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Advisor: Constanze Liaw, Ph.D.

This dissertation details the development of several analytic tools that are used

to apply the techniques and concepts of perturbation theory to other areas of analy-

sis. The main application is an efficient characterization of the boundary conditions

associated with the general left-definite theory for differential operators. This theory

originated with the groundbreaking work of Littlejohn and Wellman in 2002 which

fully determined the ‘left-definite domains’ and spectral properties of powers of self-

adjoint Sturm–Liouville operators associated with classical orthogonal polynomials.

We will study how the left-definite domains associated with these operators can be

explicitly described by classical boundary conditions.

Additional applications are made to infinite rank perturbations by successively

introducing rank-one perturbations to a self-adjoint operator with absolutely con-

tinuous spectrum. The absolutely continuous part of the spectral measure of the

constructed operator is controlled and estimated.
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CHAPTER ONE

Introduction

Perturbation theory addresses a question that underlies deep concerns in several

fields of mathematics:

Given a mathematical construct, what happens to its key ingredients when it is

changed by a certain amount?

For instance, chaos theory in topology and invariant theory in representation theory

are each formulated around answering this question in various ways. In analysis, one

way to ask the question is: How does a perturbation change the spectrum of an oper-

ator? The declaration of the spectrum as our key ingredient narrows our question to

certain classes of operators: self-adjoint, unitary and normal. This restriction of our

attention is also natural because these operators more closely model physical scenar-

ios. Namely, self-adjoint operators correspond to closed physical systems, i.e. where

energy remains constant and none is gained or lost from the environment. The in-

vestigation of this question can take many different forms, only a few of which are

described or hinted at in this dissertation. Indeed, even the concept of a perturbation

must be clarified before any exploration can take place.

The origins of modern perturbation theory are expressed in Tosio Kato’s 1966

book Perturbation Theory for Linear Operators [37], and rank-one perturbations are

in many ways the simplest type of perturbation described therein. Namely, given a

self-adjoint operator T on a separable Hilbert space H consider the family of self-

adjoint rank-one perturbations by a vector ϕ ∈ H:

Tα = T + α〈 · , ϕ〉ϕ, α ∈ R.

If the vector f is in the domain of T , the operator Tα simply applies T to f and

adds a scalar multiple of the vector projection of f onto ϕ. This means that only
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vectors whose inner product with ϕ are nonzero are of interest, so only the cyclic

subspace spanned by ϕ under T is analyzed. The presence of only a single vector ϕ,

and single parameter α, identify this as a rank-one perturbation. For details beyond

this informal discussion, see Section 2.1 below.

A rank-one perturbation, as described above, is not only a compact operator,

it is also Hilbert–Schmidt, trace class and even of finite rank (rank-one). These

classifications suggest that our study of these objects should be manageable, yet their

deeply subtle perturbation-theoretic properties also possess far-reaching implications.

Barry Simon sums up the their appeal in his book Trace Ideals and Their Applications,

[61]:

“The cynic might feel that I have finally sunk to my proper level. I
started with quantum field theory, analysis in infinitely many vari-
ables. That was too hard so I switched to the N -body Schrödinger
equation; but that was too hard so I switched to the one-body, then
one-dimensional, then discrete one-dimensional. Finally to rank-one
perturbations – maybe something so easy that I can say something
useful! Alas, we’ll see even this is hard and exceedingly rich.”

Simon’s quote illustrates the reduction of many more difficult problems to the essential

investigation of rank-one perturbations, although the theory does indeed remain very

difficult. For example, a description of the so-called singular continuous spectrum of

the perturbed operator Tα in terms of properties of the unperturbed operator T is

unknown [61]. Moreover, beyond the realms of mathematical physics and spectral

analysis of self-adjoint operators, the study of rank-one perturbations is connected to

many interesting topics in analysis, see e.g. [14,44,47,58] and the references within.

The difficulties are compounded further when introducing more vectors and pa-

rameters into the the family of perturbations, as hinted at by Simon. In particular,

an exceedingly rich research area of mathematical physics is the spectral analysis of

Anderson-type Hamiltonians, which include infinite-rank perturbations. This fasci-

nation comes from a conjecture made by P.W. Anderson in 1958 that has spawned

incredible interest in the field by mathematical physicists:
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Conjecture (Extended States, Anderson [5]). Sufficiently large impurities in a semi-

conductor leads to spatial localization of electrons.

Perturbations in Anderson-type Hamiltonians are non-compact operators with

probability one, so the hypotheses in classical perturbation theory are not general

enough to cover this problem. The connection between rank-one perturbations and

infinite-rank perturbations is therefore somewhat unexpected, but they have been

shown to have close ties nonetheless [45, 62, 63]. Chapter 4, while not directly ad-

dressing the Extended States Conjecture, builds upon these connections by iteratively

introducing rank-one perturbations to an operator in order to form an object similar

to an Anderson-type Hamiltonian.

Somewhere between the extremes of rank-one perturbations and Anderson-type

Hamiltonians lie finite rank perturbations. Chapter 3 focuses on their applications

to left-definite theory. This theory was introduced in the groundbreaking paper of

Littlejohn and Wellman in 2002 [49] and describes a scale of nested Hilbert spaces

associated with some differential operators. These nested Hilbert spaces are the

domains of the powers of the original differential operator and can be analyzed using

various techniques from self-adjoint extension theory and Sturm–Liouville theory.

While perturbation theory is not explicitly used in our analysis, the benefit of a

perturbation-theoretic mindset in this field is significant. Further applications are

still emerging, but the fundamental nature of our initial question implies that our

work is just beginning.

1.1 Notation

We use ` to denote differential expressions (on a separable Hilbert space H),

usually general Sturm–Liouville expressions in symmetric form. Specific differential

expressions may use subscripts to distinguish them. Sets and spaces are generally
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denoted with “mathcal”; the Hilbert space H, the minimal domain Dmin, the defect

spaces D+ and D−, etc.

The notation {`,X} is used to refer to an operator acting via ` on the domain

X . Since we work with unbounded operators, they are defined only on dense sub-

spaces X ( H. The maximal domain is denoted by Dmax, with Dmax(`) occasionally

used to emphasize the expression. Boldface letters are used for operators and matri-

ces that are related to differential expressions, as different domains and expressions

become easily confused. Namely, Sections 2.2, 2.3, 2.4, and all of Chapter 3 use this

convention. However, in other Chapters where the domains are clearly stated, this

notation is avoided for simplicity.

We abbreviate the maximal and minimal operators by Lmax and Lmin, i.e.

Lmax = {`,Dmax} and Lmin = {`,Dmin}. Similarly, L = {`,DL} is used to denote

self-adjoint operators in this context. It is also common for powers Ln of operators

to be examined, e.g. we consider the left-definite operator induced by the expression

`n. Abusing notation, we write Lnmax = {`n,Dnmax} where Dnmax := Dmax(`
n), to ex-

press these powers. Further, let [ · , · ] denote a general sesquilinear form, and [ · , · ]n

stand for the sesquilinear form associated with `n. Generally, we let (m,m) be the

deficiency indices of Lmin. It is then noted that the deficiency indices of Lnmin amount

to (nm, nm).

The domain of a general operator A, not necessarily related to a differential

expression, is referred to by D(A). Unitary equivalence (i.e. UAU−1 = B for some

unitary operator U) of the operators A and B will be denoted by A ∼ B. Similarly,

the notation

A ∼ B(mod Class X)

is used if there exists a unitary operator U such that UAU−1 − B is an element of

Class X. The Class X can be any class of operators, e.g. compact, trace class, or

finite rank operators.
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CHAPTER TWO

Background

The analytic tools developed for applications in future chapters require knowl-

edge of both perturbation theory and the subjects of these applications. Section 2.1

reviews selected results from perturbation theory. For the sake of brevity, only some

of the operator theoretic and functional analytic foundations of these results are dis-

cussed. Additional details can be found in [1, 4, 14, 37, 44, 47]. The most widely used

results stem from Aronszajn–Donoghue theory. In particular, explicit formulas for

both the pure point and absolutely continuous part of perturbed spectra are stated.

An in depth discussion of Aronszajn–Donoghue theory can be found in [61]. Uni-

tary perturbations are omitted in this discussion because they are not used in later

chapters. Readers interested in these descriptions should consult [14,58] for excellent

surveys. This background is supplemented in Subsection 2.1.1 by a summary of how

Hilbert scales are used to allow for perturbation vectors outside of the original Hilbert

space.

Sturm–Liouville differential operators are classical models used throughout many

areas of pure and applied mathematics, not least because some of them have naturally

occurring eigenfunctions which form systems of orthogonal polynomials. Section 2.2

describes the setup of these differential operators and some basic facts about them.

This theory is particularly pertinent to the general framework described in Section

3.4. The classification of endpoints in Subsection 2.2.1 explains how deficiency indices

are related to behavior of coefficient functions at endpoints. The discussion provides

more context in order to better understand how deficiency indices are used in Chapter

3.
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Left-definite theory provides a scheme for taking a (Sturm–Liouville) differential

operator and generating a scale of Hilbert spaces which involve the domains of com-

positions of the operator. Section 2.3 mainly follows the classical results contained

in [49], and includes the structure of left-definite spaces as well as key facts about

their spectra. An underlying concern of this study is the assurance that all operators

are self-adjoint, so their spectra can be studied. The self-adjoint extension theory in

Section 2.4 follows the classical text of Naimark [54] and details the abstract con-

struction of such operators when given a formally symmetric differential expression.

It culminates in Glazman–Krein–Naimark theory (Subsection 2.4.1), which expresses

these constructions as varying boundary conditions given by functions in the domain

of the expression.

Finally, the iterated operator constructed in Chapter 4 is deemed similar to

an Anderson-type Hamiltonian, yet possesses a few notable differences. In order to

discern these differences and present the goal of the construction, Section 2.5 briefly

introduces Anderson-type Hamiltonians.

2.1 Perturbation Theory

Perturbation theory is generally formulated around answering a refinement of

the question posed in the Introduction:

Given some information about the spectrum of an operator A, what can be said

about the spectrum of the operator A+B when B is in some operator class?

Equivalently, we can ask if properties of parts of the spectrum can be preserved

under certain changes. The answer, of course, varies wildly depending on the class of

operators the perturbation B is taken from.

A review of the most well-known answers to this question necessitates a de-

scription of spectral measures and their various decompositions. Let µ be a positive
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measure on [a,∞) for some a > −∞ with∫
dµ(λ)

|λ|+ 1
<∞. (2.1.1)

This assumption is somewhat restrictive, but is necessary for the study of Borel trans-

forms. It is also satisfied by spectral measures that arise from rank-one perturbations

when the perturbation vector ϕ ∈ H−1, as described in Subsection 2.1.1. The condi-

tion that the support of µ is bounded below can be relaxed somewhat, but does hold

in the applications in Chapters 3 and 4, and simplifies further details slightly.

Adherence to (2.1.1) allows us to define the Borel transform of µ as

F (z) :=

∫
R

dµ(λ)

λ− z
(z ∈ C\(suppµ)).

Interestingly, another function,

G(x) :=

∫
R

dµ(y)

(y − x)2
(x ∈ R\(suppµ)),

also plays a central role. This auxiliary transform captures some properties of the

derivative (with respect to z) of the Borel transform as z approaches the real axis.

Indeed, boundary values of F (z), as z = x+ iε approaches points x in the support of

µ, are the primary instrument to discern spectral properties of µ. See [61] for a more

detailed discussion.

It is often more convenient to consider slight variations of the Borel transform.

For instance, the Cauchy transform of a measure µ that adheres to (2.1.1) is defined

as

Kµ(z) =
1

π

∫
R

dµ(t)

t− z
, z ∈ C+,

and is obtained from the Borel transform by restricting the domain to the upper

half of the complex plane and multiplying by 1/π. The connection between the

Cauchy transform and the spectral theory of rank-one perturbations is particularly

well developed, see e.g. [14,44,47,58] and this connection is exploited in several of the
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previous results. It is also heavily relied upon when unitary rank-one perturbations

are considered. In order to avoid difficulties with convergence, it is standard to

introduce an alternative definition of the Cauchy transform

K1µ(z) =
1

π

∫
R

1

t− z
− t

t2 + 1
dµ(t), z ∈ C+.

While these two transforms locally behave alike, the advantage of introducing

this alternative definition is that it is possible to define K1µ for more general measures

µ (because the kernel decays faster at infinity). It is worth mentioning that (for µ such

that Kµ is defined on C+) the real part of K1µ differs from the conjugate Poisson

integral by a finite additive constant. The use of the K1 transform in the litera-

ture of rank-one perturbations both implies and stems from connections to Ordinary

Differential Equations. Specifically, it is a real analog of the Nevanlinna–Herglotz

representation of the Weyl m-function in Sturm–Liouville theory.

The measure µ used in our applications will always be a spectral measure. To

this end, let T be a self-adjoint operator (bounded or unbounded) on a separable

Hilbert space H. The operator T will be called cyclic when it possesses a vector ϕ

such that

H = span{(T − λI)−1ϕ : λ ∈ C\R}, (2.1.2)

where the closure is taken with respect to the Hilbert space norm. In this case, the

vector ϕ is also called cyclic. The formal expression

Tα = T + α〈 · , ϕ〉Hϕ for α ∈ R (2.1.3)

represents the rank-one perturbation of a self-adjoint operator T with cyclic vector ϕ.

A simple consequence of the these definitions is that ϕ is also a cyclic vector of the

operator Tα for all α ∈ R, see [46] for more about cyclicity. The supposition that T is

cyclic is not a restriction, as otherwise we simply decompose H = H1⊕H2 such that

ϕ is cyclic for T on H1 and T is left unchanged by the perturbation when restricted

8



to H2. The spectral measure of Tα with respect to the cyclic vector ϕ will be denoted

by µα. Explicitly, the spectral theorem defines µα via

〈(Tα − zI)−1ϕ, ϕ〉H =

∫
R

dµα(t)

t− z
for all z ∈ C\R.

In other words, T is unitarily equivalent to multiplication by the independent

variable on an L2(µα) space with non-negative Radon measure µα, the spectral mea-

sure, supported on R. The spectral measure of the unperturbed operator T , µ0,

is often used as a comparison to the spectral measure µα. Therefore, we use the

convention that µ0 = µ for simplicity. This means that T can be written as Mt, mul-

tiplication by the independent variable on L2(µ). The vector ϕ is then represented

by the function that is identically equal to the constant function one on L2(µ).

There are numerous decompositions of the spectrum used throughout the lit-

erature, so we clarify our definitions here. The Lebesgue/Radon–Nikodym decompo-

sition can be applied to each spectral measure, yielding dµ = w(x)dx + dµs. Here,

w ∈ L1
loc(R) is the Radon–Nikodym derivative of µ with respect to Lebesgue mea-

sure. The unitary equivalence between T and Mt involves a unitary intertwining

operator. Explicitly, this is the unitary operator U such that UTU−1 = Mt. We refer

to the operator U as the unitary intertwining operator in this scenario. This unitary

equivalence gives rise to the corresponding orthogonal components of the operator

T = Tac ⊕ Ts. The singular part can be further decomposed into singular continuous

µsc and pure point µpp parts. Here, µpp consists of point masses at the eigenvalues of

T and µsc = µs − µpp. The spectrum is denoted by σ(T ) and is the (closed) supp(µ).

The set of all real numbers x that are isolated eigenvalues of finite multiplicity for T

is defined to be the discrete spectrum, denoted σd(T ). The essential spectrum of T

is the complement of the discrete spectrum, denoted σess(T ) = σ(T )− σd(T ).

The spectral theorem now translates the rank-one perturbation problem to

T̃α = Mt + α〈 · ,1〉
L2(µ)

1. (2.1.4)
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Therefore, we identify H = L2(µ) and use T̃α = Tα for brevity of notation. The

presence of a different unitary intertwining operator relating the operators Tα and

Ms, on their respective spaces H = L2(µ) and L2(µα), begs the question whether

we can say anything about an operator relating the spaces L2(µ) and L2(µα). This

question was answered in a paper of Liaw and Treil [47, Theorem 2.1]. The Theorem

extends to all of L2(µ), but a simpler version is presented here.

Theorem 2.1.1 (Representation Theorem). The spectral representation Vα : L2(µ) →

L2(µα) of Tα is given by

Vαf(s) = f(s)− α
∫
f(s)− f(t)

s− t
dµ(t)

for all compactly supported C1 functions f .

The following theorem provides more evidence for the historical connection

enjoyed by perturbation theory and Sturm–Liouville theory. It was proven first by

Aronszajn for boundary condition dependence of the spectrum for Sturm–Liouville

operators and later extended to rank-one perturbations by Donoghue [7, 18]. The

theorem characterizes the perturbed operator’s pure point and absolutely continuous

spectra. The result is the most dynamic tool available in perturbation theory and

will be heavily used in later sections.

Theorem 2.1.2 (Aronszajn–Donoghue, see e.g. [61]). For α 6= 0 (α =∞ allowed with

∞−1 = 0), define

Sα =
{
x ∈ R | F (x+ i0) = −α−1;G(x) =∞

}
,

Pα =
{
x ∈ R | F (x+ i0) = −α−1;G(x) <∞

}
,

L = {x ∈ R | Im F (x+ i0) 6= 0} .

Then we have

(1) {Sα}α 6=0;|α|≤∞, {Pα}α 6=0;|α|≤∞ and L are mutually disjoint.
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(2) Pα is the set of eigenvalues of Aα. In fact,

(dµα)pp (x) =
∑
xn∈Pα

1

α2G(xn)
δ(x− xn), α <∞,

(dρ∞)pp (x) =
∑

xn∈P∞

1

G(xn)
δ(x− xn), α =∞.

(3) (dµα)ac is supported on L, (dµα)sc is supported on Sα.

(4) For α 6= β, (dµα)s and (dµβ)s are mutually singular.

The case α = ∞ is known as infinite coupling, and needs to be treated differ-

ently, but these details are avoided here. The main reference for this scenario is work

by Gesztesy and Simon which is explained in our context in [28, 61]. The last part

of the result says that the singular part of rank-one perturbations must move when

the perturbation parameter α is changed. We also point out that a description of the

singular continuous spectrum is still outstanding. In fact, the ‘minimal’ support of

(µα)sc is not known, see e.g. [14,47,61], let alone a characterization of (µα)sc. The lack

of this characterization is widely regarded as the largest missing piece of the theory

for rank-one perturbations.

The absolutely continuous part of the perturbed operator, (µα)ac, can be ex-

plicitly computed using the following Lemma.

Lemma 2.1.3 (see e.g. [61]). Let F (z) be the Borel transform of a measure µ obeying

(2.1.1). Let β ∈ R, x ∈ R, and x + i0 = lim
β↓0

(x + iβ). Standard harmonic analysis

says these limits exist and are finite for a.e. x. Then we have

(1) Im F (x+ iβ) =

∫
R

β

(x− y)2 + β2
dµ(y),

(2) Im Fα(z) =
Im F (z)

|1 + αF (z)|2
, and

(3) d(µα)ac(x) = π−1Im Fα(x+ i0)dx.
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The support of the a.c. part of the perturbed spectral measure is curiously

revealed to be independent of the parameter α in Aronszajn–Donoghue theory. This

is really a consequence of the famous Kato–Rosenblum Theorem, which can be easily

proven in the context of rank-one perturbations using the previous Lemma. However,

it is presented here in the more general sense, as it provides a partial answer to our

main question at the beginning of the section

Theorem 2.1.4 (Kato–Rosenblum, see e.g. [37]). If for two self-adjoint operators we

have A ∼ B(mod trace class) then their absolutely continuous parts are unitarily

equivalent, i.e. Aac ∼ Bac.

Recall the use of A ∼ B to denote the unitary equivalence of the operators

A and B, as explained in the Notation Section 1.1. The Kato–Rosenblum Theorem

is also the first positive result to our question posed at the beginning of the section.

More can be said of the spectral connections when the perturbations come from other

operator classes.

Theorem 2.1.5 (Weyl–von Neumann, see e.g. [37]). The essential spectra of two self-

adjoint operators A and B satisfy

σess(A) = σess(B) if and only if A ∼ B (mod compact operators).

Remark. Carey and Pincus [13] found a complete characterization of when A ∼

B (mod trace class) in terms of the operators’ spectrum for self-adjoint A and B.

It is worth emphasizing that all of these theorems can be applied to rank-one

perturbations, as they are classified as both trace class and compact operators.

This connection actually forms part of the proof of Theorem 2.1.2 above. In the

case of purely singular measures the following theorem resembles a characterization

for A ∼ B(mod rank-one).
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Theorem 2.1.6 (Poltoratski [57]). Let X ⊂ R be closed. By I1 = (x1; y1), I2 =

(x2; y2), . . . denote disjoint open intervals such that X = R\
⋃
In. Let A and B be two

cyclic self-adjoint completely non-equivalent operators with purely singular spectrum.

Suppose

σ(A) = σ(B) = X

and assume that for the pure point spectra of A and B we have

σpp(A) ∩ {x1, y1, x2, y2, . . .} = σpp(B) ∩ {x1, y1, x2, y2, . . .} = ∅.

Then we have

A ∼ B(mod rank-one).

This theorem allows us to introduce absolutely continuous spectrum while re-

taining precise control of the Radon–Nikodym derivatives of the singular measure.

Finally, no treatise on perturbation theory, however brief, is complete without

at least mentioning the five critical formulas of rank-one perturbation theory. The

formulas don’t arise during the investigations in later Chapters, but are used in the

proofs of some of the previous results. While they are presented here for reference,

it is hoped that readers will recognize some of their implications if motivated to use

the theory ([61] includes their derivations and uses).

Theorem 2.1.7. Let ϕ ∈ H. Then, using the notation of this Section, the following

formulas hold.

(1) The Aronszajn–Krein formula: Fα(z) =
F (z)

1 + αF (z)
.

(2) (Tα − z)−1ϕ = (1 + αF (z))−1(T − z)−1ϕ.

(3) (Tα − z)−1 = (T − z)−1 − α

1 + αF (z)
〈 · , (T − z)−1ϕ〉(T − z)−1ϕ.

(4) The Trace formula: Tr [(T − z)−1− (Tα− z)−1] =
α

1 + αF (z)
〈ϕ, (T − z)−2ϕ〉.
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(5) If f ∈ L1(R, dx), then f ∈ L1(R, dµα) for a.e. α, and the Spectral Averaging

formula holds: ∫ (∫
f(x)µα(x)

)
dα = dx.

Aronszajn–Donoghue theory can also be used for unbounded operators T and in

the so-called singular form bounded perturbations case. This means that the vector

ϕ is not contained in the Hilbert space H, but is rather taken from a larger space

commonly denoted by H−1(T ). Throughout this dissertation all perturbation vectors

will be taken from H and ‖ϕ‖H = 1. However, some knowledge of how these spaces

are related is desirable as context for our discussion of Sturm–Liouville theory.

2.1.1 Scales of Hilbert Spaces

When considering perturbations like equation (2.1.3), it is sometimes conve-

nient to loosen our restrictions on the perturbation vector ϕ to expand our possible

applications. We say that the perturbation is bounded when the vector ϕ is from the

Hilbert space H. The previous section dealt exclusively with bounded perturbations.

If ϕ /∈ H, we say the perturbation is singular. These perturbations are significantly

more complicated; it is imperative to ensure that the perturbation is well-defined in

order to extend the tools from the previous Section appropriately. The description

here roughly follows that of [4], and the attentive reader should notice many similar-

ities between the scale of spaces here and the scale in left-definite theory presented

later.

Let T be a positive operator. Note that if T is a possibly unbounded self-

adjoint operator on a separable Hilbert space H, the positive operator defined by

|T | = (T ∗T )1/2 can be considered. Alternatively, if T is bounded from below, the

shifted operator T + kI, k ∈ R sufficiently large, suffices. We can now introduce the

following scale of spaces.
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Definition 2.1.8 ([4, Section 1.2.2]). For s ≥ 0, define the space Hs(T ) to be D(T s/2)

with norm equal to the graph norm of the operator

||ϕ||s = ||(T + 1)s/2ϕ||H.

The space Hs(T ) equipped with the norm || · ||s is complete, and the adjoint

spaces formed by the linear bounded functionals are defined as H−s(T ) = H∗s(T ).

The corresponding norm in the space H−s(T ) is thus defined by the formula

||ϕ||−s =

∣∣∣∣∣∣∣∣ 1

(T + 1)s/2
ϕ

∣∣∣∣∣∣∣∣
H
,

where the operator 1/(T + 1)s/2 is defined in the generalized sense. The scale of

Hilbert spaces associated with the self-adjoint operator T is the collection of these

Hs(T ) spaces when s ∈ Z.

Furthermore, it is easy to see that the spaces have the following nesting prop-

erties

· · · ⊂ H2(T ) ⊂ H1(T ) ⊂ H = H0(T ) ⊂ H−1(T ) ⊂ H−2(T ) ⊂ . . .

and that for every two s, t, s < t, the space Ht(T ) is dense in Hs(T ) in the norm

|| · ||s. Indeed, the operator (T + 1)t/2 defines an isometry from Hs(T ) to Hs−t(T ).

Through the rest of the subsection, we will use the brackets 〈·, ·〉 to denote both the

scalar product in the Hilbert space H and the action of the functionals. For instance,

if ϕ ∈ H−s(T ), ψ ∈ Hs(T ), then

〈ϕ, ψ〉 ≡
〈

1

(T + 1)s/2
ϕ, (T + 1)s/2ψ

〉
,

where the brackets on the right hand side denote the scalar product. This is an

example of a Hilbert scale, although there are other names throughout the literature

when they are applied to other fields. For instance, the pairing of H1(T ), H, and

H−1(T ) is sometimes referred to as a Gelfand triple or rigged Hilbert space, and these
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constructs may be more familiar to the reader. More details about Hilbert scales in

general can be found in [42].

Rank-one perturbations of a given operator T arise most commonly when the

vectors ϕ are bounded linear functionals on the domain of the operator T . Hence, we

restrict our attention to H−2(T ), as D(T ) = H2(T ) and D(T )∗ = H−2(T ). The case

where ϕ /∈ H−2 has more complicated expressions which are the premises of [16, 43].

A more practical way to distinguish whether a perturbation vector ϕ is in H−1(T ) or

H−2(T ) is still desired. If ϕ ∈ H−2(T ), the linear operator that appears in rank-one

perturbations

〈 · , ϕ〉ϕ : H2(T )→ H−2(T )

naturally defines the following positive sesquilinear form

Vϕ[ψ, η] = 〈ϕ, ψ〉〈η, ϕ〉 = 〈ϕ, ψ〉〈ϕ, η〉 (2.1.5)

for ψ, η ∈ H2(T ). This sesquilinear form allows for the further characterization of

classes of singular perturbations.

Definition 2.1.9 ([4, Section 1.2.3]). The sesquilinear form V [ψ, η] will be called form

bounded with respect to the operator T if and only if the domain D(V ) of the form is

contained in the space H1(T ) and there exist two positive real constants C1 and C2

such that for any ψ ∈ D(V ) the following estimate holds:

V [ψ, ψ] ≤ C1||ψ||21 + C2||ψ||2H.

Recall that ||·||1 and ||·||H denote the norms inH1(T ) andH0(T ) = H respectively. If

the constant C1 can be chosen arbitrarily small, the form V is said to be infinitesimally

form bounded with respect to the operator T .

The next result characterizes form boundedness with respect to perturbation

theory.
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Lemma 2.1.10 ([4, Lemmas 1.2.1, 1.2.2]). Let ϕ ∈ H−1(T ). The the sesquilinear form

Vϕ[ψ, η] is infinitesimally form bounded with respect to the operator T .

However, if ϕ ∈ H−2(T ) \ H−1(T ), then the sesquilinear form Vϕ[ψ, η] is not

form bounded with respect to the operator T .

It is worth pointing out that the five critical formulas in Theorem 2.1.7 have

been altered to apply to f ∈ H−2(T ) and are presented in [4]. The infinite coupling

that arises in Theorem 2.1.2 was also extended to ϕ ∈ H−1(T ) in [40]. Hence,

the demarcation of singular perturbations into form bounded and not form bounded

perturbations provides additional tools for exploration.

2.2 Sturm–Liouville Operators

Sturm–Liouville differential equations are common examples of ordinary dif-

ferential equations that are used in many areas of pure and applied mathematics.

Notably, they are the classical way to generate systems of solutions that are or-

thogonal polynomials with respect to some weight function and arise as important

simplifications (Lax pairs) for some famous partial differential equations. Consider

the classical Sturm–Liouville differential expression

− 1

w(x)

[
d

dx
p(x)

d

dx
+ q(x)

]
, (2.2.1)

where the independent variable is x, p(x), w(x) > 0 a.e. on (a, b) and q(x) real-valued

a.e. on (a, b) for −∞ ≤ a < b ≤ ∞. Furthermore, 1/p(x), q(x), w(x) ∈ L1
loc[(a, b), dx].

Additional details about Sturm–Liouville theory can be found in [29, 66, 67]. These

standard assumptions on the coefficient functions and endpoints will be assumed

throughout this dissertation, and recall that the notation used here is described in

Section 1.1.

17



The differential expression (2.2.1) can be viewed as a linear operator, mapping

a function f to the function `[f ] via

`[f ](x) := − 1

w(x)

(
d

dx

[
p(x)

df

dx
(x)

]
+ q(x)f(x)

)
. (2.2.2)

The unbounded operator acts on the Hilbert space L2[(a, b), w], endowed with the

inner product 〈f, g〉 :=
∫ b
a
f(x)g(x)w(x)dx. In this setting, the eigenvalue problem

`[f ](x) = λf(x) can be considered. The operators of interest, {`, L2[(a, b), w]}, are

also assumed to possess a set of orthogonal eigenfunctions that is complete in the

domain for the purposes of Chapter 3. The expression `[ · ] defined in equation (2.2.2)

has been well-studied, see [33] for an in-depth discussion of its relation to orthogonal

polynomials. However, the operator {`, L2[(a, b), w]} is not self-adjoint a priori. Sub-

section 2.4.1 details the imposition of boundary conditions to ensure self-adjointness.

Furthermore, the operator `n[ · ] is defined as the operator `[ · ] composed with

itself n times, creating a differential operator of order 2n. Every formally symmetric

differential expression `n[ · ] of order 2n with coefficients ak : (a, b) → R and ak ∈

Ck(a, b) for k = 0, 1, . . . , n and n ∈ N has the Lagrangian symmetric form

`n[f ](x) =
n∑
j=1

(−1)j(aj(x)f (j)(x))(j), x ∈ (a, b). (2.2.3)

Further details can be found in [19, Section XIII.2] or [52].

The classical differential expressions of Jacobi, Hermite, and Laguerre all admit

such a representation, and are semi-bounded. Semi-boundedness is defined as the

existence of a constant k ∈ R such that for all x in the domain of the operator A the

following inequality holds:

〈Ax, x〉 ≥ k〈x, x〉.

This additional property, combined with self-adjointness, allows for a continuum of

nested Hilbert spaces to be defined within L2[(a, b), w] via the expressions `n[ · ]. In-

deed, this continuum is a Hilbert scale, and many facts about the spectrum and the
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operators can be deduced using this point of view (e.g. [17, 50]). More details about

Hilbert scales can be found in [4,42] and the previous discussion in Subsection 2.1.1.

This particular Hilbert scale with self-adjoint operators that are semi-bounded is the

topic of left-definite theory [49], part of which is explained in Section 2.3.

2.2.1 Classification of Endpoints

Sturm–Liouville operators are often classified by the amount of regularity present

at their endpoints. The regularity of the endpoints determines how many boundary

conditions are necessary to ensure self-adjointness of the operator.

Definition 2.2.1 ([29]). The differential expression ` is called regular at the endpoint a

if a ∈ R, and 1/p(x), q(x), w(x) ∈ L1[(a, c), dx] for all c ∈ (a, b). Otherwise, ` is said

to be singular at a.

A first-order initial value problem can be solved at regular endpoints, making

solutions of Sturm–Liouville differential expressions very well behaved. The spec-

trum of differential equations that are regular at both endpoints is discrete [4,29,54].

Singular endpoints give the possibility of absolutely continuous spectrum arising and

are much more difficult to study. These singular endpoints can be sorted into two

categories but a notational convention is necessary first.

Definition 2.2.2 ([29]). Let f : (a, b) → C be a measurable function. It is said that

f lies in L2[(a, b), w] near a, if there exists c ∈ (a, b) such that f ∈ L2[(a, c), w].

Similarly, f lies in L2[(a, b), w] near b, if there exists a d ∈ (a, b) such that f ∈

L2[(d, b), w].

Theorem 2.2.3 (Weyl’s Alternative). Exactly one of the following cases holds:

(1) For every z ∈ C, all solutions u of (` − z)u = 0 are in L2[(a, b), w] near b

(resp. near a).

(2) For every z ∈ C, there exists at least one solution of (`−z)u = 0 which is not

in L2[(a, b), w] near b (resp. near a). In this case, for each z ∈ C/R, there
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exists precisely one solution ub (resp. ua) of (` − z)u = 0 (up to constant

multiples) which lies in L2[(a, b), w] near b (resp. near a).

Theorem 2.2.4. In case (1) above, ` is said to be in the limit circle case (l.c.c.) at b

(resp. at a). In case (2) above, ` is said to be in the limit point case (l.p.c.) at b

(resp. at a).

Additional details will be given at the end of Section 2.4, as endpoint classifica-

tion directly determine the defect indices of symmetric Sturm–Liouville expressions.

This discussion will be essential to Section 3.4, which details the most general results

obtained during the investigation of boundary conditions associated with left-definite

theory.

2.3 Left-Definite Theory

Left-definite theory deals primarily with the spectral theory of Sturm–Liouville

differential operators. The terminology itself can be traced back to Weyl in 1910 [68].

A general framework for the left-definite theory of bounded-below, self-adjoint op-

erators in a Hilbert space wasn’t developed until 2002 in the landmark paper by

Littlejohn and Wellman [49]. Specifically, the left-definite theory allows one to gen-

erate a scale of operators (by composition), and many spectral properties remain the

same as the original. Recall that we will change our notation slightly in the next two

Sections in order to avoid confusion over which domain each operator is acting on, in

accordance with Section 1.1.

Let V be a vector space over C with inner product 〈 · , · 〉 and norm || · ||. The

resulting inner product space is denoted (V , 〈 · , · 〉).

Definition 2.3.1 ([49, Theorem 3.1]). Suppose A is a self-adjoint operator in the Hilbert

space H = (V , 〈 · , · 〉) that is bounded below by kI, where k > 0. Let r > 0. Define

Hr = (Vr, 〈 · , · 〉r) with

Vr = D(Ar/2)
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and

〈x, y〉r = 〈Ar/2x,Ar/2y〉 for (x, y ∈ Vr).

Then Hr is said to be the rth left-definite space associated with the pair (H,A).

It was proven in [49, Theorem 3.1] that Hr = (Vr, 〈 · , · 〉) is also described as the

left-definite space associated with the pair (H,Ar), and we callHr the rth left-definite

space associated with the pair (H,A). Specifically, we have:

(1) Hr is a Hilbert space,

(2) D(Ar) is a subspace of Vr,

(3) D(Ar) is dense in Hr,

(4) 〈x, x〉r ≥ kr〈x, x〉 (x ∈ Vr), and

(5) 〈x, y〉r = 〈Arx, y〉 (x ∈ D(Ar), y ∈ Vr).

The left-definite domains are defined as the domains of compositions of the self-

adjoint operator A, but the operator acting on this domain is slightly more difficult

to define.

Definition 2.3.2. LetH = (V , 〈 · , · 〉) be a Hilbert space. Suppose A : D(A) ⊂ H → H

is a self-adjoint operator that is bounded below by k > 0. Let r > 0. If there exists

a self-adjoint operator Ar : Hr → Hr that is a restriction of A from the domain

D(A) to D(Ar), we call such an operator an rth left-definite operator associated with

(H,A).

The connection between the rth left-definite operator and the rth composition

of the self-adjoint operator A is now made explicit.

Corollary 2.3.3 ([49, Corollary 3.3]). Suppose A is a self-adjoint operator in the Hilbert

space H that is bounded below by k > 0. For each r > 0, let Hr = (Vr, 〈 · , · 〉r) and
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Ar denote, respectively, the rth left-definite space and the rth left definite operator

associated with (H,A). Then

(1) D(Ar) = V2r, in particular, D(A1/2) = V1 and D(A) = V2;

(2) D(Ar) = D(A(r+2)/2), in particular, D(A1) = D(A3/2) and D(A2) = D(A2).

The left-definite theory is particularly important for self-adjoint differential op-

erators that are bounded below, as they are generally unbounded. The theory is

trivial for bounded operators, as shown in [49, Theorem 3.4].

Our applications of left-definite theory will be focused on differential operators

which possess a complete orthogonal set of eigenfunctions in H. In [49, Theorem 3.6]

it was shown that the point spectrum of A coincides with that of Ar, and similarly

for the continuous spectrum and for the resolvent set. It is possible to say more, a

complete set of orthogonal eigenfunctions will persist throughout each space in the

Hilbert scale.

Theorem 2.3.4 ([49, Theorem 3.7]). If {ϕn}∞n=0 is a complete orthogonal set of eigen-

functions of A in H, then for each r > 0, {ϕn}∞n=0 is a complete set of orthogonal

eigenfunctions of the rth left-definite operator Ar in the rth left-definite space Hr.

Another perspective on the last theorem is that it gives us a valuable indicator

for when a space is a left-definite space for a specific operator.

On the side we note that left-definite theory can be extended to bounded below

operators by applying shifts. Uniqueness is then given up to the chosen shift.

A description of these left-definite spaces in terms of standard boundary con-

ditions on a Hilbert space has been noticeably missing, despite the broad framework

and range of results described above. This isn’t to say that there are no descriptions

of the left-definite spaces, just that they are not classically expressed by GKN theory.

Example. Let A denote the usual self-adjoint operator with the Laguerre polyno-

mials as a complete set of orthogonal eigenfunctions {ϕn}∞n=0. For α > −1 and
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j ∈ N0, let L2
α+j(0,∞) be the Lebesgue space with norm induced by the inner prod-

uct
∫∞
0
f(t)g(t)tα+je−tdt. The nth left-definite Hilbert space associated with the pair

(H,A) = (L2
α(0,∞),A), also possessing this complete set of eigenfunctions, is defined

as Hn = (Vn, 〈 · , · 〉n), where

Vn :=

{
f : (0,∞)→ C

∣∣∣∣ f ∈ AC
(n−1)
loc (0,∞); f (n) ∈ L2

α+n(0,∞)

}
and

〈p, q〉n :=
n∑
j=0

bj(n, k)

∫ ∞
0

p(j)(t)q(j)(t)tα+je−tdt for (p, q ∈ P),

where P is the space of all (possibly complex-valued) polynomials. The constants

bj(n, k) are defined as

bj(n, k) :=

j∑
i=0

(−1)i+j

j!

(
j

i

)
(k + i)n.

This description of a specific left-definite space is only included as a comparison

to the simplicity of the results in Chapter 3, further details can be found in [49]. 6

2.4 Self-Adjoint Extensions of Symmetric Operators

There is a vast amount of literature concerning the extensions of symmetric

operators. Here we present only that which pertains to self-adjoint extensions and

applications to GKN theory. This will be primarily applied to linear differential

operators.

Definition 2.4.1 (variation of [54, Section 14.2]). For a symmetric, closed operator A

on a Hilbert space H, define the positive defect space and the negative defect space,

respectively, by

D+ := {f ∈ D(A∗) | A∗f = if} and D− := {f ∈ D(A∗) | A∗f = −if} .

On the side we note that, in light of [19, Theorem XII.4.8], we can assume

without loss of generality that all considered operators are closed because we are

concerned exclusively with self-adjoint extensions of symmetric operators.
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The dimensions dim(D+) = m+ and dim(D−) = m−, called the positive and neg-

ative deficiency indices of A, respectively, are usually conveyed as the pair (m+,m−).

The deficiency indices of T correspond to how far from self-adjoint A is. A sym-

metric operator A has self-adjoint extensions if and only if its deficiency indices are

equal [54, Section 14.8.8].

Theorem 2.4.2 ([54, Theorem 14.4.4]). If A is a closed, symmetric operator, then the

subspaces DA, D+, and D− are linearly independent and their direct sum coincides

with DA∗, i.e.,

DA∗ = DA uD+ uD−.

(Here, subspaces X1,X2, . . . ,Xp are said to be linearly independent, if
∑p

i=1 xi = 0 for

xi ∈ Xi implies that all xi = 0.)

Let `[ · ] be a Sturm–Liouville differential expression on some Hilbert space

L2[(a, b), w] as in (2.2.2). Furthermore, let `[ · ] generate an expression `n[ · ] of order

2n via composition, for n ∈ N. The analysis of self-adjoint extensions does not involve

changing the differential expression associated with the operator at all, merely the

domain of definition, by applying boundary conditions.

Definition 2.4.3 ([54, Section 17.2]). The maximal domain of `n[ · ] is given by

Dnmax = Dmax(`
n) :=

{
f : (a, b)→ C

∣∣∣∣ f (k)(x) ∈ ACloc(a, b), k = 0, 1, . . . , 2n− 1;

f, `n[f ] ∈ L2[(a, b), w]

}
.

The designation of “maximal” is appropriate in this case because Dmax(`
n) is the

largest possible subspace for which `n maps back into L2[(a, b), w]. For f, g ∈ Dmax(`
n)

and a < α ≤ β < b the sesquilinear form associated with `n by

[f, g]n

∣∣∣∣β
α

:=

∫ β

α

{
`n[f(x)]g(x)− `n[g(x)]f(x)

}
w(x)dx. (2.4.1)

The equation (2.4.1) is Green’s formula for `n[ · ], and is an equivalent definition to the

classical one from Sturm–Liouville theory utilizing Wronskians [52, Equation (3.5)].
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Theorem 2.4.4 ([54, Section 17.2]). The limits [f, g]n(b) := limx→b− [f, g]n
∣∣x
α

and [f, g]n(a) :=

limx→a+ [f, g]n
∣∣β
x

exist and are finite for f, g ∈ Dmax(`
n).

Definition 2.4.5 ([54, Section 17.2]). The minimal domain of `n[ · ] is given by

Dnmin = Dmin(`n) = {f ∈ Dmax(`
n) | [f, g]n

∣∣b
a

= 0 ∀g ∈ Dmax(`
n)}.

The maximal and minimal operators associated with the expression `n[ · ] are

defined as Lnmin = {`n,Dnmin} and Lnmax = {`n,Dnmax} respectively. By [54, Section

17.2], these operators are adjoints of one another, i.e. (Lnmin)∗ = Lnmax and (Lnmax)
∗ =

Lnmin.

In the context of differential operators, we work with the a special case of

Theorem 2.4.2:

Theorem 2.4.6 ([54, Section 14.5]). Let Dnmax and Dnmin be the maximal and minimal

domains associated with the differential expression `n[ · ], respectively. Then, for n ∈

N,

Dnmax = Dnmin uDn+ uDn−. (2.4.2)

Equation (2.4.2) is commonly known as von Neumann’s formula. The symbol

u denotes the direct sum, and Dn+,Dn− are the defect spaces associated with the

expression `n[ · ]. The decomposition can be made into an orthogonal direct sum by

using the graph norm, see Section 3.1.2.

By [54, Section 14.8.8], if the operator Lnmin has any self-adjoint extensions, then

the deficiency indices of Lnmin have the form (m,m), where 0 ≤ m ≤ 2n and 2n is the

order of `n[ · ]. Glazman [3, 30] has shown that the number m can take on any value

between 0 and 2n. In regards to differential expressions, the order of the operator is

greater than or equal to each of the two deficiency indices by necessity. Hence, Sturm–

Liouville expressions that generate self-adjoint operators have deficiency indices (0, 0),

(1, 1) or (2, 2). However, most of the applications in Chapter 3 require a complete
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set of orthogonal eigenfunctions so choices are even more limited. Indeed, when these

orthogonal eigenfunctions are assumed to be polynomial the Bochner classification [10]

tells us that, up to a complex linear change of variable, the only such operators are

Jacobi, Hermite, Laguerre and Bessel.

The discussion from Subsection 2.2.1 is now continued. If a differential ex-

pression is either in the limit circle case or regular at the endpoint a, it requires a

boundary condition at a. If it is in the limit point case at the endpoint a, it does not

require a boundary condition. The analogous statements are true at the endpoint b.

These facts can be summed up in the following result.

Theorem 2.4.7. Let Lmin = {`,Dmin}, where ` is a singular Sturm–Liouville differen-

tial expression.

m±(Lmin) =


2 if ` is l.c.c. at a and b,

1 if ` is l.c.c. at a and l.p.c. at b or vice versa,

0 if ` is l.p.c. at a and b.

Sturm–Liouville differential expressions are extremely well-researched, see e.g.

[8, 21] for an encyclopedic reference, so the deficiency indices are well-known in each

of the cases of interest. Jacobi operators have deficiency indices (2, 2), Laguerre have

(1, 1) and Hermite have (0, 0). Bessel functions, on the other hand, are not complete

in the relevant weighted L2 space so are not considered here. Jacobi operators are

in the limit circle case at both -1 and 1 (for α, β both in [0, 1)), Laguerre operators

are in the limit circle case at 0 and the limit point case at ∞ (for α ∈ [0, 1)), and

Hermite operators are in the limit point case at both ±∞. Hermite operators are thus

essentially self-adjoint and require no boundary conditions, so they are only mentioned

in passing. The techniques developed in Chapter 3 apply trivially at endpoints which

are in the limit point case. Regular endpoints are somewhat easier, and the spectrum

associated with such operators are easily described by Perturbation Theory, see [61].
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2.4.1 Glazman–Krein–Naimark (GKN) Theory

In order to formulate the GKN theorems, we recall an extension of linear in-

dependence to one that mods out by a subspace. This subspace will be the minimal

domain in applications. The next two theorems form the core of GKN theory.

Definition 2.4.8 ([54, Section 14.6]). Let X1 and X2 be subspaces of a vector space X

such that X1 ≤ X2. Let {x1, x2, . . . , xr} ⊆ X2. We say that {x1, x2, . . . , xr} is linearly

independent modulo X1 if

r∑
i=1

αixi ∈ X1 implies αi = 0 for all i = 1, 2, . . . , r.

Theorem 2.4.9 (GKN1, [54, Theorem 18.1.4]). Let Ln = {`n,DnL} be a self-adjoint

extension of the minimal operator Lnmin = {`n,Dnmin} with deficiency indices (m,m).

Then the domain DnL consists of the set of all functions f ∈ Dnmax, which satisfy the

conditions

[f, wk]n

∣∣∣∣b
a

= 0, k = 1, 2, . . . ,m, (2.4.3)

where w1, . . . , wm ∈ Dnmax are linearly independent modulo Dnmin for which the relations

[wj, wk]n

∣∣∣∣b
a

= 0, j, k = 1, 2, . . . ,m (2.4.4)

hold.

The requirements in equation (2.4.4) are commonly referred to as Glazman

symmetry conditions. The converse of the GKN1 Theorem is also true.

Theorem 2.4.10 (GKN2, [54, Theorem 18.1.4]). Assume we are given arbitrary func-

tions w1, w2, . . . , wm ∈ Dnmax which are linearly independent modulo Dnmin and which

satisfy the relations (2.4.4). Then the set of all functions f ∈ Dnmax which satisfy the

conditions (2.4.3) is domain of a self-adjoint extension of Lnmin.

These two theorems completely answer the question of how boundary condi-

tions can be used to create self-adjoint extensions. Applications of this theory hinge
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on determining the proper wk’s that will define the domain of the desired self-adjoint

extension. More intuition for how these vectors that are linearly independent mod-

ulo the minimal domain are creating self-adjoint extensions can be found in unitary

matrices.

Theorem 2.4.11 ([54, Theorem 18.1.2]). Every self-adjoint extension L of the operator

Lnmin with the deficiency indices (m,m) can be characterized by means of a unitary

m×m matrix u = [ujk] in the following way:

Its domain of definition DL is the set of all functions f(x) of the form

f(x) = y(x) + ψ(x),

where y(x) ∈ Dnmin. Let ϕj be a basis vector of D+. Then ψ(x) can be written as the

linear combination:

ψ(x) = ϕj(x) +
m∑
k=1

ukjϕk(x), j = 1, . . . ,m.

Conversely, every unitary m × m matrix u = [ujk] determines in the way de-

scribed above a certain self-adjoint extension L of the operator Lnmin. The correspon-

dence thus established between L and u is one-to-one.

Hence, the w1, . . . , wm functions in the GKN1 Theorem are represented as the

sum from at least one function in each of D+ and D−, as the unitary matrix describ-

ing the extension must have full rank. Full statements and proofs of the last three

theorems can be found in [54].

2.5 Anderson-type Hamiltonians

Let (Ω,A,P) be a probability space, and consider the sequence of independent

random complex variables Xn(w), w ∈ Ω. We explain a simple application of Kol-

mogorov’s 0-1 Law to Anderson-type Hamiltonians using the standard probabilistic

setup described in [37] (also see [1]), where the reader can find all the necessary

definitions and basic properties.
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Assume that Ω =
∏∞

n=0 Ωn, where Ωn are different probability spaces, w =

(w1, w2, ...), wn ∈ Ωn and the probability measure on Ω is introduced as the product

measure of the corresponding measures on Ωn. Each of the independent random

variables Xn(w) depends only on the n-th coordinate, wn, of w.

It is a standard observation that any sequence of independent random variables

on an abstract probability space is similar to such a sequence Xn defined, for instance,

on an infinite dimensional torus. Hence, without loss of generality we have Ω =∏∞
n=0 Ωn, where each Ωn is a copy of the unit circle with normalized Lebesgue measure,

see e.g. [37] (where the unit interval was used instead of T).

It is well-known that the properties we are interested in (cyclicity, spectral

properties, etc.) are in fact an event. Explicitly, the set A of w, such that the function

corresponding to the sequence {Xn(w)} satisfies the desired property, is measurable:

A ∈ A. We will be mostly interested in the events A that do not depend on the values

of any finite number of variables Xn, i.e. the sets A ∈ A with the property that if

w ∈ A and Xn(w) = Xn(w′) for all but finitely many n then w′ ∈ A. Kolmogorov’s

0-1 Law states that the probability of any such event is 0 or 1.

Now, consider a self-adjoint operator H on a separable Hilbert space H and a

sequence {ϕn} ⊂ H of linearly independent unit vectors. Let ω = (ω1, ω2, . . .) be a

random variable corresponding to a probability measure P on R∞ that satisfies Kol-

mogorov’s 0-1 Law. In particular, the parameters ωn are chosen i.i.d. (independent,

identically distributed) with respect to P.

An Anderson-type Hamiltonian [34] is an almost surely self-adjoint operator

associated with the formal expression

Hω = H + Vω on H, Vω =
∑
n

ωn〈 · , ϕn〉ϕn. (2.5.1)

As is customary, assume that the vectors ϕn be orthogonal. However, many properties

readily extend to the case of non-orthogonal ϕn so long as (2.5.1) almost surely defines

a self-adjoint operator.
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Observation 2.5.1 (Kolmogorov’s 0-1 law applied to Anderson-type Hamiltonians).

Consider the Anderson-type Hamiltonian Hω given by (2.5.1). Assume that the prob-

ability distribution P satisfies the 0-1 law. Then those spectral properties that are

invariant under finite rank perturbations are enjoyed by Hω almost surely or almost

never.

The archetype Anderson-type Hamiltonian is the discrete Schrödinger operator

with random potential on l2(Zd), given by

Hf(x) = −4 f(x) = −
∑
|n|=1

(f(x+ n)− f(x)), ϕn(x) = δn(x) =

 1 x = n,

0 else.

(2.5.2)

This operator is often used to model quantum mechanical phenomena in a crystalline

structure with random on-site potentials, and appears in many fields of mathemat-

ics. With regards to perturbation theory, one of the main challenges in approaching

Anderson-type Hamiltonians is that they feature an almost surely non-compact per-

turbation. It is apparent by the survey of results in Subsection 2.1, classical pertur-

bation theory is at a loss at how to handle this scenario.
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CHAPTER THREE

Boundary Conditions associated with Left-Definite Theory

A wide variety of literature concerns the study of left-definite theory applied to

Sturm–Liouville differential operators. The interest arises primarily from the ground-

breaking paper of Littlejohn and Wellman [49]. The paper describes the creation of a

continuum of left-definite spaces and left-definite operators associated with an arbi-

trary self-adjoint operator that is bounded below by a positive constant in a Hilbert

space. Prior to [49], research had been conducted only in the “first” left-definite set-

ting. This theory has been applied to many types of self-adjoint differential operators,

including those stemming from the second-order differential equations of Hermite,

Legendre, Jacobi, Laguerre, and Fourier. Excellent surveys of these results are [12]

and [50].

The paper of Littlejohn and Wellman [49] managed to characterize these left-

definite spaces in terms of other Hilbert spaces defined with integral operators. A key

point of left-definite theory is that each left-definite space will be nested and dense

within the original Hilbert space. However, some critics felt somewhat uneasy with

the fact that the left-definite spaces (in their opinions) lack an explicit mention of

boundary conditions.

One of the goals of this paper is to address these concerns. We present classical

boundary conditions that exist for self-adjoint differential operators which possess a

complete system of orthogonal eigenfunctions. These boundary conditions are for-

mulated in terms of Glazman–Krein–Naimark (from now on abbreviated by GKN)

theory, which entirely describes self-adjoint extensions for a closed, symmetric oper-

ator with equal deficiency indices.
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This framework allows for the construction of the boundary conditions for the

left-definite spaces of the classical Legendre differential operator explicitly. Previous

work using GKN conditions to describe the left-definite domains is limited to very

recent progress by Littlejohn and Wicks [51, 52]. The results concern the classical

Legendre differential operator exclusively and give GKN conditions describing the

fourth left-definite domain, which is associated with the square of the differential

operator, L2, or the case where n = 2 below. Additionally, Littlejohn and Wicks for-

mulate their results in terms of “separated” boundary conditions, whereas “coupled”

boundary conditions are used throughout this paper. This is a matter of preference,

but using coupled boundary conditions simplifies calculations considerably, as they

are easier to access via the sesquilinear form dealt with by GKN theory.

In this work we introduce a systematic approach, which reduces the amount of

cumbersome computations in this field. This perspective enables us to harvest the

finite dimensional nature of defect spaces. An alternative approach to this problem

is through Sturm–Liouville theory, e.g. [27,39], but the literature focuses on the first

left-definite theory and does not produce GKN conditions.

The interest in differential operators which possess a complete system of orthog-

onal eigenfunctions originates with Theorem 2.3.4 [49] that says this same system will

be present in each of the different left-definite domains. Hence, there is an indicator

for when a self-adjoint extension is a left-definite domain, and this simplifies the pro-

cess. A second-order linear differential equation satisfied by a complete orthogonal

system of polynomials with absolutely continuous measures of orthogonality has a

second linearly independent solution [33, Section 3.6]. This second linearly indepen-

dent solution is often called a function of the second kind, and their existence plays

an essential role in our examples.

The Legendre differential operator example is particularly important because

there are essentially only four Sturm–Liouville operators with a complete set of or-
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thogonal eigenfunctions. The Bochner classification [10] tells us that, up to a complex

linear change of variable, the only such operators with polynomial eigenfunctions are

Jacobi, Hermite, Laguerre and Bessel. Of these, the Jacobi differential expressions

require the most boundary conditions. The Legendre expression is a special case of

Jacobi that has an immense amount of literature, so it was ideal for such an ex-

ploration of GKN conditions with respect to left-definite theory. The framework of

Section 3.2 both extends to other Jacobi differential expressions (other values of the

parameters α and β), and reduces to cover the cases of Hermite, Laguerre and Bessel.

The broader concepts of Section 3.4 are expressed with this in mind as well.

While our applications to the classical systems use polynomial eigenfunctions,

a keen reader may observe that our general results consider systems of eigenfunc-

tions, which are not necessarily polynomials. This general approach suggests other

open problems: What adjustments are necessary when the self-adjoint operator has

a spectrum that is not discrete? That is, given some non-standard extension of a

differential operator, can we describe the corresponding left-definite domain? How

about the left-definite domain for compositions of the operator?

The approaches and ideas used in our three distinct types of results in Sections

3.2 through 3.4 differ vastly from one another. As a consequence, the setup changes

slightly from one section to another.

In Section 3.1 we construct a systematic framework around the method of find-

ing GKN conditions that make differential expressions into self-adjoint differential

operators. We show that eigenfunctions of a self-adjoint operator, which are linearly

independent modulo the minimal domain, yield GKN conditions for the operator.

Subsection 3.1.2 describes the graph norm that can be endowed on a Hilbert space

and justifies intuition about the decomposition of the maximal domain.

In Section 3.2, explicit self-adjoint extensions are given by showing that eigen-

functions themselves lead to suitable GKN conditions for powers Ln of the classical
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Legendre operator L. The case n = 2 was the topic of [51]. One of the key features

of our approach is that it utilizes the functions of the second kind. In examples, we

prove that the first n eigenfunctions work for Ln for n = 2, . . . , 5. The statement

has been verified numerically for n ≤ 16 due to the special structure of the matrix

of sesquilinear forms discussed in Subsection 3.2.1. We show a necessary condition

for eigenfunctions and functions of the second kind to be suitable “test” functions for

linear independence modulo the minimal domain in Subsection 3.2.2. The sufficiency

of this condition is discussed and conjectured.

Motivated by the Legendre example, it is shown in Section 3.3 that for left-

definite operators with pure point spectrum (only eigenvalues) there exist eigenfunc-

tions (corresponding to some eigenvalues) that generate GKN conditions. The method

of proof for this result differs from the explicit computations that were used in the

Legendre example. It relies on working with the graph norm. We believe this to

be the first general result in this direction. The idea is to reduce the problem to its

essence: finite dimensional linear algebra. This is accomplished by using the fact that

the defect spaces and minimal domain are orthogonal with respect to graph norm,

and properties of the eigenfunctions.

In Section 3.4 the goal is to determine which boundary conditions describe

left-definite domains. This question is then explored by comparing the left-definite

domains for these differential operators with the complete system of orthogonal poly-

nomials and their GKN conditions to boundary conditions that stem from the defi-

nition of the Sturm–Liouville operator. The work improves and simplifies a proof of

a fact from [52]. The central conjecture stating the equivalence of the following four

sets is still partially open:

• The nth left definite domain.

• The maximal domain with GKN conditions determined by the first m orthog-

onal polynomials. (Here, m denotes the deficiency indices.)
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• The maximal domain with GKN conditions determined by any m orthogonal

polynomials.

• The maximal domain with certain explicit boundary conditions.

Other ramifications and specific discussions of individual systems of orthogonal

polynomials and their differential equations follows.

3.1 Eigenfunctions as GKN Conditions

The Glazman–Krein–Naimark construction of self-adjoint extensions of sym-

metric operators, detailed in Subsection 2.4.1, is analyzed to determine which exten-

sion coincides with the left-definite space associated to differential operators whose

domains possess a complete set of orthogonal eigenfunctions. The most promising

choices of these GKN boundary conditions will be these eigenfunctions themselves.

However, all choices of GKN boundary conditions rely on functions that are linearly

independent modulo the minimal domain so we begin with a comprehensive discussion

of this idea.

3.1.1 Linear Independence Modulo the Minimal Domain

Consider a symmetric expression ` with deficiency indices (m,m) on the Hilbert

space L2[(a, b), w]. The following simple result will be used to test for linear inde-

pendence modulo Dmin. The main idea is to find a sufficient condition in terms of a

certain matrix of sesquilinear forms (corresponding to `) having full rank.

Proposition 3.1.1. Given vectors w1, . . . , wr ∈ Dmax, r ≤ 2m. Assume that the r × r

matrix M with entries Mik = [wi, wk]|ba for 1 ≤ i, k ≤ r has full rank. Then w1, . . . , wr

are linearly independent modulo Dmin.

We will prove this proposition in a moment.

In virtue of Linear Algebra (dimension counting, and realizing that removing

vectors from a basis leaves behind a linearly independent set) we obtain an immediate

consequence, which both Subsection 3.1.3 and Section 3.2 rely heavily on.
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Corollary 3.1.2. Given vectors w1, . . . , wr ∈ Dmax, r ≤ 2m. Assume that for some

vectors wr+1, . . . , ws ∈ Dmax, r ≤ s ≤ 2m, the s × s matrix M with entries Mik =

[wi, wk]|ba (for 1 ≤ i, k ≤ s) has full rank. Then w1, . . . , ws are linearly independent

modulo Dmin, and so are the vectors w1, . . . , wr.

Remark. In our applications below, we usually have r = m and s = 2m. Moreover,

w1, . . . , wm will be eigenfunctions, and wm+1, . . . , w2m will be functions of the second

kind.

Proof of Proposition 3.1.1. Our goal is to show that the set w1, . . . , wr is linearly

independent modulo the minimal domain Dmin. To that end, suppose

r∑
k=1

αkwk ∈ Dmin. (3.1.1)

We want to show that αk = 0 for all k = 1, . . . , r.

The definition of the minimal domain says that y ∈ Dmin if and only if [y, w]|ba =

0 for all w ∈ Dmax. Letting y = wi, w =
∑r

k=1 αkwk and using the linearity of the

sesquilinear form, we see that (3.1.1) implies

r∑
k=1

αk[wi, wk]

∣∣∣∣b
a

= 0 for i = 1, . . . , r. (3.1.2)

Now, interpreting (3.1.2) for a specific i as the ith row of a matrix equation, we

see that (3.1.2) is equivalent to the matrix equation

Mα = 0 with M =


[w1, w1]

∣∣b
a
. . . [w1, wr]

∣∣b
a

...
. . .

...

[wr, w1]
∣∣b
a
. . . [wr, wr]

∣∣b
a

 , α =


α1

...

αr

 ,

and the zero vector 0 ∈ Rr.

And since we assume that M has full rank, we conclude that αk = 0 for all

k = 1, . . . , r.
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This result is not particularly surprising, yet adds to the formal framework

surrounding the concept of linear independence modulo the minimal domain. In fact,

the notion of two functions being orthogonal in a Hilbert space, i.e. their inner product

is equal to 0, implies that they are linearly independent. Indeed, the creation of a

matrix of inner products would imply a similar result regarding linear independence

in the Hilbert space (where the converse is still false). However, this construction

would not take into account the operator itself, or the different domains associated

with it.

Recall that all functions in the maximal domain possess a decomposition via

Theorem 2.4.6. The part corresponding to the minimal domain for these functions is

destroyed when plugged in to the sesquilinear form. Hence, the sesquilinear form can

be viewed as the annihilator of the minimal domain and is therefore the ideal tool

available to assess whether functions are linearly independent modulo the minimal

domain. The definition of the sesquilinear form in equation (2.4.1) as the difference

of two inner products further reinforces this intuition.

3.1.2 The Graph Norm

Let A be a densely defined symmetric operator on a separable Hilbert space H.

Furthermore, for x, y ∈ D(A∗), denote the graph inner product by

〈x, y〉
A

:= 〈x, y〉H + 〈A∗x,A∗y〉H .

This section will use the convention that D(A∗) has the topology defined by

the graph norm ||x||
A

:= 〈x, x〉1/2
A

induced by the inner product 〈x, y〉
A

, unless the

contrary is explicitly stated. The graph norm allows for some more elegant results in

the theory of self-adjoint extensions, and will be central to our main theorems.

Lemma 3.1.3 ( [19, Lemma XII.4.10]). Using the above conventions, we have that:

(1) D(A), D+, and D− are closed orthogonal subspaces of the Hilbert space D(A∗).
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(2) D(A∗) = D(A) ⊕
A
D+ ⊕A

D−. Here ⊕
A

denotes the orthogonal sum, with

respect to the graph inner product.

The results in Section 3.3 heavily rely on this orthogonal decomposition so a

proof of the Lemma, following that of [19], is included.

Proof. The space D(A) is closed by the above note, while D+ and D− are closed

because they are finite dimensional. Since D+ and D− are clearly linear subspaces of

D(A∗), it remains to show that the spaces D(A), D+, and D− are mutually orthog-

onal, and that their sum is D(A∗).

Suppose d ∈ D(A), d+ ∈ D+, and d− ∈ D−. We will show that 〈d, d+〉A =

〈d, d−〉A = 〈d−, d+〉A = 0. First, since A∗ ⊇ A we compute

〈d, d+〉A = 〈d, d+〉+ 〈A∗d,A∗d+〉 = 〈d, d+〉+ 〈Ad,A∗d+〉

= 〈d, d+〉+ 〈Ad, id+〉 = 〈d, d+〉+ 〈d, iA∗d+〉

= 〈d, d+〉+ 〈d, iA∗d+〉 = 〈d, d+〉+ 〈d, i2d+〉 = 0.

Similarly, 〈d, d−〉A = 0. Next,

〈d−, d+〉A = 〈d−, d+〉+ 〈A∗d−,A∗d+〉

= 〈d−, d+〉+ 〈−id−, id+〉 = 0.

Hence the spacesD(A), D+, andD− are mutually orthogonal, andD(A)⊕
A
D+⊕A

D−

is contained in D(A∗).

To show that they are equal, we will show that zero is the only vector orthogonal

to the three subspaces involved. Suppose v is orthogonal to D(A), D+, and D−. Then

0 = 〈d, v〉
A

= 〈d, v〉 + 〈A∗d,A∗v〉, for all d in D(A). Hence 〈d, v〉 = −〈A∗d,A∗v〉 =

−〈Ad,A∗v〉 because A is symmetric and so A = A∗ on D(A).

Recall that 〈 · , v〉 is a continuous linear functional on the dense subset D(A) of

the original Hilbert space H. By the definition of the adjoint, we see that A∗v is in
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D(A∗) and so A∗(A∗v) = −v. Hence, we have (I+A∗A∗)v = (I+iA∗)(I−iA∗)v = 0.

And so we obtain A∗[(I−iA∗)v] = i(I−iA∗)v, or (I−iA∗)v ∈ D+. Also, if d+ ∈ D+,

then

0 = 〈v, d+〉A = 〈v, d+〉+ 〈A∗v,A∗d+〉 = 〈v, d+〉+ 〈A∗v, id+〉

= 〈v, d+〉 − i〈A∗v, d+〉 = 〈(I − iA∗)v, d+〉.

Since (I− iA∗)v is in D+, this implies that (I− iA∗)v = 0. Hence A∗v = −iv, or v ∈

D−. But 〈D−, v〉A = 0. Hence v = 0. Therefore D(A∗) = D(A)⊕
A
D+ ⊕A

D−.

The previous lemma can be viewed with regards to differential operators by

using that the maximal and minimal operators are adjoints of one another. Our

differential operators are assumed to be closed, so it is possible to replace D(A) with

Dmin and D(A∗) with Dmax, while still assuming that Dmax is endowed with the graph

norm. Hence, the lemma translates into von Neumann’s formula (2.4.2), but the

decomposition is orthogonal due to the different norm. The r/2 graph norm of A will

be of particular interest, and is denoted by 〈x, y〉
Ar/2

= 〈x, y〉H + 〈Ar/2x,Ar/2y〉H .

The operator A is assumed to be self-adjoint and bounded below by k > 0, as in

Section 2.3.

Lemma 3.1.4. The rth left-definite norm is equivalent to the r/2 graph norm. Con-

cretely,

‖x‖2r ≤ ‖x‖2
Ar/2
≤ C‖x‖2r for x ∈ D(Ar/2),

where the constant C depends on k and r.

Proof. The rth left-definite inner product can be defined via Definition 2.3.1 as

||x||2r = 〈x, x〉r = 〈Ar/2x,Ar/2x〉H . Also, recall that the definition of the rth left-

definite space implied the stipulation 〈x, x〉r ≥ kr〈x, x〉H . Then,

||x||2
Ar/2

= 〈Ar/2x,Ar/2x〉H + 〈x, x〉H = ||x||2r + ||x||2
H
≥ ||x||2r,
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and

||x||2r =
1

2
〈x, x〉r +

1

2
〈x, x〉r

≥ kr

2
〈x, x〉H +

1

2
〈x, x〉r

=
1

2

[
kr〈x, x〉H + 〈Ar/2x,Ar/2x〉H

]
≥ 1

2
min{kr, 1}||x||2

Ar/2
.

Furthermore, no problems arise by passing to the r/2 graph norm instead of the usual

r graph norm. This is because the domain of the r/2 graph norm coincides with the

r/2th left-definite space and D(Ar/2) ⊃ D(Ar). We conclude that the two norms are

indeed equivalent.

3.1.3 The Matrix of Sesquilinear Forms

Consider a symmetric expression ` with deficiency indices (m,m) on the Hilbert

space L2[(a, b), w]. Let L = {`,DL} be a self-adjoint extension. Assume that the

domain of L includes a complete set of orthogonal eigenfunctions, say {Pk}∞k=0. The

GKN1 Theorem (Theorem 2.4.9) states that all self-adjoint extensions are obtained

by imposing m GKN conditions on the maximal domain. GKN conditions are induced

by functions w1, . . . , wm, which satisfy three conditions:

(C1) The functions w1, . . . , wm must be linearly independent modulo the minimal

domain.

(C2) The complete system of orthogonal eigenfunctions must be included in the

domain, pursuant to equation (2.4.3).

(C3) The functions w1, . . . , wm must satisfy the Glazman symmetry conditions in

equation (2.4.4).

Later we will choose w1, . . . , wm to be eigenfunctions. In that case, the first item (C1)

implies both (C2) and (C3).
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Remark 3.1.5. In fact, item (C3) can in general be obtained from (C1), if we allow

for an insignificant modification of the w1, . . . , wm. Indeed, the Glazman symmetry

conditions (C3) are easily attained by taking linear combinations of vectors satisfying

(C1) via a procedure that is similar to the Gram–Schmidt orthogonalization, using the

sesquilinear form instead of an inner product. We notice that such linear combinations

will not change (C1). They will span the same domain modulo Dmin. So they will

also not change property (C2).

By assumption we have dim(D+ uD−) = 2m. A basis of this space mod (Dmin)

would be ideal. But, if w1, . . . , wm are linearly independent modulo the minimal

domain, then they can be completed to a basis w1, . . . , w2m; and vice versa.

Consider the matrix

M =



[w1, w1] . . . [w1, wm]

...
. . .

...

[wm, w1] . . . [wm, wm]

[w1, wm+1] . . . [w1, w2m]

...
. . .

...

[wm, wm+1] . . . [wm, w2m]

[wm+1, w1] . . . [wm+1, wm]

...
. . .

...

[w2m, w1] . . . [w2m, wm]

[wm+1, wm+1] . . . [wm+1, w2m]

...
. . .

...

[w2m, wm+1] . . . [w2m, w2m]



, (3.1.3)

where each sesquilinear form is evaluated from a to b.

We formulate sufficient conditions under which eigenfunctions act as GKN con-

ditions. Though the set up seems less natural, the result will be shown to bear useful

consequences. The theorem shows that, under the assumption that eigenfunctions

{Pki}mi=1 can be completed to a basis of D+ u D−, these eigenfunctions are then

appropriate GKN conditions.

Theorem 3.1.6. Let L = {`,DL} be a self-adjoint operator on the Hilbert space

L2[(a, b), w], and be an extension of a minimal symmetric operator that has deficiency
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indices (m,m). Assume that DL includes a complete set of orthogonal eigenfunctions,

{Pk}∞k=0. Furthermore, assume that a basis modulo Dmin of the defect spaces D+uD−

is given by the collection {Pk1 , . . . , Pkm , f1, . . . , fm}. Then DL is given by imposing

{Pk1 , . . . , Pkm} as GKN conditions on Dmax.

Before we prove this result, we take an excursion via two corollaries. In com-

bination with Corollary 3.1.2, a slight modification of the proof of Theorem 3.1.6

immediately yields a similar result for general w1, . . . , w2m.

Corollary 3.1.7. Consider a symmetric operator with expression ` on L2[(a, b), w] that

has deficiency indices (m,m). If M defined as in equation (3.1.3) has full rank for

some choice of w1, . . . , w2m ∈ Dmax(`), then any subset of m of these induces GKN

conditions so long as we drop the symmetry condition (C3).

In Corollary 3.1.7, we do not claim that these conditions induce a particular

self-adjoint extension, but rather just one of the infinitely many possible ones, again,

not expecting the GKN symmetry condition (C3). In the next section, we will apply

another immediate consequence of the Theorem to powers of a self-adjoint extension

associated with the Legendre expression. Assuming that L is bounded below, we can

consider the self-adjoint operator (associated with the differential expression `n) that

arises from the 2nth left-definite domain for L. Consider the matrix Mnm where the

sesquilinear forms [ · , · ] are the ones corresponding to `n, which we generally denote

by [ · , · ]n.

Corollary 3.1.8. Assume that nm of the w1, . . . , w2nm functions are eigenfunctions

(e.g. wk = Pk for k = 1, . . . , nm). If the corresponding (2nm) × (2nm) matrix M

from equation (3.1.3) has full rank, then the domain of the 2nth left-definite operator

can be represented by imposing GKN conditions with those eigenfunctions on the

maximal domain.
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Examples in Section 3.2 show that, for small values of n, the first m eigenfunc-

tions can in fact serve as half of these basis vectors. Therefore, they can be used to

form GKN conditions.

In accordance with equation (3.1.4) below, orthogonal functions which also sat-

isfy the eigenvalue equation, are automatically symmetric in the sense of Glazman’s

condition (C3). So, the entire problem of imposing appropriate GKN conditions on

symmetric operators to yield left-definite self-adjoint extensions is reduced to show-

ing that the upper-right quadrant of the matrix M has full rank. We explore this

further below in Proposition 3.2.2 for Legendre, and the remark following the proof

of Proposition 3.2.2 for more general settings.

Proof of Theorem 3.1.6. The collection {Pk1 , . . . , Pkm , f1, . . . , fm} forms a basis of

D+ u D−, so all self-adjoint extensions of the minimal operator come from using

m distinct GKN conditions written as:

Gi = ai,1Pk1 + ai,2Pk2 + · · ·+ ai,mPkm + ai,m+1f1 + ai,m+2f2 + · · ·+ ai,2mfm,

for i = 1, . . . ,m. The GKN1 Theorem 2.4.9 implies that

DL = {f ∈ Dmax | [f,Gi]|ba = 0, i = 1, . . . ,m for some choice of ai,j’s}.

The claim is then that ai,j = 0 for all j > m. In particular, this choice of

constants ai,j’s needs to include the subset of orthogonal eigenfunctions {Pk1 , . . . , Pkm}

in the domain. Notice that an application of Green’s formula for the sesquilinear form

yields

[Pi, Pj]

∣∣∣∣b
a

=

∫ b

a

`[Pi]Pjwdx−
∫ b

a

Pi`[Pj]wdx = (λi − λj)
∫ b

a

PiPjwdx = 0. (3.1.4)

Here, if i = j then λi − λj = 0, and if i 6= j then we use the orthogonality of Pi and

Pj.

The Glazman symmetry conditions (C3) follow immediately.
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Fix the index i and test the chosen Gi against these orthogonal eigenfunctions

in the sesquilinear form as follows:

0 = [Pk1 , Gi]|ba = 0 + · · ·+ 0+ai,m+1[Pk1 , f1]|ba + · · ·+ ai,2m[Pk1 , fm]|ba,

0 = [Pk2 , Gi]|ba = 0 + · · ·+ 0+ai,m+1[Pk2 , f1]|ba + · · ·+ ai,2m[Pk2 , fm]|ba,
...

0 = [Pkm , Gi]|ba = 0 + · · ·+ 0+ai,m+1[Pkm , f1]|ba + · · ·+ ai,2m[Pkm , fm]|ba.

This problem can be recast in terms of the upper half of the finite 2m × 2m matrix

M as above. The upper-left quadrant of M is then 0. Explicitly, this problem

represents the upper-right quadrant of M multiplied by a column vector of ai,j’s.

However, the collection {Pk1 , . . . , Pkm , f1, . . . , fm} constitutes a basis for D+ u D−,

see the remark after the proof of Proposition 3.2.2. Hence, the upper-right quadrant

of M has full rank. The only way to yield the necessary column vectors of 0’s, in the

above equations, is for all of the ai,j’s to be 0. Hence, ai,j = 0 for all j > m. The

calculation was for a general fixed i so necessarily

Gi = ai,1Pk1 + ai,2Pk2 + · · ·+ ai,mPkm for all i = 1, . . . ,m.

The Gi’s themselves must also be linearly independent modulo the minimal domain.

So, modulo Dmin, their span is identical to that of {Pk1 , . . . , Pkm}.

3.2 GKN Conditions for Powers of the Legendre Operator

When considering a specific differential operator, the problem of finding GKN

conditions can be written rather explicitly in terms of the matrix M from the previous

section.

The explicit tools developed here can be adapted to study spectral theory for

powers of other Bochner–Krall polynomial systems. Here we focus our attention on

the powers of the Legendre operator.
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On the one hand, these examples expand the observations in [51]. On the other

hand, they motivate and tie into our main results, see Section 3.3. The method

established here is more explicit than the abstract approach in Section 3.3.

The investigation into the boundary conditions associated with left-definite the-

ory begins by considering the classical Legendre differential operator L = {`,DL} on

the Hilbert space L2(−1, 1), given by

`[y](x) = −((1− x2)y′(x))′ (3.2.1)

together with the domain

DL = {f ∈ Dmax; (1− x2)f ′(x) |1−1= 0} (3.2.2)

with connected boundary conditions. This domain contains the Legendre polynomials

{Pk}∞k=0 and L is a self-adjoint operator, see e.g. [52]. Recall that Dmax was provided

in Definition 2.4.3. Both limx→±1(1 − x2)f ′(x) exist by Theorem 2.4.4, and because

−(1− x2)f ′(x) |1−1= [f, 1] |1−1.

Remark. In [52], it was proved that DL is equal to the domain induced by left-definite

theory. The equality of such domains for Ln is discussed in Section 3.4.

This operator possesses the Legendre polynomials Pk(x), k ∈ N0, as a complete

set of eigenfunctions. That is, the polynomial y(x) = Pk(x) is a solution of the

eigenvalue equation

`[y](x) = k(k + 1)y(x), (3.2.3)

for each k we have Pk ∈ DL and span{Pk}∞k=0 is dense in L2(−1, 1).

Left-definite theory allows for the construction of a sequence of Hilbert spaces

whose domains are operated on by integer composition powers of L. It is no hin-

drance that for odd powers of composition, we encounter fractional left-definite spaces,

e.g. when n = 3 the operator L3 corresponds to V3/2. The case n = 2 has been inves-

tigated by Littlejohn and Wicks in [51] and [52]. They showed that the left-definite
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domain in this case could be defined via the GKN1 Theorem using w1 ≡ 1 and

w2(x) = x in equation (2.4.3). The literature does not provide results for n ≥ 3.

Since the minimal Legendre operator Lmin = {`,Dmin} has deficiency indices

(1, 1) (as is visible from (3.2.2)), the powers Lnmin = {`n,Dnmin} of the Legendre oper-

ator have deficiency indices (n, n). In other words, we have m = n here.

In the remainder of this section we present a few results for general n, while

focusing on some special cases for more explicit results. We are mostly interested in

n = 3, but also work with n = 4 and n = 5, and include some new observations when

n = 2.

3.2.1 The Structure of the Matrix Mn

These explicit results can be extended by analogy to larger values of n. For

general n, the matrix Mn will be (2n) × (2n) and the entries are sesquilinear forms

corresponding to expression `n in Green’s formula. If n is even, choose P0, P1, . . . , Pn−1

and Q0, Q1, . . . , Qn−1 (Legendre functions of the second kind). If n is odd, choose

P0, P1, . . . , Pn−1 and Q1, Q2, . . . , Qn. These will be the choice for basis candidates

unless otherwise stated. In the following example we explain why these are good

choices. Apart from its pedagogical value, this example also settles the case n = 3

with little computational effort. The case n = 2 was the main topic of [51].

Example. Let n = 3. The first two Legendre polynomials are P0 ≡ 1 and P1(x) = x,

so a reasonable guess in this case would be to try to use as GKN conditions

P0 ≡ 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1).

It will be shown that these GKN conditions indeed yield the desired domain. The most

difficult condition to prove is the linear independence modulo the minimal domain.

For n = 3, the deficiency indices are (3, 3). So we have m = n = 3 and a basis of

D3
+ uD3

− will be 2n = 6 dimensional.
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To show that a set w1, w2, . . . , w6 is linearly independent modulo D3
min, follow

the setup of the matrix described in Subsection 3.1.3 to yield

M3 =



[w1, w1] [w1, w2] [w1, w3]

[w2, w1] [w2, w2] [w2, w3]

[w3, w1] [w3, w2] [w3, w3]

[w1, w4] [w1, w5] [w1, w6]

[w2, w4] [w2, w5] [w2, w6]

[w3, w4] [w3, w5] [w3, w6]

[w4, w1] [w4, w2] [w4, w3]

[w5, w1] [w5, w2] [w5, w3]

[w6, w1] [w6, w2] [w6, w3]

[w4, w4] [w4, w5] [w4, w6]

[w5, w4] [w5, w5] [w5, w6]

[w6, w4] [w6, w5] [w6, w6]


,

where [ · , · ] stands for the sesquilinear form in equation (3.4.1) below for n = 3 and

is evaluated from −1 to 1 by taking limits.

For one moment, let us assume that all those limits exist. Now the idea is that

we will be choosing all of the wj to be either Legendre eigenfunctions or Legendre

functions of the second kind, all of which satisfy eigenvalue equations `[y] = λy. The

representation through Green’s formula

[wj, wk]

∣∣∣∣1
−1

=

∫ 1

−1
`3[wj]wkdx−

∫ 1

−1
wj`

3[wk]dx

will be of use.

The Legendre functions of the second kind are commonly denoted by Qk, k ∈

N0. The explicit representations for the first four of them are:

Q0(x) =
1

2
ln

(
1 + x

1− x

)
, Q1(x) =

x

2
ln

(
1 + x

1− x

)
− 1,

Q2(x) =
3x2 − 1

4
ln

(
1 + x

1− x

)
− 3x

2
, Q3(x) =

5x3 − 3x

4
ln

(
1 + x

1− x

)
− 5x2

2
+

2

3
.

More information about these functions can be found in [20,59]. Explicitly, take

w1 = P0, w2 = P1, w3 = P2, and w4 = Q1, w5 = Q2, w6 = Q3.

Let us ensure that the limits in these sesquilinear forms are well-defined. 6
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We turn back to general n. Since Pk are eigenfunctions, they trivially belong to

Dnmax. In conjunction with Theorem 2.4.4 the following result shows that the limits

of the sesquilinear forms limx→−1+ [wj, wk](x) and limx→1− [wj, wk](x) both exist when

wj and wk are eigenfunctions or polynomials of the second kind.

Proposition 3.2.1. The Legendre functions of the second kind are in the maximal

domain Dnmax for every value of n.

Proof. By Definition 2.4.3 the maximal domain of `n is given by

Dnmax =
{
y : (−1, 1)→ C | y(k) ∈ ACloc(−1, 1), k =0, 1, . . . , 2n− 1;

y, `n[y] ∈ L2(−1, 1)
}
.

These functions are in L2(−1, 1) and their integrals are explicitly known [20]:∫ 1

−1
(Qk(x))2dx =

π2 − 2(1 + cos2(kπ))ψ′(k + 1)

2(2k + 1)
,

where the function ψ(x) = Γ′(x)/Γ(x) is the so-called digamma function. Derivatives

of the functions Qk have singularities only at −1 and 1, so Q
(r)
k ∈ C∞[α, β] for all

r ∈ N and all [α, β] ⊂ (−1, 1). Hence, each derivative is itself locally continuously

differentiable and locally absolutely continuous. The fact that the functions Qk are

solutions to the eigenvalue equation (3.2.3) trivially implies that `n[Qk] ∈ L2(−1, 1)

for all k ∈ N0.

Initial conclusions can be made about the structure of Mn using technical facts

about the entries. In the remainder of this section we will always assume that the

first n of the wj are Legendre polynomials and the others are Legendre functions of

the second kind (with indices in N0).

Proposition 3.2.2. The matrix Mn is antisymmetric and takes the form

Mn =

 0 Bn

−B>n Cn


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so that det (Mn) = det (B>nBn) = [det (Bn)]2. In particular, if Bn has full rank, then

the wj used to produce the entries of Mn form a basis of Dmax modulo Dmin.

Proof. Simplify the entries of the matrix M by using Green’s formula (2.4.1) as fol-

lows: For fj = Pj or fj = Qj and gk = Pk or gk = Qk and with the standard inner

product 〈 · , · 〉 on L2(−1, 1), notice that

[fj, gk]

∣∣∣∣1
−1

= 〈`n[fj], gk〉 − 〈fj, `n[gk]〉 = [jn(j + 1)n − kn(k + 1)n]〈fj, gk〉 (3.2.4)

= −[kn(k + 1)n − jn(j + 1)n]〈fj, gk〉 = 〈fj, `n[gk]〉 − 〈`n[fj], gk〉

= −[gk, fj]

∣∣∣∣1
−1
.

Here, we used that repeated applications of the eigenvalue equation (3.2.3) yield

`n[Pk] = kn(k + 1)nPk, and similarly for Qk. This shows antisymmetry.

In the first quadrant of the matrix, we encounter the case when the sesquilinear

form is evaluated for two Legendre polynomials. Due to the orthogonality of the inner

product, (3.2.4) evaluates to zero when fj = Pj and gk = Pk when j 6= k. For j = k,

the coefficient in front of the inner product equals zero. Summing up, this shows

[Pj, Pk]

∣∣∣∣1
−1

= 0, for all j, k ∈ N0.

By linear algebra, the determinant of M can be calculated using

det (Mn) = det [(0>)(Cn)− (−B>n )(Bn)] = det (B>nBn) = [det(Bn)]2.

The last statement follows from Corollary 3.1.8.

Remark. In fact, it is not difficult to see that this proof works in more general settings.

Namely, Mn has the structure of Proposition 3.2.2 any time we choose eigenfunctions

for w1 through wn.

Several immediate consequences of equation (3.2.4) regarding the particular

entries of Mn are now apparent. As before, let fj = Pj or fj = Qj and gk = Pk or
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gk = Qk. First notice that

[fj, gk]

∣∣∣∣1
−1

= 0 for j = k.

Fortunately, formulas are known to calculate the relevant inner products [59,

pp. 236], and also exist in the cases where two different Pj’s and two different Qk’s

are considered: When both functions are Legendre functions of the second kind it is

known that

〈Qj, Qk〉 =
[ψ(j + 1)− ψ(k + 1)][1 + cos(jπ) cos(kπ)] + 1

2
π sin((k − j)π)

(k − j)(j + k + 1)
for j 6= k.

The case where the functions are of mixed type is given by

〈Pj, Qk〉 =
2 sin(jπ) cos(kπ)[ψ(j + 1)− ψ(k + 1)] + π cos((k − j)π)− π

π(k − j)(j + k + 1)
for j 6= k.

The function ψ(x) is the digamma function in the above two formulas.

The formulas are only necessary for j, k ∈ N0, reducing the computations sig-

nificantly. In particular, for j, k ∈ N0:

[Qj, Qk]

∣∣∣∣1
−1

(3.2.5)

=


2[ψ(j + 1)− ψ(k + 1)][j3(j + 1)3 − k3(k + 1)3]

(k − j)(j + k + 1)
=: Φjk, j + k even and j 6= k,

0, j + k odd or j = k.

Analogously, for j, k ∈ N0:

[Pj, Qk]

∣∣∣∣1
−1

=


−2[j3(j + 1)3 − k3(k + 1)3]

(k − j)(j + k + 1)
=: ϕjk, j + k odd,

0, j + k even.

(3.2.6)

The definition of the matrix entries given in equations (3.2.5) and (3.2.6) im-

mediately yield that Φjk = −Φkj and ϕjk = −ϕkj. In particular, the blocks Bn and
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Cn from Proposition 3.2.2 can be explicitly computed for even n as

Bn =



0 ϕ01 0 ϕ03 . . . ϕ0(n−1)

ϕ10 0 ϕ12 0 . . . 0

0 ϕ21 0 ϕ23 . . . ϕ2(n−1)

ϕ30 0 ϕ32 0 . . . 0

0 ϕ41 0 ϕ43 . . . ϕ4(n−1)

...
...

...
...

. . .
...

ϕ(n−1)0 0 ϕ(n−1)2 0 . . . 0



,

Cn =



0 0 Φ02 0 . . . 0

0 0 0 Φ13 . . . Φ1(n−1)

Φ20 0 0 0 . . . 0

0 Φ31 0 0 . . . Φ3(n−1)

Φ40 0 Φ42 0 . . . 0

...
...

...
...

. . .
...

0 Φ(n−1)1 0 Φ(n−1)3 . . . 0



.

The case where n is odd can similarly be written down in terms of the above

formulas.

Mathematica can be used to ease the trouble of populating the matrix with the

relevant entries.

Example. We return to the case n = 3. The following matrix is the result of setting

w1 = P0, w2 = P1, w3 = P2, w4 = Q1, w5 = Q2, and w6 = Q3:
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M3 =



0

8 0 288

0 104 0

104 0 504

−8 0 −104

0 −104 0

−288 0 −504

0 0 860
3

0 0 0

−860
3

0 0



.

Now, the upper right quadrant B3 of M3 clearly has full rank. And, in accordance

with Proposition 3.2.2, we obtain that w1, . . . , w6 form a basis of Dmax modulo Dmin.

Now, Corollary 3.1.8 asserts that these are in fact the desired GKN conditions

for the cube of the Legendre differential operator. 6

In virtue of Proposition 3.2.2 higher values of n are more easily accessible, as

they are less computationally expensive and the digamma function in the lower right

quadrant is avoided.

The cases where n = 4 and n = 5 are included below to illustrate how this

method can be generalized.

Example. For n = 4 choose the functions P0, . . . , P3 and Q0, . . . , Q3 as candidates for

basis vectors. The relevant matrix can be computed to be:

B4 =



0 16 0 3456

16 0 640 0

0 640 0 6480

3456 0 6480 0


.

This matrix is of particular interest, because it is representative of all cases where

n is even and the basis vectors are chosen to be P0, . . . , Pn−1 and Q0, . . . , Qn−1. In

these cases, the matrix Bn is symmetric.
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The invertibility of B4 immediately reduces to showing that both submatrices 16 3456

640 6480

 and

 16 640

3456 6480


have non-zero determinant. This is trivially true.

Therefore, the GKN conditions P0, . . . , P3 yield a self-adjoint operator and since

all eigenfunctions Pk satisfy these conditions, we obtain the left-definite operator that

is associated with L4. 6

Example. For n = 5 choose the functions P0, . . . , P4 and Q1, . . . , Q5 as candidates for

basis vectors. The relevant matrix can be computed to be:

B5 =



32 0 41472 0 1620000

0 3872 0 355552 0

3872 0 80352 0 2024352

0 80352 0 737792 0

355552 0 737792 0 4220000


.

Again, it can easily be shown that B5 has full rank. 6

Example. Matlab has allowed us to verify that the first n Legendre polynomials are

suitable for Ln when n ≤ 16. Vast stratification in magnitude of matrix entries is

responsible for this early failing of the numerical computations. 6

3.2.2 Necessary Condition and Conjecture

It is clear the methods developed above are powerful, albeit limited to calcula-

tion, and can be expressed in more generality. Apart from increasing n, another way

to generalize stems from choosing a more general set of indices for the Legendre poly-

nomials, and for the Legendre functions of the second kind, as hinted at in Theorem

3.1.6.
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There is a necessary condition for the truncated matrix Bn having full rank

which requires some additional requirements on the indices of both the Legendre

polynomials and the Legendre functions of the second kind.

Proposition 3.2.3. Let Mn define a basis of functions for the space Dn+uDn− when n is

general. Let the choice of functions for this basis be Pj1 , Pj2 , . . . , Pjn and Qk1 , Qk2 , . . . , Qkn.

Define I := {j1, . . . , jn, k1, . . . , kn} be the collection of indices for these functions.

Then I contains n even and n odd elements.

Proof. Assume Mn has full rank, so that Pj1 , Pj2 , . . . , Pjn and Qk1 , Qk2 , . . . , Qkn are

indeed a basis for Dmax modulo Dmin. Without loss of generality, also assume that

there are more even numbers in I than odd numbers. By Proposition 3.2.2, the

Glazman conditions and anti-symmetry of the matrix then completely reduces our

problem to showing that Bn does not have full rank.

Recall that the (i, l)-entry of Bn equals [Pji , Qkl ]|1−1 for 1 ≤ i, l ≤ n and is

given by equation (3.2.6). So, these entries are only nonzero when ji + kl is odd.

Hence, interchange rows of Bn to group the even indices first for the set of Pji ’s, and

interchange columns to group the even indices first for the set of Qkl ’s. This creates

two blocks of entries on the anti-diagonal in the upper right quadrant, where the P

index is even and the Q index is odd, and one where the P index is odd and the Q

index is even. The rank of Bn is the sum of the rank of these two blocks. However,

because there are more even indices than odd ones, neither of these blocks are square,

so the sum of their ranks cannot be equal to n. The means Mn cannot have rank 2n,

which is a contradiction. Therefore, the number of even and odd numbers in the set

I must be equal.

The matrix Bn raises several important questions concerning the rules that are

necessary and/or sufficient on the indices (other than the requirement of Proposition

3.2.3 above) in order to ensure that the Bn has rank n. Unfortunately, the answer
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to this question can only be conjectured currently. Progress in this direction using

theoretical aspects of the setup is shown in the next two sections.

Conjecture 3.2.4. Let Pj1 , Pj2 , . . . , Pjn be any set of n distinct Legendre polynomials,

with n1 odd indices and n2 even indices so that n1 + n2 = n. Then these Legendre

polynomials can be used as GKN conditions to define the n/2 left-definite domain.

In particular, choose any n distinct Legendre functions of the second kind Qk1 , Qk2 , . . . , Qkn

with n2 odd indices and n1 even indices. Then together these 2n functions constitute

a basis of the space Dn+ uDn−.

Immediate inspiration for the conjecture stems from the n = 2 case.

Example. Consider the n = 2 case for simplicity. If one odd index and one even index

are chosen for the Pj’s (say Pj and Pk with even j and odd k) then the claim follows:

B2 only has entries on the anti-diagonal and hence is rank 2. 6

Example. Now, again for n = 2, assume that both chosen indices are odd, so that

both of the indices for the Qk’s are even. As a further simplification, choose Q0 and

Q2. The matrix of interest is

B2 =

ϕj0 ϕj2

ϕk0 ϕk2

 ,

where j and k are both odd.

To reduce to row echelon form, the row operation necessary is αϕj0 + ϕk0 = 0

so that α = −ϕk0/ϕj0. This changes ϕk2 to be ϕ̃k2 = αϕj2 +ϕk2. This can be written

out explicitly to be

ϕ̃k2 =((k2(k + 1)2)− 1)(j2(j + 1)2 − 36)(j2 + j)(−k2 − k + 6)

− ((j2(j + 1)2)− 1)(k2(k + 1)2 − 36)(k2 + k)(−j2 − j + 6).

Mathematica shows that ϕ̃k2 = 0 has no solutions for distinct j and k, where both are

odd and positive. A similar equation is relevant for the case where both j and k are
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even and Q1 and Q3 are chosen as the paired basis vectors. Mathematica similarly

shows it is not possible to get j and k to be distinct, even and positive. This shows

that any 2 distinct indices for the Legendre polynomials will be sufficient to define

the first left-definite domain via GKN conditions. 6

There is further evidence that the conjecture is true.

Example. Let n = 4 and choose the functions P17, P42, P49, P125 and Q24, Q82, Q97, Q178

as candidates for the basis vectors. The relevant matrix can be computed to be:

B4 =



821988432 660210828928 0 65319097828480

0 0 2118187203328 0

38811250000 968624405632 0 70078111267456

8123415750000 13280257143232 0 120291674577856


.

It is not hard to see that this matrix possesses full rank. 6

Unfortunately, the complexity of the matrix operations and higher values for n

mean verifying that solutions are not of the desired form is computationally expensive.

However, to add a little more weight to the conjecture, the above form can be easily

adapted to the n = 3, 4 cases where there are two even or two odd choices of indices

of the Pj’s. In conclusion the assertion in the conjecture about the choice of indices

for the Pj’s is verified using Mathematica for n = 2, and it is true in special cases

when n = 3 and n = 4.

3.3 Eigenfunctions in General Left-Definite Theory

The following theorems apply to general left-definite settings so it is imperative

to clarify some of the subtler points of abstraction. It should be understood that the

differential expression that is being generated from left-definite theory is not changing

under the classical extension theory, only that the minimal domain is being augmented

to include more functions and become self-adjoint. Specifically, Lmin and L possess

domains Dmin and DL respectively, but both operate on functions using `[ · ]. Also,
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recall that an operator defined by left-definite theory means that it is generated by

composing self-adjoint differential operators with themselves to create a Hilbert scale

of operators. The domains of these operators shrink as the number of compositions

increase. For more details refer to Section 2.3.

The following results play the role of an indicator for identifying left-definite

domains in terms of GKN conditions.

Theorem 3.3.1. Let L be a self-adjoint operator defined by left-definite theory on

L2[(a, b), w] with domain DL (which is a restriction of the maximal domain Dmax)

that includes a complete orthogonal system of eigenfunctions. Enumerate the eigen-

functions as {Pk}∞k=0. Furthermore, let L be an extension of the minimal (symmetric,

closed) operator Lmin with domain Dmin, where L and Lmin operate on their respective

domains by `[ · ], and Lmin has deficiency indices (m,m).

Then, the GKN conditions for the self-adjoint operator L are given by some

{Pk1 , . . . , Pkm}.

Remark. It was pointed out to us by one of the reviewers that this result probably

does not critically hinge on the left-definite setting. We expect the conclusions to be

true for any self-adjoint operator with a complete system of eigenfunctions.

Proof. The case m = 0 is trivial, since then Lmin = L = Lmax. Let m ≥ 1.

The main work lies in showing that some of the eigenfunctions yield appropriate

choices for w1, . . . , wm from the perspective of Theorem 2.4.9 (the GKN1 Theorem).

That is, we need to show that there are m members {Pk1 , . . . , Pkm} of the collection

{Pk}∞k=0, which both satisfy the Glazman symmetry conditions (2.4.4) and are linearly

independent modulo the minimal domain Dmin, see Definition 2.4.8.

First, we show that all possible choices of {Pk1 , . . . , Pkm} satisfy the Glaz-

man symmetry conditions. Recall that an application of the Green’s formula for

the sesquilinear form yields [Pi, Pj]
∣∣b
a

= 0 for i, j ∈ N0, see equation (3.1.4).
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Next, we show that there exist functions {Pk1 , . . . , Pkm} that are linearly in-

dependent modulo Dmin. Part (2) of Lemma 3.1.3 states that the maximal domain

decomposes orthogonally with respect to graph norm into Dmax = Dmin⊕A
D+⊕A

D−.

Define the auxiliary functions {P̃k}∞k=0 to be the orthogonal projection (in accordance

with the graph norm) of the Pk’s onto D+ ⊕A
D−.

Recall that Lmin has defect indices (m,m) and that the subspaces satisfy

Dmin < DL < Dmax.

Since L is self-adjoint, we have that DL 	A
Dmin is m dimensional. The projection

is orthogonal, so {P̃k}∞k=0 spans an m dimensional subspace of D+ ⊕A
D−, the clo-

sure being taken with respect to the graph norm. Indeed, assume this dimension

was strictly less than m. The orthogonality of the projection also means that our

assumption would imply that the closure in graph norm of span{Pk}∞k=0 is a proper

subspace of DL. Lemma 3.1.4 says the graph norm and the norm in the corresponding

left-definite space are equivalent. However, Theorem 2.3.4 states that DL is equal to

the closure in the norm induced in the second left-definite space associated with the

pair (H,A) = (L2[(a, b), w],L). This is a contradiction, so the {P̃k}∞k=0 span an m

dimensional subspace of D+ ⊕A
D−.

This means that the problem is now finite dimensional! In particular, the closure

of spans is obvious. Also, there are m functions {P̃ki}mi=1 which can be completed to a

basis {P̃k1 , . . . , P̃km , h1, . . . , hm} of D+ ⊕A
D−. Therefore, the functions {P̃ki}mi=1 are

linear independent modulo Dmin.

The definition of P̃k implies Pk − P̃k ∈ Dmin. Hence, when viewed in the

quotient space Dmax 	Dmin, the projection P̃k belongs to the same equivalence class

as the corresponding eigenfunction Pk, [P̃k] = [Pk]. Invoking the definition of linear

independence moduloDmin again, the eigenfunctions {Pki}mi=1 are linearly independent

modulo the minimal domain.

58



Therefore, there are m members of {Pki}mi=1 which define a self-adjoint extension

L̃ of Lmin in the above fashion, via the GKN1 Theorem (Theorem 2.4.9). It remains

to verify that L̃ = L. From equation (3.1.4) we immediately conclude that all of the

{Pk}∞k=0 belong to the domain DL̃. Thus L ⊆ L̃ ⊆ L̃∗ ⊆ L∗, and it is known that

L = L∗.

This theorem relied heavily on the GKN1 Theorem and began with a self-

adjoint operator generated by left-definite theory to define the boundary conditions

imposed to create the left-definite space. However, the GKN theory goes both ways to

create a complete framework of both necessary and sufficient conditions. The similar

conditions of the GKN2 Theorem allow another statement to be made.

Corollary 3.3.2. Let L be as in Theorem 3.3.1. Then the 2nth (for n ∈ N) left-definite

space generated by the operator L will have deficiency indices (nm, nm). Further, the

GKN conditions for the 2nth left-definite space are given by some {Pk1 , . . . , Pknm}.

Proof. The 2nth left-definite space exists and is unique for the operator L. It also

possesses the complete set of orthogonal eigenfunctions that are in the domain of L,

and their spectra coincide. Glazman symmetry conditions and the linear indepen-

dence of {Pk1 , . . . , Pknm} modulo the minimal domain follow by the same argument

as the previous theorem. Indices matching the 2nth left-definite space with the nth

power composition of the operator follows from Corollary 2.3.3. The result follows by

the GKN2 Theorem.

This corollary provides a complete answer to the question of which functions

should be considered as GKN conditions to create left-definite spaces. The only

further improvement would be to explicitly say which eigenfunctions were sufficient

for this purpose. The next section seeks to answer this question when the operator

stems from a Sturm–Liouville differential expression.
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3.4 Left-Definite Domains of Sturm–Liouville Operators

Let Ln be a self-adjoint operator defined by left-definite theory on L2[(a, b), w]

with domain DnL that includes a complete system of orthogonal eigenfunctions. Let

Ln operate on its domain via `n[ · ], a differential operator of order 2n, where n ∈ N,

generated by composing a Sturm–Liouville differential operator with itself n times.

Furthermore, let Ln be an extension of the minimal operator Lnmin, which has defi-

ciency indices (m,m).

As we are working with coupled boundary conditions for the nth power of an

operator, it suffices to consider m = n. Let us explain why. The case where m = n

corresponds to both endpoints of ` being limit circle. If only one endpoint is limit

point, then one GKN condition is still necessary for `. This GKN condition then

imposes a restriction at the limit circle endpoint, while it is just satisfied trivially on

the limit point side by all functions in the maximal domain. If both endpoints are limit

point, then no boundary conditions are needed. In that case Lmin is essentially self-

adjoint. Therefore, we assume without loss of generality that the deficiency indices

are (n, n) in this section. A more in depth discussion can be found in [9, 54, 65–67]

and Subsection 2.2.1.

Enumerate the orthogonal eigenfunctions as {Pk}∞k=0. Define the following do-

mains:

An :=
{
f ∈ Dnmax

∣∣∣ f, f ′, . . . , f (2n−1) ∈ ACloc(a, b); (p(x))nf (2n) ∈ L2[(a, b), w]
}
,

Bn :=

{
f ∈ Dnmax

∣∣∣ [f, Pj]n

∣∣∣b
a

= 0 for j = 0, 1, . . . , n− 1

}
,

Cn :=

{
f ∈ Dnmax

∣∣∣ [f, Pj]n

∣∣∣b
a

= 0 for some n distinct j ∈ N
}
, and

Fn :=

{
f ∈ Dnmax

∣∣∣ (aj(x)f (j)(x))(j−1)
∣∣∣b
a

= 0 for j = 1, 2, . . . , n

}
.

The p(x) above is from the standard definition of a Sturm-Liouville differential

operator, given in equation (2.2.2), and the aj(x)’s are from the Lagrangian symmetric

form of the operator in (2.2.3). These domains seem very different, yet progress has
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already been made in this paper and elsewhere on the equality of these domains. The

nth left-definite domain, DnL is found to be equal to An for the Legendre differential

operator in [52, Section 7.5]. A general form for DnL is missing from the literature, so

we will assume it is equal to An for the rest of this section. Indeed, the main condition

of An simply involves the term associated with f (2n) when `n[f ] is decomposed into

a sum of derivatives of f . There is a proof of An ⊆ Fn in [52] for the special case

where the differential operator `n[ · ] denotes the nth composite power of the Legendre

differential expression and the eigenfunctions {Pk}∞k=0 are the Legendre polynomials.

This scenario for small n was discussed in Section 3.2. The conditions in Fn are

particularly significant as they represent easily testable conditions that are not in the

GKN format.

In Section 3.3 it was shown that by a proper re-enumeration of the eigenfunc-

tions {Pk}∞k=0, we have An = Bn. There we also proved An = Bn = Cn for n=2 in

the Legendre setting (see the first example after Conjecture 3.2.4). However, a proof

of the general n case for An = Bn = Cn is elusive at this stage. It is obvious that

Bn ⊂ Cn.

Conjecture 3.4.1. Let Ln be a self-adjoint operator defined by left-definite theory on

L2[(a, b), w] with domain DnL that includes a complete system of orthogonal polynomial

eigenfunctions, that is, we use DnL = An. Let Ln operate on its domain via `n[ · ],

a differential operator of order 2n, where n ∈ N, generated by composing a Sturm–

Liouville differential operator with itself n times. Furthermore, let Ln be an extension

of the minimal operator Lnmin, which has deficiency indices (n, n). Then An = Bn =

Cn = Fn = DnL ∀n ∈ N.

This conjecture extends one made in [52, Chapter 9] by the broad conditions in

Cn. Here we prove some subcases.
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Theorem 3.4.2. Under the hypotheses of Conjecture 3.4.1, and the assumption that

An = Bn, we have Bn ⊆ Fn ∀n ∈ N.

The proof utilizes an explicit form of the sesquilinear form, as opposed to the

one given in equation (2.4.1). This representation allows for more precision in defin-

ing which limits are disappearing and which are remaining as we approach the end-

points of (a, b). For many of the Sturm–Liouville operators of interest the expression

q(x)/w(x) is a constant, and we have

[f, g]n(x) =
n∑
k=1

k∑
j=1

(−1)k+j
{

(ak(x)g(k)(x))(k−j)f (j−1)(x) (3.4.1)

− (ak(x)f (k)(x)(k−j))g(j−1)(x)
}
,

where the ak(x)’s are again from the Lagrangian symmetric form of the differential

operator (2.2.3). For a reference in the Legendre setting, see e.g. [51, Section 10].

One of the reviewers pointed out to us that many other examples such as Excep-

tional Orthogonal Polynomials will also satisfy the hypotheses of Conjecture 3.4.1

and Theorem 3.4.2.

Proof of Theorem 3.4.2. We proceed by induction on n. The base case is proven by

a simple application of Green’s Formula for the sesquilinear form. Let f ∈ B1. We

compute

0 = [f, P0]1|ba = [f, 1]1|ba = 〈`[f ], 1〉L2[(a,b),w] − 〈f, `[1]〉L2[(a,b),w]

=

∫ b

a

(
1

w(x)
[p(x)f ′(x)]′

)
w(x)dx− 0 = lim

x→b−
(p(x)f ′(x))− lim

x→a+
(p(x)f ′(x)),

where the term involving q cancels out (as it is added and then subtracted).

Assume that Bn−1 ⊆ Fn−1 as the inductive hypothesis. Corollary 2.3.3 shows

that

DnL = V2n = An = Bn ⊂ Bn−1 ⊆ Fn−1.
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The limits in the description of Bn−1 exist, and are finite, by Theorem 2.4.4. The

inclusion Bn ⊂ Bn−1 can be shown using Green’s formula. Consequently, f ∈ Bn

implies that limx→b−(ai(x)f (i)(x))(i−1)−limx→a+(ai(x)f (i)(x))(i−1) = 0, ∀i = 1, . . . , n−

1.

Furthermore, the definition of Bn includes the condition [f, P0]n|ba = [f, 1]n|ba =

0. Hence, the only nonzero terms in equation (3.4.1) are when j = 1, yielding n

terms. The first n − 1 of these terms are precisely those given in the definition of

Fn−1, explicitly:

0 = [f, 1]n|ba = lim
x→b−

[−a1f ′ + (a2f
′′)′ − · · ·+ (−1)n(anf

(n))(n−1)]

− lim
x→a+

[−a1f ′ + (a2f
′′)′ − · · ·+ (−1)n(anf

(n))(n−1)]

= lim
x→b−

(anf
(n))(n−1) − lim

x→a+
(anf

(n))(n−1).

Hence also the last condition in Fn is satisfied, and thus f ∈ Fn. The claim that

Bn ⊆ Fn follows by induction on n.

In the induction step, also, any term involving q cancels out.

For the reverse inclusion, the proof will involve working with the sesquilinear

form explicitly. Hence, the differences between Sturm–Liouville operators arise pri-

marily in the definition of the ak(x)’s in equation (3.4.1). The following theorem is

formulated for the Legendre operator.

Theorem 3.4.3. Let the hypotheses of Conjecture 3.4.1 hold, where `n is the clas-

sical Legendre differential expression given in (3.2.1) Assume that for all f ∈ Fn,

f ′′, . . . , f (2n−2) ∈ L2[(−1, 1), dx]. Then we have Fn ⊆ Cn ⊆ Bn ∀n ∈ N.

Proof. Fix n ∈ N. The differential expression `n can be written in Lagrangian sym-

metric form as

`n[f ](x) =
n∑
k=1

(−1)k
{
n

k

}
2

((1− x2)kf (k)(x))(k), (3.4.2)
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where
{
n
k

}
2

denote the Legendre–Stirling numbers of the second kind, see [6] for more.

Hence, ak(x) = C(n, k)(1−x2)k, where C(n, k) is a constant. Deconstruct the explicit

expression for [f, Ps]n|1−1 into the following:

LHS =
n∑
k=1

k∑
j=1

(−1)k+j[ak(x)P (k)
s (x)](k−j)f (j−1)(x),

RHS =
n∑
k=1

k∑
j=1

(−1)k+j+1[ak(x)f (k)(x)](k−j)P (j−1)
s (x).

Assume that s ≥ n so that all terms are nonzero. The case where s < n will

immediately follow. The assumption that f ∈ Fn means that

lim
x→1−

[ak(x)f (k)(x)](k−1) − lim
x→−1+

[ak(x)f (k)(x)](k−1) = 0,

for k = 1, . . . , n, so terms of this form in the RHS will not be of concern. At a single

endpoint, consider limits of the form

lim
x→−1+(or 1−)

[ak(x)f (k)(x)](k−2),

for k = 2, . . . , n. Assume c2 6= 0. Without loss of generality, assume that at the

endpoint 1 the above limit is equal to c2 > 0 and is finite. Define r2 := c2/2. Then

r2 < lim
x→1−

[ak(x)f (k)(x)](k−2) = lim
x→1−

(
k−2∑
i=0

(
k − 2

i

)
a
(k−2−i)
k (x)f (k+i)(x)

)
.

Recall that ak(x) = C(n, k)(1−x2)k, so each term on the right hand side will possess

a factor of (1− x2)2 after differentiation. Dividing both sides by this factor yields

lim
x→1−

r2
(1− x2)2

< lim
x→1−

(
k−2∑
i=0

(
k − 2

i

)
ã
(k−2−i)
k (x)f (k+i)(x)

)
=: S2, (3.4.3)

where we use

ã
(k−2−i)
k (x) =

a
(k−2−i)
k (x)

(1− x2)2
.

Note k ≥ 2 necessarily here. Hence, the relevant derivatives of f(x) in S2 are

f ′′(x), . . . , f (n−2)(x), which are all in L2[(−1, 1), dx] by assumption. However, the
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functions (1− x2)k ∈ L2[(−1, 1), dx] for all k ∈ N0, and so are its derivatives because

they are all polynomials. Hence, each summand in S2 is in L1[(−1, 1), dx] by the

Cauchy–Schwarz inequality, and the finite sum S2 is then also in L1[(−1, 1), dx]. It is

apparent that

lim
x→1−

r2
(1− x2)2

=∞.

The comparison test thus yields a contradiction to the fact that S2 ∈ L1[(−1, 1), dx].

As c2 6= 0 was arbitrary, we conclude

lim
x→1−

[ak(x)f (k)(x)](k−2) = 0.

A similar argument shows that the same result at the endpoint −1. The method

outlined above can be used to show mutatis mutandis that

lim
x→1−

[ak(x)f (k)](k−j) = 0

for 2 < j ≤ n. The eigenfunctions Ps(x) are assumed to be polynomials so we may

write Ps(x) =
∑s

h=0 αhx
h. Then the RHS can be broken down into a power of x times

the above limit for each value of k, j < m. Basic limit laws say that, for h ∈ N,

lim
x→1−

[ak(x)f (k)](k−j)Ps(x) =
s∑

h=0

(
lim
x→1−

αhx
h[ak(x)f (k)](k−j)

)
= 0,

by splitting up the product and using the fact that −1 and 1 are finite endpoints.

This means

RHS =
n∑
k=1

k∑
j=1

(−1)k+j+1[ak(x)f (k)(x)](k−j)P (j−1)
s (x) = 0

for any s ∈ N. Likewise,

LHS =
n∑
k=1

k∑
j=1

(−1)k+j[ak(x)P (k)
s (x)](k−j)f (j−1)(x) = 0.

The theorem now follows, as this collectively shows [f, Ps]n|1−1 = 0, for s ∈ N.

The method of proof developed above applies to more than just the Legendre

differential expression, with minimal alterations.
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Theorem 3.4.4. Let the hypotheses of Conjecture 3.4.1 hold, where `n is a classical

Jacobi or Laguerre differential expression with α, β > −1 or α > −1 respectively.

Assume that for all f ∈ Fn, f ′′, . . . , f (2n−2) ∈ L2[(a, b), dx]. Then we have Fn ⊆ Cn ⊆

Bn ∀n ∈ N.

Proof. Fix n ∈ N. The Jacobi differential expression `nJ can be written in Lagrangian

symmetric form as

`nJ [f ](x) =
1

(1− x)α(1 + x)β

n∑
k=1

(−1)k(C(n, k, α, β)(1− x)α+k(1 + x)β+kf (k)(x))(k),

where C(n, k, α, β) is a constant, and α, β > −1. The above proof carries through

the same as above, as the term divided through in analogy to equation (3.4.3) will be

(1− x)α+2(1 + x)β+2, and has adequate singularities at the endpoints.

The Laguerre differential expression `nL can be written in Lagrangian symmetric

form as

`nL[f ](x) =
1

xαe−x

n∑
k=1

(−1)k(C(n, k, α)xα+ke−xf (k)(x))(k),

where C(n, k, α) is a constant, and α > −1. The term divided through in analogy to

equation (3.4.3) will be xα+2, and has an adequate singularity at 0.

More details concerning the setup and properties of these differential equations

can be found in [20,23].

This effectively covers most of the classical differential equations which possess

complete sets of orthogonal polynomial eigenfunctions. The Hermite equation was

not discussed because it does not require boundary conditions of the above forms, as

it is limit-point at both −∞ and ∞.

The astute reader may have noticed that the explicit conditions of Fn did not

play a large part in the above proofs. Indeed, the limit conditions in the definition of

Fn are necessary to prove the assumption that f ′′, . . . , f (2n−2) ∈ L2[(a, b), dx], which

was essential. This implication can be accomplished using an appropriate choice of
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the vectors ψ and ϕ in two applications of the so-called CHEL Theorem [52, Theorem

8.7], and subtracting them to form coupled boundary conditions. The limit conditions

of Fn arise as boundary terms from integrating `n in Lagrangian symmetric form, and

can be used to show certain functions are in L2[(a, b), dx].

It is also important to note that the specific choice of limits in Fn cannot be

altered. Together, they ensure that [f, P0]n|ba = [f, 1]n|ba = 0. The function 1 also

happens to be included in every classical orthogonal polynomial sequence so it is

particularly applicable.

Finally, with these few extra assumptions, Conjecture 3.4.1 has been shown.

Theorem 3.4.5. Assume the hypotheses of Conjecture 3.4.1, where `n is a classical

Jacobi or Laguerre differential expression, with α, β > −1 or α > −1 respectively.

Assume An = Bn and that f ∈ Fn implies that f ′′, . . . , f (2n−2) ∈ L2[(a, b), dx]. Then

An = Bn = Cn = Fn = DnL ∀n ∈ N.
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CHAPTER FOUR

Iterated Perturbations and Anderson Localization

This chapter partially follows the in-progress manuscript [26], where countably

many rank-one perturbations are successively applied to a self-adjoint operator, T ,

with only absolutely continuous spectrum on a separable Hilbert space H. Specif-

ically, we utilize the Aronszajn–Donoghue theory to determine that the absolutely

continuous spectrum decays with each perturbation, and explicitly compute formulas

describing how the initial spectrum changes after an infinite number of such perturba-

tions. This construction involves a curious choice of the perturbation vector at each

step in order to control properties of the perturbed operators in terms of the initial

operator. In the limiting case, the infinitely perturbed operator is very similar to an

Anderson-type Hamiltonian and can be compared to the discrete random Schrödinger

operator.

In 1958 P.W. Anderson (Chapter 1, [5]) suggested that sufficiently large im-

purities in a semi-conductor could lead to spatial localization of electrons, called

Anderson localization. The field has grown into a rich theory and is studied by both

the physics and the mathematics community. There are many well-studied and fa-

mous open problems in this research area, one of which is the Anderson localization

conjecture for weak disorder [5,15,69] (or the delocalization conjecture [45]). Here, the

existence of extended states is defined as non-trivial absolutely continuous spectrum,

sometimes referred to as spectral delocalization, in the Anderson-type Hamiltonian.

Spectral localization thus refers to an Anderson-type Hamiltonian with trivial abso-

lutely continuous spectrum. However, there are many other definitions of extended

states throughout the literature. Section 2.5 describes the setup of Anderson-type

Hamiltonians and Kolmogorov’s 0-1 Law.
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A primary development is the explicit calculation of the remaining absolutely

continuous spectrum after an infinite number of rank-one perturbations. As suggested

by Example 4.1.1 below, results for even rank-two perturbations are much more chal-

lenging to produce and tend to be less explicit than those for rank-one perturbations.

We provide results with Rademacher potential to represent a worst-case scenario for

the choice of the sequence of perturbations.

There are several differences between the construction in the current project

and classical Anderson-type Hamiltonians:

(1) The iterative construction requires knowledge of the previous perturbation

vector, ϕn−1, to choose the next perturbation vector, ϕn. This very dif-

ferent from Anderson-type Hamiltonians, where the ϕj’s are a sequence of

unit vectors chosen a priori, independently from the particular realization of

the Anderson-type Hamiltonian. While our limiting operator is very similar

to an Anderson-type Hamiltonian, it cannot be explicitly classified as such.

Probability measures can be handled in the calculations when Rademacher

potentials are considered. As these cases are closer to Anderson-type Hamil-

tonians in this regard, they are emphasized in Subsection 4.3.3.

(2) We start on the spectral representation side of the operator. Hence, all of

Lebesgue theory can be utilized as a tool, and rank-one perturbation theory

becomes more concrete. These tools allow the iterative introduction of in-

finitely many rank-one perturbations, and the resulting operator is similar to

an Anderson-type Hamiltonian.

(3) The construction yields an operator of spectral multiplicity one. A general

Anderson-type Hamiltonian does not necessarily possess spectral multiplicity

one.

The main tools of perturbation theory from Section 2.1 are utilized in Section

4.1, where the majority of preparatory calculations take place, including applying
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Aronszajn–Donoghue theory to the first perturbation. Beginning with a measure

that is constant over the interval [−1, 1], Aronszajn–Donoghue theory says that a

perturbation creates a point mass outside of [−1, 1] and the remaining absolutely

continuous spectrum is reduced accordingly. The precise strength of the point mass

is calculated, and although it is possible to explicitly find a formula for the absolutely

continuous spectral measure, it is avoided here for simplicity. Subsection 4.1.1 repre-

sents a comparison for the level of difficulty involved in computing even a rank-two

perturbation. Recent developments in finite rank perturbations can be found, for

example, in [36, 44,46].

Section 4.2 explains the techniques involved in the iterative construction. Specif-

ically, choosing the second perturbation vector ϕ̃2 allows us to pass via unitary equiva-

lence from the often byzantine a.c. spectral measure on [−1, 1] to an auxiliary measure

that is simply a constant on [−1, 1] again. We are mainly concerned with the total

mass (or total variation) of the a.c. part of this auxiliary measure. This auxiliary

measure is comparable to the beginning measure and is unchanged through the spec-

tral theorem and the unitary operator. This unitary operator and choice of the vector

ϕ̃2 return us to the situation at the beginning of Section 4.1, with a constant measure

on [−1, 1].

Section 4.3 iterates this utilization of vector choices and unitary operators along

with the perturbations. New perturbations are orthogonal to the point masses created

from previous ones and therefore can be avoided; this allows us to focus on the

absolutely continuous spectrum. Formulas that are similar to those from Section

4.2 are produced and the process can effectively be iterated. The final formulas

obtained from iteration are found in Subsections 4.3.1 and 4.3.2. Subsection 4.3.3

then draws conclusions from these formulas. Specifically, the constructed operator

with Rademacher potential, where the α’s are chosen at the endpoints of the given
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interval, is found to have spectral localization. These formulas are quite simple and

shed light onto the recursive nature of the process.

Section 4.4 attempts to escape the requirement of the previous construction of

orthogonal perturbation vectors, and obtains results for how much absolutely contin-

uous spectrum can be destroyed via a single rank-one perturbation. These estimates

are upper-bounds and require knowledge of how the perturbation vector interacts

with the spectral measure. The goal is to bring the constructed operator closer to

being an Anderson-type Hamiltonian by allowing more freedom for the choices of the

vectors. Unfortunately, the estimates obtained are not sharp enough to iterate using

the devised methods and further refinement is still required. However, the estimates

are the first known of their kind for general perturbation theory and are of inter-

est for those purposes as well. The methods used rely on an intimate knowledge of

Aronszajn–Donoghue theory and the integral transforms involved within.

4.1 A First Perturbation

Consider a self-adjoint operator T on a separable Hilbert space H. Without

loss of generality, it is assumed that T is cyclic with cyclic vector ϕ, i.e. satisfies

equation (2.1.2). The formal expression for the rank-one perturbation of the operator

T is written as

Hα1 = T + α1〈 · , ϕ〉Hϕ for α1 ∈ R,

as described in Section 2.1. The spectral theorem can now be applied to obtain the

spectral representation

H̃α1
= Mt + α1〈 · , ϕ̃1〉L2(µ̃0)ϕ̃1 on L2(µ̃0), (4.1.1)

where the vector ϕ̃1 ≡ constant. The spectral measure of the unperturbed operator

T is chosen to be

dµ̃0 :=
1

2
χ
[−1,1]dx. (4.1.2)
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This measure is, without loss of generality, chosen as an example of the general process

only to simplify calculations. Indeed, one of the main advances from this Chapter is

that if µ̃0 is absolutely continuous and given by some other weight function on [−1, 1],

the process from Section 4.2 can be applied to yield a unitarily equivalent constant

measure on [−1, 1] instead. Also, without loss of generality we assume ϕ̃1 has norm

1, so that

ϕ̃1 ≡ 1.

It is now necessary to introduce some manner of comparing the strength of

spectral measures in order to track their overall growth or decay as more rank-one

perturbations are applied. For this purpose, we choose to study the norm, or total

mass, of the absolutely continuous part of the produced spectral measures. The norm

of a measure η over the real line will be denoted by

‖η‖ :=

∫
R
dη(t).

These initial assumptions have been set up so that ‖µ̃0‖ = 1 by construction. The

perturbed operator can be thoroughly examined using Aronszajn–Donoghue Theory,

specifically Theorem 2.1.2. Most of the final results will come by generalizing the

following computations and making specific choices of the perturbation vectors and

unitary operators.

Lemma 4.1.1. Let H̃α1 and µ̃0 be given by Equations (4.1.1) and (4.1.2) respectively.

If α1 6= 0, then the following statements hold:

(1) H̃α1
has an eigenvalue at

xα1
:=
−1− e2/α1

1− e2/α1
,

Furthermore, the eigenvalue xα1
falls outside of the interval [−1, 1], regardless

of the choice of α1.
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(2) Let µα1
be the spectral measure of H̃α1

. Then the weight of the created eigen-

value is

µα1
{xα1
} =

4e2/α1

α2
1(e

2/α1 − 1)2
.

Proof. (1) Begin by observing that for all x 6∈ [−1, 1] we have

G(x) =

∫ 1

−1

dµ̃0(λ)

(λ− x)2
<∞.

Theorem 2.1.2 then says that

H̃α1
has an eigenvalue at x 6∈ [−1, 1] ⇐⇒ − 1

α1

= F(x+ i0),

where F (z) =

∫
R

dµ̃0(λ)

λ− z
. The equation on the right side of the implication is now

made explicit for x /∈ [−1, 1] as

− 1

α1

=

∫
R

dµ̃0(λ)

λ− x
=

1

2

∫ 1

−1

dλ

λ− x
=

1

2
ln

(
1− x
−1− x

)
The solution to the previous equation for x depends on α1 and will be denoted as

xα1 :=
−1− e2/α1

1− e2/α1
.

In particular, xα1 < −1 for α1 < 0, while xα1 > 1 for α1 > 0.

(2) Let µα1
denote the spectral measure of H̃α1

. The mass of the created

eigenvalue is now given by Theorem 2.1.2:

µα1
{xα1
} =

1

α2
1G(xα1

)
.

The value of the integral transform in the denominator can be calculated as

G(xα1
) =

1

2

∫ 1

−1

dλ

(λ− xα1
)2

= −1

2

[
1

1− xα1

+
1

1 + xα1

]
.

Inserting the value of xα1
given in (1) yields 1/G(xα1

) =
4e2/α1

(e2/α1 − 1)2
. Finally,

µα1
{xα1
} =

4e2/α1

α2
1(e

2/α1 − 1)2
.

This completes the proof.
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4.1.1 Motivational Rank-Two Example

In order to grasp the difficulty of computing the absolutely continuous part of

the spectrum for even a rank–two perturbation, without using the methods developed

in this Chapter, we offer a illustrative example. Without loss of generality we consider

this rank-two problem in the spectral representation with respect to one of the two

perturbation vectors. That is, let us take the spectral measure of the unperturbed

self-adjoint operator T to be (as above) dµ := 1
2
χ
[−1,1]dx, and consider the normalized

vectors ϕ1, ϕ2 ∈ L2(µ).

The rank-two perturbation is then written as

Hα,β = Mt + α〈 · , ϕ1〉L2(µ)ϕ1 + β〈 · , ϕ2〉L2(µ)ϕ2 on L2(µ).

Aronszajn–Donoghue theory can be applied to compute the absolutely continuous

part of the rank-one perturbation Hα,0:

d[(µα,0)ac](x) =
1

2

{
1 + α2 + α ln

( x+ 1

−x+ 1

)
+
(α

4

)2 [
ln
( x+ 1

−x+ 1

)]2}−1
dx (4.1.3)

for x ∈ [−1, 1], and (µα,0)ac ≡ 0 outside [−1, 1]. The introduction of the second

rank-one perturbation to the problem leaves the new spectral measure quite expen-

sive to compute, even with the use of Mathematica. Indeed, Aronszajn–Donoghue

theory will require integration with respect to µα,0. As a consequence, computing

the eigenvalues under such an iterative rank-two perturbation seems practically un-

feasible. The introduction of further perturbations would only serve to complicate

matters further.

4.2 Constructing the Iterated Operator

This section explains the heart of our construction by describing how a rank-one

perturbation is extended to a rank-two perturbation. The choice of the direction of

the second perturbation, ϕ2, plays a key role and allows us to calculate the norm of the

remaining absolutely continuous part of the spectrum. The difficulties encountered
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in the previous example are bypassed by applying a unitary transformation which

exploits the choice of ϕ2. After the transformation, computations from Aronszajn–

Donoghue theory again resemble those of Lemma 4.1.1.

Recall the rank-one perturbation setup discussed in Section 4.1 above. Namely,

H̃α1
= Mt + α1〈 · , ϕ̃1〉L2(µ̃0)ϕ̃1 on L2(µ̃0) where dµ̃0 :=

1

2
χ
[−1,1]dx and ϕ̃1 ≡ 1.

Aronszajn–Donoghue Theory (Theorem 2.1.2) has provided us with informa-

tion about the spectral measure, µα1
, of the perturbed operator H̃α1

in the previous

Section. Furthermore, we know that the support of the absolutely continuous part of

the measure is still equal to [−1, 1] due to the Kato-Rosenblum Theorem 2.1.4. The

operator H̃α1
is represented in the space L2(µα1

) as multiplication by the independent

variable due to the spectral theorem.

By a slight abuse of notation, for future iterations we will still write Mt for

this operator to avoid an infinite sequence of independent variables. In particular, we

have the unitary equivalence between operators(
H̃α1

on L2(µ̃0)
)
∼

(
Mt on L2(µα1

)
)
.

Let Vα1
: L2(µ̃0)→ L2(µα1

) denote this intertwining unitary operator such that

Vα1
H̃α1

= MtVα1
and Vα1

ϕ̃1 ≡ constant.

Of course, the value of the constant can be determined by normalizing Vα1
ϕ̃1. The

operator Vα1
is given explicitly in the Representation Theorem 2.1.1 [47]. Hence, by

construction we have that Vα1
1 = 1, where the 1 vectors are understood to be in the

appropriate L2 spaces, L2(µ̃0) and L2(µα1
) respectively. Indeed, the unitary property

of Vα1 provides the following string of equalities:

‖µ̃0‖ =

∫
R
dµ̃0(t) =

∫
R
1dµ̃0(t) = ‖1‖

L2(µ̃0)
= ‖Vα1

1‖
L2(µα1 )

= ‖1‖
L2(µα1 )

=

∫
R
1dµα1(t) =

∫
R
dµα1(t) = ‖µα1‖.
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Remark. Researchers experienced in the field may feel this previous calculation to be

contradictory to results in Clark theory, the basis of unitary rank-one perturbation

theory. However, a central theme discovered while producing these results is that

self-adjoint theory and unitary theory are quite different. For instance, attempting to

move this calculation into the unitary perturbation case with the Cayley Transform

involves an adjustment for the perturbation vector which causes some cancellations,

see [48, Lemma 5.1]. Furthermore, the condition in the Representation Theorem

that requires Vα1
1 = 1 is believed to be equivalent to the statement that θ(0) = 0,

where θ is the generating characteristic function for the Clark measures. Hence, a

contradiction with a result similar to [14, Prop. 9.1.8] is not created.

The second rank-one perturbation is now added in the direction of some par-

ticular function ϕ2 ∈ H. The task will now be to consider

Hα2
= Mt + α2〈 · , ϕ2〉L2(µα1

)
ϕ2 on L2(µα1

). (4.2.1)

The following proposition encapsulates the main idea of this work: the choice of

ϕ2 and of the unitary operator U1 which passes the spectral calculations from L2(µα1)

to an auxiliary space denoted by L2(µ̃α1). The problem is thus simplified to one that

resembles the setup in Section 4.1.

Proposition 4.2.1. The rank-two perturbation H̃α2
can be recast as

H̃α2
= Mt + α2〈 · , ϕ̃2〉L2(µ̃α1 )

ϕ̃2 on L2(µ̃α1). (4.2.2)

By a choice of a unit vector ϕ2 ∈ L2(µα1
) and a unitary multiplication operator U1,

we can arrange for

(1) d(µ̃α1)ac = τ1χ[−1,1]dx for some constant τ1,

(2) ϕ2 ⊥ L2[(µα1
)pp], and

(3) ϕ2 ⊥ 1 (recall that Vα1
ϕ̃1 ≡ constant, so that ϕ2 ⊥ Vα1

ϕ̃1).
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Before we prove this proposition we observe that the mass of the absolutely

continuous part of the first spectral measure was 1, i.e. ‖(µ̃0)ac‖ = 1. Future iterations

will not have this property. For instance, let (µα2
)ac denote the absolutely continuous

part of the spectral measure corresponding to the rank-two perturbed operator H̃α2
.

In light of the above discussion on the properties of Vα1 , the mass of this measure can

be calculated as

‖(µα2
)ac‖ = ‖(µα1

)ac‖ − µα1
{xα1
} 6= 1.

However, the calculation of ‖(µα1
)ac‖ is in general quite difficult, as shown

in the Example of Subsection 4.1.1. The task becomes much simpler, according to

the Proposition, when we pass to an auxiliary measure µ̃α1 . Indeed, the numerical

constant τ1 is related to those in Lemma 4.1.1 via τ1 = ‖(µ̃α1)ac‖/2.

Proof of Proposition 4.2.1. Assume that suppϕ2 ⊂ [−1, 1]. This assumption will be

made concrete later when a specific choice for ϕ2 is made. Recall that xα1
was an

eigenvalue outside [−1, 1] created by ϕ1, analyzed in Lemma 4.1.1. The corresponding

eigenvector is supported at the single point
{
xα1

}
. Therefore, ϕ2 ⊥ L2[(µα1

)pp]

and xα1
will remain unchanged by the second perturbation. Moreover, the operator

decomposes into the orthogonal sum

Hα2
= Mt ⊕ [Mt + α2〈 · , ϕ2〉L2(µα1

)ϕ2] on L2[(µα1
)pp]⊕ L2[(µα1

)ac], (4.2.3)

and we reduce further examinations to Mt +α2〈 · , ϕ2〉ϕ2 on L2[(µα1
)ac]. We translate

this operator into an auxiliary space by choosing an appropriate unitary multiplication

operator, denoted U1, so that Mt + α2〈 · , ϕ2〉ϕ2 on L2[(µα1
)ac] is unitarily equivalent

to equation (4.2.2).

The first perturbation only had the effect of creating an eigenvalue, so we may

assume that

d(µα1)ac = w1(t)dt,
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where w1(t) is some weight function. This weight function can be exactly determined

by using Theorem 2.1.2 and Lemma 2.1.3, and is stated in Subsection 4.1.1, but we

omit this very tedious calculation for brevity. However, if we consider the previous

weight function for µ̃0, which is w0(t) = 1/2χ
[−1,1] , we can see that by Theorem 2.1.4

(Kato–Rosenblum) the weight w1(t) is unitarily equivalent to w0(t). This means that

w1,
1

w1

∈ L1
loc[−1, 1].

In particular, take U1 : L2[(µα1
)ac]→ L2(µ̃α1

) to be

U1 := M√
w1(t)/h2(t)

(4.2.4)

where |h2| = 1 with details determined at the end of this proof. It is important to

note that U1 is unitary: if f ∈ L2(µα1
)ac, then

‖f‖2L2[(µα1
)ac]

=

∫ 1

−1
|f(t)|2d(µα1

)ac =

∫ 1

−1
|f(t)|2w1(t)dt

=

∫ 1

−1
|f(t)

√
w1(t)|2dt = ‖

√
w1(t)f‖2L2(µ̃α1

) = ‖U1f‖2L2(µ̃α1
).

The trick is now to choose ϕ2 in a particular way in order to ultimately achieve

d(µ̃α1)ac ≡ τ1χ[−1,1]dx ≡ (const.)dµ̃0.

This will allow us to repeat the iteration process as many times as desired. The

operator U1 determines ϕ̃2 =
√
w1(t)ϕ2 from our previous discussion, and the total

mass of µ̃α1 should remain 1.

We need ϕ̃2 to be a unit vector in L2(µ̃1). Hence,

1 = ‖ϕ̃2‖L2(µ̃α1 )
=

∫ 1

−1
|ϕ̃2|2dµ̃α1 =

∫ 1

−1
|U1ϕ2|2dµ̃α1

=

∫ 1

−1
|ϕ2|2dµα1

=

∫ 1

−1
|ϕ2|2w1(t)dt.

Therefore, the choice

ϕ2(t) =


h2(t)√
2w1(t)

for t ∈ (−1, 1),

0 else
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yields the desired result. It can be seen that with these choices of U1 and ϕ2, the

spectral theorem implies that τ1 is indeed a constant.

Finally, h2 chosen in accordance with Lemma 4.2.3 implies property (3).

Corollary 4.2.2. The value for τ1 from in (4.2.2) can be explicitly calculated as

τ1 =
1

2
− 2e2/α1

α2
1(e

2/α1 − 1)2
.

Proof. Recall that τ1 = ‖(µ̃α1)ac‖/2. First notice that we have lost mass inside

the interval [−1, 1] due to the eigenvalue created by the first rank-one perturbation.

However, in Section 4.1 we explicitly computed the mass of xα1
. This combined with

the previous comment that the norm of µ̃α1 remains at 1 and the fact that all our

operators are unitary, allows us to deduce

τ1

∫ 1

−1
dx =

∫ 1

−1
d(µ̃α1)ac(x) = 1− µα1{xα1

} = 1− 4e2/α1

α2
1(e

2/α1 − 1)2
.

Multiplying both sides of the equation by 1/2 yields the desired result.

4.2.1 Orthogonality of Perturbations

This elementary proof is included for the convenience of the reader, and is

motivated by Theorem 2.10 in [3] and the definition of the Lebesgue integral.

Lemma 4.2.3. Let S = {fn}Nn=1 be a finite set of functions orthogonal in a separable

Hilbert space L2(η), where η is a positive Borel measure supported on [−1, 1] without

a point mass at x = 1. Then for some measurable function h(x), with |h(x)| = 1

a.e. with respect to η, the set S ∪ {h} is orthogonal.

Proof. Without loss of generality, we consider the positive parts of each fn, f+
n (x) :=

max{fn(x), 0}. Let {gnm}m∈N be the sequence of simple functions in standard repre-

sentation which approximates f+
n pointwise and uniformly (wherever f+

n is bounded).

Let En
m denote the partition of [−1, 1) on which gnm is constant. For n =

1, . . . , N , take the union of the endpoints of En
m and cover [−1, 1) by non-overlapping
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half-open intervals corresponding to this union. Denote the collection of these inter-

vals by Im. Then, for each fixed m, gnm, n = 1, . . . , N , is constant on each half-open

interval I ⊂ Im.

For each I ⊂ Im define

hm|I =


0 on [−1, 1) \ I

1 on the right half of I

−1 on the left half of I

and hm :=
∑

I hm|I . This gives us that 〈gnm, hm〉 = 0, ∀m,n, and hm converges with

respect to η to some measurable h with |h(x)| = 1 on [−1, 1).

All that remains to show is that 〈fn, h〉 = 0, ∀n. This follows by a simple

application of the Dominated Convergence Theorem to the functions gnm(x) and h(x):

〈fn, h〉 =

∫ 1

−1
lim
m→∞

gnm(x)hm(x)dη(x)

= lim
m→∞

∫ 1

−1
gnm(x)hm(x)dη(x)

= 0 ∀n.

This completes the proof.

4.3 Infinite Iterations and the Absolutely Continuous Spectrum

The iteration strategy can now be decomposed into the following steps:

(1) Begin with an unperturbed operator that is multiplication by the independent

variable on some L2(µ) space. At step k the measure will be given by µαk−1
.

(2) Perturb the operator by the appropriate vector ϕ, as explained in Subsection

4.3.1. The choice of α can be done in several different ways, some of which

will be discussed in Subsection 4.3.3.

(3) Apply an appropriate unitary operator (in analogy to the choice in (4.2.4))

to move the operator to an auxiliary space µ̃, where dµ̃ = τχ
[−1,1]dx.

80



(4) Determine the relevant constants. Specifically τ , which describes the remain-

ing total mass after the iteration, see Subsection 4.3.2.

(5) Apply the Spectral Theorem to move to a new L2 space in which the perturbed

operator Hαk
is multiplication by the independent variable.

(6) Return to Step 1.

4.3.1 The k-th Perturbation Vector

After step (1) the problem is to consider the k-th rank-one perturbation. In

analogy to equation (4.2.2) we now consider

Hαk
= Mt + αk〈 · , ϕk〉L2(µαk−1

)
ϕk on L2(µαk−1

).

Let {f1, . . . , fk−1} denote the vectors in L2(µαk−1
) that correspond to the direc-

tions of previous perturbations, which were chosen after the previous k − 1 steps. In

other words, we let(
fn ∈ L2(µαk−1

)
)
∼

(
ϕn ∈ L2(µαn )

)
for n = 1, . . . , k − 1,

where ∼ refers to the appropriate composition (different for each n) of unitary trans-

formations. The following Corollary of Proposition 4.2.1 shows that the direction of

the k-th perturbation vector ϕk can be chosen analogously.

Corollary 4.3.1. We can choose the vector ϕk ∈ L2(µαk−1
) so that the following con-

ditions hold.

(1) The vector ϕk ⊥ L2[(µαn )pp] for all n = 1, . . . , k − 1.

(2) The vector ϕk ⊥ fn for all n = 1, . . . , k − 1.

(3) The rank-k perturbation of interest becomes

H̃αk
= Mt + αk〈 · , ϕ̃k〉L2(µ̃αk−1

)
ϕ̃k on L2(µ̃αk−1

) (4.3.1)

where dµ̃k−1 ≡ τk−1χ[−1,1]dx.
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Again, recall that Mt in L2(µ̃αk−1
) corresponds to the previous rank-(k − 1)

perturbation in its spectral representation.

Proceeding as in Corollary 4.2.2, we note that τk−1 = mk−1/2 = ‖(µ̃αk−1
)ac‖/2.

Proof. We mimic the proof of Proposition 4.2.1. Consider

ϕk(t) :=


0 on R \ [−1, 1],

hk(t)√
2wk−1(t)

on (−1, 1),

where d(µk−1)ac = wk−1(t)dx. The function hk(t) is such that |hk(t)| = 1 on (−1, 1),

and is chosen by Lemma 4.2.3 with

dη =
dµαk−1√
2wk−1(t)

, fn = fn(n = 1, . . . , l = k − 1), and h = hk.

This implies that condition (1) holds. Define the multiplication operator Uk−1 :

L2[(µαk−1
)ac]→ L2(µ̃k−1) to be

Uk−1 := M√
wk−1(t)/hk(t)

.

If we denote Uk−1ϕk by ϕ̃k, we then have that ‖ϕ̃k‖L2(µ̃k−1) = 1. Condition (3) is then

obtained by the definition of the spectral theorem, as in Proposition 4.2.1.

4.3.2 Remaining Absolutely Continuous Spectrum after k Iterations

The desired byproduct of this construction is now achieved. The specific choice

of ϕk at each step in Corollary 4.3.1 allows the proof of Lemma 4.1.1 to be generalized

to each iteration because

Gk(x) =

∫
R

dµ̃k(t)

(t− x)2
= τk

∫ 1

−1

dt

(t− x)2
<∞ for x /∈ [−1, 1].

This means that Aronszajn –Donoghue theory applies and the essential formulas from

Section 4.2 can be generalized.
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Recall that dµ̃0 = τ0χ[−1,1]dx, with τ0 = 1/2 as above. In general, by equation

(4.3.1) we will have

d(µ̃αk)ac = τkχ[−1,1]dx.

We determine τk in a similar way as τ1 in Section 4.2. Specifically,

τk =
‖(µαk−1

)ac‖
2

−
µ̃αk{xαk}

2
.

Again, the eigenvalue xαk , created by the perturbation αk, is unaffected by

subsequent perturbations. However, the calculations for µ̃αk{xαk} will involve the

constant τk−1 from the previous step. Hence, the formulas in Section 4.2 are recursive

and need to be altered slightly. The relevant calculation is

‖(µ̃αk)ac‖ = ‖(µ̃αk−1
)ac‖ − µ̃αk{xαk} = 1−

k∑
n=1

µ̃αn{xαn} (4.3.2)

= 1−
k∑

n=1

e1/αnτn−1

α2
nτn−1(e

1/αnτn−1 − 1)2
. (4.3.3)

The recursive process used to determine constants for the above calculation can

be illustrated as follows:

τk−1 → µ̃αk{xαk} → ‖(µ̃αk)ac‖ = 2τk

Hence τk, k ∈ N, depends on the realization of all previously chosen perturbation

parameters α1, α2, . . . , αk.

4.3.3 Rademacher Potential

The concepts developed in the previous two Subsections can be applied with

different choices of the perturbation parameters. We wish to determine whether

certain iterated operators, or classes of them, localize (limk→∞ τk = 0) or delocalize

(limk→∞ τk > 0) and what conditions are necessary and/or sufficient for such behavior.

It is now clear that much of the previous construction can be easily adapted to various
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scenarios, so we make a slightly different choice of our starting measure. Let the

starting measure be chosen as µ̃0 = 1
2c
χ
[−c,c]dx. Recall that the choice of a constant

function here is possible as long as the beginning weight function is in L1
loc(−c, c).

This is because a unitary operator can then be applied, as described in Section 4.2,

to begin with a constant weight function. Hence, the interval of support is more

desirable to generalize.

The simplest scenario is to start with the perturbation parameters given by

{αn}kn=1 chosen with respect to a Rademacher distribution, i.e. αn = ±c. These

parameters collectively take the place of the potential in the description of Anderson-

type Hamiltonians, and in particular the discrete Schrödinger operator, described in

Section 2.5. Consequently, we refer to the choice of αn = ±c, n = 1, . . . , k, as defining

a Rademacher potential.

Theorem 4.3.2. The operator constructed in the previous three sections, when the

{αk}’s are chosen i.i.d. with respect to the probability measure P = 1
2
δ−c + 1

2
δc

(Rademacher potential), localizes for any fixed disorder c > 0.

Proof. The equation 4.3.2 can be adjusted to let αn = ±c for all n to state:

‖(µ̃αk)ac‖ = 1− 1

c2

k∑
n=1

e1/cτn−1

τn−1(e1/cτn−1 − 1)2
.

We are mainly concerned with the exact limiting value of this series. The

convergence of this series is clear: Physics tells us that the absolutely continuous part

of µ̃αk cannot become negative, it is bounded above by 1, and the sequence of partial

sums decreases as k increases. The summand can be rearranged by expanding the

denominator and factoring out a term of e1/cτn−1 to yield

e1/cτn−1

τn−1(e1/cτn−1 − 1)2
=

1

τn−1(e1/cτn−1 − 2 + e−1/cτn−1)
.

Hence, localization necessitates

lim
n→∞

[τn−1(e
1/cτn−1 − 2 + e−1/cτn−1)] =∞.

84



In this specific scenario, the operator began with a total mass of 1. This implies

0 ≤ τn−1 ≤ 1. Hence, for fixed c, we have:

lim
n→∞

[τn−1(e
1/cτn−1 − 2 + e−/cτn−1)] =∞ ⇐⇒ lim

n→∞
e1/cτn−1 =∞

⇐⇒ lim
n→∞

τn−1 = 0

The first if and only if statement can be verified by noticing that the exponential is

“stronger” than the τn−1 term. Also, e−1/cτn−1 remains bounded for 0 ≤ τn−1 ≤ 1 by

e−1/c. Therefore, we conclude that if τk−1 6→ 0 as k → ∞, then the sum does not

converge. This is a contradiction, so it must be that τk−1 → 0 as k → ∞, and the

operator localizes.

4.4 Non-Orthogonal Perturbations

We now shift gears from the construction that was the main concern of the pre-

vious three Sections, and attempt to address some of the concerns which differentiate

the iterated operator from an Anderson-type Hamiltonian. Namely, the necessity

of choosing ϕk in a specific way based on the previous perturbation parameters, is

confining.

The following theorems represent an exploration of how much control can be

exerted over the absolutely continuous part of a spectral measure by a single per-

turbation, when no restriction is placed on the choice of the perturbation vector ϕ.

A technical byproduct of losing this restriction is that the perturbation vector can

not be assumed o be orthogonal to previous perturbations. The setup employed is

representative of a spectral measure that would arise from the constructive iteration

scheme after N steps.

Theorem 4.4.1. Let µ ∈M+(R) be such that

µ = fχ[-a,a]dm +
N∑
n=1

αnδxn ,
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where f ∈ L2[−a, a], ‖µ‖ = 1 and
∑N

n=1 αn = c. Furthermore, let ϕ ∈ L2(µ), ϕ be a

unit vector and
N∑
n=1

αn|ϕ(xn)|2 < ε.

Let the spectral measure of the self-adjoint operator

Mt + λ〈 · , ϕ〉
L2(µ)

ϕ on L2(µ),

with respect to ϕ, be denoted by µλ. Assume that I is a compact interval not including

0. Then for all λ ∈I, there exists k ∈ R such that the spectral measure µλ satisfies

‖(µλ)ac‖ ≤ ‖µac‖ − k.

The theorem states that there is a minimum amount of absolutely continuous

spectrum lost after a general perturbation

Proof. In order to simplify notation, all inner products are taken in L2(µ) unless

otherwise stated. Assume the hypotheses on f , µ and ϕ above. Decompose both

ϕ and µ into two parts, one concerning the absolutely continuous spectrum on the

interval [−a, a], and the other concerning the N point masses. Hence, we define

ϕ̃ = ϕχ[-a,a], ϕp = ϕ− ϕ̃ and µac = fχ[-a,a]dm, µp =
N∑
n=1

αnδxn .

The rank-one perturbation λ〈 · , ϕ〉ϕ can now be broken down in terms of ϕ̃ and ϕp

so that the interaction between each part of the perturbation and the absolutely

continuous spectrum can be estimated. The starting point for the strength of these

interactions will be estimating the norm of the perturbation as follows:

‖λ〈 · , ϕ〉ϕ‖ = |λ| ‖〈 · , (ϕ̃+ ϕp)〉(ϕ̃+ ϕp)‖

≤ |λ| (‖〈 · , ϕ̃〉ϕ̃‖+ ‖〈 · , ϕ̃〉ϕp‖+ ‖〈 · , ϕp〉ϕ̃‖+ ‖〈 · , ϕp〉ϕp‖) (4.4.1)

The four terms in the inequality (4.4.1) will be discussed and evaluated sep-

arately. The first term, |λ|‖〈 · , ϕ̃〉ϕ̃‖, involves only ϕ̃ so the perturbation of our
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operator by this factor has no relevance to the point masses and is in fact orthogo-

nal to µp. This scenario recreates a similar setting to our earlier results, where our

perturbation vector was not concerned with the previous point masses due to orthog-

onality. The perturbation therefore has the effect of creating a single eigenvalue in

the new spectral measure, determined solely by λ. In earlier results, the spectral

measure was a constant on an interval thanks to our use of an auxiliary space and

a choice of ϕ, so the mass of this eigenvalue was easy to compute. We have no such

luxury here, as the choice of f has only the restriction that f ∈ L2[−a, a]. Therefore,

we solace ourselves with the ability to prove that there is a minimum for the mass

of this eigenvalue, when λ is chosen from a compact interval not containing 0. Note

however, that estimates for this value are attained in Proposition 4.4.2 below, with

the corresponding loss of sharpness to the global estimate of k.

Let h : R→ R be defined by h(λ) = µλ{xλ}, the mass of the created eigenvalue

xλ in the spectral representation, µλ of the perturbed operator Mt + λ〈 · , ϕ〉ϕ. The

explicit calculation of the location xλ ∈ R\[−a, a] and the strength µλ{xλ} of the

new eigenvalue is given by Aronszajn–Donoghue Theory. The process defining the

function h(λ) is thus given by two integrals:∫ a

−a

f(t)dt

t− xλ
= −1

λ
and µλ{xλ} = G(xλ) =

∫ a

−a

f(t)dt

(t− xλ)2
. (4.4.2)

As f ∈ L2[−a, a], both of these integral are finite and yield continuous functions

(actually C1 by the definition of antiderivative), and the process of solving for xλ

after the first integral is as well. We conclude that h(λ) is continuous itself, as the

composition of continuous functions. Note that if ϕ̃ were acting on µ, not just µac,

then h(λ) is not necessarily continuous as the point masses have to factor into the

integral. Also, the domains of the Borel Transform and the integral operator G(xλ),

in the usual sense, are equivalent to L2[−a, a] so this assumption was essential. Hence,

if λ is chosen from a compact interval I ⊂ R\{0} then h(λ) must achieve a minimum

value, referred to as d for the remainder of the paper, on I.

87



The second and fourth terms on the right hand side of the inequality (4.4.1) are

easily dispatched with upon examination. Indeed, those two factors deal only with

changes to the pure point spectrum, as the perturbations are in the “direction” of

ϕp. Hence, the individual perturbations do not cause any change to the unperturbed

absolutely continuous spectrum due to orthogonality of µp and µac

The third term on the right hand side of the inequality (4.4.1), |λ|‖〈 · , ϕp〉ϕ̃‖ ≤

|λ|‖ϕp‖‖ϕ̃‖, can be handled with our assumptions and above calculations, as ‖ϕp‖2 <

ε. Indeed, ϕp only interacts with µp by definition, so

‖ϕp‖2 = 〈ϕp, ϕp〉L2(µp)
=

N∑
n=1

αn|ϕp(xn)|2 =
N∑
n=1

αn|ϕ(xn)|2 ≤ ε.

Similar reasoning yields that ‖ϕ̃‖ =
√

1− ε. Hence, the estimate for this term will

be ‖〈 · , ϕp〉ϕ̃‖ ≤
√
ε
√

1− ε.

Constructing the entire picture, we observe that the first term is how much the

absolutely continuous spectrum is decreased by the creation of the new eigenvalue.

The other term is correcting for what happens to the point masses, as there is no

guarantee that some of the mass in µp doesn’t reenter the interval [−a, a] due to the

effect of ϕ. Moreover, we know that the essential spectrum remains unchanged under

our compact perturbation and that there is no total mass lost during the perturbation

because the intertwining operator Vλ for the spectral theorem is unitary. We can now

conclude

‖(µλ)ac‖ ≤ ‖µac‖ −
[
d− |λ|

√
ε
√

1− ε)
]
.

The Theorem follows.

In general, we cannot assume that ‖(µλ)ac‖ ≤ ‖(µ)ac‖. Therefore, it is impera-

tive that d − |λ|
√
ε
√

1− ε > 0 for the previous result to not be vacuous. Let |λ|max

denote the maximum value of |λ| on I. Then the desired inequality is achieved when

d > |λ|max

√
ε− ε2. It is noteworthy that d was constructed to depend upon both λ
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and the a.c. spectral mass, which directly relates to c and ε. More tangibly, we can

directly estimate the value of d as follows.

Proposition 4.4.2. Let λ be chosen from I, a compact interval on the real line not

including 0. Then

d ≥ 1− c
(a+ |λ|max(1− ε) + 1)2

,

where |λ|max is the maximum value of |λ| in I, and d, c and ε are as in the proof of

Theorem 4.4.1.

Proof. Without loss of generality, we can assume that f is positive on the interval

[−a, a] and that λ > 0. This means that the eigenvalue created by the λ perturbation

by ϕ̃ will be to the right of the interval, i.e. |xλ| > a. For simplicity, we will also

assume that we are working with the maximum value of λ in I instead of just any

value for λ.

Recall the formulas in equation (4.4.2). Hence, to minimize µλ{xλ}, we mini-

mize the kernel of the integral operator G(x). This minimization occurs when f is

represented by a delta mass at the endpoint {−a} because then the eigenvalue will

fall as close to a as possible. This delta mass is of strength 1− c by necessity. Hence

the integration G(xλ) becomes easy to compute and we find that

µλ{xλ} ≥
1− c

(xλ + 1)2
.

To minimize this inequality we actually want to maximize the value of xλ. The

distance xλ is placed from the endpoint a must be less than

‖λ〈 · , ϕ̃〉ϕ̃‖ = λ(1− ε).

This means that xλ ≤ a+ λ(1− ε). Finally, we can conclude that

µλ{xλ} ≥
1− c

(xλ + 1)2
≥ 1− c

(a+ λ(1− ε) + 1)2

as proposed.
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The following Corollary applies the approximations of the previous result to the

specific case where f is a constant, as occurred during the iterative process.

Corollary 4.4.3. Let µ ∈M+(R) be such that

µ = fχ[-a,a]dm +
N∑
n=1

αnδxn ,

where we define f = wN(t) such that f ∈ L1
loc, ‖µ‖ = 1 and

∑N
n=1 αn = c. Further-

more, let ϕ ∈ L2(µ) such that ϕ|[-a,a] = 1/
√

2wN(t), ‖ϕ‖ = 1 and
∑N

n=1 αn|ϕ(xn)|2 <

ε. Assume that I is a compact interval not including 0. Then for all λ ∈I, we have

the following inequality

‖(µλ)ac‖ ≤ ‖µac‖ −
[

e1/λτN

λ2τN(e1/λτN − 1)2
− e1/λτN

√
ε

λτN(e1/λτN − 1)2

]
.

Proof. See the proof of the previous Theorem. In this case we have the assumption

that

ϕ̃(t) =
1√

2wN(t)
.

The notation ϕ̃ should not be confused with the image of ϕ under a unitary operator

as in previous Sections. However, recall that wN(t) is simply representing a weight

function and matches the notation developed in Section 4.3. In the case that λ

is known, when Rademacher potentials are used for example, it is then possible to

explicitly calculate the value of d. If a choice of λ has not been made, simply pick λ

in the formula to be |λ|max.

Similarly, we deduce how the singular part is effected by the perturbation at a

single step.

Theorem 4.4.4. Let µ ∈M+(R) be such that

µ = fχ[-a,a]dm +
N∑
n=1

αnδxn ,
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where f ∈ L2(m), ‖µ‖ = 1 and
∑N

n=1 αn = c. Furthermore, let ϕ ∈ L2(µ), ‖ϕ‖ = 1

and
N∑
n=1

αn|ϕ(xn)|2 < ε.

Let the spectral measure of the self-adjoint operator

Mt + λ〈 · , ϕ〉
L2(µ)

ϕ on L2(µ),

with respect to ϕ, be denoted by µλ. Assume that I is a compact interval not including

0. Then for all λ ∈I, there exists k ∈ R such that the spectral measure µλ satisfies

‖(µλ)s‖ ≥ ‖µs‖+ k.

Proof. We employ a similar strategy to the one used in Theorem 4.4.1. Namely,

decompose the λ perturbation by decomposing ϕ into ϕ̃ and ϕp and estimate the

inequality from (4.4.1):

‖λ〈 · , ϕ〉ϕ‖ = |λ| ‖〈 · , (ϕ̃+ ϕp)〉(ϕ̃+ ϕp)‖

≤ |λ| (‖〈 · , ϕ̃〉ϕ̃‖+ ‖〈 · , ϕ̃〉ϕp‖+ ‖〈 · , ϕp〉ϕ̃‖+ ‖〈 · , ϕp〉ϕp‖) .

However, this time we are only concerned with the first, second and fourth terms

in the inequality, as they affect ϕp. The first term is responsible for creating an

eigenvalue of strength at least d, as estimated above. The fourth term actually has

no effect, as the essential spectrum of an operator does not change under a self-

adjoint rank– perturbation. This means that the eigenvalues are shifted and masses

are redistributed according to this term, but their total mass is the same because

it cannot create s.c. or a.c. spectrum. Estimating the second term is analogous

to the mixed term in Theorem 4.4.1 and yields an effect of |λ|
√
ε
√

1− ε. Hence,

the singular mass increases by a created eigenvalue and is adjusted for possible mass

entering the absolutely continuous spectrum by a mixed term. Our conclusion thus

follows its absolutely continuous counterpart and we set k = d−|λ|
√
ε
√

1− ε to yield

the Theorem.
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The same restrictions are relevant to applications of this theorem as to Theorem

4.4.1. In general, we cannot assume that ‖(µλ)s‖ ≥ ‖µs‖, so for the result not to be

vacuous we must have d > |λ|max

√
ε− ε2 to ensure that d − |λ|

√
ε
√

1− ε > 0. The

symmetry of Theorems 4.4.1 and 4.4.4 adds further validation to the estimates.

92



BIBLIOGRAPHY

[1] E. Abakumov and A. Poltoratski, Pseudocontinuation and cyclicity for random
power series, J. Inst. Math. Jussieu 7 (2008), no. 3, 413–424.

[2] E. Abakumov, C. Liaw, A. Poltoratski, Cyclicity in rank-one perturbation prob-
lems, J. Lond. Math. Soc. 88 (2013) no. 2, 523–537.

[3] N. Akhiezer, I. Glazman, Theory of Linear Operators in Hilbert Space, Dover
Publications, New York, NY (1993).

[4] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, Lon-
don Mathematical Society Lecture Note Series, Vol. 271, Cambridge Univer-
sity Press, Cambridge (2000).

[5] P.W. Anderson, Absence of Diffusion in Certain Random Lattices,
Phys. Rev. 109 (1958), 1492–1505.

[6] G. Andrews, W. Gawronski, L. Littlejohn, The Legendre–Stirling numbers, Dis-
crete Math. 311 (2011), 1255–1272.

[7] N. Aronszajn, On a Problem of Weyl in the Theory of Singular Sturm–Liouville
Equations, Am. J. Math. 79 (1957), 597–610.

[8] P. Bailey, W. Everitt, A. Zettl, Algorithm 810: The SLEIGN2 Sturm-Liouville
Code, ACM Transactions on Mathematical Software 27 (2001), 143-192.

[9] M. Bartusek, Z. Dosla, J. Graef, The Nonlinear Limit-Point/Limit-Circle Prob-
lem, Birkhauser Boston, New York, NY (2004).
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Birkhäuser Verlag, Basel (2002).

[42] S. Krein, I. Petunin, Scales of Banach Spaces, Russ. Math. Surv. 21 (1966),
85–159

[43] P. Kurasov, H−nperturbations of Self-adjoint Operators and Kreins Resolvent
Formula, Integr. Equ. Oper. Theory 45 (2003), 437–460.

[44] C. Liaw, Rank one and finite rank perturbations - survey and open problems.
Preprint 17 pp. arXiv:1205.4376.

[45] C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153 (2013),
1022–1038.

95



[46] C. Liaw, S. Treil, General Clark model for finite rank perturbations, preprint, 46
pp. arXiv:1706.01993

[47] C. Liaw, S. Treil, Rank-one perturbations and singular integral operators,
J. Funct. Anal., 257 (2009), 1947–1975.

[48] C. Liaw, S. Treil, Singular integrals, rank-one perturbations and clark model in
general situation. J. Anal. Math., 130 (2016), 287–328.

[49] L. Littlejohn, R. Wellman, A General Left-Definite Theory for Certain Self-
Adjoint Operators with Applications to Differential Equations, J. Differential
Equations 181 (2002), 280–339.

[50] L. Littlejohn, R. Wellman, On the Spectra of Left-Definite Operators, Complex
Anal. Op. Theory 7 (2013), 437–455.

[51] L. Littlejohn, Q. Wicks, Glazman–Krein–Naimark Theory, left-definite the-
ory and the square of the Legendre polynomials differential operator,
J. Math. Anal. Appl. 444 (2016), 1–24.

[52] L. Littlejohn, Q. Wicks, Glazman–Krein–Naimark Theory, left-definite theory
and the square of the Legendre polynomials differential operator, Ph.D. The-
sis, Baylor University (2015).

[53] M. Martin and M. Putinar, Lectures on Hyponormal operators, vol. 39, Operator
Theory: Advances and Applications (1989).

[54] M. Naimark, Linear Differential Operators Part I, II, Frederick Ungar Publish-
ing Co., New York, NY (1972).

[55] A.G. Poltoratski, Boundary behavior of pseudocontinuable functions, Algebra i
Analiz 5 (1993), no. 2, 189-210, engl. translation in St. Petersburg Math. J.,
5(2): 389–406, 1994.
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