
g ∈ L2((−1, 1); rα,βdx)

∣∣ g, g[1] ∈ ACloc((−1, 1)); (4.4.7)
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supp (g) ⊂ (−1, 1) is compact; τα,βg ∈ L2((−1, 1); rα,βdx)
}
.

The fact (4.4.4) naturally leads to principal and nonprincipal solutions u±1,α,β(0, x)

and û±1,α,β(0, x) of τα,βy = 0 near ±1 as follows:

u−1,α,β(0, x) =


−2−α−1β−1(1 + x)−β[1 +O(1 + x)], β ∈ (−∞, 0),

1, β ∈ [0,∞),

û−1,α,β(0, x) =


1, β ∈ (−∞, 0),

−2−α−1 ln((1 + x)/2), β = 0,

2−α−1β−1(1 + x)−β[1 +O(1 + x)], β ∈ (0,∞),

α ∈ R,

(4.4.8)

and

u+1,α,β(0, x) =


2−β−1α−1(1− x)−α[1 +O(1− x)], α ∈ (−∞, 0),

1, α ∈ [0,∞),

û+1,α,β(0, x) =


1, α ∈ (−∞, 0),

2−β−1 ln((1− x)/2), α = 0,

−2−β−1α−1(1− x)−α[1 +O(1− x)], α ∈ (0,∞),

β ∈ R.

(4.4.9)

Combining the fact (4.4.5) with Theorem 3.2.5, Tmin,0,α,β is essentially self-

adjoint in L2((−1, 1); rα,βdx) if and only if α, β ∈ R\(−1, 1). Thus, boundary values

for Tmax,α,β at −1 exist if and only if α ∈ R, β ∈ (−1, 1), and similarly, boundary

values for Tmax,α,β at +1 exist if and only if α ∈ (−1, 1), β ∈ R.
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Employing the principal and nonprincipal solutions (4.4.8), (4.4.9) at ±1, gen-

eralized boundary values for g ∈ dom(Tmax,α,β) are of the form

g̃(−1) =


g(−1), β ∈ (−1, 0),

−2α+1 limx↓−1 g(x)/ ln((1 + x)/2), β = 0,

β2α+1 limx↓−1(1 + x)βg(x), β ∈ (0, 1),

g̃ ′(−1) =


g[1](−1), β ∈ (−1, 0),

limx↓−1

[
g(x) + g̃(−1)2−α−1 ln((1 + x)/2)

]
, β = 0,

limx↓−1

[
g(x)− g̃(−1)2−α−1β−1(1 + x)−β

]
, β ∈ (0, 1),

α ∈ R,

(4.4.10)

g̃(1) =


g(1), α ∈ (−1, 0),

2β+1 limx↑1 g(x)/ ln((1− x)/2), α = 0,

−α2β+1 limx↑1(1− x)αg(x), α ∈ (0, 1),

g̃ ′(1) =


g[1](1), α ∈ (−1, 0),

limx↑1
[
g(x)− g̃(1)2−β−1 ln((1− x)/2)

]
, α = 0,

limx↑1
[
g(x) + g̃(1)2−β−1α−1(1− x)−α

]
, α ∈ (0, 1),

β ∈ R.

(4.4.11)

As a result, the minimal operator Tmin associated to τα,β, that is, Tmin = Tmin,0,

is thus given by

Tmin,α,βf = τα,βf,

f ∈ dom(Tmin,α,β) =
{
g ∈ L2((−1, 1); rα,βdx)

∣∣ g, g[1] ∈ ACloc((−1, 1)); (4.4.12)

g̃(−1) = g̃ ′(−1) = g̃(1) = g̃ ′(1) = 0; τα,βg ∈ L2((−1, 1); rα,βdx)
}
.

For a detailed treatment of solutions of the Jacobi differential equation and

the associated hypergeometric differential equations we refer to Sections 4.5–4.7.

120



Remark 4.4.1. We now mention a few special cases of interest. The Legendre equa-

tion (α = β = 0) has frequently been discussed in the literature, see, for instance, [75]

and the extensive list of references cited therein. The Gegenbauer, or ultraspherical,

equation (see, e.g., [1, Ch. 22], [152, Ch. 18], [173, Ch. IV]) can be realized by

choosing the parameters α = β = µ − 1/2, noting at the endpoints x = ±1, τµ is

regular for µ ∈ (−1/2, 1/2), in the limit circle case and singular for µ ∈ [1/2, 3/2),

and in the limit point case for µ ∈ R\(−1/2, 3/2). The Chebyshev equations of the

first and second kinds are two more important special cases, with the first kind real-

ized by choosing µ = 0 in the Gegenbauer equation, or α = β = −1/2 in the Jacobi

equation (see, e.g., [1, Ch. 22], [152, Ch. 18], [173, Ch. IV]), whereas the second

kind is realized by choosing µ = 1 in the Gegenbauer equation, or α = β = 1/2 in

the Jacobi equation (see, e.g., [1, Ch. 22], [152, Ch. 18], [173, Ch. IV]). ⋄

We now determine the solutions ϕ0,α,β(z, · ) and θ0,α,β(z, · ) of τα,βu = zu, z ∈

C, that are subject to the conditions

ϕ̃0,α,β(z,−1) = 0, ϕ̃ ′
0,α,β(z,−1) = 1,

θ̃0,α,β(z,−1) = 1, θ̃ ′
0,α,β(z,−1) = 0.

(4.4.13)

In particular, one obtains from (4.7.1),

ϕ0,α,β(z, x) =


−2−α−1β−1y2,α,β,−1(z, x), β ∈ (−1, 0),

y1,α,β,−1(z, x), β ∈ [0, 1),

θ0,α,β(z, x) =


y1,α,β,−1(z, x), β ∈ (−1, 0),

−2−α−1y2,α,0,−1(z, x), β = 0,

2−α−1β−1y2,α,β,−1(z, x), β ∈ (0, 1),

α ∈ R, z ∈ C, x ∈ (−1, 1).

(4.4.14)
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4.4.1 The Regular and Limit Circle Case α, β ∈ (−1, 1)

In this section we compute the Donoghue m-function when the Jacobi problem

considered is either in the regular or limit circle case at ±1.

Using (4.4.13), the solutions in (4.2.1) for this example are given by

u1,α,β(z, x) = ϕ0,α,β(z, x)/ϕ̃0,α,β(z, 1)

=


y2,α,β,−1(z, x)/ỹ2,α,β,−1(z, 1), β ∈ (−1, 0),

y1,α,β,−1(z, x)/ỹ1,α,β,−1(z, 1), β ∈ [0, 1),

(4.4.15)

u2,α,β(z, x) = θ0,α,β(z, x)− [θ̃0,α,β(z, 1)/ϕ̃0,α,β(z, 1)]ϕ0,α,β(z, x)

=



y1,α,β,−1(z, x)− [ỹ1,α,β,−1(z, 1)/ỹ2,α,β,−1(z, 1)]y2,α,β,−1(z, x),

β ∈ (−1, 0),

−2−α−1{y2,α,0,−1(z, x)− [ỹ2,α,0,−1(z, 1)/ỹ1,α,0,−1(z, 1)]y1,α,0,−1(z, x)},

β = 0,

2−α−1β−1{y2,α,β,−1(z, x)− [ỹ2,α,β,−1(z, 1)/ỹ1,α,β,−1(z, 1)]y1,α,β,−1(z, x)},

β ∈ (0, 1),

α ∈ (−1, 1), z ∈ C, x ∈ (−1, 1),

where the generalized boundary values are given in (4.7.2)–(4.7.4). Hence substitut-

ing (4.4.15) into (4.2.8)–(4.2.11) and applying Theorem 4.2.2 yields the (Nevanlinna–

Herglotz) Donoghuem-functionMDo
TA,B,α,β ,Ni

( · ) for any self-adjoint extension TA,B,α,β

of Tmin with α, β ∈ (−1, 1).

As an example of coupled boundary conditions, we consider the Krein–von

Neumann extension following Example 4.3 found in [68]. For α, β ∈ (−1, 1), the

following five cases are associated with a strictly positive minimal operator Tmin,α,β

and we now provide the corresponding choices of RK,α,β for the Krein–von Neumann
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extension T0,RK ,α,β of Tmin,α,β:

T0,RK ,α,βf = τα,βf, (4.4.16)

f ∈ dom(T0,RK ,α,β) =

{
g ∈ dom(Tmax,α,β)

∣∣∣∣
 g̃(1)

g̃ ′(1)

 = RK,α,β

 g̃(−1)

g̃ ′(−1)

}
,

RK,α,β =



1 2−α−β−1Γ(−α)Γ(−β)
Γ(−α− β)

0 1

 , α, β ∈ (−1, 0),

−2−α−β−1Γ(−α)Γ(−β)
Γ(−α− β)

1

−1 0

 , α ∈ (−1, 0), β ∈ (0, 1),

0 −1

1 2−α−β−1Γ(−α)Γ(−β)
Γ(−α− β)

 , α ∈ (0, 1), β ∈ (−1, 0),

0 −1

1 −2−β−1[γE + ψ(−β)]

 , α = 0, β ∈ (−1, 0)

2−α−1[γE + ψ(−α)] 1

−1 0

 , α ∈ (−1, 0), β = 0,

(4.4.17)

where we interpret 1/Γ(0) = 0, ψ( · ) = Γ′( · )/Γ( · ) denotes the Digamma function,

and γE = −ψ(1) = 0.57721 . . . represents Euler’s constant. Obviously, det(RK,α,β) =

1 in all five cases. Furthermore, as R1,2 ̸= 0 for each case, Theorem 4.2.2 (ii)

applies and one obtains the Donoghue m-function MDo
T0,RK,α,β ,Ni

( · ) for the Krein–

von Neumann extension T0,RK ,α,β by utilizing (4.4.15) and (4.4.17) as well as the

explicit form of K0,RK
( · ) in (4.2.30). We note once again that MDo

T0,RK,α,β ,Ni
( · ) is a

Nevanlinna–Herglotz function.

In the remaining four cases not covered by (4.4.17), given by all combinations

of α = 0, β = 0, α ∈ (0, 1), and β ∈ (0, 1), one observes that [68, Theorem 3.5] is

not applicable as the underlying minimal operator, Tmin,α,β, is nonnegative but not
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strictly positive. In particular, the Jacobi polynomials satisfy Friedrichs boundary

conditions for α, β ∈ [0, 1), hence 0 ∈ σ(TF,α,β), α, β ∈ [0, 1) and Tmin,α,β ⩾ 0 is

nonnegative, but not strictly positive when α, β ∈ [0, 1).

4.4.2 Precisely One Interval Endpoint in the Limit Point Case

In this section we determine the Donoghue m-function in all situations where

precisely one interval endpoint is in the limit point case. We will focus on the case

when α ∈ (−∞,−1] or α ∈ [1,∞), so that the right endpoint x = 1 represents the

limit point case. The converse situation can be obtained by reflection with respect

to the origin (i.e., considering the transform (−1, 1) ∋ x 7→ −x ∈ (−1, 1)).

We recall from [75, Sect. 6] that the Weyl–Titchmarsh–Kodaira solution and

m-function corresponding to the Friedrichs (resp., Dirichlet) boundary condition at

x = −1 is determined via the requirement

ψ0,α,β(z, · ) = θ0,α,β(z, · ) +m0,α,β(z)ϕ0,α,β(z, · ) ∈ L2((c, 1); rα,βdx),

z ∈ C\σ(TF,α,β), α ∈ (−∞,−1] ∪ [1,∞), β ∈ (−1, 1), c ∈ (−1, 1).

(4.4.18)

In particular, since ψ̃ ′
0,α,β(z,−1) = m0,α,β(z) one finds from Theorem 4.3.2,

MDo
T0,α,β ,Ni

(z) =

[
− i+

m0,α,β(z)−m0,α,β(−i)
Im(m0,α,β(i))

]
INi

,

MDo
Tγ,α,β ,Ni

(z) =MDo
T0,α,β ,Ni

(z) + (i− z)
m0,α,β(z)−m0,α,β(−i)
cot(γ) +m0,α,β(z)

× (ψ0,α,β(z, · ), · )L2((a,b);rdx)ψ0,α,β(i, · )
∣∣
Ni
, γ ∈ (0, π),

α ∈ (−∞,−1] ∪ [1,∞), β ∈ (−1, 1), z ∈ C\R,

(4.4.19)

where ψ0,α,β(z, · ) and m0,α,β(z, · ) are given by the following:
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(I) The Case α ∈ [1,∞) and β ∈ (−1, 0):

ψ0,α,β(z, x) = y1,α,β,−1(z, x)− 2−α−1β−1y2,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = 21+α+ββ
Γ(1 + β)

Γ(1− β)

× Γ([1 + α− β + σα,β(z)]/2)Γ([1 + α− β − σα,β(z)]/2)

Γ([1 + α + β + σα,β(z)]/2)Γ([1 + α + β − σα,β(z)]/2)
,

z ∈ ρ(TF,α,β), α ∈ [1,∞), β ∈ (−1, 0),

σ(TF,α,β) = {(n− β)(n+ 1 + α)}n∈N0 , α ∈ [1,∞), β ∈ (−1, 0),

(4.4.20)

with

σα,β(z) =
[
(1 + α + β)2 + 4z

]1/2
. (4.4.21)

(II) The Case α ∈ [1,∞) and β = 0:

ψ0,α,0(z, x) = −2−α−1y2,α,0,−1(z, x) + y1,α,0,−1(z, x)m0,α,0(z),

m0,α,0(z) = −2−α−1{2γE + ψ([1 + α + σα,0(z)]/2) + ψ([1 + α− σα,0(z)]/2)},

z ∈ ρ(TF,α,0), α ∈ [1,∞), β = 0,

σ(TF,α,0) = {n(n+ 1 + α)}n∈N0 , α ∈ [1,∞), β = 0. (4.4.22)

(III) The Case α ∈ [1,∞) and β ∈ (0, 1):

ψ0,α,β(z, x) = 2−α−1β−1y2,α,β,−1(z, x) + y1,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = β−12−1−α−β−Γ(1− β)

Γ(1 + β)

× Γ([1 + α + β + σα,β(z)]/2)Γ([1 + α + β − σα,β(z)]/2)

Γ([1 + α− β + σα,β(z)]/2)Γ((1 + α− β − σα,β(z))/2)
,

z ∈ ρ(TF,α,β), α ∈ [1,∞), β ∈ (0, 1),

σ(TF,α,β) = {n(n+ 1 + α + β)}n∈N0 , α ∈ [1,∞), β ∈ (0, 1).

(4.4.23)
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(IV) The Case α ∈ (−∞,−1] and β ∈ (−1, 0):

ψ0,α,β(z, x) = y1,α,β,−1(z, x)− 2−α−1β−1y2,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = 21+α+ββ
Γ(1 + β)

Γ(1− β)

× Γ([1− α− β + σα,β(z)]/2)Γ([1− α− β − σα,β(z)]/2)

Γ([1 + β − α + σα,β(z)]/2)Γ([1 + β − α− σα,β(z)]/2)
,

z ∈ ρ(TF,α,β), α ∈ (−∞,−1], β ∈ (−1, 0),

σ(TF,α,β) = {(n− α− β)(n+ 1)}n∈N0 , α ∈ (−∞,−1], β ∈ (−1, 0).

(4.4.24)

(V) The Case α ∈ (−∞,−1] and β = 0:

ψ0,α,0(z, x) = −2−α−1y2,α,0,−1(z, x) + y1,α,0,−1(z, x)m0,α,0(z),

m0,α,0(z) = −2−α−1{2γE + ψ([1− α + σα,0(z)]/2) + ψ([1− α− σα,0(z)]/2)},

z ∈ ρ(TF,α,0), α ∈ (−∞,−1], β = 0,

σ(TF,α,0) = {(n− α)(n+ 1)}n∈N0 , α ∈ (−∞,−1], β = 0. (4.4.25)

(VI) The Case α ∈ (−∞,−1] and β ∈ (0, 1):

ψ0,α,β(z, x) = 2−α−1β−1y2,α,β,−1(z, x) + y1,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = −β−12−1−α−βΓ(1− β)

Γ(1 + β)

× Γ([1 + β − α + σα,β(z)]/2)Γ([1 + β − α− σα,β(z)]/2)

Γ([1− α− β + σα,β(z)]/2)Γ([1− α− β − σα,β(z)]/2)
,

z ∈ ρ(TF,α,β), α ∈ (−∞,−1], β ∈ (0, 1),

σ(TF,α,β) = {(n− α)(n+ 1 + β)}n∈N0 , α ∈ (−∞,−1], β ∈ (0, 1).

(4.4.26)

4.5 The Hypergeometric and Jacobi Differential Equations

In this section we provide the connection between the hypergeometric differ-

ential equation (cf. [1, Sect. 15.5])

ξ(1− ξ)
..
w(ξ) + [c− (a+ b+ 1)ξ]

.
w(ξ)− abw(ξ) = 0, ξ ∈ (0, 1), (4.5.1)
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(where . = d/dξ) and the Jacobi differential equation

τα,βy(z, x) = −(1− x2)y′′(z, x) + [α− β + (α + β + 2)x]y′(z, x) = zy(z, x),

α, β ∈ R, x ∈ (−1, 1),

(4.5.2)

(where ′ = d/dx). Making the substitution ξ = (1 + x)/2 in (4.5.2) yields

ξ(1− ξ)
..
y (z, ξ) + [β + 1− (α + β + 2)ξ]

.
y(z, ξ) + zy(z, ξ) = 0,

α, β ∈ R, ξ ∈ (0, 1),

(4.5.3)

which is equal to (4.5.1) once one identifies,

a = [1 + α + β + σα,β(z)]/2, b = [1 + α + β − σα,β(z)]/2, c = 1 + β,

σα,β(z) =
[
(1 + α + β)2 + 4z

]1/2
. (4.5.4)

At the endpoint x = −1 of the Jacobi equation the substitution used to arrive

at (4.5.3) yields ξ = 0, hence we next consider solutions of (4.5.1) near ξ = 0

(cf. [1, Eqs. 15.5.3, 15.5.4]) (analogous solutions near ξ = 1 are found in (4.5.13))

w1,0(ξ) = F (a, b; c; ξ) =
∑
n∈N0

(a)n(b)n
(c)n

ξn

n!
, a, b ∈ C, c ∈ C\(−N0),

w2,0(ξ) = ξ1−cF (a− c+ 1, b− c+ 1; 2− c; ξ), a, b ∈ C, (c− 1) ∈ C\N, (4.5.5)

ξ ∈ (0, 1).

Here F ( · , · ; · ; · ) (frequently written as 2F1( · , · ; · ; · )) denotes the hypergeometric

function (see, e.g., [1, Ch. 15]), ψ( · ) = Γ′( · )/Γ( · ) the Digamma function, γE =

−ψ(1) = 0.57721 . . . represents Euler’s constant, and

(ζ)0 = 1, (ζ)n = Γ(ζ + n)/Γ(ζ), n ∈ N, ζ ∈ C\(−N0), (4.5.6)

abbreviates Pochhammer’s symbol (see, e.g., [1, Ch. 6]).

In addition,

w1,0 and w2,0 are linearly independent if c ∈ C\Z, (4.5.7)

which can be seen by noticing the different behaviors of w1,0(ξ), w2,0(ξ) around ξ = 0.

One notes that only the case c = 1 + β ∈ (0, 2) is needed. Thus, for c = 1 we will
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use instead

w1,0(ξ) = F (a, b; 1; ξ), a, b ∈ C,

wln
2,0(ξ) = F (a, b; 1; ξ) ln(ξ) +

∑
n∈N

(a)n(b)n
(n!)2

ξn (4.5.8)

× [ψ(a+ n)− ψ(a) + ψ(b+ n)− ψ(b)− 2ψ(n+ 1)− 2γE], a, b ∈ C\(−N0),

ξ ∈ (0, 1),

where the superscipt “ln” indicates the presence of a logarithmic term (familiar from

Frobenius theory).

Using (4.5.4) in formulas (4.5.5) and (4.5.8), one obtains for the solutions of

the Jacobi differential equation τα,βy(z, · ) = zy(z, · ) (cf. (4.5.2)) near x = −1,

y1,α,β,−1(z, x) = F (aα,β,σα,β(z), aα,β,−σα,β(z); 1 + β; (1 + x)/2), (4.5.9)

β ∈ R\(−N),

y2,α,β,−1(z, x) = (1 + x)−βF (aα,−β,σα,β(z), aα,−β,−σα,β(z); 1− β; (1 + x)/2),

β ∈ R\N0, (4.5.10)

y2,α,0,−1(z, x) = F (aα,0,σα,0(z), aα,0,−σα,0(z); 1; (1 + x)/2) ln((1 + x)/2)

+
∑
n∈N

(aα,0,σα,0(z))n(aα,0,−σα,0(z))n

2n(n!)2
(1 + x)n (4.5.11)

× [ψ(aα,0,σα,0(z) + n)− ψ(aα,0,σα,0(z)) + ψ(aα,0,−σα,0(z) + n)

− ψ(aα,0,−σα,0(z))− 2ψ(n+ 1)− 2γE], β = 0,

α ∈ R, z ∈ C, x ∈ (−1, 1),

where we abbreviated

aµ,ν,±σ = [1 + µ+ ν ± σ]/2, µ, ν, σ ∈ C. (4.5.12)

Again one observes that for z ∈ C, y1,α,β,−1(z, · ) and y2,α,β,−1(z, · ) are lin-

early independent for α ∈ R, β ∈ R\Z. Similarly, for z ∈ C, y1,α,0,−1(z, · ) and

y2,α,0,−1(z, · ) are linearly independent for α ∈ R.
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In precisely the same manner additional solutions of (4.5.1) are given by

w1,1(ξ) = F (a, b; a+ b− c+ 1; 1− ξ), a, b ∈ C, c− a− b ∈ C\N,

w2,1(ξ) = (1− ξ)c−a−bF (c− a, c− b; c− a− b+ 1; 1− ξ), (4.5.13)

a, b ∈ C, a+ b− c ∈ C\N,

and for a+ b− c = 0,

w1,1(ξ) = F (a, b; 1; 1− ξ), a, b ∈ C,

wln
2,1(ξ) = F (a, b; 1; 1− ξ) ln(1− ξ) +

∑
n∈N

(a)n(b)n
(n!)2

(1− ξ)n (4.5.14)

× [ψ(a+ n)− ψ(a) + ψ(b+ n)− ψ(b)− 2ψ(n+ 1)− 2γE],

a, b ∈ C, ξ ∈ (0, 1),

which are obtained from (4.5.5) and (4.5.8) by the change of variables

(a, b, c, ξ) → (a, b, a+ b− c+ 1, 1− ξ). (4.5.15)

Together with the identification x = (1 + ξ)/2 and (4.5.4) one obtains the following

solutions of τα,βy(z, · ) = zy(z, · ) near x = +1,

y1,α,β,+1(z, x) = F (aα,β,σα,β(z), aα,β,−σα,β(z); 1 + α; (1− x)/2), (4.5.16)

α ∈ R\(−N),

y2,α,β,+1(z, x) = (1− x)−αF (a−α,β,σα,β(z), a−α,β,−σα,β(z); 1− α; (1− x)/2)

α ∈ R\N, (4.5.17)

y2,0,β,+1(z, x) = F (a0,β,σ0,β(z), a0,β,−σ0,β(z); 1; (1− x)/2) ln((1− x)/2)

+
∑
n∈N

(a0,β,σ0,β(z))n(a0,β,−σ0,β(z))n

2n(n!)2
(1− x)n (4.5.18)

× [ψ(a0,β,σ0,β(z) + n)− ψ(a0,β,σ0,β(z)) + ψ(a0,β,−σ0,β(z) + n)

− ψ(a0,β,−σ0,β(z))− 2ψ(n+ 1)− 2γE], α = 0,

β ∈ R, z ∈ C, x ∈ (−1, 1).
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Again, for z ∈ C, y1,α,β,+1(z, · ) and y2,α,β,+1(z, · ) are linearly independent for α ∈

R\Z, β ∈ R. Similarly, for z ∈ C, y1,0,β,+1(z, · ) and y2,0,β,+1(z, · ) are linearly

independent for β ∈ R.

In the limit point case at x = 1, where α ∈ (−∞,−1]∪ [1,∞), one only needs

the principal solutions, which are y1,α,β,+1(z, · ) for α ⩾ 1 and y2,α,β,+1(z, · ) for

α ⩽ −1. Thus, one concludes from (4.5.16) and (4.5.17) that these case are already

covered, and one does not have to define an additional solution for α ∈ Z\{0}.

Since (aα,β,σα,β(z))n(aα,β,−σα,β(z))n, n ∈ N0, depends polynomially on z ∈ C, one

infers that

for fixed x ∈ (0, 1), yj,α,β,±1(z, x), j = 1, 2, are entire with respect to z ∈ C.

(4.5.19)

Moreover yj,α,β,±1(z, x) satisfy the relations (cf. (4.5.28))

y1,α,β,−1(z, x) = (1 + x)−βy2,α,−β,−1(z + (1 + α)β, x), (4.5.20)

α ∈ R, β ∈ R\{0},

y2,α,β,−1(z, x) = (1 + x)−βy1,α,−β,−1(z + (1 + α)β, x), (4.5.21)

α ∈ R, β ∈ R\{0},

y1,α,β,+1(z, x) = (1− x)−αy2,−α,β,+1(z + (1 + β)α, x), (4.5.22)

α ∈ R\{0}, β ∈ R,

y2,α,β,+1(z, x) = (1− x)−αy1,−α,β,+1(z + (1 + β)α, x), (4.5.23)

α ∈ R\{0}, β ∈ R,

where we used the fact

σα,β(z) =


σα,−β(z + (1 + α)β),

σ−α,β(z + (1 + β)α),

σ−α,−β(z + α + β).

(4.5.24)
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Remark 4.5.1. We conclude this section by briefly discussing Jacobi polynomials and

quasi-rational eigenfunctions. The nth Jacobi polynomial is defined as (see [151, Eq.

18.5.7])

Pα,β
n (x) :=

(α + 1)n
n!

F (−n, n+ α + β + 1;α + 1; (1− x)/2),

n ∈ N0, −α /∈ N, (−n− α− β − 1) /∈ N,
(4.5.25)

and can be defined by continuity for all parameters α, β ∈ R. Note that Pα,β
n (x)

is a polynomial of degree at most n, and has strictly smaller degree if and only if

−n− α− β ∈ {1, . . . , n} (cf. [173, p. 64]). It satisfies the equation

τα,βP
α,β
n (x) = λα,βn Pα,β

n (x), (4.5.26)

with

λα,βn := n(n+ 1 + α + β). (4.5.27)

In particular, one can verify that the Jacobi polynomials are solutions of the Jacobi

differential equation (4.5.2) with Neumann boundary conditions at x = +1 (resp.

x = −1) if α ∈ (−1, 0) (resp. β ∈ (−1, 0)) and Friedrichs boundary conditions if

α ⩾ 0 (resp. β ⩾ 0).

More generally, all quasi-rational solutions, meaning the logarithmic derivative

being rational, can be derived from the the Jacobi polynomials together with

(1 + x)−β ◦ τα,−β ◦ (1 + x)β = τα,β + (1 + α)β,

(1− x)−α ◦ τ−α,β ◦ (1− x)α = τα,β + (1 + β)α, (4.5.28)

(1− x)−α(1 + x)−β ◦ τ−α,−β ◦ (1− x)α(1 + x)β = τα,β + α + β,

where (1+x)±β and (1−x)±α are regarded as formal multiplication operators. This

is summarized in Table 4.1, which is taken from [22]. Here (1−x)−αP−α,β
n (x) satisfy

at x = +1 the Friedrichs boundary condition for α ⩽ 0 and Neumann for α ∈ (0, 1),

while at x = −1 they satisfy the Friedrichs for β ⩾ 0 and Neumann for β ∈ (−1, 0).

For (1 + x)−βPα,−β
n (x) the roles of α and β interchange compared to the last case,
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Table 4.1. Formal quasi-rational eigensolutions of τα,β

Eigenfunctions Eigenvalues

Pα,β
n (x) n(n+ 1 + α + β)

(1− x)−αP−α,β
n (x) n(n+ 1− α + β)− α(1 + β)

(1 + x)−βPα,−β
n (x) n(n+ 1 + α− β)− β(1 + α)

(1− x)−α(1 + x)−βP−α,−β
n (x) n(n+ 1− α− β)− (α + β)

meaning Friedrichs at x = +1 for α ⩾ 0, Neumann for α ∈ (−1, 0), and at x = −1,

Friedrichs for β ⩽ 0, Neumann for β ∈ (0, 1). Finally (1− x)−α(1 + x)−βP−α,−β
n (x)

satisfy at x = +1 (resp. x = −1) the Friedrichs boundary condition for α ⩽ 0 (resp.

β ⩽ 0) and Neumann for α ∈ (0, 1) (resp. β ∈ (0, 1)). ⋄

4.6 Connection Formulas

In this section we provide the connection formulas utilized to find the solution

behaviors in Section 4.7. We express them using w1,0(ξ) and w2,0(ξ)
(
wln

2,0(ξ)
)
and

their analogs w1,1(ξ) and w2,1(ξ)
(
wln

2,1(ξ)
)
at the endpoint ξ = 1.

We recall the relations (4.5.4) connecting the parameters a, b, c and α, β.

(I) The case α ∈ R\Z, β ∈ (−1, 1)\{0}, that is, c ∈ (0, 2)\{1}, a+ b− c ∈ R\Z :

The two connection formulas are given by (cf. [152, Eq. 15.10.21–22])

w1,0(ξ) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
w1,1(ξ) +

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
w2,1(ξ), (4.6.1)

w2,0(ξ) =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
w1,1(ξ) +

Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
w2,1(ξ). (4.6.2)

One notes that poles occur on the right-hand side of (4.6.1), (4.6.2) whenever (a+b−

c) ∈ Z. Using (4.5.15) one can also express w1,1(ξ) or w2,1(ξ) as a linear combination

of w1,0(ξ) and w2,0(ξ):

w1,1(ξ) =
Γ(a+ b− c+ 1)Γ(1− c)

Γ(a− c+ 1)Γ(b− c+ 1)
w1,0(ξ) +

Γ(a+ b− c+ 1)Γ(c− 1)

Γ(a)Γ(b)
w2,0(ξ),

(4.6.3)
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w2,1(ξ) =
Γ(1 + c− a− b)Γ(1− c)

Γ(1− a)Γ(1− b)
w1,0(ξ) +

Γ(1 + c− a− b)Γ(c− 1)

Γ(c− a)Γ(c− b)
w2,0(ξ),

(4.6.4)

though, in the following we shall only write down one pair of connection formulas

for brevity.

(II) The case α = 0, β ∈ R\Z, that is, c ∈ R\Z, a+ b = c :

The solution w1,0(ξ) = F (a, b; a+b; ξ) can be expanded at ξ = 1 (cf. [1, Eq. 15.3.10]):

F (a, b; a+ b; ξ) =
Γ(a+ b)

Γ(a)Γ(b)

∑
n∈N0

(a)n(b)n
(n!)2

[2ψ(n+ 1)− ψ(a+ n)− ψ(b+ n)

− ln(1− ξ)](1− ξ)n.

(4.6.5)

Meanwhile, two linearly independent solutions at ξ = 1 are taken from (4.5.14).

The connection formula for w1,1(ξ) is given by (4.6.3) with a + b = c. To obtain a

second connection formula one compares the expansion of wln
2,1(ξ) at ξ = 1 with the

expansion of F (a, b; a+ b; ξ) at ξ = 1, using (4.6.5), and then obtains

wln
2,1(ξ) =− [ψ(1− a) + ψ(1− b) + 2γE]

Γ(1− a− b)

Γ(1− a)Γ(1− b)
w1,0(ξ)

− [ψ(a) + ψ(b) + 2γE]
Γ(a+ b− 1)

Γ(a)Γ(b)
w2,0(ξ). (4.6.6)

(III) The case α ∈ R\Z, β = 0, that is, c = 1, a+ b ∈ R\Z :

This case is analogous to the previous case, with the roles of α and β interchanged.

Concretely, this means that the connection formulas (4.6.5) and (4.6.6) must be

changed through the renaming (4.5.15) with c→ a+ b− c+ 1 = a+ b, as c = 1. As

c does not appear in (4.6.5) and (4.6.6) (it was eliminated via c = a + b), one can

adopt the aforementioned formulas directly, only changing the second index in the

w’s

w1,0(ξ) =
Γ(1− a− b)

Γ(1− a)Γ(1− b)
w1,1(ξ) +

Γ(a+ b− 1)

Γ(a)Γ(b)
w2,1(ξ), (4.6.7)

wln
2,0(ξ) = −[ψ(1− a) + ψ(1− b) + 2γE]

Γ(1− a− b)

Γ(1− a)Γ(1− b)
w1,1(ξ)
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− [ψ(a) + ψ(b) + 2γE]
Γ(a+ b− 1)

Γ(a)Γ(b)
w2,1(ξ). (4.6.8)

(IV) The case α = β = 0, that is, a+ b = c = 1 :

For α = 0 and β = 0 the Jacobi differential expression (4.4.1) becomes the Legendre

differential expression. Since this case was treated in detail in [75], we shall only

present the connection formulas for completeness.

The special solutions w1,i(ξ) and w
ln
2,i(ξ) for i = 1, 2 are given by (4.5.8) and

(4.5.14), respectively. Note that the following relations hold

w1,1(ξ) = w1,0(1− ξ), wln
2,1(ξ) = wln

2,0(1− ξ). (4.6.9)

Using [1, Eq. 15.3.10] together with w1,0(ξ) = F (a, b; a + b; ξ) and Euler’s famous

reflection formula, Γ(z)Γ(1− z) = π csc(πz) (cf. [1, Eq. 6.1.17]), one obtains

w1,0(ξ) = −π−1 sin(πa)
(
[ψ(a) + ψ(b) + 2γE]w1,1(ξ) + wln

2,1(ξ)
)
. (4.6.10)

The two relations (4.6.9) immediately imply

w1,1(ξ) = −π−1 sin(πa)
(
[ψ(a) + ψ(b) + 2γE]w1,0(ξ) + wln

2,0(ξ)
)
, (4.6.11)

wln
2,1(ξ) = π−1 sin(πa)

[(
[ψ(a) + ψ(b) + 2γE]

2 − π2[sin(πa)]−2
)
w1,0(ξ)

+ [ψ(a) + ψ(b) + 2γE]w
ln
2,0(ξ)

]
. (4.6.12)

134



4.7 Behavior of yj,α,β,∓1(z, x), j = 1, 2, near x = ±1

In this section we focus on the generalized boundary values for the solutions

yj,α,β,−1(z, x), j = 1, 2 at x = ∓1. One obtains for z ∈ C,

ỹ1,α,β,−1(z,−1) =


1, β ∈ (−1, 0),

0, β = 0,

0, β ∈ (0, 1),

ỹ ′
1,α,β,−1(z,−1) =


0, β ∈ (−1, 0),

1, β = 0,

1, β ∈ (0, 1),

ỹ2,α,β,−1(z,−1) =


0, β ∈ (−1, 0),

−2α+1, β = 0,

β2α+1, β ∈ (0, 1),

ỹ ′
2,α,β,−1(z,−1) =


−β2α+1, β ∈ (−1, 0),

0, β = 0,

0, β ∈ (0, 1),

α ∈ R, (4.7.1)

and employing connection formulas for the endpoint x = +1,

ỹ1,α,β,−1(z, 1) =


Γ(1 + β)Γ(−α)

Γ(a−α,β,σα,β(z))Γ(a−α,β,−σα,β(z))
, α ∈ (−1, 0),

−21+α+βΓ(1 + α)Γ(1 + β)

Γ(aα,β,σα,β(z))Γ(aα,β,−σα,β(z))
, α ∈ [0, 1),
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ỹ ′
1,α,β,−1(z, 1) =



21+α+βΓ(1 + α)Γ(1 + β)

Γ(aα,β,σα,β(z))Γ(aα,β,−σα,β(z))
, α ∈ (−1, 0),

−Γ(1 + β)

Γ(a0,β,σ0,β(z))Γ(a0,β,−σ0,β(z))
[2γE

+ψ(a0,β,σ0,β(z)) + ψ(a0,β,−σ0,β(z))], α = 0,

Γ(1 + β)Γ(−α)
Γ(a−α,β,σα,β(z))Γ(a−α,β,−σα,β(z))

, α ∈ (0, 1),

β ∈ (−1, 1), (4.7.2)

ỹ2,α,β,−1(z, 1) =


2−βΓ(1− β)Γ(−α)

Γ(a−α,−β,σα,β(z))Γ(a−α,−β,−σα,β(z))
, α ∈ (−1, 0),

−2α+1Γ(1 + α)Γ(1− β)

Γ(aα,−β,σα,β(z))Γ(aα,−β,−σα,β(z))
, α ∈ [0, 1),

ỹ ′
2,α,β,−1(z, 1) =



2α+1Γ(1 + α)Γ(1− β)

Γ(aα,−β,σα,β(z))Γ(aα,−β,−σα,β(z))
, α ∈ (−1, 0),

−2−βΓ(1− β)

Γ(a0,−β,σ0,β(z))Γ(a0,−β,−σ0,β(z))
[2γE

+ψ(a0,−β,σ0,β(z)) + ψ(a0,−β,−σ0,β(z))], α = 0,

2−βΓ(1− β)Γ(−α)
Γ(a−α,−β,σα,β(z))Γ(a−α,−β,−σα,β(z))

, α ∈ (0, 1),

β ∈ (−1, 1)\{0}, (4.7.3)

ỹ2,α,0,−1(z, 1) =



−[2γE + ψ(a−α,0,σα,0(z)) + ψ(a−α,0,−σα,0(z))]Γ(−α)
Γ(a−α,0,σα,0(z))Γ(a−α,0,−σα,0(z))

,

α ∈ (−1, 0),

[2γE + ψ(aα,0,σα,0(z)) + ψ(aα,0,−σα,0(z))]Γ(1 + α)

2−α−1Γ(aα,0,σα,0(z))Γ(aα,0,−σα,0(z))
,

α ∈ [0, 1),
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ỹ ′
2,α,0,−1(z, 1) =



[2γE + ψ(aα,0,σα,0(z)) + ψ(aα,0,−σα,0(z))]Γ(1 + α)

−2−α−1Γ(aα,0,σα,0(z))Γ(aα,0,−σα,0(z))
,

α ∈ (−1, 0),

−Γ((1 + σ0,0(z))/2)Γ((1− σ0,0(z))/2)

+
[2γE + ψ((1 + σ0,0(z))/2) + ψ((1− σ0,0(z))/2)]

2

Γ((1 + σ0,0(z))/2)Γ((1− σ0,0(z))/2)
, α = 0,

−[2γE + ψ(a−α,0,σα,0(z)) + ψ(a−α,0,−σα,0(z))]Γ(−α)
Γ(a−α,0,σα,0(z))Γ(a−α,0,−σα,0(z))

,

α ∈ (0, 1),

β = 0. (4.7.4)
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CHAPTER FIVE

Conclusion

In Chapter Two, we employed a recently developed unified approach to the

computation of Fredholm determinants, traces of resolvents, and ζ-functions to com-

pute positive integer values of spectral ζ-functions associated with regular Sturm–

Liouville operators. We proved the following result relating these values and the

characteristic function FA,B( · ):

Theorem 2.4.1. Assume Hypothesis 2.2.1, denote by TA,B the self-adjoint extension

of Tmin with either separated or coupled boundary conditions as described in Theorem

2.2.2, and let m0 = 0, 1, 2, denote the multiplicity of zero as an eigenvalue of TA,B

(with m0 = 0 denoting zero is not an eigenvalue). Suppose that FA,B(z) given in

(2.2.39) has the series expansion,

FA,B(z) =
∞∑
j=0

ajz
j, 0 ⩽ |z| sufficiently small. (5.0.1)

Then,

ζ(n;TA,B) = −Res

[
z−n

d

dz
ln(FA,B(z)); z = 0

]
= −n bn, n ∈ N, (5.0.2)

where

b1 = a1+m0/am0 ,

bj = [aj+m0/am0 ]−
j−1∑
ℓ=1

[ℓ/j][aj−ℓ+m0/am0 ]bℓ, j ∈ N, j ⩾ 2.
(5.0.3)

In particular, if zero is not an eigenvalue of TA,B, then

trL2
r((a,b))

(
T−1
A,B

)
= ζ(1;TA,B) = −a1/a0. (5.0.4)

This result along with the series expansions proven in Section 2.3.1 using

Volterra integral equations allows for an efficient computation of positive integer

values of spectral ζ-functions as illustrated in Section 2.4.2. In particular, when
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considering general self-adjoint boundary conditions we proved

ζ(n;Tα,β) = −Res

[
z−n

d

dz
ln(Fα,β(z)); z = 0

]
= −n bn, n ∈ N, (5.0.5)

where for separated boundary conditions,

b1 =
cos(α)

[
cos(β)ϕ1+m0(b)− sin(β)ϕ

[1]
1+m0

(b)
]
− sin(α)

[
cos(β)θ1+m0(b)− sin(β)θ

[1]
1+m0

(b)
]

cos(α)
[
cos(β)ϕm0(b)− sin(β)ϕ

[1]
m0(b)

]
− sin(α)

[
cos(β)θm0(b)− sin(β)θ

[1]
m0(b)

] ,

bj =
cos(α)

[
cos(β)ϕj+m0(b)− sin(β)ϕ

[1]
j+m0

(b)
]
− sin(α)

[
cos(β)θj+m0(b)− sin(β)θ

[1]
j+m0

(b)
]

cos(α)
[
cos(β)ϕm0(b)− sin(β)ϕ

[1]
m0(b)

]
− sin(α)

[
cos(β)θm0(b)− sin(β)θ

[1]
m0(b)

]
−

j−1∑
ℓ=1

(
ℓ

j

)
cos(α)

[
cos(β)ϕj−ℓ+m0(b)− sin(β)ϕ

[1]
j−ℓ+m0

(b)
]
− sin(α)

[
cos(β)θj−ℓ+m0(b)− sin(β)θ

[1]
j−ℓ+m0

(b)
]

cos(α)
[
cos(β)ϕm0(b)− sin(β)ϕ

[1]
m0(b)

]
− sin(α)

[
cos(β)θm0(b)− sin(β)θ

[1]
m0(b)

] bℓ,

j ∈ N, j ⩾ 2, (5.0.6)

while for coupled boundary conditions with m0 = 0,

b1 =
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

,

bj =
eiφ

(
R12θ

[1]
j (b)−R22θj(b) +R21ϕj(b)−R11ϕ

[1]
j (b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

(5.0.7)

−
j−1∑
ℓ=1

ℓ

j

eiφ
(
R12θ

[1]
j−ℓ(b)−R22θj−ℓ(b) +R21ϕj−ℓ(b)−R11ϕ

[1]
j−ℓ(b)

)
eiφ

(
R12θ

[1]
0 (b)−R22θ0(b) +R21ϕ0(b)−R11ϕ

[1]
0 (b)

)
+ e2iφ + 1

bℓ,

j ∈ N, j ⩾ 2,

and for m0 = 1,

b1 =
eiφ

(
R12θ

[1]
2 (b)−R22θ2(b) +R21ϕ2(b)−R11ϕ

[1]
2 (b)

)
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

) ,
bj =

eiφ
(
R12θ

[1]
j+1(b)−R22θj+1(b) +R21ϕj+1(b)−R11ϕ

[1]
j+1(b)

)
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

) (5.0.8)

−
j−1∑
ℓ=1

ℓ

j

eiφ
(
R12θ

[1]
j−ℓ+1(b)−R22θj−ℓ+1(b) +R21ϕj−ℓ+1(b)−R11ϕ

[1]
j−ℓ+1(b)

)
eiφ

(
R12θ

[1]
1 (b)−R22θ1(b) +R21ϕ1(b)−R11ϕ

[1]
1 (b)

) bℓ,

j ∈ N, j ⩾ 2.
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For the case m0 = 2, we need only consider the Krein-von Neumann extension of

Tmin defined by

φ = 0, RK =

 θ(0, b, a) ϕ(0, b, a)

θ[1](0, b, a) ϕ[1](0, b, a)

 , (5.0.9)

where

b1 =
ϕ0(b)θ

[1]
3 (b)− ϕ

[1]
0 (b)θ3(b) + θ

[1]
0 (b)ϕ3(b)− θ0(b)ϕ

[1]
3 (b)

ϕ0(b)θ
[1]
2 (b)− ϕ

[1]
0 (b)θ2(b) + θ

[1]
0 (b)ϕ2(b)− θ0(b)ϕ

[1]
2 (b)

,

bj =
ϕ0(b)θ

[1]
j+2(b)− ϕ

[1]
0 (b)θj+2(b) + θ

[1]
0 (b)ϕj+2(b)− θ0(b)ϕ

[1]
j+2(b)

ϕ0(b)θ
[1]
2 (b)− ϕ

[1]
0 (b)θ2(b) + θ

[1]
0 (b)ϕ2(b)− θ0(b)ϕ

[1]
2 (b)

−
j−1∑
ℓ=1

ℓ

j

ϕ0(b)θ
[1]
j−ℓ+2(b)− ϕ

[1]
0 (b)θj−ℓ+2(b) + θ

[1]
0 (b)ϕj−ℓ+2(b)− θ0(b)ϕ

[1]
j−ℓ+2(b)

ϕ0(b)θ
[1]
2 (b)− ϕ

[1]
0 (b)θ2(b) + θ

[1]
0 (b)ϕ2(b)− θ0(b)ϕ

[1]
2 (b)

bℓ,

j ∈ N, j ⩾ 2. (5.0.10)

Furthermore, assuming Hypothesis 2.3.1, we computed the asymptotic expan-

sion in the spectral parameter of the characteristic function where more assumptions

are needed on the transformed potential depending on the number of terms included.

We then used this expansion to obtain the remarkably simple formula

ζ ′(0;TA,B) = iπn− ln(2c|Fm0/Γk0|), (5.0.11)

where n is the number of strictly negative eigenvalues of TA,B. This allows one to

efficiently compute the associated ζ-regularized functional determinant for this re-

stricted class of regular Sturm–Liouville operators. Finally, we applied these results

to regular Schrödinger operators with zero, piecewise constant, and a linear potential

on a compact interval.

In Chapter Three, we systematically constructed the Donoghue m-functions

(resp., 2×2 matrices) associated to the singular Sturm–Liouville operator in all cases

where at least at one interval endpoint a or b is in the limit circle case. For brevity,

we do not list the full form of the Donoghue m-functions here but instead recall that
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they are summarized succinctly in Sections 4.2 and 4.3 for two limit circle endpoints

and one limit circle endpoint, respectively. As an application of these results, we

considered the generalized Bessel operator.

Let a = 0, b ∈ (0,∞) ∪ {∞}, and consider

p(x) = xν , r(x) = xδ, q(x) =
(2 + δ − ν)2γ2 − (1− ν)2

4
xν−2,

δ > −1, ν < 1, γ ⩾ 0, x ∈ (0, b),

(5.0.12)

so that

τδ,ν,γ = x−δ
[
− d

dx
xν

d

dx
+

(2 + δ − ν)2γ2 − (1− ν)2

4
xν−2

]
,

δ > −1, ν < 1, γ ⩾ 0, x ∈ (0, b),

(5.0.13)

which is singular at the endpoint x = 0 (since the potential, q is not integrable near

x = 0), regular at x = b when b ∈ (0,∞), and in the limit point case at x = b when

b = ∞. Furthermore, τδ,ν,γ is in the limit circle case at x = 0 if 0 ⩽ γ < 1 and in

the limit point case at x = 0 when γ ⩾ 1. In the infinite interval case, we proved in

Example 3.7.2 that

MDo
T0,δ,ν,γ ,Ni

(z) =

[
− i+

m0,δ,ν,γ(z)−m0,δ,ν,γ(−i)
Im(m0,δ,ν,γ(i))

]
INi

=


{
− i− [sin(πγ/2)]−1e−iπγ

(
zγ − e3iπ/2

)}
INi

, γ ∈ (0, 1),

{−i+ (2/π)[(3iπ/2)− ln(z)]}INi
, γ = 0,

δ > −1, ν < 1, z ∈ C\[0,∞), (5.0.14)

and for α ∈ (0, π),

MDo
Tα,δ,ν,γ ,Ni

(z) =MDo
T0,δ,ν,γ ,Ni

(z) + (i− z)
m0,δ,ν,γ(z)−m0,δ,ν,γ(−i)

cot(α) +m0,δ,ν,γ(z)

× (ψ0,δ,ν,γ(z, · ), · )L2
r((a,b))

ψ0,δ,ν,γ(i, · )
∣∣
Ni
, (5.0.15)

δ > −1, ν < 1, γ ∈ [0, 1), z ∈ C\R,
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with

ψ0,δ,ν,γ(z, x) =



i(1− ν)(2 + δ − ν)−γ−1γ−1Γ(1− γ) sin(πγ)zγ/2

×x(1−ν)/2H(1)
γ

(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ ∈ (0, 1),

iπ(1− ν)/(2 + δ − ν)x(1−ν)/2

×H(1)
0

(
2z1/2x(2+δ−ν)/2/(2 + δ − ν)

)
, γ = 0,

δ > −1, ν < 1, z ∈ C\[0,∞), x ∈ (0,∞), (5.0.16)

m0,δ,ν,γ(z) =



−e−iπγ(1− ν)2(2 + δ − ν)−2γ−1γ−1

×[Γ(1− γ)/Γ(1 + γ)]zγ, γ ∈ (0, 1),

(1− ν)2/(2 + δ − ν)

×[iπ − ln(z) + 2 ln(2 + δ − ν)− 2γE], γ = 0,

(5.0.17)

δ > −1, ν < 1, z ∈ C\[0,∞),

where H
(1)
µ ( · ) is the Hankel function of the first kind and of order µ ∈ R (cf. [1,

Ch. 9]). Moreover, we considered the finite interval Krein–von Neumann extension

in Example 3.7.3, with our results summarized there.

Lastly, we investigated the Jacobi differential expression in Chapter Four which

is given by

τα,β = −(1− x)−α(1 + x)−β(d/dx)
(
(1− x)α+1(1 + x)β+1

)
(d/dx),

x ∈ (−1, 1), α, β ∈ R.
(5.0.18)

We fully explored the limit point/limit circle classification in order to construct the

associated Donoghue m-function, providing a detailed treatment of solutions of the

Jacobi differential equation and the associated hypergeometric differential equations

in Sections 4.5–4.7. We then employed the results from Chapter Three in order to

construct the Donoghue m-function associated with the Jacobi differential operator.
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As an example of coupled boundary conditions, we once again considered the

Krein–von Neumann extension in Section 4.4.1. In particular, for α, β ∈ (−1, 1), the

following five cases are associated with a strictly positive minimal operator Tmin,α,β

and provided the corresponding choices of RK,α,β for the Krein–von Neumann ex-

tension T0,RK ,α,β of Tmin,α,β:

T0,RK ,α,βf = τα,βf, (5.0.19)

f ∈ dom(T0,RK ,α,β) =

{
g ∈ dom(Tmax,α,β)

∣∣∣∣
 g̃(1)

g̃ ′(1)

 = RK,α,β

 g̃(−1)

g̃ ′(−1)

}
,

RK,α,β =



1 2−α−β−1Γ(−α)Γ(−β)
Γ(−α− β)

0 1

 , α, β ∈ (−1, 0),

−2−α−β−1Γ(−α)Γ(−β)
Γ(−α− β)

1

−1 0

 , α ∈ (−1, 0), β ∈ (0, 1),

0 −1

1 2−α−β−1Γ(−α)Γ(−β)
Γ(−α− β)

 , α ∈ (0, 1), β ∈ (−1, 0),

0 −1

1 −2−β−1[γE + ψ(−β)]

 , α = 0, β ∈ (−1, 0)

2−α−1[γE + ψ(−α)] 1

−1 0

 , α ∈ (−1, 0), β = 0,

(5.0.20)

where we interpret 1/Γ(0) = 0, ψ( · ) = Γ′( · )/Γ( · ) denotes the Digamma function,

and γE = −ψ(1) = 0.57721 . . . represents Euler’s constant. Obviously, det(RK,α,β) =

1 in all five cases. Furthermore, as R1,2 ̸= 0 for each case, Theorem 4.2.2 (ii)

applies and one obtains the Donoghue m-function MDo
T0,RK,α,β ,Ni

( · ) for the Krein–

von Neumann extension T0,RK ,α,β by utilizing (4.4.15) and (4.4.17) as well as the

explicit form of K0,RK
( · ) in (4.2.30). Once again, MDo

T0,RK,α,β ,Ni
( · ) is a Nevanlinna–
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Herglotz function. In the remaining four cases not covered by (4.4.17), given by

all combinations of α = 0, β = 0, α ∈ (0, 1), and β ∈ (0, 1), one observes that

[68, Theorem 3.5] is not applicable as the underlying minimal operator, Tmin,α,β, is

nonnegative but not strictly positive.

Our final result was the construction of the Donoghue m-function where pre-

cisely one interval endpoint is in the limit point case. We focused on the case when

α ∈ (−∞,−1] or α ∈ [1,∞), so that the right endpoint x = 1 represents the limit

point case. The converse situation can be obtained by reflection with respect to the

origin (i.e., considering the transform (−1, 1) ∋ x 7→ −x ∈ (−1, 1)). Recall that the

Weyl–Titchmarsh–Kodaira solution and m-function corresponding to the Friedrichs

(resp., Dirichlet) boundary condition at x = −1 is determined via the requirement

ψ0,α,β(z, · ) = θ0,α,β(z, · ) +m0,α,β(z)ϕ0,α,β(z, · ) ∈ L2((c, 1); rα,βdx),

z ∈ C\σ(TF,α,β), α ∈ (−∞,−1] ∪ [1,∞), β ∈ (−1, 1), c ∈ (−1, 1).

(5.0.21)

Since ψ̃ ′
0,α,β(z,−1) = m0,α,β(z), we showed using Theorem 4.3.2,

MDo
T0,α,β ,Ni

(z) =

[
− i+

m0,α,β(z)−m0,α,β(−i)
Im(m0,α,β(i))

]
INi

,

MDo
Tγ,α,β ,Ni

(z) =MDo
T0,α,β ,Ni

(z) + (i− z)
m0,α,β(z)−m0,α,β(−i)
cot(γ) +m0,α,β(z)

× (ψ0,α,β(z, · ), · )L2((a,b);rdx)ψ0,α,β(i, · )
∣∣
Ni
, γ ∈ (0, π),

α ∈ (−∞,−1] ∪ [1,∞), β ∈ (−1, 1), z ∈ C\R,

(5.0.22)

where ψ0,α,β(z, · ) and m0,α,β(z, · ) are given by the following:
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(I) The Case α ∈ [1,∞) and β ∈ (−1, 0):

ψ0,α,β(z, x) = y1,α,β,−1(z, x)− 2−α−1β−1y2,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = 21+α+ββ
Γ(1 + β)

Γ(1− β)

× Γ([1 + α− β + σα,β(z)]/2)Γ([1 + α− β − σα,β(z)]/2)

Γ([1 + α + β + σα,β(z)]/2)Γ([1 + α + β − σα,β(z)]/2)
,

z ∈ ρ(TF,α,β), α ∈ [1,∞), β ∈ (−1, 0),

σ(TF,α,β) = {(n− β)(n+ 1 + α)}n∈N0 , α ∈ [1,∞), β ∈ (−1, 0),

(5.0.23)

with

σα,β(z) =
[
(1 + α + β)2 + 4z

]1/2
. (5.0.24)

(II) The Case α ∈ [1,∞) and β = 0:

ψ0,α,0(z, x) = −2−α−1y2,α,0,−1(z, x) + y1,α,0,−1(z, x)m0,α,0(z),

m0,α,0(z) = −2−α−1{2γE + ψ([1 + α + σα,0(z)]/2) + ψ([1 + α− σα,0(z)]/2)},

z ∈ ρ(TF,α,0), α ∈ [1,∞), β = 0,

σ(TF,α,0) = {n(n+ 1 + α)}n∈N0 , α ∈ [1,∞), β = 0. (5.0.25)

(III) The Case α ∈ [1,∞) and β ∈ (0, 1):

ψ0,α,β(z, x) = 2−α−1β−1y2,α,β,−1(z, x) + y1,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = β−12−1−α−β−Γ(1− β)

Γ(1 + β)

× Γ([1 + α + β + σα,β(z)]/2)Γ([1 + α + β − σα,β(z)]/2)

Γ([1 + α− β + σα,β(z)]/2)Γ((1 + α− β − σα,β(z))/2)
,

z ∈ ρ(TF,α,β), α ∈ [1,∞), β ∈ (0, 1),

σ(TF,α,β) = {n(n+ 1 + α + β)}n∈N0 , α ∈ [1,∞), β ∈ (0, 1).

(5.0.26)
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(IV) The Case α ∈ (−∞,−1] and β ∈ (−1, 0):

ψ0,α,β(z, x) = y1,α,β,−1(z, x)− 2−α−1β−1y2,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = 21+α+ββ
Γ(1 + β)

Γ(1− β)

× Γ([1− α− β + σα,β(z)]/2)Γ([1− α− β − σα,β(z)]/2)

Γ([1 + β − α + σα,β(z)]/2)Γ([1 + β − α− σα,β(z)]/2)
,

z ∈ ρ(TF,α,β), α ∈ (−∞,−1], β ∈ (−1, 0),

σ(TF,α,β) = {(n− α− β)(n+ 1)}n∈N0 , α ∈ (−∞,−1], β ∈ (−1, 0).

(5.0.27)

(V) The Case α ∈ (−∞,−1] and β = 0:

ψ0,α,0(z, x) = −2−α−1y2,α,0,−1(z, x) + y1,α,0,−1(z, x)m0,α,0(z),

m0,α,0(z) = −2−α−1{2γE + ψ([1− α + σα,0(z)]/2) + ψ([1− α− σα,0(z)]/2)},

z ∈ ρ(TF,α,0), α ∈ (−∞,−1], β = 0,

σ(TF,α,0) = {(n− α)(n+ 1)}n∈N0 , α ∈ (−∞,−1], β = 0. (5.0.28)

(VI) The Case α ∈ (−∞,−1] and β ∈ (0, 1):

ψ0,α,β(z, x) = 2−α−1β−1y2,α,β,−1(z, x) + y1,α,β,−1(z, x)m0,α,β(z),

m0,α β(z) = −β−12−1−α−βΓ(1− β)

Γ(1 + β)

× Γ([1 + β − α + σα,β(z)]/2)Γ([1 + β − α− σα,β(z)]/2)

Γ([1− α− β + σα,β(z)]/2)Γ([1− α− β − σα,β(z)]/2)
,

z ∈ ρ(TF,α,β), α ∈ (−∞,−1], β ∈ (0, 1),

σ(TF,α,β) = {(n− α)(n+ 1 + β)}n∈N0 , α ∈ (−∞,−1], β ∈ (0, 1).

(5.0.29)
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Basel, 2001, pp. 271–321.

[74] F. Gesztesy and K. Kirsten, Effective computation of traces, determinants,
and ζ-functions for Sturm–Liouville operators, J. Funct. Anal. 276, 520–
562 (2019).

[75] F. Gesztesy, L. Littlejohn, and R. Nichols, On self-adjoint boundary conditions
for singular Sturm–Liouville operators bounded from below, J. Diff. Eq. 269,
6448–6491 (2020).

[76] F. Gesztesy, L. L. Littlejohn, R. Nichols, M. Piorkowski, and J. Stan-
fill, Donoghue m-Functions for singular Sturm–Liouville operators, arxiv
2107.09832

[77] F. Gesztesy, K. A. Makarov, E. Tsekanovskii, An Addendum to Krein’s formula,
J. Math. Anal. Appl. 222, 594–606 (1998).

[78] F. Gesztesy, S. Naboko, R. Weikard, and M. Zinchenko, Donoghue-type
m-functions for Schrödinger operators with operator-valued potentials, J.
d’Analyse Math. 137, 373–427 (2019).

[79] F. Gesztesy, R. Nichols, and J. Stanfill, A survey of some norm inequalities,
Complex Anal. Operator Th., 15, No. 23 (2021).

[80] F. Gesztesy, M. M. H. Pang, and J. Stanfill, On domain properties of Bessel-
type operators, submitted, 2021.

[81] F. Gesztesy and L. Pittner, On the Friedrichs extension of ordinary differential
operators with strongly singular potentials, Acta Phys. Austriaca 51, 259–
268 (1979).

[82] F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math.
Nachr. 218, 61–138 (2000).

[83] F. Gesztesy, R. Weikard, and M. Zinchenko, On spectral theory for Schrödinger
operators with operator-valued potentials, J. Diff. Eq. 255, 1784–1827 (2013).

[84] F. Gesztesy and M. Zinchenko, Sturm–Liouville Operators, Their Spectral The-
ory, and Some Applications. Vol. I, book manuscript in preparation.

152



[85] I. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfad-
joint Operators, Transl. Math. Monogr., Vol. 18., Amer. Math. Soc., Provi-
dence, RI, 1969.

[86] I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators
in Hilbert Space, Translations of Mathematical Monographs, Vol. 24, Amer.
Math. Soc., Providence, RI, 1970.

[87] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,
corrected and enlarged edition, prepared by A. Jeffery, Academic Press, San
Diego, 1980.

[88] C. Graham, K. Kirsten, P. Morales-Almazan, and B. Quantz Streit, Functional
determinants for Laplacians on annuli and elliptical regions, J. Math. Phys.
59 (2018), 013508, 22 pp.
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