
ABSTRACT

Some New Applications of Bayesian Longitudinal Models

Jonathon Vallejo, Ph.D.

Chairpersons: Matt D. Hejduk, Ph.D. and James D. Stamey, Ph.D.

In this dissertation we consider some novel applications of Bayesian longitu-

dinal methods. As inference is generally focused on response of an individual, we

work within the mixed model framework. The two applications are described below.

Our first application is to a data set containing measurements of the probability

of collision between two space objects orbiting the Earth. These measurements are

longitudinal in nature, as they are observed over time and vary according to which

two satellites they are taken on. This application presents a number of specific

challenges, such as measurements at irregular time intervals, sparse data, and a

bounded response variable. The second application is that of longitudinal network

meta-analysis. In clinical trials, one major question is how to compare treatments

across trials. However, current methods usually only deal with comparisons at a

single time point, discarding data at other time points. This problem presents

different challenges from the previous, such as defining network treatment effects

over time, developing diagnostic methods for choosing a correct model, and dual

longitudinal models for the mean and variance.



Some New Applications of Bayesian Longitudinal Models

by

Jonathon Vallejo, B.A.

A Dissertation

Approved by the Department of Statistical Science

Jack D. Tubbs, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Matt D. Hejduk, Ph.D., Chairperson

James D. Stamey, Ph.D., Co-Chairperson

David J. Kahle, Ph.D.

Jack D. Tubbs, Ph.D.

Jerry Z. Park, Ph.D.

Accepted by the Graduate School
August 2016

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.



Copyright c© 2016 by Jonathon Vallejo

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

DEDICATION xii

1 Trending in Probabilities of Collision: Background and Motivation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Conjunction Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Conjunction Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Calculation of Probability of Collision . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Problem Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 “Dilution” of the Pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Canonical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Methods & Results for Trending in Probabilities of Collision 23

2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Last Observation Carried Forward . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Look-Up Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Constrained Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.4 Bayesian Beta Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



2.1.5 Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Pc Trending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Last Observation Carried Forward . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 The Look-Up Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Vertex Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4 The Bayesian Beta Regression Model . . . . . . . . . . . . . . . . . . . . . . 42

2.2.5 New Beta Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.6 Bayesian Beta Cluster Regression. . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Measures of an Effective Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.1 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.2 Decision-Making Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Longitudinal Network Meta-Analysis 82

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.1 Univariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.2 BEST-ITP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.3 Emax Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.4 Multivariate Mixed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2.5 Fractional Polynomials Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.6 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v



3.3 Comparison to Univariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.1 BEST-ITP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.2 Emax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.3 Mulviariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.4 Fractional Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.4 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.1 Variance Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.2 Effect Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.5 Model Fit and Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Practical Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6.1 “Simultaneous vs. Separate” Models . . . . . . . . . . . . . . . . . . . . . . . 109

3.6.2 “Adjusting the Standard Error for Correlation” . . . . . . . . . . . . . 112

3.7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.8.1 Squared Relationship of Effect and SS in the BEST-ITP Model 128

4 Conclusions 129

BIBLIOGRAPHY 131

vi



LIST OF FIGURES

1.1 Visualization of new debris created by the Iridium 33/Cosmos 2251
collision (from Chan[19]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Closest approach distance for all tracked objects (from CelesTrak[1]) . . 4

1.3 Closest approach distance for all objects in the Iridium constellation
(from CelesTrak[1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Visualization of a conjunction (from Chan[19]) . . . . . . . . . . . . . . . 13

1.5 Visualization of trajectory using UVW coordinates (from Barker[7]) . . . 14

1.6 Positional error covariance ellipsoid defined by UVW coordinates (from
Chan[19]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Projection of conjunction into the conjunction plane (from Chan[19]) . . 15

1.8 Theoretical canonical behavior (from Hejduk[39]) . . . . . . . . . . . . . 19

2.1 Plot of log10 Pc vs. ratio of covariance radius to miss distance . . . . . . 44

2.2 Two-dimensional histogram of log10 Pc values vs. TTCA . . . . . . . . . 45

2.3 Plot of log(p̂/(1− p̂)) vs. TTCA . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Plot of log(µ̂/(1− µ̂)) vs. TTCA . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Plot of log(φ̂) vs. TTCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6 Spaghetti plot of log(y/(1− y)) vs. TTCA . . . . . . . . . . . . . . . . . 55

2.7 Clusters found from Beta clustering model . . . . . . . . . . . . . . . . . 60

2.8 Density plot of estimated prediction errors for all models . . . . . . . . . 66

2.9 Density plot of estimated prediction errors for the Look-Up and LOCF
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.10 Empirical CDF of prediction errors for all models . . . . . . . . . . . . . 68

2.11 Vertex Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.12 Beta Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.13 New Beta Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



2.14 Beta Clustering Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.15 Look-Up Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.16 Look-Up Model (with jitter) . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.17 Last Observation Carried Forward . . . . . . . . . . . . . . . . . . . . . . 72

2.18 ROC curve for classifying final log10 Pc > −7 (best models) . . . . . . . . 74

2.19 ROC curve for classifying final log10 Pc > −7 (worst models) . . . . . . . 74

2.20 ROC curve for classifying final log10 Pc > −4 (best models) . . . . . . . . 75

2.21 ROC curve for classifying final log10 Pc > −4 (worst models) . . . . . . . 75

2.22 ROC curve for classifying next log10 Pc > −7 (best models) . . . . . . . . 77

2.23 ROC curve for classifying next log10 Pc > −7 (worst models) . . . . . . . 77

2.24 ROC curve for classifying next log10 Pc > −4 (best models) . . . . . . . . 78

2.25 ROC curve for classifying next log10 Pc > −4 (worst models) . . . . . . . 78

3.1 Example of some diagnostic plots with generated BEST-ITP data . . . . 103

3.2 Plots of study and treatment effects from data generated using the
Fractional Polynomials model . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3 Correlation scatterplot matrix for data generated using the Multivariate
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 Spaghetti plot of Jansen data . . . . . . . . . . . . . . . . . . . . . . . . 122

3.5 Violin plots of selected percentiles collected from 1,000 simulations . . . 122

3.6 Univariate meta-analysis model used in simulation . . . . . . . . . . . . . 123

3.7 BEST-ITP meta-analysis model used in simulation . . . . . . . . . . . . 124

3.8 Emax meta-analysis model used in simulation . . . . . . . . . . . . . . . 125

3.9 Multivariate meta-analysis model used in simulation . . . . . . . . . . . 126

3.10 Fractional Polynomials meta-analysis model used in simulation . . . . . . 127

viii



LIST OF TABLES

2.1 Model Selection Output: Beta regression . . . . . . . . . . . . . . . . . . 50

2.2 Model Selection Output: Threshold Beta regression . . . . . . . . . . . . 56

2.3 Model Selection Output: Beta cluster regression . . . . . . . . . . . . . . 59

3.1 Comparison of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



ACKNOWLEDGMENTS

First, I would like to acknowledge the committee for their thoughtful sugges-

tions for improving the dissertation and for adding to the scholarship of this work.

I would like to thank Dr. Stamey specifically for helping recruit me to come to

Baylor. Without you, I would probably still be working as a telemarketer in Omaha,

agonizing over why it is so difficult to sell magazines to strangers. More broadly, I

want to thank all of the professors in the statistics department. You have allowed

me to carve out my own path, and trusted that I would responsibly use the generous

length of rope afforded to me. Hopefully this allowance has produced novel research

which justified the freedom.

I also owe a special thanks to Dr. Hejduk, who supervised my work on the first

two chapters. Dr. Hejduk generously agreed to oversee my naive foray into the world

of conjunction assessment. You devoted countless hours to helping me understand

all of the different aspects of the problem, and helped me stay on track to meet

all of the deadlines. More than that, you endured the painful learning process of

publishing papers in Latex and poured over my many lines of MATLAB code. More

than simply advising, you were often in the trenches of research with me, running

simulations and making graphs.

Lastly, I would like to thank my family and friends for supporting my continued

education. My parents have been behind every ambition, misstep, and flight of

fancy I’ve had. These have not always been mutually exclusive. I’ve been incredibly

fortunate to come in with a cohort from which I’ve made what promise to be lifelong

friends. I’m proud to be finishing alongside RJ, an often partner in crime who

embarked with me on various statistical and non-statistical endeavors, with varying

x



degrees of success. The last person I’d like to thank is my partner Michelle, whom I

met in the program, and who has provided endless support throughout the process.

xi



DEDICATION

To

My parents

xii



CHAPTER ONE

Trending in Probabilities of Collision: Background and Motivation

1.1 Introduction

Satellites have become an integral part of modern life, supporting phone com-

munication, television and radio broadcasting, internet access, and military activi-

ties. Indeed, it is difficult to imagine modern society without many of these tech-

nologies, especially in an age when the world is increasingly interconnected via long-

distance communications. As of 2013, there were over one thousand operational

satellites in orbit about Earth. About half of these active satellites are in Low-Earth

Orbit (LEO, meaning an orbital period less than 225 minutes), which is where the

International Space Station (ISS) conducts operations, along with other commercial

missions such as earth observation and satellite telephone communications. An in-

creasing amount of attention is being placed on protecting satellites in LEO, as the

frequency of object launches and satellite fragmentation events has contributed to

the proliferation of space debris, resulting in increased congestion. Kelly[47] notes

that “the number of space objects has greatly increased in the past 15 years and

is currently estimated to be 500,000 objects between 1 and 10 cm and 100 million

objects less than 1 cm.” She goes on to observe that these objects have three sources:

1) debris from satellites, 2) non-operational or “dead” satellites, and 3) operational

satellites that may or may not be able to maneuver. In addition to these smaller

objects, other sources suggest that the number of objects greater than 10 cm is

roughly 20,000.

As a result of the growing amount of debris in the commonly used orbits,

there has been an increased focus on protecting satellites from potential collisions

with other objects. For example, NASA produced the first orbit debris mitigation
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guidelines in 1995, although a formal policy was not promulgated until 2007. Though

space objects had been cataloged since the late 1950’s, these were the first proce-

dural attempts to give guidance on how to manage close approaches between two

objects and ultimately how to avoid collisions. In 2005, NASA established agency-

wide protocol for performing collision analysis and reactions to close approaches. A

project office called Conjunction Assessment Risk Analysis (CARA) was created to

perform these analyses for robotic missions, and it currently provides this service to

about 65 NASA and civil space satellites.

Although the probability of two space objects colliding is often negligible,

collisions do occur; and their impact on future space congestion is often tremendous.

Since 1991, eight on-orbit collisions have been reported, the last occurring in 2009

when an Iridium communications satellite was hit by an inactive Russian COSMOS

satellite. This collision created two debris clouds of approximately 500 and 1,300

objects that have been subsequently cataloged. In addition to this debris, in 2007

the Fengyun 1C satellite was deliberately destroyed, creating another debris cloud of

approximately three thousand cataloged objects. Though only the Iridium reflects

the case of a collision that was avoidable by collision mitigation procedures, these two

events exemplify how much impact collisions can have on the space debris population.

For instance, 50% of detected close approaches in LEO involve a debris object from

one of these three clouds. In effect, these two collisions doubled the number of

close approaches tracked in LEO and consequently increased both the risk of further

collisions and the amount of work needed to mitigate this risk.

The Iridium-COSMOS collision was the impetus for a significant increase in

breadth and sophistication of conjunction assessment activities, as it represented a

worst-case scenario for those attempting to mitigate collisions and the proliferation of

space debris, as both satellites were completely intact and collided at hypervelocity (¿

6,700 mph). In fact, these two satellites collided at the speed of 26,170 mph, which
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Figure 1.1. Visualization of new debris created by the Iridium 33/Cosmos 2251 collision
(from Chan[19])

resulted in the creation of a huge debris cloud of the number of pieces outlined

previously, with perhaps one hundred times that number of pieces too small to

be tracked by current radars. The proliferation of additional conjunction events

that this debris field generates will only increase the requirements for accurate and

meaningful conjunction risk assessment.

For some years, this risk assessment was based only on the closest predicted

miss distance between the two conjuncting objects. While this construct has imme-

diate intuitive appeal and is easy to communicate conceptually to decision-makers,

because it does not consider the uncertainties of the satellite trajectories, it tends

to produce results that are difficult to interpret. Consider Figure 1.2, which for 14

reports leading up to the Iridium 33 collision, graphs the closest predicted approach

of all tracked space objects, the closest predicted approach for any satellite within

the Iridium constellation, as well as for the Iridium 33. The black line indicates

the closest predicted approach between the Iridium 33 and the Cosmos 2251, which
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Figure 1.2. Closest approach distance for all tracked objects (from CelesTrak[1])

can be seen to be predicted farther than the closest object. This highlights a major

difficulty in assessing risk by using miss distance: often there are multiple serious

threats, and deciding which is most imminent is not straightforward, especially when

based on a metric that is not actually a measure of conjunction likelihood.

Figure 1.3 gives further evidence of the poverty of this particular risk assess-

ment paradigm. This figure shows what rank of risk the Iridium 33/Cosmos 2251

conjunction was of all conjunctions, those for just the Iridium constellation, and for

the Iridium 33. Over the 14 reports, the Iridium 33/Cosmos 2251 conjunction varies

from a rank of 1,611 of all potential conjunctions on report 3 to a rank of 11 on

report 4. Thus, when compared to all possible events, the Iridium 33/Cosmos 2251

varies quite a bit on how comparatively “risky” it is. Even if one were to use its risk

rating from the later reports, one would still conclude that it is less serious than 150

or 400 events.
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Figure 1.3. Closest approach distance for all objects in the Iridium constellation (from
CelesTrak[1])

The level of threat is still ambiguous when one considers the comparative risk

of the Iridium 33 to only satellites within the Iridium constellation. If one were

to use the first four reports, one would conclude that the Iridium 33/Cosmos 2251

conjunction is less serious than about 150 other conjunctions. Even if one were to

use later reports, this conjunction is never the most serious of all the satellites in

the constellation. Thus, from the available data, it is hard to pinpoint that this is

the event which needs most attention.

The situation can be ameliorated with a different type of calculation that

considers the uncertainty in the state estimates, which will allow the significance of

the miss distance to be assessed. If the uncertainties about both states are much

smaller than the miss distance between the two objects, then the conjunction is not

particularly worrisome even if the miss distance seems small in an absolute sense—

the two objects’ states are so well determined that one can have confidence that
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the two objects really will pass each other with the calculated distance. Conversely,

a larger miss distance with uncertainties about the same size as this miss distance

could well have a probability of collision large enough to be of concern even though

the miss distance might itself seem large. This calculation, called the Probability of

Collision, will be discussed in depth in a subsequent section.

The result of these debris-producing events is the potential to beget more

debris, a phenomenon known as Kessler syndrome. In 1978, Kessler[49] posited that,

due to the increase in objects in space, satellite collisions would be inevitable and

create further debris, in turn increasing the risk of future collisions. Kessler predicts

that “the result would be an exponential increase in the number of objects with time,

creating a belt of debris around the earth.” He likened the process for creating this

“debris belt” to the creation of the asteroid belt, though at an admittedly faster rate.

Interestingly, Kessler predicted that the first satellite collision could be expected to

occur in around 1989 (with a more conservative estimate placing the year at 1997),

based on his estimate of an increase of 13%/year growth rate of debris. The first

documented satellite collision occurred in 1991 between the Cosmos 1934 and debris

from the Cosmos 296. The domino effect described by the Kessler syndrome is most

likely in LEO, as this orbit regime contains by far the most space debris. Primack[64]

notes that this would not only endanger the International Space Station and Hubble

telescope, but also eventually GPS and other communications satellites.

The discussion above outlines the significant risks and ramifications associ-

ated with satellite collisions and makes it clear that there is a need for a systematic,

sophisticated way of assessing and mitigating these risks. However, there are tech-

nical and logistical difficulties in implementing an effective system. The discussion

surrounding the Iridium 33 collision gives a broad sense of both, suggesting the tech-

nical difficulty in calculating a reliable assessment of risk and the logistical difficulty

associated with choosing among hundreds of similarly risky events. We consider
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both types of difficulty further in order to give a perspective on limitations that add

ambiguity to the process and argue for more sophisticated assessment techniques.

The subsequent discussion is arranged in sections that address the definition of key

terms, the data collection and distribution process, the sources of these data via the

orbit determination process, and the calculation of the key parameter presently used

in conjunction risk assessment, the probability of collision.

1.1.1 Definition of Terms

The ensuing discussion will benefit from defining certain key terms more pre-

cisely, so we provide such definitions here. The process of producing the model

parameters to allow the prediction of a satellite’s future position is called orbit

determination (OD); it is a filter estimation process that combines actual sensor ob-

servations of satellite positions and other apriori information to generate a satellite

state estimate (estimate of satellite position and velocity) at a given time, called

an epoch time; a robust estimation process will also produce an estimation error

covariance matrix, which will specify the expected uncertainties in the estimated

parameters and the correlations among them. This information can be used by a

satellite propagator to predict satellite positions and velocities at a future time.

When two objects are expected to pass within close proximity of each other,

they are said to be in conjunction. A potential collision between two space objects is

interchangeably referred to as an event or a conjunction. The primary space object is

defined to be the satellite one is attempting to protect (generally speaking, an active

satellite). The secondary is the object that is endangering the primary, and this

object is usually a piece of debris, although as seen in the Iridium 33 collision, it can

be an intact satellite. The time of closest approach (TCA) is the time at which these

two objects are predicted to be closest, and the position of closest approach (PCA) is

the corresponding position of each object at that time. Conjunction Analysis is the
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process of determining which spacecraft will be in conjunction with a protected asset

over a time period of interest, and Conjunction Risk Assessment is the process of

determining the level of collision risk that each of these conjunctions presents. The

probability of collision (Pc) is an empirically calculated probability of the two objects

colliding, based on a few simplifying assumptions; and it serves as the principal

parameter for assessing collision risk. An entire section is dedicated to explaining

the calculation of this parameter.

1.1.2 Conjunction Data Distribution

Because a complete, up-to-date catalogue of the positions and velocities of

all known satellites is needed for Conjunction Analysis, this portion of the daily

calculation process takes place at the Joint Space Operations Center (JSpOC) at

Vandenberg AFB, CA, where the Space Catalogue is actively maintained. Screening

runs are executed in which each protected asset, with a box about it of carefully

chosen dimensions, is “flown” several days into the future; and any other catalogued

objects that penetrate this box are identified as conjunctors.

Once a screening run is complete, the results are further processed to generate

the orbital information needed to perform Risk Assessment. The precise TCA is

determined, and the two satellites PCAs are calculated. In addition to these posi-

tion and velocity data that constitute the PCAs, the state error estimates at TCA,

represented as covariance matrices, are also provided; these give a statement of the

expected variance and covariance of each of the position and velocity components

(the estimation process is presumed to be unbiased and therefore produce mean er-

rors of zero), as well as the additional solved-for parameters of atmospheric drag and

solar radiation pressure. Finally, information about the force model settings used in

the OD is also provided so that, should the user of the data wish to propagate the

solution, this can be done with the same model settings enabled. These data are
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collected into what is called a Conjunction Data Message (CDM) and distributed as

a discrete message to the owner or protector of the primary asset.

1.1.3 Conjunction Data Quality

Before considering methods for quantifying risk, we must first consider limi-

tations that may be imposed due to the quality of the data used for this purpose;

and such an investigation has two parts: the quality of the sensor observations that

feed the OD process and the quality of the OD modeling itself. We will treat each

of these in turn, beginning with the issue of sensor data quality.

Observation data are collected by a variety of space sensors that constitute

the Space Surveillance Network (SSN). These include dish and phased-array radars,

which provide range-to-target and two angles from the sensor to the spacecraft;

optical telescopes, which observe two angles but cannot observe range-to-target; and

occasionally other sensor types, such as interferometers or radio-frequency trackers,

which typically provide angular data. Radar data are typically reasonably accurate

in their range determination but not nearly as reliable in the angular measurements;

angle measurements by optical sensors are frequently quite accurate (since they are

calculated with reference to the star background, which is accurately known), but

there is no range measurement provided.

Because it is difficult to track LEO satellites with telescopes and non-LEO

satellites with most radars, it is unusual for a satellite to receive both types of

tracking and allow the strengths of both sensor phenomenologies to complement

each other. So there are errors in observational data due to inherent weaknesses in

the different sensor types. Additionally, observations are typically taken in “tracks,”

or groups of observations all obtained during the same observing session; one might

receive a set of, say, six observations in the span of one minute. While groups of data

are certainly welcome, if correlation exists among the observations then the basic
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premise of most estimation techniques—that measurements are uncorrelated—will

not be strictly met.

A second issue with tracking data is irregularity of supply. The sensors in the

SSN each have different detection and tracking capabilities, meaning that while all

sensors can, for their orbit regime of specialty, track large objects, only a narrow

subset can track the smallest objects. Because much of the Space Catalogue consists

of debris objects and most debris objects are small, only a few of the SSN sensors are

responsible for tracking a good bit of the Space Catalogue; and there is contention

for the tracking resources of these sensors. The JSpOC possesses a software-managed

sensor tasking paradigm that assigns the tracking of certain objects to certain sen-

sors; but if only a few sensors are responsible for most of the catalogue maintenance,

even with the priority scheme that this sensor tasking functionality allows, many

debris objects receive far less tracking than one would wish. Furthermore, sensor

outages, space weather phenomena, and radar energy misapplications can all con-

spire to encumber tracking throughput yet further. Lower tracking levels leave the

OD process more vulnerable to sensor observation errors and provide a weaker fit

overall.

Once tracking data are obtained, they are subjected to a batch minimum-

variance estimation process to generate an updated set of orbital parameters for the

satellite. The process begins by the appropriate choice of force model parameters,

which includes the selection of the proper fidelity of a geopotential model (number

of spherical harmonics to solve for in the Laplace equation series expansion that

models the irregular Earth’s gravity field), the effects of non-Earth gravity (such

as the sun and moon), the geopotential irregularity introduced by liquid and solid

Earth tides, and parameters that govern the solutions for atmospheric drag and solar

radiation pressure. Next, a proper fit-span of observations needs to be chosen, as

the batch technique does not correct for each observation sequentially but considers
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the entire dataset as a “batch.” Choosing a group of sensor observations that goes

back too far in time (too long a fit-span) tends to weaken the solution for prediction

into the future; choosing a group that does not go far back enough (too short a fit-

span) tends to produce a poor atmospheric drag solution. Finally, the observation

set must be reviewed for “outlier” data that can corrupt the estimated solution.

While such an enterprise should of course be conducted with care since there is no

apriori reason to suspect any particular observation, given the volume of objects

and observations most such exclusions must be performed by computer, which is a

much less robust process than a trained analyst’s data exclusion through the visual

review of residual plots. All of these areas are ripe for error that can weaken the

correction and therefore the generated state estimate.

Finally, in order to produce data that can be used for conjunction risk assess-

ment, the epoch states of the primary and secondary objects must be propagated to

TCA. The principal source of error in this propagation is the inability to model the

atmospheric density accuracies over the propagation interval, as the atmospheric

drag acceleration on the satellite depends on the local atmospheric density. The

atmospheric density is difficult to estimate because it requires estimating the at-

mospheric temperature, and a variety of factors influence this temperature. Since

the temperature is generally governed by the extreme ultraviolet (EUV) heating of

atmospheric gases by the sun, temperature is a function of time of day and latitude,

as well as the sun’s 27-day rotation cycle and 11-year cycle of activity. Acutely, the

temperature is also affected by solar ejecta that enter the earth’s atmosphere through

the polar cusp and heat gases through the manipulation of the earth’s magnetic field;

this is a product of solar storm activity and is extremely difficult to predict. There

can thus be considerable error associated with producing satellite future predicted

positions; and given that the model cannot represent these processes well, it is un-

likely that the covariance matrix emerging from the fit will model the error robustly.

11



It is often necessary, therefore, to add a consider parameter to the drag variance

in the covariance matrix in order to try to represent the atmospheric density error

more completely; while this approach is certainly welcome as an improvement over

using the unaltered covariance directly, it is an imperfect compensation method.

For all of these reasons, the information contained in a CDM to describe a con-

junction is uncertain and subject to change with future tracking and OD updates;

this is the reason that a single estimate of the situation taken several days from

the expected event is not adequate for Risk Assessment and that the more elabo-

rate trending approaches explored by this research are warranted. Before turning

directly to these methods, however, it is necessary to explain the calculation of the

probability of collision (Pc), as it is the parameter used by the industry as the single

encapsulation of collision risk. Having just discussed the potential issues with the

data, one can observe how these issues work their way through the calculation.

1.1.4 Calculation of Probability of Collision

As mentioned above, provided in the CDM is a parameter called the proba-

bility of collision (Pc), which is generally considered to be the best possible measure

for quantifying the risk for an event. Here, we briefly outline the methods used for

calculating this value. As noted previously, each conjuncting satellite has an esti-

mated position at TCA, about which a 3-dimensional error covariance is estimated.

This covariance is ellipsoidal, and, for near-Earth orbits, usually oriented in such a

way that the semi-major axis is close to the direction of the velocity of the object.

An image depicting these assumptions is given in Figure 1.4. This ellipse is

usually defined in terms of radial, in-track, and cross-track (RIC) coordinates, which

is a satellite-centered coordinate system. The radial direction is the direction of the

position vector emanating from the earth, the in-track direction is the direction

along the trajectory of the object, and the cross-track direction is perpendicular to
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Figure 1.4. Visualization of a conjunction (from Chan[19])

these two vectors (using the right-hand rule). Though the velocity vectors depicted

are not aligned with their respective in-track vectors, in practice they are usually

observed to be closely aligned, and thus are assumed to be aligned.

These vectors are sometimes given the alternative designation UVW, as seen in

figure 1.5. It is usually the case that the covariance ellipsoid is longest in the in-track

direction, so that it is most difficult to be accurate about where on its trajectory a

satellite is when TCA occurs.

This phenomenon is depicted in 1.6, where we see the ellipsoid longest in the

“V” (in-track) direction. In practice, we further assume that the ellipsoidal errors

associated with positional uncertainty are trivariate Gaussian. This implies that the

mean of the distribution of each object is taken to be the calculated position at TCA.

These covariances are presumed to be uncorrelated, implying that the total positional

uncertainty can be calculated simply by the sum of the two covariances (after having
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Figure 1.5. Visualization of trajectory using UVW coordinates (from Barker[7])

Figure 1.6. Positional error covariance ellipsoid defined by UVW coordinates (from
Chan[19])

14



Figure 1.7. Projection of conjunction into the conjunction plane (from Chan[19])

been rotated to be expressed in the same coordinate system). Traditionally, we take

this combined covariance and center it about the secondary object. Likewise, the

radii of circumscribing spheres about each object are summed to create a single

combined hard body sphere, which is placed at the location of the primary object.

This problem is equivalent to the original problem involving two separate Gaussian

densities due to the assumption that the covariances are uncorrelated. The result of

these assumptions is visualized in Figure 1.7, though in two dimensions as opposed

to three.

One last assumption generally made is that of rectilinear motion near the time

of conjunction, so that the dimensionality of the problem may be reduced. If the

conjunction between the two satellites takes place at high velocity, then the relative

motion in the neighborhood of the conjunction will be rectilinear; and a collision,

should it take place, will occur in a plane normal to the relative velocity vector
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between the two objects. We can then project the combined covariance and the

hard body sphere into this plane and consider the situation as a two-dimensional

problem: a circle, resulting from the projection of the hard body sphere, and a

covariance ellipse, resulting from the projected combined covariance. We are then

interested in the probability of the area swept out by the circle in the probability

density formed by the ellipse.[19]

The process for calculating Pc outline above is generally used for events which

are approached at a high velocity. If the velocity is sufficiently small (¡ 10 m/s),

many of the assumptions above break down (such as rectilinear motion). In such

a case, we use a Monte Carlo approach, simulating millions of trajectories for both

space objects and counting the number of times the miss distance is below a pre-

specified threshold. This is obviously more time consuming than the above approach

and therefore is employed only when necessary.

1.2 Problem Specification

As made clear by the preceding section the problem of deciding whether to

maneuver a satellite which is in conjunction with another space object is often not

straightforward, and a serious collision threat often involves the deliberation and

cooperation of various parties[33]. Quantifying the risk for any such conjunction is

typically accomplished through the use of the calculated probability of collision Pc

at TCA. This calculation is generally performed with each received CDM, and such

messages typically are received throughout the seven days leading up to TCA. The

calculated Pc value is affected by the uncertainty in the positions of the space objects,

an uncertainty that generally decreases as one approaches TCA. This decrease in

uncertainty typically yields a particular kind of behavior in Pc values, which we

shall refer to as the “canonical behavior”. We seek to incorporate the shape of this

canonical behavior into our understanding of the Pc values, with the goal of making
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predictions about future Pc values, as well as making inferences about the location

of the highest Pc value.

There has been considerable work in calculating the probability of collision, see

for example Akella (2000)[4], Patera (2000)[60], Chan (2003)[20], or more recently

Xu (2013)[82]. Though methods for improving the Pc are relatively well developed,

far less work has focused on detecting trends in repeated measurements of the Pc.

Notably, Carpenter and Markley have proposed various implementations of Wald’s

Sequential Probability Ratio Test (WSPRT) in deciding whether to accept the hy-

pothesis that a new measurement on the Pc is identical in information content to

the previous measurement[14][13][15]. Among the advantages of this method are its

simplicity and its inherent modeling of false alarms and missed detections. While

a considerable advance in Pc predictive methods, this approach is not without limi-

tations. For instance, although the WSPRT tests consecutive measurements, it has

no way of directly incorporating the times at which the measurements were taken;

it considers measurement time only indirectly through the accumulation of data in

forming the total information matrices from which it works. In general, Pc mea-

surements are not taken at equidistant time intervals, suggesting a potential loss of

information in the WSPRT approach.

In this manuscript, we propose a simple method to detect the trend in repeatedly-

measured Pc values. Our approach has the advantage of directly incorporating the

time between observations, which is allowed to be irregular. Additionally, we use

the Bayesian paradigm in order to incorporate prior information gathered from past

conjunctions. More sophisticated methods are certainly possible, but we wished to

determine how much predictive power could be rendered by a simple and straight-

forward foundational approach.
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1.2.1 “Dilution” of the Pc

It is clear that the probability of collision depends heavily on the size and

shape of the combined covariance ellipsoid. Alfano[5] investigated this relationship

for various miss distances, hard body volumes, covariance sizes and shapes. He

reported that for a given miss distance, hard body volume, and covariance shape,

there is a covariance size which maximizes the probability of collision, with the

probability decreasing slowly if uncertainty is increased (that is, the size of the

objects’ covariances are increased) and decreasing very rapidly if this uncertainty

is decreased. We seek to incorporate this known behavior into a statistical model

in order to better calibrate each measured probability of collision. In practice, one

typically observes a decrease in the size of the covariance as the event moves closer

to TCA, producing what we will refer to as a “canonical behavior”. We aim to try

to recover this behavior beneath all the other “noise” of the problem and ultimately

identify the point of maximum probability of collision, in order to make better

judgments regarding the degree of continued monitoring that the conjunction merits.

1.2.2 Canonical Behavior

As noted above, changes in Pc generally follow a canonical behavior with re-

spect to a decreasing state estimate uncertainty; and the the parameter used to

illustrate this phenomenon is the ratio of covariance radius to miss distance (for the

present we have used a spherical covariance for convenience, but this ratio can be

generalized as the Mahalanobis distance and applied to the general case). Figure

1.8 depicts what we have called the “canonical behavior” of an event’s Pc: an initial

increasing change in order of magnitude in Pc as uncertainty decreases, followed by

a subsequent drop off when the uncertainty becomes even smaller. The decrease

in probability as uncertainty increases is what Alfano[5] referred to as “dilution in

probability” because it was caused not by improvements in knowledge of satellite
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positions but by a lack of positional knowledge that renders any conclusion of high

risk more difficult. Note that Pc values are generally particularly small probabili-

ties, and consequently one is usually concerned with changes in orders of magnitude.

That is, one is interested in changes in log10 Pc as opposed to simply changes in the

Pc value. In the following development, we let y denote the log10 Pc value.

Figure 1.8. Theoretical canonical behavior (from Hejduk[39])

Though informative, using the ratio of covariance size to miss distance as a pre-

dictor variable is difficult in practice. Although the size of the combined covariances

tend to shrink over time, the rate is not the same for each event. In some cases, the

value of this ratio, which appears monotonic before and after the peak point in the

figure above, actually increases and decreases several different times before reaching

its final value, making modeling a trend even more difficult. Furthermore, the miss

distance calculated on the initial CDM is subject to change on subsequent CDMs,

and there is often no obvious trend in these updates. As a result, one never knows

19



what the next ratio value will be, even if one knows at which time a CDM would

be received. Thus, to use this ratio as a predictor in a statistical model, one would

need to regress the ratio on some quantity one could predict, such as time. This is

especially difficult because the relationship between the ratio and the log10 Pc value

is different for each event, as is the relationship between the ratio and time. To see

the difficulty in this kind of modeling, let xkt be the ratio of covariance radius to miss

distance for the kth event at time t. We assume that both yit and xit is measured

with errors eit and εit, respectively. Then this model is a state-space model[65] and

can be written as

yit = f(xit) + eit

xit = g(t) + εit

e, ε ∼ h(e, ε|α)

where e and ε are error terms with a joint distribution h(·|α). It is clear that when

attempting to calculate y via the ratio, in practice one needs to specify not only

the relationship f between the ratio xit and yit but also specify the relationship g

between xit and t.

We leave the exploration of this kind of hierarchical model for later research.

In this investigation, we use time as the predictor variable. We assume that the

y values still follow a similar canonical behavior with respect to time as they do

to with respect to the ratio. Note that this assumes that, as time nears TCA,

the ratio decreases. We expect this kind of behavior, as one generally has more

accurate information as one approaches TCA. This approach inherently encapsulates

the interplay of how the covariances, miss distance, and positional approximations

change over time. Because each of these exhibit a high variability across events, we

seek to model to overall ensemble progression of these effects over time, as opposed

to how each effect impacts the calculated Pc over time.
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For simplicity, we attempt to model this behavior with a downward opening

parabola, with the aim of correctly predicting the location and, less critically, the

magnitude of the peak y value. Though model fit is important, our main goal is

to correctly identify the peak y location and, secondarily, value, whether or not

the other y values are predicted accurately. For this purpose, the parabola is the

simplest curve that can provide a reasonable match to the behavior shown in the

previous figure, given the particular attributes of interest here.

1.2.3 Bayesian Inference

Bayesian inference relies on the posterior distribution of the parameters. To see

how the posterior distribution is calculated, let θ be a vector of unknown parameters,

defined on the parameter space Θ. Suppose one has data y, with joint distribution

f(y|θ). Let π(θ) be a prior distribution on θ with CDF Pθ. Treated as a function

of θ for fixed y, the joint distribution becomes the likelihood, l(θ|y), defined on Θ.

The posterior distribution of θ, given by Bayes’ theorem, is

π(θ|y) =
l(θ|y)π(θ)∫
l(θ|y)π(θ)dθ

.

This is the distribution of the parameters after having seen the data vector y. Thus,

the prior beliefs about parameters and their distributions are updated after encoun-

tering the actual data. The posterior distribution often does not have a closed form

and must be approximated using numerical methods such as Markov Chain Monte

Carlo (MCMC).

1.2.3.1 Inference for a new data point Suppose one has data y and one

wishes to predict y∗ = logPc at a new data point at time t∗. One can make an

inference on y∗ by using the predictive distribution

g(y∗|x∗,y) =

∫
Θ

g(y∗|θ, x∗,y)π(θ|y)dθ,
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which can be estimated by using the posterior samples from the MCMC draws. In

practice, we usually do not know t∗ in advance, as it is determined by the exigencies

of any particular event. However, for simulation purposes, we use the next time

point at which a CDM was received and make a prediction. We construct a 95%

credible interval for y∗ and check to see if the actual value of y is contained in the

interval. The percentage of credible intervals which contain the true y value is known

as coverage. If the coverage is close to the nominal value of 95%, we can assume

that these predictions are reliable.
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CHAPTER TWO

Methods & Results for Trending in Probabilities of Collision

2.1 Methods

In this section we present the statistical methodology underlying our models

for capturing the trend of logPc value over time.

2.1.1 Last Observation Carried Forward

A common technique for imputing missing data in a longitudinal data is Last

Observation Carried Forward (LOCF)[63]. In this approach, one replaces any miss-

ing value for a given subject with their last observed value. Many have offered

criticisms of this approach. For instance, Saha[69] argues that this method induces

bias under informative dropout, Kenward[48] lambastes the method, and argues that

it is only appropriate under unrealistic special cases. Nevertheless, this method is

widely used in missing data, as it is simple and intuitive.

In conjunction risk assessment, LOCF more or less represents the current

practice for interpreting Pc values. For instance, the most recent Pc value is generally

taken to be the most reliable measurement, and decisions are currently based on these

values. In effect, operators “predict” all future Pc values to be the last observed Pc

value, though they certainly expect some variability in future values. One of our

objectives is to quantify how much variability operators can expect in future values.

In addition, we consider whether the last Pc value really is the “best” prediction,

or if other information can be used to improve this prediction. Underlying these

objectives are the empirical findings by operators that some events exhibit more

variability in Pc than others, and that Pc values seem to follow a general trend over

time.
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2.1.2 Look-Up Tables

Look-up tables have been in wide use in statistics since at least 1903, due

to Sheppard’s definitive tables for the standard normal cdf and pdf[71]. These

tables have historically been used to avoid having to repeatedly calculate difficult

quantities, such as
∫ x

0
exp (−t2)dt, which is involved in the normal cdf and pdf[24].

These look-up tables serve as an important example for our problem, as they are in

wide use due to the popularity of the normal distribution as a modeling distribution.

In the problem of Pc trending, we consider the distribution log10Pc by time to TCA.

Similar to the normal distribution, this distribution is to be referred to repeatedly

for inference, so that the idea of a look-up table might be useful in practice.

Creating a look-up table for the distribution log10Pc by time to TCA involves

estimating the conditional distribution of y = log10Pc at a given time t to TCA.

One of the first important approaches to this problem was given by Stone[76], who

suggested neighbor-type estimates. To illustrate ideas, let (X1, Y1), ..., (Xn, Yn) be a

random sample from the joint distribution of (X, Y ). Stone suggested estimates of

F (y|x) of the form

F̂ (y|x) = n−1

n∑
i=1

Wi(x)I(Yi ≤ y), −∞ < y <∞ (2.1)

where Wi(x) = Wi(x;X1, ..., Xn) weights more heavily Y -values for which Xi is closer

to x. Stute[77] developed asymptotic properties for estimators of this type based on

kernel weights.

Perrachi[61] notes that, in estimating the distribution of a random variable,

one can choose to estimate either the conditional quantile function or conditional

distribution function. For simplicity, suppose that Z is a random variable with an

absolutely continuous distribution with strictly positive density. Then the cumula-

tive distribution function (CDF) is defined on R by F (z) = P (Z ≤ z), while the

quantile function is defined on (0, 1) as Q(u) = {z ∈ R : F (z) = u}. Thus, Q and
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F are inverses of each other, so that Q(F (z)) = z and F (Q(u)) = u. As a result,

either function could be used to estimate the distribution of a random variable.

These estimators can be easily extended to conditional distributions. Suppose

instead one observes a random vector (X, Y ), where X is k-dimensional and Y is a

real-valued continuous random variable with strictly positive density, as before. One

may characterize the conditional probability distribution through the conditional

distribution function F (y|x) = Px(Y ≤ y), or through the conditional quantile

function Q(u|x) = {y ∈ R : F (y|x) = u}.

Characterizing a conditional probability distribution through the quantile func-

tion has a few notable difficulties. To explore these, note that Q(u) may be charac-

terized as the unique solution to the problem

min
z∈R

Elu(Z − z) (2.2)

where lu denotes the asymmetric loss function

lu(v) = [u− I(v < 0)]v. (2.3)

To describe a conditional distribution f(y|x), one typically employs quantile regres-

sion. Quantile regression seeks to estimate the parameters of a function g(·), which

is the unique solution to the problem

min
g∈G

Elu(Yi − g(Xi)), 0 < u < 1 (2.4)

where G is the class of real-valued functions defined on Rk. In practice, g(·) is

often taken to be linear, so that Q(u|x) = xTβ(u), as described in Koenker and

Bassett[52]. Then the estimate of the k-dimensional parameter β(u) is any solution

to the problem

min
b∈Rk

n−1

n∑
i=1

lu(Yi −XT
i b), 0 < u < 1. (2.5)
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The resulting estimate β̂(u) can be used to define Q̂(u|x), which in turn can be used

to estimate the conditional distribution function

F̂ (y|x) = sup
{
u ∈ (0, 1) : Q̂(u|x) ≤ y

}
. (2.6)

Perrachi shows that if the conditional distribution of Y depends on x through

both a linear location parameter µ(x) = α + xβ and a scale parameter σ(x) > 0,

then the conditional quantiles are no longer linear in x. That is, if the data Y

exhibit heterogeneity of variance across varying levels of x, then the quantiles are

not necessarily linear. Thus, linear quantile regression may yield poor estimates in

this case. Furthermore, this non-constant variance may produce estimates of linear

models for conditional quantiles which cross each other, violating a basic assumption

about quantiles. Some nonparametric estimators have been proposed, based on ker-

nel or nearest neighbor methods (Antoch and Janssen[6]; Samanta[70]; Truong[78];

Bhattacharya and Gangopadhayay[8]; Chaudhuri[21]), regression splines with a fixed

number of knots (Hendricks and Koenker[40]), smoothing splines (Koenker et al[52])

and penalized likelihood.

A difficulty particular to quantile regression methods, mentioned above, is

the so-called “no-crossing” condition. This is the condition that, for all values of

a covariate x, one should have Q̂(u1|x) ≤ Q̂(u2|x) when u1 < u2. That is, the

regression line of a lower quantile should not up-cross the regression line of an upper

quantile. To see why this must be the case, note that when u1 < u2, the solutions

z1 and z2 which satisfy

F (z1) = u1

F (z2) = u2,

must also satisfy

z1 < z2,
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since the CDF is a monotonically increasing function. Thus, we must have Q(u1) <

Q(u2) andQ(u1|x) < Q(u2|x) by extension. Thus, we seek estimators ofQ(·|x) which

adhere to this constraint. Koenker[51] avoided this issue by considering parallel

quantile functions.

There have been some solutions proposed for the “no-crossing” condition, no-

tably He[38], Wu and Liu[81], Neocleous and Portnoy[58]. Bondell[10] notes that

several authors have proposed to first estimate the conditional cumulative distribu-

tion function via local weighting, and then invert it to obtain the quantile curve.

He notes that this method is suitable for estimation of the conditional quantile,

but that it is not suited for estimation of linear predictor effects. As our concern

is only estimation of conditional quantiles, this is not a limitation for our applica-

tion. Because our data exhibits non-linearity and heterogeneity with respect to the

covariates, direct estimation of the quantile function is difficult. We proceed with

methods based on the empirical CDF, which circumvents these issues.

2.1.3 Constrained Bayesian Inference

Gelfand[35] introduced MCMC methods for constrained parameter problems.

He notes that if one has the full conditionals for each parameter in the model,

producing MCMC draws adhering to the constraint simply involves modifying the

full conditional density. For instance, suppose one has data y which has density

f(y|θ), where θ is a k-dimensional vector constrained to lie in a subset SkY of Rk.

Furthermore, in Bayesian models, we specify a prior distribution for θ, say p(θ|λ).

Then, Gelfand shows that the posterior distribution of any element of θ is

f(θi|Y, λ, θj, j 6= i) ∝ f(Y|θ)p(θ|λ), θi ∈ Ski (θj, j 6= i),

so that the posterior distribution follows its usual form, only with the specified

constraints.
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As Gelfand notes, there are a few simple ways to simulate draws from this

distribution. One way is to generate the full distribution, not accounting for the

constraints, and then to only keep the variates which satisfy the constraints. This

can also be accomplished by simulating draws U from a uniform(0,1) distribution

and following θi = F−1
i [Fi(a) + U(Fi(b) − Fi(a))] where Fi is the full conditional

CDF of θi. This produces a draw of θi which adheres to the constraints, and is due

to Devroye[25].

2.1.4 Bayesian Beta Regression Models

Generalized linear models were introduced by Nelder[57] in 1972 to solve the

problem of regression for responses which have a non-normal distribution. These

models often are used for binary and count data, so that the usual models in-

volve the Binomial, Poisson, Negative-Binomial, or Multinomial distributions. Of

course, this general class of models includes those which handle continuous data, such

as Normally-distributed responses (the usual linear regression case), and Weibull-

distributed responses (common in survival analysis). Notice that none of the models

handle responses with bounded support. To handle such responses, methods for

Beta regression were introduced by Paolino[59], Kieschnick and McCullough[50],

and Ferrari and Cribari-Neto[31].

Though Beta regression seems to be the most popular regression method for

bounded responses, it should be noted that other methods exist. For instance, one

may choose to transform the data using the logit function and use linear regression

on the transformed responses. Let y be a vector of bounded responses such that yi ∈

(a, b). Furthermore, let X be an n × p design matrix containing the corresponding

covariates. Then one may choose to model

log

(
y

1− y

)
= Xβ + ε, ε ∼ N(0, σ2I),
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so that one may proceed to apply usual linear regression techniques. Define zi =

log (yi/(1− yi)), so that one may write the response vector as z. Suppose yi is a

probability, so that zi can be interpreted to be the log odds of an event. Thus,

this model has the advantage of being able to utilize known techniques in linear

regression, but has the disadvantage of forcing one to interpret the results in relation

to the response on a different scale.

Other techniques are possible, such as the fractional logistic model, various

nonlinear models, and models based on other bounded distributions (e.g. the sim-

plex distribution). Beta regression is attractive because it builds upon the GLM

framework and it is based on a familiar distribution. Though these other models

are possible, we proceed with Beta regression because it has a recently developed

framework for mixed and mixture models, and because it can be fit in a rather

straightforward manner with Bayesian techniques. Thus, it is sufficiently flexible

and is able to incorporate prior information.

The primary aim of GLMs is to model some transformation of the expected

value of the response variable with a linear model. This indirectly specifies a rela-

tionship for the mean, and one often treats parameters related to variability, such as

the so-called “precision parameter”, as a nuisance parameter. This parameter can

also be modeled, and such models were explored in the context of Beta regression

by Cepeda[18], Cepeda and Gamerman[17], and Simas et. al[72].

The aforementioned developments all extended methods of inference for inde-

pendently and identically distributed Beta variables. Our data consists of observa-

tions which are likely dependent, as they are longitudinal in nature. Furthermore,

we are interested in making predictions about individual events, such as the log10 Pc

behavior for an event as it nears TCA. When one has longitudinal data and the goal

of inference is prediction of individual responses, the most common technique is the

mixed model. Mixed models were popularized for longitudinal data by Laird and
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Ware[53], and a general approach for fitting GLMMs was introduced in Stiratelli,

Laird, and Ware[75]. As the Beta GLM was late to be developed, mixed models are

fairly new to this setting. For instance, one of the first introductions to Beta mixed

models was provided by Verkuilen and Smithson[79]. Bayesian implementations of

the Beta mixed model soon followed, described in Figeuroa-Zuniga et. al[32], and

Bonat et. al[9].

2.1.5 Functional Data Analysis

Functional Data Analysis is an extension of longitudinal data analysis, a field

which attempts to explain the effect of time on various subjects with multiple mea-

surements. For example, consider a study which follows the blood pressure of a

number of individuals over time. Each subject’s blood pressure will change depend-

ing on each individual’s genetic predisposition, thus implying that the analyst must

account for effect of the subject as well as time. The case of trending Pc over time is

similar in that one observes multiple measurements of Pc for a single event, implying

correlation among measurements within the event. Additionally, each event seems

to have a slightly different effect on the trend of Pc values over time, reinforcing the

need for a longitudinal model. In previous sections, we have introduced parametric

models, one of which (downward-opening parabola) is of the form

y ∼ F (µ, φ)

g−1(µ) = Xβ,

where F () is the CDF of a distribution from the exponential family. However, we

noted that this parametric model may be too restrictive for the overall trend of Pc

values, or a within-event trend in Pc values. Instead, we might consider modeling a

trend non-parametrically by specifying a general unknown function f(x):

y = f(x) + ε.
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Specifically, let yij represent the logPc value of the ith event from the jth CDM of

that event. Let Xi(Tij) be a random function for the ith event at the jth CDM at

time Tij. The model we consider is

yij = Xi(Tij) + εij = µ(Tij) +
∞∑
k=1

ξijφk(Tij) + εij,

where φk are eigenfunctions and ξij are uncorrelated random variables with zero

mean and variances λk, the eigenvalues corresponding to the eigenfunctions.[83] Uti-

lizing eigenfunctions to express an overall function is often called functional princi-

pal component analysis. This method allows us to draw inferences about the overall

trend and the within-event trend based on only a few observations. This, in fact,

was the reason for our choice in pursuing a functional data approach to the prob-

lem. It is well known that longitudinal data analysis models tend to need many

observations for each subject in order to estimate their numerous parameters. In

contrast, the current method estimates only a few parameters. In practice, the sum

of eigenvectors is limited to the first few, those which explain the majority of the

variability in the model. The need for only a few parameters and a high level of

functional variability makes the functional data analysis ideal for the trending of Pc

values.

2.1.5.1 Principal Component Analysis. The model above is a functional ex-

tension of a standard dimension-reduction technique called principal component

analysis. Consider a set of n observations of a p-dimensional random variable, i.e.

xi = {xi1, xi2, ..., xip} for i = 1, ..., n. The basic idea behind principal components

is to explain the variance-covariance structure for a large number of variables (in

this case, the dimensions of xi) through a few linear combinations of these original

variables. This method allows for dimension reduction and for interpretation. Let

~xi denote the n observations of the ith dimension. Then the idea is to find a new set
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of vectors ~y1, ~y2, ..., ~yp where

~yi =

p∑
j=1

lij ~xj,

where var(~yi) = ~l
′
iΣ
~li and for cov(~yi, ~yk) = ~l

′
iΣ
~lk = 0 and var(~y1) ≥ var(~y2) ≥ ... ≥

var(~yp) for ~l
′
i = (l1i, l2i, ..., lpi). This problem has the following solution:

(1) Suppose that the matrix Σ has associated real eigenvalue-eigenvectors given

by (λi, ~ei) where λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0, then the ith principal component

is given by

~yi = ~ei
iX = ei1 ~x1 + ei2 ~x2 + ...+ eip ~xp,

and var(~yi) = λi for i = 1, 2, ..., p, cov(~yi, ~yk) = ~ei
′
Σ~ek = 0 for i 6= j.

Note, the eigenvalues λi are unique, however, the eigenvectors (and hence

the vectors ~yi) are not.

(2) The total variance for the p dimensions is tr[Σ] =
∑p

i=1 λi. Hence, the pro-

portion of variance explained by the kth principle component is λk/
∑p

i=1 λi.

(3) If the matrix X is centered and scaled so that Σ is the correlation matrix,

then
∑p

i=1 λi = p.

In practice, we choose a suitable “cutoff” for what percentage of the variance we

want the new bases ~yi to explain (say, 95%). Then we choose to use these q < p

new bases to re-express the original data in a smaller dimension. In functional data

analysis, we replace the vector observations with functional observations.

2.1.5.2 Functional Data for Sparse Longitudinal Data. As mentioned earlier,

the data we consider is sparse longitudinal data. We have many events, but each

event has only a few log10 Pc values. This sparseness presents difficulty in estimating
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functional data models, as one must estimate the functional principal component

scores ξik =
∫

(Xi(t)− µ(t))φk(t)dt, which are usually estimated via numerical inte-

gration. When the data is sufficiently sparse, a common estimate for this parameter

is ξ̂Sik =
∑Ni

j=1(Yij− µ̂(Tij))φ̂k(Tij−Ti,j−1), setting Ti0 = 0. As noted by Yao[83], this

estimator will not yield reasonable approximations to ξik when the data is sparse.

Yao[83] overcomes this difficulty in estimating ξik by assuming that ξik and εij

are jointly Gaussian. As a result, the expectation of ξik is tractable, and is given by

ξ̃ik = E(ξik|Ỹi) = λkφ
T
ikΣ

−1
Yi

(Ỹi − µi),

where Σ−1
Yi

= cov(Ỹi, Ỹi). Yao proceeds with inference using this expected value in

lieu of the less reliable estimators based on sums. This procedure, which he calls

Principal Component Analysis through Conditional Expectation (PACE), is now a

common method for handling sparse functional data.

2.2 Pc Trending

In this section we present the models we propose for assessing the trend in

logPc values over time.

2.2.1 Last Observation Carried Forward

We briefly describe our implementation for LOCF. In our simulations, we

predict future log10 Pc values with the previously observed value for that event.

Thus, for the jth OCM of the ith event, we predict

ŷi(j+1) = yij,

which ignores all other past values, as well as the time to prediction. We construct

prediction intervals for this method using Repeated Cross-Validation, in the same

way as discussed below for the Look-Up Method.
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2.2.2 The Look-Up Method

We next consider a simple extension of the LOCF method, called the Look-Up

method. This method utilizes the previous quantile rather than using the previous

logPc value directly.

2.2.2.1 Intuition. We propose a simple method as basis of comparison for

our more sophisticated models, which we call the Look-Up Method. The Look-Up

Method is based on the common expectation that, when an event is observed with

relatively high Pc values, we can suppose this event to behave similarly to other

events with other similarly high values. In order to formalize this intuitive approach

into an explicit model, we need to establish how high “relatively high” is. A natural

way to quantify this notion is in terms of quantiles. That is, we expect events

with logPc values in the qth quantile to behave similarly to other events with logPc

values in the qth quantile. The method we describe below is similar to methods

involving “look-up tables,” where quantiles for various scenarios are used to find the

probability of an event within the table.

2.2.2.2 Method. Let x and y be the time and Pc value from the most recent

observation. Furthermore, let xnew and ynew represent the time of prediction and

the true Pc value at this time. The algorithm for the Look-Up Method is as follows

We find that w = 2 days to be a reasonable window length. This length

depends on how much prior data is available, as w may need to be smaller for large

datasets, allowing for more precise estimation of the CDF. Note that this method

only predicts an estimate of ynew and does not by default generate a prediction

interval or any other confidence information.

The method above is simple: find the sample quantile of the observed Pc

value at the given time, and assume that future Pc values will be at the exact same
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Algorithm 1 Look-Up Method

1: procedure Look-Up
2: Choose an historical data set Yh such that the events contained in Y are

believed to behave similarly to the event of interest.
3: Choose a window w.
4: Calculate the empirical CDF F̂ (y) of the logPc values in the interval (x −

w, x+ w).
5: Calculate the sample quantile q̂ of y
6: Calculate the empirical CDF F̂ (y) of the logPc values in the interval (xnew−

w, xnew + w).
7: Predict ynew to be q̂(xnew)
8: end procedure

quantile. As the model is simple, it also discards potentially useful information.

For instance, the predictions are made based only on the sample quantile of the

most recent observation, and makes no use of previous observations other than, of

course, the historical Pc behavior information. However, one could argue that the

most recent observation is the most (or only) meaningful observation, and thus one

should make inferences based on this value rather than more immediate past values.

2.2.2.3 Prediction Intervals. As noted above, the Look-Up Method does not

automatically generate prediction intervals; this is a consequence of the method

making no distributional assumptions. However, one may still construct predic-

tion intervals via bootstrapping or cross-validation[74]. Recently, these methods

were compared[11], and the results from this comparison indicate that estimators

based on Repeated Cross Validation (RCV) tend to outperform other estimators

(e.g. bootstrap estimators). As a result, we implement RCV to generate prediction

intervals. The method was initially proposed by Burman (1989)[12], which describes

the algorithm in detail.

We use RCV to estimate the distribution of prediction errors. This will allow

us to construct prediction intervals at any confidence level for the Look-Up method.
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Our procedure is as follows.

Algorithm 2 RCV algorithm

1: procedure RCV
2: for Each repetition r ∈ nRep do
3: for Each fold i ∈ nFolds do
4: for Each event j ∈ nEvents do
5: for Each OCM k ∈ nOcms− 1 do
6: Predict yk+1 using Look-Up Method
7: Estimate prediction error ek+1 = yk+1 − ŷk+1

8: end for
9: Collect prediction errors across OCMS pV ecj = e2, ..., enOcms

10: end for
11: Collect prediction errors across events pStore = (pV ec1, ..., pV ecnEvents)
12: Calculate estimated percentiles p̂i using pStore for i = 1, ..., 99
13: end for
14: Calculate mean of estimated percentiles
15: end for
16: Calculate mean of estimated percentiles
17: Return estimated percentiles
18: end procedure

Notice that for each event, predictions are made for all but the first CDM

using the previous CDMs. Recall that CDMs are received at varying intervals, so

that the procedure above results in making predictions at varying intervals into the

future. Thus, the procedure implicitly assumes that the distribution of prediction

errors does not depend on time to prediction. While this assumption is generally

untenable, the data is such that the time between consecutive CDMs is generally 2

days or less. As one is generally concerned with making predictions no sooner than

one day into the future, these prediction errors are conservative for their operational

use, meaning that they predict a more worrisome Pc than the actual value. This

is because predictions are generally more variable as time to prediction increases.

Thus, this procedure results in prediction intervals which hold reasonably for all
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prediction times of 2 days or less. The procedure is simple and generally conservative.

Future research may focus on different bootstrapping procedures which improve the

accuracy of these errors.

2.2.3 Vertex Model

In order to compute this predicted Pc inverted parabola, we use constrained

optimization[54] to enforce a downward-opening behavior. There is also precedent

for constrained inference in the Bayesian paradigm, as Gelfand[35] introduced an

approach to Gibbs sampling in constrained parameter and truncated data problems.

Specifically, Gelfand considers problems with ordered parameters, constrained pa-

rameters, and censored data. Considering the general equation for a parabola below,

our problem is seen as one involving constrained parameters, as we know that β2 < 0

and (as discussed subsequently) β0 < 0.

y = β0 + β1t+ β2t
2

We also show that this induces a constraint on β1. Implementing these constraints is

another way in which we can “inform” the model. Utilizing these constraints along

with an informative prior structure allows us to include a maximal amount of prior

information, which we believe to be essential, as many of the events we consider

contain only 3 or 4 data points, and we wish a reasonable prediction as early as

possible within the event.

To allow our model to incorporate prior information from past events, we use

the Bayesian paradigm[36]. Let yij be the log10 Pc from the jth CDM from the ith

event. Similarly, let tij be the time (in days) until TCA for the jth CDM from the

ith event. We assume that the observed Pc values over t follow the relationship

yij = β0 + β1tij + β2t
2
ij + εij,
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where εij ∼ N(0, σ2
ij). Furthermore, we assume this parabola will be downward open-

ing, to attempt to model the expected canonical behavior. Utilizing the Bayesian

paradigm will allow us to incorporate information about where the peak y value

usually is, and how quickly the y values tend to drop off. This incorporation is ac-

complished by specifying informative prior distributions for the parameters, which

are considered random variables in the Bayesian paradigm. Another consequence of

treating parameters as random variables is that one can make probabilistic state-

ments about functions of parameters, a Bayesian feature that is not fully possible

with a frequentist approach. Thus, one can make statements about the probability

of the peak Pc value occurring at a particular time and magnitude. Finally, using

the Bayesian paradigm allows us to make predictions in this four-parameter model

even with only two or three observations by utilizing the prior distributions of the

parameters to help identify the likely values of the parameters.

2.2.3.1 Prior Structure. The usual prior structure for regression coefficients

in linear regression is an independent normal prior for each regression coefficient[36].

We amend this structure to incorporate the constraints we know to exist in our

problem. We know that the parabola must open downwards, so that β2 < 0. As a

consequence of this constraint and the fact that all y values are less than or equal

to 0 by definition (since they represent the base 10 logarithm of values between 0

and 1), we also know that β0 < 0.

We show that the parameter β1 must also be constrained. Because yij ≤ 0 for

all i, j, it follows that the peak y value should also be less than or equal to zero. It is

easy to show that the location of the peak is h = −β1/2β2, and that the magnitude

of the peak is b = β0 − β2
1/4β2. In order to force the magnitude of the peak b to be

less than or equal zero, we must have

β0 − β2
1/4β2 ≤ 0
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4β2β0 − β2
1 ≥ 0

β2
1 ≤ 4β2β0,

where the second line follows since β2 < 0. This implies that β1 ∈ [−2
√
β0β2, 2

√
β0β2].

Implementing these constraints in conjunction with the usual prior structure, we

have

yij = β0 + β1tij + β2t
2
ij + εij

εij ∼ N(0, σ2
i )

β0 ∼ Normal(µ0, σ
2
0)I(−∞,0)

β1 ∼ Normal(µ1, σ
2
1)I(−2

√
β0β2,2

√
β0β2)

β2 ∼ Normal(µ2, σ
2
2)I(−∞,0)

σ2 ∼ InverseGamma(a, b),

where I() is the indicator function. Thus, we fit a downward opening parabola to the

logPc values over time for each event. This implies that each event has logPc values

which will rise and fall over time and that each event is allowed to have its own rate

of increase/decrease. Eliciting informative priors on the regression coefficients will

allow us to borrow information about what the shape of this parabola is for most

events, and how much it is prone to vary. Though there are other ways to borrow

information, e.g. a mixed model, we find this to be a simple and straightforward way

to allow the model to be flexible enough to fit all of the events. On a more technical

note, attempting a mixed model in this setting is not particularly straightforward,

as any random effects specified in the model would also have to be constrained.

Furthermore, at least two random effects would be necessary (a random intercept and

a random slope), as we desire a model which can have a different peak location and

value for each event. Ultimately, we favor a more simple model that is interpretable

and flexible.
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We note a few additional attributes of this model here. First, although we

know that the regression coefficients are necessarily correlated, we choose not to

incorporate this correlation in our prior structure, principally because the prior for

β1 depends on other regression coefficients. Although estimates may be slightly

more efficient by including more information, we believe that independent priors are

sufficient in this case. Additionally, it is worth noting that because the regression

coefficients are defined on half the real line (β0 and β1) and a closed interval (β1),

other prior distributions could be chosen. For instance, the Gamma distribution

is defined on (0,∞), so theoretically it could be used as a prior distribution for

−β0 or −β2. Similarly, the Beta distribution could be considered for β1. However,

our testing of these priors showed problems with their use. The sampling generally

exhibited a high amount of autocorrelation and/or slow convergence, which is not

the case with the truncated normal distributions.

Because Pc values can assume very small values, including the value of 0 to

machine precision, using these data in an unbounded way introduces a very large

dynamic range in the observed values. Operationally, there is little interest in events

with a Pc below 1E-07 and essentially none with a Pc below 1E-10; so it is quite

reasonable to truncate (left-censor) the dataset by resetting the values of Pc data

< 1E-10 to the 1E-10 value. Of course, in such a case one must accept the cog-

nitive dissonance of the model predicting Pc values less than 1E-10. However, this

is acceptable to us for a few reasons. One reason is that we are mainly concerned

with the time point at which the peak y value occurs and, to a lesser degree, its

predicted value. The other reason is more practical: we are not particularly con-

cerned with prediction for smaller values of y. Because the y values represent orders

of magnitude, we are far less worried about prediction error for small values of y

than we are for large values of y. Experts generally agree on the threshold of 1E-

10 as representing a probability of “essentially zero”, though because collisions are
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rare, this threshold is impossible to justify with empirical evidence. Nonetheless, we

proceed with this threshold, and note that others may reasonably explore different

thresholds with these models.

Lastly, we admit that our model cannot capture the rare occurrence that the y

values initially decrease and then increase, i.e. an upward opening parabola. We do

not concern ourselves with this case, as in such a case our model would fit essentially

a horizontal line, indicating no discernible peak value. Though the shape of the data

is not preserved, our end goal is: we seek significant statistical evidence of the size

and location of the peak, and in this situation its size and location are unclear.

2.2.3.2 Inference for the Peak Value. The supposed canonical behavior sug-

gests that the order of magnitude of the Pc value increases as the uncertainty de-

creases and drops off after a certain point. In general, uncertainty tends to decrease

with time. Thus, we expect that this relationship holds with reference to time as

well. Though some events exhibit this behavior, many events only exhibit the de-

cline in order of magnitude of the Pc value. That is, if we believe the log10 Pc truly

increases in time initially, this increase is censored within many events–the earlier

small log10 Pc values lie outside of the 7-day screening window or outside of the

physical screening volume and were thus not reported. Similarly, because we are

only able to observe a few log10 Pc values, we are unlikely to observe the true peak.

Thus, it is difficult to measure the accuracy of any prediction of the peak we might

make. Because we are not certain of being able to observe the true peak, we take

the highest observed log10 Pc value to be the peak.

We can infer the distribution of the location of the peak by utilizing the well-

known identity that the peak is located at xmax = −β1/2β2. We estimate this

distribution by collecting the posterior samples of β1 and β2 from the MCMC output

and transforming them as xmax is defined. From the empirical distribution of xmax,
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we can compute a point estimate and a 95% credible interval for xmax. For the

point estimate, we utilize the posterior mode of xmax, which is found by fitting a

kernel density to the samples of xmax and finding the most likely value. For the

credible set, since we define time as time until TCA, we are mainly concerned with

the lower bound. Here, the lower bound represents, with 95% probability, the latest

time at which our model predicts a peak will occur. This is operationally useful, as

we are often interested in whether the peak will occur before 48 hours until TCA.

Thus, if we can say that the peak will occur before this time with 95% probability,

then the operator may be able to use this information to make a more informed

decision regarding the importance of continuing to follow the event. Similarly, we can

construct bounds for the magnitude of the peak. The distribution for the magnitude

of the peak ymax is computed in the same way as for the location but instead using

the transformation ymax = β0 − β2
1/4β2.

2.2.4 The Bayesian Beta Regression Model

As discussed above, Beta regression is natural for bounded random variables.

Below, we discuss various types of Bayesian Beta regression models used in modeling

log10 Pc values.

2.2.4.1 The Distribution of log10 Pc Values. When modeling the trend in Pc

values, one is generally concerned with changes in order of magnitude, thus one

generally models log10 Pc as opposed to the observed Pc values. This poses an inter-

esting statistical question, namely the distribution of log10 Pc values. Distribution

selection is more obvious for the Pc values, as they are bounded between 0 and 1;

thus a statistical modeler generally chooses a beta distribution to model these values

(although there are a few other less commonly used distributions, such as the sim-

plex distribution, that could be deployed). Theoretically, there is no lower bound on
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log10 Pc values, as Pc values can be arbitrarily close to zero. Operationally, however,

one often considers Pc values below 1E-10 to be effectively 0. To account for this, in

a previous section we “floored” the log10 Pc values at -10, so that the large number

of small log10 Pc values did not overly influence the model. This allows one to fo-

cus inference on the operationally relevant log10 Pc values, which tend to be around

-5 and greater. We follow suit here, flooring all log10 Pc values at -10. Therefore,

even in modeling the log10 Pc values, we have bounded data (between -10 and 0)

that yield a mixture of discrete and continuous outcomes. In this case, the data are

-10-inflated, but when the variable is rescaled to fit the Beta distribution, the data

are zero-inflated. This can be accommodated by the zero-inflated beta distribution;

the form of the equation is given below, with the specific symbology explained in

the subsequent sections:

f(y|µ, φ, p) = (1− p) Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1I(0,1)(y) + pI[0](y). (2.7)

Here, IA(·) is the indicator function, so that the first term corresponds to values

falling between 0 and 1 (or logPc values falling between -10 and 0) and the second

term corresponds to values equal to 0 (or logPc values equal to -10). The parameter

µ is the mean of the Beta distribution, which will be modeled in the GLM framework,

and the parameter φ is the corresponding dispersion parameter, which is a measure

of variability. The parameter p can be interpreted to be the probability that one

observes a 0 (or a logPc of -10). To our knowledge, no one has investigated a joint

model for an Bayesian inflated Beta regression model.

As noted previously, the Pc values for each event tend ultimately to decrease

with time but at a different rate in each conjunction. This suggests approaching the

problem within a mixed model framework, allowing random terms for each conjunc-

tion. This is a natural approach to take, as the data are longitudinal in nature: one

observes an overall trend in time, yet each subject (in this case, each conjunction)

deviates somewhat from this trend, and observations within a subject are correlated

43



Figure 2.1. Plot of log10 Pc vs. ratio of covariance radius to miss distance

with each other. In Figure 1, we visualize the longitudinal nature of the data. We

plot the log10 Pc values of ten events over time, with each events’ values connected by

a line; and we also plot these values versus the so-called ratio of combined covariance

radius to miss distance. This is to expose the canonical trend in Pc development: as

the event moves closer to TCA, the covariance shrinks, bringing this ratio slowly to

a peak and then a marked drop-off.

It is not clear that the trend in logPc values is stronger for ratio of covariance

of radius to miss distance than days to TCA. In fact, the logPc values exhibit

a slight increasing trend with respect to the ratio, while the expected decreasing

trend occurs with respect to time. It is possible that the logPc values “drop off”

at some small value of the ratio, but it is not clear from the data when this might

occur, and how frequently one would observe it. Additionally, as was discussed in

the introduction, this value is not monotonically increasing or decreasing with time

(due to unpredictable changes in the covariance size and the estimate of the mean
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Figure 2.2. Two-dimensional histogram of log10 Pc values vs. TTCA

miss distance between the two satellites); so despite its theoretical linkage to the

actual phenomenology of the situation, it is actually a less desirable independent

variable for performing trending and prediction. As previously, model construction

for Pc trending and prediction will use time to TCA as the independent variable.

We can visualize the trend of the log10 Pc values over time by considering a

two-dimensional histogram, as displayed in Figure 2.2.

Recall that we have replaced all log10 Pc values below -10 with -10. Then the

figure above indicates that the probability of observing a Pc value of 1E-10 or lower

increases as one approaches TCA. In fact, at 2 days to TCA, about 40% of events

observed have a Pc of 1E-10 or lower. At 7 days until TCA, the most observed

value is about -5, which becomes less frequent over time, as more events observe a

log10 Pc of -10. Interestingly, -5 seems to be the most likely value when one does

not observe a -10, regardless of the time. We can use this information to construct

a prior distribution for the model in Equation (1), as the increase of observed -10
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values gives us an idea of how p behaves over time, and the observed mode of -5 of

the log10 Pc values above -10 gives us some information about the mean of the Beta

distribution.

2.2.4.2 Beta Regression. To model a Beta-distributed random variable with

reference to a covariate (such as time), one must use a generalized linear model

(GLM). Although GLM’s for many other members of the exponential family (Nor-

mal, Gamma, etc.) have been developed since 1972[57], the GLM for the beta

distribution is relatively new, being introduced in 2001[59]. The reason for this late

development is due to the fact that one must reparameterize the beta distribution

in order to model the mean sufficiently, an expansion that was not explored un-

til recently. We develop this reparameterization for completeness. The probability

density function (pdf) of a random variable X with a beta distribution is generally

given as

f(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

where Γ(·) is the gamma function. The mean of this distribution is E(X) = α
α+β

.

GLM’s are generally specified by setting some function g(µ) of the mean equal to a

linear combination of covariates. For instance, logistic regression uses the logit link

g(µ) = log( µ
1−µ), which is then set equal to a linear combination of covariates, e.g.

β0 +β1X, where X is a covariate, such as time. However, as the beta distribution is

specified, it is unclear how to model the mean. To facilitate direct modeling of the

mean, let µ = α
α+β

and φ = α + β. Then we can rewrite the beta pdf as

f(x|µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
xµφ−1(1− x)(1−µ)φ−1.

Now we may model the mean µ directly. For instance, we may choose the logit link

and model

log

(
µ

1− µ

)
= β0 + β1x+ ...+ βpx

p,
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so that the log-odds of the mean has a linear relationship toX. Various link functions

are possible, such as the probit link, the complementary log-log link, and the log

link. Our simulations have shown that there is no significant advantage in choosing

one over the other, so we proceed with the logit link, as it is easy to interpret.

Recall that for each conjunction, one observes a different progression of Pc

values. Sometimes the Pc values drop off quickly before TCA, other times they drop

off much nearer TCA, and sometimes not at all. To model such a behavior, we may

include a random intercept for each event as follows. Let µij be the mean of the jth

Pc value in the ith event, scaled to be between 0 and 1. Since we have log10 Pc values

bounded between -10 and 0, a suitable transformation is µij = E(Yij)/10 + 1, where

Yij is the log10 Pc value of the jth Pc value in the ith event. We may consider the

model

log

(
µij

1− µij

)
= β0 + β1tij + ...+ βpt

p
ij + bi

bi ∼ N(0, σ2
b ),

where bi is a random effect allowing for an intercept for the ith event, and tij is the

time until TCA of the jth Pc value within the same event. One may additionally

consider a random slope or other random effects for higher order terms, but given

the amount of data, these would be difficult to fit and depend strongly on choice of

prior distribution.

Recall that in Equation (1) we also introduced the parameter p. This parame-

ter controls what percentage of the time we observe a zero. In our case, since about

a third of our data are zeros, p might be close to 1/3. However, we also know that

the closer an event approaches TCA, the more likely one is to observe a Pc value

that is 0. As a result, we can also let p depend on our covariate. This parameter is

also bounded between 0 and 1, so we again use a logit link function here (or any of

the other aforementioned link functions). Additionally, we may consider a random
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term for this model for each event, as the probability of observing a zero is higher

for some events than others. Thus, we may consider a regression such as

log

(
p

1− p

)
= α0 + α1tij + ...+ αpt

p
ij + ai

ai ∼ N(0, σ2
a)

which is similar to the regression for µ above. Again, more random terms could be

introduced if necessary.

2.2.4.3 Model Selection. Given below are some selected results from an ex-

ploratory model selection. To evaluate the relative merits of different levels of model

complexity, we use the penalized deviance construct[73], where lower values indicate

a better fit. Specifically, define D(θ) to be the “Bayesian Deviance”, with form

D(θ) = −2 log p(y|θ) + 2 log f(y), (2.8)

where p(y|θ) is the likelihood of y given θ and f(y) is the saturated model, where

f(y) = p {y|E(Y ) = y}. We can rewrite D(θ) as

D(θ) = −2 (log p(y|θ)− log f(y)) , (2.9)

which shows that D(θ) is -2 times the difference between the fitted model and the

saturated model. Put simply, D(θ) measures how well a model fits the data relative

to a model that fits the data perfectly. We estimate D(θ) with D(θ), which can be

written as

D(θ) = D(θ̄) + pD, (2.10)

where pD = D(θ)−D(θ̄). The estimate D(θ) is known as the penalized deviance, as

it is computed as the sum of D(θ̄), the mean deviance, and pD, the penalty term.

The term D(θ̄) measures how well one fits the data, with lower values indicating
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better fit, and the term pD penalizes this fit for more parameters, where higher

values indicate a larger penalty. The penalty term pD is also known as the effective

number of parameters, so that one may interpret this term as an estimate of how

many parameters the model is actually estimating in order to describe the data. This

is to account for models with more parameters fitting the data better, or over-fitting

the data.

In Table 2.1 we provide the calculated mean deviance, penalty, and consequent

penalized deviance for various models. These values justify how we came to our final

model, as we chose the model with the lowest penalized deviance. The variables Yc

and Yd represent the continuous and discrete parts of the model given in Equation

(1), respectively. That is, Yc are the values produced by the beta distribution, and

Yd are the 0-1 variables that either indicate a zero (1) or a continuous variable (0).

All added complexities are in addition to the baseline linear model specified below:

Yij ∼ f(yij|µij, φ, pij) (2.11)

log

(
µij

1− µij

)
= β0 + β1tij + bi (2.12)

bi ∼ N(0, τb) (2.13)

τb ∼ Gamma(0.001, 0.001) (2.14)

log

(
pij

1− pij

)
= α0 + α1tij + ai (2.15)

ai ∼ N(0, τa) (2.16)

τa ∼ Gamma(0.001, 0.001), (2.17)

φ ∼ Gamma(0.001, 0.001) (2.18)

βk, αk ∼ Normal(0, 1), k = 0, 1, 2. (2.19)

Note that adding a random slope to either Yc or Yd did not produce a better fit, nor

did specifying a correlation between the random effects.

Based on these results, we propose the following model. Let Yij be the jth
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Table 2.1: Model Selection Output: Beta regression
Model Mean Deviance Penalty Pen. Deviance
Linear -17.23 74.93 57.7

Quad Term for Yc -23.02 77.32 54.31
Quad Term for Yd -26.78 76.45 49.67

Quad Term for Yc and Yd -32.52 79.23 46.71
QuadTerm for both, RanSlope for Yc -31.12 81.07 49.95
QuadTerm for both, RanSlope for Yd -36.91 85.54 47.63

Cubic Term for Yc -31.89 81.1 49.21
Quadratic, linear for phi -27.76 80.87 53.11

scaled log10 Pc value of the ith event. Also, let tij be the corresponding time until

TCA (in days).

Yij ∼ f(yij|µij, φ, pij) (2.20)

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + bi (2.21)

bi ∼ N(0, τb) (2.22)

τb ∼ Gamma(0.001, 0.001) (2.23)

log

(
pij

1− pij

)
= α0 + α1tij + α2t

2
ij + ai (2.24)

ai ∼ N(0, τa) (2.25)

τa ∼ Gamma(0.001, 0.001), (2.26)

φ ∼ Gamma(0.001, 0.001) (2.27)

βk, αk ∼ Normal(0, 1) k = 0, 1, 2. (2.28)

For this and all other models proposed in this section, we generate predictions for the

next OCM by conditioning on the random effects. This yields the best linear unbi-

ased predictor (BLUP), as discussed in Diggle[28]. Thus, we generate the predictive

distribution

Yi(j+1) ∼ f(yi(j+1)|µi(j+1), φ, pi(j+1), ai, bi),
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where µi(j+1) and pi(j+1) are produced by using ti(j+1) in their respective models.

Using this distribution, we can construct credible sets. As in the other Bayesian

models, we use the posterior mode of this predictive distribution as our estimate for

Yi(j+1).

2.2.4.4 Issues of Identifiability. The model proposed in equations (10)-(17)

has a total of 7 parameters and 2 random effects, which suggests one must estimate

a total of 9 quantities in order to make inferences and hence predictions. However,

this issue can be ameliorated by using informative priors in a Bayesian framework.

To acquire these informative priors, we run the proposed model on a training dataset

of a large number of events, which are not themselves used for model evaluation. We

use the posterior distribution of the parameters as informative prior distributions

by matching sample moments of the posterior samples with its prior distribution

family. We do this for all of the population-level parameters, which are φ, αk, and

βk for k = 0, 1, 2. Then we are left with two parameters to estimate, the random

effect variances, τa and τb. Because we begin making predictions beginning with the

second observation, these parameters are identifiable when making inference on a

single event.

Motivated by the large number of events in our testing data set, we investigated

whether prediction could be improved by making inferences on more than one event

at once. In order to test this, we followed the mean squared prediction error (MSPE)

when making predictions on one event, 5 events, 10 events, and 25 events. Including

more events did not improve the MSPE, likely due to the fact that, in reference to a

single event, other events only contribute to the population-level parameters, which

are already well-known due to the informative prior distributions. Thus, we make

predictions on a single event at a time.
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2.2.4.5 An Aside: Coverage from an Initial Simulation. In an initial ex-

ploratory simulation, we found that 97.5% prediction intervals constructed in the

Beta model had 86% coverage. Though coverage is often lower than the nominal

rate with real data, we found this coverage to be too low to have any meaningful op-

erational use. In exploring this phenomenon, we found that splitting up the dataset

into three parts, a high-, medium-, and low-risk group, ameliorated the issue of low

coverage. Specifically, if an event had a high (above -4) logPc value by 3 days time

to TCA (TTCA), we called it high-risk. If an event had a medium (between -7 and

-4) logPc value by 3 days TTCA, we called it medium-risk. If an event had a low

(below -7) logPc value by 3 days TTCA, we called it low-risk. We shall refer to the

high-, medium-, and low-risk groups as Red, Yellow, and Green hereafter.

Incidentally, the fact that our model performed well when the data were sep-

arated into different risk groups supports the notion that the logPc value behaves

differently depending on the quantile it inhabits. In terms of the Beta regression

model, this implies that the population-level trend is different for these different risk

groups, which suggests that they ought to be modeled separately. For the simulation

presented in this chapter, these definitions worked well and possess the additional

advantage of aligning closely with thresholds presently in use operationally for cat-

egorizing conjunction event severity.

2.2.4.6 Checking Assumptions. A variety of assumptions are employed in

the model. These include

• A linear model for g(µ) = log (µ/(1− µ))

• A linear model for h(p) = log (p/(1− p))

• The dispersion parameter φ is constant across time.

• The logit of the mean values associated with the Beta distribution Yc are

parallel for each event. That is, the logit of the means for each event is
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Figure 2.3. Plot of log(p̂/(1− p̂)) vs. TTCA

separated by a random intercept.

• The random intercepts have a normal distribution.

We check these assumptions graphically below. Figure 2.3 plots log(p̂/(1− p̂))

vs. TTCA to check the form of the linear model for p.

Figure 2.3 shows that, though a single second order polynomial may fit logit(p),

a piecewise function of two second order polynomials may be more appropriate. The

graph suggests that separate models might be appropriate for the time intervals

(0, 3.5) and (3.5, 7). Figure 2.4 checks the form of the linear model for µ. Figure 2.5

attempts to check the form of the linear model for φ by estimating φ via its profile

likelihood.

Again, these graphs suggest that it may be appropriate to fit piecewise polyno-

mials on the intervals (0, 3.5) and (3.5, 7). Finally, we try to visualize the form of the

random effects in Figure 2.6 by plotting log(y/(1− y)) vs. TTCA for 15 randomly
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Figure 2.4. Plot of log(µ̂/(1− µ̂)) vs. TTCA

Figure 2.5. Plot of log(φ̂) vs. TTCA
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Figure 2.6. Spaghetti plot of log(y/(1− y)) vs. TTCA

sampled events. Though a random intercept does not imply parallel trajectories

over time, the trajectories are approximately parallel for small random intercepts.

The graph above depicts the overall mean (in black), log (µ)/(1− µ), as well

as this value for 20 random events (color lines). Though there is significant het-

erogeneity in the paths of the events over time, it appears that a random intercept

alone may be sufficient, as most paths seem to be parallel to the overall mean.

2.2.4.7 Threshold Model. As evidenced in the graphs above, it appears that

at 3.5 days until TCA, there is a noticeable change in behavior in both the behavior

of µ and p. As a result, modeling this change in behavior may be of interest. To

model this behavior, we specify a trend on the interval (7, 3.5) days to TCA, and a

different trend on the interval (3.5, 0) days to TCA.

We specify two such models. In the table below, “Threshold” is a model with

55



Table 2.2: Model Selection Output: Threshold Beta regression
Model Mean Deviance Penalty Pen. Deviance

Beta Reg -451 81.66 -369.3
Threshold -492.9 85.31 -407.6

Threshold 2 -751.5 107.6 -653.9

this threshold modeling for µ only, while “Threshold 2” uses such a structure for p

as well. It is clear from the results that a threshold may be appropriate for both

parameters, as the DIC is lowest for the “Threshold 2” model.

The resulting model is given below. Notice that it has the same construction

as the previous Beta regression model, but with different trends specified on the

time intervals (7, 3.5) and (3.5, 0) days to TCA.

Yij ∼ f(yij|µij, φ, pij) (2.29)

log

(
µij

1− µij

)
= (β01 + β11tij + β21t

2
ij)I[0,3.5](tij) (2.30)

+ (β02 + β12tij + β22t
2
ij)I(3.5,7](tij) + bi (2.31)

bi ∼ N(0, τb) (2.32)

τb ∼ Gamma(0.001, 0.001) (2.33)

log

(
pij

1− pij

)
= (α01 + α11tij + α21t

2
ij)I[0,3.5](tij) (2.34)

+ (α02 + α12tij + α22t
2
ij)I(3.5,7](tij) (2.35)

ai ∼ N(0, τa) (2.36)

τa ∼ Gamma(0.001, 0.001), (2.37)

φ ∼ Gamma(0.001, 0.001) (2.38)

βk, αk ∼ Normal(0, 1) k = 0, 1, 2. (2.39)
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2.2.5 New Beta Regression Model

In light of the cubic nature of the means shown above, as well as the observed

success of the Look-Up model, we introduce a new model, which we refer to as the

New Beta Regression model. This model incorporates a cubic model into the model

for µij, as well as previous observations. Unlike the Look-Up method, we incorporate

the values themselves rather than the quantiles.

Yij ∼ f(yij|µij, φ, pij) (2.40)

log

(
µij

1− µij

)
= β0 + β1tij + β2t

2
ij + β3t

3
ij + β4y(i−1)j + bi (2.41)

bi ∼ N(0, τb) (2.42)

τb ∼ Gamma(0.001, 0.001) (2.43)

log

(
pij

1− pij

)
= α0 + α1tij + α2y(i−1)j + ai (2.44)

ai ∼ N(0, τa) (2.45)

τa ∼ Gamma(0.001, 0.001), (2.46)

φ ∼ Gamma(0.001, 0.001) (2.47)

βk, αk ∼ Normal(0, 1) k = 0, 1, 2. (2.48)

2.2.6 Bayesian Beta Cluster Regression

Though the Beta regression model accounts for more aspects of the data than

the more naive models, results (presented in an upcoming section) suggest that this

model may not be accurate enough to be operationally useful. In addition, there is

an aspect of the data which this model cannot address, which may suggest a better

model. In particular, operators often suspect that there are different categories of

events: low risk, medium risk, and high risk. Furthermore, operators believe that

these categories of events behave slightly differently, so that if one knew with a high

degree of certainty which category of event was observed, we would be able to obtain
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more accurate inference. However, these categories are relatively arbitrary. It may

be of interest to know exactly how many significantly different categories of events

there are. The Bayesian Beta Cluster Regression model is constructed to tackle this

question, and hopefully provide more accurate inference. More technically, we are

interested in how many clusters are in the data, what the clusters look like, and how

likely we are to be able to identify which cluster is occurring by the time a decision

is to be made.

2.2.6.1 Model. The model is conceptually straightforward. We now assume

that there are K different means within the data, representing the means of K

clusters. That is, each event is assumed to come from one of the K clusters. This

can be expressed as a mixture model, so that

Yij ∼
K∑
k=1

πkf(yijk|µijk, φijk, pk) (2.49)

where πk is the probability Yij is from cluster k. In this general model, each cluster

has its own mean µijk, dispersion parameter φijk, and probability of observing a Pc

of zero pk. Model selection will enable us to determine the size of K and which

parameters do not vary across clusters.

To form a complete Bayesian specification, priors for all parameters are neces-

sary. The same non-informative prior structure given above is used for the parame-

ters of all clusters. In addition, we let

π1, ..., πK ∼ Dirichlet(e1, ..., eK) (2.50)

where the ei are chosen to be non-informative, and thus all are set to one. Let Sik

be a random variable which indicates whether event i is part of cluster k or not,

taking value 1 if this is true, and 0 if it is false. Then

Yij|Sik ∼ f(yijk|µijk, φijk, pk), (2.51)

where f(·) is a zero-inflated Bayesian Beta regression model, as given above.
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Table 2.3: Model Selection Output: Beta cluster regression
Clusters Mean Deviance Penalty Pen. Deviance

1 -728.4 103.7 -624.7
2 -1462 901 -561
3 -1841 1085 -756
4 -1960 1917 -43.64

2.2.6.2 Model Selection. Given below is a model selection table similar to

that in section 2.3.2. The penalized deviance is given by number of clusters, k, for

the above model.

As is evidenced above, the model with 3 clusters seems to fit better than the

model with 1 cluster. Though it may seem odd that the model with 2 clusters

does not also have a lower DIC than the model with 1 cluster, it should be noted

that DIC is notoriously difficult to calculate for mixture distributions, and also has

problems associated with it[16]. As a result, we also consider an ad-hoc method of

selecting the number of components. We set k to the maximum number of possible

clusters, and calculate the posterior probability of each component. Specifically, we

set k = 5, and find that the probability of the first two components is 0.63, and

0.35, respectively. This yields some evidence that the number of clusters necessary

is two.

From a practical standpoint, adding more clusters increases the computation

time, making fewer clusters more desirable for implementation. In addition, as the

number of clusters grows, one encounters other computational issues. For example,

a greater number of clusters is generally accompanied by slower convergence, as well

as label-switching[66][45], a problem in the posterior samples in which a parameter

“switches clusters”, due to the invariance of the likelihood to label-switching. This,

combined with the above evidence, leads us to consider a model with only 2 compo-

nents. Results from an initial fit of this model show that, if two clusters indeed do
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Figure 2.7. Clusters found from Beta clustering model

exist, one is a “high variability” cluster and one is a “low variability” cluster. Figure

2.7 shows these two clusters. Cluster 1 contains events which show little variability

in log10 Pc over time. Interestingly, most of these values are centered around -5. In

contrast, cluster 2 contains events which exhibit much more variability over time.

Of course, the difficulty with such a model must identify the cluster appropriately to

make valid predictions for a given event. Regardless of predictive performance, this

model is useful because it gives us new insight into the data. For instance, if such a

model could reliably classify events into “high” and “low” variability clusters, oper-

ators would have yet another way to temper their expectations about future log10 Pc

behavior.

2.3 Measures of an Effective Model

In this section we discuss the properties on which we will compare our two

models. We focus on model fit and decision-making performance.

2.3.1 Model Fit

The main concern in building predictive models is fitting the data well enough

to predict new observations accurately. In order to quantify this, we check the bias,

prediction errors, and upper bounds of the proposed models. Specifically, we would
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like our models to be unbiased, so that the prediction errors are centered at zero.

Secondly, we check to see if the prediction intervals are bigger or smaller for different

times, predicted values, and times until prediction. Lastly, we check to see that our

upper bounds have the correct coverage.

2.3.1.1 Prediction Coverage. Let tij be the TTCA of the jth observation ith

event. Then our predictions and the associated confidence intervals are made at

ti(j+1). Thus, we predict the distribution of yi(j+1). As noted before, we make pre-

dictions beginning with the second observation, j = 2. We construct 95% confidence

intervals, and check whether the true value, yi(j+1), is contained in the interval. The

average of the number of true values contained within these predicted intervals is

our prediction coverage.

It should be noted that the time until prediction is not the same for all pre-

dictions. As noted before, the time at which new Pc values are received are random,

producing irregular times between successive observations. The time between obser-

vations is usually at most 2 days. Though the time between observations varies, we

calculate coverage irrespective of time, so that a prediction 2 days into the future

contributes equally to the coverage as a prediction 0.5 days out. Though one would

prefer to make predictions at the same number of days into the future for all events,

this is not possible due to the nature of the data.

2.3.2 Decision-Making Efficacy

The models presented above are ultimately used to make decisions about

whether to move a satellite or not. Below, we discuss some methods used in as-

sessing the decision-making efficacy of these models.

61



2.3.2.1 Framework. In order to assess our models in the framework of making

decisions about whether to continue active monitoring of an event, we implement a

simple decision-making framework and study its properties in both models. Because

the most weighty period for conjunction assessment operational decision-making

occurs 2-3 days TTCA, we focus on this region of data. Specifically, we make

predictions at 2 days TTCA and make a decision based on this prediction. Let ŷ2

be an estimate of the logPc predicted to occur at 2 days TTCA. We will make the

decision that the logPc values will remain above the threshold θ after 2 days TTCA

if

ỹ2 > θ (2.52)

and will make the decision that the logPc values will fall below the threshold θ

otherwise. To couch this in the hypothesis testing framework, we write

H0 : ỹ2 < θ vs. H1 : ỹ2 > θ, (2.53)

so that rejecting H0 is synonymous with claiming the logPc will remain high. In

our simulations, we set θ = −5 for the Red group and θ = −7 for the Yellow group.

Note that while -7 is the lower bound for being in the Yellow group at 3 days TTCA,

-5 is below -4, the corresponding lower bound for the Red group. A lower threshold

was chosen as these events are generally of much higher concern, thus one prefers an

extra order magnitude of certainty before claiming the event is at a lower risk level.

In order to explore this trade-off fully, we tried various quantiles of the distribution

of ỹ2, which we describe below.

2.3.2.2 Type I and Type II Errors. As with most decision-making frame-

works, our framework can admit Type I and Type II errors. The hypothesis in (22)

is framed in terms of the event of a Pc value remaining high, as this is the event we

are most concerned with. A Type I error here is the incorrect assertion of a high
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Pc value (i.e. a false alarm), and a Type II error is a the more worrisome incorrect

prediction of a low value (i.e. a missed detection). Thus, while we may find it

acceptable to trigger an alarm when the logPc value has actually dropped off, it is

almost never acceptable to miss detecting a high logPc value. Of course, we can

make our system as powerful against this event as we want, with the trade off of

triggering more false alarms. It’s worth noting that a false alarm for a high value

is the same thing as missed detection for a value which has dropped off. Ideally,

we would like to have an alarm that detects high values and low values with a high

degree of accuracy. However, since we are more concerned with high values, we seek

to quantify how often, if ever, can we detect these low values while still maintaining

the high accuracy needed for detecting the high values.

2.4 Results

2.4.1 Data

Recall that we split our data into two groups. The Red and Yellow groups are

defined below.

• If an event had a high (above -4) logPc value by 3 days time to TCA (TTCA),

it is part of the Red group.

• If an event had a medium (between -7 and -4) logPc value by 3 days TTCA,

it is part of the Yellow group.

The dataset used for tuning (i.e., setting the parameters for the informative

prior distributions) and testing the model was taken from the NASA Conjunc-

tion Analysis and Risk Assessment historical Conjunction Data Message (CDM)

database. For the Yellow group, five hundred events’ worth of data from calen-

dar year 2013 was used for model tuning (the “training” dataset), and the tuned

model was evaluated against approximately 2000 events from 2014 (the “validation”

dataset); so there was no overlap in terms of time-period or actual data between
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the two datasets. For the Red group, 82 events were used for training and 70 were

used for testing (this data set is far smaller, as these kinds of events are more rare).

Data were taken from conjunctions against primaries in the orbital region defined

by a perigee height between 500 and 750 km and an eccentricity less than 0.25.

As described above, data flooring at a log10 Pc value of -10 was performed on the

dataset. To qualify for use in tuning or evaluation, an event must have had at least

two CDMs with a log10 Pc greater than -10.

2.4.2 Simulation Setup

To train our model, we perform a Bayesian analysis on the training data using

non-informative priors. We determine the distribution parameters for the informa-

tive priors used in the test data by matching the first and second moments of the

observed distributions to the hypothesized prior distributions. All MCMC inference

is conducted in JAGS[62].

The simulation procedure for a given event is as follows. We attempt to

make predictions for the next y value only after the second received CDM. We

are interested in estimating the next logPc value, which we predict by using the

time at which it was observed. The predicted value is taken to be the mode of the

posterior predictive distribution. In this context, it is important to use the posterior

mode as opposed to the posterior mean, as the posterior predictive distribution is

generally bimodal, with some mass at -10 and the remaining density between -10

and 0, inducing another peak. Thus, we choose the “most likely value” as opposed

to the mean. We make predictions for five models: the Vertex model, the Beta

Regression model, the New Beta Regression model, the Beta Clustering model, and

the Look-Up model.

To further assess model fit, we also track a two-sided 95% credible interval

for each prediction. We utilize the upper bound from the credible set for checking
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coverage. This is also done for the Look-Up and LOCF methods, though here the

interval is a confidence interval and is calculated using repeated cross-validation. In

addition to coverage, we are also interested in how many of these upper bounds are

low enough to be “useful”. That is, we would like to know how many of these lower

bounds are lower than the lower threshold of the Yellow and Red groups.

We present results for the Yellow group only. We found that the Red group

had too small of training and testing sets to yield any kind of meaningful conclusions

about predictive performance. Further simulation is required to determine just how

different these two groups are, and if the results shown below hold for more high

risk events like those in the Red group. We suspect this may be the case, as our

construction of these two groups was somewhat arbitrary in the first case. As shown

by the Beta clustering model, it is likely that when it comes to modeling, there is

more of a delineation between “high variability” and “low variability” events than

high-risk and low-risk.

2.4.3 Models

Here, we make a few remarks about the models chosen for simulation. We

choose to compare seven of the proposed models: Last Observation Carried Forward

(LOCF), the Look-Up model (LKUP), the Vertex model (Vertex), the Beta Regres-

sion model (BetaReg), the Beta Clustering model (BetaClust), and the New Beta

Regression model (BetaNew). Not all models are shown here to reduce clutter in

the graphs and to ease comparison. We do not include the Beta Threshold model

because this gave results similar to the Beta Regression model. The functional data

model is not considered because it too yielded results similar to the Beta Regres-

sion model. Though promising, this model did not have greater success because one

of the assumptions of the model was not met. As mentioned earlier, the functional

principal component scores are assumed to follow a normal distribution. In practice,
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Figure 2.8. Density plot of estimated prediction errors for all models

we found these to have a bimodal distribution, suggesting clustering. This prompted

us to investigate clustering models, such as the Beta clustering model.

Inference for all models is based on prediction at the next OCM. Originally,

we investigated the potential use of basing inference on the estimated peak in the

Vertex model. We found that this produced poor results, and that better inference

resulted from simply making predictions at the next OCM.

2.4.4 Simulation Results

Our main goal of prediction is to make a decision by 2 days to TCA. As a

result, for the Yellow group, we are interested in whether a logPc which is observed

after 2 days to TCA will be below -7 or not. Additionally, for this group, we may be

interested in a “worst case” scenario, which would be observing a logPc value above

-4 at this time. We also present results for this prediction.
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Figure 2.9. Density plot of estimated prediction errors for the Look-Up and LOCF methods

As the goal of our inference is prediction, we present prediction errors for the

various models. Figure 2.8 shows the density of the prediction errors for all five

models. The Look-Up model is more peaked than the other models, suggesting

that is produces more prediction errors close to zero. Though this suggests the

predictions are more accurate than the other models, a closer inspection suggests

that the tails of the prediction errors are nearly as long as those produced by other

models. Interestingly, the Beta clustering model is the second most peaked.

Figure 2.17 provides a look at the prediction errors of the Look-Up method

vs. LOCF. Here we see that the LOCF method produces similar prediction errors to

the Look-Up method. In addition, we see an interesting artifact of prediction error

density generated by the Look-Up model: the tails are jagged, unlike the LOCF

model, which has smooth tails. This suggests that many prediction errors are nearly

identical, likely resulting from nearly identical predictions in similar situations. For
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Figure 2.10. Empirical CDF of prediction errors for all models

instance, it may be that this model routinely generates a prediction of -7 when the

next value is actually -10, resulting in many prediction errors around -3. This is likely

due to the fact that the method makes predictions based on percentiles, and many

percentiles have nearly identical values, resulting in nearly identical predictions.

To better understand the tail behavior of all of the models, we plot the empir-

ical CDFs for the predictions errors produced by each model. The resulting plot in

Figure 2.10 suggests that LOCF model has the shortest right-hand tail, resulting in

smaller and fewer positive prediction errors. This is ideal, as a positive prediction

error means that one predicted a low logPc when in fact the next logPc was higher,

indicating an under-estimation of risk. Note that this implies that the practice of

using the previous log10 Pc value for inference is more likely to overstate the risk

than to understate it. We visualize exactly how much the risk is overstated later.

The Beta Clustering model seems to generate the shortest left-hand tail.
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Figure 2.11. Vertex Model

Figure 2.12. Beta Regression Model

69



Figure 2.13. New Beta Regression Model

Figure 2.14. Beta Clustering Model
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Figure 2.15. Look-Up Model

Figure 2.16. Look-Up Model (with jitter)
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Figure 2.17. Last Observation Carried Forward

Figures 2.11-2.17 plot the prediction errors vs. time and vs. actual logPc value

for each of the models. All of the models have smaller prediction errors from 6 days

to TCA to 4 days to TCA than later time points. Prediction errors in this time

range are smallest for the Look-Up and LOCF methods, where they are virtually all

zero, implying near-perfect prediction. However, prediction in this time range is not

particularly of interest, as decisions are usually made at 2 days to TCA (or later). It

is interesting to note that the LOCF method produces errors largest in the positive

direction, suggesting that in this time frame one may see a significant drop-off, but

one almost never sees a jump from, say, a log10 Pc of -10 to -4.

We focus on the time range of 2 days to TCA. Most of the models produce

more and larger negative prediction errors than positive prediction errors in this

time range, suggesting they err on the side of predicting “too high a risk”. In

general, this conservativeness is better operationally. This trend is not true for the
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Beta Clustering model, which produces a far greater number of positive prediction

errors. This is likely due to predicting a logPc = −10 far more often than it actually

happens. Perhaps this could be ameliorated by exploring some tuning of the priors

in the model, though this is likely more onerous than practical for decision-making.

In addition, this model takes far longer to run the other models, which only adds to

the time one would need to implement it.

To highlight underestimates of high-risk events, we color in red all observations

where the prediction error was 2 or greater and the actual logPc value is -4 or

higher. Interestingly, we see that the Vertex and New Beta Regression models have

few of these points, whereas the Beta Regression and Beta Clustering models have

noticeably more. In addition, many of these points are within 2 days to TCA for the

latter two models. Hence, for erring conservatively in the “worst case scenarios”,

the Beta Regression and Beta Clustering models fare poorly. The best models in

this regard are the Look-Up and LOCF models, which have few red points. In fact,

Figures 2.11 and 2.17 suggest that for these high values, these models almost always

produce relatively small prediction errors.

Lastly, Figure 2.15 is slightly misleading, as many of the prediction errors over-

lap. Figure 2.16 jitters these prediction errors, so that one may see the phenomenon

seen earlier in the densities, where many prediction errors are nearly identical. This

same feature holds for the LOCF model as well. Though these models produce pre-

diction errors tightly centered around zero, they still produce a fair number of large

prediction errors (many are 4 or greater in magnitude). Generally, predictions which

are within one or two orders of magnitude are considered useful, so these models are

not necessarily guaranteed to be operationally useful, though they seem to be more

promising than the others.

Figures 2.18-2.21 plot ROC curves for all of the models. These ROC curves

present sensitivity and specificity for prediction if the final logPc value will be above
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Figure 2.18. ROC curve for classifying final log10 Pc > −7 (best models)

Figure 2.19. ROC curve for classifying final log10 Pc > −7 (worst models)
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Figure 2.20. ROC curve for classifying final log10 Pc > −4 (best models)

Figure 2.21. ROC curve for classifying final log10 Pc > −4 (worst models)
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-7 after 2 days to TCA. Recall that these simulation results are for the Yellow data

set, so that one is primarily interested in knowing whether the logPc will be above

-7, and if it isn’t one can “downgrade” the risk to low (the Green group). However,

one may also be interested in knowing that this is still a medium-risk event and not

a high-risk event, so we also consider prediction of values above -4.

Figures 2.18 and 2.20 plot the ROC curves for the Look-Up, LOCF, and New

Beta regression models, and the results are nearly identical. For clarity, the results

for the remaining models are graphed in Figures 2.19 and 2.21.

Figure 2.19 suggests that the Beta Clustering model is best for determining

whether the final log10 Pc value will be above -7 if one can accept a true positive rate

of 60% or lower, as it generates the fewest false positives. As we are concerned with

being highly certain that the value will be above -7, this feature is not particularly

useful. For a high true positive rate (90% and above), the models perform quite

similarly, though the Beta regression model is somewhat inferior here. Note that,

though the Look-Up method has a line in this region, no actual values occurred in

this region, as it is simply connecting the point at (0.70, 0.88) with (1, 1). This

feature of the Look-Up method is troubling, as it implies that one cannot easily

implement a model with a true positive rate of 95% (or higher). This may be due to

the way the confidence intervals were constructed. We consider this in future work.

Figures 2.18-2.21 showed the operating characteristics for the models when

determining if the last log10 Pc value would be above -7 or -4. Figures 2.22-2.25 plot

these operating characteristics for the models when the objective is to determine

if the next log10 Pc value will be above -7 or -4 (given the next value occurs after

2 days to TCA). When the threshold is -7, many of these models are only slightly

better than guessing, as evidenced by Figures 2.22 and 2.23. The Beta clustering

model performs well here for lower true positive rates, though as mentioned above,

this is not operationally useful. This model performs poorly when the threshold is
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Figure 2.22. ROC curve for classifying next log10 Pc > −7 (best models)

Figure 2.23. ROC curve for classifying next log10 Pc > −7 (worst models)
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Figure 2.24. ROC curve for classifying next log10 Pc > −4 (best models)

Figure 2.25. ROC curve for classifying next log10 Pc > −4 (worst models)
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-4. More investigation is needed to ascertain whether a model such as this could

ever be operationally useful.

Overall, Figures 2.22-2.25 support the earlier conclusion that the three best

models are the Look-Up, LOCF, and New Beta regression models. Not surprisingly,

these models all share the same characteristic: they all utilize the most recent log10 Pc

value. Though it’s not particularly surprising that this value is useful, it is surprising

that accounting for the trend over time doesn’t seem to provide any noticeable

improvement over simply using the previous value and ignoring the trend. This may

be due to the fact that the trend is small and an event generally has only a few

observations.

2.5 Conclusions and Future Work

We introduced a number of models for making predictions about future logPc

values. These models have various advantages and disadvantages, but all of the

models produce unbiased predictions over time. Additionally, these predictions are

within an order of magnitude at least 60% of the time, with the best models produce

predictions within an order of magnitude 85% of the time. This is counter to the

conventional wisdom that logPc values cannot be predicted and that we can make

no claims about future behavior. Indeed, we can make relatively strong claims about

most of their future values, though this is more difficult as one approaches TCA.

Still, these predictions are good enough to create decision-making frameworks that

are better than guessing, and reliable enough to give us a high degree of confidence

in saying whether a future CDM will contain high-risk values or not.

These models all reveal various features about logPc values which had not

been discussed before. For instance, the Beta Clustering model shows that it is

likely that there are two kinds of events, those which have very low variability and

those which have very high variability. This information may be used in turn to
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diagnose what might be different about these events with low variability, and if

perhaps the information for these events is simply more accurate. The Look-Up

model suggests that the quantile of the logPc value tells us a great deal about future

values. Furthermore, it reveals that this holds true to a very high degree up to 4 days

to TCA. And though the Vertex model is simple and does not utilize a longitudinal

framework, it still has many nice properties. Fortunately, many simple models work

well here, which eases computation time and interpretation.

It is worth noting that these models are simply an initial exploration into

the problem of predicting logPc values. Future work may hone these models to be

more accurate, and ultimately to be more useful in the decision-making process. For

instance, it seems clear from the ROC curves that some more exploration should

be done in constructing confidence intervals for the Look-Up method. The Beta

Clustering model suggests that perhaps identifying a particular cluster early will

make prediction easier. More specifically, it may be worth exploring models which

take into account not only the quantiles of the previous observations, but also the

change in quantiles, as the low-variability cluster suggests the quantile does not

change much over time. The New Beta Regression model suggests that a cubic

trend is likely better for describing the mean of the logPc values over time, as is

supported by the discussion leading to the Beta Threshold model.

Due to the success of the Look-Up and LOCF models, it seems that future

work should focus on non-parametric procedures. Though Beta regression is flexi-

ble, many of these features (such as the threshold feature) are more easily described

through splines or quantiles. A sufficiently flexible non-parametric model which can

account for quantile, time, and longitudinal observations may very well improve upon

all of these models. Additionally, a non-parametric framework may more easily ac-

commodate the identification of clusters. In addition to focusing on non-parametric

models, future work may also consider other features in the data which might help
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to explain the variability. This may include the positional error covariance matrix,

tracking information, or miss distance. In initial exploration, we found that many

of these covariates are noisy and may add more noise than the amount of variability

in logPc they describe. However, there may be a simple way to incorporate one or

more of these features into a model so that prediction is improved.
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CHAPTER THREE

Longitudinal Network Meta-Analysis

3.1 Background

Meta-analysis provides a framework for combining evidence from multiple data

sources with the goal of improving inference. Meta-analyses are common in biostatis-

tics, as researchers often attempt to combine the results from multiple clinical trials

to assess the relative efficacy of two or more treatments. In addition to standard in-

structional texts now available (for example, Cooper[22], Higgins[41], or Egger[30]),

the National Institute for Health and Care Excellence (NICE) attempted to stan-

dardize some of the practices in meta-analysis in a series of seven technical docu-

ments. The NICE documents include suggestions focused on network meta-analysis.

Network meta-analysis attempts to compare treatments across trials, even when

they were not observed head-to-head in a clinical trial.

The NICE documents consider network meta-analysis techniques for response

at a single time point. In this chapter, we review some of the methods proposed

for network meta-analysis of multiple time points. In addition to reviewing exist-

ing methods, we alter and propose some methods to extend existing longitudinal

methods for meta-analysis to include a network of treatments. There are two main

motivations for developing longitudinal models in this area. The main motivation

is to provide a better framework for imputation when one does not have data for

all trials at a given time point. Current methods of imputation are linear interpola-

tion, last one carried forward (LOCF), or simply removing trials without the time

point of interest. It is easy to think of examples where each one of these approaches

is inappropriate. The second motivation for developing longitudinal methods for

meta-analysis is to understand the trend over time, and possibly make prediction
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at future time points. Understanding the trend of a treatment response over time

is immensely useful for planning a trial, and ultimately could yield more powerful

designs for future clinical trials.

Jones et al.[46] reviewed the literature for methods of meta-analyzing longi-

tudinal data. Their conclusion was that practitioners were undecided on how to

appropriately meta-analyze longitudinal studies, and subsequently Jones et. al pro-

posed a few methods for doing so. Since then, various new methods have been

proposed for the meta-analysis of longitudinal data, though few of these explicitly

mention longitudinal data. In addition to the research which explicitly references

longitudinal data, there also exists developments in the areas of meta-analysis for re-

peated measures, model-based meta-analysis, and multivariate meta-analysis. Thus,

though models have been created and tested in each of these areas, there has been

no exploration of the performance of these models against each other in various

longitudinal settings. Furthermore, due to this lack of exploration and a cohesive

framework, practitioners may still feel unclear in how to proceed with a network

meta-analysis of longitudinal data. We seek to address these issues in this paper.

Ishak[42] proposed a general linear mixed model for the meta-analysis of lon-

gitudinal studies. This model did not support multiple treatment comparisons, but

was one of the first proposed for explicitly meta-analyzing longitudinal data. What

Ishak referred to as a general linear mixed model is also known as a multivariate

mixed model. Many others proposed meta-analysis methods for nominal repeated

measures are a special case of multivariate mixed models, for example Dakin[23],

who presented a network meta-analysis for repeated measures. In addition to the

special cases explored in meta-analysis of repeated measures, the multivariate mixed

model is also the basis of inference for the meta-analysis of multiple outcomes (also

referred to as multivariate responses). This area has received a great deal of at-

tention in recent years, hinging on the development of suitable priors for covariance

83



matrices of multivariate outcomes known to be positively correlated. These develop-

ments could be incorporated in the meta-analysis of repeated measures, as discussed

below.

Model-based meta-analysis is generally used to model dose-response over time,

thus contributing to meta-analysis of longitudinal data. A common model for the

dose-time relationship is the Emax model, as exemplified by Ahn and French[3].

Gross et. al[37] utilized this structure to compare various dose levels of two com-

parator drugs across studies, while accounting for various covariates and washout

periods. Though the Emax model is common, one can find other examples of model-

based meta-analyses in the literature, usually with a nonlinear dose effect over time,

as in Mercier[56].

Methods proposed explicitly for the meta-analysis of longitudinal data tend to

be less common, with notable exceptions. The Emax model proposed by Gross et

al.[37] explicitly mentions longitudinal data. In addition, Ding and Fu[29] propose

a model which simultaneously models the mean and the variance of the dose effect

over time. Recently, Jansen[44] proposed a method using fractional polynomials to

address the case of unknown treatment effect over time.

The purpose of this paper is two-fold. First and foremost, we present four

models commonly found in the literature for network meta-analysis of longitudinal

data. These models are Ding and Fu’s BEST-ITP model, an Emax model parame-

terized by time (as opposed to dose level), a multivariate mixed model, and Jansen’s

fractional polynomial model. Where needed, we extend these methods to support

mixed treatment comparisons, and offer other modeling suggestions. Second, we

present a simulation comparing these four models with a univariate network meta-

analysis, so that practitioners can see the impact of model misspecification, as well

as when longitudinal models are advantageous. To our knowledge, such an explo-

ration of the effects of model misspecification has never been done in this setting.
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Furthermore, few[29] have shown the gains achieved when specifying a longitudinal

model rather than a univariate model.

This chapter is structured as follows. Section 2 presents an overview of the

four models mentioned above. Section 3 discusses the simulation structure and

results. Section 4 offers conclusions and recommendations for model choice, as well

as thoughts for future research.

3.2 Models

In what follows, let i denote the study index, j denote the treatment index,

and k denote the time index.

3.2.1 Univariate Model

Before the longitudinal models, we present the network meta-analysis model

for a single time point as presented in Dias[26]. For normally distributed data, the

univariate network meta-analysis model can be written as

yij ∼ N(θij, seij)

θij = µi + d(bj)

d(b1) = 0,

where seij is the estimated standard error of response yij, b is the baseline treatment,

i is the study index, and j is the treatment index. This model is known as the “fixed

effects model”, as the treatment effects d(bj) are fixed across studies. The model

above assumes that each study has the same baseline treatment b, which has mean

µi for that particular study. This is easily alleviated in practice by employing the

network assumption,

d(bc) = d(ac) − d(ab). (3.1)
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Equation (3.1) is known as the consistency equation. For notational convenience,

we assume that all studies have the same baseline treatment. We detail a general

model with varying baseline treatments later. It is worth noting that a model which

assumes the same baseline treatment for each study is relatively common, e.g. the

case of each study comparing treatments to a placebo.

We can extend the previous model to include random effects. We have

ȳij ∼ N(θij, se
2
ij)

θij = µi + δi(bj)

δi(b1) = 0

where

δi(bj) ∼ N(d(bj), σ
2).

In a Bayesian model, we put priors on d(bj) and σ2.

When one specifies random effects, they are correlated. Let J be the total

number of treatments.
δi(b2)

...

δi(bJ)

 ∼MVN




d(b2)

...

d(bJ)

 ,Λ

 (3.2)

Λ =



σ2 σ2/2 ... σ2/2

σ2/2 σ2 ... σ2/2

...
...

. . .
...

σ2/2 σ2/2 ... σ2


(3.3)

A general model allowing for different baseline treatments in each study can be

constructed by employing the consistency assumption. Recall that we have assumed
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the network of treatments is consistent, so that d(cj) = d(bc) − d(bj). Then we can

write the random effects in terms of any new baseline treatment c in a study
δi(c2)

...

δi(cJ)

 ∼MVN




d(bc)

...

d(bc)

−


d(b2)

...

d(bJ)

 ,Λ



Λ =



σ2 σ2/2 ... σ2/2

σ2/2 σ2 ... σ2/2

...
...

. . .
...

σ2/2 σ2/2 ... σ2


.

For the longitudinal models, we assume that treatment 1 is the baseline treatment,

and that it is the same across trials. This is to ease notation. When this is not true,

the modeler can utilize the consistency equation to rewrite the model as we have

above.

3.2.2 BEST-ITP Model

Fu and Manner[34] developed an integrated two part (ITP) model for Bayesian

adaptive design with delayed responses. Ding et. al[29] extended this model to

network meta-analysis by adding a model for the overall residual variance. This

model is the BEST-ITP model, and is given in equation (8) of Ding et. al. This

model has the overall property that

Ȳijk =

(
φi + θj +

εijk√
nijk

)
1− epjtijk
1− epjd

, V ar(εijk) = σ2. (3.4)

This model can be written as

Ȳijk ∼ N(µijk, σ
2
ijk)

S2
ijk(nijk − 1)

σ2

(
1− epktijk
1− epjd

)2

∼ Γ{(nijk − 1)/2, 2},

µijk =

(
φi + θj +

εijk√
nijk

)
1− epjtijk
1− epjd
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σ2
ijk =

σ2

nijk

(
1− epjtijk
1− epjd

)2

,

θ1 = 0,

where pj ∈ (−∞, 0] for all j, and d = max(tijk). Notice that as tijk increases, so

too does the sample variance. This model assumes that the dose response plateaus,

and has maximal magnitude when tijk = d. As Ding notes, one can make the model

flexible by replacing

1− epjtijk
1− epjd

with (
1− epjtijk
1− epjd

)(
1 + eaj+pjd

1 + eaj+pjtijk

)
,

where aj ∈ (−∞, 0] for all j. This model still assumes a plateau of dose response,

but supports an “S”-shape in the longitudinal trajectory. Of course, if one has only

a few time points for a given study (2 or 3), the added parameter aj can cause

identifiability issues.

The rate parameters aj and pj may be problematic if one observes significant

variability in the shape of a trajectory for a given treatment j from trial to trial.

This is because these effects are fixed, and there has been no proposed method of

implementing them as random. Specifying random effects in θj is straightforward,

as one simply replaces θj with θij, so that

Ȳijk =

(
φi + θij +

εijk√
nijk

)
1− epjtijk
1− epjd

, V ar(εijk) = σ2,

where the θij have the correlation structure given in (3.3). However, the extension

to random effects for aj and pj is not so obvious, as one generally gives each a

non-informative Uniform prior distribution, for example

aj ∼ U(−100, 0)
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pj ∼ U(−100, 0),

for all j. One solution may be to specify a Normal prior on a suitable transformation

h(·) of aj and pj, such as the natural log or square root of −aj or −pj. Then one

could proceed as usual to construct prior distributions for aij and/or pij. Of course,

this creates more parameters to estimate and possibly new identifiability issues, so

this should only be done if there is sufficient data and the data supports such added

complexity. In addition, it may not be straightforward to specify a non-informative

prior distribution for the variance of such random effects.

3.2.3 Emax Model

Consider an Emax model, which models dose response in the following way

Y =
Emax× t
t+ ED50

+ ε, (3.5)

where ε ∼ N(0, σ2). Note that this model usually uses dose instead of time as the

independent variable. In this setting, the ED50 represents the dose at which 50%

of the effect is obtained. When dose is replaced with time, as above, the ED50

represents the time at which 50% of the effect is obtained. In either case, the Emax

can be interpreted as the maximum possible effect.

The Emax and ED50 parameters may depend on both the study and the

treatment. That is, for the ith study, jth treatment, and kth time, one might have

Yijk =
Emaxij × tijk
tijk + ED50ij

+ εijk

One may specify a treatment effect for Emax only, ED50 only, or both.

In the literature, there are at least two ways one might specify an effect on

these parameters. Mandema et. al[55] specify random and covariate effects to these

parameters via the relationship

Emaxi = Emax× (1 + β(xij − x̃..) + ηi). (3.6)
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where x̃.. is the median of the covariate values, and ηi is a random effect.

Gross et. al[37] define covariate effects on the Emax parameter as

Emax = Emax
′ × exp {β(xij − x̄..)} , (3.7)

where x̄.. is the mean of the covariate values and Emax
′

is the Emax unadjusted for

covariates. This suggests that a random effect might enter via

Emaxi = Emax× exp {β(xij − x̄..) + ηi} . (3.8)

Let Emax0 be the Emax of the reference group and denote study and treat-

ment effects by αi and βj, respectively. As demonstrated above, there are at least two

ways we may specify study and treatment effects, the first being due to Mandema[55]

Emaxij = Emax0 × (1 + αi + βj), (3.9)

and the second being exponential random effects, which have the form

Emaxij = Emax0 × exp {αi + βj} . (3.10)

A complete Bayesian specification can be completed by placing normal priors

on the effects and uniform priors on Emax0 and ED500.

3.2.4 Multivariate Mixed Model

In some cases, the modeler may not wish to specify a trend for time in the

model, preferring to analyze the observations over time as a multivariate observa-

tion. The following development draws on the literature concerning meta-analysis

for multiple outcomes.

Ishak et. al[42] consider the following model. Suppose K measurements are

taken over time on N units (e.g. studies in a meta-analysis); we denote by yi the

K × 1 vector of observed values from the ith trial and yij the measurement taken
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at the jth time. A general linear mixed model that can account for the correlations

between the observations is given by

yi = Xiθ +Ziδi + εi,

where Xi is a K×p matrix of possibly time dependent covariates, θ is a p×1 vector

of fixed effects, Zi is a K × q matrix of covariates, δi is a q × 1 vector of random

effects, and εi is a K × 1 vector of residuals.

This model framework, known as a multivariate mixed model, can be extended

to specify treatments within each study, so that one may perform a network meta-

analysis. How this is done depends on what one specifies as the response variable.

The literature contains examples of modeling the mean directly (e.g. mean change

in baseline for each treatment), as well as of modeling the mean effect relative to a

reference treatment (i.e. treatment effect). We treat only the direct modeling of the

mean here, and refer readers to Ethfimiou et. al (2015) as a reference for modeling

the treatment effect.

3.2.4.1 Modeling the Mean Directly Achana et. al[2] consider the following

model for meta-analysis of multiple outcomes. Again, let yijk represent an observa-

tion (such as change from baseline) from subject i in treatment arm j at time k.

Then 
yij1

...

yijK

 ∼MVN




θij1
...

θijK

 ,Σij =


se2
ij1 ... r1K

ik seij1seijK

. . .
...

se2
ijK





θij1

...

θijK

 =


µb1 + φi1 + δi(bj)1

...

µbK + φiK + δi(bj)K


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
δib1

...

δibK

 =


0

...

0


where δi(bj)k is the random effect of the jth treatment at time k relative to treatment

b. Thus, b is the reference treatment. The vector of effects due to treatment is

distributed φ ∼ MVN(0,Γ). Note that while one generally has yijk and se2
ijk in a

meta-analysis, one usually does not have access to rikij .

Because this model is multivariate, the random effects will be correlated across

time in addition to across treatments. For instance, given study i and treatment j,

one has 
δi(bj)1

...

δi(bj)K

 ∼MVN




d(Aj)1

...

d(Aj)K

−


d(Ab)1

...

d(Ab)K

 ,∆(bj).



∆(bj) =


τ 2

(bj)1 ... ρ1K
bj τ(bj)1τ(bj)K

. . .
...

τ 2
(bj)K

 ,

where ρikbj captures the across-time correlation. For identifiability, one generally

assumes that a common between-study variance among treatment arms, so that

σ2
(bj) = σ2. Additional, one assumes that the correlation is constant across treat-

ments, so that ρikbj = ρik. As a result, one has
δi(bj)1

...

δi(bj)K

 ∼MVN




d(Aj)1

...

d(Aj)K

−


d(Ab)1

...

d(Ab)K

 ,∆



∆ =


τ 2

1 ... ρ1Mτ1τK

. . .
...

τ 2
K


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Because the random effects are with respect to the same reference treatment within

each study, they must also be correlated across treatments, as in equation (3.3).

Similarly, one has


δi(bj1)1

...

δi(bj1)K


δi(bj2)1

...

δi(bj2)K


...

δi(bjP )1

...

δi(bjP )K





∼MVN






d(bj1)1

...

d(bj1)K


d(bj2)1

...

d(bj2)K


...

di(bjP )1

...

di(bjP )K





,Π



(3.11)

Π =



∆ 1
2
∆ ... 1

2
∆

1
2
∆ ∆ ... 1

2
∆

...
...

. . .
...

1
2
∆ 1

2
∆ ... ∆


, (3.12)

so that the vector of random treatment effects is equally correlated among all com-

binations of treatments.

3.2.4.2 Structured Covariance Matrix As noted above, one generally has

more than two time points to consider in longitudinal data. As a result, the co-

variance matrices for both the random effect and error vectors contain multiple

correlation coefficients. To make these matrices identifiable, one can impose a struc-

ture on the covariances to reduce the number of parameters. Ishak et. al[42] used

this approach in a meta-analysis of longitudinal data which compares a single treat-

ment across studies. They proposed using an AR(1) covariance structure, as it only
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requires the estimation of one correlation coefficient for each matrix. The resulting

covariance matrices for the error and random effect vectors are

Σij =


s2
ij1 ... rKsij1sijK

. . .
...

s2
ijK



∆ =


τ 2

1 ... ρKτ1τK

. . .
...

τ 2
K

 .

This kind of correlation structure is tenable if the time between observations is

equally spaced. One may consider other simple correlation structures, such as a

one- or two-banded Toeplitz correlation structure[42].

If the time between successive observations is not equally spaced, then one

may consider defining a correlation coefficient which is dependent on time. These

covariance structures are commonly found in spatial statistics. These correlation

structures include exponential, Gaussian, and spherical correlations, to name a few.

To simplify the analysis and reduce the number of parameters, one might assume

that rK = ρK for all K, so that the correlation of the errors across time is the

same as the correlation of the treatment effects across time. One may assume this

same correlation for the study effects, so that Γ = SφRS
′

φ. Though this is a strong

assumption, without patient-level data it is not possible to model these correlations.

Thus, they are not identifiable for aggregate-level data, and a particularly strong

assumption must be made when implementing this kind of model.

3.2.4.3 Unstructured Covariance Matrix Wei and Higgins[80] discuss a prior

scheme for unstructured covariance matrices. These priors are intended for multiple

outcomes, but can be adapted for longitudinal data, as in both cases correlation is

typically assumed to be positive.
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3.2.5 Fractional Polynomials Model

The nature of the underlying trend for the mean is often not known. Jansen et.

al[44] proposed using fractional polynomials (Royston and Altman[68]) to address

this issue.

A first-order fractional polynomial is obtained by describing the outcome of

interest as a function of transformed time t in a linear model:

θt = β0 + β1t
p. (3.13)

The power p is chosen from the following set: -2, -1, -0.5, 0, 0.5, 1, 2, 3 with t0 = log t.

A second-order fractional polynomial is defined as:

θt = β0 + β1t
p + β2t

p2 . (3.14)

If p1 = p2 = p, the model becomes a “repeated powers” model:

θt = β0 + β1t
p + β2t

p log t. (3.15)

3.2.5.1 Random effects. As in the other models, one may model the treat-

ment effects as fixed or random. Below we give the model which assumes the treat-

ment effects are random, and the fixed effects version follows as discussed above.

Note that there are M treatment effects in the model, and that they do not nec-

essarily all have to be either fixed or random. That is, one may have both fixed

and random treatment effects. This is discussed further in Jansen[44]. The model

proposed by Jansen is

θijt =


β0ij +

∑M
m=1 βmijt

pm with t0 = log(t) if p1 6= ... 6= pM

β0ij + β1ijt
p1 +

∑M
m=2 βmijt

p1(log t)m−1 if M > 1, p1 = ... = pM
β0ij

...

βMij

 =


µ0ib

...

µMib

+


δ0i(bj)

...

δMi(bj)

 (3.16)
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
δ0ib

...

δMib

 =


0

...

0

 (3.17)


δ0i(bj)

...

δMi(bj)

 ∼MVN




d0(Aj)

...

dM(Aj)

−


d0(Ab)

...

dM(Ab)

 ,Σ

 (3.18)


d0(AA)

...

dM(AA)

 =


0

...

0

 (3.19)

One can assume heterogeneity for any number of the diAk. For instance, assum-

ing heterogeneity for d0Ak only implies a random intercept model, implying between-

study variance of effect estimates remains constant over time.

Because the random effects modify regression coefficients, it is likely that they

are correlated with each other. If one specifies a second order model with correlation

among the regression coefficients, then
δ0ibk

δ1ibk

δ2ibk

 ∼MVN




d0Ak

d1Ak

d2Ak

−


d0Ab

d1Ab

d2Ab

 ,∆ =


σ2

0 ρ01σ0σ1 ρ02σ0σ2

. σ2
1 ρ12σ1σ2

. . σ2
2




Typically when one specifies heterogeneity for multiple treatment arms (> 2 treat-

ments) within the same study, one assumes that the heterogeneity is the same for

all dmi(bk1), dmi(bk2), ..., dmi(bkP ). For example,


δ0i(bj1)

...

δ0i(bjP )

 ∼MVN




d0(bj1)

...

d0(bjP )

 ,



σ2 σ2/2 ... σ2/2

σ2/2 σ2 ... σ2/2

...
...

. . .
...

σ2/2 σ2/2 ... σ2




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If we extend this notion of equal heterogeneity of random effects across studies, then

we have 


δ0i(bj1)

...

δMi(bj1)


δ0i(bj2)

...

δMi(bj2)


...

δ0i(bjP )

...

δMi(bjP )





∼MVN






d0i(bj1)

...

dMi(bj1)


d0i(bj2)

...

dMi(bj2)


...

d0i(bjP )

...

dMi(bjP )M





,Π



Π =



∆ 1
2
∆ ... 1

2
∆

1
2
∆ ∆ ... 1

2
∆

...
...

. . .
...

1
2
∆ 1

2
∆ ... ∆


,

similar to equation (3.12).

3.2.6 Model Comparison

Table 3.1 provides a comparison of some of the defining characteristics among

the models.

3.3 Comparison to Univariate Model

It is important to understand how these models compare to the standard

network meta-analysis at a single time point. This is useful for understanding model

assumptions and for exploring these assumptions visually.
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Table 3.1: Comparison of models
Feature BEST-ITP Emax Multi Frac Poly
Assumes model for σ2 Yes No No No
Assumes response plateaus Yes Yes No No
Assumes monotonic response over time Yes Yes No No
Assumes univariate meta-analysis
model at each time point

No No Yes Yes

Treats missing time points as NA No No Yes No

3.3.1 BEST-ITP

The BEST-ITP model is a straightforward extension of the univariate model.

The main innovation in the BEST-ITP model is the joint model for the variance. If

we assume that the standard errors are fixed (as in the univariate model), we have

yijk =
(
φi + θ(bj) + εijk

) 1− epjtijk
1− epjd

εijk ∼ N(0, seijk),

which is a slight variant on the fixed effects univariate network meta-analysis model.

Note that for the Kth time point, this is is the same as the univariate model only if

tijk = d or pj = pk for all j, k.

Suppose that one observes the response at a single time point t, as in a uni-

variate meta-analysis. We can simplify our model to

yij =
(
φi + θ(bj) + εij

) 1− epjt

1− epjd

εij ∼ N(0, seij).

Let κj = 1−epjt

1−epjd
. Then

yij = φiκj + θ∗(bj) + εij

εij ∼ N(0, seijκj),

where θ∗(bj) = θ(bj)κj. From this equation, it is clear that the BEST-ITP model

does not reduce to the univariate model when κj depends on j. It’s worth noting
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that when tijk ≥ d, it does reduce to the univariate meta-analysis model, suggesting

some guidance on choosing d. Furthermore, when κj is small (i.e. the responses have

nearly plateaued), the model is approximately a univariate meta-analysis model at

the given time point.

The fact that the BEST-ITP model does not reduce to a univariate model

at each time point makes it more difficult to directly interpret differences in effects

between the models at a given time point. On the other hand, it implies that when

the model is true, the univariate model should not fit the data correctly.

The above development does imply at least one model checking technique. We

can write the model as

yijk = φiκjk + θ(bj)κjk + εijkκjk

= φ∗ijk + θ∗jk + ε∗ijk

where κijk = 1−epjtijk
1−epjd

. A plot of φ∗ijk vs. θ∗ijk should yield a straight line with a

common slope of θ(bj)/φi for each study i and treatment j. Estimates for these

effects can be easily obtained via least squares, which are invariant to heterogeneity

of variance, as is the case here.

3.3.2 Emax

The Emax model reduces to the univariate model under certain conditions.

In particular, if the ED50 is assumed to not vary among studies and treatments,

and the effects are assumed to be multiplicative, then the Emax model reduces to a

univariate meta-analysis at each time point. Under these conditions, we have

yijk =
Emaxij × tijk
tijk + ED50

+ εijk

=
Emax0 × (1 + φi + θj)× tijk

tijk + ED50
+ εijk,
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which for a particular time point tijk we can write as

yij =
Emax0 × (1 + φi + θj)× t

t+ ED50
+ εij

= (1 + φi + θj)κ+ εij

= κ+ φ∗i + θ∗j + εij,

where κ = (Emax0 × t)/(t + ED50), φ∗i = φiκ, and θ∗j = θjκ. We can write this

in the usual univariate meta-analysis form by letting µi = κ + φ∗i . In this case, the

effects of the longitudinal model are simply fixed or random intercepts, implying

parallel trajectories along an Emax curve. When the effects are exponential, this is

approximately true, as exp(φi + θj) ≈ 1 + φi + θj, given by the first order Taylor

series expansion of f(x) = exp(x).

When the ED50 can not be assumed to be the same across studies and treat-

ments, the Emax model does not reduce to the univariate model.

3.3.3 Mulviariate

The multivariate model reduces to the univariate model by definition, and

allows for more general correlation structures.

3.3.4 Fractional Polynomials

The fractional polynomials model also reduces to the univariate model. For

ease of notation, suppose one has a fractional polynomials model where pm 6= 0 for

all m and p1 6= ... 6= pM . Then the model is

yijk ∼ β0ij +
M∑
m=1

βmijt
pm + εijk

βmij = µmib + dm(bj) for m = 1, ...,M,

when the treatment effects are fixed. Rearranging, the model becomes

yijk ∼ β0ij +
M∑
m=1

µmibt
pm +

M∑
m=1

dm(bj)t
pm + εijk,
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highlighting the study-specific and treatment-specific effects. For a given time point

t = tijk, we can write

yij ∼ β0ij +
M∑
m=1

µmibt
pm +

M∑
m=1

dm(bj)t
pm + εij

= β0ij + µ∗ib + d∗m(bj) + εij,

where µ∗ib =
∑M

m=1 µmibt
pm and d∗m(bj) =

∑M
m=1 dm(bj)t

pm . As before, we can write

this in the usual univariate model with µi = β0ij + µ∗ib. Note that this holds for the

more general case of when one or more of the powers pm is zero or repeated.

3.4 Exploratory Analysis

Exploratory data analysis is an essential part of building a successful model.

The models mentioned above can support many variants, making it difficult to choose

both the form of the model as well as the class of the model. Here, we offer some

tips on exploring the data to reveal patterns which can help one in making these

decisions.

3.4.1 Variance Plots

Longitudinal studies report some form of an effect estimate at each time point,

usually accompanied by some measure of variability of the estimate. This measure

of variability is often the standard error, which is frequently treated as known in the

subsequent meta-analysis. While this is convenient, this may not be realistic. For

instance, many studies do not directly report a standard error of the effect estimate,

instead providing only a graph of the effects over time with error bars. To include

such studies in a meta-analysis, researchers often measure these error bars by hand.

Thus, the data used in meta-analysis often contain estimates of variance estimates,

suggesting the practice of treating these quantities as known as being inappropriate.

As discussed later, the veracity of such estimates are often dubious.
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When one chooses to consider the variance as a random variable, one must

further choose how to model the variance over time. The BEST-ITP model auto-

matically accounts for unknown variances, but this is not true for the other models

presented above. To assess the model for the standard error, we recommend two

plots. In order to discern the trend over time, we recommend a spaghetti plot of the

sums of squares (SS) vs. time. This can reveal the trend of increasing variability, as

is assumed in the BEST-ITP model.

Another plot which can be useful is a plot of SS vs. effect size. This is

particularly useful in diagnosing the appropriateness of the BEST-ITP model, as

this model implies a squared relationship between the effect size and the sums of

squares when the sample size is constant. These two plots, along with a spaghetti

plot of effects vs. time, are given in Figure 3.1. The model which generated this

data is the BEST-ITP model, as one can discern by the increasing sums of squares

over time and the parabolic relationship between effect and sums of squares.

3.4.2 Effect Plots

Here, we describe some useful plots for discerning the trend of the main effect

over time.

3.4.2.1 Random Effects Model Discerning the functional form of the main

effect can be difficult, as variability in the main effect can come from study effects,

treatment effects, and pure error. The first step in choosing a model is often looking

at a spaghetti plot of the main effects over time, which can be more illustrative when

one colors the individual curves by treatment (as shown above). This can often be

enough to narrow the choices down to one or two classes of models. However, further

inspection can be useful in inspecting the sources of variability in the data, which

have implicit relationships in each of the models. To explore these relationships, we
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Figure 3.1. Example of some diagnostic plots with generated BEST-ITP data

suggest fitting a random effects model at each time point k:

ȳijk = µ+ αik + βjk + εijk

αik ∼ N(0, σ2
(α)k)

βjk ∼ N(0, σ2
(β)k)

(3.20)

This model is related to three of the four above classes of models. When

the treatment effects are considered fixed, the multivariate mixed model reduces to

(3.20) at each time point. The same is true for the fractional polynomial model

when one conditions on a time point. When the treatment effects are considered

random, the residuals from fitting (3.20) will be correlated across time and/or within

treatments.

The BEST-ITP model reduces to (3.20) when t = d. The BEST-ITP model

approaches the univariate model as t → d. As a result, one should observe de-

creasing variability in the residuals as t → d after fitting (3.20). Additionally, if
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the BEST-ITP model is the true underlying model, the residuals from (3.20) will

exhibit a decreasing trend over time. This is because the differences among the pj

will cluster the residuals according to treatment, and this clustering will dissipate

as (f(pj, tijk, d)→ 1 (as t→ d).

Finally, the Emax model is a nonlinear model which does not reduces to (3.20)

only under certain conditions. Thus, this graphical check can not be used to diagnose

this model. However, this model is particular to many therapeutic areas, so that the

researcher generally knows beforehand to expect a model of this kind.

3.4.2.2 Plots After fitting the random effects model, there are several plots

which can be beneficial in choosing an appropriate model. Spaghetti plots of α̂ik vs.

k and β̂jk vs. k can help one visualize the functional form of the model. One can

also check the relationship between the effects by plotting α̂ik vs. β̂jk. If the data is

sparse, one may plot σ̂2
(α)k vs k, σ̂2

(β)k vs. k, and σ̂2
(α)k vs. σ̂2

(β)k.

Figure 3.2 shows spaghetti plots for the estimated study and treatment effects.

As is clear from the bottom plot, the study and treatment effects seem to have a

linear relationship. This is an assumption in the fractional polynomials, the model

which generated this data.

In addition to spaghetti plots of the study and treatment effects, residual plots

can also be useful. Inspecting the spaghetti plot of residuals vs. time can illustrate

a trend in residual variance over time. Recall that for the BEST-ITP model, this

variance should decrease over time, as there is extra variability at earlier time points

not accounted for by the random effects model. The multivariate mixed model and

fractional polynomials model, when true, should exhibit constant variance in the

residuals over time after fitting (3.20). In addition to a spaghetti plot of residuals,

inspecting a scatterplot matrix of the residuals over the binned time points can

illustrate correlation not captured by (3.20).
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Figure 3.2. Plots of study and treatment effects from data generated using the Fractional
Polynomials model

The scatterplot matrix in Figure 3.3 shows decreasing correlation over time.

This can of plot can help one choose a correlation structure in a multivariate mixed

model, although there is often not enough time points to construct a meaningful

variogram. In this case, the data were generated from a multivariate mixed model

with an exponential correlation function.

While it is not necessary that every study and treatment be represented at

each time point in this graphical check, it is important to have as many of possible

of each in order to adequately assess the variability at each time point. If the data

contains many time points but is sparse at some time points, one may consider

binning adjacent time points where appropriate.

Though we have offered several graphical checks to help choose an appropriate

model, this decision will often be dictated by the needs and focuses of the researcher.

For example, if a researcher is interested in the underlying shape of the effect, he or

she may choose to implement various fractional polynomial models. On the other
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Figure 3.3. Correlation scatterplot matrix for data generated using the Multivariate model

hand, if the researcher is interested in making predictions and willing to assume a

plateau effect of the drug, then he or she may choose the BEST-ITP model. The

models presented above are fairly flexible, and can be made to handle most common

situations.

3.5 Model Fit and Model Comparison

Checking model fit is similar to the univariate case, where deviance residuals,

leverages, and the DIC can all be used to diagnose the overall fit of the model to

the data. These techniques are discussed in Dias[26]. When the standard error

is assumed fixed, the likelihood is a function of the µijk only. Hence, the residual

deviance can be written as

Dres =
∑
i

∑
j

∑
k

−2
{

log(f(ȳijk|µ̂ijk, ŝeijk))− log(f(ȳijk|µ̂Sijk, ŝeijk))
}

106



where µ̂ijk is the estimate of µijk, µ̂
S
ijk is the estimate of µijk under the saturated

model, and ŝeijk is the estimated standard error, assumed to be known. In the

models we consider, f(·) is the pdf of a normal distribution.

When one specifies a model for the sample variance as well as the sample mean,

as in the BEST-ITP model, the deviance is a function of an underlying precision τ as

well as the µijk. It is well known that the sample mean and variance are independent

statistics when they are calculated from normally distributed data. As a result, we

have

Dres =
∑
i

∑
j

∑
k

−2
{

log(g(ȳijk|µ̂ijk, τ̂)h(S2
ijk|(nijk − 1)/2, 2(nijk − 1)τ̂))

− log(g(ȳijk|µ̂Sijk, τ̂S)h(S2
ijk|(nijk − 1)/2, 2(nijk − 1)τ̂S))

}
,

where g(·|µ, τ) is a Normal distribution with mean µ and precision τ , h(·|α, β) is a

Gamma distribution shape parameter α, and scale parameter β.

Conveniently, because the sample mean and sample variance are independent,

we can compute deviance residuals for ȳijk and S2
ijk separately, and sum them to

obtain the total residual deviance. This is apparent when one takes the log(·) of the

joint distribution for ŷijk and S2
ijk:

Dres =
∑
i

∑
j

∑
k

−2 {log(g(ȳijk|µ̂ijk, τ̂))

+ log(h(S2
ijk|(nijk − 1)/2, 2(nijk − 1)τ̂))

− log(g(ȳijk|µ̂Sijk, τ̂S))

+ log(h(S2
ijk|(nijk − 1)/2, 2(nijk − 1)τ̂S))

}
.

Rearranging, we have

Dres =
∑
i

∑
j

∑
k

−2
{

log(g(ȳijk|µ̂ijk, τ̂))− log(g(ȳijk|µ̂Sijk, τ̂S))
}

+
∑
i

∑
j

∑
k

−2
{

log(h(S2
ijk|αijk, β̂ijk)− log(h(S2

ijk|αijk, β̂Sijk)
}
,
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where αijk = (nijk − 1)/2, β̂ijk = 2(nijk − 1)τ̂ , and β̂Sijk = 2(nijk − 1)τ̂S. Thus, we

can independently assess the lack of fit in the mean and in the precision.

Define devmijk as the deviance residual computed for ȳijk and devvijk as the

deviance residual computed for S2
ijk. That is,

Dres =
∑
i

∑
j

∑
k

devmijk +
∑
i

∑
j

∑
k

devvijk.

Using this notation, we can also write separate leverages for ȳijk and S2
ijk. We have

leveragemijk = ¯dev
m
ijk − ˜dev

m

ijk

and

leveragevijk = ¯dev
v
ijk − ˜dev

v

ijk

where ˜dev
m

ijk is the posterior mean of the deviance due to ȳijk and ˜dev
v

ijk is the

posterior mean of the deviance due to S2
ijk

3.6 Practical Concerns

Here, we outline a few implications of the practical choices one makes in im-

plementing these models. First, we discuss the issue of “simultaneous vs. separate”

models, also discussed in Dias[27]. To our knowledge, the implications of implement-

ing a meta-analysis using separate models for the baseline treatment and comparison

treatments has not been explored. Though Dias[27] suggests how to implement sep-

arate models, there is no theoretical justification for why this technique should work,

and furthermore no discussion of the assumptions one makes when employing this

technique. We feel that this issue is important and often overlooked. In addition,

some longitudinal models can not be implemented using separate models, presenting

a challenge unique to longitudinal models.

The second issue we discuss is that of “adjusting the standard error for corre-

lation”, as mentioned in Jansen[44]. At the heart of this practice is a misconception
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about how correlation affects the standard error of the mean response. This issue

is important because correlation between time points is often not reported, making

correct specification of a longitudinal model more difficult. More importantly, han-

dling this correlation correctly affects the estimate of the standard errors, ultimately

impacting inference on efficacy of treatments. This is a particularly important issue

when one is modeling change from baseline.

3.6.1 “Simultaneous vs. Separate” Models

Consider again the univariate model

yij ∼ N(θij, seij)

θij = µi + d(bj)

d(b1) = 0,

where as before, seij is the estimated standard error, assumed to be fixed. Certainly

this assumption already impacts inference, as if it is not true the resulting inference

will mis-state the magnitude of the d(bj), as it will ignore the variability in the seij.

The BEST-ITP model provides one possible framework for modeling the standard

errors, based on the assumption of an underlying error variance common to all

trials. Of course, one could argue that the estimated seij are generally representative

of the true variability, and that as the goal of inference is estimating the d(bj),

assuming them to be fixed provides one with more power by employing a reasonable

assumption.

For the same reason, the NICE documents[27] suggests employing what is

known as “separate” models for the baseline treatment and the other treatments.

This is an approach which is intended for the usual situation of most clinical trials

having the same baseline treatment (e.g. placebo). In this case, one models the
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placebo treatments separately from the differences d(bj). Specifically, one models

µi ∼ N(m,σ2
m),

where the µi are the common baseline treatment. Note that not all baseline treat-

ments are necessarily included in the µi modeled above, only those which represent

the main reference treatment, such as a placebo. For example, if most trials had a

placebo treatment and study i did not, one would not include its reference treatment

in the baseline model, as one is simply trying to model the treatment from which all

treatment differences are measured.

The goal of modeling the baseline treatment separately is to ensure that “the

information in the baseline model does not propagate to the relative treatment effects

model.”[27] That is, the intent is to keep the variability in estimating the baseline

treatment effect in each study µi from impacting the estimation of the d(bj). This

practice relies on the assumption that the difference between the treatment and

placebo effect is not affected by the variability of the placebo effect. That is, one

assumes that study variability is actually a location shift of the responses, so that the

difference between the responses stays the same. This assumption may be written

as

θij = ȳi1 + d(bj)

ȳi1 ∼ N(m,σ2
m)

so that one effectively replaces µi with ȳi1.

The difference in inferences between simultaneous and separate models is in

the variability of d̄(bj). To see this, consider a simple example. Suppose that the

variance of response is the same across trials for all treatments, that σ2 = σ2
ij for

all i, j. Let n1 be the number of studies with the baseline treatment and nj be the

number of studies with treatment j. The maximum likelihood estimate of d(bj) is
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given by

d̄(bj) = ȳ·j − ȳ·1,

where · denotes summing over the index it replaces. In the simultaneous model, ȳ·1

estimates m, and therefore has variability associated with it. Then

V ar(d̄(bj)) = V ar(ȳ·j) + V ar(ȳ·1)

=
σ2

nj
+
σ2

n1

.

If one assumes that nj ≤ n1, as is usually the case in meta-analysis, this variance is

highest when nj = n1, treatment j and the placebo have the sum number of arms

across trials. Note that as nj/n1 → 0, the added variance due to the estimate ȳ·1

becomes increasingly negligible.

When one implements separate models, ȳ·1 is treated as fixed. Then

V ar(d̄(bj)) = V ar(ȳ·j)

=
σ2

nj
,

so that this model underestimates the variance of d̄(bj) when the simultaneous model

is true. Future work is necessary on the impact of mis-specifying between simulta-

neous and separate models, and the practical benefits of each.

Choosing between simultaneous and separate models is a matter of taste for

a univariate analysis, and each are straightforward to implement. This is not so

for longitudinal models, and some may not yield a straightforward analysis under

separate models, and some are much more difficult to implement under separate

models. We give an example of each below.

As an example of the difficulty is simply constructing separate models in the

longitudinal setting, consider an Emax model where the ED50 is allowed to vary

by study and treatment. In this case, the difference between treatment j and the

111



baseline b in study i at time point k is

Yijk − Yibk =

(
Emax× tijk
tijk + ED50ij

+ εijk

)
−
(
Emax× tijk
tijk + ED50ib

+ εijk

)
.

It’s clear that when one combines these models, one will not end up with an Emax

model, and one that is substantially more complicated than the simultaneous model.

Practical implementation is an issue for the multivariate model. This model

specifies random vectors of length K which are correlated across time and with each

other. One can use conditional identities to implement a simultaneous model of

dimension K in WinBUGS or JAGS. When one wishes to specify separate models,

the differences from baseline are correlated, and must be modeled as a single vector.

Thus, if a study has two treatments in addition to baseline, one must specify a

response of dimension 2K. In addition to this greater computational cost, WinBUGS

and JAGS do not allow multivariate models of varying dimensions to be specified,

making this model difficult to implement.

3.6.2 “Adjusting the Standard Error for Correlation”

Repeated measures are common in clinical trials. One generally has at least

two time points, the time of baseline and the time of the endpoint of interest. One

often observes positive correlation between these measurements, as healthy patients

tend to respond more positively to treatments, and sicker patients tend to respond

less frequently to treatments. In this case the correlation, ρ, is the within-patient

correlation. That is, a patients response at multiple endpoints are correlated with

each other. This correlation is generally assumed to be positive.

This correlation is often not recorded, and causes problems when one wants

to compute the variance of a change from baseline estimate. This issue is discussed

in more detail in the NICE documents[26]. Here, i is the study index, and k is the

treatment index.
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However, in practice many studies fail to report an adequate measure
of the uncertainty for the before-after difference in outcome and in-
stead report the mean and variance, y

(b)
ik and V

(b)
ik , (or other measure

of uncertainty) at baseline (before), and at follow-up times (after),

y
(a)
ik and V

(a)
ik , separately. While the mean change from baseline can

be easily calculated as

y∆
ik = y

(b)
ik − y

(a)
ik

To calculate V ∆
ik for such trials, information on the within-patient

correlation ρ is required since

V ∆
ik = V

(b)
ik + V

(a)
ik − 2ρ

√
V

(b)
ik V

(a)
ik

Information on the correlation ρ is seldom available. It may be
possible to obtain information from a review of similar trials using
the same outcome measures, or else a reasonable value for ρ, often
0.5 (which is considered conservative) or 0.7, can be used alongside
sensitivity analyses.

We can see that simply adding the variances, would lead to an overestimate of the

variance of the mean change from baseline if one ignores the positive within-patient

correlation. However, this is a common way to construct an estimate for the variance

in meta-analysis, so that one often over-estimates the standard errors.

In his paper introducing fractional polynomial methods for longitudinal meta-

analysis, Jansen[44] notes that there is within-trial correlation in the change from

baseline (CFB):

The CFB in pain at each time point are correlated over time. Un-
fortunately, this within-trial correlation was not reported for the
included studies. As such, we performed sensitivity analyses assum-
ing different values for the correlation: 0, 0.5, 0.9....Estimates for
σ2
ijk (variance of CFB) were obtained from the reported standard

errors as presented in Table I and adjusted by dividing these vari-
ance estimates by 1− ρ2.

This ”within-trial” correlation is the same as the aforementioned “within-

patient” correlation. Though Jansen is correct in saying that one generally underes-

timates the variance of correlated observations, this occurs only when one calculates
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an overall variance by pooling observations across time, as in regression. However,

the estimated variances in meta-analysis are conditional at a time point tijk. Thus,

it is not the case that positive correlation will result in underestimating variability

in this setting, as this is not how these variances are calculated. As noted above,

the variances at a time point t are generally estimated using V ∆
ik = V

(b)
ik +V

(a)
ik , which

overestimates the actual variance if the correlation is positive.

In fact, the CFB measurements are correlated, but the impact on estimation

of variance is slightly more subtle. To see exactly what the correlation for the CFB

might be, first consider a mean response that is distributed as

Ȳ ∼ N

(
µ,Ω =

1

N
Σ

)
,

so that the mean effect is still correlated across time. The mean change from baseline

is a linear transformation of the mean effect. For example, consider the case where

n = 3. Let

A =


−1 −1

1 0

0 1

 .
Then the mean change from baseline ¯CFB is

¯CFB = A
′
Ȳ ,

so that

¯CFB ∼ N(A
′
µ,A

′
ΩA).

If

Ω =


1 ρ ρ

ρ 1 ρ

ρ ρ 1

 ,
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one can show that

A
′
ΩA =

 2− 2ρ 1− ρ

1− ρ 2− 2ρ

 .
= (2− 2ρ)

 1 0.5

0.5 1

 .
Thus, regardless of the strength of correlation, if the correlation is the same among all

pairs of time points, the correlation among the time points of the CFB measurements

is 0.5. This case is identical to that of observing > 2 arms in a clinical trial, and

thus knowing that the treatment effects relative to baseline are correlated. In this

case, one assumes that the treatments effects are equally correlated with each other,

resulting in a correlation of 0.5.

Notice that while this correlation does not impact the estimates of the marginal

distributions of ¯CFBj, it does impact the conditional distributions ¯CFBj| ¯CFBj′ 6=j.

One can write this distribution as

¯CFBj| ¯CFBj′ 6=j ∼ N

(
(θj − θi) +

1

n− 1

n−1∑
j=1

[
¯CFBj − (θj − θ1)

]
,

n

2(n− 1)
σ2

)
,

a relation which is commonly used for specifying random effects for multi-arm

trials[26]. When n > 2, the variance of the conditional distribution is at most

3σ2/4, suggesting again that using the marginal variances would overestimate the

variance of the conditional distribution.

One might have a different structure for Ω. For instance, suppose Ω has an

AR(1) structure, so that

Ω =


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 .
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Then

A
′
ΩA =

 2− 2ρ 1− ρ2

1− ρ2 2− 2ρ2

 .
Interestingly, one can see that a different adjustment must be made for the variance

at time point three than time point two.

Thus, the general estimates for var(CFB)j typically overestimate the variance

at any given time point.

3.7 Simulation

The title of a talk given by Richard Riley concerning multivariate meta-analysis

is quite apt in the discussion of the pursuance of longitudinal meta-analysis methods:

“Multivariate meta-analysis – is it worth the extra effort?”[67] Indeed, though mul-

tivariate methods potentially offer more insight into data, they present several chal-

lenges to the practitioner, including added assumptions, estimation difficulties, and

missing correlations[43]. These difficulties all apply to longitudinal meta-analysis,

with the added difficulty of model specification. This is the result of specifying a

model for the trend of the mean over time. Even when the practitioner adequately

handles all of these difficulties, there is no guarantee that the resulting inference

will better than had one simply used univariate methods. Jackson[43] notes that the

statistical properties of the individual parameter estimates are often only marginally

improved.

There is reason to believe that longitudinal methods promise more than just

marginal improvement in many applications. For instance, longitudinal methods

are likely to provide more robust inference when an actual trend exists, reducing

bias. This is because a univariate analysis only considers a single observation from

each study, and thus will treat outliers equally to all other observations. Because a

meta-analysis typically involves 20 or less studies, this can create considerable bias.
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This is especially true when one uses a naive interpolation method or simply leaves

out studies without data at the time point of interest.

As with multivariate meta-analysis, longitudinal meta-analysis offers infer-

ences not available at all in the univariate setting. It allows the practitioner to

make inferences about how the differences in treatments change over time, which

may ultimately prove useful in planning a new trial. For instance, in the case where

treatment efficacy is known to plateau, one could plan a trial so as to stop soon after

the plateau is reached, so as not to take unnecessary measurements. In addition,

one may use this information in conjunction with data about the drug of interest to

select a sample size. When dosing information is available, this could lead to more

powerful adaptive designs, as one is more informed about how the efficacy according

to dose is likely to change over time.

We consider this question of utility in a simulation. Jansen[44] presents lon-

gitudinal data from 17 studies of treatments for osteoarthritis. There are six treat-

ments represented in the studies, with observations at varying times. The number

of follow-up times varies from 2 to 13, with the soonest follow-up time being 1 week

and the longest being 52 weeks. The response variable in mean change from base-

line in visual analogue scale (VAS) score in pain. This data is plotted in Figure 3.4,

where each color denotes a specific treatment. From the plot, one can see that the

treatment effect seems to plateau around 8 weeks, suggesting the BEST-ITP and

Emax models may be appropriate. In addition, it appears that the most effective

treatment (that which lowers the mean VAS score the most), is likely 3HYGF20.

Though the VAS score is measured on a scale from 0 to 100, the mean change in

VAS score can be considered to be normally distributed as a result of the central

limit theorem.

Jansen[44] models these data with the fractional polynomials model with p1 =

0.5 and p2 = 1. The best model chosen via the DIC has one random treatment
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effect, which models β2ij. This model is shown in Figure 3.10. The model does not

have an intercept, as measures of change from baseline must be 0 at t = 0. In total,

the model has two fixed study effects terms, µ1i and µ2i, one fixed treatment effect

term, d2(bj), and one random treatment effect term, δ1i(bj). As the response variable

ȳijk must lie in [−100, 100], a non-informative prior for standard deviation terms is

U(0, 100).

We compare all of our models to the univariate model, shown in Figure 3.6.

This model is implementing by utilizing only the observations taken at the time

points of interest. Thus, we do not attempt to impute, and leave the effects of various

imputation methods for future research. The BEST-ITP model used in simulation

is given in Figure 3.7. This model does not have a model for the variance, as the

standard errors are all assumed fixed in this simulation. The Emax model used in

simulation is given in Figure 3.8, and is of the form discussed earlier which reduces

to a univariate meta-analysis at each time point. Finally, our multivariate model is

given in Figure 3.9. As we only select two time points for comparison, this model

is bivariate, utilizing the observations from each time point. Note that we use a

variation of the model similar to Model 3 given in Achana[2]. This is to enable

inference for all treatments at both time points, as this is not possible with the more

general model presented above.

To test the utility of longitudinal models on this data set, we simulate data

similar to the Jansen data, and make inferences using all of the other models.

The simulated data is generated using the fitted Fractional Polynomials model

proposed by Jansen. After all models are fit to the simulated data, we calculate

̂E(CFB3HY GF20) − ̂E(CFB3HY GF20) at times t = 3 and t = 8. These time points

were chosen because they may represent clinical points of interest. Additionally, a

relatively high number of studies reported outcomes at these times (8 and 7 stud-

ies, with a total of 19 and 15 responses), so as to give the univariate model the
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best chance at yielding accurate inference. Other time points with a higher number

of studies reporting were not as clinically meaningful, and thus not considered: 1

week, 2 weeks, and 12 weeks. The procedure for our simulation is outlined below.

Due to the complexity of the models, it is difficult to construct models with the

Algorithm 3 Longitudinal Meta-Analysis Simulation

1: procedure Simulation
2: Fit {yijk} using Fractional Polynomials model

3: Store estimates µ̂1i, µ̂2i, d̂1(bj), d̂2(bj), and σ̂δ
4: for r = 1 : 1000 do
5: Generate for all i, j, δ̃ri(bj) ∼ N(d̂2(bj), σ̂δ)

6: Generate for all i, j, k, ε̃rijk ∼ N(0, seijk)

7: Compute β̃r2ijk = µ̂2i + δ̃ri(bj)
8: Compute θ̃rijk = β̂1ijk + β̃r2ijk
9: Compute ỹrijk = θ̃rijk + ε̃rijk

10: for M in models do
11: Compute ̂E(CFB3HY GF20)− ̂E(CFB3HY GF20) at t = 3, 8
12: end for
13: end for
14: end procedure

same number of parameters to enable direct comparison. We attempt some level

of consistency in the following way. The proposed Fractional Polynomials model

has one random treatment effect term δi(bj), and one fixed treatment effect term

d2(bj). We include one random and one fixed treatment effect in the BEST-ITP and

Emax models. For these models, the fixed treatment effect terms are pj and αj,

respectively. At each time point (t = 3 and t = 8), we perform a univariate analysis

with a single random treatment effect. For direct comparison, we implement the

multivariate model with a random treatment effect at each time point. Though not

exact, these restrictions allow some level of consistent complexity among the models.

Note that this reflects the common scenario faced by the statistician of having to
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choose among model types of similar complexity which are not necessarily subsets

of a more general model.

Figure 3.5 plots selected quantiles of ̂E(CFB3HY GF20)− ̂E(CFB3HY GF20) for

all of the models at the two time points. The results have a few interesting features.

First, the univariate model is biased, and has worse coverage than the longitudinal

models. In fact, the coverage for the univariate model is 84% at t = 3, and 63%

at t = 8. This is a result of the small sample size, leading to far fewer treatment

comparisons than the longitudinal models can utilize. As mentioned earlier, if a

time point has a few outlying observations, these have far greater influence in the

univariate model, due to the smaller sample size. In addition, the consistency as-

sumption propagates the influence of an outlier, compounding the problem. To put

this problem in context, the univariate utilizes 19 and 15 responses at the two time

points to perform inference, whereas the longitudinal models utilize 150 observations.

The only exception is the multivariate model, which uses all of the observations a

univariate model would use at either time point, 34.

Another interesting feature in the results is the tight credible sets yielded

by the BEST-ITP and Emax models. These should not be taken to suggest that

these models are superior, as we know that neither one is the true model (in

this case, fractional polynomials). We can see from the simulated medians of

̂E(CFB3HY GF20) − ̂E(CFB3HY GF20) that these two models are somewhat biased,

as the medians do not intersect with the true value (except for the Emax model

at t = 8). This is a result of employing the wrong model. Furthermore, though it

is encouraging that they both perform well, their coverage is perhaps too good, as

they both exhibit 100% coverage for their 95% credible sets. Thus, one has coverage

above the nominal rate with smaller credible sets. However, one should not expect

this in general. These credible sets are narrow because these models are less flexi-

ble than the fractional polynomials and multivariate model, and thus make similar
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inferences at every simulation iteration. Recall that these models both assume a

plateau, so that if this is not true, these models will perform incredibly poorly. In

the Jansen data, the data seems to plateau, although there is some evidence of an

increasing trend over time after 10 weeks. Thus, the Emax and BEST-ITP models

fit “just well enough”, and produced reliable credible sets. This would not be true

if the true model were much different than these two models, or if inference were

perhaps made a different time point, where the trend of the true model is much

different than the trend estimated by these two models.

Lastly, the fractional polynomials and multivariate models produced credible

sets which all had coverage at about 95%. Though these credible sets are wider than

the BEST-ITP and Emax credible sets, as discussed above, this is an artifact of the

relative inflexibility of these two models and that they are not too different from the

underlying model. In addition, the fractional polynomials and multivariate models

are unbiased.

This simulation shows that using a longitudinal model provides more robust

inference than simply using data at a single time point. Furthermore, even if one

chooses the wrong model, one can still obtain better inference than simply using

the univariate model. Further simulation is needed to explore the conditions for

exactly when this is true. As discussed above, though model mis-specification did

not produce egregiously incorrect inference here, it certainly could if the model is

much different than the true model. Model specification is difficult, particularly

in this setting, as many of the models are new or not often utilized. Hopefully the

model diagnostic techniques suggested above can lead one to specifying more correct

models, and avoiding incorrect inference.
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Figure 3.4. Spaghetti plot of Jansen data

Figure 3.5. Violin plots of selected percentiles collected from 1,000 simulations
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3.8 Appendix

3.8.1 Squared Relationship of Effect and SS in the BEST-ITP Model

The error inside model specifies a unique trend on both the mean and the

variance over time. The exponential term which controls the percentage of total

effect seen in the mean is squared in the model for the standard error term, suggesting

a quadratic relationship. To see this, recall that in the error inside model, we have

Ȳijk = µijk

(
1− epjtijk
1− epjdi

)
and (3.21)

σ2
ijk =

σ2

nijk

(
1− epjtijk
1− epjdi

)2

. (3.22)

We can rewrite equation (3.22) as

S2
ijk = σ2

(
1− epjtijk
1− epjdi

)2

. (3.23)

Rearranging (3.21) and substituting for the exponential term in (3.24), we have

S2
ijk = σ2

(
Ȳijk
µijk

)2

= ξijkȲ
2
ijk,

where ξijk = σ2/µ2
ijk. Note that µijk only depends on k through nijk, so that if one

has an equal number of patients across time, the above relation reduces to

S2
ijk = ξijȲ

2
ijk. (3.24)

This implies that for each treatment group within a study, one should observe a

quadratic relationship between the sums of squares and the mean. Furthermore,

equation (3.24) does not have an intercept or linear term, making visual and analytic

inspection of the error inside assumption relatively easy. Note that this relationship

is true if the number of patients is the same across time for each treatment in each

study, and that visual and analytic checks will be approximate if the sample size

changes only slightly over time.
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CHAPTER FOUR

Conclusions

In this dissertation we considered a variety of Bayesian longitudinal models in

novel applications. The first application was to the problem of trending in observed

probabilities of collision of two satellites orbiting Earth. This application presented

data with a number of modeling challenges, including a bounded response variable,

irregularly spaced observations, and few reliable covariates. We presented a number

of models for handling such data, including some innovative Bayesian Beta mixed

models. Ultimately, we found that the simpler Look-Up method worked better

than most other methods, although the New Beta regression method had similar

properties. Ultimately, this points to two truths. First, that the variability in the

any data set dictates how predictive a model can be, no matter how clever the model

is. Second, that often the simpler model is the more useful and enlightening model.

In this case, we find that simply knowing the percentile of the previous value and

how the percentiles change over time is enough to parse most of the variability in

the data.

This problem elucidates a few new directions for future research. Statistically,

one interesting problem is that of using previous values in longitudinal studies when

the observations are irregularly spaced. This can be handled when the observations

are regularly spaced using state space models, but extension to irregular spacing

is not straightforward. The usual approach is implementation of a random effect.

However, in applications such as ours, the last observed value carries the most weight

about future values, and trajectories are often erratic. As for trending in probabilities

of collision, we mentioned earlier that future research should focus on non-parametric

methods. In addition, we believe that future research should focus on the 10-20% of
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events which are not well predicted by the models presented. It may be that there

is a way to know when one has “unusual data”, as suggested by the Beta clustering

model.

The second application of Bayesian longitudinal models presented was network

meta-analysis. Here, we took steps to collect the existing research and to offer up

some new models which may prove to be useful in this field. We feel that simply

providing the general framework and simple diagnostic tools represents a major step

forward in this area, as these are rare in the literature. Our development opens the

door for many new avenues of research: sample size determination, effects of model

mis-specification, measures of longitudinal inconsistency, etc.
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mators for a general class of beta regression models. Computational Statistics &
Data Analysis, 54(2):348–366, 2010.

[73] David J Spiegelhalter, Nicola G Best, Bradley P Carlin, and Angelika Van Der Linde.
Bayesian measures of model complexity and fit. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64(4):583–639, 2002.

[74] Robert A Stine. Bootstrap prediction intervals for regression. Journal of the Amer-
ican Statistical Association, 80(392):1026–1031, 1985.

[75] Robert Stiratelli, Nan Laird, and James H Ware. Random-effects models for serial
observations with binary response. Biometrics, pages 961–971, 1984.

[76] Charles J Stone. Consistent nonparametric regression. The annals of statistics,
pages 595–620, 1977.

[77] Winfried Stute. Conditional empirical processes. The Annals of Statistics, pages
638–647, 1986.

[78] Young K Truong. Asymptotic properties of kernel estimators based on local medians.
The Annals of Statistics, pages 606–617, 1989.

[79] Jay Verkuilen and Michael Smithson. Mixed and mixture regression models for con-
tinuous bounded responses using the beta distribution. Journal of Educational
and Behavioral Statistics, 37(1):82–113, 2012.

[80] Yinghui Wei and Julian Higgins. Bayesian multivariate meta-analysis with multiple
outcomes. Statistics in medicine, 32(17):2911–2934, 2013.

[81] Yichao Wu and Yufeng Liu. Stepwise multiple quantile regression estimation using
non-crossing constraints. Statistics and its Interface, 2:299–310, 2009.

[82] Xiaoli Xu and Yongqing Xiong. A method for calculating collision probability be-
tween space objects. arXiv preprint arXiv:1311.7216, 2013.

136



[83] Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analysis
for sparse longitudinal data. Journal of the American Statistical Association,
100(470):577–590, 2005.

137




