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CHAPTER ONE  
 

Introduction 
 

College admissions departments have a dual mandate given to them. First and foremost 

they must admit enough students to meet the budgetary needs of the university. During this 

process, the department must also maintain a certain level of academic excellence. Students 

admitted to college are expected to perform at a level to graduate and become high achievers 

in the marketplace. Baylor is a private university that is not endowment based, therefore the 

majority of income depends on tuition. Missing the needed enrollment by even a small 

percent could end up costing the school millions of dollars. If too many students are enrolled, 

classes become overcrowded and school resources cannot be properly allocated. 

The process is made difficult by the desire of the university to increase their rank 

in publications such as U.S. News & World Report. Part of the national ranking 

system for a university is the yield rate of admittance. This rate is the percentage of 

students that enroll in the school compared to the number of students that are 

accepted. A student attending a university is a two stage decision. If a student has 

applied to a university, that school has the choice to either accept or deny the 

application. Once an acceptance is offered, the student then has the choice to enroll or 

not. Many students fill out applications for several universities in order to find the 

most prestigious school that will accept them along with the best financial aid 

package. Because of the indecisiveness of the students applying, admissions 

departments need a better model to sort out applicants who truly want to be Baylor 

students. The expected yield estimate is vital because it determines how many 

students will need to be accepted in order to meet the budgetary needs. This has 

become increasingly difficult over the last fifteen years as applications for each school 
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have increased significantly and yield rates have been falling as students apply to 

multiple colleges. (Jaschik, 2012) 

The yield rate exemplifies the importance for a university to admit the right 

candidates. If the admissions department had a better way to predict enrollment, they 

could lower the amount of acceptances they issue and in turn raise their yield rate. It 

is hard for the admissions department to know both a student's ability and their 

probability of enrollment if admitted due to adverse selection. Potential students want 

to be admitted in order to receive the benefit of having a prestigious college diploma 

despite their known inabilities. This problem is the very foundation of adverse 

selection, as the students will only give the information that will highlight their 

abilities and not the information that could potentially prevent them from being 

admitted. This information is not limited to academic deficiencies, but desire to attend 

as well. A university could be a student's fourth option, but they will not share that 

information in order to get accepted and have as many options available when it is 

time to make their decision. 

Admissions departments need several different metrics to rate a student on both 

probability to enroll as well as ability to perform at a high level once enrolled. The 

standard way of rating a student's ability has been the SAT, ACT, high school rank 

and other measurable metrics that are based on performance in high school. Another 

way of finding this hidden information can be through the essays a student writes. For 

Baylor University, an applicant is asked to complete two essays: one regarding why 

the student is choosing Baylor and the other regarding what the student is looking for 

in a college. These simple questions can be full of signals on how committed the 

student is to coming to Baylor as well as being another measurement of their ability. 
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The methodology that is used also has other benefits for the admissions 

department.  The most important of these are the results from the logistic regressions 

done to predict enrollment.  The regression coefficients show the importance of 

certain groups of words used to predict enrollment.  The higher the coefficient, the 

more effect that group of words has on the outcome.  The group of words provided by 

the admissions team, as well as the Baylor specific words and commitment words are 

all very influential in the probability.  These words can be changed around to find 

better combinations to improve the results.  They can also be used in other forms of 

recruiting, such as the phone interviews.  Baylor conducts phone interviews with 

certain recruits to persuade a prospective student to enroll and also to gage their 

interest.  Since the group of words used in the regressions proves to be influential, the 

phone interviewers now have new words that can be clued in on during the 

conversation to provide additional information on the prospective student. 
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CHAPTER TWO 
 

Literature Review 
 

 
The ability to write well is a difficult task involving skills developed in grade 

school. It requires memory, language, and thinking abilities. A person is stressing 

their memory when performing extended writing because it requires you to remember 

what you have done and where you are going. (Kellogg & Raulerson, 2007) These 

types of cognitive skills are needed in higher education and application essays offer a 

platform for a college to measure these abilities. Studies at the University of 

California have even shown that a student's writing ability is the best predictor of first 

semester achievement. (Geiser & Studley, 2001) 

Essays were a major component in college admissions until the 1970's. During 

that decade, college admissions began to rapidly increase and it became too expensive 

to properly analyze the essays. Multiple choice tests were found to use testing time 

efficiently and were able to cover a large group of concepts. (Bridgeman, 1991, pg. 

320) At the same time as the Cold War, natural language processing was a 

governmental research task. It was felt that being able to process text and comprehend 

it at a binary level could offer an advantage over Russia. With the end of the Cold 

War, the government ended the program and it was privatized. Now this field is run 

by companies like ACCUPLACER who offer "reliable, valid and accurate" reports to 

universities and high schools for automated essay scoring (AES). (Ericsson & 

Haswell, 2006) 
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Recently, there has been a movement to remove the SAT as the primary bench-

mark for college admissions. SAT preparation and review has taken over classroom 

settings and taken time away from core classes. Universities define what is important, 

which influences what is taught in high school. Supporters of this movement want to 

implement comprehensive curriculum achievement tests to replace SAT testing. This 

would take away the emphasis of the SAT by high school teachers and place more 

emphasis on such areas as history, geometry or language arts. (Atkinson, 2011, pg. 5) 

Computer grading of essays and the use of AES has grown over the last ten years. 

AES has been a widely debated part of the higher education selection process. In 

order to use AES, a group of test essays are hand graded and commonalities are found 

in both the structure and language used in the essays. The computer is then 

programmed to find correlations in the papers being tested to assign a grade. (Dikli, 

2006) Careful consideration needs to be taken for each usage of AES. Papers written 

on different topics will have different language that is acceptable. Because of this, 

latent semantic analysis (LSA) is used to specialize the scoring. A word or phrase can 

take on a specific meaning in one passage and have a different meaning in another. 

There is also the potential for two passages to have the same words and phrases, but 

have completely different meanings. (Landauer, Laham, & Foltz, 1999) Each school 

should have its own modeling to develop its own specificity. 

This research creates two groups of variables from the application essays. There 

are grammatical variables that measure a student's ability to write and signal variables 

that attempt to uncover the student's intent to enroll in Baylor if they are accepted. 

This approach can help the admissions department by both finding more qualified 

applicants as well as trying to raise the yield rate. This also helps overcome the 

biggest criticism of AES, which is that it does not take into account meaning. 
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Mechanical checks cannot properly assess discipline-based assignments that need to 

show a substantial knowledge in the field. (Ericsson & Haswell, 2006) 

The time and resources it would take to read every entrance essay is beyond any 

reasonable cost. Computer programs are the only efficient way of using data collected 

from essays effectively. This process also removes the human element of having a 

grader read and try to comprehend what the essay intends to convey. AES offers 

consistent grading, a major problem with human evaluation. The essay simply 

becomes a collection of variables lacking any human emotion or preconceived ideas. 

However, the size of the data has to be taken into consideration and a balance needs 

to be found between the two. We have to consider the applications as just objects and 

the words within them as input strings. By using a computer, the challenge is 

providing the necessary background knowledge and allowing for a large enough 

database for association. (Page, 1968, pg. 211)
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CHAPTER THREE 
 

Data Overview 
 
 

The raw data was provided by the Admissions Department of Baylor University 

from previous applicants. Table 1 shows the number of observations available for the 

time period 2011 - 2013 

 

The main issue that arises from the textual analysis is the low participation rate of 

students submitting the two essays, because Baylor has chosen to make them optional. 

In 2011, only 7% of the accepted students submitted essays. There was a surge in 

2013, but the rate remained at only 12%. The choice to participate in the essay section 

could be seen as a signal itself as a true interest in the university. Unfortunately, the 

low percentages make it unrealistic to use. If the school could guide students to 

participate in the essay submission, there might be gains seen in the predictive 

cababilities. 

This paper focuses on the question of whether the textual analysis can be a stand-

alone decision model. Because of that purpose, none of the other variables included in 

the raw data such as high school rank, distance from Baylor, etc. were being used in 

the regressions. All variables used were created through Python. The variables created 

fall into two categories. The first category of variables measures the student's ability 

Table 1: Number of Observations 
 

 # Students Total # Students Total # Accepted Students 
Year Accepted Submitting Essays Submitting Essays 
2011 15430 4612 1068 
2012 16879 6257 1495 
2013 16809 9301 1985 
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and focuses on grammatical counters. The second category of variables includes 

words that can be considered signals for interest in Baylor. 

The variables in Table 2 were used to determine the quality of writing in the 

essays.  The quality of writing was used as a way of predicting an applicant's true 

ability that may not have been captured in standardized testing. Giving students a 

different test at the university would be another option, but this would drive away 

most applicants. It is unknown if there are any other cost efficient way of measuring a 

student's ability. Writing utilizes higher level thinking skills which can showcase 

knowledge. In order to have a baseline to predict ability, first semester GPA was 

used. 

The other area of measurement was the applicant's commitment to Baylor. Several 

different variables were created to measure a student's desire to enroll in Baylor if ad-

mitted. Two areas were focused on to find a student's probability of enrollment. These 

two areas were their expressions of faith and their knowledge of the campus and tra-

ditions. Being a faith-based campus, a student with strong religious beliefs may be 

drawn more to Baylor than competing state universities. Knowledge of Baylor shows 

that the student has either grown up learning about the university, which signals a 

legacy, or they have taken time to learn the information, which shows interest. Table 

3 shows all variables considered a potential signal for a student's interest in Baylor, as 

well as a description of each.



9 
 

Table 2: Ability Variables 
 
Variable Name  
Essay1Len The total number of words used in the 

first essay 
Essay2Len The total number of words used in the 

second essay 
TotalLen The combined number of words used in 

both essays 
GrammarWrong The percentage of words in both essays 

which were misspelled 
WordLength The average length of all words in both 

essays 
NumUnique The number of different words in both 

essays 
Lexrich The percentage of unique words to the 

total number of words in both essays 
Syllables The total number of syllables used in both 

essays 
Sentences The total number of sentences in both 

essays 
fleschreading1 A readability test.  The lower the score, 

the higher the expected 
comprehension level for the essay 

fleschgrade2 A readability test that shows the expected 
grade level that will comprehend the 
essay 

 
 
 
 
 

                                                
1 Flesch Reading Score = 206.835 - 1.015(total words / total sentences) - 84.6(total syllables / total 

words): 90.0-100.0 easily understood by an average 11-year-old student, 60.0-70.0 easily understood 
by 13- to 15-year-old students, 0.0-30.0 best understood by university graduates 

 
2 Flesch - Kincaid Grade Level = 0.39(total words/ total sentences) + 11.8(total syllables / total 

words) - 15.59 



10 

Table 3: Commitment Variables 

Variable Name Description 

commitmentcounter3 The number of words in both essays used 
by people who did come to Baylor 

commitmentpercent The percentage of words that are 
commitment words 

faithcounter4 The number of words in both essays used 
to express their faith 

faithpercent The percentage of words that are faith 
words 

baylorcounter5 The number of words in both essays used 
to signal their knowledge of Baylor 

baylorpercent The percentage of words that are Baylor 
specific 

totalbible The number of times in both essays that a 
book of the Bible was referenced 

biblepercent The percentage of words that are books of 
the Bible 

admincounter6 The number of times in both essays in 
which words given by the 
admissions team were used 

adminpercent The percentage of words that are from the 
admissions team 

3Words used: pride, visit, leader, unity, campus, legacy, important, environment, only, home, 
comfort, mom, dad, mother, father, family 

4 Words used: shall, unto, lord, thou, thy, ye, God, son, hath, Israel, king, people, house, before, 
children, against, shalt, land, day, hand, behold, faith, sons, hast, o, over, she, David, great, Jesus, thine, 
father, neither, give, take, am, forth, brought, name, away, pass, two, according, days, city, earth, 
Moses, thereof, whom, know 

5 Words Used: Baylor, bears, bear, Waco, oso, quadrangle, ivy, burleson, hankamer, Louise, 
Herrington, truett, dia del 

6Words Used: top, choice, first, dream, dreamed, always, growing, grown, grow, wonderful, visit, 
blessed, experience, passion, passionate, tradition, atmosphere, values, perfect, heart  
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CHAPTER FOUR 

Methodology 

General Textual Analysis 

Different forms of regression were used to predict GPA and enrollment based 

upon acceptance. Linear regression was used to predict GPA using variables created 

through textual analysis. Logistic regression was used to predict a student's 

probability of enrolling based upon acceptance. The logistic regression returns the log 

odds, which will be a number between 0 and 1. The log odds can be converted to a 

probability, which shows the chances of enrollment if a student is accepted. 

In order to collect and analyze the data, the research method included the use of 

two programming languages; STATA and Python. Python is a scripting language that 

is preferred for the use of unstructured data analysis. The essays are imported into 

Python and then parsed. The output is stored into a file which is imported into 

STATA, a statistical software package, for analysis. 

In order to create the model, stepwise regression was implemented. Stepwise 

regression is typically considered a poor approach by econometricians due to its 

limitations. These limitations include biased p-values and R2 values as well as poten-

tially leaving collinearity problems. There is also a lack of analysis on what goes into 

the model, making it harder to justify the results. In this research, many of these 

problems were deemed capable of being overlooked.  One assumption that is made is 

that the covariates in the logistic regression are independent.  The R2 is not 

statistically sound with logistic regressions so a Pseudo- R2 is used.  STATA uses an 

adjusted Cox & Snell method for goodness of fit that is used as a replacement for the 

standard R2 is used for in linear regressions. 
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The goal of the model was accurate prediction with causality used as a robustness 

check. The reason why students come to Baylor was not the goal. The objective 

remains predicting whether they will come to Baylor if accepted, and what type of 

characteristics they might have. With the long list of variables that was made 

available, future work can be done to find causal reasons, but the results of this 

testing show that finding causality could be difficult. 

The STATA program used to perform the stepwise regression was vselect. This 

program allows the user to perform the regressions with either forward selection or 

backwards elimination. Akaike's information criterion, Akaike's corrected information 

criterion, Bayesian information criterion and R2 adjusted are all criterion outputted 

using the vselect command. This allows the user to select from a group of models that 

could potentially work for them. The models for enrollment prediction and GPA were 

chosen from the four potential models created. In order to choose the best of the 

options, 50% of the data was used as a training set and the model that had the best 

prediction power was used. Different criteria were used for the different predictions. 

Predicting Probability of Enrollment 

The method used to predict a student's probability to enroll if accepted was a 

logistic regression. The decision on whether a student comes to Baylor is a binary 

decision. You either enroll, or you do not. A logistic regression can predict the 

probability to enroll based upon acceptance. If the admissions department can 

determine which students have a high probability to enroll based on their self-

identification through the essay, they can increase the yield rate. This is done by 

selecting students who are identical in testing metrics, but have signaled their desire 
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to enroll. The textual analysis was done to try to identify what students could say that 

would aid in the decision of whether or not to accept them is attempted. 

The variables in Table 2 and Table 3 were both used in the prediction of 

probability. The variables used to judge the writing are important because there is a 

middle ground of ability that Baylor has to focus on. There is a standard which 

writing needs to be above in order to prove they have the ability to compete at the 

college level. There also seems to exist a point where the student's writing quality is 

so high, they are probably getting offers from more prestigious schools. The variables 

in Table 3 were all created with the idea that they can signal a student’s desire to 

attend Baylor University. Each of the variables considered a different aspect of 

Baylor life and attempted to quantify a student's interest in each of them. The 

commitment words came from high frequency words that were unique to students 

who enrolled in Baylor compared to words used by students who were accepted and 

didn't enroll. The faith words were high frequency words in the King James Bible. 

This version was chosen because it uses the language used in most quoted verses. Not 

often is modern language used to quote scripture. There also needed to be a count of 

Baylor specific word counteract students who copy and paste essays. The Baylor 

word counter rewards students who focus on the university they are currently 

applying for. These were unique words taken from websites of Baylor, Texas A&M, 

University of Texas (UT), Texas Christian University (TCU), Texas Tech and 

Southern Methodist University (SMU). These schools were chosen because they are 

the main competitors for students interested in Baylor. The traditions pages of these 

schools were scraped and vectors of words collected then compared to find words 

only on Baylor's traditions page. The traditions pages were chosen because they 

collect the most university specific words and messages of the websites. Mentioning 
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these words shows knowledge of Baylor specific terms and can signal interest. The 

administration words were chosen by the admissions team from Baylor University. 

They have experience in high frequency words from past students that enrolled that 

may not have shown up in the other variable categories. 

The textual analysis portion attempted to create a stand-alone decision model of 

only the essays. Ultimately, information gathered from the essays can be used in a 

larger model as a way of increasing its predictive power. This methodology only used 

the textual analysis to demonstrate its stand-alone predictive power. For robustness, 

three models returned from the stepwise regression were used. Each model included 

the variables as well as some interaction variables that were created to help find the 

true form of the relationship. Table 4 shows the variables used in each of the different 

models. 

Each of the models was trained on a random 50% of the data and tested on the 

other 50%. Because of the small amount of enrollments with essays submitted in the 

data set, the 50% mark was chosen to allow a legitimate amount of training and 

testing. The testing predicted the probability that each student would enroll in Baylor 

if accepted. The models have a bias toward lower probabilities and because of this, 

the selection point was set to 30%. This selection point has been found in other 

studies to be a viable point. (Ruznik & Dawes, 2001) This selection point represents 

the probability at which a student should be accepted or rejected. Any student that 

received a probability of at least 30% was classified as someone who would enroll. 

For the results, each of the observation's actual result was compared to the predicted 

result to get a percentage for the correct predictions. 



15 
 

The effectiveness of the model will be the rate at which students enroll compared 

to their predicted actions. The robustness check was the actual results, which is 

comparing who attended Baylor versus who was predicted to. As a stand-alone 

model, this could help in making marginal decisions.  However, an effective use of 

the newly created variables would be to include them as potential additions in a larger 

model that includes high school metrics. 

 
 

 
 

 
 
 
 
 
 
 
 

Table 4: Variables used in Models to Predict Enrollment 
 

Method Used Variables Used Interactions Used 
R2 commitmentcounter faithcounter * baylorpercent 

baylorcounter baylorcounter2 
totalbible commitmentcounter 2 
syllables totalbible2 

admincounter TotalLen* WordLength 
Essay2Len   biblepercent + baylorpercent +  

 faithpercent +commitmentpercent 
baylorpercent GrammarWrong + commitmentpercent 

NumUnique  
AIC commitmentcounter faithcounter* baylorpercent 

baylorcounter baylorcounter2 
syllables TotalLen* WordLength 

admincounter  
Essay2Len  

faithpercent  
GrammarWrong  

NumUnique  
BIC commitment counter faithcounter * baylorpercent 

baylorcounter  
syllables  

admincounter  
NumUnique  
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Finding Hidden Ability 

The method used to predict a student's GPA was linear regression. The assump-

tion being made was that there is a linear relationship between the effectiveness of a 

student’s writing and their potential first semester GPA.  The ordinary least squares 

(OLS) linear regression model created using stepwise regression was 

gpa = α + β1syllables + β2(NumUnique * lexrich) + β3(fleschreading * 
GrammarWrong) + β4sentences2 + β5TotalLen2 + β6GrammarWrong + 
β7(syllables * TotalLen) + β8sentences + β9fleschreading3 + 
β10(fleschreading * fleschgrade)+ β11(fleschreading * fleschgrade * 
GrammarWrong) + β12(sentences * WordLength) + e 

The model that had the best prediction power uses AIC. The amount of variables 

used in this format would be less than models using the R2 method, since AIC 

balances between goodness of fit and complexity of the model. Due to the smaller 

number of variables used, collinearity is also reduced.  This also helps avoid the 

problem of overfitting.  With too many variables, the model would be too specific to 

the single application and would not have relevant predictive power for other models 

that it is applied to. 

The group of variables used is listed in Table 2. Each of the variables was selected 

because of their potential help in grading the writer's ability. Longer, more complex 

words are captured in the syllables and word length variables and show a mature 

vocabulary. The lexical richness and number of unique words show a large 

vocabulary and the ability to use it. The sentence length and number of sentences 

represent the ability to convey more in depth ideas and follow up on those ideas. 

The data set was broken into six separate groups, based upon SAT scores. If the 

ACT was taken instead of the SAT, a conversion score was calculated to produce the 

equivalent SAT score.  These scores have historically been the standard used to 
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predict a student's ability. In order to show that this model can complement the SAT, 

sub groups of SAT scores were created to hold that variable constant. The assumption 

is being made that students within the sub group SAT are similar. This helped control 

for the SAT as well as focus on the marginal students that were the original concern. 

In order to determine the effectiveness of the model for predicting GPA, a 

baseline was used compared to the model’s results. Since the standard to grade a 

student's ability has been the SAT score, it was regressed onto GPA by itself.  This is 

the baseline to which the accuracy of the results from the textual analysis was 

compared to. The prediction errors were compared to the prediction errors using the 

textual analysis model.  

When a student writes their essay, they have enough time to complete the essay, 

review it and make sure it is representative of their ability. Standardized testing is a 

high pressure exam that is timed and can potentially be unrepresentative of a student's 

capabilities. There is a need to find a compliment to this evaluation as well as give 

students another chance at signaling their ability. Some students may have 

performance anxiety before standardized testing, partially due to the importance it is 

given as the main avenue for getting into college. Other students could have been sick 

or simply just didn't perform well that day. 

The main application of this methodology was the marginal student. There will 

always be high performing students that the university will want and accepting them 

will be almost automatic. When trying to increase the yield rate, the admissions 

department needs to focus on marginal students in order to accept those who are more 

certain to enroll to allow for lost yield rate when courting the high performing 

students. There is a point in the acceptance process when there is a cluster of students 

that have similar SAT scores, high school rankings and other standard metrics 
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achieved in high school. By adding textual analysis to the selection process, the 

admissions department can further evaluate students with similar metrics without 

asking for additional information. 

First semester GPA was the chosen ability predictor because of its correlation 

with retention (another concern for the admissions department) and it signals ability to 

perform at the university level. The essays offer the admissions department a way of 

seeing a student's ability that may not be apparent in their standardized testing score. 

The SAT score will still provide a base score in which the decisions will be made, but 

the essays may provide a way in which the department can separate students at the 

margin. This means the university can increase retention rates as well as generate 

better performing students, both of which increase the university's ranking. 

Simulating Yield Estimates to Create Confidence Intervals 

The current model being used offers a single point estimate on the number of 

students predicted to enroll each semester. This is made by cumulatively adding all 

the probabilities.  The current model being used is 

Enrollment = α + β1academic_index + β2high_school_percentile + β3ACT_BU1 + 

β4SATmodel + β5national_merit +  Β6foc_count +  β7scholar_athlete + β8res + 

 β9ans + β10app_span + β11mrate + β12premiere + β13stealth + β14self_init_cntcts 

+ β15religionrate + β16christian_school + β17legacy + β18web_app + β19bapt + 

β20BUhonors + β21hon_applied + β22init_span + β23under100mi + β24under50mi 

+ β25under200mi + β26parents_alum + β27sibling_alum.   + e 

A yield estimate offers a single estimation, but having a confidence interval 

offers a more valid expectation of the number of students the university 

should expect to accept their offer. This methodology is generally called 
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boosting and provides a range of expectation of attendance with 95% 

confidence. In order to create the interval, a regression was run using the 

current admissions model. The returned coefficients and standard errors for 

each variable in the regression were used to draw a new random coefficient 

for each variable. These new coefficients were used to predict a yield 

estimate. This process was run 5,000 times to create a large pool of expected 

total yield estimates. This range of yield estimates was created to help 

alleviate randomness intrinsic in the creation of each individual yield 

estimate. 

With 5,000 expected yield estimates, it was possible to calculate a mean 

and standard deviation to create a confidence interval. However, it cannot be 

assumed that the yield estimates will take on a normal distribution which 

would be needed to calculate a standard deviation. Instead, the number of 

students expected to attend at the 2.5% and 97.5% percentile were used as the 

end points for the confidence interval.
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CHAPTER FIVE 

Results 

Predicting Probability of Enrollment 

Table 5 reports logistic regression results of enrollment for the three models used. 

The coefficients and error terms are not the primary concern in the methodology of 

this research. High accuracy is more important than statistical relevance at this point. 

More work can be done to increase both in the future. It is important to understand the 

reaction the variable has on the probability. The variables created to signal 

commitment have a positive effect on probability. The percentage of words that are 

Baylor specific has the most effect. This effect is understandable since a strong 

knowledge of Baylor customs and traditions could signal the student is a legacy, 

visited the campus, or spent time getting to know the university. These examples have 

proven in the past to be strong indicators of a student's commitment to attending that 

university. 

An intriguing find with the coefficients was that increases in the ability variables 

dropped a student's probability of enrollment. An explanation of this would be that 

Baylor receives applications from students at a certain threshold of ability and above. 

Because of the perceived cost of attending Baylor, students who fall below that 

threshold may not be applying. As a student's ability increases, they may be applying 

to more prestigious universities and being accepted there. Baylor is not attracting 

students who perform lower on the essays, but is losing students who are performing 

at high levels. 
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Table 5: Logistic Regression on Enrollment Probability 
 

 (1) (2) (3) 
 R2 AIC BIC 
commitmentcounter 0.103 0.0440 0.0436 

 (4.11) (5.62) (5.59) 
interaction1 1.387 1.344  

 (2.54) (2.25)  
baylorcounter 0.0705 0.0853 0.0652 

 (2.27) (3.90) (9.57) 
interaction2 -0.00175 -0.00207  

 (-2.16) (-2.91)  
interaction3 -0.00227   

 (-2.13)   
totalbible 0.188   

 (1.85)   
syllables -0.00493 -0.00512 -0.00480 

 (-3.05) (-3.19) (-3.08) 
interaction4 -0.0599   

 (-1.45)   
admincounter 0.0423 0.0424 0.0426 

 (4.46) (4.47) (4.50) 
interaction5 0.00106 0.00114 0.000980 

 (1.95) (2.12) (1.95) 
Essay2Len -0.000503 -0.000496  

 (-0.91) (-0.90)  
interaction6 -11.89   

 (-2.68)   
baylorpercent 14.81   

 (1.81)   
interaction7 2.974   

 (0.95)   
NumUnique 0.00379 0.00416 0.00418 

 (2.58) (2.86) (2.98) 
faithpercent  -11.23  

  (-2.25)  
GrammarWrong  2.184  

  (0.87)  
Constant -1.701 -1.704 -1.672 

 (-7.30) (-8.80) (-18.62) 
Observations 7007 7007 7007 

t statistics in parentheses 
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The primary concern of these models was the predictive power they have as a 

stand-alone model. Table 6 shows the results of the predictions using only the 

variables created from the textual analysis. Each of the three models performed poorly 

against actual data. The percentage of correct predictions is inflated because of the 

lower bias of the predictions and the high number of students not attending that create 

a large number of true negatives. With only 67% correctly predicted, the model does 

not provide significant results. These results are not adequate to allow any of them to 

work as a stand-alone model to predict probability of enrollment. The low false 

positive rates show that the model has potential benefits. In order to increase the yield 

rate, the false positive rate needs to be low. These numbers could mean that the 

variables used in these models could be helpful in the overall model currently being 

used. With the high effectiveness rates of the current model, there may only be a 

slight increase using the textual analysis, but it would help to remove some 

uncertainty. 

Finding Hidden Ability 

This model represents the linear effect each of the textual analysis variables has 

on the dependent variable, the student's first semester GPA. Table 7 displays the 

results for each of the subgroups of SAT scores. The tails both suffered from a low 

number of observations. This data only represents students who enrolled, finished the 

first semester and submitted the optional essays on their application. Either making 

the essays mandatory or creating a benefit for submission could increase the number 

of students participating and offer more observations to make a better fit for the 

model. Each group had different coefficients for the variables and some varied 

greatly, even switching from a positive relationship to a negative. This shows the 
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importance of using this model with the subgroups. Prediction of marginal students 

was able to be made with more accuracy using these sub groupings. 

 

Table 8 shows the predicted GPA for each subgroup as a whole. For 

robustness, SAT scores were regressed onto GPA by themselves and used in the 

prediction model. Since SAT scores have been the standard for predicting a student's 

ability, it served as the best benchmark to the model using textual analysis. The 

predictions using textual analysis were all higher than the actual GPA. The SAT score 

based predictions were almost identical to the actual GPA for each subgroup. These 

results show that the SAT should still be used as part of the predicting method, with 

textual analysis used to compliment it. New stepwise regression can be done to find a 

model that includes high school metrics, standardized testing results and textual 

analysis. 

Table 6: Enrollment Predictions 
 

Measuring Decision Observations Percent Correct False Positive Percentage 
AIC 24453 67.23% 14.77% 
R2 24453 67.75% 12.69% 

BIC 24453 67.79% 12.71% 
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Table 7: OLS Regression Results 

SAT<1050 1050 < SAT < 1150 1150 < SAT < 1250 1250 < SAT<  1350 1350 < SAT< 1450 SAT >1450 Population 
Syllables 0.00187 -0.00849 -0.0100 -0.00775 -0.0406 -0.00614 -0.0125 

(0.09) (-0.66) (-1.09) (-0.75) (-2.53) (-0.53) (-2.46) 
NumUnique * lexrich -0.00181 0.0130 0.0183 0.00882 0.0536 0.0114 0.0201 

(-0.06) (0.67) (1.38) (0.60) (2.21) (0.63) (2.75) 
fleschreading * GrammarWrong 2.263 0.356 0.367 -0.238 0.750 1.218 0.342 

(0.97) (0.73) (0.80) (-0.42) (0.64) (0.67) (1.73) 
Sentences2 0.000221 -0.000417 0.000551 -0.000539 0.000646 0.000305 0.000186 

(0.15) (-0.45) (1.83) (-1.17) (0.92) (0.63) (1.00) 
T otalLen2 0.00000620 -0.00000400 -0.0000152 -0.0000115 -0.0000426 -0.00000602 -0.0000139 

(0.26) (-0.25) (-1.36) (-0.98) (-2.36) (-0.44) (-2.29) 
GrammarWrong -331.1 -31.92 -37.64 70.58 -224.4 -72.93 -33.58 

(-1.11) (-0.72) (-0.81) (0.80) (-1.64) (-0.26) (-1.68) 
syllables * TotalLen -0.00000363 0.00000249 0.0000100 0.00000899 0.0000334 0.00000329 0.00000935 

(-0.21) (0.22) (1.23) (1.04) (2.57) (0.34) (2.09) 
Sentences -0.0254 -0.0444 -0.0699 0.0868 -0.0721 -0.0325 -0.0778 

(-0.13) (-0.27) (-0.83) (0.84) (-0.48) (-0.36) (-1.99) 
Fleschreading3 -0.00000272 -0.00000277 -0.00000228 -0.000000849 -0.0000103 -0.00000322 -0.00000306 

(-0.40) (-1.01) (-0.97) (-0.32) (-2.26) (-0.72) (-2.72) 
fleschreading * fleschgrade -0.00769 -0.00240 -0.00452 0.000845 -0.0132 -0.00320 -0.00381 

(-0.69) (-0.62) (-1.62) (0.21) (-1.97) (-0.44) (-2.72) 
fleschreading * fleschgrade*GrammarWrong 0.233 0.0245 0.0188 -0.0772 0.204 -0.00446 0.0199 

(1.08) (0.85) (0.76) (-0.87) (1.25) (-0.01) (1.85) 
sentences * WordLength -0.0110 0.0141 -0.00205 -0.00602 -0.00289 -0.000342 0.00996 

(-0.36) (0.56) (-0.12) (-0.36) (-0.11) (-0.03) (1.70) 
Constant 10.16 4.521 6.381 2.646 17.58 6.381 6.077 

(1.07) (1.48) (2.54) (0.76) (3.44) (1.03) (4.95) 
Observations 50 296 391 347 126 43 1253 
t statistics in parentheses 
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The population averages were all relatively the same, so additional error testing 

was done. Table 9 shows the root means square prediction error (RMSPE) for the 

textual analysis, the SAT and a randomly generated number assigned to each student 

between 0 and 1. The error rate of the random number generated was checked to see if 

the randomness could show relevance. This could discredit the model since a random 

number assigned to each student should not be a strong predictor of their GPA. The 

RMSPE was used because it squares the error in order to make all numbers positive 

for comparison. If this wasn't done, a predicted GPA below the actual GPA for one 

student could average out to zero potentially with someone who had a predicted 

average that was higher than the actual GPA. This would make the error rates seem 

better than they actually are. The error rate for the textual analysis was lower than 

both the randomly generated number as well as the SAT error rate. This shows that 

the combination of variables used from textual analysis could offer another avenue in 

determining which students at the margin should be accepted into Baylor.  

 

 
 

Simulating Yield Estimates to Create Confidence Intervals 
 

The new confidence interval creation was calculated offer a range in which the 

student yield could be expected to fall within. A single point estimate does not allow 

Table 8: Predicted GPAs 
 

Rank Predicted GPA Predicted GPA Actual GPA 
 With Textual Analysis With SAT  

1 3.023802 3.014625 2.930003 
2 2.859733 2.816324 2.841327 
3 3.141526 3.078084 3.082979 
4 3.39128 3.309947 3.313185 
5 3.552784 3.506608 3.51439 
6 4.044257 3.698329 3.686065 

Total 3.455361 3.150734 3.158706 
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for uncertainty in the model, and the confidence intervals lessen this problem since 

uncertainty is always inherent in predictions. The simulations were run several 

different ways. All combinations of training and testing were used to see how close 

yield estimates were to the actual enrollment. There were combinations using two of 

the years to train and one to test. Another training set included a random half of all the 

years and tested on the other half. There were 5,000 expected yields used to model the 

uncertainty. A 95% confidence interval was created by finding the expected yield at 

both the 2.5 percentile and the 97.5 percentile.  

Table 10 shows the results of finding the confidence intervals using 

simulation. The results become more accurate as past data was used to predict current 

data. When predicting 2013, the resulting point estimate was only two students away 

from being identical to the actual data. When using future and past data to predict 

2012, a very high estimate was returned. Extremely low results were returned when 

predicting 2011 using data posted in future years. This is in line with the results from 

Van Dyke's research. 

Table 9: Root Mean Square Prediction Errors 

Variable Observations Mean 
Textual Analysis 55081 0.6940738 

SAT 55081 0.7474648 
Random Number 55081 0.7861156 

Table 10: Simulation Results 

Data Predicted On Low End High End Point Estimate  Actual Enrollment 
2013 using 2011 & 3172 3205 3190 3188 
2012 using 2011 & 3612 3650 3631 3254 
2011 using 2012 & 
2013 

1214 1239 1226 3033 
 Using half to predict 

other 
3275 3318 3296 4793 
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CHAPTER SIX 
 

Discussions 
 
 

The textual analysis used in this methodology was not strong enough to stand-

alone as a decision rule. It can be used in conjunction with more comprehensive 

models to help increase their predictive power. When adding the created variables to 

the full data set that includes information gathered during the application process, 

which includes SAT score, high school rank, etc. and running the stepwise 

regressions, some of the new variables were selected as good fits for a model. More 

data cleaning needs to be completed due to the unique identifiers used to retain 

anonymity do not match up every time. This would need to be adjusted to have a 

more complete data set. A model has been submitted for use with the admissions 

department, and the textual analysis variables could be used for the Fall 2014 

incoming freshmen. 

An area that needs additional development is finding better signals within the 

essays to help improve the performance of the model. The variables created were 

from personal reading of the essays to gather ideas. More readers involved could 

produce more ideas or find correlations in essays by students who enroll. Voluntary 

submission of the essays presents a problem that could easily be remedied by making 

them mandatory. There could also be selection bias built into those who choose to 

submit the essays. The participation rates show no true correlation with students who 

actually enroll however there are many students that submit them and are not 

accepted. 
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The essay questions could be altered to ask about the student's motivation for 

attending Baylor. The variables created that help define signals in the essays were 

geared towards finding a student's motivation. If the essay focused on this, the student 

would be encouraged to use Baylor specific words or expressions of their faith. Being 

a large private university, Baylor has to compete not only with public state 

universities like Texas A&M and the UT, but also with other private institutions like 

TCU and SMU. Those two set of schools draw from different groups of students, with 

Baylor in the middle. Being able to find people from both sets was the goal of this 

research, and asking the right questions is the key to accomplishing this. 

The first semester GPA used was the most accurate information available to make 

predictions with.  The research would be better fitted if core classes could be accessed 

to find ability.  The first semester between two students could vary widely depending 

on the classes they take.  By focusing on core freshman classes, such as calculus or 

literature, a more accurate model could be made. However, the number of 

observations that would be available would probably suffer because the data set is 

being limited even more. The number of enrolled students that complete the essays 

needs to be increased to improve results.  

By creating a large number of yield estimates and calculating a confidence 

interval from them, the results appear to be more accurate than running a single 

regression for the 2013 sample using chronological data. However, the results for 

2011 and 2012 were not accurate enough to be reliable, which has been the problem 

with previous results as well. (Van Dyke, 2014) My conclusion is that preferences for 

college of enrollment are a forward progressing set of choices. The markets and 

preferences change yearly. Some universities become more prestigious over time and 

others less. The fact that results from chronological data is much more accurate than 
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data in reverse chronological order suggests that these changes build upon one 

another and need to be taken into consideration. The simple solution for this problem 

is to acquire more data from previous years. However, new data to be collected is 

added periodically and the models have to be re-evaluated and changed. A moving 

model updated yearly that includes the last three to four years may be the needed 

application of this research. I recommend using the simulation method that 

incorporates previous years to create a range of expected values for each student in 

order to reduce the uncertainty of having a single point estimate.
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APPENDIX A 
 

Summary Statistics 
 
 

Table 11: Enrollment Regression Summary Statistics 
      
Method # Observations Mean Std. Dev. Min Max 
R2 13971 .3137741 .0925661 .0163004 .9997028 
AIC 13971 .3177392 .0982734 .0603836 .9999732 
BIC 13971 .3177145 .0953883 .1345734 .9618691 
 
 

Table 12: Ability Regression Summary Statistics 
      
Model # Observations Mean Std. Dev. Min Max 
AIC 9524 3.229942     .326763    1.809234     4.19948 
SAT 48879 3.166352 .2463845 2.0242 3.93375 
Random Number 48884 3.16257 .0105589 3.144304 3.18086 
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APPENDIX B 

Python Code – Variable Generating 

from __future__ import division 
import nltk 
import csv 
import re 
from string import punctuation 
import enchant 
from enchant.checker import SpellChecker 
faithwords = ['shall', 'unto', 'lord', 'thou', 'thy', 'ye', 'god', 'son', 'hath', 'israel', 'king', 
'people', 'house', 'before', 'children', 'against', 'shalt', 'land', 'day', 'hand', 'behold', 'saith', 
'sons', 'hast', 'o', 'over', 'she', 'david', 'great', 'jesus', 'thine', 'father', 'neither', 'give', 
'take', 'am', 'forth', 'brought', 'name', 'away', 'pass', 'two', 'according', 'days', 'city', 
'earth', 'moses', 'thereof', 'whom', 'know'] 
commitmentwords = ['pride', 'visit', 'leader', 'unity', 'campus', 'legacy', 'important', 
'environment', 'only', 'home', 'comfort', 'mom', 'dad', 'mother', 'father', 'family'] 
baylorwords = ['baylor', 'bears', 'bear', 'waco', 'oso', 'quadrangle', 'ivy', 'hometown', 
'burleson', 'hankamer', 'louise', 'herrington', 'truett'] 
oldbible = ['genesis', 'exodus', 'leviticus', 'numbers', 'deuteronomy', 'joshua', 'judges', 
'ruth', 'samuel', 'kings', 'chronicles', 'ezra', 'nehemiah', 'esther', 'job', 'psalm', 'proverbs', 
'ecclesiastes', 'solomon', 'isaiah', 'jermiah', 'lamentations', 'ezekiel', 'daniel', 'hosea', 
'joel', 'amos', 'obadiah', 'jonah', 'micah', 'nahum', 'habakkuk', 'zephaniah', 'haggai', 
'zechariah', 'malachi'] 
newbible = ['matthew', 'mark', 'luke', 'john', 'acts', 'romans', 'corinthians', 'galatians', 
'ephesians', 'philippians', 'thessalonians', 'timothy', 'titus', 'philemon', 'hebrews', 'james', 
'peter', 'jude', 'revelation'] 
adminwords = ['top', 'choice', 'first', 'dream', 'dreamed', 'always', 'growing', 'grown', 
'grow', 'wonderful', 'visit', 'blessed', 'experience', 'passion', 'passionate', 'tradition', 
'atmosphere', 'values', 'perfect', 'heart'] 

dictionary = enchant.Dict("en_US") 
chkr = SpellChecker("en_US") 

with open('additionalstatement.csv', 'rb') as csvfile: 
data = csv.reader(csvfile, delimiter=",") 
writer = csv.writer(open('additionaloutput.csv', 'wb')) 

for row in data: 
faithcounter = 0 
grammarcounter = 0 
commitmentcounter = 0 
baylorcounter = 0 
oldcounter = 0 
newcounter = 0 
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admincounter = 0 
count = 0 
vowels = 'aeiouy' 
sentences = 0 
 
#######Formating data  
row3 = row[4] 
row3 = row3.lower().replace(' ', ' ') 
row4 = row[5] 
row4 = row4.lower().replace(' ', ' ') 
row3 = row3.replace('\n', '') 
row4 = row4.replace('\n', '') 
for line in row3: 
sentences += line.count('.')+ line.count ('!')+ line.count('?') 
 
for line in row4: 
sentences += line.count('.')+ line.count ('!')+ line.count('?') 
for p in list(punctuation): 
row3 = row3.replace(p, '') 
row4 = row4.replace(p, '') 
whybaylor = re.split(' ', row3) 
lookingfor = re.split(' ', row4) 
 
entire = whybaylor + lookingfor 
#######Language Numbers  
#Total Number of Words  
whybaylorlen = len(whybaylor) 
lookingforlen = len(lookingfor) 
 
#Total Number of Different Words 
numunique = len(set(entire)) 
 
#Number of Misspelled Words  
chkr.set_text(row) 
for word in row: 
grammarcounter = grammarcounter + 1 
#Lexical Richness or How many times each word was used 
lexrich = len(entire) / len(set(entire)) 
#Calculations 
total_length = lookingforlen + whybaylorlen  
word_length = (sum(len(word) for word in whybaylor)+sum(len(word) for word in 
lookingfor))/(len(whybaylor)+len(lookingfor))  
grammar_wrong = grammarcounter / total_length 
#######Word Counters 
for word in whybaylor: 
if word in faithwords: 
faithcounter = faithcounter + 1 
for word in lookingfor: 
if word in faithwords: 
faithcounter = faithcounter + 1 
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for word in whybaylor: 
if word in commitmentwords: 
commitmentcounter = commitmentcounter + 1 
for word in lookingfor: 
if word in commitmentwords: 
commitmentcounter = commitmentcounter + 1 
for word in whybaylor: 
if word in baylorwords: 
baylorcounter = baylorcounter + 1 
for word in lookingfor: 
if word in baylorwords: 
baylorcounter =baylorcounter + 1 

for word in whybaylor: 
if word in oldbible: 
oldcounter = oldcounter + 1 
for word in lookingfor: 
if word in oldbible: 
oldcounter =oldcounter + 1 

for word in whybaylor: 
if word in newbible: 
newcounter = newcounter + 1 
for word in lookingfor: 
if word in newbible: 
newcounter = newcounter + 1 

for word in whybaylor: 
if word in adminwords: 
admincounter = admincounter + 1 
for word in lookingfor: 
if word in adminwords: 
admincounter = admincounter + 1  
for word in whybaylor: 
for index in range(0,len(word)): 
if word[index] in vowels and word[index-1] not in vowels: 
count +=1 
if word.endswith('e'): 
count -= 1 
if word.endswith('le'): 
count+=1 
if count == 0: 
count +=1  
for word in lookingfor: 
for index in range(0,len(word)): 
if word[index] in vowels and word[index-1] not in vowels: 
count +=1 
if word.endswith('e'): 
count -= 1 
if word.endswith('le'): 



35 
 

count+=1 
if count == 0: 
count +=1  
commitment_percentage = commitmentcounter / total_length  
faith_percentage = faithcounter / total_length 
baylor_percentage = baylorcounter / total_length 
totalbible = newcounter + oldcounter 
bible_percentage = totalbible / total_length  
admin_percentage = admincounter / total_length 
if sentences == 0: 
sentences = 1 
var1 = total_length / sentences 
var2 = count / total_length 
readingease = 206.835 - 1.015 * var1 - 84.6 * var2 
gradelevel = 0.39 * var1 + 11.8 * var2 -15.59 
#######Outputting new variables  
#Quality of writing variables 
row.append(whybaylorlen) #Number of Words in Essay1 
row.append(lookingforlen) #Number of Words in Essay2 
row.append(total_length) #Total Number of Words in Both Essays Combined 
row.append(grammar_wrong) #Percent of Misspelled Words in Both Essays 
row.append(word_length) #Average Number of Letters in a Word 
row.append(numunique) #Number of Unique Words in Both Essays Combined 
row.append(lexrich) #Average Number of Times Each Word was Used 
#Signaling variables 
row.append(commitmentcounter)  
row.append(commitment_percentage) 
row.append(faithcounter) 
row.append(faith_percentage) 
row.append(baylorcounter) 
row.append(baylor_percentage) 
row.append(totalbible) 
row.append(bible_percentage) 
row.append(admincounter) 
row.append(admin_percentage) 
#Flesch-Kincaid Metrics 
row.append(count) 
row.append(sentences) 
row.append(readingease) 
row.append(gradelevel) 
writer.writerow(row)  
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APPENDIX C 

Python Code – Bible Input 

from collections import Counter 
import csv 
import re 
import nltk 
import enchant 
from enchant.checker import SpellChecker 
from string import punctuation 

dictionary = enchant.Dict("en_US") 
chkr = SpellChecker("en_US") 

with open('thebible.txt', 'r') as thebible: 
biblewords = thebible.read().replace('\n', '') 
biblewords = biblewords.lower().replace(' ', ' ') 
for p in list(punctuation): 
biblewords = biblewords.replace(p, '') 
biblesplit = re.split(' ', biblewords) 

def remove_values_from_list(the_list, val): 
return [value for value in the_list if value != val] 

biblesplit = remove_values_from_list(biblesplit, 'the')  
biblesplit = remove_values_from_list(biblesplit, 'and')  
biblesplit = remove_values_from_list(biblesplit, 'of')  
biblesplit = remove_values_from_list(biblesplit, 'to')  
biblesplit = remove_values_from_list(biblesplit, 'that') 
biblesplit = remove_values_from_list(biblesplit, 'in')  
biblesplit = remove_values_from_list(biblesplit, 'he')  
biblesplit = remove_values_from_list(biblesplit, 'for')  
biblesplit = remove_values_from_list(biblesplit, 'i')  
biblesplit = remove_values_from_list(biblesplit, 'his')  
biblesplit = remove_values_from_list(biblesplit, 'a')  
biblesplit = remove_values_from_list(biblesplit, 'they') 
biblesplit = remove_values_from_list(biblesplit, 'upon') 
biblesplit = remove_values_from_list(biblesplit, 'will')  
biblesplit = remove_values_from_list(biblesplit, 'from') 
biblesplit = remove_values_from_list(biblesplit, 'upon') 
biblesplit = remove_values_from_list(biblesplit, 'as')  
biblesplit = remove_values_from_list(biblesplit, 'thee')  
biblesplit = remove_values_from_list(biblesplit, 'be')  
biblesplit = remove_values_from_list(biblesplit, 'is')  
biblesplit = remove_values_from_list(biblesplit, 'not')  
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biblesplit = remove_values_from_list(biblesplit, 'with')  
biblesplit = remove_values_from_list(biblesplit, 'him')  
biblesplit = remove_values_from_list(biblesplit, 'them')  
biblesplit = remove_values_from_list(biblesplit, 'it')  
biblesplit = remove_values_from_list(biblesplit, 'all')  
biblesplit = remove_values_from_list(biblesplit, 'have')  
biblesplit = remove_values_from_list(biblesplit, 'me') 
biblesplit = remove_values_from_list(biblesplit, 'was') 
biblesplit = remove_values_from_list(biblesplit, 'which')  
biblesplit = remove_values_from_list(biblesplit, 'my')  
biblesplit = remove_values_from_list(biblesplit, 'but')  
biblesplit = remove_values_from_list(biblesplit, 'said')  
biblesplit = remove_values_from_list(biblesplit, 'are')  
biblesplit = remove_values_from_list(biblesplit, 'their')  
biblesplit = remove_values_from_list(biblesplit, 'this')  
biblesplit = remove_values_from_list(biblesplit, 'had')  
biblesplit = remove_values_from_list(biblesplit, 'into') 
biblesplit = remove_values_from_list(biblesplit, 'on')  
biblesplit = remove_values_from_list(biblesplit, 'by')  
biblesplit = remove_values_from_list(biblesplit, 'at') 
biblesplit = remove_values_from_list(biblesplit, 'let')  
biblesplit = remove_values_from_list(biblesplit, 'go')  
biblesplit = remove_values_from_list(biblesplit, 'went') 
biblesplit = remove_values_from_list(biblesplit, 'come')  
biblesplit = remove_values_from_list(biblesplit, 'if') 
biblesplit = remove_values_from_list(biblesplit, 'when')  
biblesplit = remove_values_from_list(biblesplit, 'were')  
biblesplit = remove_values_from_list(biblesplit, 'out')  
biblesplit = remove_values_from_list(biblesplit, 'man')  
biblesplit = remove_values_from_list(biblesplit, 'you')  
biblesplit = remove_values_from_list(biblesplit, 'up')  
biblesplit = remove_values_from_list(biblesplit, 'there')  
biblesplit = remove_values_from_list(biblesplit, 'then')  
biblesplit = remove_values_from_list(biblesplit, 'came')  
biblesplit = remove_values_from_list(biblesplit, 'one') 
biblesplit = remove_values_from_list(biblesplit, 'we')  
biblesplit = remove_values_from_list(biblesplit, 'your')  
biblesplit = remove_values_from_list(biblesplit, 'also')  
biblesplit = remove_values_from_list(biblesplit, 'an')  
biblesplit = remove_values_from_list(biblesplit, 'so')  
biblesplit = remove_values_from_list(biblesplit, 'no') 
biblesplit = remove_values_from_list(biblesplit, 'even')  
biblesplit = remove_values_from_list(biblesplit, 'now')  
biblesplit = remove_values_from_list(biblesplit, 'do')  
biblesplit = remove_values_from_list(biblesplit, 'us')  
biblesplit = remove_values_from_list(biblesplit, 'therefore')  
biblesplit = remove_values_from_list(biblesplit, 'these') 
biblesplit = remove_values_from_list(biblesplit, 'because')  
biblesplit = remove_values_from_list(biblesplit, 'her')  
biblesplit = remove_values_from_list(biblesplit, 'men')  



38 

biblesplit = remove_values_from_list(biblesplit, 'saying')  
biblesplit = remove_values_from_list(biblesplit, 'made')  
biblesplit = remove_values_from_list(biblesplit, 'every')  
biblesplit = remove_values_from_list(biblesplit, 'after')  
biblesplit = remove_values_from_list(biblesplit, 'our')  
biblesplit = remove_values_from_list(biblesplit, 'or')  
biblesplit = remove_values_from_list(biblesplit, 'down')  
biblesplit = remove_values_from_list(biblesplit, 'things')  
biblesplit = remove_values_from_list(biblesplit, 'make')  
biblesplit = remove_values_from_list(biblesplit, 'put')  
biblesplit = remove_values_from_list(biblesplit, 'among') 
biblesplit = remove_values_from_list(biblesplit, 'who')  
biblesplit = remove_values_from_list(biblesplit, 'may')  
biblesplit = remove_values_from_list(biblesplit, 'our') 
biblesplit = remove_values_from_list(biblesplit, 'or') 
biblesplit = remove_values_from_list(biblesplit, 'did') 
biblesplit = remove_values_from_list(biblesplit, 'any') 
biblesplit = remove_values_from_list(biblesplit, 'what') 
biblesplit = remove_values_from_list(biblesplit, 'say') 
biblesplit = remove_values_from_list(biblesplit, 'should') 
fdist1 = nltk.FreqDist(biblesplit) 
vocabulary1 = fdist1.keys() 
output = vocabulary1[:50] 
print output 
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APPENDIX D 
 

Python Code – Traditions Retrieval 
 
 
from __future__ import division 
import nltk 
import re 
from string import punctuation 
import enchant 
from enchant.checker import SpellChecker 
from collections import Counter 
 
dictionary = enchant.Dict("en_US") 
chkr = SpellChecker("en_US") 
 
with open('baylortraditions.txt', 'r') as baylortraditions: 
baylorwords = baylortraditions.read().replace('\n', '') 
 
baylorwords = baylorwords.lower().replace(' ', ' ') 
for p in list(punctuation): 
baylorwords = baylorwords.replace(p, '') 
baylorsplit = re.split(' ', baylorwords) 
 
with open('uttraditions.txt', 'r') as uttraditions: 
utwords = uttraditions.read().replace('\n', '') 
 
utwords = utwords.lower().replace(' ', ' ') 
for p in list(punctuation): 
utwords = utwords.replace(p, '') 
utsplit = re.split(' ', utwords) 
with open('aggietraditions.txt', 'r') as aggietraditions: 
aggiewords = aggietraditions.read().replace('\n', '') 
aggiewords = aggiewords.lower().replace(' ', ' ') 
for p in list(punctuation): 
aggiewords = aggiewords.replace(p, '') 
aggiesplit = re.split(' ', aggiewords) 
with open('smutraditions.txt', 'r') as smutraditions: 
smuwords = smutraditions.read().replace('\n', '') 
smuwords = smuwords.lower().replace(' ', ' ') 
for p in list(punctuation): 
smuwords = smuwords.replace(p, '') 
smusplit = re.split(' ', smuwords) 
 
c =Counter(smusplit) 
for word in set(baylorsplit): 
print word, c.get(word, 0) 
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APPENDIX E 

Python Code – Essay Breakdown 

from collections import Counter 
import csv 
import re 
import nltk 
from string import punctuation 
from nltk.corpus import stopwords 

enrollwords = [] 
noenrollwords = [] 

with open('2011ShortAnswers.csv', 'rb') as csvfile: 
data = csv.reader(csvfile, delimiter=",") 
writer = csv.writer(open('keyword.csv', 'wb')) 

for row in data: 

#Format Data  
row3 = row[3] 
row3 = row3.lower().replace(' ', ' ') 
row4 = row[4] 
row4 = row4.lower().replace(' ', ' ') 
row3 = row3  
for p in list(punctuation): 
row3 = row3.replace(p, '') 
row4 = row4.replace(p, '') 
whybaylor = re.split(' ', row3) 
lookingfor = re.split(' ', row4) 
allrow = row3 + row4  
entire = whybaylor + lookingfor 
#Removing words that are of no importance 
def remove_values_from_list(the_list, val): 
return [value for value in the_list if value != val] 

entire = remove_values_from_list(entire, 'a') 
entire = remove_values_from_list(entire, 'i') 
entire = remove_values_from_list(entire, 'my') 
entire = remove_values_from_list(entire, 'me') 
entire = remove_values_from_list(entire, 'to') 
entire = remove_values_from_list(entire, 'and') 
entire = remove_values_from_list(entire, 'was') 
entire = remove_values_from_list(entire, 'as') 
entire = remove_values_from_list(entire, 'you') 
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entire = remove_values_from_list(entire, 'just') 
entire = remove_values_from_list(entire, 'so') 
entire = remove_values_from_list(entire, 'will') 
entire = remove_values_from_list(entire, 'also') 
entire = remove_values_from_list(entire, 'do') 
entire = remove_values_from_list(entire, 'for') 
entire = remove_values_from_list(entire, 'of') 
entire = remove_values_from_list(entire, 'it') 
entire = remove_values_from_list(entire, 'the') 
entire = remove_values_from_list(entire, 'in') 
entire = remove_values_from_list(entire, 'is') 
entire = remove_values_from_list(entire, 'at') 
entire = remove_values_from_list(entire, 'am') 
entire = remove_values_from_list(entire, 'get') 
entire = remove_values_from_list(entire, 'has') 
entire = remove_values_from_list(entire, 'can') 
entire = remove_values_from_list(entire, 'with') 
entire = remove_values_from_list(entire, 'all') 
entire = remove_values_from_list(entire, 'an') 
entire = remove_values_from_list(entire, 'be') 
entire = remove_values_from_list(entire, 'that') 
entire = remove_values_from_list(entire, 'on') 
entire = remove_values_from_list(entire, 'not') 
entire = remove_values_from_list(entire, 'want') 
entire = remove_values_from_list(entire, 'would') 
entire = remove_values_from_list(entire, 'are') 
entire = remove_values_from_list(entire, 'have')  
entire = remove_values_from_list(entire, 'but') 
entire = remove_values_from_list(entire, 'about') 
entire = remove_values_from_list(entire, 'like') 
entire = remove_values_from_list(entire, 'from') 
entire = remove_values_from_list(entire, 'because')  
entire = remove_values_from_list(entire, 'this') 
entire = remove_values_from_list(entire, 'by') 
entire = remove_values_from_list(entire, '') 
entire = remove_values_from_list(entire, 'many') 
entire = remove_values_from_list(entire, 'able') 
entire = remove_values_from_list(entire, 'where') 
entire = remove_values_from_list(entire, 'being') 
entire = remove_values_from_list(entire, 'what')  
entire = remove_values_from_list(entire, 'been')  
 
entire = remove_values_from_list(entire, 'one') 
entire = remove_values_from_list(entire, 'myself') 
entire = remove_values_from_list(entire, 'when') 
entire = remove_values_from_list(entire, 'well') 
entire = remove_values_from_list(entire, 'very') 
entire = remove_values_from_list(entire, 'more') 
entire = remove_values_from_list(entire, 'there')  
entire = remove_values_from_list(entire, 'their') 



42 

entire = remove_values_from_list(entire, 'who') 
entire = remove_values_from_list(entire, 'or') 
entire = remove_values_from_list(entire, 'other') 
entire = remove_values_from_list(entire, 'make') 

#Creating a list of the top words used by individuals 
fdist1 = nltk.FreqDist(entire) 
output = fdist1.keys() 
# output = vocabulary1[:5] 
# output2 = sorted([w for w in set(entire) if len(w) > 4 and fdist1[w] > 2]) 
# output3 = fdist1.hapaxes() 
if row[1] == '1': 
enrollwords = enrollwords + output  
if row[1] == '0': 
noenrollwords = noenrollwords + output 
#Taking the lists of top words used by individuals and creating top used list in 
aggregate 
overallyes = nltk.FreqDist(enrollwords) 
yesvocab = overallyes.keys() 
yeswords = yesvocab[:35] 

overallno = nltk.FreqDist(noenrollwords) 
novocab = overallno.keys() 
nowords = novocab[:35]  

print yeswords 
print nowords 
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APPENDIX F 
 

STATA Code 
 
 
/************************************************/ 
/* Stata program for Admissions Research        */ 
/* Van Pham, and Stephen Ryan Beckham (RA)      */ 
/* last revised by SRB Apr 3 2014              */ 
/************************************************/ 
 
capture program drop _all 
 
program admissions 
 
 clear 
 set more off 
 
 /*******************************************************/ 
 /* Data mining done in Python.  Output files are       */ 
 /* generated there and then moved to STATA for         */ 
 /* statistical work.  Below set is for cleaning and    */ 
 /* merging data.                                       */ 
 /*******************************************************/ 
 
  *Python 
  *Clean 
  *appendnmerge 
  *changengenerate 
   
 /*******************************************************/ 
 /* The code to predict propensity to enroll            */ 
 /*******************************************************/ 
 
 *vselectpropensity 
 *predictpropensity 
 
 /*******************************************************/ 
 /* The code to predict ability                         */ 
 /*******************************************************/ 
 
 *vselectgpa 
 *text2gpa 
 *vselectsat 
 *text2sat 
 *sat2gpa 
 *hsp2gpa 
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*text2gpamarginal
*textsat2gpa
*textsathsp2gpa

/*******************************************************/ 
/* The code is using the open answer data set          */ 
/*******************************************************/ 

*openanswerconvert

/*******************************************************/ 
/* The code to predict retention                       */ 
/*******************************************************/ 

*vselectretention
*predictretention

*subgroupingsat
*fregressionlevels

end 

/*******************************/ 

program Python 

//Pulling Python Files 
insheet using 2011output.csv 
save 2011output.dta 
clear 
insheet using 2012output.csv 
save 2012output.dta 
clear 
insheet using 2013output.csv 
save 2013output.dta 
clear 

end //-------------Python---------------- 

/*******************************/ 

program Clean 

//Cleaning File that will allow the merge of crosswalk and random_ID 
import excel "C:\Documents and Settings\stephen_beckham\My 

Documents\Match Crosswalk.xls", sheet("Matched") 
rename A crosswalk 
rename B random_ID 
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 rename C Term 
 drop if crosswalk == "CROSSWALK" 
 destring crosswalk, replace 
 destring random_ID, replace 
 destring Term, replace 
 save matchcrosswalk.dta 
 clear 
 
end //-------------Clean---------------- 
 
/*******************************/ 
 
program appendnmerge 
 
 //Appending all the Python datasets into one data set 
 use 2011output.dta 
 append using 2012output.dta 
 append using 2013output.dta 
 save combinedstata.dta 
 clear 
 
 //Merging the data set created in Python with Sarah's data set 
 use combinedstata.dta 
 merge m:m crosswalk using matchcrosswalk.dta, nogen 
 merge m:1 random_ID using sarahsdta.dta, nogen 
 save masterlist.dta 
 clear 
 
end //-------------appendnmerge---------------- 
 
/*******************************/ 
 
program changengenerate 
 
 //Cleaning up the variables into memorable names 
 use masterlist.dta 
 rename baylor_cont_text WhyBaylor 
 rename univ_look_text Lookingfor 
 rename v7 Essay1Len 
 rename v8 Essay2Len 
 rename v9 TotalLen 
 rename v10 GrammerWrong 
 rename v11 WordLength 
 rename v12 NumUnique 
 rename v13 lexrich 
 rename v14 commitmentcounter 
 rename v15 commitmentpercent 
 rename v16 faithcounter 
 rename v17 faithpercent 
 rename v18 baylorcounter 
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rename v19 baylorpercent 
rename v20 totalbible 
rename v21 biblepercent 
rename v22 admincounter 
rename v23 adminpercent 
rename v24 syllables 
rename v25 sentences 
rename v26 fleschreading 
rename v27 fleschgrade 

//Creaing variables to assist with vselect 
gen newrandom = runiform() 
gen var1 = biblepercent * faithcounter 
gen var2 = totalbible * totalbible 
gen var3 = baylorcounter * baylorcounter 
gen var4 = faithcounter * faithcounter 
gen var5 = commitmentcounter * commitmentcounter 
gen var6 = faithpercent * totalbible 
gen var7 = baylorpercent * commitmentcounter 
gen var8 = commitmentpercent * baylorcounter 
gen var9 = commitmentpercent + baylorpercent 
gen var10 = biblepercent + faithpercent 
gen var11 = NumUnique * lexrich 
gen var12 = TotalLen * WordLength 
gen var13 = lexrich * GrammerWrong 
gen var14 = biblepercent + baylorpercent + faithpercent + commitmentpercent 
gen var15 = GrammerWrong + commitmentpercent 
gen var16 = biblepercent * commitmentcounter 
gen var17 = totalbible * commitmentpercent 
gen var18 = faithcounter * baylorpercent 

gen gpa2 = TotalLen * TotalLen 
gen gpa3 = WordLength * WordLength 
gen gpa4 = NumUnique * NumUnique 
gen gpa5 = lexrich * lexrich 
gen gpa6 = syllables * syllables 
gen gpa7 = sentences * sentences 
gen gpa8 = fleschreading * fleschreading 
gen gpa9 = fleschgrade * fleschgrade 
gen gpa10 = fleschreading * fleschgrade 
gen gpa11 = TotalLen * WordLength * sentences 
gen gpa12 = fleschreading * GrammerWrong 
gen gpa13 = fleschgrade * GrammerWrong 
gen gpa14 = fleschreading * fleschgrade * GrammerWrong 
gen gpa15 = NumUnique * lexrich 
gen gpa16 = syllables * TotalLen 
gen gpa17 = sentences * WordLength 
gen gpa18 = lexrich * GrammerWrong 
gen gpa19 = fleschreading * fleschreading * fleschreading 
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 gen gpa20 = fleschgrade * fleschgrade * fleschgrade 
  
 save masterlist.dta, replace 
 clear 
 
end //-------------changengenerate---------------- 
 
/*******************************/ 
 
program vselectpropensity 
 
 use masterlist.dta 
 
 //Those that were not admitted are not being used 
 drop if admitted == 0 
 
 //The vselect will be fixed on a single year, this will need to be changed for 
robustness checks 
 vselect registered Essay1Len Essay2Len TotalLen GrammerWrong 
WordLength NumUnique lexrich commitmentpercent commitmentcounter 
faithcounter faithpercent baylorcounter baylorpercent totalbible biblepercent 
admincounter adminpercent syllables sentences fleschreading fleschgrade var1 var2 
var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14 var15 var16 var17 
var18 if newrandom > .5, best 
 
 
end //-------------veselectpropensity---------------- 
 
/*******************************/ 
 
program predictpropensity 
 
 clear 
  
 use f:\Users\Stephen_Beckham\masterlist.dta 
 
 //Those that were not admitted are not being used 
 drop if admitted == 0 
 
 //Logits run based on the vselect recommendations.  These will need to be 
changed for robustness check 
 quiet logit registered commitmentcounter var18 baylorcounter var3 var5 
totalbible syllables var2 admincounter var12 Essay2Len var14 baylorpercent var15 
NumUnique if newrandom > .7 
 quiet predict pr_enroll_r2, pr 
 quiet logit registered commitmentcounter var18 baylorcounter var3 syllables 
admincounter var12 Essay2Len faithpercent GrammerWrong NumUnique if 
newrandom > .5 
 quiet predict pr_enroll_aic, pr 
 quiet logit registered commitmentcounter baylorcounter syllables 
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admincounter var12 NumUnique if newrandom > .5 
quiet predict pr_enroll_bic, pr 
quiet logit registered Essay1Len Essay2Len TotalLen GrammerWrong 

WordLength NumUnique lexrich commitmentpercent commitmentcounter 
faithcounter faithpercent baylorcounter baylorpercent totalbible biblepercent 
admincounter adminpercent var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 
var12 var13 var14 var15 var16 var17 var18 if newrandom > .5 

quiet predict pr_enroll_all, pr 

//Droping term used in regressions to get out of sample predictions 
drop if newrandom > .5 

//vselect's choice of R^2 
gen enrollhatr2 = 0 
replace enrollhatr2 = 1 if pr_enroll_r2 > 0.4 
gen falseposr2 = 0 
replace falseposr2 = 1 if registered == 0 & enrollhatr2 == 1 
gen falsenegr2 = 0 
replace falsenegr2 = 1 if registered == 1 & enrollhatr2 == 0 
gen trueposr2 = 0 
replace trueposr2 = 1 if registered == 1 & enrollhatr2 == 1 
gen truenegr2 = 0 
replace truenegr2 = 1 if registered == 0 & enrollhatr2 == 0 

//vselect's choice for AIC & AICC 
gen enrollhataic = 0 
replace enrollhataic = 1 if pr_enroll_aic > 0.4 
gen falseposaic = 0 
replace falseposaic = 1 if registered == 0 & enrollhataic == 1 
gen falsenegaic = 0 
replace falsenegaic = 1 if registered == 1 & enrollhataic == 0 
gen trueposaic = 0 
replace trueposaic = 1 if registered == 1 & enrollhataic == 1 
gen truenegaic = 0 
replace truenegaic = 1 if registered == 0 & enrollhataic == 0 

//vselect's choice for BIC 
gen enrollhatbic = 0 
replace enrollhatbic = 1 if pr_enroll_bic > 0.4 
gen falseposbic = 0 
replace falseposbic = 1 if registered == 0 & enrollhatbic == 1 
gen falsenegbic = 0 
replace falsenegbic = 1 if registered == 1 & enrollhatbic == 0 
gen trueposbic = 0 
replace trueposbic = 1 if registered == 1 & enrollhatbic == 1 
gen truenegbic = 0 
replace truenegbic = 1 if registered == 0 & enrollhatbic == 0 

//using all the variables 
gen enrollhatall = 0 
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 replace enrollhatall = 1 if pr_enroll_all > 0.4 
 gen falseposall = 0 
 replace falseposall = 1 if registered == 0 & enrollhatall == 1 
 gen falsenegall = 0 
 replace falsenegall = 1 if registered == 1 & enrollhatall == 0 
 gen trueposall = 0 
 replace trueposall = 1 if registered == 1 & enrollhatall == 1 
 gen truenegall = 0 
 replace truenegall = 1 if registered == 0 & enrollhatall == 0 
 
 //Generating number of students that registered 
 gen numreg = registered == 1 
 replace numreg = sum(numreg) 
 replace numreg = numreg[_N] 
 
 //Generating number of students that didn't register 
 gen numnoreg = registered == 0 
 replace numnoreg = sum(numnoreg) 
 replace numnoreg = numnoreg[_N] 
 
 //Generating numbers for R^2 
 gen numtpr2 = trueposr2 == 1 
 replace numtpr2 = sum(numtpr2) 
 replace numtpr2 = numtpr2[_N] 
 gen numtnr2 = truenegr2 == 1 
 replace numtnr2 = sum(numtnr2) 
 replace numtnr2 = numtnr2[_N] 
 gen numfpr2 = falseposr2 == 1 
 replace numfpr2 = sum(numfpr2) 
 replace numfpr2 = numfpr2[_N] 
 gen numfnr2 = falsenegr2 == 1 
 replace numfnr2 = sum(numfnr2) 
 replace numfnr2 = numfnr2[_N] 
 
 //Generating numbers for AIC 
 gen numtpaic = trueposaic == 1 
 replace numtpaic = sum(numtpaic) 
 replace numtpaic = numtpaic[_N] 
 gen numtnaic = truenegaic == 1 
 replace numtnaic = sum(numtnaic) 
 replace numtnaic = numtnaic[_N] 
 gen numfpaic = falseposaic == 1 
 replace numfpaic = sum(numfpaic) 
 replace numfpaic = numfpaic[_N] 
 gen numfnaic = falsenegaic == 1 
 replace numfnaic = sum(numfnaic) 
 replace numfnaic = numfnaic[_N] 
 
 //Generating numbers for bic 
 gen numtpbic = trueposbic == 1 
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replace numtpbic = sum(numtpbic) 
replace numtpbic = numtpbic[_N] 
gen numtnbic = truenegbic == 1 
replace numtnbic = sum(numtnbic) 
replace numtnbic = numtnbic[_N] 
gen numfpbic = falseposbic == 1 
replace numfpbic = sum(numfpbic) 
replace numfpbic = numfpbic[_N] 
gen numfnbic = falsenegbic == 1 
replace numfnbic = sum(numfnbic) 
replace numfnbic = numfnbic[_N] 

//Generating numbers using all variables 
gen numtpall = trueposall == 1 
replace numtpall = sum(numtpall) 
replace numtpall = numtpall[_N] 
gen numtnall = truenegall == 1 
replace numtnall = sum(numtnall) 
replace numtnall = numtnall[_N] 
gen numfpall = falseposall == 1 
replace numfpall = sum(numfpall) 
replace numfpall = numfpall[_N] 
gen numfnall = falsenegall == 1 
replace numfnall = sum(numfnall) 
replace numfnall = numfnall[_N] 

//Creating percentages to be show true positive, true negative, etc. 
gen percenttpr2 = numtpr2 / numreg 
gen percenttnr2 = numtnr2 / numnoreg 
gen percentfpr2 = numfpr2 / numnoreg 
gen percentfnr2 = numfnr2 / numreg 
gen percenttpaic = numtpaic / numreg 
gen percenttnaic = numtnaic / numnoreg 
gen percentfpaic = numfpaic / numnoreg 
gen percentfnaic = numfnaic / numreg 
gen percenttpbic = numtpbic / numreg 
gen percenttnbic = numtnbic / numnoreg 
gen percentfpbic = numfpbic / numnoreg 
gen percentfnbic = numfnbic / numreg 
gen percenttpall = numtpall / numreg 
gen percenttnall = numtnall / numnoreg 
gen percentfpall = numfpall / numnoreg 
gen percentfnall = numfnall / numreg 

//Displaying Results 
dis percenttpr2 
dis percenttnr2 
dis percentfpr2 
dis percentfnr2 
dis percenttpaic 
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 dis percenttnaic 
 dis percentfpaic 
 dis percentfnaic 
 dis percenttpbic 
 dis percenttnbic 
 dis percentfpbic 
 dis percentfnbic 
 dis percenttpall 
 dis percenttnall 
 dis percentfpall 
 dis percentfnall 
 
end //-------------predictpropensity---------------- 
 
/*******************************/ 
 
program vselectgpa 
 
 clear 
 
 use masterlist.dta 
  
 //Finding the best fit 
 vselect gpa TotalLen GrammerWrong WordLength NumUnique lexrich 
syllables sentences fleschreading fleschgrade gpa2 gpa3 gpa4 gpa5 gpa6 gpa7 gpa8 
gpa9 gpa10 gpa11 gpa12 gpa13 gpa14 gpa15 gpa16 gpa17 gpa18 gpa19 gpa20, best 
 
end //--------------vselectgpa-------------------------------- 
 
/*******************************/ 
 
program text2gpa 
 
 clear 
 
 use masterlist.dta 
  
 //Regressions based on GPA, needs to be changed for robustness 
 //Also using random number assignment for out of sample predictions, can be 
changed for robustness 
 quiet regress gpa distance gpa14 gpa8 WordLength TotalLen gpa3 
high_school_percentile gpa11 satmodel gpa6 gpa15 if random > .5 
 quiet predict pr_abil_r2 
 quiet regress gpa distance fleschreading WordLength TotalLen gpa3 
high_school_percentile gpa11 satmodel gpa13 gpa15 if random > .5 
 quiet predict pr_abil_aic 
 quiet regress gpa syllables TotalLen high_school_percentile satmodel if 
random > .5 
 quiet predict pr_abil_bic 
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich 
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syllables sentences fleschreading fleschgrade if random > .5 
quiet predict pr_abil_all 
quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich 

sentences fleschreading fleschgrade if random > .5 
quiet predict pr_abil_working  

//Droping in sample 
drop if random > .5 

//Generating variable to show percentage I am off by 
gen off_r2 = ( pr_abil_r2 - gpa ) / gpa 
gen off_aic = ( pr_abil_aic - gpa ) / gpa 
gen off_bic = ( pr_abil_bic - gpa ) / gpa 
gen off_all = ( pr_abil_all - gpa ) / gpa 
gen off_working = ( pr_abil_working - gpa ) / gpa 

//Displaying Results 
sum off_r2 
sum off_aic 
sum off_bic 
sum off_all 
sum off_working 

//Mean Square Prediction Error Calculation 
gen msper2_1 = ( pr_abil_r2 - gpa )^2 
gen mspeaic_1= ( pr_abil_aic - gpa )^2 
gen mspebic_1 =( pr_abil_bic - gpa )^2 
gen mspeall_1 =( pr_abil_all - gpa )^2 
gen mspeworking_1 = ( pr_abil_working - gpa )^2 

egen msper2_2 = mean(msper2_1) 
egen mspeaic_2 = mean(mspeaic_1) 
egen mspebic_2 = mean(mspebic_1) 
egen mspeall_2 = mean(mspeall_1) 
egen mspeworking_2 = mean(mspeworking_1) 

gen msper2 = msper2_2 ^ 0.5 
gen mspeaic = mspeaic_2 ^ 0.5 
gen mspebic = mspebic_2 ^ 0.5 
gen mspeall = mspeall_2 ^ 0.5 
gen mspeworking = mspeworking_2 ^ 0.5 

sum msper2 
sum mspeaic 
sum mspebic 
sum mspeall 
sum mspeworking 
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end //----------------text2gpa-------------------------------------------- 
 
/*******************************/ 
 
program vselectsat 
 
 clear 
 
 use masterlist.dta 
 
 //Finding the best fit 
 vselect satmodel TotalLen GrammerWrong WordLength NumUnique lexrich 
syllables sentences fleschreading fleschgrade, best 
 
end //------------------vselectsat----------------------------------------- 
 
 /*******************************/ 
 
program text2sat 
 
 clear 
 
 use masterlist.dta 
  
 //Regressions based on GPA, needs to be changed for robustness 
 //Also using random number assignment for out of sample predictions, can be 
changed for robustness 
 quiet regress satmodel NumUnique sentences WordLength TotalLen 
fleschreading if random > .5 
 quiet predict pr_abil_r2 
 quiet regress satmodel NumUnique sentences WordLength TotalLen if 
random > .5 
 quiet predict pr_abil_aic 
 quiet regress satmodel NumUnique sentences WordLength if random > .5 
 quiet predict pr_abil_bic 
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich 
syllables sentences fleschreading fleschgrade if random > .5 
 quiet predict pr_abil_all 
 
 drop if random > .5 
 
 //Generating variable to show percentage I am off by 
 gen off_r2 = ( pr_abil_r2 - satmodel ) / satmodel 
 gen off_aic = ( pr_abil_aic - satmodel ) / satmodel 
 gen off_bic = ( pr_abil_bic - satmodel ) / satmodel 
 gen off_all = ( pr_abil_all - satmodel ) / satmodel 
 
 //Displaying Results 
 sum off_r2 
 sum off_aic 
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sum off_bic 
sum off_all 

//Mean Square Prediction Error Calculation 
gen msper2_1 = ( pr_abil_r2 - gpa )^2 
gen mspeaic_1= ( pr_abil_aic - gpa )^2 
gen mspebic_1 =( pr_abil_bic - gpa )^2 
gen mspeall_1 =( pr_abil_all - gpa )^2 
gen mspeworking_1 = ( pr_abil_working - gpa )^2 

egen msper2_2 = mean(msper2_1) 
egen mspeaic_2 = mean(mspeaic_1) 
egen mspebic_2 = mean(mspebic_1) 
egen mspeall_2 = mean(mspeall_1) 
egen mspeworking_2 = mean(mspeworking_1) 

gen msper2 = msper2_2 ^ 0.5 
gen mspeaic = mspeaic_2 ^ 0.5 
gen mspebic = mspebic_2 ^ 0.5 
gen mspeall = mspeall_2 ^ 0.5 
gen mspeworking = mspeworking_2 ^ 0.5 

sum msper2 
sum mspeaic 
sum mspebic 
sum mspeall 
sum mspeworking 

end //----------------------text2sat---------------------------------- 

/*******************************/ 

program sat2gpa 

clear 

use masterlist.dta 

quiet regress gpa satmodel if random > .5 
quiet predict gpahat 

drop if random > .5 
//drop if sat > 1200 

gen off = (gpahat - gpa)/gpa 
sum off 

//Mean Square Prediction Error Calculation 
gen msper2_1 = ( gpahat - gpa )^2 
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 egen msper2_2 = mean(msper2_1) 
  
 gen msper2 = msper2_2 ^ 0.5 
  
 sum msper2 
 
 
end //----------------------sat2gpa------------------------------------ 
 
/*******************************/ 
 
program text2gpamarginal 
 
 clear 
 
 use masterlist.dta 
 
 quiet regress gpa fleschreading fleschgrade sentences NumUnique syllables 
lexrich TotalLen if random > .5 
 quiet predict pr_gpa_r2 
 quiet regress gpa fleschreading fleschgrade sentences NumUnique lexrich if 
random > .5 
 quiet predict pr_gpa_aic 
 quiet regress gpa fleschreading TotalLen if random > .5 
 quiet predict pr_gpa_bic 
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich 
syllables sentences fleschreading fleschgrade if random > .5 
 quiet predict pr_gpa_all 
 quiet regress satmodel NumUnique sentences WordLength TotalLen 
fleschreading if random > .5 
 quiet predict pr_sat_r2 
 quiet regress satmodel NumUnique sentences WordLength TotalLen if 
random > .5 
 quiet predict pr_sat_aic 
 quiet regress satmodel NumUnique sentences WordLength if random > .5 
 quiet predict pr_sat_bic 
 quiet regress gpa TotalLen GrammerWrong WordLength NumUnique lexrich 
syllables sentences fleschreading fleschgrade if random > .5 
 quiet predict pr_sat_all 
 
 drop if random > .5 
 //Using 50 points over cutoff 
 drop if satmodel > 1250 
 //Cutoff if 50% on high school rank, making marginal student 60% 
 //drop if high_school_percentile > 60 
 
 
 gen off_r2gpa = ( pr_gpa_r2 - gpa ) / gpa 
 gen off_aicgpa = ( pr_gpa_aic - gpa ) / gpa 
 gen off_bicgpa = ( pr_gpa_bic - gpa ) / gpa 
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gen off_allgpa = ( pr_gpa_all - gpa ) / gpa 
gen off_r2sat = ( pr_sat_r2 - satmodel ) / satmodel 
gen off_aicsat = ( pr_sat_aic - satmodel ) / satmodel 
gen off_bicsat = ( pr_sat_bic - satmodel ) / satmodel 
gen off_allsat = ( pr_sat_all - satmodel ) / satmodel 

sum off_r2gpa 
sum off_aicgpa 
sum off_bicgpa 
sum off_allgpa 
sum off_r2sat 
sum off_aicsat 
sum off_bicsat 
sum off_allsat 

end //------------------------text2gpamarginal------------------------------- 

program openanswerconvert 

insheet using additionaloutput.csv 
save additionalstatement.dta 

rename id random_ID 
rename additional_info_statement addinfo 
rename v3 addinfolen 
rename v5 addGrammerWrong 
rename v6 addWordLength 
rename v7 addNumUnique 
rename v8 addlexrich 
rename v9 addcommitmentcounter 
rename v10 addcommitmentpercent 
rename v11 addfaithcounter 
rename v12 addfaithpercent 
rename v13 addbaylorcounter 
rename v14 addbaylorpercent 
rename v15 addtotalbible 
rename v16 addbiblepercent  
rename v17 addadmincounter 
rename v18 addadminpercent 
rename v19 addsyllables 
rename v20 addsentences 
rename v21 addfleschreading 
rename v22 addfleschgrade  
drop v4 

save additionalstatement.dta, replace 

clear 
use masterlist.dta 
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 merge m:1 random_ID using additionalstatement.dta, nogen 
  
 save masterwithopen.dta 
 
end //--------------------------openanswerconvert---------------------------- 
 
/*******************************/ 
 
program textsat2gpa 
 
 clear 
 
 use masterlist.dta 
 
 //Regressions based on GPA, needs to be changed for robustness 
 //Also using random number assignment for out of sample predictions, can be 
changed for robustness 
 quiet regress gpa satmodel fleschreading fleschgrade sentences NumUnique 
syllables lexrich TotalLen if random > .5 
 quiet predict pr_abil_r2 
 quiet regress gpa satmodel fleschreading fleschgrade sentences NumUnique 
lexrich if random > .5 
 quiet predict pr_abil_aic 
 quiet regress gpa satmodel fleschreading TotalLen if random > .5 
 quiet predict pr_abil_bic 
 quiet regress gpa satmodel TotalLen GrammerWrong WordLength 
NumUnique lexrich syllables sentences fleschreading fleschgrade if random > .5 
 quiet predict pr_abil_all 
 quiet regress gpa satmodel fleschreading fleschgrade syllables TotalLen 
sentences lexrich NumUnique if random > .5 
 quiet predict pr_abil_working 
 
 //Droping in sample  
 drop if random > .5 
 
 //Generating variable to show percentage I am off by 
 gen off_r2 = ( pr_abil_r2 - gpa ) / gpa 
 gen off_aic = ( pr_abil_aic - gpa ) / gpa 
 gen off_bic = ( pr_abil_bic - gpa ) / gpa 
 gen off_all = ( pr_abil_all - gpa ) / gpa 
 gen off_working = ( pr_abil_working - gpa ) / gpa 
  
 //Displaying Results 
 sum off_r2 
 sum off_aic 
 sum off_bic 
 sum off_all 
 sum off_working 
  
end //----------------textsat2gpa-------------------------------------------- 
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/*******************************/ 

program hsp2gpa 

clear 

use masterlist.dta 

quiet regress gpa high_school_percentile if random > .5 
quiet predict gpahat 

drop if random > .5 

gen off = (gpahat - gpa)/gpa 
sum off 

end //----------------------hsp2gpa------------------------------------ 

/*******************************/ 

program textsathsp2gpa 

clear 

use masterlist.dta 

//Regressions based on GPA, needs to be changed for robustness 
//Also using random number assignment for out of sample predictions, can be 

changed for robustness 
quiet regress gpa satmodel high_school_percentile fleschreading fleschgrade 

sentences NumUnique syllables lexrich TotalLen if random > .5 
quiet predict pr_abil_r2 
quiet regress gpa satmodel high_school_percentile fleschreading fleschgrade 

sentences NumUnique lexrich if random > .5 
quiet predict pr_abil_aic 
quiet regress gpa satmodel high_school_percentile fleschreading TotalLen if 

random > .5 
quiet predict pr_abil_bic 
quiet regress gpa satmodel high_school_percentile TotalLen GrammerWrong 

WordLength NumUnique lexrich syllables sentences fleschreading fleschgrade if 
random > .5 

quiet predict pr_abil_all 
quiet regress gpa high_school_percentile satmodel NumUnique lexrich 

fleschreading syllables GrammerWrong sentences WordLength fleschgrade if random 
> .5 

quiet predict pr_abil_working 

//Droping in sample  



59 

drop if random > .5 
*Add below code in for marginal work
//drop if satmodel > 1200 

//Generating variable to show percentage I am off by 
gen off_r2 = ( pr_abil_r2 - gpa ) / gpa 
gen off_aic = ( pr_abil_aic - gpa ) / gpa 
gen off_bic = ( pr_abil_bic - gpa ) / gpa 
gen off_all = ( pr_abil_all - gpa ) / gpa 
gen off_working = ( pr_abil_working - gpa ) / gpa 

//Displaying Results 
sum off_r2 
sum off_aic 
sum off_bic 
sum off_all 
sum off_working 

//Mean Square Prediction Error Calculation 
gen msper2_1 = ( pr_abil_r2 - gpa )^2 
gen mspeaic_1= ( pr_abil_aic - gpa )^2 
gen mspebic_1 =( pr_abil_bic - gpa )^2 
gen mspeall_1 =( pr_abil_all - gpa )^2 
gen mspeworking_1 = ( pr_abil_working - gpa )^2 

egen msper2_2 = mean(msper2_1) 
egen mspeaic_2 = mean(mspeaic_1) 
egen mspebic_2 = mean(mspebic_1) 
egen mspeall_2 = mean(mspeall_1) 
egen mspeworking_2 = mean(mspeworking_1) 

gen msper2 = msper2_2 ^ 0.5 
gen mspeaic = mspeaic_2 ^ 0.5 
gen mspebic = mspebic_2 ^ 0.5 
gen mspeall = mspeall_2 ^ 0.5 
gen mspeworking = mspeworking_2 ^ 0.5 

sum msper2 
sum mspeaic 
sum mspebic 
sum mspeall 
sum mspeworking 

end //----------------textsathsp2gpa-------------------------------------------- 

/*******************************/ 

program vselectretention 

clear 
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use masterlist.dta 

quiet regress gpa fleschreading fleschgrade sentences NumUnique 
syllables lexrich TotalLen 

quiet predict pr_abil_r2 

//Those that were not admitted are not being used 
drop if drop_semester == . 
drop if drop_year == . 

//The vselect will be fixed on a single year, this will need to be 
changed for robustness checks 

vselect drop_year pr_abil_r2 orientation_sched_ind budget_amt 
gross_need academic_index high_school_percentile total_contacts self_init_cntcts 
solicited_cntcts referral_cntcts campus_visit BUhonors satmodel dep_span legacy 
distance visited hsrate mrate initrate religionrate tot_loan tot_schol tot_work tot_grant 
efc merit_schol need_schol commitmentpercent commitmentcounter faithcounter 
faithpercent baylorcounter baylorpercent totalbible biblepercent admincounter if 
newrandom > .5, best 

end //-------------veselectretention---------------- 

/*******************************/ 

program predictretention 

clear 

use masterlist.dta 

//Logits run based on the vselect recommendations.  These will need to be 
changed for robustness check 

quiet logit drop_semester orientation_sched_ind dep_span 
high_school_percentile academic_index satmodel need_schol campus_visit 
biblepercent BUhonors baylorpercent tot_loan tot_schol hsrate merit_schol tot_work 
commitmentcounter faithpercent if newrandom > .5, difficult technique(nr bhhh dfp 
bfgs) 

quiet predict pr_semester_r2, pr 
quiet logit drop_semester orientation_sched_ind dep_span 

high_school_percentile campus_visit biblepercent BUhonors baylorpercent tot_loan 
hsrate totalbible faithcounter if newrandom > .5, difficult technique(nr bhhh dfp bfgs) 

quiet predict pr_semester_aic, pr 
quiet logit drop_semester dep_span if newrandom > .5, difficult technique(nr 

bhhh dfp bfgs) 
quiet predict pr_semester_bic, pr 
quiet logit drop_semester orientation_sched_ind dep_span 

high_school_percentile campus_visit biblepercent baylorpercent tot_loan if 
newrandom > .5, difficult technique(nr bhhh dfp bfgs) 
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 quiet predict pr_semester_aicc, pr 
 
  
 quiet logit drop_year BUhonors budget_amt distance tot_schol need_schol 
mrate merit_schol commitmentpercent high_school_percentile tot_loan 
self_init_cntcts initrate orientation_sched_ind gross_need if newrandom > .5, difficult 
technique(nr bhhh dfp bfgs) 
 quiet predict pr_year_r2, pr 
 quiet logit drop_year BUhonors budget_amt distance mrate 
commitmentpercent tot_loan academic_index self_init_cntcts initrate tot_work if 
newrandom > .5, difficult technique(nr bhhh dfp bfgs) 
 quiet predict pr_year_aic, pr 
 quiet logit drop_year self_init_cntcts gross_need if newrandom > .5, difficult 
technique(nr bhhh dfp bfgs) 
 quiet predict pr_year_bic, pr 
 
 //Droping term used in regressions to get out of sample predictions 
 drop if newrandom > .5 
 drop if drop_semester == . 
  
 //vselect's choice of R^2 
 gen semesterhatr2 = 0 
 replace semesterhatr2 = 1 if pr_semester_r2 > 0.3 
 gen falseposr2 = 0 
 replace falseposr2 = 1 if drop_semester == 0 & semesterhatr2 == 1 
 gen falsenegr2 = 0 
 replace falsenegr2 = 1 if drop_semester == 1 & semesterhatr2 == 0 
 gen trueposr2 = 0 
 replace trueposr2 = 1 if drop_semester == 1 & semesterhatr2 == 1 
 gen truenegr2 = 0 
 replace truenegr2 = 1 if drop_semester == 0 & semesterhatr2 == 0 
  
 //vselect's choice for AIC 
 gen semesterhataic = 0 
 replace semesterhataic = 1 if pr_semester_aic > 0.3 
 gen falseposaic = 0 
 replace falseposaic = 1 if drop_semester == 0 & semesterhataic == 1 
 gen falsenegaic = 0 
 replace falsenegaic = 1 if drop_semester == 1 & semesterhataic == 0 
 gen trueposaic = 0 
 replace trueposaic = 1 if drop_semester == 1 & semesterhataic == 1 
 gen truenegaic = 0 
 replace truenegaic = 1 if drop_semester == 0 & semesterhataic == 0 
 
 //vselect's choice for BIC 
 gen semesterhatbic = 0 
 replace semesterhatbic = 1 if pr_semester_bic > 0.3 
 gen falseposbic = 0 
 replace falseposbic = 1 if drop_semester == 0 & semesterhatbic == 1 
 gen falsenegbic = 0 
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replace falsenegbic = 1 if drop_semester == 1 & semesterhatbic == 0 
gen trueposbic = 0 
replace trueposbic = 1 if drop_semester == 1 & semesterhatbic == 1 
gen truenegbic = 0 
replace truenegbic = 1 if drop_semester == 0 & semesterhatbic == 0 

//vselect's choice for AICC 
gen semesterhataicc = 0 
replace semesterhataicc = 1 if pr_semester_aicc > 0.3 
gen falseposall = 0 
replace falseposall = 1 if registered == 0 & semesterhataicc == 1 
gen falsenegall = 0 
replace falsenegall = 1 if registered == 1 & semesterhataicc == 0 
gen trueposall = 0 
replace trueposall = 1 if registered == 1 & semesterhataicc == 1 
gen truenegall = 0 
replace truenegall = 1 if registered == 0 & semesterhataicc == 0 

//Generating number of students that registered 
gen numsemester = drop_semester == 1 
replace numsemester = sum(numsemester) 
replace numsemester = numsemester[_N] 

//Generating number of students that didn't register 
gen numnosemester = drop_semester == 0 
replace numnosemester = sum(numnosemester) 
replace numnosemester = numnosemester[_N] 

//Generating numbers for R^2 
gen numtpr2 = trueposr2 == 1 
replace numtpr2 = sum(numtpr2) 
replace numtpr2 = numtpr2[_N] 
gen numtnr2 = truenegr2 == 1 
replace numtnr2 = sum(numtnr2) 
replace numtnr2 = numtnr2[_N] 
gen numfpr2 = falseposr2 == 1 
replace numfpr2 = sum(numfpr2) 
replace numfpr2 = numfpr2[_N] 
gen numfnr2 = falsenegr2 == 1 
replace numfnr2 = sum(numfnr2) 
replace numfnr2 = numfnr2[_N] 

//Generating numbers for AIC 
gen numtpaic = trueposaic == 1 
replace numtpaic = sum(numtpaic) 
replace numtpaic = numtpaic[_N] 
gen numtnaic = truenegaic == 1 
replace numtnaic = sum(numtnaic) 
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 replace numtnaic = numtnaic[_N] 
 gen numfpaic = falseposaic == 1 
 replace numfpaic = sum(numfpaic) 
 replace numfpaic = numfpaic[_N] 
 gen numfnaic = falsenegaic == 1 
 replace numfnaic = sum(numfnaic) 
 replace numfnaic = numfnaic[_N] 
  
 //Generating numbers for bic 
 gen numtpbic = trueposbic == 1 
 replace numtpbic = sum(numtpbic) 
 replace numtpbic = numtpbic[_N] 
 gen numtnbic = truenegbic == 1 
 replace numtnbic = sum(numtnbic) 
 replace numtnbic = numtnbic[_N] 
 gen numfpbic = falseposbic == 1 
 replace numfpbic = sum(numfpbic) 
 replace numfpbic = numfpbic[_N] 
 gen numfnbic = falsenegbic == 1 
 replace numfnbic = sum(numfnbic) 
 replace numfnbic = numfnbic[_N] 
 
 //Generating numbers using all variables 
 gen numtpall = trueposall == 1 
 replace numtpall = sum(numtpall) 
 replace numtpall = numtpall[_N] 
 gen numtnall = truenegall == 1 
 replace numtnall = sum(numtnall) 
 replace numtnall = numtnall[_N] 
 gen numfpall = falseposall == 1 
 replace numfpall = sum(numfpall) 
 replace numfpall = numfpall[_N] 
 gen numfnall = falsenegall == 1 
 replace numfnall = sum(numfnall) 
 replace numfnall = numfnall[_N] 
 
 //Creating percentages to be show true positive, true negative, etc. 
 gen percenttpr2 = numtpr2 / numsemester 
 gen percenttnr2 = numtnr2 / numnosemester 
 gen percentfpr2 = numfpr2 / numnosemester 
 gen percentfnr2 = numfnr2 / numsemester 
 gen percenttpaic = numtpaic / numsemester 
 gen percenttnaic = numtnaic / numnosemester 
 gen percentfpaic = numfpaic / numnosemester 
 gen percentfnaic = numfnaic / numsemester 
 gen percenttpbic = numtpbic / numsemester 
 gen percenttnbic = numtnbic / numnosemester 
 gen percentfpbic = numfpbic / numnosemester 
 gen percentfnbic = numfnbic / numsemester 
 gen percenttpall = numtpall / numsemester 
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gen percenttnall = numtnall / numnosemester 
gen percentfpall = numfpall / numnosemester 
gen percentfnall = numfnall / numsemester 

//Displaying Results 
dis percenttpr2 
dis percenttnr2 
dis percentfpr2 
dis percentfnr2 
dis percenttpaic 
dis percenttnaic 
dis percentfpaic 
dis percentfnaic 
dis percenttpbic 
dis percenttnbic 
dis percentfpbic 
dis percentfnbic 
dis percenttpall 
dis percenttnall 
dis percentfpall 
dis percentfnall 

gen yearhatr2 = 0 
replace yearhatr2 = 1 if pr_year_r2 > 0.3 
gen falseposr22 = 0 
replace falseposr22 = 1 if drop_year == 0 & yearhatr2 == 1 
gen falsenegr22 = 0 
replace falsenegr22 = 1 if drop_year == 1 & yearhatr2 == 0 
gen trueposr22 = 0 
replace trueposr22 = 1 if drop_year == 1 & yearhatr2 == 1 
gen truenegr22 = 0 
replace truenegr22 = 1 if drop_year == 0 & yearhatr2 == 0  

gen yearhataic = 0 
replace yearhataic = 1 if pr_year_aic > 0.3 
gen falseposaic2 = 0 
replace falseposaic2 = 1 if drop_year == 0 & yearhataic == 1 
gen falsenegaic2 = 0 
replace falsenegaic2 = 1 if drop_year == 1 & yearhataic == 0 
gen trueposaic2 = 0 
replace trueposaic2 = 1 if drop_year == 1 & yearhataic == 1 
gen truenegaic2 = 0 
replace truenegaic2 = 1 if drop_year == 0 & yearhataic == 0 

gen yearhatbic = 0 
replace yearhatbic = 1 if pr_year_bic > 0.3 
gen falseposbic2 = 0 
replace falseposbic2 = 1 if drop_year == 0 & yearhatbic == 1 
gen falsenegbic2 = 0 
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 replace falsenegbic2 = 1 if drop_year == 1 & yearhatbic == 0 
 gen trueposbic2 = 0 
 replace trueposbic2 = 1 if drop_year == 1 & yearhatbic == 1 
 gen truenegbic2 = 0 
 replace truenegbic2 = 1 if drop_year == 0 & yearhatbic == 0   
  
 gen numyear = drop_year == 1 
 replace numyear = sum(numyear) 
 replace numyear = numyear[_N]  
  
 gen numnoyear = drop_year == 0 
 replace numnoyear = sum(numnoyear) 
 replace numnoyear = numnoyear[_N] 
  
 gen numtpr22 = trueposr22 == 1 
 replace numtpr22 = sum(numtpr22) 
 replace numtpr22 = numtpr22[_N] 
 gen numtnr22 = truenegr22 == 1 
 replace numtnr22 = sum(numtnr22) 
 replace numtnr22 = numtnr22[_N] 
 gen numfpr22 = falseposr22 == 1 
 replace numfpr22 = sum(numfpr22) 
 replace numfpr22 = numfpr22[_N] 
 gen numfnr22 = falsenegr22 == 1 
 replace numfnr22 = sum(numfnr22) 
 replace numfnr22 = numfnr22[_N] 
  
 gen numtpaic2 = trueposaic2 == 1 
 replace numtpaic2 = sum(numtpaic2) 
 replace numtpaic2 = numtpaic2[_N] 
 gen numtnaic2 = truenegaic2 == 1 
 replace numtnaic2 = sum(numtnaic2) 
 replace numtnaic2 = numtnaic2[_N] 
 gen numfpaic2 = falseposaic2 == 1 
 replace numfpaic2 = sum(numfpaic2) 
 replace numfpaic2 = numfpaic2[_N] 
 gen numfnaic2 = falsenegaic2 == 1 
 replace numfnaic2 = sum(numfnaic2) 
 replace numfnaic2 = numfnaic2[_N] 
  
 gen numtpbic2 = trueposbic2 == 1 
 replace numtpbic2 = sum(numtpbic2) 
 replace numtpbic2 = numtpbic2[_N] 
 gen numtnbic2 = truenegbic2 == 1 
 replace numtnbic2 = sum(numtnbic2) 
 replace numtnbic2 = numtnbic2[_N] 
 gen numfpbic2 = falseposbic2 == 1 
 replace numfpbic2 = sum(numfpbic2) 
 replace numfpbic2 = numfpbic2[_N] 
 gen numfnbic2 = falsenegbic2 == 1 
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replace numfnbic2 = sum(numfnbic2) 
replace numfnbic2 = numfnbic2[_N]  

gen percenttpr22 = numtpr22 / numyear 
gen percenttnr22 = numtnr22 / numnoyear 
gen percentfpr22 = numfpr22 / numnoyear 
gen percentfnr22 = numfnr22 / numyear 
gen percenttpaic2 = numtpaic2 / numyear 
gen percenttnaic2 = numtnaic2 / numnoyear 
gen percentfpaic2 = numfpaic2 / numnoyear 
gen percentfnaic2 = numfnaic2 / numyear 
gen percenttpbic2 = numtpbic2 / numyear 
gen percenttnbic2 = numtnbic2 / numnoyear 
gen percentfpbic2 = numfpbic2 / numnoyear 
gen percentfnbic2 = numfnbic2 / numyear 

dis percenttpr22 
dis percenttnr22 
dis percentfpr22 
dis percentfnr22 
dis percenttpaic2 
dis percenttnaic2 
dis percentfpaic2 
dis percentfnaic2 
dis percenttpbic2 
dis percenttnbic2 
dis percentfpbic2 
dis percentfnbic2 

end //-------------predictretention---------------- 

program subgroupingsat 

clear 

use masterlist.dta 

quiet regress gpa distance fleschreading WordLength TotalLen gpa3 
high_school_percentile gpa11 satmodel gpa13 gpa15 if random > .3 

quiet predict pr_abil_aic 
quiet regress gpa satmodel if random > .3 
quiet predict pr_gpa_sat 
quiet regress gpa newrandom if random > .3 
quiet predict pr_gpa_random 

//Droping in sample 
drop if random > .3 
drop if gpa == . 

//Generating MSPE 
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 gen mspeaic_1= ( pr_abil_aic - gpa )^2  
 egen mspeaic_2 = mean(mspeaic_1)  
 gen mspeaic = mspeaic_2 ^ 0.5 
  
 gen mspesat_1= ( pr_gpa_sat - gpa )^2  
 egen mspesat_2 = mean(mspesat_1)  
 gen mspesat = mspesat_2 ^ 0.5 
   
 gen msperan_1= ( pr_gpa_random - gpa )^2  
 egen msperan_2 = mean(msperan_1)  
 gen msperan = msperan_2 ^ 0.5 
 
 //Creating SAT Trenches 
 gen rank = 1 if satmodel > 1000 & satmodel < 1100 
 replace rank = 2 if satmodel >= 1100 & satmodel < 1200 
 replace rank = 3 if satmodel >= 1200 & satmodel < 1300 
 replace rank = 4 if satmodel >= 1300 & satmodel < 1400 
 replace rank = 5 if satmodel >= 1400 & satmodel < 1500 
 replace rank = 6 if satmodel >= 1500 
  
 //Mean Square Prediction Error Calculation 
 gen errors = pr_abil_aic - gpa 
 gen errors_sq = errors ^ 2 
  
 egen errors_avg_1 = mean(errors_sq) if rank == 1 
 egen errors_avg_2 = mean(errors_sq) if rank == 2 
 egen errors_avg_3 = mean(errors_sq) if rank == 3 
 egen errors_avg_4 = mean(errors_sq) if rank == 4 
 egen errors_avg_5 = mean(errors_sq) if rank == 5 
 egen errors_avg_6 = mean(errors_sq) if rank == 6 
  
 gen rmspe = errors_avg_1 ^ .5 if rank == 1 
 replace rmspe = errors_avg_2 ^ .5 if rank == 2 
 replace rmspe = errors_avg_3 ^ .5 if rank == 3 
 replace rmspe = errors_avg_4 ^ .5 if rank == 4 
 replace rmspe = errors_avg_5 ^ .5 if rank == 5 
 replace rmspe = errors_avg_6 ^ .5 if rank == 6 
  
 sum pr_abil_aic pr_gpa_sat gpa 
 sum pr_abil_aic pr_gpa_sat gpa if rank == 1 
 sum pr_abil_aic pr_gpa_sat gpa if rank == 2 
 sum pr_abil_aic pr_gpa_sat gpa if rank == 3 
 sum pr_abil_aic pr_gpa_sat gpa if rank == 4 
 sum pr_abil_aic pr_gpa_sat gpa if rank == 5 
 sum pr_abil_aic pr_gpa_sat gpa if rank == 6  
  
 sum rmspe mspesat msperan 
  
end // subgroupingsat 
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program regressiononlevels 

clear 

use masterlist.dta 

//Creating SAT Trenches 
gen rank = 1 if satmodel < 1050 
replace rank = 2 if satmodel >= 1050 & satmodel < 1150 
replace rank = 3 if satmodel >= 1150 & satmodel < 1250 
replace rank = 4 if satmodel >= 1250 & satmodel < 1350 
replace rank = 5 if satmodel >= 1350 & satmodel < 1450 
replace rank = 6 if satmodel >= 1450 

regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 
sentences gpa19 gpa10 gpa14 gpa17 if rank == 1 & random > .5 

quiet predict pr_abil_aic1 
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 

sentences gpa19 gpa10 gpa14 gpa17 if rank == 2 & random > .5 
quiet predict pr_abil_aic2 
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 

sentences gpa19 gpa10 gpa14 gpa17 if rank == 3 & random > .5 
quiet predict pr_abil_aic3 
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 

sentences gpa19 gpa10 gpa14 gpa17 if rank == 4 & random > .5 
quiet predict pr_abil_aic4 
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 

sentences gpa19 gpa10 gpa14 gpa17 if rank == 5 & random > .5 
quiet predict pr_abil_aic5 
regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 

sentences gpa19 gpa10 gpa14 gpa17 if rank == 6 & random > .5 
quiet predict pr_abil_aic6  
quiet regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 

sentences gpa19 gpa10 gpa14 gpa17 if random > .5 
quiet predict pr_abil_aic 

quiet regress gpa satmodel if rank == 1 & random > .5 
quiet predict pr_gpa_sat1 
quiet regress gpa satmodel if rank == 2 & random > .5 
quiet predict pr_gpa_sat2  
quiet regress gpa satmodel if rank == 3 & random > .5 
quiet predict pr_gpa_sat3  
quiet regress gpa satmodel if rank == 4 & random > .5 
quiet predict pr_gpa_sat4  
quiet regress gpa satmodel if rank == 5 & random > .5 
quiet predict pr_gpa_sat5 
quiet regress gpa satmodel if rank == 6 & random > .5 
quiet predict pr_gpa_sat6  
quiet regress gpa satmodel if random > .5 
quiet predict pr_gpa_sat 
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quiet regress gpa newrandom if random > .5 
quiet predict pr_gpa_random 

//Droping in sample 
drop if gpa == . 
drop if random > .5 

//Mean Square Prediction Error Calculation 
gen errors = pr_abil_aic - gpa 
gen errors_sq = errors ^ 2 

egen errors_avg_1 = mean(errors_sq) if rank == 1 
egen errors_avg_2 = mean(errors_sq) if rank == 2 
egen errors_avg_3 = mean(errors_sq) if rank == 3 
egen errors_avg_4 = mean(errors_sq) if rank == 4 
egen errors_avg_5 = mean(errors_sq) if rank == 5 
egen errors_avg_6 = mean(errors_sq) if rank == 6 

gen rmspe = errors_avg_1 ^ .5 if rank == 1 
replace rmspe = errors_avg_2 ^ .5 if rank == 2 
replace rmspe = errors_avg_3 ^ .5 if rank == 3 
replace rmspe = errors_avg_4 ^ .5 if rank == 4 
replace rmspe = errors_avg_5 ^ .5 if rank == 5 
replace rmspe = errors_avg_6 ^ .5 if rank == 6 

//Generating MSPE 
gen mspeaic_1= ( pr_abil_aic - gpa )^2 
egen mspeaic_2 = mean(mspeaic_1)  
gen mspeaic = mspeaic_2 ^ 0.5 

gen mspesat_1= ( pr_gpa_sat - gpa )^2 
egen mspesat_2 = mean(mspesat_1)  
gen mspesat = mspesat_2 ^ 0.5 

gen msperan_1= ( pr_gpa_random - gpa )^2 
egen msperan_2 = mean(msperan_1)  
gen msperan = msperan_2 ^ 0.5 

// 
sum pr_abil_aic pr_gpa_sat gpa 
sum pr_abil_aic pr_gpa_sat gpa if rank == 1 
sum pr_abil_aic pr_gpa_sat gpa if rank == 2 
sum pr_abil_aic pr_gpa_sat gpa if rank == 3 
sum pr_abil_aic pr_gpa_sat gpa if rank == 4 
sum pr_abil_aic pr_gpa_sat gpa if rank == 5 
sum pr_abil_aic pr_gpa_sat gpa if rank == 6 

sum pr_abil_aic1 pr_gpa_sat1 gpa if rank == 1 
sum pr_abil_aic2 pr_gpa_sat2 gpa if rank == 2 
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sum pr_abil_aic3 pr_gpa_sat3 gpa if rank == 3 
sum pr_abil_aic4 pr_gpa_sat4 gpa if rank == 4 
sum pr_abil_aic5 pr_gpa_sat5 gpa if rank == 5 
sum pr_abil_aic6 pr_gpa_sat6 gpa if rank == 6 

gen predicted_gpa = pr_abil_aic1 if rank == 1 
replace predicted_gpa = pr_abil_aic2 if rank == 2 
replace predicted_gpa = pr_abil_aic3 if rank == 3 
replace predicted_gpa = pr_abil_aic4 if rank == 4 
replace predicted_gpa = pr_abil_aic5 if rank == 5 
replace predicted_gpa = pr_abil_aic6 if rank == 6 

gen predicted_gpa_sat = pr_gpa_sat1 if rank == 1 
replace predicted_gpa_sat = pr_gpa_sat2 if rank == 2 
replace predicted_gpa_sat = pr_gpa_sat3 if rank == 3 
replace predicted_gpa_sat = pr_gpa_sat4 if rank == 4 
replace predicted_gpa_sat = pr_gpa_sat5 if rank == 5 
replace predicted_gpa_sat = pr_gpa_sat6 if rank == 6 

tabstat predicted_gpa predicted_gpa_sat gpa, by(rank) 

sum rmspe mspesat msperan 

end // regressiononlevels 

program bootstrapping 

clear 

use masterlist.dta 

regress gpa syllables gpa15 gpa12 gpa7 gpa2 GrammerWrong gpa16 
sentences gpa19 gpa10 gpa14 gpa17 

set more off 

gen syllablescoef = _b[syllables] 
gen gpa15coef = _b[gpa15] 
gen gpa12coef = _b[gpa12] 
gen gpa7coef = _b[gpa7] 
gen gpa2coef = _b[gpa2] 
gen grammerwrongcoef = _b[GrammerWrong] 
gen gpa16coef = _b[gpa16] 
gen sentencescoef = _b[sentences] 
gen gpa19coef = _b[gpa19] 
gen gpa10coef = _b[gpa10] 
gen gpa14coef = _b[gpa14] 
gen gpa17coef = _b[gpa17] 
gen concoef = _b[_cons] 
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gen syllablessd = _se[syllables] 
gen gpa15sd = _se[gpa15] 
gen gpa12sd = _se[gpa12] 
gen gpa7sd = _se[gpa7] 
gen gpa2sd = _se[gpa2] 
gen grammerwrongsd = _se[GrammerWrong] 
gen gpa16sd = _se[gpa16] 
gen sentencescsd = _se[sentences] 
gen gpa19sd = _se[gpa19] 
gen gpa10sd = _se[gpa10] 
gen gpa14sd = _se[gpa14] 
gen gpa17sd = _se[gpa17] 
gen consd = _se[_cons] 

gen obs = _n 
gen runningtotal = 0 

forvalues i = 1/6962 { 
drawnorm syllran, means(-.0128083) sds(.0034625) 
drawnorm gpa15ran, means(.0211936) sds(.0050212) 
drawnorm gpa12ran, means(.3358554) sds(.1017359) 
drawnorm gpa7ran, means(.0002221) sds(.0001486)  
drawnorm gpa2ran, means(-.0000143) sds(4.30e-06)  
drawnorm gwrongran, means(-32.48605) sds(10.36602) 
drawnorm gpa16ran, means(9.28e-06) sds(3.15e-06) 
drawnorm sentran, means(-.0923634) sds(.0265255) 
drawnorm gpa19ran, means(-3.18e-06) sds(7.47e-07)  
drawnorm gpa10ran, means(-.0040628) sds(.0009783) 
drawnorm gpa14ran, means(.0209936) sds(.0057428) 
drawnorm gpa17ran, means(.0116991) sds(.0036935) 
drawnorm conran, means(6.176882) sds(.8541035) 

gen gpaexpect`i' = conran + syllran*syllables + gpa15ran*gpa15 + 
gpa12ran*gpa12 + gpa7ran*gpa7 + gpa2ran*gpa2 + gwrongran*GrammerWrong + 
gpa16ran*gpa16 + sentran*sentences + gpa19ran*gpa19 + gpa10ran*gpa10 + 
gpa14ran*gpa14 + gpa17ran*gpa17 

drop syllran 
drop gpa15ran 
drop gpa12ran 
drop gpa7ran 
drop gpa2ran 
drop gwrongran 
drop gpa16ran 
drop sentran 
drop gpa19ran 
drop gpa10ran 
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drop gpa14ran 
drop gpa17ran 
drop conran 

}
set more off 
forvalues i = 1/6962{ 

replace runningtotal = runningtotal + gpaexpect`i' 

}
set more off 
gen meanstuff = runningtotal / 6962 
gen makevar = 0 
gen herevar = 0 
forvalues i = 1/6962{ 

replace herevar = (gpaexpect`i' - meanstuff)^2 
replace makevar = makevar + herevar 

}
replace makevar = makevar / 6962 

gen makesd = sqrt(makevar) 
gen citop = meanstuff + (1.96 * (makesd / sqrt(6962))) 
gen cibottom = meanstuff - (1.96 * (makesd / sqrt(6962))) 
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APPENDIX G 
 

Variable Summary Statistics 
 
 

Table 13: Summary Statistics of Variables 
      

Variable Obs Mean Std. Dev. Min Max 
Essay1Len 20167 231.6866 122.4415 1 549 
Essay2Len 20167 179.777 116.146 1 533 
TotalLen 20167 411.4636 219.5576 2 1027 
GrammerWrong 20167 0.02201 0.041947 0.005842 3 
WordLength 20167 4.599318 17.57521 0.5 2500 
NumUnique 20167 185.2585 81.96735 1 450 
lexrich 20167 2.125308 0.350667 1 4.939227 
commitment~r 20167 5.39401 4.112889 0 38 
commitment~t 20167 0.013385 0.008699 0 0.078431 
faithcounter 20167 8.520058 5.852545 0 49 
faithpercent 20167 0.021392 0.011235 0 0.2 
baylorcoun~r 20167 7.142956 4.522037 0 38 
baylorperc~t 20167 0.019172 0.009997 0 0.166667 
totalbible 20167 0.172063 0.497586 0 8 
biblepercent 20167 0.000395 0.001262 0 0.027778 
admincounter 20167 4.551594 3.505964 0 26 
adminpercent 20167 0.011134 0.007311 0 0.078431 
syllables 20167 554.5818 301.1856 1 1307 
sentences 20167 20.54321 11.4979 1 96 
fleschread~g 20167 72.06665 10.93531 3.344545 162.505 
fleschgrade 20167 8.332435 2.324321 -8.91 32.25407 
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