
ABSTRACT

Modeling Nonlinear, Nonstationary, Vector Time Series: Methods and Applications

Justin R. Sims, Ph.D.

Chairperson: Jane L. Harvill, Ph.D.

Methods for modeling nonlinear time series provide ways to extract and describe

information from complex and dynamic processes. The class of nonlinear time series

models is large. Rather than be exhaustive, we provide a review of two popular classes

of nonlinear time series models: Momentum threshold autoregressive and functional

coefficient autoregressive models. These models are then extended to vector time

series. We illustrate utility by applying the models to real data examples in geology

and photovoltaics, respectively.

The layers of speleothems (stalactites and stalagmites) hold information on

ancient climates. Geologists hypothesize that the layers of a speleothem correspond

to annual deposits, similar to tree rings. In these same layers, the ratios of carbon-13

isotopes and of oxygen-18 isotopes provide information on the types of vegetation,

which in turn, gives information into the climate at the time that vegetation lived.

We apply a vector momentum threshold autoregressive model (VMTAR) to the 3-

dimensional series. We show a vast improvement over the linear vector autoregressive

(VAR) model, both statistically and from a geological perspective, thus providing a

useful tool for describing the climates during the late and middle Holocene periods.

Assessment of a utility scale photovoltaic (PV) power plant’s potential perfor-

mance is a critical aspect in the initial plant design and construction, and accurate



monitoring of plant efficiency is crucial to profitable plant operation. Both assess-

ment and monitoring rely on temporally dense, but spatially sparse measurements

of irradiance from sensors at the plant’s location. We propose a sensor design algo-

rithm to answer the question, “What is the optimal number and layout of sensors for

predicting solar irradiance?” The algorithm makes use of vector functional coefficient

autoregressive (VFCAR) models to determine if an optimal sensor design exists. To

illustrate utility, we apply the algorithm to irradiance data collected from a 1.2 MW

PV plant located in Lanai, Hawaii.
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CHAPTER ONE

Overview

1.1 Introduction

In the early 1980s, the realization that linear time series models lacked the abil-

ity to accurately describe many complex dynamics spurred the development of non-

linear time series models. Examples of observable phenomena that can be explained

by nonlinear dynamics include jump phenomenon, limit cycles, amplitude dependent

frequencies, and time irreversibility. The class of nonlinear time series models is large

and contains many popular parametric models including the bilinear model, the ex-

ponential autoregressive (EXPAR) model, the threshold autoregressive (TAR) model,

the self-exciting threshold autoregressive (SETAR) model, Markov-switching models,

and generalized autoregressive conditional heteroscedasticity (GARCH) models.

In this chapter, we present both a parametric and a semiparametric model for

nonlinear time series and to adapt them to two different applications. More specifi-

cally, we shall present the momentum threshold autoregressive model as a variant of

the TAR model. Also, we present the functional coefficient autoregressive model as a

structure for reducing the size of the class of nonlinear models. The chapter is orga-

nized as follows. We discuss the literature on the momentum threshold autoregressive

models in Section 1.2. In Section 1.3, we discusses the literature on functional coef-

ficient autoregressive models. We then give an overview of Chapters Two and Three

in Section 1.4.

1.2 Momentum Threshold Autoregressive Model

The class of threshold autoregressive (TAR) models, first introduced by Tong

(1978, 1983) and Tong and Lim (1980), provides a framework for representing a pro-

cess that can have multiple states. For each state, or regime, a different model is
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used. The basic idea of a TAR model is to express the series through piecewise au-

toregressive linearization. Each of these different regimes possesses their own unique

linear autoregressive dynamics. Let {Xt} represent a zero-mean time series where the

index set t is the set of integers. Then an `-regime, order-p threshold autoregressive,

TAR(p, `), model is

Xt =

p∑
j=1

φ
(i)
j Xt−j + ε

(i)
t , if ri−1 < Zt ≤ ri, i = 1, . . . , `, t = 1, 2, . . . , T, (1.1)

where φ
(i)
j , i = 1, . . . , `, is the lag j autoregressive (AR) coefficient for regime i, ε

(i)
t

are zero-mean white noise with standard deviation σ(i) < ∞, and the series {Zt} is

the thresholding time series. The thresholding series may be either the original or

an exogenous time series. If Zt = Xt−q, then q is the delay parameter where q < p

to avoid model unidentifiability. If Zt is exogeneous to Xt, no delay parameter is

necessary. Furthermore, −∞ = r0 < r1 < . . . < r`−1 < r` = ∞ are the ` + 1 non-

trivial thresholds dividing the domain of {Zt} into ` different regimes. Equation (1.1)

is the general form of a TAR model. It may be more beneficial to view the TAR

model in its piecewise representation. For t = 1, 2, . . . , T ,

Xt =



p∑
j=1

φ
(1)
j Xt−j + ε

(1)
t Zt ≤ r1

p∑
j=1

φ
(2)
j Xt−j + ε

(2)
t r1 < Zt ≤ r2

...
...

p∑
j=1

φ
(`)
j Xt−j + ε

(`)
t Zt > r`−1,

(1.2)

where the model description above still holds.

It is possible to extend the the univariate TAR model in several ways. When

Zt = Xt−q the model is the well-studied self-exciting threshold autoregressive (SE-

TAR) model of Tong and Lim (1980). De Gooijer (1998), Ling (1999), and Ling et

al. (2007) all propose variations on threshold moving-average models. These proposals

have have led to much applied and theoretical work in this model class. Tsay (1998)
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extended the methodology of TAR model to a vector setting, including procedures of

testing the linear hypothesis and identification of the delay and threshold parameters

In the basic TAR model, the regimes are is defined only by some thresholding

series. An alternative specification allows for the threshold to depend on the magni-

tude of change, or momentum, in a previous period of a thresholding series. Proposed

by Enders and Granger (1998) and Caner and Hansen (1998) then further developed

by Enders and Siklos (2001), momentum threshold autoregressive (MTAR) models

are adept at modeling asymmetric features. Let {Zt} be the (possibily exogenous)

thresholding time series, and consider ∇Zt−q = Zt−1 − Zt−q; that is, {∇Zt−q} is a

time series that captures the q-th difference, or momentum, of the series {Zt}. The

`-regime, order-p momentum threshold autoregressive, MTAR(p, `, q), model for a

zero mean time series {Xt} is given by

Xt =

p∑
j=1

φ
(i)
j Xt−j + ε

(i)
t , if ri−1 < ∇Zt−q ≤ ri, i = 1, . . . , `, (1.3)

where φ
(i)
j , i = 1, 2, . . . , `, is the lag j AR coefficient for regime i and ε

(i)
t is zero mean

white noise with standard deviation σ(i). Again, −∞ = r0 < r1 < . . . < r`−1 < r` =

∞ are the `+1 non-trivial thresholds dividing the domain of {∇Zt−q} into ` different

regimes.

Real data applications using a MTAR model are primarily in the field of econo-

metrics. Coakley et al. (2002) use a MTAR model to capture fast-up, slow-down

dynamics in the unemployment rates of the United States, the United Kingdom and

Germany during the 1970s and 1980s. Vincent and Morley (2012) investigate whether

house prices in the United Kingdom react differently to negative and positive “shocks”

(or changes) in housing market fundamentals. The authors’ results reveal that neg-

ative momentum in mortgage rates and personal income result in a convergence to

a housing price equilibrium, but positive shocks result in a divergence from equi-

librium. More recently, Pilatowska et al. (2014) use MTAR models to explore the

long-run equilibrium relationship between per capita greenhouse gas emissions and

3



per capita real gross domestic product (GDP). The authors find strong evidence of

environmental degradation in Poland from 2000-2012 for abrupt changes in income

level.

1.2.1 Fitting of MTAR Models

The modeling procedure for a MTAR model is accomplished systematically. For

determination of the autoregressive order p, Enders (2009) suggests the use of Akaike

information criterion (AIC) or Bayesian information criterion (BIC). Alternatively,

tests for white noise, such as those discussed in Tong (1983) or Granger and Teräsvirta

(1993), can be used to determine the optimal AR order p. These methods use a

sequence of hypotheses to test linearity against a threshold structure for various

values of the AR order. If linearity is rejected for more than one value of p, the AR

order producing the smallest P -value indicates the optimal p.

For selection of the number of regimes ` and the delay parameter q, Hansen

(1997) and Tsay (1998) suggest the use of past experience and substantive information

to aid in the choice of each. When this prior information is unknown, Tsay (1998)

suggests that the computational complexity, especially for vector time series, restricts

the number of regimes ` to a small value, typically two or three. The author also

provided an estimation procedure of the delay parameter q using methods based on

AIC as well as conventional testing methodologies such as χ2 test statistics.

Chan (1993) and Enders and Siklos (2003) suggest a grid search algorithm for

determining a super-consistent estimate of the threshold value(s). First the candi-

date threshold values are sorted in ascending order. In order to avoid disorganized

dispersion of observations in each regime, the lowest and highest 15% of candidate

threshold values are eliminated. Afterwards, one-regime MTAR models are estimated

for each potential threshold values. Each sum of squared residuals of these models

is considered as a function of the associated threshold value because each model is

constructed according to the threshold value. Thus, any pattern of sum of squared

4



residuals indicates the presence of nonlinearity. In the absence of nonlinearity, there

must be no relationship between threshold values and sum of squared residuals. How-

ever, if there is a threshold effect, sum of squared residuals becomes smaller as the

threshold value in use is getting closer to the true threshold value. The model having

the smallest sum of squared residuals will give a consistent estimate of the threshold

value. If more than one threshold value is desired, the remaining candidate threshold

values are further trimmed by 15% above and below the first threshold value. The

algorithm is repeated using the estimated threshold value and the remaining potential

values. If there is more than one threshold value, the sum of squared residuals will

have the same number of local minima.

As previously discussed, a MTAR model constitutes of piecewise linear autore-

gressive model. Therefore, after detecting the threshold variable and the threshold

value(s), the estimation procedure for φ
(i)
j , the lag-j autoregressive coefficient in the

ith regime, is that of a linear autoregressive model estimation procedure. Estimations

are performed regime-by-regime. Tong (1983) noted that because each group exhibits

linear dynamics, simple ordinary least squares (OLS) techniques can be used for es-

timation of each piecewise linear AR model. Chan (1993) showed the consistency

and the limiting distribution of the least squares estimators of a TAR under some

regularity conditions.

1.3 Functional Coefficient Autoregressive Model

The functional coefficient autoregressive model of order p (FCAR(p)) is a flex-

ible semiparametric model first introduced by Chen and Tsay (1993). The additive

autoregressive structure of the FCAR(p) model allows the autoregressive coefficients

to change as a function of lagged values of some possibly exogenous time series. Let

Xt be a zero mean univariate time series observed at T time points. Define the
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FCAR(p) model as

Xt =

p∑
j=1

f (j)(Zt)Xt−j + εt, t = p+ 1, p+ 2, . . . , T, (1.4)

where Zt is the functional variable which may consist of exogenous predictors or lagged

values of the series Xt, f
(j) (·), j = 1, . . . , p, are are real-valued measurable functions

that change as a function of Zt and which have continuous second derivatives, and

εt is zero mean white noise with variance σ2 < ∞. If Zt = Xt−q, then q is the delay

parameter where q < p to avoid model unidentifiability.

An advantage of the FCAR model is its versatility. As an example, if all func-

tions are constant with respect to Zt, the model in Eq. (1.4) reduces to the commonly

used linear AR model of order p. In another example, the FCAR(p) model reduces

to the EXPAR model of Haggan and Ozaki (1981) if for each j = 1, 2, . . . , p the coef-

ficients in Eq. (1.4) are of the form f (j)(Zt) = αj + βj exp(−δZ2
t ). Additionally, the

formulation of the FCAR model allow for a mixture of models, such as an FCAR(2)

model with coefficients f (1)(Zt) = α1 and f (2)(Zt) = α2+β2 exp(−δZ2
t ). Estimation of

the functional form may also provide an objective guideline for choosing a parametric

model.

1.3.1 Fitting of FCAR Models

Chen and Tsay (1993) proposed a model fitting procedure that makes use of

arranged local regression (ALR) when Zt = Xt−q. To begin, the ALR procedure

selects an interval length c to form a window and a minimum sample size K to

control the number of observations in the window. Let X(1), . . . , X(k) be in the window

[X(1), X(1) + c]. Initialize the estimation procedure by fitting the linear regression

Xt+s = a1Xt+s−1 + · · ·+ apXt+s−p + εt+s (1.5)

with t = t1, . . . , tk where εt+s is the residual at time t+ q. The OLS estimate of aj is

an estimate of f (j)(X(1) + c) provided k > K. Note that (X(i) + c) denotes the right

6



end point of the window used. Move the window along the Xt−d axis until there is at

least one new data point or a point drops out of the window. If the sample size in the

new window is at least K, then refit a linear regression similar to the one in (1.5) to

obtain an estimate f̂ (j)(X(i)+c) of f (j)(X(i)+c). Scatterplots of the estimates f̂ (j)(X)

versus X can be used to infer the functional forms of f (j)(·). The authors compared

the FCAR model and the above model building procedure to linear and threshold

autoregressive models using simulated data and the chickenpox data of Sugilara and

May (1990). The FCAR model outperformed the other two models in terms of bias,

but only performed better in short-term forecasts in terms of mean squared error

(MSE).

Although Chen and Tsay (1993) did not use local regression techniques directly,

their iterative recursive formula is reminiscent of local constant fitting. Cai, Fan, and

Yao (2000) adapted local linear regression methods to estimate f (j)(·) in (1.4). The

authors further extended the model to allow the autoregressive coefficients to vary

as function of more than one variable or possibly exogenous functional variables. In

the local linear method, f (j)(·) is approximated locally at z0 by a linear function

f (j)(Zt) ≈ aj + bj(Zt − z0). The local linear estimate is defined as âj(z0) = âj where{(
âj, b̂j

)}
minimize

n∑
t=1

[
Xt −

p∑
j=1

{aj + bj (Zt − z0)}Xt−j

]2
Kh (Zt − z0) , (1.6)

where Kh(·) = h−1K(·/h), K(·) is a kernel function, and h > 0 is a bandwidth. It

follows that for Xt = (Xt−1, . . . , Xt−p)
′ the least squares solution is

f̂ (j)(z0) =
n∑

t=1

Kn,j (Zt − z0,Xt)Xt, (1.7)

where

Kn,j(z,x) = e′j,2p

(
X̃′WX̃

)−1
X̃′Kh(z). (1.8)
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In equation (1.8), ej,2p is a 2p×1 unit vector with 1 at the jth position, X̃ denotes an

n×2p matrix with (X′t,X
′
t (Zt − z0)) as its tth row, and W = diag{Kh (Z1 − z0) , . . . ,

Kh (Zn − z0)}.

Asymptotic properties of the local linear estimator were established by Chen

and Liu (2001). Furthermore, they construct pointwise confidence bands for the

function estimates for a simulated EXPAR model. Their work shows that the local

linear procedure is reasonably robust for estimating the functional coefficients in

model (1.4).

More recently, estimation of nonlinear time series models has been accomplished

using spline-backfitted kernel (SBK) methods. The SBK method was first proposed

by Wang and Yang (2007) and is an adaptation of the backfitting algorithm of Hastie

and Tibshirani. Lin and Yang (2010) adapt the SBK method for additive coefficient

models. Patrick (2013) adapts the work of Lin and Yang (2010) to the FCAR model

which is a generalized additive coefficient model.

For the FCAR model with functional variable Zt, the SBK method finds pre-

estimates f̂ (j)(Zt) for f (j)(Zt), j = 1, 2, . . . , p, using an under-smoothed spline pro-

cedure. These pre-estimates are then used to find pseudo-responses X̂t,j′ through a

backfitting procedure given by

X̂t,j′ = Xt −
∑

1≤j≤p,j 6=j′

f̂ (j)(Zt)Xj (1.9)

These pseudo-responses are a proxy of the original realization, but with the effects

of all f (j)(Zt), j 6= j′, removed. Then the pseudo-responses are used to find the

SBK estimate f̂ (j′)(Zt) of f (j′)(Zt) through a kernel estimator, e.g. the Nadaraya-

Watson estimator. The procedure is then repeated using the newly obtained kernel

estimate and the remaining pre-estimates. The idea behind SBK estimation is to

under-smooth in the pre-estimates in order to reduce the bias. This under-smoothing

leads to a larger variance which is reduced in the kernel estimation step.
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1.3.2 Forecasting Methods of FCAR Models

Even in the parametric case, forecasting for nonlinear time series models is not

necessarily straightforward. For a time series {Xt}, the assumed nonlinear structure of

the process complicates the derivation of the expected value of Xt+M given Xt, . . . , X1

when M > 1. When nonparametric or semiparametric methods are used to model

{Xt}, this issue is compounded further. When f (j)(·), j = 1, 2, . . . , p is estimated

using Zt = Xt−q, the expectation of Xt+M given Xt, . . . , X1 is no longer a simple

linear operation. We now proceed to highlight some work in forecasting of nonlinear

time series.

Early work of Clements and Smith (1997) investigate multi-step ahead fore-

casts for the SETAR model. Comparisons to forecasts from a linear AR model are

made using Monte Carlo simulation and bootstrap methods assuming all parame-

ters are unknown except for the lag order and the delay value. Through simulation

results, the authors find that the Monte Carlo methods are at least as good as the

bootstrap methods, but the latter is preferred due to Monte Carlo methods being

computationally intensive.

Chen and Lui (1993) note that post-sample multi-step forecast accuracy can

be substantially improved with the use of the FCAR model compared to other linear

models and parametric nonlinear models. Similarly, Chen and Tsay (1993) obtain

multi-step forecasts from an FCAR model fit using the ALR procedure described in

Section 1.3.1. The authors of both paper note improvements without specifying how

the multi-step ahead forecasts are obtained.

Cai, Fan, and Yao (2000) assess the post sample forecasting performance of the

FCAR model fit via the local linear method using the Canadian lynx data set and

Wolf’s sunspot numbers data set (see e.g., Tong, 1990). They compare the local linear

method with the linear AR model, the TAR model, and the ALR procedure using

one-step ahead and an iterative two-step ahead forecast. The local linear method
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performed better, in terms of average absolute predictive errors (AAPE), for the lynx

example. The method performed just as well as the other three models in the sunspot

numbers example.

Fan and Yao (2003) showed that a direct and iterative “naive plug-in” method

performs well in terms of AAPE when compared to forecasting using a linear AR

model. They adapt the local smoothing method of Cai, Fan, and Yao (2000) to esti-

mate the functional coefficients in both methods. Using the direct method, forecast

for Xt+M are computed as a function of Xt while ignoring the relationship between

Xt+M and Xt+M−j, j = 1, . . . ,M − 1. For M ≥ 2, the iterative “naive plug-in”

method simply plugs X̂t+M−j into the forecast equation. The form of the functional

coefficient is determined using only the within-sample series values. The authors show

that the iterative method outperforms the direct method for a TAR model of order

two.

Huang and Shen (2004) use boostrapping to sample the residuals of a univariate

FCAR model for forecasting. The predicted values are obtained as

X̂t+M =

p∑
j=1

f̂ (j)(X̂t+M−q)X̂t+M−j + εb, (1.10)

where εb is a bootstrapped value of the within-sample residuals from the FCAR model

with functional coefficients estimated using polynomial splines. They note that care

must be taken when X̂t+M−q falls outside or near the boundary of the range of the

original Xt−q.

Harvill and Ray (2006) compare three methods for multi-step prediction us-

ing the univariate and vector FCAR models. The authors adapt the bootstrapping

method of Huang and Sheng (2004) for forecasting FCAR models fit using local lin-

ear smoothing. They also adapt the multi-stage method of Chen (1996) and the

“naive plug-in” method of Fan and Yao (2003) to vector FCAR models. The boot-

strap method is found to be preferred to the other two methods. The multi-stage

method tends to have larger bias especially for forecasting beyond two or three steps
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ahead. Additionally, the authors also show that the bootstrap method performs well

for forecasting a linear process.

1.4 Overview of Dissertation

The purpose of the dissertation is to present novel approaches to real data

applications. The dissertation is organized as follows. In Chapter Two, we explore the

MTAR model for multivariate time series. We present a data set consisting of isotope

ratio measurements taken across the length of a stalagmite from Raccoon Mountain

Cave in Tennessee. We compare linear time series models to the MTAR model. The

analysis of the stalagmite data demonstrates that the ease of interpretability allows

MTAR models to be powerful tools from a geological perspective.

In Chapter Three, we discuss the use of the FCAR model in the vector frame-

work. This vector model is then used in an algorithm to determine the optimal number

and arrangement of monitoring sensors at photovoltaic power plants. To illustrate

utility, we apply the algorithm to a vector time series data set consisting of solar

irradiance measurements from multiple sensors obtained at the La Ola photovoltic

plant in Lanai, Hawaii.
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CHAPTER TWO

Time Series Modeling of Ancient Climates

2.1 Introduction

In the study of climate systems, knowledge of the climate’s past evolution is

becoming an increasingly necessary commodity. Typically, ancient climate recon-

structions are accomplished via analysis of isotopic signatures present in paleocli-

mate proxies, or climate archives. These proxies include soil, ice core, and marine

sediments. An isotopic signature is a ratio of non-radiogenic stable isotopes, stable

radiogenic isotopes, or unstable radioactive isotopes of particular elements. Pale-

oclimate reconstructions, based on modeling of the isotopic signatures, aid in the

understanding of both the climate’s current state and future, unobserved patterns.

Speleothems, or cave formations, are particularly valuable logs of paleoclimate

(Fairchild et al., 2006) and have been widely used to reconstruct paleo-vegetation

and paleo-temperature (Dorale et al., 1998; Springer et al., 2008; Hardt et al., 2010;

Springer et al., 2010; Li et al., 2013). In particular, stable oxygen and carbon isotopic

signatures within speleothems prove to be excellent tools in describing surface climate

conditions.

For a extensive review of the statistical methods and challenges in paleoclimate

reconstruction see Tingley et al. (2012). We will highlight some of the methods

discussed in Tingley et al. (2012), as well as discuss other modeling approaches. Li

et al. (2010) and Tingley and Huybers (2010a,b) both propose Bayesian heirarchical

models for reconstructions. Often modeling of isotopic signatures in speleothems rely

on uranium series dating (Edwards et al., 1986) and methods for irregularly spaced

time series. Fairchild and Baker (2012) discuss the popularity of linear autoregressive

(AR) models for modeling isotope series in speleothems. Harvill and Ray (2006)
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illustrate the use of multivariate functional coefficient autoregressive (FCAR) models

in describing annual temperature and tree ring widths.

In modeling oxygen and hydrogen isotopic signatures within a stream, Birkel

et al. (2012) employ Markov-switching autoregressive (MSAR) models. They find

that each isotope series is modeled best using two hidden states. These hidden states

may be associated with previously unknown series dynamics that linear models fail

to describe. The ability of the MSAR models to better describe these states, while

maintaining interpretable coefficients, is vital to the overall paleoclimate reconstruc-

tion.

We shall expand the univariate autoregressive idea of Fairchild and Baker (2012)

and the regime-switching idea of Birkel et al. (2012) to a vector time series scenario.

We introduce the use of vector momentum threshold autoregressive (VMTAR) mod-

els as a more sophisticated alternative by allowing for greater flexibility in model

parameters by introducing a regime, or state, switching behavior. We demonstrate

that the ease of interpretability allows momentum threshold models to be powerful

tools from a geological perspective.

The remainder of this chapter is organized as follows. In Section 2.2, we describe

a class of multivariate threshold autoregressive models for handling nonlinear time

series. Section 2.3 introduces the speleothem data used in our application. We apply

the model to the speleothem data set in Section 2.4 and show improvements over

comparable linear vector autoregressive techniques. Concluding remarks and future

research are given in Section 2.5.

2.2 Models

The time series models utilized are primarily motivated by our paleoclimate

application to follow. As will be seen in Section 2.3, our data consists of paleocli-

mate information in addition to the isotopic signature series. Our goal is to jointly

model the isotopic series, while taking advantage of this additional information. In
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this section we will discuss both linear vector autoregressive and vector momentum

threshold autoregressive models.

2.2.1 Vector Autoregressive Models

Define Xt = (X1,t, X2,t, . . . , Xk,t)
′ as a k-variate zero mean vector time series

observed at T time points. Let Φj be a k × k matrix of lag j autoregressive (AR)

coefficients, j = 1, 2, . . . , p. A vector autoregressive model of order p, VAR(p), is

given by

Xt =

p∑
j=1

ΦjXt−j + εt, t = 1, 2, . . . , T, (2.1)

where εt is a k × 1 vector of zero mean white noise with covariance Σε = σ2I.

The VAR(p) model has the advantage of being one of the simplest vector time

series models. Note that when k = 1 the VAR(p) model reduces the the well-studied

univariate order-p autoregressive, AR(p), model. Model parameters are easily es-

timated using common regression methods, such as ordinary least squares. Their

simplicity leads to a popularity and better understanding across many disciplines.

The model parameters are constant and independent of time resulting in an ease in

interpretability of coefficients. However, the types of series dynamics and structures

that may be explained by these models are limited.

2.2.2 Vector Momentum Threshold Autoregressive Models

Nonlinear time series methods may be employed to address many structural lim-

itations of linear models. Before determining a parametric model it may be beneficial

to explore the nonlinear dynamics of the series using a general class of nonlinear time

series models. We consider the vector functional coefficient autoregressive (VFCAR)

model in aiding with the exploratory analysis. The VFCAR of Harvill and Ray (2006),

model is an extension of the univariate functional coefficient autoregressive model (see

Section 1.3) introduced by Chen and Tsay (1993) and developed more extensively by

Cai et al. (2000) and Chen and Liu (2001). For Xt = (X1,t, X2,t, . . . , Xk,t)
′, the vector
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functional coefficient autoregressive model of order p, VFCAR(p), is given by

Xt =

p∑
j=1

f (j)(Zt)Xt−j + εt, t = 1, 2, . . . , T, (2.2)

where Zt is the functional variable of dimension m ≥ 1 and εt is a k × 1 vector of

zero mean white noise with covariance Σε = σ2I. The Zt may consist of exogenous

predictors or lagged values of the series Xt, and f (j), j = 1, . . . , p, are k× k matrices

with elements
[
fi,l

(j)
]

that are real-valued measurable functions that change as a

function of Zt and which have continuous second derivatives. When all functions are

constant with respect to the functional variable, the model in (2.2) reduces to (2.1).

In the basic threshold autoregressive (TAR) model seen in Section 1.2, the

regime of interest is defined only by some thresholding series. An alternative specifi-

cation allows for the threshold to depend on the magnitude of change, or momentum,

in a previous period of a thresholding series. For convenience, we restate the mo-

mentum threshold autoregressive model here. Let {Zt} be the (possibily exogenous)

thresholding time series, such that ∇Zt−q = Zt−1 − Zt−q; that is, {∇Zt−q} is a time

series that captures the q-th difference, or momentum, of the series {Zt}. The `-

regime, order-p momentum threshold autoregressive, MTAR(p, `, q), model for a zero

mean time series {Xt} is given by

Xt =

p∑
j=1

φ
(i)
j Xt−j + ε

(i)
t , if ri−1 < ∇Zt−q ≤ ri, i = 1, . . . , `, (2.3)

where φ
(i)
j , i = 1, 2, . . . , `, is the lag j AR coefficient for regime i and ε

(i)
t <∞ is zero

mean white noise with standard deviation σ(i). Again, −∞ = r0 < r1 < . . . < r`−1 <

r` = ∞ are the ` + 1 non-trivial thresholds dividing the domain of {∇Zt−q} into `

different regimes.

The speleothem application within Sections 2.3 and 2.4 will focus on the multi-

variate extension of the MTAR model. The vector momentum threshold autoregres-

sive (VMTAR) model provides a mechanism for modeling differently the values of a

vector time series, where different models are selected based upon the magnitude of
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changes in previous values of a thresholding series. Let Xt = (X1,t, X2,t, . . . , Xk,t)
′ be

a zero mean vector time series, then the `-regime, order-p vector momentum threshold

autoregressive, VMTAR(p, `, q), model for Xt is given by

Xt =

p∑
j=1

Φ
(i)
j Xt−j + ε

(i)
t , if ri−1 < ∇Zt−q ≤ ri, i = 1, . . . , `, (2.4)

where Φ
(i)
j , i = 1, . . . , ` is a k × k matrix of lag j AR coefficients. The error terms

εt
(i), i = 1, . . . , ` are k×1 vectors of zero mean white noise with covariance Σε = σ2I.

Across i, {εt(i)} may be contemporaneously correlated. Further, −∞ = r0 < r1 <

. . . < r`−1 < r` = ∞ are the ` + 1 non-trivial thresholds dividing the domain of

{∇Zt−q} into ` different regimes.

2.3 Speleothem Data

Speloethems have been established as valuable tool for paleoclimate reconstruc-

tions. Through the process by which they form, speleothems possess the ability to

capture climate details in the external environment. Isotopic signatures are ratios of

stable or unstable chemicals in the material being investigated. Climate patterns in

the external environment may be represented by chemical composition changes in the

dripwater which eventually form the speleothem. Stable carbon and oxygen isotope

ratios are the most commonly used signatures and help to describe both external tem-

perature and precipitation in the reconstruction process. Furthermore, speleothems’

continuous growth provide long, detailed climate archives.

The data for the application is obtained from speleothem RM0710-2-1 which

was collected from Raccoon Mountain Cave near Chattanooga, Tennessee, USA. The

stalagmite was collected circa 260 meters from the cave entrance (Li et al., 2014) and

was actively growing at the time that it was collected. A map for the site at which

the speleothem was collected is shown in Figure 2.1. The Federal Cave Protection

Act of 1988 makes it a federal crime, punishable by up to one year in prison and/or

a $10,000 fine, to disturb, deface, or destroy cave structures in a “significant cave,”
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(without prior consent from the Secretary of the Interior). Raccoon Mountain Cave

in Tennessee is a significant cave.

The stalagmite was dated using thorium-230 (230Th) techniques similar to those

described in Edwards et al. (1986). The clear and consistent preservation of the sta-

lagmite in areas corresponding to the Middle and Late Holocene makes the specimen

of particular interest. The Holocene is the most recent geological epoch spanning

from approximately 11.7 thousand years (ka) before present (BP) until present day.

According to Walker et al. (2012), the Middle Holocene spanned approximately 8.2

- 4.2 ka BP and lead into the Late Holocene which persists into present day. The

stable isotope reconstruction will be for approximately the upper 11 centimeters of

the stalagmite or roughly 5,000 years of climate records. This constitutes one of the

most complete climate records for the time period. A cross-sectional image of the

speleothem with accompanying 230Th dates is seen in Figure 2.1.

After quarter-cutting, double-polished thin sections of the specimen were pre-

pared. Digital ultraviolet fluorescence (UVf) photographs were taken along the edge

of the thin sections and enlarged. The printed images were then manually stitched

to show complete time-deposition coverage for the thin sections (Driese et al., 2016).

Isotopic signature time series were measured on powders collected each half-

millimeter along the length of the stalagmite beginning 4.75 mm from the top of the

speleothem. These powders are obtained when a half-millimeter in diameter drill bit

is used to bore into the speleothem. Consequently, stable isotope ratio samples at

each half-millimeter serve as “time averages” of multiple years’ climate records. The

values of two isotopic signatures, specifically δ13C and δ18O both reported in parts per

thousand (‰) Pee Dee Belemnite (PDB), are obtained. We shall briefly describe how

δ13C and δ18O are interpreted in paleoclimatology; for a more detailed description

see McDermott (2004).

17



796±20 yr BP

1,915±31 yr BP

2,578±28 yr BP

4,631±28 yr BP

5,116±21 yr BP

6,173±38 yr BP
6,531±26 yr BP

7,416±24 yr BP

13,724±42 yr BP

14,591±45 yr BP

15,375±49 yr BP

cave location

Rock City RoomBorin's Bathtub

Nancy's Hall

Syphon

Critter Room

Grand Piano
Rock

Echo
 Room

Waterfall
Dome

Sticky
Dome

Surprise
Dome

Canyon

Camp  II

Room

Cobblestone Alley

Shelley's Hall

Keyhole

55-m belly crawl

Cave Entrance

Bowel Passage

18 m

To
Janney's

18 m18 m

Sampling site

(35.021oN, 85.409oW) 

Figure 2.1: Map of the Raccoon Mountain Cave system. The blue dot represents the
site at which speleothem RM0710-2-1 was collected. To the right of the map is a
fluoresced and thorium-230 dated thin section of the stalagmite.
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The value δ13C is a measure of the ratio of stable isotopes carbon-13 to carbon-

12. These values give information on changes in surface soil and vegetation dynamics,

as well as indications of the cave’s own microclimate structure. For example, plants

living in high temperature, drought prone climates typically have higher (less neg-

ative) values of δ13C , while vegetation found in temperate climates produce lower

(more negative) values of δ13C . Similarly, δ18O is a measure of the ratio of stable

isotopes oxygen-18 to oxygen-16. Information regarding both rainfall and tempera-

ture, among other things, are contained in the values of δ18O . As with δ13C , less

negative values of δ18O correspond to warmer, dryer climates; more negative values

correspond to cooler, wetter climates.

The majority of speleothems are composed of calcium carbonate or calcium sul-

fate. They form through a series of chemical reactions. Rainwater reacts with carbon

dioxide in the surface soil before traveling through the underlying bedrock. Once

the solution reaches the cave, it degasses and drives precipitation of calcium carbon-

ate. This process creates a layering effect which, over time, forms the speleothem.

Typically visible after fluorescence, these layers, or rings, hold important information

about the paleoclimate. Driese et al. (2016) find evidence that cooler/wetter paleo-

climate conditions correspond with thinner rings and more-negative δ13C and δ18O

values. Conversely, thicker rings and less-negative δ13C and δ18O values would tend

to indicate a warmer/drier conditions. The authors present the saturation state of

carbonate in the cave water as a likely explanation. For example, during drier climate

phases, the carbonate in the cave water was increased due to greater evaporation on

the surface and less water infiltration, which favored calcite precipitation, resulting

in growth of thicker rings. Geologists believe that these rings correspond to annual

deposit records, similar to tree rings.

Because of the well-preserved nature of speleothem RM0710-2-1, the rings are

visible in the UVf images. These visible rings may be seen in Figure 2.2. Using the
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manually stitched printed images, we are able to count the number of speleothem

rings for each half millimeter where isotopic values were measured. Twenty-nine

half millimeter intervals experience at least partial dissolution or “time loss” in the

record. For these interval, linear interpolation was used to obtain estimated counts.

This new series of ring counts gives the ability to incorporate information contained

in the rings into any modeling of δ13C and δ18O . Each of the isotope measurements

from the speleothem is time averaged per half-millimeter. Across the length of the

specimen we observe a sequence of data points consisting of successive measurements.

Therefore, distance in half-millimeters from the top of the speleothem will be used

as a proxy for time. Let d = 1, 2, . . . , 195 represent the half-millimeter increments

from the top of the speleothem beginning 4.75 mm down. Then for each value of

d, the variables measured are the X1,d = δ13C ‰ PDB, X2,d = δ18O ‰ PDB, and

X3,d = number of rings; concurrently, these variables can be considered as a vector of

length three written Xd = (X1,d, X2,d, X3,d)
′. Plots of the resulting series are shown

in Figure 2.3. Note that older records occur at larger distances from the top of the

speleothem. Therefore, lagged values of each series are given by increases in distance.

For example, the lag j δ13C value at some distance d is given by X1,d+j.

An examination of the plots, especially the plots of δ13C and δ18O, suggests

a changing system. In particular, from zero mm to 20 mm from the top of the

speleothem, the system seems to be varying less than from 20 mm to around 50 mm.

Additionally, there seems to be an upward trend in the two isotope ratios from 20

mm to 50 mm. From 50 mm to around 80 mm the δ13C ratio seems to be decreasing,

with some sharp rises and falls, while the δ18O ratio seems to be remaining somewhat

constant, and less variable than δ13C. Beyond 80 mm from the top, we see another

marked change in δ13C, while δ18O appears to vary in the same manner as from 50

mm to 80 mm.
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Figure 2.2: Images of the enlarged UVf photographs showing well preserved laminae,
or rings.
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We also observe what seems to be a changing system in the number of rings.

The most obvious change is seen in comparing the number of rings from 0 mm to 60

mm, from 60 mm to 90 mm, and then beyond 90 mm. From 0 mm to 60 mm, the

number of rings has many sharp rises and falls. After any sharp rise, there appears

to be a small amount of variability, until the next fall. However, beyond 60 mm, the

number of rings behaves in a more regular fashion, with the exception of the sharp

rise just after 80 mm. Around 92 mm from the top of the speleothem, there is another

rise, with a slowly varying decline before another sharp rise.

2.4 Results

We apply methods for fitting both VAR and VMTAR models to the Raccoon

Mountain speleothem data. In Section 2.4.1 we expand upon previous methods and

fit a VAR model to the data. However, the complex nature of the system noted

in the description of the plots in suggests the VAR model may be insufficient for

describing the isotope system. In Section 2.4.2 , we present the VMTAR model. We

fit a three-regime VMTAR model to the data, and describe the results. The geological

significance of the VMTAR model is discussed in Section 2.4.3.

2.4.1 VAR Results

Fairchild and Baker (2012) suggest the use of univariate autoregressive (AR)

models when describing individual isotopic signature series in speleothems. Because

at each half-millimeter we observe a vector time series, we expand the use of AR

models to the vector scenario. This provides an initial direction for jointly modeling

the number of rings, δ13C and δ18O using a vector autoregressive model. Examination

of both the Akaike information criterion (AIC) and Bayesian information criterion

(BIC) reveal an order-one vector autoregressive model, VAR(1), to be optimal. Recall

for the dth half-millimeter below the top of the speleothem (d = 1, 2, . . . , 195) that

X1,d represents δ13C ‰ PDB, X2,d represents δ18O ‰ PDB, and X3,d represents the
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number of rings. The VAR(1) model is then given by

X1,d = φ
(1)
1 X1,d+1 + φ

(1)
2 X2,d+1 + φ

(1)
3 X3,d+1 + ε

(1)
d

X2,d = φ
(2)
1 X1,d+1 + φ

(2)
2 X2,d+1 + φ

(2)
3 X3,d+1 + ε

(2)
d (2.5)

X3,d = φ
(3)
1 X1,d+1 + φ

(3)
2 X2,d+1 + φ

(3)
3 X3,d+1 + ε

(3)
d ,

where for a fixed j = 1, 2, 3, the ε
(j)
d is a sequence of zero-mean, independent errors,

and at any fixed half-millimeter d∗, the correlation between ε
(i)
d∗ and ε

(j)
d∗ is ρi,j, i =

1, 2, 3, i 6= j.

Using ordinary least square to fit the VAR(1) model to the data results in

X̂1,d = 0.7938X1,d+1 + 0.2418X2,d+1 − 0.0101X3,d+1

X̂2,d = 0.0513X1,d+1 + 0.5395X2,d+1 + 0.0039X3,d+1 (2.6)

X̂3,d = −0.3695X1,d+1 − 1.4780X2,d+1 + 0.5843X3,d+1.

Table 2.1 contains the coefficients along with approximate P -value from corresponding

t-tests for testing their significance from zero. The diagonal elements of Table 2.2 are

the estimated mean square errors for each term in the model. Modeling of the δ13C

and δ18O series is of primary importance and yields estimated mean square errors

of 0.2343 and 0.0286, respectively. The estimated overall mean square error for the

VAR(1) model’s fit of δ13C and δ18O is 0.2636. The elements in the off-diagonals are

estimates of the contemporaneous error correlations, ρi,j. The numbers in parentheses

Table 2.1: Estimated coefficients of VAR(1) model and approximate P -values (in
parentheses) for tests of significance from zero.

Variable δ13C δ18O Number of rings
δ13C 0.7938 0.2418 −0.0101

(< 0.0001) (0.1797) (0.0577)
δ18O 0.0513 0.5395 0.0039

(0.0017) (< 0.0001) (0.0339)
Number of rings −0.3695 −1.4780 0.5843

(0.5130) (0.4980) (< 0.0001)
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beneath the estimated correlations are approximate P -values of t-tests for testing

significance from zero. A significant error correlation implies that one error series

may be one of the driving factors for the other error series. For example, the negative

estimated contemporaneous error correlation between the residuals for the number

of rings and the residuals for δ13C ‰ PDB implies that a smaller error in number of

rings is associated with an increase in error for δ13C ‰ PDB.

A plot of the original vector series (solid line) with the fitted values (dashed

line) superimposed is presented in Figure 2.4. Upon initial inspection it would appear

that the VAR model is effective in modeling the isotopic signatures, especially the

δ13C series. Examination of both the fitted plot and significant coefficients of the

δ13C series indicate a fairly simple autoregressive structure. However, the fit for the

δ18O series does not appear as successful. In particular the range is not captured in

the fitted values. For example, at approximately 45 half-millimeters below the top of

the speleothem the shape of the δ18O series is detected but not height of the peak.

This suggest that a more sophisticated model could improve the explanation of the

behavior of the δ18O series.

2.4.2 VMTAR Results

The thickness of a UVf layer in a speleothem is believed to be directly related

to the amount of rainfall. Consequently the number of rings per half millimeter is an

Table 2.2: Estimated mean square errors and estimated contemporaneous error
correlations with approximate P -values for significance from zero in parentheses

from order-one vector autoregressive model.

Variable δ13C δ18O Number of rings
δ13C 0.2343 0.2229 −0.2072

(0.0019) (0.0039)
δ18O 0.2229 0.0286 0.1081

(0.1355)
Number of rings −0.2072 0.1081 34.8311
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Figure 2.4: Plots of original data (—) and fitted values (- - -) from an order-one vector
autoregressive model. The top plot is the number of rings per half-millimeter; the
center plot is of δ13C ‰ PDB; the bottom plot is of δ13C ‰ PDB. The asterisks (∗)
on the plot of the number of rings represent data imputed using the fitted VAR(1)
model.
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excellent candidate for describing the nonlinear relationship. Define the momentum

as ∇X3,d+2 = X3,d+1 −X3,d+2. If ∇X3,d+2 < 0, this is an indication that the climate

is entering a drier period. On the other hand, if ∇X3,d+2 > 0, the climate is entering

a wetter period.

Because the number of rings per half-millimeter will not be directly modeled,

the autoregressive order is extended to order-two. Using ∇X3,d+2 as the functional

variable, an order-two VFCAR model is fit to δ13C and δ18O using kernel regression

techniques. The estimates of the functional coefficients are then used to explore the

nonlinear dynamics of the stable isotope series. Figures 2.5 and 2.6 shows the fitted

values of the functional coefficients for the VFCAR(2) model. An overall inspection

of the functional coefficients reveals some non-constant functional coefficients indi-

cating the presence of a nonlinear series structure. For modeling δ13C the functional

coefficient for lag-1 δ13C appears significant across all values of the function variable

but has a negative correlation with momentum in periods with extreme to moderate

shifts toward drier climates and a positive correlation elsewhere. However, for δ18O

the lag-1 δ13C functional coefficient appears to be constant and zero except in periods

of moderate shifts toward a wetter climate where it begins to exhibits a negative cor-

relation. The lag-2 δ13C functional coefficient appears to be mostly constant and zero

for both δ13C and δ18O. Only in the most extreme observed climate transition does

the lag-2 δ13C coefficient appear to have significant correlation for δ18O. For δ13C

the lag-1 δ18O coefficient appears constant and zero for transitions to drier climate

periods; however, a negative correlation with the functional variable is present during

periods transitioning to wetter climates. Interestingly, for δ18O the coefficient for

lag-1 δ18O appears to exhibit three distinct areas of behavior: two areas of negative

correlation during moderate transitions and a constant coefficient when the climate

is in a “neutral” state. Over most values of the functional variable, the functional

coefficient for lag-2 δ18O has a positive correlation for δ13CḞor transitions wetter cli-
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mate states the lag-2 δ18O coefficient appears to be significant. For δ18O the lag-2

δ18O coefficient also demonstrates three states. The transitions appear to occur at

approximately the same values of the functional variable. However, in the case of

the lag-2 δ18O coefficient there are two areas of positive correlation during moderate

transitions. Again, the coefficient appears to be constant in the “neutral” climate

state.

Based upon the behavior noted in the plots of the functional coefficients and

the desire to preserve an ease of geological interpretability for the coefficient, we use

a VMTAR model to fit the stable isotope ratios. Using ∇X3,d+2 as the thresholding

variable, we fit a three-regime, order-two VMTAR model to δ13C and δ18O.

The package tsDyn in the R language was used for testing and fitting the

model. The function TVAR was then used to fit the model to the data. To determine

the optimal threshold values for defining the model regimes, the function performs

the grid search proposed by Chan (1993) and Enders and Siklos (2001) and described

in Section (1.2.1). Figure 2.7 contains three graphs related to this grid search. The

top graph represents the momentum in number of ring (∇X3,d+2) on the vertical axis

versus the half-millimeter mark on the horizontal. The lower dashed horizontal line

contained within the graph represent the optimum threshold, as determined by a grid

search, for transitioning from a stable climate into a drier period. The value of that

threshold is r1 = −4. The upper dashed horizontal line contained within the graph

represent the optimum threshold, as determined by a grid search, for transitioning

from a stable climate into a wetter period. The value of that threshold is r2 = 10. The

center graph illustrates the sorted momentum with the drier and wetter thresholds

superimposed using an asterisk (∗). (r1 = −4 and r2 = 10). The bottom graph is of

the sum of squared residuals (SSR) of models fit using varying thresholds versus the

threshold values. The threshold of r1 = −4 corresponds to a SSR equal to 91.50327.
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Figure 2.5: Pointwise estimates of VFCAR(2) coefficient functions for δ13C ‰ PDB.
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Figure 2.6: Pointwise estimates of VFCAR(2) coefficient functions for δ18O ‰ PDB.
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The threshold of r2 = 10 corresponds to a SSR equal to 92.96762. These values are

local minima.

The fitted VMTAR(2,3,2) model is as follows. For ∇X3,d+2 < −4,

X̂1,d = 0.8489X1,d+1 − 0.5697X2,d+1 + 0.1945X1,d+2 + 4844X2,d+2

X̂2,d = 0.0758X1,d+1 + 0.1651X2,d+1 − 0.0618X1,d+2 + 0.7053X2,d+2.

Of the 193 observations, 27.2% fell in a period of drier climate. For −4 ≤ ∇X3,d+2 <

10, the fitted model is

X̂1,d = 0.8579X1,d+1 + 0.1021X2,d+1 − 0.1124X1,d+2 + 0.1423X2,d+2

X̂2,d = 0.0222X1,d+1 + 0.5320X2,d+1 − 0.0193X1,d+2 + 0.1733X2,d+2.

Of the 193 observations, 61.8% fell in a moderate climate period. For ∇X3,d+2 ≥ 10,

the fitted model is

X̂1,d = 0.4228X1,d+1 − 0.6199X2,d+1 + 0.2228X1,d+2 + 2.2691X2,d+2

X̂2,d = −0.1858X1,d+1 + 0.2401X2,d+1 + 0.2443X1,d+2 + 0.3653X2,d+2.

Of the 193 observations, 11% fell into the period of wetter climate.

Table 2.3 contains these coefficients along with corresponding standard errors

(in parentheses). Each set of two rows represents one regime. Each column represents

a lagged value of either δ13C or δ18O. Coefficients found significantly different from

zero at the 0.01 level are marked with an asterisk. Table 2.4 contains the estimated

mean square errors and estimated contemporaneous correlations associated with the

fitted VMTAR(2,3,2) model. The estimated mean square error for δ13C is 0.2051 and

0.0237 for δ18OU̇se of the VMTAR(2,3,3) model resulted in an approximate 12.5%

reduction in mean square error for δ13C and an approximate 18% reduction in mean

square error for δ18OṪhe overall mean square error for the VMTAR(2,3,2) model is

0.2287, an approximate 13% reduction in overall mean square error. The significant

coefficients from the VMTAR(2,3,2) tend to agree with the behavior noted in the
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plots of the functional coefficient. Disagreements in coefficients where significance was

suspected is likely due to some regimes having a smaller percentage of observations,

most notable the ∇X3,d+2 ≥ 10 regime.

Finally, in Figure 2.8, we present a plot of the original series (solid black) with

the fitted values (dashed blue) from the VMTAR model superimposed. A comparison

of the graphs in Figure 2.8 to the bottom two plots in Figure 2.4 reveals the superior

fit of the VMTAR(2,3,2) model compared to the VAR(1) model which agree with

analysis of mean square errors for both models.

2.4.3 Geological Significance

Using the VMTAR(2,3,2) we are able to quantify the relationship between δ13C

and δ18O dependent upon the momentum in the climate as indicated by the change

in the number of annual UVf layers in the speleothem. The model proves to be a

powerful tool from a geological standpoint. Simple visual inspection of the UVf layers

and the corresponding stable isotope values were insufficient in solely explaining these

complex relationships.

The coefficients and threshold values found to optimize the performance of the

VMTAR(2,3,2) model indicate the presence of previously unknown system structures.

These factors influenced the behavior of the Raccoon Mountain Cave speleothem

growth rate and stable isotope system. That is, the model demonstrates that abrupt

shifts in climate state do cause shifts in stable isotope values.

For transitions into a drier climate state, characterized by fewer, thicker UVf

layers per half-millimeter, δ13C values respond directly whereas δ18O values have a

more delayed direct response. When transitioning to a wetter climate state, char-

acterized by many, thinner UVf layers, δ13C has a delayed behavior with respect to

δ18O. Similarly, δ18O depends on the more delayed δ13C value. When the climate

enters the “neutral” state, δ13C changes with respect to only the last half-millimeter’s

carbon isotope value, while δ18O requires its previous two periods’ values. The hy-
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Table 2.3: Significant VMTAR(2,3,2) coefficients with standard errors (in
parentheses). Coefficients marked with an ∗ are significantly zero at a 0.01 level of

significance. Additionally, coefficients marked with an † are also significantly zero at
a 0.05 level of significance. All other coefficients are not significantly different from

zero.

Threshold Variable X1,d−1 X2,d−1 X1,d−2 X2,d−2

∇X3,d+2 < −4
X̂1,d

0.849* −0.570 0.195 0.488
(0.133) (0.455) (0.142) (0.454)

X̂2,d
0.076† 0.165 −0.062 0.705*
(0.045) (0.155) (0.048) (0.154)

−4 ≤ ∇X3,d+2 < 10
X̂1,d

0.858* 0.102 −0.112 0.142
(0.089) (0.248) (0.087) (0.236)

X̂2,d
0.022 0.532* −0.019 0.173*

(0.030) (0.084) (0.030) (0.080)

∇X3,d+2 ≥ 10
X̂1,d

0.423 −0.620 0.223 2.269*
(0.340) (0.695) (0.292) (0.931)

X̂2,d
−0.186 0.240 0.244* 0.365
(0.116) (0.237) (0.100) (0.317)

Table 2.4: Estimated mean square errors and contemporaneous estimated error
correlations with approximate P -values for significance from zero in parentheses

from order-two vector momentum threshold autoregressive model.

Variable δ13C δ18O
δ13C 0.2051 0.1688

(0.0196)
δ18O 0.1688 0.0237
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Figure 2.8: Plots of original series (—) and fitted series (- - -) from an order-two
momentum threshold vector autoregressive model. The top plot is of δ13C ‰ PDB;
the bottom plot is of δ18O ‰ PDB.
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drological and geochemical basis for this behavior needs to be explored further, but

could reflect complexities associated with “open and closed system” behavior at the

Raccoon Mountain site, which were discussed recently by Li et al. (2014).

2.5 Concluding Remarks

We have demonstrated the capabilities of a momentum threshold autoregressive

model when applied to stable isotope measures taken from speleothem. We addi-

tionally show that the relationship between the two stable isotopes (C, O) changes

substantially depending upon the state of the climate. We have examined the model’s

performance when compared to a linear vector autoregressive model. The VMTAR

model provides superior estimation while preserving the ease on interpretability of

the simpler model.

Other times trace elements, such as strontium, magnesium, or calcium, are

measured along the length of the speleothem. However, these series often have a much

finer resolution than the isotope series. Future work would incorporate information

contained in the trace element series in the joint modeling. In this paper, we have

shown that vector momentum threshold autoregressive models hold great promise for

future paleoclimate reconstructions using speleothem.
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CHAPTER THREE

Semiparametric Approach to Optimal Sensor Design in a Photovoltaic Power Plant

3.1 Introduction

Forecasting on a short-term horizon of solar irradiance is a crucial aspect in the

design and monitoring of photovoltaic (PV) power plants. These forecasts are used in

operational procedures such as switching sources, power purchases, and usage of power

reserves. Past work has illustrated a correlation between the plant’s power output and

irradiance measures taken from sensors across a plant’s footprint (Kuszamaul et al.,

2010). Therefore, variations of solar irradiance in the presence of changing weather

conditions will result in instability over the utility’s service area. Relatively small

errors in predicted irradiance may translate to significant uncertainty in projected

profit because utility-scale PV plants are typically leveraged financially. Accurate

monitoring of these forecasts is an integral part of the planning and construction

phase of a PV plant.

There is a rich literature on efforts to apply statistical methods to the mod-

eling and forecasting of irradiance. Early work focused on the use of conventional

time-series methods such as autoregressive (AR) and autoregressive moving aver-

age (ARMA) models (e.g. Aguiar and Pereira, 1992; Mora-Lopeza and Sidrach-de-

Cardona, 1998; Bacher et al., 2009). However, these linear methods are not appro-

priate for the nonlinear structure of solar irradiance data. Glasbey (2001) explored

nonlinear autoregressive analysis. Much work has been done with forecasting involv-

ing artificial neural networks (e.g. Alam et al., 2006; Paoli et al., 2010; Oudjana et

al., 2014). In addition to the artificial neural networks, Paoli et al. (2010) discuss

modeling based on a k-Nearest Neighbors algorithm and Bayesian inference. More

recently, Ghayekhloo et al. (2015) and Ghofrani et al. (2016) propose novel clus-
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tering algorithms for short-term irradiance forecasts. Patrick et al. (2016) evaluate

semiparametric spatio-temporal models at high temporal and spatial resolutions.

Although extensive work has been done in the application of statistical models

to predict solar irradiance on a short term resolution, we are unaware of their use

to aid in the initial design of a small scale PV system. In this chapter, we extend

the work of Patrick et al. (2016) to a temporally dense, but spatially sparse setting.

We explore the use of vector functional coefficient autoregressive (VFCAR) models

to help answer the question, “If a new PV plant is being constructed, what is the

optimal number and layout of sensors for predicting solar irradiance?” We propose

a sensor design algorithm that incorporates the semiparametric VFCAR model to

forecast irradiance series across a small number of monitoring sensors.

The remainder of the chapter is organized as follows. In Section 3.2, we for-

mally define the vector functional coefficient autoregressive model and briefly discuss

model properties and estimation techniques. In Section 3.2.3, we will discuss a boot-

strap method for obtaining M -step-ahead predictions with the VFCAR model. More

specifically, the sensor algorithm is presented in Section 3.3. Section 3.4 discusses the

result. Section 3.5 concludes with remarks and future research.

3.2 Methods

Nonlinear time series models often out-perform linear models when used to

model series resulting from complex dynamics, such as solar irradiance. The class

of nonlinear time series models includes many popular parametric models including

the bilinear model, the exponential autoregressive (EXPAR) model, the threshold

autoregressive (TAR) model, the smooth threshold autoregressive (STAR) model, and

generalized autoregressive conditional heteroscedasticity (GARCH) models, among

others. There is no specific class of parametric nonlinear models that is generally

applicable to solar irradiance data. Therefore, it is useful to reduce the size of the class

of nonlinear models. One way of accomplishing this reduction is through a versatile,
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nonlinear, semiparametric model known as the functional coefficient autoregressive

model.

3.2.1 Functional Coefficient Autoregressive Model

A flexible semiparametric model is the functional coefficient autoregressive

model of order p (FCAR(p)), first introduced by Chen and Tsay (1993). For con-

venience, we restate the model here. Let Xt be a zero mean univariate time series

observed at T time points. Define the FCAR(p) model as

Xt =

p∑
j=1

f (j)(Zt)Xt−j + εt, t = p+ 1, p+ 2, . . . , T, (3.1)

where Zt is the functional variable which may consist of exogenous predictors or lagged

values of the series Xt, f
(j) (·), j = 1, . . . , p, are are real-valued measurable functions

that change as a function of Zt and which have continuous second derivatives, and

εt is zero mean white noise with variance σ2 < ∞. If Zt = Xt−q, then q is the delay

parameter where q < p to avoid model unidentifiability.

Harvill and Ray (2006) extended the FCAR idea to the vector autoregressive

framework. Define Xt = (X1,t, X2,t, . . . , Xk,t)
′ as a k-variate zero mean vector time

series observed at T time points. A vector functional coefficient autoregressive model

of order p, VFCAR(p), is given by

Xt =

p∑
j=1

f (j)(Zt)Xt−j + εt, t = p+ 1, p+ 2, . . . , T, (3.2)

whereZt is the functional variable of dimensionm ≥ 1 which may consist of exogenous

predictors or lagged values of the series Xt and εt is a k×1 vector of zero mean white

noise with covariance Σε = σ2I. The matrices f (j) (·), j = 1, . . . , p, are k×k matrices

with elements
[
fi,l

(j) (·)
]

that are real-valued measurable functions that change as a

function of Zt and which have continuous second derivatives. If Zt = Xt−q, then q

is the delay parameter where q < p to avoid model unidentifiability. A review of the

indentifiability conditions can be found in Huang and Shen (2004) and Harvill and

Ray (2006).
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3.2.2 Estimation of Functional Coefficient Matrices

A review of methods for fitting the FCAR(p) model, as well as inferential pro-

cedures, are found in Fan and Yao (2003). In this section, we will briefly review the

local linear methods for fitting the VFCAR(p) model as presented by Harvill and Ray

(2006).

Elements of the matrices f (j), j = 1, . . . , p are functions that are estimated

using locally constant or local linear multivariate regression in a neighborhood of Zt

determined by a specified kernel and bandwidth matrix. Chen and Liu (2001) and

Cai, Fan, and Yao (2000) successfully demonstrate these methods in the univariate

framework.

At time t, denote the kp-vector of predictors by Yt; that is, let Yt =
[
Xt−1, . . . ,

Xt−p
]′

, where Xt =
[
X1,t−j, X2,t−j, · · · , Xk,t−j

]
, for j = 1, 2, . . . , p, and let f (Zt) be

defined as f (Zt) =
[
f (1) (Zt) ,f

(2) (Zt) , · · · ,f (p) (Zt)
]′

. The model in Eq. (3.2) may

then be written as

Xt = f (Zt)Yt + εt, t = p+ 1, p+ 2, . . . , T. (3.3)

In our application to PV power plants, we will restrict the dimension of the functional

variable to be m = 1. Because the elements of f (j) (·) have continuous second-order

derivatives, each fi,l
(j) (·) may be approximated locally at z0 by the linear function

fi,l
(j) (z) = α

(j)
il +β

(j)
il (z− z0). Writing the coefficient matrices in the form

[
α|β

]
, the

local linear least squares kernel estimator of f (Zt) is defined as f̂(z0) = α̂, where[
α̂|β̂

]
is the solution to [α|β] that minimizes the weighted sum of squares

T∑
t=p+1

[
Xt − [α|β]

(
Yt

Ut

)][
Xt − [α|β]

(
Yt

Ut

)]′
Kh (Zt − z0) . (3.4)

Here, Ut is the result of multiplying the elements of Yt by (Zt − z0), K is a specified

kernel function, h > 0 is the bandwidth, and Kh (u) = h−1K (u/h). The solution to

Eq. (3.4) is the least squares problem having[
α̂

β̂

]
= (U ′WU)

′
U ′WY , (3.5)
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assuming U ′WU is non-singular, where

U =


Yp+1 Yp+1 (Zp+1 − z0)

...
...

YT YT (ZT − z0)

 ,
W = diag {Kh (Zp+1 − z0) , . . . , Kh (Zn − z0)} .

Thus f̂(z0) = α̂.

For fitting the model, modified multifold cross-validation is used to determine an

optimal bandwidth by finding the value of h that minimize the accumulated prediction

error (APE). It is recommended that the autoregressive order p and functional variable

Zt be chosen based on knowledge of the underlying physical process. Alternatively,

each may be found using a data-driven criteria, such as minimizing the APE as a

function of p. We refer the reader to Harvill and Ray (2006) for an an illustration

of the use of the VFCAR model in fitting a simulated vector EXPAR series and a

data-driven application to annual temperatures and tree ring widths.

3.2.3 Bootstrap Forecasts

Methods for multi-step forecasting using univariate and vector FCAR models

are presented in Harvill and Ray (2005). The authors’ bootstrap predictor is shown to

be preferred for multi-step prediction using an FCAR model. The bootstrap predictor

expands on the naive plug-in predictor of Fan and Yao (2003) by using only within-

sample values to estimate the functional coefficients. The predictor evaluates the

coefficients at the predicted values.

As in the previous section, we restrict the dimension of our functional variable

to m = 1 for our application. As will be discussed in Section 3.3, we take Zt to be

a linear combination of lagged values of the k component time series of the original

series Xt. The M -step-ahead predicted values are obtained as

X̂t+M =

p∑
j=1

f̂
(
Ẑt+M

)
X̂t+M−j + εb, (3.6)

40



where X̂t = Xt and Ẑt = Zt if t ≤ T . The vector εb is a bootstrapped vector of the

within-sample residuals from the fitted VFCAR model with functional coefficients es-

timated using local linear multivariate regression. The bootstrap forecast is obtained

for b = 1, . . . , B and the average across all bootstrap predictions is used as the M -

step-ahead point forecast. Note that should the value of Ẑt+M fall near the boundary

or outside of the original range of Zt the estimated functional coefficient matrix may

be unreliable.

3.3 Sensor Design Application

We apply the VFCAR methods of Section 3.2 to the development of a sensor

design algorithm for PV power plants. The algorithm makes use of a vector series of

solar irradiance measurements in order to determine an optimal number and layout

of sensors at a PV plant.

Making use of the methodology discussed in previous section, the sensor design

algorithm is as follows:

(1) For a fixed day, detrend and trim the time-averaged irradiance vector se-

ries. Because there is a negligible amount of irradiance prior to sunrise and

after sunset, we trim the vector series 30 minutes prior to sunrise and 30

minutes after sunset. The series Xt = (X1,t, . . . , XK,t)
′ is defined to be the

K-dimensional vector series of all detrended and trimmed irradiance measures

at K available sensors.

(2) For a fixed day and number of sensors, k = 2, . . . , K, obtain the
(
K
k

)
k-

dimensional vector time series X`,t = (X`,1,t, . . . , X`,k,t)
′, ` = 1, . . . ,

(
K
k

)
. In

the context of a PV plant, X`,t is the vector series consisting of detrended

irradiance measures from the `-th subset of k sensors at time t.
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(3) Define ∇Xt−q = Xt−1−Xt−q as the q-th difference, or momentum, of a series

{Xt}. Thus, the functional variable ∇X̄`,t−2 = k−1
∑k

i=1∇X`,i,t−2, represents

the average momentum in the detrended irradiance series at time t.

(4) Using the first 75% of each sensor combination’s vector series estimate the

VFCAR(2) model with functional variable Zt = ∇X̄`,t−2.

(5) For each model obtain three-step-ahead (30-minute-ahead) bootstrap fore-

casts. Unless otherwise noted, the number of bootstrap replications used is

B = 500.

(6) Using the VFCAR forecasts compute the mean prediction error (MPE) for

each sensor combination. In the absence of statistical models, it is common to

naively forecast irradiance based on the last observed measurement. We also

compute the MPE using these naive forecasts. To determine and improvement

in prediction using the VFCAR model, we take the ratio

MPE for VFCAR

MPE for naive method
. (3.7)

A ratio less than one indicates that the VFCAR model performs better at

predicting the detrended irradiance than the naive method.

(7) Repeat Steps 2-6 for each day.

(8) For each sensor combination, aggregate the ratios of Step 6 across all days.

(9) Repeat Steps 2-8 for each reasonable k. Typically k is kept small due to the

expense of sensors. Federal regulations require a minimum of two monitoring

sensors.

3.4 Application: La Ola PV Plant

To illustrate the utility of the algorithm, we apply it to data collected from

from a 1.2 MV La Ola PV plant on the island of Lanai, Hawaii. The La Ola plant
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is located near the southern end of the island, atop the plateau in a subtropical dry

forest climate (U.S. Forest Service, 2011). Designed by Sandia National Laboratories

and SunPower Corporation, the La Ola system’s purpose was in part to study the

effects of the movement of cloud shadows across the PV array on power output.

Although the island is relatively dry due to its position in the rainfall shadow of

Maui, measured irradiance shows that cloud movement is a dominating factor in the

variability of irradiance (Johnson et al., 2012).

3.4.1 Data

The La Ola PV plant contains three columns and four rows of 12 single-axis

tracked arrays. Figure 3.1 displays the latitude and longitude coordinates and label

of each sensor at the La Ola PV plant. For one year (January 1, 2010 to December

31, 2010), plane-of-array (POA) irradiance (in W/m2) is measured at the midpoint of

each tracking array in addition to four additional locations at the corners of one central

tracking array using LiCor-200 pyranometers. POA irradiance is the measurement

when the sensor moves and tracks the sun across the sky. This contrasts global

horizontal irradiance (GHI) in which the measurements come from a sensor that is

stationary. In order to demonstrate a more general application of our method, we

choose to model GHI rather than POA irradiance. A discussion of the methods used

to translate measured POA irradiance to estimated GHI irradiance can be found in

Patrick et al. (2016).

Little to no variability is observed from one irradiance measurement to the next

at one second intervals. One second intervals are too fine of a time-scale for the irra-

diance process under consideration. As a result of the almost identical measurements

from one second to the next, the resulting matrices were unstable and would not in-

vert. Consequently, we investigated time-averages of lengths of 30 seconds, 1 minute,

5 minutes, and 10 minutes. We chose to use a 10-minute average for our methods to

reduce computational burdens. The time plots in Figure 3.2 contains the 10-minute
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Figure 3.1: Coordinates and labels of the sixteen LiCor-200 pyranometers located at
the midpoint of each tracking array and four additional locations for the La Ola PV
plant in Lanai, Hawaii.
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Figure 3.2: Time plots of 10-min averages (solid black) of estimated GHI irradiance
measurements at a single sensor for Sensor 1 on March 8, 2010 (top plot) and March
10, 2010 (bottom plot).
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time averages of estimated GHI in solid black for a Sensor 1 on March 8, 2010 (top

plot) and March 10, 2010 (bottom plot). Visual examination of time plots of esti-

mated GHI would indicate that March 8, 2010, could be considered a clear day due

to its smoothly changing irradiance. However, March 10, 2010, could be considered

a partly cloud day due to the variation in estimated GHI. The flexibility of the VF-

CAR model allows us to model and predict for both types of days without the need

to specify different parametric forms for varying weather conditions.

Before the data can be modeled in the design algorithm, it is necessary to

remove the diurnal trend. A review of clear-sky models for removing trends in mea-

sured GHI can be found in Reno et al. (2012). As noted previously, the Lanai data

set consists of measured POA irradiance measurements that is translated to approx-

imate GHI measurements. This transformation is not exact and resulted in the the

clear-sky models performing poorly in removing the diurnal trend. Consequently, the

diurnal trend in the estimated GHI is removed by using local polynomial kernel re-

gression implemented in the KernSmooth package (Wand, 2012) in the R programming

software.

The top time plots in Figure 3.3 and Figure 3.4 contain the 10-minute time

averages of estimated GHI in solid black superimposed with the local polynomial

kernel regression estimate in dashed red for March 8, 2010, and March 10, 2010,

respectively. The bottom time plots contain the residuals, hereafter referred to as

“detrended irradiance,” obtained after removing the diurnal trend.

3.4.2 Results and Discussion

We now illustrate the algorithm proposed in Section 3.3 using the data gathered

at the La Ola PV plant. Due to the relatively small size of the plant, we only consider

sensor subsets of size k = 2, 3, or 4. Table 3.1 provides the sensor combinations which

resulted in the lowest median ratio of prediction errors across all days. The mean

absolute prediction error (MAPE) is a popular criteria of evaluating forecasts in the
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Figure 3.3: Top graph is the time plot of 10-min averages (solid black) of irradiance
measurements at a single sensor for March 8, 2010 with the local polynomial kernel
estimate (dashed red) superimposed. The bottom plot is transformed irradiance
(residuals after using local polynomial kernel regression to remove the diurnal trend).
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Figure 3.4: Top graph is the time plot of 10-min averages (solid black) of irradiance
measurements at a single sensor for March 10, 2010, with the local polynomial kernel
estimate (dashed red) superimposed. The bottom plot is transformed irradiance
(residuals after using local polynomial kernel regression to remove the diurnal trend).
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solar energy literature. We consider both MAPE and the more universal criteria mean

squared prediction error (MSPE) in our analysis.

Both absolute and square prediction error ratios are highly skewed for the La

Ola data. Tables 3.2 and 3.3 provide summary values for each set of ratios across

all days. The skewness in these ratios drives our use of the median as an aggregate

measure across all days. A 5% and 10% trimmed mean were also considered; however,

the severity of the skewness continued to overwhelm the trimmed mean. The plots in

Figure 3.5 display the distributions of the logarithm of prediction error ratios for the

five combinations of sensors producing the lowest median ratio. Log-ratios smaller

than zero indicate that the VFCAR model outperformed the naive method for 30-

minute ahead forecasts of solar irradiance.

Table 3.1 shows that as the number of sensors increases, the ratio of prediction

errors also increases, indicating that the increase in model complexity lowers the

predicting power versus the naive method. However, multiple sensor combinations of

two or three sensors outperform the naive forecasts. Consider the placement of sensors

Table 3.1: Sensor combinations and median of prediction error ratios across all days.
The columns are the sensor combinations for sensor subsets of size k = 2, 3, and 4.
The values in parenthesis are the median ratio of prediction errors across all days.
The ratio is calculated as MPE of the VFCAR model divided by the MPE for the

naive forecasting method.

k 2 3 4

MAPE

4, 9 (0.9086) 7, 10, 15 (0.9613) 5, 10, 13, 15 (1.0834)
6, 13 (0.9094) 10, 13, 15 (0.9731) 1, 8, 10, 14 (1.0908)
3, 6 (0.9097) 7, 10, 13 (0.9771) 1, 3, 12, 15 (1.1005)
7, 8 (0.9108) 12, 14, 16 (0.9799) 5, 10, 12, 15 (1.1091)

11, 12 (0.9121) 1, 3, 14 (0.9852) 3, 7, 10, 15 (1.1095)

MSPE

11, 12 (0.7460) 7, 10, 15 (0.8849) 2, 5, 15, 16 (1.1968)
4, 7 (0.7762) 2, 3, 13 (0.9470) 7, 10, 14, 15 (1.2033)

12, 15 (0.7831) 3, 14, 15 (0.9511) 2, 10, 11, 15 (1.2399)
1, 2 (0.7889) 4, 8, 15 (0.9521) 1, 2, 8, 13 (1.2461)

11, 15 (0.7917) 7, 14, 16 (0.9530) 3, 11, 13, 16 (1.2499)
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Table 3.2: Summary percentiles of absolute prediction error ratios for the five
combinations of k = 2 sensors that produced the smallest median absolute

prediction error ratios across all days. The ratio is calculated as MAPE of the
VFCAR model divided by the MAPE for the naive forecasting method.

Sensors 4, 9 6, 13 3, 6 7, 8 11, 12
Minimum 0.1732 0.1221 0.1493 0.1481 0.0710

1% 0.2070 0.1842 0.1955 0.2016 0.1489
10% 0.4331 0.4092 0.4283 0.4211 0.3770
25% 0.6274 0.6288 0.6242 0.6229 0.6225
50% 0.9086 0.9094 0.9097 0.9108 0.9121
75% 1.2889 1.3334 1.2607 1.3451 1.2825
90% 2.0986 2.2575 2.2748 2.6416 2.2239
99% 9.2666 9.9180 15.1819 8.0972 7.3501

Maximum 21.8608 408.8727 37.9938 17.7292 1202.7520

Table 3.3: Summary percentiles of square prediction error ratios for the five
combinations of k = 2 sensors that produced the smallest median square prediction
error ratios across all days. The ratio is calculated as MSPE of the VFCAR model

divided by the MSPE for the naive forecasting method.

Sensors 11, 12 4, 7 12, 15 1, 2 11, 15
Minimum 0.0046 0.0051 0.0312 0.0211 0.0066

1% 0.0356 0.0654 0.0503 0.0456 0.1489
10% 0.1854 0.2224 0.2002 0.1826 0.3770
25% 0.3935 0.4367 0.4314 0.4473 0.4251
50% 0.7460 0.7762 0.7831 0.7889 0.7917
75% 1.6942 1.6601 1.5958 1.6906 1.6343
90% 5.6944 4.6447 4.6166 5.2944 5.1678
99% 84.6108 41.5952 139.2586 8.0972 99.1327

Maximum 5346050 523.7162 17700.3830 12116.1373 218.6609
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7, 10 and 15. There is an approximate 4% reduction in MAPE and an approximate

11.5% reduction in MSPE using the VFCAR model.

With respect to MAPE, 119 of the 120 possible combinations of two sensors

outperform the naive method, whereas only 21 of the 560 subsets of three sensors

outperform the naive method. None of the subsets of four sensors outperform the

naive method. Similarly, with respect to MSPE, all 120 combinations of two sensors

outperform the naive method, whereas only 38 of the 560 subsets of three sensors

outperform the naive method. Again, none of the subsets of four sensors outperform

the naive method.

For predicting solar irradiance at the La Ola PV plant using a VFCAR model,

the suggested optimal number of pyranometers is two. In particular, Sensors 11 and

12 performed well both in terms of absolute prediction error and square prediction

error. As seen in Figure 3.1 these sensors are located in the southeastern corner of

the PV array. This grouping in a single corner is contrary to intuition for predicting

Figure 3.5: Boxplots for the logarithm of the ratio of prediction errors across all days.
The ratio is calculated as MPE of the VFCAR model divided by the MPE for the
naive forecasting method. The left plot uses mean absolute prediction errors while
the right plot uses mean squared prediction errors.
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across the entire plant’s footprint. Although the combination of Sensors 4 and 9

performed the best in terms of absolute prediction error, it was in the lower half of

square prediction error ratios.

If desired, the combination of Sensors 7, 10, and 15 would be the optimal

three-sensor combination. This set of sensors outperforms all other groups of three

for both absolute and square prediction error. This subset, as well as other well

peforming combinations of three sensors, makes use of the more centralized locations

when compared to the combination of Sensors 11 and 12.

3.5 Concluding Remarks

We have presented a novel approach to the use of semiparametric time series

models in aiding in the determination of an optimal number and layout of sensors at a

PV plant. The VFCAR(p) model provides a flexible framework for fitting irradiance

data and making predictions. The sensor design algorithm is adaptable to PV plants

of much larger size and varying climate regions. For the La Ola PV plant, the

algorithm provides many sensor arrangements that are shown to provide more optimal

forecasts than the naive method of irradiance forecasting.

The addition of a covariate accounting for a weather condition, such as cloud

cover, may be explored in future work. Patrick et al. (submitted for publication)

examine the addition of a cloud cover covariate in the univariate framework using an

FCAR model fit via spline-backfitted local linear smoothing. This method performs

well in both estimation and forecasting. Additionally, we hope to apply the algorithm

to to a larger PV system, a system without a regular layout of sensors, and a system

located in a different climate zone.
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