

Copyright © 2014 by Stephen Ryan Beckham

All rights reserved

 iv

TABLE OF CONTENTS

List of Tables ... v

Chapter 1: Introduction..1

Chapter 2: Literature Review...4

Chapter 3: Data Overview ...7

Chapter 4: Methodology.. 11

General Textual Analysis ... 11
Predicting Probability of Enrollment .. 12
Finding Hidden Ability .. 16
Simulating Yield Estimates to Create Confidence Intervals................................ 18

Chapter 5: Results ... 20

Predicting Probability of Enrollment .. 20
Finding Hidden Ability .. 22
Simulating Yield Estimates to Create Confidence Intervals................................ 25

Chapter 6: Discussions .. 27

Appendices.. 30

Appendix A: Summary Statistics ... 31
Appendix B: Python Code – Variable Generating .. 32
Appendix C: Python Code – Bible Input .. 36
Appendix D: Python Code – Traditions Retrieval... 39
Appendix E: Python Code – Essay Breakdown .. 40
Appendix F: STATA Code .. 43
Appendix G: Variable Summary Statistics ... 73

Bibliography ... 74

 v

LIST OF TABLES

Table 1: Number of Observations ..7

Table 2: Ability Variables ...9

Table 3: Commitment Variables .. 10

Table 4: Variables Used in Models to Predict Enrollment .. 15

Table 5: Logistic Regression on Enrollment Probability .. 21

Table 6: Enrollment Predictions .. 23

Table 7: OLS Regression Table ... 24

Table 8: Predicted GPAs ... 25

Table 9: Root Means Squared Prediction Error.. 26

Table 10: Simulation Results ... 26

Table 11: Enrollment Regression Summary Statistics .. 31

Table 12: Ability Regression Summary Statistics .. 31

Table 13: Summary Statistics of Variables .. 73

1

CHAPTER ONE

Introduction

College admissions departments have a dual mandate given to them. First and foremost

they must admit enough students to meet the budgetary needs of the university. During this

process, the department must also maintain a certain level of academic excellence. Students

admitted to college are expected to perform at a level to graduate and become high achievers

in the marketplace. Baylor is a private university that is not endowment based, therefore the

majority of income depends on tuition. Missing the needed enrollment by even a small

percent could end up costing the school millions of dollars. If too many students are enrolled,

classes become overcrowded and school resources cannot be properly allocated.

The process is made difficult by the desire of the university to increase their rank

in publications such as U.S. News & World Report. Part of the national ranking

system for a university is the yield rate of admittance. This rate is the percentage of

students that enroll in the school compared to the number of students that are

accepted. A student attending a university is a two stage decision. If a student has

applied to a university, that school has the choice to either accept or deny the

application. Once an acceptance is offered, the student then has the choice to enroll or

not. Many students fill out applications for several universities in order to find the

most prestigious school that will accept them along with the best financial aid

package. Because of the indecisiveness of the students applying, admissions

departments need a better model to sort out applicants who truly want to be Baylor

students. The expected yield estimate is vital because it determines how many

students will need to be accepted in order to meet the budgetary needs. This has

become increasingly difficult over the last fifteen years as applications for each school

2

have increased significantly and yield rates have been falling as students apply to

multiple colleges. (Jaschik, 2012)

The yield rate exemplifies the importance for a university to admit the right

candidates. If the admissions department had a better way to predict enrollment, they

could lower the amount of acceptances they issue and in turn raise their yield rate. It

is hard for the admissions department to know both a student's ability and their

probability of enrollment if admitted due to adverse selection. Potential students want

to be admitted in order to receive the benefit of having a prestigious college diploma

despite their known inabilities. This problem is the very foundation of adverse

selection, as the students will only give the information that will highlight their

abilities and not the information that could potentially prevent them from being

admitted. This information is not limited to academic deficiencies, but desire to attend

as well. A university could be a student's fourth option, but they will not share that

information in order to get accepted and have as many options available when it is

time to make their decision.

Admissions departments need several different metrics to rate a student on both

probability to enroll as well as ability to perform at a high level once enrolled. The

standard way of rating a student's ability has been the SAT, ACT, high school rank

and other measurable metrics that are based on performance in high school. Another

way of finding this hidden information can be through the essays a student writes. For

Baylor University, an applicant is asked to complete two essays: one regarding why

the student is choosing Baylor and the other regarding what the student is looking for

in a college. These simple questions can be full of signals on how committed the

student is to coming to Baylor as well as being another measurement of their ability.

3

The methodology that is used also has other benefits for the admissions

department. The most important of these are the results from the logistic regressions

done to predict enrollment. The regression coefficients show the importance of

certain groups of words used to predict enrollment. The higher the coefficient, the

more effect that group of words has on the outcome. The group of words provided by

the admissions team, as well as the Baylor specific words and commitment words are

all very influential in the probability. These words can be changed around to find

better combinations to improve the results. They can also be used in other forms of

recruiting, such as the phone interviews. Baylor conducts phone interviews with

certain recruits to persuade a prospective student to enroll and also to gage their

interest. Since the group of words used in the regressions proves to be influential, the

phone interviewers now have new words that can be clued in on during the

conversation to provide additional information on the prospective student.

4

CHAPTER TWO

Literature Review

The ability to write well is a difficult task involving skills developed in grade

school. It requires memory, language, and thinking abilities. A person is stressing

their memory when performing extended writing because it requires you to remember

what you have done and where you are going. (Kellogg & Raulerson, 2007) These

types of cognitive skills are needed in higher education and application essays offer a

platform for a college to measure these abilities. Studies at the University of

California have even shown that a student's writing ability is the best predictor of first

semester achievement. (Geiser & Studley, 2001)

Essays were a major component in college admissions until the 1970's. During

that decade, college admissions began to rapidly increase and it became too expensive

to properly analyze the essays. Multiple choice tests were found to use testing time

efficiently and were able to cover a large group of concepts. (Bridgeman, 1991, pg.

320) At the same time as the Cold War, natural language processing was a

governmental research task. It was felt that being able to process text and comprehend

it at a binary level could offer an advantage over Russia. With the end of the Cold

War, the government ended the program and it was privatized. Now this field is run

by companies like ACCUPLACER who offer "reliable, valid and accurate" reports to

universities and high schools for automated essay scoring (AES). (Ericsson &

Haswell, 2006)

5

Recently, there has been a movement to remove the SAT as the primary bench-

mark for college admissions. SAT preparation and review has taken over classroom

settings and taken time away from core classes. Universities define what is important,

which influences what is taught in high school. Supporters of this movement want to

implement comprehensive curriculum achievement tests to replace SAT testing. This

would take away the emphasis of the SAT by high school teachers and place more

emphasis on such areas as history, geometry or language arts. (Atkinson, 2011, pg. 5)

Computer grading of essays and the use of AES has grown over the last ten years.

AES has been a widely debated part of the higher education selection process. In

order to use AES, a group of test essays are hand graded and commonalities are found

in both the structure and language used in the essays. The computer is then

programmed to find correlations in the papers being tested to assign a grade. (Dikli,

2006) Careful consideration needs to be taken for each usage of AES. Papers written

on different topics will have different language that is acceptable. Because of this,

latent semantic analysis (LSA) is used to specialize the scoring. A word or phrase can

take on a specific meaning in one passage and have a different meaning in another.

There is also the potential for two passages to have the same words and phrases, but

have completely different meanings. (Landauer, Laham, & Foltz, 1999) Each school

should have its own modeling to develop its own specificity.

This research creates two groups of variables from the application essays. There

are grammatical variables that measure a student's ability to write and signal variables

that attempt to uncover the student's intent to enroll in Baylor if they are accepted.

This approach can help the admissions department by both finding more qualified

applicants as well as trying to raise the yield rate. This also helps overcome the

biggest criticism of AES, which is that it does not take into account meaning.

6

Mechanical checks cannot properly assess discipline-based assignments that need to

show a substantial knowledge in the field. (Ericsson & Haswell, 2006)

The time and resources it would take to read every entrance essay is beyond any

reasonable cost. Computer programs are the only efficient way of using data collected

from essays effectively. This process also removes the human element of having a

grader read and try to comprehend what the essay intends to convey. AES offers

consistent grading, a major problem with human evaluation. The essay simply

becomes a collection of variables lacking any human emotion or preconceived ideas.

However, the size of the data has to be taken into consideration and a balance needs

to be found between the two. We have to consider the applications as just objects and

the words within them as input strings. By using a computer, the challenge is

providing the necessary background knowledge and allowing for a large enough

database for association. (Page, 1968, pg. 211)

7

CHAPTER THREE

Data Overview

The raw data was provided by the Admissions Department of Baylor University

from previous applicants. Table 1 shows the number of observations available for the

time period 2011 - 2013

The main issue that arises from the textual analysis is the low participation rate of

students submitting the two essays, because Baylor has chosen to make them optional.

In 2011, only 7% of the accepted students submitted essays. There was a surge in

2013, but the rate remained at only 12%. The choice to participate in the essay section

could be seen as a signal itself as a true interest in the university. Unfortunately, the

low percentages make it unrealistic to use. If the school could guide students to

participate in the essay submission, there might be gains seen in the predictive

cababilities.

This paper focuses on the question of whether the textual analysis can be a stand-

alone decision model. Because of that purpose, none of the other variables included in

the raw data such as high school rank, distance from Baylor, etc. were being used in

the regressions. All variables used were created through Python. The variables created

fall into two categories. The first category of variables measures the student's ability

Table 1: Number of Observations

 # Students Total # Students Total # Accepted Students
Year Accepted Submitting Essays Submitting Essays
2011 15430 4612 1068
2012 16879 6257 1495
2013 16809 9301 1985

8

and focuses on grammatical counters. The second category of variables includes

words that can be considered signals for interest in Baylor.

The variables in Table 2 were used to determine the quality of writing in the

essays. The quality of writing was used as a way of predicting an applicant's true

ability that may not have been captured in standardized testing. Giving students a

different test at the university would be another option, but this would drive away

most applicants. It is unknown if there are any other cost efficient way of measuring a

student's ability. Writing utilizes higher level thinking skills which can showcase

knowledge. In order to have a baseline to predict ability, first semester GPA was

used.

The other area of measurement was the applicant's commitment to Baylor. Several

different variables were created to measure a student's desire to enroll in Baylor if ad-

mitted. Two areas were focused on to find a student's probability of enrollment. These

two areas were their expressions of faith and their knowledge of the campus and tra-

ditions. Being a faith-based campus, a student with strong religious beliefs may be

drawn more to Baylor than competing state universities. Knowledge of Baylor shows

that the student has either grown up learning about the university, which signals a

legacy, or they have taken time to learn the information, which shows interest. Table

3 shows all variables considered a potential signal for a student's interest in Baylor, as

well as a description of each.

9

Table 2: Ability Variables

Variable Name
Essay1Len The total number of words used in the

first essay
Essay2Len The total number of words used in the

second essay
TotalLen The combined number of words used in

both essays
GrammarWrong The percentage of words in both essays

which were misspelled
WordLength The average length of all words in both

essays
NumUnique The number of different words in both

essays
Lexrich The percentage of unique words to the

total number of words in both essays
Syllables The total number of syllables used in both

essays
Sentences The total number of sentences in both

essays
fleschreading1 A readability test. The lower the score,

the higher the expected
comprehension level for the essay

fleschgrade2 A readability test that shows the expected
grade level that will comprehend the
essay

1 Flesch Reading Score = 206.835 - 1.015(total words / total sentences) - 84.6(total syllables / total

words): 90.0-100.0 easily understood by an average 11-year-old student, 60.0-70.0 easily understood
by 13- to 15-year-old students, 0.0-30.0 best understood by university graduates

2 Flesch - Kincaid Grade Level = 0.39(total words/ total sentences) + 11.8(total syllables / total

words) - 15.59

10

Table 3: Commitment Variables

Variable Name Description

commitmentcounter3 The number of words in both essays used
by people who did come to Baylor

commitmentpercent The percentage of words that are
commitment words

faithcounter4 The number of words in both essays used
to express their faith

faithpercent The percentage of words that are faith
words

baylorcounter5 The number of words in both essays used
to signal their knowledge of Baylor

baylorpercent The percentage of words that are Baylor
specific

totalbible The number of times in both essays that a
book of the Bible was referenced

biblepercent The percentage of words that are books of
the Bible

admincounter6 The number of times in both essays in
which words given by the
admissions team were used

adminpercent The percentage of words that are from the
admissions team

3Words used: pride, visit, leader, unity, campus, legacy, important, environment, only, home,
comfort, mom, dad, mother, father, family

4 Words used: shall, unto, lord, thou, thy, ye, God, son, hath, Israel, king, people, house, before,
children, against, shalt, land, day, hand, behold, faith, sons, hast, o, over, she, David, great, Jesus, thine,
father, neither, give, take, am, forth, brought, name, away, pass, two, according, days, city, earth,
Moses, thereof, whom, know

5 Words Used: Baylor, bears, bear, Waco, oso, quadrangle, ivy, burleson, hankamer, Louise,
Herrington, truett, dia del

6Words Used: top, choice, first, dream, dreamed, always, growing, grown, grow, wonderful, visit,
blessed, experience, passion, passionate, tradition, atmosphere, values, perfect, heart

11

CHAPTER FOUR

Methodology

General Textual Analysis

Different forms of regression were used to predict GPA and enrollment based

upon acceptance. Linear regression was used to predict GPA using variables created

through textual analysis. Logistic regression was used to predict a student's

probability of enrolling based upon acceptance. The logistic regression returns the log

odds, which will be a number between 0 and 1. The log odds can be converted to a

probability, which shows the chances of enrollment if a student is accepted.

In order to collect and analyze the data, the research method included the use of

two programming languages; STATA and Python. Python is a scripting language that

is preferred for the use of unstructured data analysis. The essays are imported into

Python and then parsed. The output is stored into a file which is imported into

STATA, a statistical software package, for analysis.

In order to create the model, stepwise regression was implemented. Stepwise

regression is typically considered a poor approach by econometricians due to its

limitations. These limitations include biased p-values and R2 values as well as poten-

tially leaving collinearity problems. There is also a lack of analysis on what goes into

the model, making it harder to justify the results. In this research, many of these

problems were deemed capable of being overlooked. One assumption that is made is

that the covariates in the logistic regression are independent. The R2 is not

statistically sound with logistic regressions so a Pseudo- R2 is used. STATA uses an

adjusted Cox & Snell method for goodness of fit that is used as a replacement for the

standard R2 is used for in linear regressions.

12

The goal of the model was accurate prediction with causality used as a robustness

check. The reason why students come to Baylor was not the goal. The objective

remains predicting whether they will come to Baylor if accepted, and what type of

characteristics they might have. With the long list of variables that was made

available, future work can be done to find causal reasons, but the results of this

testing show that finding causality could be difficult.

The STATA program used to perform the stepwise regression was vselect. This

program allows the user to perform the regressions with either forward selection or

backwards elimination. Akaike's information criterion, Akaike's corrected information

criterion, Bayesian information criterion and R2 adjusted are all criterion outputted

using the vselect command. This allows the user to select from a group of models that

could potentially work for them. The models for enrollment prediction and GPA were

chosen from the four potential models created. In order to choose the best of the

options, 50% of the data was used as a training set and the model that had the best

prediction power was used. Different criteria were used for the different predictions.

Predicting Probability of Enrollment

The method used to predict a student's probability to enroll if accepted was a

logistic regression. The decision on whether a student comes to Baylor is a binary

decision. You either enroll, or you do not. A logistic regression can predict the

probability to enroll based upon acceptance. If the admissions department can

determine which students have a high probability to enroll based on their self-

identification through the essay, they can increase the yield rate. This is done by

selecting students who are identical in testing metrics, but have signaled their desire

13

to enroll. The textual analysis was done to try to identify what students could say that

would aid in the decision of whether or not to accept them is attempted.

The variables in Table 2 and Table 3 were both used in the prediction of

probability. The variables used to judge the writing are important because there is a

middle ground of ability that Baylor has to focus on. There is a standard which

writing needs to be above in order to prove they have the ability to compete at the

college level. There also seems to exist a point where the student's writing quality is

so high, they are probably getting offers from more prestigious schools. The variables

in Table 3 were all created with the idea that they can signal a student’s desire to

attend Baylor University. Each of the variables considered a different aspect of

Baylor life and attempted to quantify a student's interest in each of them. The

commitment words came from high frequency words that were unique to students

who enrolled in Baylor compared to words used by students who were accepted and

didn't enroll. The faith words were high frequency words in the King James Bible.

This version was chosen because it uses the language used in most quoted verses. Not

often is modern language used to quote scripture. There also needed to be a count of

Baylor specific word counteract students who copy and paste essays. The Baylor

word counter rewards students who focus on the university they are currently

applying for. These were unique words taken from websites of Baylor, Texas A&M,

University of Texas (UT), Texas Christian University (TCU), Texas Tech and

Southern Methodist University (SMU). These schools were chosen because they are

the main competitors for students interested in Baylor. The traditions pages of these

schools were scraped and vectors of words collected then compared to find words

only on Baylor's traditions page. The traditions pages were chosen because they

collect the most university specific words and messages of the websites. Mentioning

14

these words shows knowledge of Baylor specific terms and can signal interest. The

administration words were chosen by the admissions team from Baylor University.

They have experience in high frequency words from past students that enrolled that

may not have shown up in the other variable categories.

The textual analysis portion attempted to create a stand-alone decision model of

only the essays. Ultimately, information gathered from the essays can be used in a

larger model as a way of increasing its predictive power. This methodology only used

the textual analysis to demonstrate its stand-alone predictive power. For robustness,

three models returned from the stepwise regression were used. Each model included

the variables as well as some interaction variables that were created to help find the

true form of the relationship. Table 4 shows the variables used in each of the different

models.

Each of the models was trained on a random 50% of the data and tested on the

other 50%. Because of the small amount of enrollments with essays submitted in the

data set, the 50% mark was chosen to allow a legitimate amount of training and

testing. The testing predicted the probability that each student would enroll in Baylor

if accepted. The models have a bias toward lower probabilities and because of this,

the selection point was set to 30%. This selection point has been found in other

studies to be a viable point. (Ruznik & Dawes, 2001) This selection point represents

the probability at which a student should be accepted or rejected. Any student that

received a probability of at least 30% was classified as someone who would enroll.

For the results, each of the observation's actual result was compared to the predicted

result to get a percentage for the correct predictions.

15

The effectiveness of the model will be the rate at which students enroll compared

to their predicted actions. The robustness check was the actual results, which is

comparing who attended Baylor versus who was predicted to. As a stand-alone

model, this could help in making marginal decisions. However, an effective use of

the newly created variables would be to include them as potential additions in a larger

model that includes high school metrics.

Table 4: Variables used in Models to Predict Enrollment

Method Used Variables Used Interactions Used
R2 commitmentcounter faithcounter * baylorpercent

baylorcounter baylorcounter2
totalbible commitmentcounter 2
syllables totalbible2

admincounter TotalLen* WordLength
Essay2Len biblepercent + baylorpercent +

 faithpercent +commitmentpercent
baylorpercent GrammarWrong + commitmentpercent

NumUnique
AIC commitmentcounter faithcounter* baylorpercent

baylorcounter baylorcounter2
syllables TotalLen* WordLength

admincounter
Essay2Len

faithpercent
GrammarWrong

NumUnique
BIC commitment counter faithcounter * baylorpercent

baylorcounter
syllables

admincounter
NumUnique

16

Finding Hidden Ability

The method used to predict a student's GPA was linear regression. The assump-

tion being made was that there is a linear relationship between the effectiveness of a

student’s writing and their potential first semester GPA. The ordinary least squares

(OLS) linear regression model created using stepwise regression was

gpa = α + β1syllables + β2(NumUnique * lexrich) + β3(fleschreading *
GrammarWrong) + β4sentences2 + β5TotalLen2 + β6GrammarWrong +
β7(syllables * TotalLen) + β8sentences + β9fleschreading3 +
β10(fleschreading * fleschgrade)+ β11(fleschreading * fleschgrade *
GrammarWrong) + β12(sentences * WordLength) + e

The model that had the best prediction power uses AIC. The amount of variables

used in this format would be less than models using the R2 method, since AIC

balances between goodness of fit and complexity of the model. Due to the smaller

number of variables used, collinearity is also reduced. This also helps avoid the

problem of overfitting. With too many variables, the model would be too specific to

the single application and would not have relevant predictive power for other models

that it is applied to.

The group of variables used is listed in Table 2. Each of the variables was selected

because of their potential help in grading the writer's ability. Longer, more complex

words are captured in the syllables and word length variables and show a mature

vocabulary. The lexical richness and number of unique words show a large

vocabulary and the ability to use it. The sentence length and number of sentences

represent the ability to convey more in depth ideas and follow up on those ideas.

The data set was broken into six separate groups, based upon SAT scores. If the

ACT was taken instead of the SAT, a conversion score was calculated to produce the

equivalent SAT score. These scores have historically been the standard used to

17

predict a student's ability. In order to show that this model can complement the SAT,

sub groups of SAT scores were created to hold that variable constant. The assumption

is being made that students within the sub group SAT are similar. This helped control

for the SAT as well as focus on the marginal students that were the original concern.

In order to determine the effectiveness of the model for predicting GPA, a

baseline was used compared to the model’s results. Since the standard to grade a

student's ability has been the SAT score, it was regressed onto GPA by itself. This is

the baseline to which the accuracy of the results from the textual analysis was

compared to. The prediction errors were compared to the prediction errors using the

textual analysis model.

When a student writes their essay, they have enough time to complete the essay,

review it and make sure it is representative of their ability. Standardized testing is a

high pressure exam that is timed and can potentially be unrepresentative of a student's

capabilities. There is a need to find a compliment to this evaluation as well as give

students another chance at signaling their ability. Some students may have

performance anxiety before standardized testing, partially due to the importance it is

given as the main avenue for getting into college. Other students could have been sick

or simply just didn't perform well that day.

The main application of this methodology was the marginal student. There will

always be high performing students that the university will want and accepting them

will be almost automatic. When trying to increase the yield rate, the admissions

department needs to focus on marginal students in order to accept those who are more

certain to enroll to allow for lost yield rate when courting the high performing

students. There is a point in the acceptance process when there is a cluster of students

that have similar SAT scores, high school rankings and other standard metrics

18

achieved in high school. By adding textual analysis to the selection process, the

admissions department can further evaluate students with similar metrics without

asking for additional information.

First semester GPA was the chosen ability predictor because of its correlation

with retention (another concern for the admissions department) and it signals ability to

perform at the university level. The essays offer the admissions department a way of

seeing a student's ability that may not be apparent in their standardized testing score.

The SAT score will still provide a base score in which the decisions will be made, but

the essays may provide a way in which the department can separate students at the

margin. This means the university can increase retention rates as well as generate

better performing students, both of which increase the university's ranking.

Simulating Yield Estimates to Create Confidence Intervals

The current model being used offers a single point estimate on the number of

students predicted to enroll each semester. This is made by cumulatively adding all

the probabilities. The current model being used is

Enrollment = α + β1academic_index + β2high_school_percentile + β3ACT_BU1 +

β4SATmodel + β5national_merit + Β6foc_count + β7scholar_athlete + β8res +

 β9ans + β10app_span + β11mrate + β12premiere + β13stealth + β14self_init_cntcts

+ β15religionrate + β16christian_school + β17legacy + β18web_app + β19bapt +

β20BUhonors + β21hon_applied + β22init_span + β23under100mi + β24under50mi

+ β25under200mi + β26parents_alum + β27sibling_alum. + e

A yield estimate offers a single estimation, but having a confidence interval

offers a more valid expectation of the number of students the university

should expect to accept their offer. This methodology is generally called

19

boosting and provides a range of expectation of attendance with 95%

confidence. In order to create the interval, a regression was run using the

current admissions model. The returned coefficients and standard errors for

each variable in the regression were used to draw a new random coefficient

for each variable. These new coefficients were used to predict a yield

estimate. This process was run 5,000 times to create a large pool of expected

total yield estimates. This range of yield estimates was created to help

alleviate randomness intrinsic in the creation of each individual yield

estimate.

With 5,000 expected yield estimates, it was possible to calculate a mean

and standard deviation to create a confidence interval. However, it cannot be

assumed that the yield estimates will take on a normal distribution which

would be needed to calculate a standard deviation. Instead, the number of

students expected to attend at the 2.5% and 97.5% percentile were used as the

end points for the confidence interval.

20

CHAPTER FIVE

Results

Predicting Probability of Enrollment

Table 5 reports logistic regression results of enrollment for the three models used.

The coefficients and error terms are not the primary concern in the methodology of

this research. High accuracy is more important than statistical relevance at this point.

More work can be done to increase both in the future. It is important to understand the

reaction the variable has on the probability. The variables created to signal

commitment have a positive effect on probability. The percentage of words that are

Baylor specific has the most effect. This effect is understandable since a strong

knowledge of Baylor customs and traditions could signal the student is a legacy,

visited the campus, or spent time getting to know the university. These examples have

proven in the past to be strong indicators of a student's commitment to attending that

university.

An intriguing find with the coefficients was that increases in the ability variables

dropped a student's probability of enrollment. An explanation of this would be that

Baylor receives applications from students at a certain threshold of ability and above.

Because of the perceived cost of attending Baylor, students who fall below that

threshold may not be applying. As a student's ability increases, they may be applying

to more prestigious universities and being accepted there. Baylor is not attracting

students who perform lower on the essays, but is losing students who are performing

at high levels.

21

Table 5: Logistic Regression on Enrollment Probability

 (1) (2) (3)
 R2 AIC BIC
commitmentcounter 0.103 0.0440 0.0436

 (4.11) (5.62) (5.59)
interaction1 1.387 1.344

 (2.54) (2.25)
baylorcounter 0.0705 0.0853 0.0652

 (2.27) (3.90) (9.57)
interaction2 -0.00175 -0.00207

 (-2.16) (-2.91)
interaction3 -0.00227

 (-2.13)
totalbible 0.188

 (1.85)
syllables -0.00493 -0.00512 -0.00480

 (-3.05) (-3.19) (-3.08)
interaction4 -0.0599

 (-1.45)
admincounter 0.0423 0.0424 0.0426

 (4.46) (4.47) (4.50)
interaction5 0.00106 0.00114 0.000980

 (1.95) (2.12) (1.95)
Essay2Len -0.000503 -0.000496

 (-0.91) (-0.90)
interaction6 -11.89

 (-2.68)
baylorpercent 14.81

 (1.81)
interaction7 2.974

 (0.95)
NumUnique 0.00379 0.00416 0.00418

 (2.58) (2.86) (2.98)
faithpercent -11.23

 (-2.25)
GrammarWrong 2.184

 (0.87)
Constant -1.701 -1.704 -1.672

 (-7.30) (-8.80) (-18.62)
Observations 7007 7007 7007

t statistics in parentheses

22

The primary concern of these models was the predictive power they have as a

stand-alone model. Table 6 shows the results of the predictions using only the

variables created from the textual analysis. Each of the three models performed poorly

against actual data. The percentage of correct predictions is inflated because of the

lower bias of the predictions and the high number of students not attending that create

a large number of true negatives. With only 67% correctly predicted, the model does

not provide significant results. These results are not adequate to allow any of them to

work as a stand-alone model to predict probability of enrollment. The low false

positive rates show that the model has potential benefits. In order to increase the yield

rate, the false positive rate needs to be low. These numbers could mean that the

variables used in these models could be helpful in the overall model currently being

used. With the high effectiveness rates of the current model, there may only be a

slight increase using the textual analysis, but it would help to remove some

uncertainty.

Finding Hidden Ability

This model represents the linear effect each of the textual analysis variables has

on the dependent variable, the student's first semester GPA. Table 7 displays the

results for each of the subgroups of SAT scores. The tails both suffered from a low

number of observations. This data only represents students who enrolled, finished the

first semester and submitted the optional essays on their application. Either making

the essays mandatory or creating a benefit for submission could increase the number

of students participating and offer more observations to make a better fit for the

model. Each group had different coefficients for the variables and some varied

greatly, even switching from a positive relationship to a negative. This shows the

23

importance of using this model with the subgroups. Prediction of marginal students

was able to be made with more accuracy using these sub groupings.

Table 8 shows the predicted GPA for each subgroup as a whole. For

robustness, SAT scores were regressed onto GPA by themselves and used in the

prediction model. Since SAT scores have been the standard for predicting a student's

ability, it served as the best benchmark to the model using textual analysis. The

predictions using textual analysis were all higher than the actual GPA. The SAT score

based predictions were almost identical to the actual GPA for each subgroup. These

results show that the SAT should still be used as part of the predicting method, with

textual analysis used to compliment it. New stepwise regression can be done to find a

model that includes high school metrics, standardized testing results and textual

analysis.

Table 6: Enrollment Predictions

Measuring Decision Observations Percent Correct False Positive Percentage
AIC 24453 67.23% 14.77%
R2 24453 67.75% 12.69%

BIC 24453 67.79% 12.71%

24

Table 7: OLS Regression Results

SAT<1050 1050 < SAT < 1150 1150 < SAT < 1250 1250 < SAT< 1350 1350 < SAT< 1450 SAT >1450 Population
Syllables 0.00187 -0.00849 -0.0100 -0.00775 -0.0406 -0.00614 -0.0125

(0.09) (-0.66) (-1.09) (-0.75) (-2.53) (-0.53) (-2.46)
NumUnique * lexrich -0.00181 0.0130 0.0183 0.00882 0.0536 0.0114 0.0201

(-0.06) (0.67) (1.38) (0.60) (2.21) (0.63) (2.75)
fleschreading * GrammarWrong 2.263 0.356 0.367 -0.238 0.750 1.218 0.342

(0.97) (0.73) (0.80) (-0.42) (0.64) (0.67) (1.73)
Sentences2 0.000221 -0.000417 0.000551 -0.000539 0.000646 0.000305 0.000186

(0.15) (-0.45) (1.83) (-1.17) (0.92) (0.63) (1.00)
T otalLen2 0.00000620 -0.00000400 -0.0000152 -0.0000115 -0.0000426 -0.00000602 -0.0000139

(0.26) (-0.25) (-1.36) (-0.98) (-2.36) (-0.44) (-2.29)
GrammarWrong -331.1 -31.92 -37.64 70.58 -224.4 -72.93 -33.58

(-1.11) (-0.72) (-0.81) (0.80) (-1.64) (-0.26) (-1.68)
syllables * TotalLen -0.00000363 0.00000249 0.0000100 0.00000899 0.0000334 0.00000329 0.00000935

(-0.21) (0.22) (1.23) (1.04) (2.57) (0.34) (2.09)
Sentences -0.0254 -0.0444 -0.0699 0.0868 -0.0721 -0.0325 -0.0778

(-0.13) (-0.27) (-0.83) (0.84) (-0.48) (-0.36) (-1.99)
Fleschreading3 -0.00000272 -0.00000277 -0.00000228 -0.000000849 -0.0000103 -0.00000322 -0.00000306

(-0.40) (-1.01) (-0.97) (-0.32) (-2.26) (-0.72) (-2.72)
fleschreading * fleschgrade -0.00769 -0.00240 -0.00452 0.000845 -0.0132 -0.00320 -0.00381

(-0.69) (-0.62) (-1.62) (0.21) (-1.97) (-0.44) (-2.72)
fleschreading * fleschgrade*GrammarWrong 0.233 0.0245 0.0188 -0.0772 0.204 -0.00446 0.0199

(1.08) (0.85) (0.76) (-0.87) (1.25) (-0.01) (1.85)
sentences * WordLength -0.0110 0.0141 -0.00205 -0.00602 -0.00289 -0.000342 0.00996

(-0.36) (0.56) (-0.12) (-0.36) (-0.11) (-0.03) (1.70)
Constant 10.16 4.521 6.381 2.646 17.58 6.381 6.077

(1.07) (1.48) (2.54) (0.76) (3.44) (1.03) (4.95)
Observations 50 296 391 347 126 43 1253
t statistics in parentheses

25

The population averages were all relatively the same, so additional error testing

was done. Table 9 shows the root means square prediction error (RMSPE) for the

textual analysis, the SAT and a randomly generated number assigned to each student

between 0 and 1. The error rate of the random number generated was checked to see if

the randomness could show relevance. This could discredit the model since a random

number assigned to each student should not be a strong predictor of their GPA. The

RMSPE was used because it squares the error in order to make all numbers positive

for comparison. If this wasn't done, a predicted GPA below the actual GPA for one

student could average out to zero potentially with someone who had a predicted

average that was higher than the actual GPA. This would make the error rates seem

better than they actually are. The error rate for the textual analysis was lower than

both the randomly generated number as well as the SAT error rate. This shows that

the combination of variables used from textual analysis could offer another avenue in

determining which students at the margin should be accepted into Baylor.

Simulating Yield Estimates to Create Confidence Intervals

The new confidence interval creation was calculated offer a range in which the

student yield could be expected to fall within. A single point estimate does not allow

Table 8: Predicted GPAs

Rank Predicted GPA Predicted GPA Actual GPA
 With Textual Analysis With SAT

1 3.023802 3.014625 2.930003
2 2.859733 2.816324 2.841327
3 3.141526 3.078084 3.082979
4 3.39128 3.309947 3.313185
5 3.552784 3.506608 3.51439
6 4.044257 3.698329 3.686065

Total 3.455361 3.150734 3.158706

26

for uncertainty in the model, and the confidence intervals lessen this problem since

uncertainty is always inherent in predictions. The simulations were run several

different ways. All combinations of training and testing were used to see how close

yield estimates were to the actual enrollment. There were combinations using two of

the years to train and one to test. Another training set included a random half of all the

years and tested on the other half. There were 5,000 expected yields used to model the

uncertainty. A 95% confidence interval was created by finding the expected yield at

both the 2.5 percentile and the 97.5 percentile.

Table 10 shows the results of finding the confidence intervals using

simulation. The results become more accurate as past data was used to predict current

data. When predicting 2013, the resulting point estimate was only two students away

from being identical to the actual data. When using future and past data to predict

2012, a very high estimate was returned. Extremely low results were returned when

predicting 2011 using data posted in future years. This is in line with the results from

Van Dyke's research.

Table 9: Root Mean Square Prediction Errors

Variable Observations Mean
Textual Analysis 55081 0.6940738

SAT 55081 0.7474648
Random Number 55081 0.7861156

Table 10: Simulation Results

Data Predicted On Low End High End Point Estimate Actual Enrollment
2013 using 2011 & 3172 3205 3190 3188
2012 using 2011 & 3612 3650 3631 3254
2011 using 2012 &
2013

1214 1239 1226 3033
 Using half to predict

other
3275 3318 3296 4793

27

CHAPTER SIX

Discussions

The textual analysis used in this methodology was not strong enough to stand-

alone as a decision rule. It can be used in conjunction with more comprehensive

models to help increase their predictive power. When adding the created variables to

the full data set that includes information gathered during the application process,

which includes SAT score, high school rank, etc. and running the stepwise

regressions, some of the new variables were selected as good fits for a model. More

data cleaning needs to be completed due to the unique identifiers used to retain

anonymity do not match up every time. This would need to be adjusted to have a

more complete data set. A model has been submitted for use with the admissions

department, and the textual analysis variables could be used for the Fall 2014

incoming freshmen.

An area that needs additional development is finding better signals within the

essays to help improve the performance of the model. The variables created were

from personal reading of the essays to gather ideas. More readers involved could

produce more ideas or find correlations in essays by students who enroll. Voluntary

submission of the essays presents a problem that could easily be remedied by making

them mandatory. There could also be selection bias built into those who choose to

submit the essays. The participation rates show no true correlation with students who

actually enroll however there are many students that submit them and are not

accepted.

28

The essay questions could be altered to ask about the student's motivation for

attending Baylor. The variables created that help define signals in the essays were

geared towards finding a student's motivation. If the essay focused on this, the student

would be encouraged to use Baylor specific words or expressions of their faith. Being

a large private university, Baylor has to compete not only with public state

universities like Texas A&M and the UT, but also with other private institutions like

TCU and SMU. Those two set of schools draw from different groups of students, with

Baylor in the middle. Being able to find people from both sets was the goal of this

research, and asking the right questions is the key to accomplishing this.

The first semester GPA used was the most accurate information available to make

predictions with. The research would be better fitted if core classes could be accessed

to find ability. The first semester between two students could vary widely depending

on the classes they take. By focusing on core freshman classes, such as calculus or

literature, a more accurate model could be made. However, the number of

observations that would be available would probably suffer because the data set is

being limited even more. The number of enrolled students that complete the essays

needs to be increased to improve results.

By creating a large number of yield estimates and calculating a confidence

interval from them, the results appear to be more accurate than running a single

regression for the 2013 sample using chronological data. However, the results for

2011 and 2012 were not accurate enough to be reliable, which has been the problem

with previous results as well. (Van Dyke, 2014) My conclusion is that preferences for

college of enrollment are a forward progressing set of choices. The markets and

preferences change yearly. Some universities become more prestigious over time and

others less. The fact that results from chronological data is much more accurate than

29

data in reverse chronological order suggests that these changes build upon one

another and need to be taken into consideration. The simple solution for this problem

is to acquire more data from previous years. However, new data to be collected is

added periodically and the models have to be re-evaluated and changed. A moving

model updated yearly that includes the last three to four years may be the needed

application of this research. I recommend using the simulation method that

incorporates previous years to create a range of expected values for each student in

order to reduce the uncertainty of having a single point estimate.

30

APPENDICES

31

APPENDIX A

Summary Statistics

Table 11: Enrollment Regression Summary Statistics

Method # Observations Mean Std. Dev. Min Max
R2 13971 .3137741 .0925661 .0163004 .9997028
AIC 13971 .3177392 .0982734 .0603836 .9999732
BIC 13971 .3177145 .0953883 .1345734 .9618691

Table 12: Ability Regression Summary Statistics

Model # Observations Mean Std. Dev. Min Max
AIC 9524 3.229942 .326763 1.809234 4.19948
SAT 48879 3.166352 .2463845 2.0242 3.93375
Random Number 48884 3.16257 .0105589 3.144304 3.18086

32

APPENDIX B

Python Code – Variable Generating

from __future__ import division
import nltk
import csv
import re
from string import punctuation
import enchant
from enchant.checker import SpellChecker
faithwords = ['shall', 'unto', 'lord', 'thou', 'thy', 'ye', 'god', 'son', 'hath', 'israel', 'king',
'people', 'house', 'before', 'children', 'against', 'shalt', 'land', 'day', 'hand', 'behold', 'saith',
'sons', 'hast', 'o', 'over', 'she', 'david', 'great', 'jesus', 'thine', 'father', 'neither', 'give',
'take', 'am', 'forth', 'brought', 'name', 'away', 'pass', 'two', 'according', 'days', 'city',
'earth', 'moses', 'thereof', 'whom', 'know']
commitmentwords = ['pride', 'visit', 'leader', 'unity', 'campus', 'legacy', 'important',
'environment', 'only', 'home', 'comfort', 'mom', 'dad', 'mother', 'father', 'family']
baylorwords = ['baylor', 'bears', 'bear', 'waco', 'oso', 'quadrangle', 'ivy', 'hometown',
'burleson', 'hankamer', 'louise', 'herrington', 'truett']
oldbible = ['genesis', 'exodus', 'leviticus', 'numbers', 'deuteronomy', 'joshua', 'judges',
'ruth', 'samuel', 'kings', 'chronicles', 'ezra', 'nehemiah', 'esther', 'job', 'psalm', 'proverbs',
'ecclesiastes', 'solomon', 'isaiah', 'jermiah', 'lamentations', 'ezekiel', 'daniel', 'hosea',
'joel', 'amos', 'obadiah', 'jonah', 'micah', 'nahum', 'habakkuk', 'zephaniah', 'haggai',
'zechariah', 'malachi']
newbible = ['matthew', 'mark', 'luke', 'john', 'acts', 'romans', 'corinthians', 'galatians',
'ephesians', 'philippians', 'thessalonians', 'timothy', 'titus', 'philemon', 'hebrews', 'james',
'peter', 'jude', 'revelation']
adminwords = ['top', 'choice', 'first', 'dream', 'dreamed', 'always', 'growing', 'grown',
'grow', 'wonderful', 'visit', 'blessed', 'experience', 'passion', 'passionate', 'tradition',
'atmosphere', 'values', 'perfect', 'heart']

dictionary = enchant.Dict("en_US")
chkr = SpellChecker("en_US")

with open('additionalstatement.csv', 'rb') as csvfile:
data = csv.reader(csvfile, delimiter=",")
writer = csv.writer(open('additionaloutput.csv', 'wb'))

for row in data:
faithcounter = 0
grammarcounter = 0
commitmentcounter = 0
baylorcounter = 0
oldcounter = 0
newcounter = 0

33

admincounter = 0
count = 0
vowels = 'aeiouy'
sentences = 0

#######Formating data
row3 = row[4]
row3 = row3.lower().replace(' ', ' ')
row4 = row[5]
row4 = row4.lower().replace(' ', ' ')
row3 = row3.replace('\n', '')
row4 = row4.replace('\n', '')
for line in row3:
sentences += line.count('.')+ line.count ('!')+ line.count('?')

for line in row4:
sentences += line.count('.')+ line.count ('!')+ line.count('?')
for p in list(punctuation):
row3 = row3.replace(p, '')
row4 = row4.replace(p, '')
whybaylor = re.split(' ', row3)
lookingfor = re.split(' ', row4)

entire = whybaylor + lookingfor
#######Language Numbers
#Total Number of Words
whybaylorlen = len(whybaylor)
lookingforlen = len(lookingfor)

#Total Number of Different Words
numunique = len(set(entire))

#Number of Misspelled Words
chkr.set_text(row)
for word in row:
grammarcounter = grammarcounter + 1
#Lexical Richness or How many times each word was used
lexrich = len(entire) / len(set(entire))
#Calculations
total_length = lookingforlen + whybaylorlen
word_length = (sum(len(word) for word in whybaylor)+sum(len(word) for word in
lookingfor))/(len(whybaylor)+len(lookingfor))
grammar_wrong = grammarcounter / total_length
#######Word Counters
for word in whybaylor:
if word in faithwords:
faithcounter = faithcounter + 1
for word in lookingfor:
if word in faithwords:
faithcounter = faithcounter + 1

34

for word in whybaylor:
if word in commitmentwords:
commitmentcounter = commitmentcounter + 1
for word in lookingfor:
if word in commitmentwords:
commitmentcounter = commitmentcounter + 1
for word in whybaylor:
if word in baylorwords:
baylorcounter = baylorcounter + 1
for word in lookingfor:
if word in baylorwords:
baylorcounter =baylorcounter + 1

for word in whybaylor:
if word in oldbible:
oldcounter = oldcounter + 1
for word in lookingfor:
if word in oldbible:
oldcounter =oldcounter + 1

for word in whybaylor:
if word in newbible:
newcounter = newcounter + 1
for word in lookingfor:
if word in newbible:
newcounter = newcounter + 1

for word in whybaylor:
if word in adminwords:
admincounter = admincounter + 1
for word in lookingfor:
if word in adminwords:
admincounter = admincounter + 1
for word in whybaylor:
for index in range(0,len(word)):
if word[index] in vowels and word[index-1] not in vowels:
count +=1
if word.endswith('e'):
count -= 1
if word.endswith('le'):
count+=1
if count == 0:
count +=1
for word in lookingfor:
for index in range(0,len(word)):
if word[index] in vowels and word[index-1] not in vowels:
count +=1
if word.endswith('e'):
count -= 1
if word.endswith('le'):

35

count+=1
if count == 0:
count +=1
commitment_percentage = commitmentcounter / total_length
faith_percentage = faithcounter / total_length
baylor_percentage = baylorcounter / total_length
totalbible = newcounter + oldcounter
bible_percentage = totalbible / total_length
admin_percentage = admincounter / total_length
if sentences == 0:
sentences = 1
var1 = total_length / sentences
var2 = count / total_length
readingease = 206.835 - 1.015 * var1 - 84.6 * var2
gradelevel = 0.39 * var1 + 11.8 * var2 -15.59
#######Outputting new variables
#Quality of writing variables
row.append(whybaylorlen) #Number of Words in Essay1
row.append(lookingforlen) #Number of Words in Essay2
row.append(total_length) #Total Number of Words in Both Essays Combined
row.append(grammar_wrong) #Percent of Misspelled Words in Both Essays
row.append(word_length) #Average Number of Letters in a Word
row.append(numunique) #Number of Unique Words in Both Essays Combined
row.append(lexrich) #Average Number of Times Each Word was Used
#Signaling variables
row.append(commitmentcounter)
row.append(commitment_percentage)
row.append(faithcounter)
row.append(faith_percentage)
row.append(baylorcounter)
row.append(baylor_percentage)
row.append(totalbible)
row.append(bible_percentage)
row.append(admincounter)
row.append(admin_percentage)
#Flesch-Kincaid Metrics
row.append(count)
row.append(sentences)
row.append(readingease)
row.append(gradelevel)
writer.writerow(row)

36

APPENDIX C

Python Code – Bible Input

from collections import Counter
import csv
import re
import nltk
import enchant
from enchant.checker import SpellChecker
from string import punctuation

dictionary = enchant.Dict("en_US")
chkr = SpellChecker("en_US")

with open('thebible.txt', 'r') as thebible:
biblewords = thebible.read().replace('\n', '')
biblewords = biblewords.lower().replace(' ', ' ')
for p in list(punctuation):
biblewords = biblewords.replace(p, '')
biblesplit = re.split(' ', biblewords)

def remove_values_from_list(the_list, val):
return [value for value in the_list if value != val]

biblesplit = remove_values_from_list(biblesplit, 'the')
biblesplit = remove_values_from_list(biblesplit, 'and')
biblesplit = remove_values_from_list(biblesplit, 'of')
biblesplit = remove_values_from_list(biblesplit, 'to')
biblesplit = remove_values_from_list(biblesplit, 'that')
biblesplit = remove_values_from_list(biblesplit, 'in')
biblesplit = remove_values_from_list(biblesplit, 'he')
biblesplit = remove_values_from_list(biblesplit, 'for')
biblesplit = remove_values_from_list(biblesplit, 'i')
biblesplit = remove_values_from_list(biblesplit, 'his')
biblesplit = remove_values_from_list(biblesplit, 'a')
biblesplit = remove_values_from_list(biblesplit, 'they')
biblesplit = remove_values_from_list(biblesplit, 'upon')
biblesplit = remove_values_from_list(biblesplit, 'will')
biblesplit = remove_values_from_list(biblesplit, 'from')
biblesplit = remove_values_from_list(biblesplit, 'upon')
biblesplit = remove_values_from_list(biblesplit, 'as')
biblesplit = remove_values_from_list(biblesplit, 'thee')
biblesplit = remove_values_from_list(biblesplit, 'be')
biblesplit = remove_values_from_list(biblesplit, 'is')
biblesplit = remove_values_from_list(biblesplit, 'not')

37

biblesplit = remove_values_from_list(biblesplit, 'with')
biblesplit = remove_values_from_list(biblesplit, 'him')
biblesplit = remove_values_from_list(biblesplit, 'them')
biblesplit = remove_values_from_list(biblesplit, 'it')
biblesplit = remove_values_from_list(biblesplit, 'all')
biblesplit = remove_values_from_list(biblesplit, 'have')
biblesplit = remove_values_from_list(biblesplit, 'me')
biblesplit = remove_values_from_list(biblesplit, 'was')
biblesplit = remove_values_from_list(biblesplit, 'which')
biblesplit = remove_values_from_list(biblesplit, 'my')
biblesplit = remove_values_from_list(biblesplit, 'but')
biblesplit = remove_values_from_list(biblesplit, 'said')
biblesplit = remove_values_from_list(biblesplit, 'are')
biblesplit = remove_values_from_list(biblesplit, 'their')
biblesplit = remove_values_from_list(biblesplit, 'this')
biblesplit = remove_values_from_list(biblesplit, 'had')
biblesplit = remove_values_from_list(biblesplit, 'into')
biblesplit = remove_values_from_list(biblesplit, 'on')
biblesplit = remove_values_from_list(biblesplit, 'by')
biblesplit = remove_values_from_list(biblesplit, 'at')
biblesplit = remove_values_from_list(biblesplit, 'let')
biblesplit = remove_values_from_list(biblesplit, 'go')
biblesplit = remove_values_from_list(biblesplit, 'went')
biblesplit = remove_values_from_list(biblesplit, 'come')
biblesplit = remove_values_from_list(biblesplit, 'if')
biblesplit = remove_values_from_list(biblesplit, 'when')
biblesplit = remove_values_from_list(biblesplit, 'were')
biblesplit = remove_values_from_list(biblesplit, 'out')
biblesplit = remove_values_from_list(biblesplit, 'man')
biblesplit = remove_values_from_list(biblesplit, 'you')
biblesplit = remove_values_from_list(biblesplit, 'up')
biblesplit = remove_values_from_list(biblesplit, 'there')
biblesplit = remove_values_from_list(biblesplit, 'then')
biblesplit = remove_values_from_list(biblesplit, 'came')
biblesplit = remove_values_from_list(biblesplit, 'one')
biblesplit = remove_values_from_list(biblesplit, 'we')
biblesplit = remove_values_from_list(biblesplit, 'your')
biblesplit = remove_values_from_list(biblesplit, 'also')
biblesplit = remove_values_from_list(biblesplit, 'an')
biblesplit = remove_values_from_list(biblesplit, 'so')
biblesplit = remove_values_from_list(biblesplit, 'no')
biblesplit = remove_values_from_list(biblesplit, 'even')
biblesplit = remove_values_from_list(biblesplit, 'now')
biblesplit = remove_values_from_list(biblesplit, 'do')
biblesplit = remove_values_from_list(biblesplit, 'us')
biblesplit = remove_values_from_list(biblesplit, 'therefore')
biblesplit = remove_values_from_list(biblesplit, 'these')
biblesplit = remove_values_from_list(biblesplit, 'because')
biblesplit = remove_values_from_list(biblesplit, 'her')
biblesplit = remove_values_from_list(biblesplit, 'men')

38

biblesplit = remove_values_from_list(biblesplit, 'saying')
biblesplit = remove_values_from_list(biblesplit, 'made')
biblesplit = remove_values_from_list(biblesplit, 'every')
biblesplit = remove_values_from_list(biblesplit, 'after')
biblesplit = remove_values_from_list(biblesplit, 'our')
biblesplit = remove_values_from_list(biblesplit, 'or')
biblesplit = remove_values_from_list(biblesplit, 'down')
biblesplit = remove_values_from_list(biblesplit, 'things')
biblesplit = remove_values_from_list(biblesplit, 'make')
biblesplit = remove_values_from_list(biblesplit, 'put')
biblesplit = remove_values_from_list(biblesplit, 'among')
biblesplit = remove_values_from_list(biblesplit, 'who')
biblesplit = remove_values_from_list(biblesplit, 'may')
biblesplit = remove_values_from_list(biblesplit, 'our')
biblesplit = remove_values_from_list(biblesplit, 'or')
biblesplit = remove_values_from_list(biblesplit, 'did')
biblesplit = remove_values_from_list(biblesplit, 'any')
biblesplit = remove_values_from_list(biblesplit, 'what')
biblesplit = remove_values_from_list(biblesplit, 'say')
biblesplit = remove_values_from_list(biblesplit, 'should')
fdist1 = nltk.FreqDist(biblesplit)
vocabulary1 = fdist1.keys()
output = vocabulary1[:50]
print output

39

APPENDIX D

Python Code – Traditions Retrieval

from __future__ import division
import nltk
import re
from string import punctuation
import enchant
from enchant.checker import SpellChecker
from collections import Counter

dictionary = enchant.Dict("en_US")
chkr = SpellChecker("en_US")

with open('baylortraditions.txt', 'r') as baylortraditions:
baylorwords = baylortraditions.read().replace('\n', '')

baylorwords = baylorwords.lower().replace(' ', ' ')
for p in list(punctuation):
baylorwords = baylorwords.replace(p, '')
baylorsplit = re.split(' ', baylorwords)

with open('uttraditions.txt', 'r') as uttraditions:
utwords = uttraditions.read().replace('\n', '')

utwords = utwords.lower().replace(' ', ' ')
for p in list(punctuation):
utwords = utwords.replace(p, '')
utsplit = re.split(' ', utwords)
with open('aggietraditions.txt', 'r') as aggietraditions:
aggiewords = aggietraditions.read().replace('\n', '')
aggiewords = aggiewords.lower().replace(' ', ' ')
for p in list(punctuation):
aggiewords = aggiewords.replace(p, '')
aggiesplit = re.split(' ', aggiewords)
with open('smutraditions.txt', 'r') as smutraditions:
smuwords = smutraditions.read().replace('\n', '')
smuwords = smuwords.lower().replace(' ', ' ')
for p in list(punctuation):
smuwords = smuwords.replace(p, '')
smusplit = re.split(' ', smuwords)

c =Counter(smusplit)
for word in set(baylorsplit):
print word, c.get(word, 0)

40

APPENDIX E

Python Code – Essay Breakdown

from collections import Counter
import csv
import re
import nltk
from string import punctuation
from nltk.corpus import stopwords

enrollwords = []
noenrollwords = []

with open('2011ShortAnswers.csv', 'rb') as csvfile:
data = csv.reader(csvfile, delimiter=",")
writer = csv.writer(open('keyword.csv', 'wb'))

for row in data:

#Format Data
row3 = row[3]
row3 = row3.lower().replace(' ', ' ')
row4 = row[4]
row4 = row4.lower().replace(' ', ' ')
row3 = row3
for p in list(punctuation):
row3 = row3.replace(p, '')
row4 = row4.replace(p, '')
whybaylor = re.split(' ', row3)
lookingfor = re.split(' ', row4)
allrow = row3 + row4
entire = whybaylor + lookingfor
#Removing words that are of no importance
def remove_values_from_list(the_list, val):
return [value for value in the_list if value != val]

entire = remove_values_from_list(entire, 'a')
entire = remove_values_from_list(entire, 'i')
entire = remove_values_from_list(entire, 'my')
entire = remove_values_from_list(entire, 'me')
entire = remove_values_from_list(entire, 'to')
entire = remove_values_from_list(entire, 'and')
entire = remove_values_from_list(entire, 'was')
entire = remove_values_from_list(entire, 'as')
entire = remove_values_from_list(entire, 'you')

41

entire = remove_values_from_list(entire, 'just')
entire = remove_values_from_list(entire, 'so')
entire = remove_values_from_list(entire, 'will')
entire = remove_values_from_list(entire, 'also')
entire = remove_values_from_list(entire, 'do')
entire = remove_values_from_list(entire, 'for')
entire = remove_values_from_list(entire, 'of')
entire = remove_values_from_list(entire, 'it')
entire = remove_values_from_list(entire, 'the')
entire = remove_values_from_list(entire, 'in')
entire = remove_values_from_list(entire, 'is')
entire = remove_values_from_list(entire, 'at')
entire = remove_values_from_list(entire, 'am')
entire = remove_values_from_list(entire, 'get')
entire = remove_values_from_list(entire, 'has')
entire = remove_values_from_list(entire, 'can')
entire = remove_values_from_list(entire, 'with')
entire = remove_values_from_list(entire, 'all')
entire = remove_values_from_list(entire, 'an')
entire = remove_values_from_list(entire, 'be')
entire = remove_values_from_list(entire, 'that')
entire = remove_values_from_list(entire, 'on')
entire = remove_values_from_list(entire, 'not')
entire = remove_values_from_list(entire, 'want')
entire = remove_values_from_list(entire, 'would')
entire = remove_values_from_list(entire, 'are')
entire = remove_values_from_list(entire, 'have')
entire = remove_values_from_list(entire, 'but')
entire = remove_values_from_list(entire, 'about')
entire = remove_values_from_list(entire, 'like')
entire = remove_values_from_list(entire, 'from')
entire = remove_values_from_list(entire, 'because')
entire = remove_values_from_list(entire, 'this')
entire = remove_values_from_list(entire, 'by')
entire = remove_values_from_list(entire, '')
entire = remove_values_from_list(entire, 'many')
entire = remove_values_from_list(entire, 'able')
entire = remove_values_from_list(entire, 'where')
entire = remove_values_from_list(entire, 'being')
entire = remove_values_from_list(entire, 'what')
entire = remove_values_from_list(entire, 'been')

entire = remove_values_from_list(entire, 'one')
entire = remove_values_from_list(entire, 'myself')
entire = remove_values_from_list(entire, 'when')
entire = remove_values_from_list(entire, 'well')
entire = remove_values_from_list(entire, 'very')
entire = remove_values_from_list(entire, 'more')
entire = remove_values_from_list(entire, 'there')
entire = remove_values_from_list(entire, 'their')

42

entire = remove_values_from_list(entire, 'who')
entire = remove_values_from_list(entire, 'or')
entire = remove_values_from_list(entire, 'other')
entire = remove_values_from_list(entire, 'make')

#Creating a list of the top words used by individuals
fdist1 = nltk.FreqDist(entire)
output = fdist1.keys()
output = vocabulary1[:5]
output2 = sorted([w for w in set(entire) if len(w) > 4 and fdist1[w] > 2])
output3 = fdist1.hapaxes()
if row[1] == '1':
enrollwords = enrollwords + output
if row[1] == '0':
noenrollwords = noenrollwords + output
#Taking the lists of top words used by individuals and creating top used list in
aggregate
overallyes = nltk.FreqDist(enrollwords)
yesvocab = overallyes.keys()
yeswords = yesvocab[:35]

overallno = nltk.FreqDist(noenrollwords)
novocab = overallno.keys()
nowords = novocab[:35]

print yeswords
print nowords

43

APPENDIX F

STATA Code

/**/
/* Stata program for Admissions Research */
/* Van Pham, and Stephen Ryan Beckham (RA) */
/* last revised by SRB Apr 3 2014 */
/**/

capture program drop _all

program admissions

 clear
 set more off

 /***/
 /* Data mining done in Python. Output files are */
 /* generated there and then moved to STATA for */
 /* statistical work. Below set is for cleaning and */
 /* merging data. */
 /***/

 *Python
 *Clean
 *appendnmerge
 *changengenerate

 /***/
 /* The code to predict propensity to enroll */
 /***/

 *vselectpropensity
 *predictpropensity

 /***/
 /* The code to predict ability */
 /***/

 *vselectgpa
 *text2gpa
 *vselectsat
 *text2sat
 *sat2gpa
 *hsp2gpa

44

*text2gpamarginal
*textsat2gpa
*textsathsp2gpa

/***/
/* The code is using the open answer data set */
/***/

*openanswerconvert

/***/
/* The code to predict retention */
/***/

*vselectretention
*predictretention

*subgroupingsat
*fregressionlevels

end

/*******************************/

program Python

//Pulling Python Files
insheet using 2011output.csv
save 2011output.dta
clear
insheet using 2012output.csv
save 2012output.dta
clear
insheet using 2013output.csv
save 2013output.dta
clear

end //-------------Python----------------

/*******************************/

program Clean

//Cleaning File that will allow the merge of crosswalk and random_ID
import excel "C:\Documents and Settings\stephen_beckham\My

Documents\Match Crosswalk.xls", sheet("Matched")
rename A crosswalk
rename B random_ID

45

 rename C Term
 drop if crosswalk == "CROSSWALK"
 destring crosswalk, replace
 destring random_ID, replace
 destring Term, replace
 save matchcrosswalk.dta
 clear

end //-------------Clean----------------

/*******************************/

program appendnmerge

 //Appending all the Python datasets into one data set
 use 2011output.dta
 append using 2012output.dta
 append using 2013output.dta
 save combinedstata.dta
 clear

 //Merging the data set created in Python with Sarah's data set
 use combinedstata.dta
 merge m:m crosswalk using matchcrosswalk.dta, nogen
 merge m:1 random_ID using sarahsdta.dta, nogen
 save masterlist.dta
 clear

end //-------------appendnmerge----------------

/*******************************/

program changengenerate

 //Cleaning up the variables into memorable names
 use masterlist.dta
 rename baylor_cont_text WhyBaylor
 rename univ_look_text Lookingfor
 rename v7 Essay1Len
 rename v8 Essay2Len
 rename v9 TotalLen
 rename v10 GrammerWrong
 rename v11 WordLength
 rename v12 NumUnique
 rename v13 lexrich
 rename v14 commitmentcounter
 rename v15 commitmentpercent
 rename v16 faithcounter
 rename v17 faithpercent
 rename v18 baylorcounter

46

rename v19 baylorpercent
rename v20 totalbible
rename v21 biblepercent
rename v22 admincounter
rename v23 adminpercent
rename v24 syllables
rename v25 sentences
rename v26 fleschreading
rename v27 fleschgrade

//Creaing variables to assist with vselect
gen newrandom = runiform()
gen var1 = biblepercent * faithcounter
gen var2 = totalbible * totalbible
gen var3 = baylorcounter * baylorcounter
gen var4 = faithcounter * faithcounter
gen var5 = commitmentcounter * commitmentcounter
gen var6 = faithpercent * totalbible
gen var7 = baylorpercent * commitmentcounter
gen var8 = commitmentpercent * baylorcounter
gen var9 = commitmentpercent + baylorpercent
gen var10 = biblepercent + faithpercent
gen var11 = NumUnique * lexrich
gen var12 = TotalLen * WordLength
gen var13 = lexrich * GrammerWrong
gen var14 = biblepercent + baylorpercent + faithpercent + commitmentpercent
gen var15 = GrammerWrong + commitmentpercent
gen var16 = biblepercent * commitmentcounter
gen var17 = totalbible * commitmentpercent
gen var18 = faithcounter * baylorpercent

gen gpa2 = TotalLen * TotalLen
gen gpa3 = WordLength * WordLength
gen gpa4 = NumUnique * NumUnique
gen gpa5 = lexrich * lexrich
gen gpa6 = syllables * syllables
gen gpa7 = sentences * sentences
gen gpa8 = fleschreading * fleschreading
gen gpa9 = fleschgrade * fleschgrade
gen gpa10 = fleschreading * fleschgrade
gen gpa11 = TotalLen * WordLength * sentences
gen gpa12 = fleschreading * GrammerWrong
gen gpa13 = fleschgrade * GrammerWrong
gen gpa14 = fleschreading * fleschgrade * GrammerWrong
gen gpa15 = NumUnique * lexrich
gen gpa16 = syllables * TotalLen
gen gpa17 = sentences * WordLength
gen gpa18 = lexrich * GrammerWrong
gen gpa19 = fleschreading * fleschreading * fleschreading

47

 gen gpa20 = fleschgrade * fleschgrade * fleschgrade

 save masterlist.dta, replace
 clear

end //-------------changengenerate----------------

/*******************************/

program vselectpropensity

 use masterlist.dta

 //Those that were not admitted are not being used
 drop if admitted == 0

 //The vselect will be fixed on a single year, this will need to be changed for
robustness checks
 vselect registered Essay1Len Essay2Len TotalLen GrammerWrong
WordLength NumUnique lexrich commitmentpercent commitmentcounter
faithcounter faithpercent baylorcounter baylorpercent totalbible biblepercent
admincounter adminpercent syllables sentences fleschreading fleschgrade var1 var2
var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16 var17
var18 if newrandom > .5, best

end //-------------veselectpropensity----------------

/*******************************/

program predictpropensity

 clear

 use f:\Users\Stephen_Beckham\masterlist.dta

 //Those that were not admitted are not being used
 drop if admitted == 0

 //Logits run based on the vselect recommendations. These will need to be
changed for robustness check
 quiet logit registered commitmentcounter var18 baylorcounter var3 var5
totalbible syllables var2 admincounter var12 Essay2Len var14 baylorpercent var15
NumUnique if newrandom > .7
 quiet predict pr_enroll_r2, pr
 quiet logit registered commitmentcounter var18 baylorcounter var3 syllables
admincounter var12 Essay2Len faithpercent GrammerWrong NumUnique if
newrandom > .5
 quiet predict pr_enroll_aic, pr
 quiet logit registered commitmentcounter baylorcounter syllables

48

admincounter var12 NumUnique if newrandom > .5
quiet predict pr_enroll_bic, pr
quiet logit registered Essay1Len Essay2Len TotalLen GrammerWrong

WordLength NumUnique lexrich commitmentpercent commitmentcounter
faithcounter faithpercent baylorcounter baylorpercent totalbible biblepercent
admincounter adminpercent var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11
var12 var13 var14 var15 var16 var17 var18 if newrandom > .5

quiet predict pr_enroll_all, pr

//Droping term used in regressions to get out of sample predictions
drop if newrandom > .5

//vselect's choice of R^2
gen enrollhatr2 = 0
replace enrollhatr2 = 1 if pr_enroll_r2 > 0.4
gen falseposr2 = 0
replace falseposr2 = 1 if registered == 0 & enrollhatr2 == 1
gen falsenegr2 = 0
replace falsenegr2 = 1 if registered == 1 & enrollhatr2 == 0
gen trueposr2 = 0
replace trueposr2 = 1 if registered == 1 & enrollhatr2 == 1
gen truenegr2 = 0
replace truenegr2 = 1 if registered == 0 & enrollhatr2 == 0

//vselect's choice for AIC & AICC
gen enrollhataic = 0
replace enrollhataic = 1 if pr_enroll_aic > 0.4
gen falseposaic = 0
replace falseposaic = 1 if registered == 0 & enrollhataic == 1
gen falsenegaic = 0
replace falsenegaic = 1 if registered == 1 & enrollhataic == 0
gen trueposaic = 0
replace trueposaic = 1 if registered == 1 & enrollhataic == 1
gen truenegaic = 0
replace truenegaic = 1 if registered == 0 & enrollhataic == 0

//vselect's choice for BIC
gen enrollhatbic = 0
replace enrollhatbic = 1 if pr_enroll_bic > 0.4
gen falseposbic = 0
replace falseposbic = 1 if registered == 0 & enrollhatbic == 1
gen falsenegbic = 0
replace falsenegbic = 1 if registered == 1 & enrollhatbic == 0
gen trueposbic = 0
replace trueposbic = 1 if registered == 1 & enrollhatbic == 1
gen truenegbic = 0
replace truenegbic = 1 if registered == 0 & enrollhatbic == 0

//using all the variables
gen enrollhatall = 0

49

 replace enrollhatall = 1 if pr_enroll_all > 0.4
 gen falseposall = 0
 replace falseposall = 1 if registered == 0 & enrollhatall == 1
 gen falsenegall = 0
 replace falsenegall = 1 if registered == 1 & enrollhatall == 0
 gen trueposall = 0
 replace trueposall = 1 if registered == 1 & enrollhatall == 1
 gen truenegall = 0
 replace truenegall = 1 if registered == 0 & enrollhatall == 0

 //Generating number of students that registered
 gen numreg = registered == 1
 replace numreg = sum(numreg)
 replace numreg = numreg[_N]

 //Generating number of students that didn't register
 gen numnoreg = registered == 0
 replace numnoreg = sum(numnoreg)
 replace numnoreg = numnoreg[_N]

 //Generating numbers for R^2
 gen numtpr2 = trueposr2 == 1
 replace numtpr2 = sum(numtpr2)
 replace numtpr2 = numtpr2[_N]
 gen numtnr2 = truenegr2 == 1
 replace numtnr2 = sum(numtnr2)
 replace numtnr2 = numtnr2[_N]
 gen numfpr2 = falseposr2 == 1
 replace numfpr2 = sum(numfpr2)
 replace numfpr2 = numfpr2[_N]
 gen numfnr2 = falsenegr2 == 1
 replace numfnr2 = sum(numfnr2)
 replace numfnr2 = numfnr2[_N]

 //Generating numbers for AIC
 gen numtpaic = trueposaic == 1
 replace numtpaic = sum(numtpaic)
 replace numtpaic = numtpaic[_N]
 gen numtnaic = truenegaic == 1
 replace numtnaic = sum(numtnaic)
 replace numtnaic = numtnaic[_N]
 gen numfpaic = falseposaic == 1
 replace numfpaic = sum(numfpaic)
 replace numfpaic = numfpaic[_N]
 gen numfnaic = falsenegaic == 1
 replace numfnaic = sum(numfnaic)
 replace numfnaic = numfnaic[_N]

 //Generating numbers for bic
 gen numtpbic = trueposbic == 1

50

replace numtpbic = sum(numtpbic)
replace numtpbic = numtpbic[_N]
gen numtnbic = truenegbic == 1
replace numtnbic = sum(numtnbic)
replace numtnbic = numtnbic[_N]
gen numfpbic = falseposbic == 1
replace numfpbic = sum(numfpbic)
replace numfpbic = numfpbic[_N]
gen numfnbic = falsenegbic == 1
replace numfnbic = sum(numfnbic)
replace numfnbic = numfnbic[_N]

//Generating numbers using all variables
gen numtpall = trueposall == 1
replace numtpall = sum(numtpall)
replace numtpall = numtpall[_N]
gen numtnall = truenegall == 1
replace numtnall = sum(numtnall)
replace numtnall = numtnall[_N]
gen numfpall = falseposall == 1
replace numfpall = sum(numfpall)
replace numfpall = numfpall[_N]
gen numfnall = falsenegall == 1
replace numfnall = sum(numfnall)
replace numfnall = numfnall[_N]

//Creating percentages to be show true positive, true negative, etc.
gen percenttpr2 = numtpr2 / numreg
gen percenttnr2 = numtnr2 / numnoreg
gen percentfpr2 = numfpr2 / numnoreg
gen percentfnr2 = numfnr2 / numreg
gen percenttpaic = numtpaic / numreg
gen percenttnaic = numtnaic / numnoreg
gen percentfpaic = numfpaic / numnoreg
gen percentfnaic = numfnaic / numreg
gen percenttpbic = numtpbic / numreg
gen percenttnbic = numtnbic / numnoreg
gen percentfpbic = numfpbic / numnoreg
gen percentfnbic = numfnbic / numreg
gen percenttpall = numtpall / numreg
gen percenttnall = numtnall / numnoreg
gen percentfpall = numfpall / numnoreg
gen percentfnall = numfnall / numreg

//Displaying Results
dis percenttpr2
dis percenttnr2
dis percentfpr2
dis percentfnr2
dis percenttpaic

51

 dis percenttnaic
 dis percentfpaic
 dis percentfnaic
 dis percenttpbic
 dis percenttnbic
 dis percentfpbic
 dis percentfnbic
 dis percenttpall
 dis percenttnall
 dis percentfpall
 dis percentfnall

end //-------------predictpropensity----------------

/*******************************/

program vselectgpa

 clear

 use masterlist.dta

 //Finding the best fit
 vselect gpa TotalLen GrammerWrong WordLength NumUnique lexrich
syllables sentences fleschreading fleschgrade gpa2 gpa3 gpa4 gpa5 gpa6 gpa7 gpa8
gpa9 gpa10 gpa11 gpa12 gpa13 gpa14 gpa15 gpa16 gpa17 gpa18 gpa19 gpa20, best

end //--------------vselectgpa--------------------------------

/*******************************/

program text2gpa

 clear

 use masterlist.dta

 //Regressions based on GPA, needs to be changed for robustness
 //Also using random number assignment for out of sample predictions, can be
changed for robustness
 quiet regress gpa distance gpa14 gpa8 WordLength TotalLen gpa3
high_school_percentile gpa11 satmodel gpa6 gpa15 if random > .5
 quiet predict pr_abil_r2
 quiet regress gpa distance fleschreading WordLength TotalLen gpa3
high_school_percentile gpa11 satmodel gpa13 gpa15 if random > .5
 quiet predict pr_abil_aic
 quiet regress gpa syllables TotalLen high_school_percentile satmodel if
random > .5
 quiet predict pr_abil_bic
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich

52

syllables sentences fleschreading fleschgrade if random > .5
quiet predict pr_abil_all
quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich

sentences fleschreading fleschgrade if random > .5
quiet predict pr_abil_working

//Droping in sample
drop if random > .5

//Generating variable to show percentage I am off by
gen off_r2 = (pr_abil_r2 - gpa) / gpa
gen off_aic = (pr_abil_aic - gpa) / gpa
gen off_bic = (pr_abil_bic - gpa) / gpa
gen off_all = (pr_abil_all - gpa) / gpa
gen off_working = (pr_abil_working - gpa) / gpa

//Displaying Results
sum off_r2
sum off_aic
sum off_bic
sum off_all
sum off_working

//Mean Square Prediction Error Calculation
gen msper2_1 = (pr_abil_r2 - gpa)^2
gen mspeaic_1= (pr_abil_aic - gpa)^2
gen mspebic_1 =(pr_abil_bic - gpa)^2
gen mspeall_1 =(pr_abil_all - gpa)^2
gen mspeworking_1 = (pr_abil_working - gpa)^2

egen msper2_2 = mean(msper2_1)
egen mspeaic_2 = mean(mspeaic_1)
egen mspebic_2 = mean(mspebic_1)
egen mspeall_2 = mean(mspeall_1)
egen mspeworking_2 = mean(mspeworking_1)

gen msper2 = msper2_2 ^ 0.5
gen mspeaic = mspeaic_2 ^ 0.5
gen mspebic = mspebic_2 ^ 0.5
gen mspeall = mspeall_2 ^ 0.5
gen mspeworking = mspeworking_2 ^ 0.5

sum msper2
sum mspeaic
sum mspebic
sum mspeall
sum mspeworking

53

end //----------------text2gpa--

/*******************************/

program vselectsat

 clear

 use masterlist.dta

 //Finding the best fit
 vselect satmodel TotalLen GrammerWrong WordLength NumUnique lexrich
syllables sentences fleschreading fleschgrade, best

end //------------------vselectsat---

 /*******************************/

program text2sat

 clear

 use masterlist.dta

 //Regressions based on GPA, needs to be changed for robustness
 //Also using random number assignment for out of sample predictions, can be
changed for robustness
 quiet regress satmodel NumUnique sentences WordLength TotalLen
fleschreading if random > .5
 quiet predict pr_abil_r2
 quiet regress satmodel NumUnique sentences WordLength TotalLen if
random > .5
 quiet predict pr_abil_aic
 quiet regress satmodel NumUnique sentences WordLength if random > .5
 quiet predict pr_abil_bic
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich
syllables sentences fleschreading fleschgrade if random > .5
 quiet predict pr_abil_all

 drop if random > .5

 //Generating variable to show percentage I am off by
 gen off_r2 = (pr_abil_r2 - satmodel) / satmodel
 gen off_aic = (pr_abil_aic - satmodel) / satmodel
 gen off_bic = (pr_abil_bic - satmodel) / satmodel
 gen off_all = (pr_abil_all - satmodel) / satmodel

 //Displaying Results
 sum off_r2
 sum off_aic

54

sum off_bic
sum off_all

//Mean Square Prediction Error Calculation
gen msper2_1 = (pr_abil_r2 - gpa)^2
gen mspeaic_1= (pr_abil_aic - gpa)^2
gen mspebic_1 =(pr_abil_bic - gpa)^2
gen mspeall_1 =(pr_abil_all - gpa)^2
gen mspeworking_1 = (pr_abil_working - gpa)^2

egen msper2_2 = mean(msper2_1)
egen mspeaic_2 = mean(mspeaic_1)
egen mspebic_2 = mean(mspebic_1)
egen mspeall_2 = mean(mspeall_1)
egen mspeworking_2 = mean(mspeworking_1)

gen msper2 = msper2_2 ^ 0.5
gen mspeaic = mspeaic_2 ^ 0.5
gen mspebic = mspebic_2 ^ 0.5
gen mspeall = mspeall_2 ^ 0.5
gen mspeworking = mspeworking_2 ^ 0.5

sum msper2
sum mspeaic
sum mspebic
sum mspeall
sum mspeworking

end //----------------------text2sat----------------------------------

/*******************************/

program sat2gpa

clear

use masterlist.dta

quiet regress gpa satmodel if random > .5
quiet predict gpahat

drop if random > .5
//drop if sat > 1200

gen off = (gpahat - gpa)/gpa
sum off

//Mean Square Prediction Error Calculation
gen msper2_1 = (gpahat - gpa)^2

55

 egen msper2_2 = mean(msper2_1)

 gen msper2 = msper2_2 ^ 0.5

 sum msper2

end //----------------------sat2gpa------------------------------------

/*******************************/

program text2gpamarginal

 clear

 use masterlist.dta

 quiet regress gpa fleschreading fleschgrade sentences NumUnique syllables
lexrich TotalLen if random > .5
 quiet predict pr_gpa_r2
 quiet regress gpa fleschreading fleschgrade sentences NumUnique lexrich if
random > .5
 quiet predict pr_gpa_aic
 quiet regress gpa fleschreading TotalLen if random > .5
 quiet predict pr_gpa_bic
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich
syllables sentences fleschreading fleschgrade if random > .5
 quiet predict pr_gpa_all
 quiet regress satmodel NumUnique sentences WordLength TotalLen
fleschreading if random > .5
 quiet predict pr_sat_r2
 quiet regress satmodel NumUnique sentences WordLength TotalLen if
random > .5
 quiet predict pr_sat_aic
 quiet regress satmodel NumUnique sentences WordLength if random > .5
 quiet predict pr_sat_bic
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich
syllables sentences fleschreading fleschgrade if random > .5
 quiet predict pr_sat_all

 drop if random > .5
 //Using 50 points over cutoff
 drop if satmodel > 1250
 //Cutoff if 50% on high school rank, making marginal student 60%
 //drop if high_school_percentile > 60

 gen off_r2gpa = (pr_gpa_r2 - gpa) / gpa
 gen off_aicgpa = (pr_gpa_aic - gpa) / gpa
 gen off_bicgpa = (pr_gpa_bic - gpa) / gpa

56

gen off_allgpa = (pr_gpa_all - gpa) / gpa
gen off_r2sat = (pr_sat_r2 - satmodel) / satmodel
gen off_aicsat = (pr_sat_aic - satmodel) / satmodel
gen off_bicsat = (pr_sat_bic - satmodel) / satmodel
gen off_allsat = (pr_sat_all - satmodel) / satmodel

sum off_r2gpa
sum off_aicgpa
sum off_bicgpa
sum off_allgpa
sum off_r2sat
sum off_aicsat
sum off_bicsat
sum off_allsat

end //------------------------text2gpamarginal-------------------------------

program openanswerconvert

insheet using additionaloutput.csv
save additionalstatement.dta

rename id random_ID
rename additional_info_statement addinfo
rename v3 addinfolen
rename v5 addGrammerWrong
rename v6 addWordLength
rename v7 addNumUnique
rename v8 addlexrich
rename v9 addcommitmentcounter
rename v10 addcommitmentpercent
rename v11 addfaithcounter
rename v12 addfaithpercent
rename v13 addbaylorcounter
rename v14 addbaylorpercent
rename v15 addtotalbible
rename v16 addbiblepercent
rename v17 addadmincounter
rename v18 addadminpercent
rename v19 addsyllables
rename v20 addsentences
rename v21 addfleschreading
rename v22 addfleschgrade
drop v4

save additionalstatement.dta, replace

clear
use masterlist.dta

57

 merge m:1 random_ID using additionalstatement.dta, nogen

 save masterwithopen.dta

end //--------------------------openanswerconvert----------------------------

/*******************************/

program textsat2gpa

 clear

 use masterlist.dta

 //Regressions based on GPA, needs to be changed for robustness
 //Also using random number assignment for out of sample predictions, can be
changed for robustness
 quiet regress gpa satmodel fleschreading fleschgrade sentences NumUnique
syllables lexrich TotalLen if random > .5
 quiet predict pr_abil_r2
 quiet regress gpa satmodel fleschreading fleschgrade sentences NumUnique
lexrich if random > .5
 quiet predict pr_abil_aic
 quiet regress gpa satmodel fleschreading TotalLen if random > .5
 quiet predict pr_abil_bic
 quiet regress gpa satmodel TotalLen GrammerWrong WordLength
NumUnique lexrich syllables sentences fleschreading fleschgrade if random > .5
 quiet predict pr_abil_all
 quiet regress gpa satmodel fleschreading fleschgrade syllables TotalLen
sentences lexrich NumUnique if random > .5
 quiet predict pr_abil_working

 //Droping in sample
 drop if random > .5

 //Generating variable to show percentage I am off by
 gen off_r2 = (pr_abil_r2 - gpa) / gpa
 gen off_aic = (pr_abil_aic - gpa) / gpa
 gen off_bic = (pr_abil_bic - gpa) / gpa
 gen off_all = (pr_abil_all - gpa) / gpa
 gen off_working = (pr_abil_working - gpa) / gpa

 //Displaying Results
 sum off_r2
 sum off_aic
 sum off_bic
 sum off_all
 sum off_working

end //----------------textsat2gpa--

58

/*******************************/

program hsp2gpa

clear

use masterlist.dta

quiet regress gpa high_school_percentile if random > .5
quiet predict gpahat

drop if random > .5

gen off = (gpahat - gpa)/gpa
sum off

end //----------------------hsp2gpa------------------------------------

/*******************************/

program textsathsp2gpa

clear

use masterlist.dta

//Regressions based on GPA, needs to be changed for robustness
//Also using random number assignment for out of sample predictions, can be

changed for robustness
quiet regress gpa satmodel high_school_percentile fleschreading fleschgrade

sentences NumUnique syllables lexrich TotalLen if random > .5
quiet predict pr_abil_r2
quiet regress gpa satmodel high_school_percentile fleschreading fleschgrade

sentences NumUnique lexrich if random > .5
quiet predict pr_abil_aic
quiet regress gpa satmodel high_school_percentile fleschreading TotalLen if

random > .5
quiet predict pr_abil_bic
quiet regress gpa satmodel high_school_percentile TotalLen GrammerWrong

WordLength NumUnique lexrich syllables sentences fleschreading fleschgrade if
random > .5

quiet predict pr_abil_all
quiet regress gpa high_school_percentile satmodel NumUnique lexrich

fleschreading syllables GrammerWrong sentences WordLength fleschgrade if random
> .5

quiet predict pr_abil_working

//Droping in sample

59

drop if random > .5
*Add below code in for marginal work
//drop if satmodel > 1200

//Generating variable to show percentage I am off by
gen off_r2 = (pr_abil_r2 - gpa) / gpa
gen off_aic = (pr_abil_aic - gpa) / gpa
gen off_bic = (pr_abil_bic - gpa) / gpa
gen off_all = (pr_abil_all - gpa) / gpa
gen off_working = (pr_abil_working - gpa) / gpa

//Displaying Results
sum off_r2
sum off_aic
sum off_bic
sum off_all
sum off_working

//Mean Square Prediction Error Calculation
gen msper2_1 = (pr_abil_r2 - gpa)^2
gen mspeaic_1= (pr_abil_aic - gpa)^2
gen mspebic_1 =(pr_abil_bic - gpa)^2
gen mspeall_1 =(pr_abil_all - gpa)^2
gen mspeworking_1 = (pr_abil_working - gpa)^2

egen msper2_2 = mean(msper2_1)
egen mspeaic_2 = mean(mspeaic_1)
egen mspebic_2 = mean(mspebic_1)
egen mspeall_2 = mean(mspeall_1)
egen mspeworking_2 = mean(mspeworking_1)

gen msper2 = msper2_2 ^ 0.5
gen mspeaic = mspeaic_2 ^ 0.5
gen mspebic = mspebic_2 ^ 0.5
gen mspeall = mspeall_2 ^ 0.5
gen mspeworking = mspeworking_2 ^ 0.5

sum msper2
sum mspeaic
sum mspebic
sum mspeall
sum mspeworking

end //----------------textsathsp2gpa--

/*******************************/

program vselectretention

clear

60

use masterlist.dta

quiet regress gpa fleschreading fleschgrade sentences NumUnique
syllables lexrich TotalLen

quiet predict pr_abil_r2

//Those that were not admitted are not being used
drop if drop_semester == .
drop if drop_year == .

//The vselect will be fixed on a single year, this will need to be
changed for robustness checks

vselect drop_year pr_abil_r2 orientation_sched_ind budget_amt
gross_need academic_index high_school_percentile total_contacts self_init_cntcts
solicited_cntcts referral_cntcts campus_visit BUhonors satmodel dep_span legacy
distance visited hsrate mrate initrate religionrate tot_loan tot_schol tot_work tot_grant
efc merit_schol need_schol commitmentpercent commitmentcounter faithcounter
faithpercent baylorcounter baylorpercent totalbible biblepercent admincounter if
newrandom > .5, best

end //-------------veselectretention----------------

/*******************************/

program predictretention

clear

use masterlist.dta

//Logits run based on the vselect recommendations. These will need to be
changed for robustness check

quiet logit drop_semester orientation_sched_ind dep_span
high_school_percentile academic_index satmodel need_schol campus_visit
biblepercent BUhonors baylorpercent tot_loan tot_schol hsrate merit_schol tot_work
commitmentcounter faithpercent if newrandom > .5, difficult technique(nr bhhh dfp
bfgs)

quiet predict pr_semester_r2, pr
quiet logit drop_semester orientation_sched_ind dep_span

high_school_percentile campus_visit biblepercent BUhonors baylorpercent tot_loan
hsrate totalbible faithcounter if newrandom > .5, difficult technique(nr bhhh dfp bfgs)

quiet predict pr_semester_aic, pr
quiet logit drop_semester dep_span if newrandom > .5, difficult technique(nr

bhhh dfp bfgs)
quiet predict pr_semester_bic, pr
quiet logit drop_semester orientation_sched_ind dep_span

high_school_percentile campus_visit biblepercent baylorpercent tot_loan if
newrandom > .5, difficult technique(nr bhhh dfp bfgs)

61

 quiet predict pr_semester_aicc, pr

 quiet logit drop_year BUhonors budget_amt distance tot_schol need_schol
mrate merit_schol commitmentpercent high_school_percentile tot_loan
self_init_cntcts initrate orientation_sched_ind gross_need if newrandom > .5, difficult
technique(nr bhhh dfp bfgs)
 quiet predict pr_year_r2, pr
 quiet logit drop_year BUhonors budget_amt distance mrate
commitmentpercent tot_loan academic_index self_init_cntcts initrate tot_work if
newrandom > .5, difficult technique(nr bhhh dfp bfgs)
 quiet predict pr_year_aic, pr
 quiet logit drop_year self_init_cntcts gross_need if newrandom > .5, difficult
technique(nr bhhh dfp bfgs)
 quiet predict pr_year_bic, pr

 //Droping term used in regressions to get out of sample predictions
 drop if newrandom > .5
 drop if drop_semester == .

 //vselect's choice of R^2
 gen semesterhatr2 = 0
 replace semesterhatr2 = 1 if pr_semester_r2 > 0.3
 gen falseposr2 = 0
 replace falseposr2 = 1 if drop_semester == 0 & semesterhatr2 == 1
 gen falsenegr2 = 0
 replace falsenegr2 = 1 if drop_semester == 1 & semesterhatr2 == 0
 gen trueposr2 = 0
 replace trueposr2 = 1 if drop_semester == 1 & semesterhatr2 == 1
 gen truenegr2 = 0
 replace truenegr2 = 1 if drop_semester == 0 & semesterhatr2 == 0

 //vselect's choice for AIC
 gen semesterhataic = 0
 replace semesterhataic = 1 if pr_semester_aic > 0.3
 gen falseposaic = 0
 replace falseposaic = 1 if drop_semester == 0 & semesterhataic == 1
 gen falsenegaic = 0
 replace falsenegaic = 1 if drop_semester == 1 & semesterhataic == 0
 gen trueposaic = 0
 replace trueposaic = 1 if drop_semester == 1 & semesterhataic == 1
 gen truenegaic = 0
 replace truenegaic = 1 if drop_semester == 0 & semesterhataic == 0

 //vselect's choice for BIC
 gen semesterhatbic = 0
 replace semesterhatbic = 1 if pr_semester_bic > 0.3
 gen falseposbic = 0
 replace falseposbic = 1 if drop_semester == 0 & semesterhatbic == 1
 gen falsenegbic = 0

62

replace falsenegbic = 1 if drop_semester == 1 & semesterhatbic == 0
gen trueposbic = 0
replace trueposbic = 1 if drop_semester == 1 & semesterhatbic == 1
gen truenegbic = 0
replace truenegbic = 1 if drop_semester == 0 & semesterhatbic == 0

//vselect's choice for AICC
gen semesterhataicc = 0
replace semesterhataicc = 1 if pr_semester_aicc > 0.3
gen falseposall = 0
replace falseposall = 1 if registered == 0 & semesterhataicc == 1
gen falsenegall = 0
replace falsenegall = 1 if registered == 1 & semesterhataicc == 0
gen trueposall = 0
replace trueposall = 1 if registered == 1 & semesterhataicc == 1
gen truenegall = 0
replace truenegall = 1 if registered == 0 & semesterhataicc == 0

//Generating number of students that registered
gen numsemester = drop_semester == 1
replace numsemester = sum(numsemester)
replace numsemester = numsemester[_N]

//Generating number of students that didn't register
gen numnosemester = drop_semester == 0
replace numnosemester = sum(numnosemester)
replace numnosemester = numnosemester[_N]

//Generating numbers for R^2
gen numtpr2 = trueposr2 == 1
replace numtpr2 = sum(numtpr2)
replace numtpr2 = numtpr2[_N]
gen numtnr2 = truenegr2 == 1
replace numtnr2 = sum(numtnr2)
replace numtnr2 = numtnr2[_N]
gen numfpr2 = falseposr2 == 1
replace numfpr2 = sum(numfpr2)
replace numfpr2 = numfpr2[_N]
gen numfnr2 = falsenegr2 == 1
replace numfnr2 = sum(numfnr2)
replace numfnr2 = numfnr2[_N]

//Generating numbers for AIC
gen numtpaic = trueposaic == 1
replace numtpaic = sum(numtpaic)
replace numtpaic = numtpaic[_N]
gen numtnaic = truenegaic == 1
replace numtnaic = sum(numtnaic)

63

 replace numtnaic = numtnaic[_N]
 gen numfpaic = falseposaic == 1
 replace numfpaic = sum(numfpaic)
 replace numfpaic = numfpaic[_N]
 gen numfnaic = falsenegaic == 1
 replace numfnaic = sum(numfnaic)
 replace numfnaic = numfnaic[_N]

 //Generating numbers for bic
 gen numtpbic = trueposbic == 1
 replace numtpbic = sum(numtpbic)
 replace numtpbic = numtpbic[_N]
 gen numtnbic = truenegbic == 1
 replace numtnbic = sum(numtnbic)
 replace numtnbic = numtnbic[_N]
 gen numfpbic = falseposbic == 1
 replace numfpbic = sum(numfpbic)
 replace numfpbic = numfpbic[_N]
 gen numfnbic = falsenegbic == 1
 replace numfnbic = sum(numfnbic)
 replace numfnbic = numfnbic[_N]

 //Generating numbers using all variables
 gen numtpall = trueposall == 1
 replace numtpall = sum(numtpall)
 replace numtpall = numtpall[_N]
 gen numtnall = truenegall == 1
 replace numtnall = sum(numtnall)
 replace numtnall = numtnall[_N]
 gen numfpall = falseposall == 1
 replace numfpall = sum(numfpall)
 replace numfpall = numfpall[_N]
 gen numfnall = falsenegall == 1
 replace numfnall = sum(numfnall)
 replace numfnall = numfnall[_N]

 //Creating percentages to be show true positive, true negative, etc.
 gen percenttpr2 = numtpr2 / numsemester
 gen percenttnr2 = numtnr2 / numnosemester
 gen percentfpr2 = numfpr2 / numnosemester
 gen percentfnr2 = numfnr2 / numsemester
 gen percenttpaic = numtpaic / numsemester
 gen percenttnaic = numtnaic / numnosemester
 gen percentfpaic = numfpaic / numnosemester
 gen percentfnaic = numfnaic / numsemester
 gen percenttpbic = numtpbic / numsemester
 gen percenttnbic = numtnbic / numnosemester
 gen percentfpbic = numfpbic / numnosemester
 gen percentfnbic = numfnbic / numsemester
 gen percenttpall = numtpall / numsemester

64

gen percenttnall = numtnall / numnosemester
gen percentfpall = numfpall / numnosemester
gen percentfnall = numfnall / numsemester

//Displaying Results
dis percenttpr2
dis percenttnr2
dis percentfpr2
dis percentfnr2
dis percenttpaic
dis percenttnaic
dis percentfpaic
dis percentfnaic
dis percenttpbic
dis percenttnbic
dis percentfpbic
dis percentfnbic
dis percenttpall
dis percenttnall
dis percentfpall
dis percentfnall

gen yearhatr2 = 0
replace yearhatr2 = 1 if pr_year_r2 > 0.3
gen falseposr22 = 0
replace falseposr22 = 1 if drop_year == 0 & yearhatr2 == 1
gen falsenegr22 = 0
replace falsenegr22 = 1 if drop_year == 1 & yearhatr2 == 0
gen trueposr22 = 0
replace trueposr22 = 1 if drop_year == 1 & yearhatr2 == 1
gen truenegr22 = 0
replace truenegr22 = 1 if drop_year == 0 & yearhatr2 == 0

gen yearhataic = 0
replace yearhataic = 1 if pr_year_aic > 0.3
gen falseposaic2 = 0
replace falseposaic2 = 1 if drop_year == 0 & yearhataic == 1
gen falsenegaic2 = 0
replace falsenegaic2 = 1 if drop_year == 1 & yearhataic == 0
gen trueposaic2 = 0
replace trueposaic2 = 1 if drop_year == 1 & yearhataic == 1
gen truenegaic2 = 0
replace truenegaic2 = 1 if drop_year == 0 & yearhataic == 0

gen yearhatbic = 0
replace yearhatbic = 1 if pr_year_bic > 0.3
gen falseposbic2 = 0
replace falseposbic2 = 1 if drop_year == 0 & yearhatbic == 1
gen falsenegbic2 = 0

65

 replace falsenegbic2 = 1 if drop_year == 1 & yearhatbic == 0
 gen trueposbic2 = 0
 replace trueposbic2 = 1 if drop_year == 1 & yearhatbic == 1
 gen truenegbic2 = 0
 replace truenegbic2 = 1 if drop_year == 0 & yearhatbic == 0

 gen numyear = drop_year == 1
 replace numyear = sum(numyear)
 replace numyear = numyear[_N]

 gen numnoyear = drop_year == 0
 replace numnoyear = sum(numnoyear)
 replace numnoyear = numnoyear[_N]

 gen numtpr22 = trueposr22 == 1
 replace numtpr22 = sum(numtpr22)
 replace numtpr22 = numtpr22[_N]
 gen numtnr22 = truenegr22 == 1
 replace numtnr22 = sum(numtnr22)
 replace numtnr22 = numtnr22[_N]
 gen numfpr22 = falseposr22 == 1
 replace numfpr22 = sum(numfpr22)
 replace numfpr22 = numfpr22[_N]
 gen numfnr22 = falsenegr22 == 1
 replace numfnr22 = sum(numfnr22)
 replace numfnr22 = numfnr22[_N]

 gen numtpaic2 = trueposaic2 == 1
 replace numtpaic2 = sum(numtpaic2)
 replace numtpaic2 = numtpaic2[_N]
 gen numtnaic2 = truenegaic2 == 1
 replace numtnaic2 = sum(numtnaic2)
 replace numtnaic2 = numtnaic2[_N]
 gen numfpaic2 = falseposaic2 == 1
 replace numfpaic2 = sum(numfpaic2)
 replace numfpaic2 = numfpaic2[_N]
 gen numfnaic2 = falsenegaic2 == 1
 replace numfnaic2 = sum(numfnaic2)
 replace numfnaic2 = numfnaic2[_N]

 gen numtpbic2 = trueposbic2 == 1
 replace numtpbic2 = sum(numtpbic2)
 replace numtpbic2 = numtpbic2[_N]
 gen numtnbic2 = truenegbic2 == 1
 replace numtnbic2 = sum(numtnbic2)
 replace numtnbic2 = numtnbic2[_N]
 gen numfpbic2 = falseposbic2 == 1
 replace numfpbic2 = sum(numfpbic2)
 replace numfpbic2 = numfpbic2[_N]
 gen numfnbic2 = falsenegbic2 == 1

66

replace numfnbic2 = sum(numfnbic2)
replace numfnbic2 = numfnbic2[_N]

gen percenttpr22 = numtpr22 / numyear
gen percenttnr22 = numtnr22 / numnoyear
gen percentfpr22 = numfpr22 / numnoyear
gen percentfnr22 = numfnr22 / numyear
gen percenttpaic2 = numtpaic2 / numyear
gen percenttnaic2 = numtnaic2 / numnoyear
gen percentfpaic2 = numfpaic2 / numnoyear
gen percentfnaic2 = numfnaic2 / numyear
gen percenttpbic2 = numtpbic2 / numyear
gen percenttnbic2 = numtnbic2 / numnoyear
gen percentfpbic2 = numfpbic2 / numnoyear
gen percentfnbic2 = numfnbic2 / numyear

dis percenttpr22
dis percenttnr22
dis percentfpr22
dis percentfnr22
dis percenttpaic2
dis percenttnaic2
dis percentfpaic2
dis percentfnaic2
dis percenttpbic2
dis percenttnbic2
dis percentfpbic2
dis percentfnbic2

end //-------------predictretention----------------

program subgroupingsat

clear

use masterlist.dta

quiet regress gpa distance fleschreading WordLength TotalLen gpa3
high_school_percentile gpa11 satmodel gpa13 gpa15 if random > .3

quiet predict pr_abil_aic
quiet regress gpa satmodel if random > .3
quiet predict pr_gpa_sat
quiet regress gpa newrandom if random > .3
quiet predict pr_gpa_random

//Droping in sample
drop if random > .3
drop if gpa == .

//Generating MSPE

67

 gen mspeaic_1= (pr_abil_aic - gpa)^2
 egen mspeaic_2 = mean(mspeaic_1)
 gen mspeaic = mspeaic_2 ^ 0.5

 gen mspesat_1= (pr_gpa_sat - gpa)^2
 egen mspesat_2 = mean(mspesat_1)
 gen mspesat = mspesat_2 ^ 0.5

 gen msperan_1= (pr_gpa_random - gpa)^2
 egen msperan_2 = mean(msperan_1)
 gen msperan = msperan_2 ^ 0.5

 //Creating SAT Trenches
 gen rank = 1 if satmodel > 1000 & satmodel < 1100
 replace rank = 2 if satmodel >= 1100 & satmodel < 1200
 replace rank = 3 if satmodel >= 1200 & satmodel < 1300
 replace rank = 4 if satmodel >= 1300 & satmodel < 1400
 replace rank = 5 if satmodel >= 1400 & satmodel < 1500
 replace rank = 6 if satmodel >= 1500

 //Mean Square Prediction Error Calculation
 gen errors = pr_abil_aic - gpa
 gen errors_sq = errors ^ 2

 egen errors_avg_1 = mean(errors_sq) if rank == 1
 egen errors_avg_2 = mean(errors_sq) if rank == 2
 egen errors_avg_3 = mean(errors_sq) if rank == 3
 egen errors_avg_4 = mean(errors_sq) if rank == 4
 egen errors_avg_5 = mean(errors_sq) if rank == 5
 egen errors_avg_6 = mean(errors_sq) if rank == 6

 gen rmspe = errors_avg_1 ^ .5 if rank == 1
 replace rmspe = errors_avg_2 ^ .5 if rank == 2
 replace rmspe = errors_avg_3 ^ .5 if rank == 3
 replace rmspe = errors_avg_4 ^ .5 if rank == 4
 replace rmspe = errors_avg_5 ^ .5 if rank == 5
 replace rmspe = errors_avg_6 ^ .5 if rank == 6

 sum pr_abil_aic pr_gpa_sat gpa
 sum pr_abil_aic pr_gpa_sat gpa if rank == 1
 sum pr_abil_aic pr_gpa_sat gpa if rank == 2
 sum pr_abil_aic pr_gpa_sat gpa if rank == 3
 sum pr_abil_aic pr_gpa_sat gpa if rank == 4
 sum pr_abil_aic pr_gpa_sat gpa if rank == 5
 sum pr_abil_aic pr_gpa_sat gpa if rank == 6

 sum rmspe mspesat msperan

end // subgroupingsat

68

program regressiononlevels

clear

use masterlist.dta

//Creating SAT Trenches
gen rank = 1 if satmodel < 1050
replace rank = 2 if satmodel >= 1050 & satmodel < 1150
replace rank = 3 if satmodel >= 1150 & satmodel < 1250
replace rank = 4 if satmodel >= 1250 & satmodel < 1350
replace rank = 5 if satmodel >= 1350 & satmodel < 1450
replace rank = 6 if satmodel >= 1450

regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16
sentences gpa19 gpa10 gpa14 gpa17 if rank == 1 & random > .5

quiet predict pr_abil_aic1
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16

sentences gpa19 gpa10 gpa14 gpa17 if rank == 2 & random > .5
quiet predict pr_abil_aic2
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16

sentences gpa19 gpa10 gpa14 gpa17 if rank == 3 & random > .5
quiet predict pr_abil_aic3
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16

sentences gpa19 gpa10 gpa14 gpa17 if rank == 4 & random > .5
quiet predict pr_abil_aic4
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16

sentences gpa19 gpa10 gpa14 gpa17 if rank == 5 & random > .5
quiet predict pr_abil_aic5
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16

sentences gpa19 gpa10 gpa14 gpa17 if rank == 6 & random > .5
quiet predict pr_abil_aic6
quiet regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16

sentences gpa19 gpa10 gpa14 gpa17 if random > .5
quiet predict pr_abil_aic

quiet regress gpa satmodel if rank == 1 & random > .5
quiet predict pr_gpa_sat1
quiet regress gpa satmodel if rank == 2 & random > .5
quiet predict pr_gpa_sat2
quiet regress gpa satmodel if rank == 3 & random > .5
quiet predict pr_gpa_sat3
quiet regress gpa satmodel if rank == 4 & random > .5
quiet predict pr_gpa_sat4
quiet regress gpa satmodel if rank == 5 & random > .5
quiet predict pr_gpa_sat5
quiet regress gpa satmodel if rank == 6 & random > .5
quiet predict pr_gpa_sat6
quiet regress gpa satmodel if random > .5
quiet predict pr_gpa_sat

69

quiet regress gpa newrandom if random > .5
quiet predict pr_gpa_random

//Droping in sample
drop if gpa == .
drop if random > .5

//Mean Square Prediction Error Calculation
gen errors = pr_abil_aic - gpa
gen errors_sq = errors ^ 2

egen errors_avg_1 = mean(errors_sq) if rank == 1
egen errors_avg_2 = mean(errors_sq) if rank == 2
egen errors_avg_3 = mean(errors_sq) if rank == 3
egen errors_avg_4 = mean(errors_sq) if rank == 4
egen errors_avg_5 = mean(errors_sq) if rank == 5
egen errors_avg_6 = mean(errors_sq) if rank == 6

gen rmspe = errors_avg_1 ^ .5 if rank == 1
replace rmspe = errors_avg_2 ^ .5 if rank == 2
replace rmspe = errors_avg_3 ^ .5 if rank == 3
replace rmspe = errors_avg_4 ^ .5 if rank == 4
replace rmspe = errors_avg_5 ^ .5 if rank == 5
replace rmspe = errors_avg_6 ^ .5 if rank == 6

//Generating MSPE
gen mspeaic_1= (pr_abil_aic - gpa)^2
egen mspeaic_2 = mean(mspeaic_1)
gen mspeaic = mspeaic_2 ^ 0.5

gen mspesat_1= (pr_gpa_sat - gpa)^2
egen mspesat_2 = mean(mspesat_1)
gen mspesat = mspesat_2 ^ 0.5

gen msperan_1= (pr_gpa_random - gpa)^2
egen msperan_2 = mean(msperan_1)
gen msperan = msperan_2 ^ 0.5

//
sum pr_abil_aic pr_gpa_sat gpa
sum pr_abil_aic pr_gpa_sat gpa if rank == 1
sum pr_abil_aic pr_gpa_sat gpa if rank == 2
sum pr_abil_aic pr_gpa_sat gpa if rank == 3
sum pr_abil_aic pr_gpa_sat gpa if rank == 4
sum pr_abil_aic pr_gpa_sat gpa if rank == 5
sum pr_abil_aic pr_gpa_sat gpa if rank == 6

sum pr_abil_aic1 pr_gpa_sat1 gpa if rank == 1
sum pr_abil_aic2 pr_gpa_sat2 gpa if rank == 2

70

sum pr_abil_aic3 pr_gpa_sat3 gpa if rank == 3
sum pr_abil_aic4 pr_gpa_sat4 gpa if rank == 4
sum pr_abil_aic5 pr_gpa_sat5 gpa if rank == 5
sum pr_abil_aic6 pr_gpa_sat6 gpa if rank == 6

gen predicted_gpa = pr_abil_aic1 if rank == 1
replace predicted_gpa = pr_abil_aic2 if rank == 2
replace predicted_gpa = pr_abil_aic3 if rank == 3
replace predicted_gpa = pr_abil_aic4 if rank == 4
replace predicted_gpa = pr_abil_aic5 if rank == 5
replace predicted_gpa = pr_abil_aic6 if rank == 6

gen predicted_gpa_sat = pr_gpa_sat1 if rank == 1
replace predicted_gpa_sat = pr_gpa_sat2 if rank == 2
replace predicted_gpa_sat = pr_gpa_sat3 if rank == 3
replace predicted_gpa_sat = pr_gpa_sat4 if rank == 4
replace predicted_gpa_sat = pr_gpa_sat5 if rank == 5
replace predicted_gpa_sat = pr_gpa_sat6 if rank == 6

tabstat predicted_gpa predicted_gpa_sat gpa, by(rank)

sum rmspe mspesat msperan

end // regressiononlevels

program bootstrapping

clear

use masterlist.dta

regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16
sentences gpa19 gpa10 gpa14 gpa17

set more off

gen syllablescoef = _b[syllables]
gen gpa15coef = _b[gpa15]
gen gpa12coef = _b[gpa12]
gen gpa7coef = _b[gpa7]
gen gpa2coef = _b[gpa2]
gen grammerwrongcoef = _b[GrammerWrong]
gen gpa16coef = _b[gpa16]
gen sentencescoef = _b[sentences]
gen gpa19coef = _b[gpa19]
gen gpa10coef = _b[gpa10]
gen gpa14coef = _b[gpa14]
gen gpa17coef = _b[gpa17]
gen concoef = _b[_cons]

71

gen syllablessd = _se[syllables]
gen gpa15sd = _se[gpa15]
gen gpa12sd = _se[gpa12]
gen gpa7sd = _se[gpa7]
gen gpa2sd = _se[gpa2]
gen grammerwrongsd = _se[GrammerWrong]
gen gpa16sd = _se[gpa16]
gen sentencescsd = _se[sentences]
gen gpa19sd = _se[gpa19]
gen gpa10sd = _se[gpa10]
gen gpa14sd = _se[gpa14]
gen gpa17sd = _se[gpa17]
gen consd = _se[_cons]

gen obs = _n
gen runningtotal = 0

forvalues i = 1/6962 {
drawnorm syllran, means(-.0128083) sds(.0034625)
drawnorm gpa15ran, means(.0211936) sds(.0050212)
drawnorm gpa12ran, means(.3358554) sds(.1017359)
drawnorm gpa7ran, means(.0002221) sds(.0001486)
drawnorm gpa2ran, means(-.0000143) sds(4.30e-06)
drawnorm gwrongran, means(-32.48605) sds(10.36602)
drawnorm gpa16ran, means(9.28e-06) sds(3.15e-06)
drawnorm sentran, means(-.0923634) sds(.0265255)
drawnorm gpa19ran, means(-3.18e-06) sds(7.47e-07)
drawnorm gpa10ran, means(-.0040628) sds(.0009783)
drawnorm gpa14ran, means(.0209936) sds(.0057428)
drawnorm gpa17ran, means(.0116991) sds(.0036935)
drawnorm conran, means(6.176882) sds(.8541035)

gen gpaexpect`i' = conran + syllran*syllables + gpa15ran*gpa15 +
gpa12ran*gpa12 + gpa7ran*gpa7 + gpa2ran*gpa2 + gwrongran*GrammerWrong +
gpa16ran*gpa16 + sentran*sentences + gpa19ran*gpa19 + gpa10ran*gpa10 +
gpa14ran*gpa14 + gpa17ran*gpa17

drop syllran
drop gpa15ran
drop gpa12ran
drop gpa7ran
drop gpa2ran
drop gwrongran
drop gpa16ran
drop sentran
drop gpa19ran
drop gpa10ran

72

drop gpa14ran
drop gpa17ran
drop conran

}
set more off
forvalues i = 1/6962{

replace runningtotal = runningtotal + gpaexpect`i'

}
set more off
gen meanstuff = runningtotal / 6962
gen makevar = 0
gen herevar = 0
forvalues i = 1/6962{

replace herevar = (gpaexpect`i' - meanstuff)^2
replace makevar = makevar + herevar

}
replace makevar = makevar / 6962

gen makesd = sqrt(makevar)
gen citop = meanstuff + (1.96 * (makesd / sqrt(6962)))
gen cibottom = meanstuff - (1.96 * (makesd / sqrt(6962)))

73

APPENDIX G

Variable Summary Statistics

Table 13: Summary Statistics of Variables

Variable Obs Mean Std. Dev. Min Max
Essay1Len 20167 231.6866 122.4415 1 549
Essay2Len 20167 179.777 116.146 1 533
TotalLen 20167 411.4636 219.5576 2 1027
GrammerWrong 20167 0.02201 0.041947 0.005842 3
WordLength 20167 4.599318 17.57521 0.5 2500
NumUnique 20167 185.2585 81.96735 1 450
lexrich 20167 2.125308 0.350667 1 4.939227
commitment~r 20167 5.39401 4.112889 0 38
commitment~t 20167 0.013385 0.008699 0 0.078431
faithcounter 20167 8.520058 5.852545 0 49
faithpercent 20167 0.021392 0.011235 0 0.2
baylorcoun~r 20167 7.142956 4.522037 0 38
baylorperc~t 20167 0.019172 0.009997 0 0.166667
totalbible 20167 0.172063 0.497586 0 8
biblepercent 20167 0.000395 0.001262 0 0.027778
admincounter 20167 4.551594 3.505964 0 26
adminpercent 20167 0.011134 0.007311 0 0.078431
syllables 20167 554.5818 301.1856 1 1307
sentences 20167 20.54321 11.4979 1 96
fleschread~g 20167 72.06665 10.93531 3.344545 162.505
fleschgrade 20167 8.332435 2.324321 -8.91 32.25407

74

BIBLIOGRAPHY

Atkinson, Richard. "Achievement Versus Aptitude Tests in College Admissions."
Issues in Science and Technology 18, no. 2 (2001)
http://works.bepress.com/cgi/viewcontent.cgi?article=1027&context=richard_atki
nson(accessed May 28, 2014).

Balfour, Stephen. "Assessing Writing in MOOCs: Automated Essay Scoring and
Calibrated Peer Review." Research & Practice in Assessment 8 (2013): 40-48.

Bridgeman, Brent. "Essays and Multiple-Choice Tests as Predictors of College
Freshman GPA." Research in Higher Education 32, no. 3 (1991): 319-332.

Dikli, Semire. "Automated Essay Scoring.” Turkish Online Journal of Distance
Education 7, no. 1 (2006): 49-62.

Ericsson, Patricia Freitag and Haswell, Richard H., "Machine Scoring of Student
Essays: Truth and Consequences" (2006). All USU Press Publications. Book 139.
http://digitalcomraons.usu.edu/usupress_ pubs/ 139 (accessed May 29, 2014).

Foltz, P.W., Laham, D. and Landauer, T.K. “Automated Essay Scoring: Applications
to Educational Technology.” In B. Collis & R. Oliver (Eds.), Proceedings of
World Conference on Educational Multimedia, Hypermedia and
Telecommunications (1999): 939-944.

Geiser, Saul, and Studley, Roger. "UC and the SAT: Predictive Validity and Differ-
ential Impact of the SAT I and SAT II at the University of California."
Educational Assessment 8, no. 1 (2002): 1-26.

Jaschik, Scott. "The (Needless?) Frenzy." Inside Higher Ed. http://www.
insidehighered. com/news/2012/11/29/study-documents-admissions-trends-over-
last-10-years# sthash.xo5qUbQK.dpbs (accessed May 20, 2014).

Kellogg, Ronald and Bascom, Raulerson III. "Improving the Writing Skills of College
Students." Psychonomic Bulletin & Review 14, no. 2 (2007): 237-242.

Page, Ellis. "The Use of the Computer in Analyzing Student Essays." International
Review of Education 14, no. 2 (1968): 210-225.

Thomas, E., Ruznik, G. and Dawes, W. “Using Predictive Modeling to Target Student
Recruitment: Theory and Practice.” AIR Professional File (2001): 78.

Van Dyke, Sarah. Predicting the Probability of Enrollment of Accepted Applicants at
Baylor University. (2014).

