
ABSTRACT

Bayesian Approaches for Design of Psychometric Studies
With Underreporting and Misclassification

Brandi Falley, Ph.D.

Chairperson: James D. Stamey, Ph.D.

Measurement error problems in binary regression are of considerable interest

among researchers, especially in epidemiological studies. Misclassification can be

considered a special case of measurement error specifically for the situation when

measurement is the categorical classification of items. Bayesian methods offer prac-

tical advantages for the analysis of epidemiological data including the possibility of

incorporating relevant prior scientific information and the ability to make inferences

that do not rely on large sample assumptions.

Because of the high cost and time constraints for clinical trials, researchers

often need to determine the smallest sample size that provides accurate inferences

for a parameter of interest. Although most experimenters have employed frequen-

tist methods, the Bayesian paradigm offers a wide variety of methodologies and are

becoming increasingly more popular in clinical trials because of their flexibility and

their ease of interpretation. We will simultaneously estimate efficacy and safety

where the safety variable is subject to underreporting. We propose a Bayesian sam-

ple size determination method to account for the underreporting and appropriately

power the study. We will allow efficacy and safety to be independent, as well as de-

pendent using a regression model. For both models, we will allow the safety variable

to be underreported.
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CHAPTER ONE

Introduction

In many research areas, and especially in social sciences, studies may involve

variables that cannot be observed directly or are observed with error (Fox and Glas

(2003)). Further, many forms of human response behavior are inherently stochastic

in nature. Lord and Novick (1968) adhere to the so-called stochastic subject view in

which it is assumed that responses of the subjects depend on small variations in the

circumstances in which the response is generated. Accordingly, response variance is

the variation in responses to the same question repeatedly administered to the same

person. We must note that Lord and Novick’s idea has had criticisms as their idea

was a “thought experiment” and it can never be done (Borsboom (2005), Novick

and Jackson (1974)). In this chapter, we briefly overview important topics useful in

the rest of the dissertation.

1.1 Misclassification

Misclassification can be considered a special case of measurement error specif-

ically for the situation when measurement is the categorical classification of events.

Misclassification occurs when subjects incorrectly report their status or participation

in a particular program. There is substantial evidence that misclassification is at

least somewhat prevalent in a variety of situations in which individuals self-report

(Oliveira et al. (2009), Pérez-Stable et al. (1992)). Its prevalence within nearly

every field of statistics is a by-product of life in an imperfect world, and statisti-

cal inference that ignores misclassification introduces bias into the estimation and

decision-making process.
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The general approach to estimation in the presence of misclassified data can be

summarized by the following steps. First, we must assume that the true classification

status for an observation exists, which we may denote with the random variable Y

where individuals belong to group Y = 1 with probability τ and to group Y = 0

with probability (1 − τ). In most cases we will asuume that direct observation of

Y is impossible. There are notable exceptions where the ability to observe Y does

exist, although the means by which it is obtained may be prohibitively invasive

or expensive. In these situations, cheaper and easier alternatives are desirable to

use in conjunction with or replacement of Y . Furthermore, we assume that the

measurement process or processes observe scalar or vector T , which we assume has

some relationship to the true exposure status Y . In the case of binary scalar T , we

define the sensitivity as Se = pr(T = 1|Y = 1), and the specificity as Sp = pr(T =

0|Y = 0). Conversely, we may choose to characterize the relationship between T

and Y in terms of misclassification rates, where we define the false negative rate

θ− = pr(T = 0|Y = 1) and the false positive rate θ+ = pr(T = 1|Y = 0). However,

we note that Se = 1 − θ− and Sp = 1 − θ+, and thus either approach can lead to

the proper adjustment of the resulting estimates.

A Bayesian approach to misclassified or mismeasured data has some important

advantages over the frequentist approach. The use of priors with misclassified data

help narrow the bounds on unidentified coefficients relative to the bounds estimated

in a frequentist regression context. Also note, the Bayesian approach more easily

incorporates various parameter constraints, such as restrictions on the extent of

misclassification.

1.2 Bayesian Estimation

Statistical inference based on “classical” or “frequentist” methods places a

distributional assumption on a random variable or vector represented by X with

2



support X that is assumed to be governed by fixed parameter vector θ. Because θ

is typically unknown, the goal of inference is to observe some randomly selected

sample x′ = (x1, . . . , xn) through which estimates of θ are empirically derived.

The most utilized approach generally involves maximizing the likelihood function

L(θ|x1, . . . , xn) = f(x1, . . . , xn|θ) where f(·) is the probability density function of X.

The Bayesian approach to statistical inference differs from the frequentist ap-

proach such that θ is assumed to be a random variable rather than a fixed quantity.

As a random variable, we define θ to have range Θ as well as its own density function

p(θ). We refer to this function as the prior distribution which like any other density

function contains all known information about θ. However, practitioners frequently

lack prior knowledge of a parameter. This often leads to diffuse priors which implies

that the prior variance is quite large. For more information on the elicitation and

use of prior distributions, see Robert (2001).

Inference from a Bayesian perspective thus combines our prior information of

the parameter with the observed knowledge gained from the likelihood using Bayes

Theorem to yield a posterior distribution

p(θ|x) =
p(θ)f (X|θ)∫

θ∈Θ
p(θ)f(x|θ)dθ

.

All posterior information on θ is contained within p(θ|x), which may or may not have

a closed form. For a far more thorough and meaningful introduction to Bayesian

inference see Lee (2004), Gelman et al. (2004), and Robert (2001).

Historically, the limitations to Bayesian inference dealt primarily with the of-

ten complicated and intractable form of the posterior distribution p(θ|x). That is,

the posterior distribution is often intractable due to difficulties in estimating the

denominator of Bayes rule. However, the advent of Markov Chain Monte Carlo

(MCMC) methods have allowed practitioners of Bayesian inference to obtain nu-

merical representations of the posterior distribution via computationally intensive
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tools such as the Gibbs Sampler and Metropolis-Hastings algorithm. A thorough

treatment of MCMC methods can be found in Robert and Casella (2004).

The Bayesian paradigm for estimation of misclassified binary data simply be-

haves as a missing data problem in which Y is unobserved for some or all individuals,

and posterior estimates of Y and the related parameter τ can be produced via im-

putation of the missing observations from a Markov Chain Monte Carlo sampler.

Thus, imputation of Y and estimation of τ are a part of the same process. For more

information on this convenient consequence of Bayesian estimation see Carroll et al.

(2006).

1.3 Modeling Probabilities Associated with Binary Outcomes

Modeling data with binary outcomes typically utilizes three link functions to

relate the response probability πi = pr(Xi = 1) to the covariate vector zi:

(1) the logit link:

f(πi|zi) = log

(
πi

1− πi

)
= ziβ.

(2) the probit link:

f(πi|zi) = Π−1(πi) = ziβ

where Π−1(·) is the inverse CDF of the standard normal distribution.

(3) the log link:

f(πi|zi) = log(πi) = ziβ.

We will proceed using the logit link function in Chapter 2 due to its ease of interpre-

tation of model parameters. The estimated value of parameter βk associated with

covariate zk is interpreted as the change in the log-odds of the response per unit

change in zk, where the odds are defined as π/(1 − π). The interpretation is not

quite as straightforward using alternative link functions. Agresti (2002) Chapters
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4 and 5 provides more information on modeling discrete outcomes and the use of

logistic regression.

1.4 Bayesian Sample Size Determination

Because of the high cost and time constraints for clinical trials, researchers

often need to determine the smallest sample size that provides accurate inferences

for a parameter of interest. Although most experimenters have employed frequentist

sample-size determination methods, the Bayesian paradigm offers a wide variety

of sample-size determination methodologies. Bayesian sample-size determination

methods are becoming increasingly more popular in clinical trials because of their

flexibility and ease of interpretation.

Considerable attention has been given to Bayesian approaches to sample size

determination. Dendukuri et al. (2004) consider several interval estimation criteria

for the one sample binomial case. Branscum et al. (2007) consider a hypothesis test-

ing criterion for the sample size problem for estimating sensitivity and specificity in

a hierarchical model with multiple sites. Cheng et al. (2009) also apply a hypoth-

esis testing criterion for a binary regression model when the outcome is subject to

misclassification.

1.5 Problem of Underreported Data

In many count data applications, the recorded counts may only be a fraction

of the true counts. Failing to adjust for such underreporting can lead to incorrect

estimates of model parameters. Winkleman (1996) has addressed this problem by

developing a Poisson regression model to adjust for underreported data using a

Bayesian approach. His model uses a mixture of Poisson and binomial distributions

to model the counts. The underreporting problem has also been considered by Ramos

(1999) and Fader and Hardie (2000) who have used models based on the Winkleman

approach. Ramos used the model to adjust for underreported counts of port wine
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purchases for households in Portugal. Fader and Hardie have also analyzed the port

wine data, but they use a beta-binomial/negative binomial distribution to model

the counts. Stamey et al. (2004) used the same prior structure as Fader and Hardie

and modeled underreported data to estimate sample size in a Bayesian setting.

1.6 Meta Analysis

Meta anlaysis is a statistical technique for combining the findings from inde-

pendent studies. A meta analysis is most often used to assess the clinical effectiveness

of healthcare interventions. Precise estimates of treatment effect can be provided,

giving due weight to the size of the different studies included. It investigates not only

the reported results of the studies but all aspects of research designs that produced

them, including theoretical constructs, operational definitions of the independent

variable, population samples, data collection procedures, statistical analysis, and

especially the handling of possible confounding variables that would provide an al-

ternative explanation for the reported results.

In the context of research about the outcomes of interventions to preserve or

enhance physical, psychological, or social functioning, meta-analysis addresses two

principal questions:

(1) Is there support in the sampled population of studies for the causal infer-

ence that the intervention made a statistically significant difference in the

outcome(s)? And if so,

(2) how large an effect or difference did the intervention make?

Meta analysis results are commonly displayed graphically as forest plots. For-

est plots visually display the effect size of all the studies, and the results of the meta

analysis. Cochran’s Q test is a statistical test used in conjunction with the forest

plot to determine the significance of heterogeneity among studies. An alternative

approach that quantifies the effect of heterogeneity is the I2 statistic. This quantitiy

6



describes the percentage of total variation across studies that is due to heterogeneity

rather than chance.

1.7 Organization

The chapters are divided as follows: in Chapter 2 we introduce a Bayesian es-

timation method using logistic regression in the presence of misclassified covariates

and response and apply the model to a data set, which includes students who claim

to have a math learning disability and were put through a series of tests, including a

psychological evaluation. A simulation was also performed to determine the strength

and validity of our model. In Chapter 3 and 4 we discuss a sample size determina-

tion method for efficacy and safety in a clinical trial. In Chapter 3 the efficacy and

safety variables are assumed independent. We allow the safety variable to be under-

reported, and compare the underreported model to the non-underreported model.

In Chapter 4, we use a regresion model to allow the efficacy and safety variables

to be dependent. Again, we account for underreporting in the safety variable and

compare the results to the model not accounting for underreporting. In Chapter 5,

we discuss a meta analysis project I worked on with Dr. James Edgerton, a heart

surgeon at The Heart Hospital Baylor Plano. We provide cumulative results of a

preliminary meta analysis of the available stand alone atrial fibrillation (AF) surgical

intervention publications from 2009 to 2011. Finally, in the appendices we include

the R and WinBUGS code for execution of the methods described in the chapters.
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CHAPTER TWO

Bayesian Estimation of Logistic Regression with Misclassified Covariates
and Response for Educational Psychology Data

During the last decade, measurement error problems in binary regression are

found to be of considerable interest among the researchers. The importance is partic-

ularly felt in analyzing data arising out of epidemiologic studies, in quantal bioassay

problems and in many other important areas where the responses are binary in

nature (Roy et al. (2005)). In epidemiologic studies, a serious source of error is

misclassification of binary responses.

Misclassification can be considered a special case of measurement error specif-

ically for the situation when measurement is the categorical classification of items.

Its prevalence within nearly every field of statistics is a by-product of life in an im-

perfect world, and statistical inference that ignores misclassification introduces bias

into the estimation and decision-making process.

Frequentist methods, or “classical” methods, place a distributional assumption

on a random variable or vector, represented by Y with support Y , that is assumed to

be governed by fixed parameter vector θ. Because θ is typically unknown, the goal

of inference is to observe some randomly selected sample y = (y1, . . . , yn) through

which estimates of θ are empirically derived. The most utilized approach generally

involves maximizing the likelihood function L(θ|y1, . . . , yn) = f(y1, . . . , yn|θ) where

f(·) is the probability density function of Y .

The Bayesian approach to statistical inference differs from the frequentist ap-

proach in the sense that θ is assumed to be a random variable rather than a fixed

quantity. As a random variable, we define θ to have range Θ as well as its own

density function p(θ). We refer to this function as the prior distribution which like
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any other density function contains all known information about θ. Inference from

a Bayesian perspective thus combines our prior information of the parameter with

the observed knowledge gained from the likelihood using Bayes Theorem to yield a

posterior distribution

pr(θ|y) =
pr(θ)f(Y|θ)∫

θ∈Θ

pr(θ)f(Y|θ)dθ
.

All posterior information on θ is contained within pr(θ|y), which may or may not

have a closed form.

Bayesian methods offer practical advantages over frequentist methods for the

analysis of epidemiologic data by allowing the possibility of incorporating relevant

prior scientific information and the ability to make inferences that do not rely on

large sample assumptions. In this paper, we consider a fully Bayesian analysis that

affords such adjustments, accounting for the sources of error and correcting estimates

of the regression parameters. Unlike exisiting methods, our approach does not need

to assume any parameters are known.

Section 2.1 describes the methods and priors used. We describe the data in

Section 2.2, and the results of applying our models are given in Section 2.3. We

conclude with a discussion.

2.1 Statistical Methods

Suppose that a diagnostic test is available to detect the presence or absence

of a certain condition, D. Let Y designate the true disease status, with Y+ if D is

present and Y− otherwise. Similarly, let T+ and T− denote test positive and test

negative outcomes on a given dichotomous test.

In the Bayesian paradigm, we combine our prior information of the parameter

with the observed knowledge gained from the likelihood using Bayes rule to yield a

posterior distribution

pr(θ|x) =
pr(θ)f (X|θ)∫

θ∈Θ
pr(θ)f(x|θ)dθ

.
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Estimating the prevalence of a disease, θ, will depend on the sensitivity Se =

pr(T + |Y+) and specificity Sp = pr(T − |Y−), where pr(A|B) is the conditional

probability of A given B, which can be represented as

pr(A|B) =
pr(A ∩B)

pr(B)
.

Since Se and Sp for each test are not exactly known, they have to be estimated

along with prevalence, θ. Table 2.1 reviews how estimates are constructed from the

model with the two dichotomous tests. For each subject, there are two available tests

to detect a disease. Each test has two possible outcomes: positive or negative. This

leads to four possible combinations for the observed data. If we consider the true

disease status of each individual, we have eight possible combinations of observed and

latent data. Let Z1, . . . , Z4 be the latent data that represents the number of subjects

with a positive disease status out of a, . . . , d subjects in each possible category for

the observed test result, respectively. With the results from two dichotomous tests,

one can calculate the probability of having a disease.

Table 2.1. Likelihood Contributions of All Possible Outcomes

Test 1 Test 2 Likelihood No. of
Truth result result contribution per subject subjects

+ + + θSe1Se2 Z1

+ + − θSe1(1− Se2) Z2

+ − + θ(1− Se1)Se2 Z3

+ − − θ(1− Se1)(1− Se2) Z4

− + + (1− θ)(1− Sp1)(1− Sp2) a− Z1

− + − (1− θ)(1− Sp1)Sp2 b− Z2

− − + (1− θ)Sp1(1− Sp2) c− Z3

− − − (1− θ)Sp1Sp2 d− Z4

To determine the probability of a true positive disease status, we take the

likelihood contribution for the appropriate test results divided by the sum of the

likelihood contributions for a true positive and true negative disease status with
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the same dichotomous test results. For example, if a subject is positive on both

dichotomous tests, then using rows 1 and 5 from Table 2.1, we reach the following

probability:

pr(subject is a true positive) = pr(Y+) =
θSe1Se2

θSe1Se2 + (1− θ)(1− Sp1)(1− Sp2)
.

We note that Table 2.1 can be expanded or reduced based on the number of dichoto-

mous tests available.

The full likelihood function of the observed, W , and latent, Z, data is pro-

portional to the product of each entry in the ‘likelihood contribution’ column of

Table 2.1 raised to the power of the corresponding entry in the ‘number of subjects’

column of the table. For the case of two tests we have:

f(T1, T2, Z|θ, Sei, Spi) ∝∏
[θSe1Se2]zi [θSe1(1− Se2)]z2 [θ(1− Se1)Se2]z3

× [θ(1− Se1)(1− Se2)]z4 [(1− θ)(1− Sp1)(1− Sp2)]a−z1

× [(1− θ)(1− Sp1)Sp2]b−z2 [(1− θ)Sp1(1− Sp2)]c−z3

× [(1− θ)Sp1Sp2]d−z4 (2.1)

where T1 = (T11, . . . , T1n) and T2 = (T21, . . . , T2n) are the results for the two dichoto-

mous tests across all n subjects, respectively, and Sei and Spi are the sensitivities

and specificities associated with each test.

Estimates are derived either by maximum likelihood methods or by Bayesian

methods with the addition of prior distributions for the prevalence θ and the test

parameters, Sei and Spi, i = 1, 2.

2.1.1 Continuous Test

Alternatively, one may encounter a continuous test, instead of a dichotomous

test. We assume the continuous test, for disease prevalence, follows normal distribu-

tion for each sub-population. Thus, N(µD, σ
2
D) is the density function for the results
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of the continuous test conditional on having the disease, and N(µND, σ
2
ND) is the

density function for the results of the continuous test conditional on not having the

disease. The likelihood for the observed and latent data is

f(W,Z|θ, µD, σ2
D,µND, σ

2
ND) =

n∏
i=1

(
θ

1√
2πσD

exp

{
− 1

2σ2
D

(wi − µD)2

})zi
a×

(
(1− θ) 1√

2πσND
exp

{
− 1

2σ2
ND

(wi − µND)2

})1−zi
(2.2)

where W are the observed continuous test values, and Z are the latent data. Thus,

the likelihood contribution from each subject i is a normal distribution.

In addition to the continuous test, we consider the case where we have two

dichotomous tests from above. The full likelihood function for data from all three

methods is a combination of the above likelihood (2.2) with that from two dichoto-

mous tests (2.1) implied by Table 2.1. The full likelihood function for the outcome

model is

f(W,Z, T1, T2|θ, Se1,Se2, Sp1, Sp2, µD, σ
2
D, µND, σ

2
ND) =

n∏
i=1

(
θSeT1i1 (1− Se1)(1−T1i)SeT2i2 (1− Se2)(1−T2i)

× 1√
2πσD

exp

{
− 1

2σ2
D

(wi − µD)2

})zi
×
(

(1− θ)(1− Sp1)T1iSp
(1−T1i)
1 Sp

(1−T2i)
2 (1− Sp2)(1−T2i)

× 1√
2πσ2

ND

exp

{
− 1

2σ2
ND

(wi − µND)2

})1−zi
(2.3)

where T1 = (T11, . . . , T1n) and T2 = (T21, . . . , T2n) are the results for the two dichoto-

mous tests across all n subjects, respectively.

2.2 Covariate Misclassification

Categorical covariates are often subject to misclassification, and this misclas-

sification can distort the relationship of the outcome of interest. Failing to account
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for misclassification yields biased and inconsistent coefficient estimates. To account

for this error, we assume the true status of the covariate E, in the exposure model,

is

f(E|pE) = pEE(1− pE)1−E, (2.4)

where pE is based on expert opinion or prior beliefs, and E is often the exposure

variable. This model can also be expanded to include other covariates, such that

logit(pE) = γ0 + γ1U,

where U is an additional measured confounder.

We must now consider the fallible diagnostic test for exposure in the measure-

ment model

f(X|pX) = pXX(1− pX)1−X , (2.5)

where pX = ESeX + (1 − E)(1 − SpX), and SeX and SpX are the sensitivity and

specificity, respectively, for the observed covariates of interest. Based on the above

formulations, the full model is the product of (2.3), (2.4), and (2.5), thus

f(W,Z, T1, T2, E,X|Θ)

=
n∏
i=1

f(W,Z, T1, T2|θ, Se1, Se2, Sp1, Sp2, µD, σ
2
D, µND, σ

2
ND)

× f(E|pE)f(X|pX)

where Θ consists of the remaining parameters.

Rather than using fixed prior distributions, one can employ hierarchical mod-

elling, which allows the investigation of the effects of any covariates on the prevalence

θ or any other test properties, such as the sensitivities and specificities. This can be

applied to the outcome probabilities. The α and β parameters can be directly mod-

elled via hierarchical distributions, such as with the gamma distribution. However,

we will follow a more common method using the logistic function.
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We will replace the beta prior distribution for θ and let θi represent the prob-

ability of subject i having the disease, and model as follows:

γi = logit(θi) = log

(
θi

1− θi

)
γi ∼ N(µγi , σ

2
γ)

µγi = β0 + βjEij

where, Eij are the covariates of interest for each subject i. The posterior distribution

of exp(β), then estimate the odds ratios for the corresponding covariates. Normal

prior distributions can be used for the regression parameters β0 and β1, and a uniform

prior distribution can be used for σγ.

We must note that this model can be expanded or simplified depending on the

number of tests, the type of test, and whether or not covariates are included in the

model.

2.2.1 Prior Distributions

An important step in any Bayesian analysis is to obtain a prior distribution

over all model parameters. This can be accomplished using past data, if available,

or expert opinion. There is a large amount of literature on the elicitation of prior

distributions. Proposed methods have included directly matching percentiles (Press

(1989)) or means and standard deviations (Lee (2004)) to a member of a preselected

family of distributions of the data (Chaloner and Duncan (1983)). The predictive

distribution is the marginal distribution of the observable data, which is found by

integrating the likelihood of the data over the prior distribution of the unknown

parameters (Lee (2004)).

Sensitivity and specificity of diagnostic tests are generally not known exactly,

though probability models for such quantities are often available, based either on

previous data or expert opinion. A beta distribution is a natural choice for modelling

uncertainty about a probability. To transform expert opinion into a particular beta
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distribution, it suffices to elicit the prior mode and the quantity associated with

the 95th (or some other) percentile. Beta distributions satisfying such requirements

are easily determined and subsequently graphically examined by the expert. A free

GUI-based statistical package called BetaBuster can be used to obtain specific Beta

prior distributions based on scientific input. The choice of a Be(a, b) distribution

can be made by specifying the parameters a and b. We assume the prior for Se is

Be(aSe, bSe), independent of the Be(aSp, bSp) prior for Sp.

In our model, we will look at two sets of priors for the sensitivities and speci-

ficities. First, we will center our priors around the true value of the sensitivities and

specificities. Our second set of priors will be slightly offset from the true values.

Along with the two sets of priors will we look at two different values for the truth

for each sensitivity and specificity. This will give us four models total to follow.

For the exposure model, which incorporates the true status of the covariates

within the model, we give pE a Beta distribution. This prior, as per the rest, is

based on expert opinion.

A common prior for β0 and β1 would be independent normal distributions with

zero mean and a common large variance. While a simple ‘non-informative’ choice

is appealing, we would argue that some care is necessary. If the variance is too

large, the induced prior on β0 or β1 could cause problems in our analysis. Thus,

some care is necessary in the choice of the variance in order to obtain a reasonable

‘non-informative’ normal prior for the regression coefficients. We will discuss this in

more detail in Section 2.4.4.

2.2.2 Markov Chain Monte Carlo (MCMC) Implementation

In the analysis of our data, we used a flexible software for the Bayesian analysis

of complex statistical models using MCMC methods. This iterative algorithm builds

approximations to the posterior distributions of interest based on Monte Carlo simu-
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lations. Compared with alternatives such as numerical integration, MCMC requires

much less computing time and is easier to implement and customize.

The WinBUGS software was used to carry out the MCMC simulations from

the posterior distribution, and the code is available in Appendix A. The results are

based on 5000 iterations, after a burn-in of 1000. To reduce autocorrelation within

the chains, we retained only every third iteration, a process known as thinning. The

samples from every kth iteration will be used for inference, where k is the thinning

value. Setting k > 1 can help to reduce the autocorrelation in the sample.

2.3 The Data

2.3.1 Participants

The Missouri Math Difficulties Questionnaire (MMDQ) was designed as a

21-item instrument, utilizing a 5-point Likert-type scale that the respondent would

complete with an evaluator as part of a more comprehensive intake evaluation. Each

item was worded so as to ascertain how much difficulty the respondent had doing

a “real world” task that involves some aspect of math, such as balancing his/her

check book and calculating tips.

The MMDQ was given to 546 college students from two different universities

as part of a larger study of college students with math disorders. The sample from

university one contained 159 students who participated as part of a research require-

ment in an Introduction to Psychology class, none of which indicated having any

diagnosed math disorders. The sample from university two contained 387 students

who were self referred to an assessment clinic because of psychoeducational diffi-

culties. They received a complete psychoeducational evaluation that included the

MMDQ as well as full cognitive, academic, memory, personality, and attention as-

sessments. A math disorder diagnosis was based on the judgement of a team which

included a licensed psychologist.
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Participation in the study was solicited from two separate projects (Project

One and Project Two) at a large midwestern university. The participants in Project

One (n = 93) were undergraduate students who referred themselves to a university-

based psychology clinic due to having self-identified math difficulties. Seventy-nine

of these students were part of a research project designed to study technology with

college students with a math-related learning disability, and fourteen of the students

were assessed as part of the clinic’s regular clientele. All students had difficulties

completing a university-wide required algebra class (i.e., failed the required college

algebra course at least once or passed the course with significant difficulties).

Project Two involved a research study at the same midwestern university,

designed specifically to gather the same data as gathered in Project One from a

community control group (Kazdin (2003)). All Project Two participants had to meet

the following criteria: (a) have undergraduate level status; (b) have no self-reported

math difficulties; (c) no major in math or a math-related field (e.g., statistics);

and (d) have no current or previous Diagnostic and Statistical Manual of Mental

Disorders - Fouth Edition - Text Revision (DSM-IV-TR) diagnoses (APA (2000)).

2.3.1.1 Instrument: Woodcock Johnson – Third Edition Tests of Achievement.

The Woodcock Johnson - Third Edition (WJ-III) Tests of Achievement (Wood-

cock et al. (2001)) is a standardized battery of individually administered academic

achievement tests. There are three math subtests in the core battery: (a) Applied

Problems (AP; i.e., ability to orally answer spoken math word problems); (b) Math

Fluency (MF; i.e., ability to answer single-digit addition and subtraction problems

within three minutes); and (c) Calculation (C; i.e., ability to compute answers to

math problems ranging from simple addition to calculus without time restrictions,).

McGrew and Woodcock (2001) estimated the internal consistency of the three Wood-

cock Johnson - Third Edition Tests math scores to be between 0.88 - 0.89 for Applied
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Problems, between 0.82 - 0.85 for Math Fluency, and between 0.92 - 0.93 for Calcu-

lation, for 18-29 year-olds.

2.4 Results

2.4.1 Simulated Data

In this section, we investigate the performance of the proposed algorithm. We

use a simulated data set and test the performance under a number of alternative

specifications of the data generating process. We use WinBUGS to run the MCMC

simulations for a sample size of n = 1000. We simulate the data in R before sending

it to WinBUGS, and we repeat this process 500 times. Our results below are from

averaging the outcomes from the 500 repetitions.

We will look at four different simulation results. We varied the true value of

the sensitivities and specificities and we allowed the priors to be centered and offset.

In the first simulation, we have a true sensitivity of 0.9 and a true specificity of 0.7,

and the priors are centered at the true values. The results are given in Table 2.3.

The table displays the true value of each parameter along with the mean value from

multiple repetitions (500) through WinBUGS. Sensitivity and specificity are given

for Y , the true disease status, and SeX and SpX are given for the exposure variable.

For the simulated data sets, we have the following priors:

Table 2.2. Priors for the Simulated Data

Variable Prior
Se (centered) Beta(90, 10)
Se (offset) Beta(84, 16)

Sp (centered) Beta(70, 30)
Sp (offset) Beta(76, 24)

β0 Beta(0, 0.1)
β1 Beta(0, 0.1)
SeX Beta(80, 20)
SpX Beta(90, 10)
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The table also displays the standard deviation and 95% credible interval. The

standard deviations for SeX and SpX are larger than those for Se and Sp. We are

relying on our prior only, not the data, and since the priors are fairly wide, we have

high coverage. As an extension to this model, we could add a second diagnostic

test for X, the fallible diagnostic test for exposure. This will tighten the intervals

and bring the coverage closer to nominal. The coverage for each estimate, displayed

in the last column, is the percentage of time the mean value was captured in the

credible interval for each iteration through WinBUGS.

The final row in the table displays the deviance, which evaluates the goodness

of fit of our model. The definition of deviance is −2 × log(likelihood): ‘likelihood’

is defined as p(y|θ), where y comprises all stochastic nodes given values (i.e. data),

and θ comprises the stochastic parents of y (‘stochastic parents’ are the stochastic

nodes upon which the distribution of y depends) when collapsing over all logical

relationships.

Table 2.3 provides the results for the first simulation. Our model accurately

estimated each parameter of interest. Our credible intervals are of reasonable width

for the model. In the first simulation, the coverage for sensitivity, specificity, and our

β’s were all high. As explained before, SeX and SpX have a coverage of 1 because

we are relying on only the prior information, not the data.

Table 2.3. True Sensitivity of 0.9 and True Specificity of 0.7, With Centered Priors

Parameter actual mean sd 2.5% 97.5% coverage
Se 0.9 0.901 0.011 0.878 0.921 0.968
Sp 0.7 0.700 0.021 0.658 0.741 0.976
β0 -0.20 -0.216 0.141 -0.517 0.038 0.98
β1 1.8 1.872 0.312 1.360 2.563 0.97

SeX 0.8 0.797 0.036 0.725 0.864 1
SpX 0.9 0.897 0.029 0.834 0.947 1

deviance 12829.926 71.122 12682.704 12959.965
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Table 2.4 provides the results for the average of 500 repetitions through Win-

BUGS. In the second simulation, we have a true sensitivity of 0.7, a true specificity

of 0.9, and, again, the priors are centered around the true values.

Table 2.4. True Sensitivity of 0.7 and True Specificity of 0.9, With Centered Priors

Parameter actual mean sd 2.5% 97.5% coverage
Se 0.7 0.698 0.017 0.665 0.731 0.97
Sp 0.9 0.901 0.014 0.872 0.926 0.958
β0 -0.20 -0.216 0.142 -0.519 0.037 0.978
β1 1.8 1.872 0.312 1.361 2.567 0.976

SeX 0.8 0.798 0.036 0.725 0.864 1
SpX 0.9 0.897 0.029 0.834 0.947 1

deviance 12993.359 71.105 12846.151 13123.326

The next two tables display the same information as above, for the remaining

simulations. Simulation three, again averages over 500 iterations, for a sample size

of n = 1000. In this simulation we have a true sensitivity of 0.9, a true specificity

of 0.7, and the priors are slightly offset from the true value. The results are given

in Table 2.5. Our estimates and credible intervals are very similar to the results in

the first simulation. For the results from the offset priors, our coverage is less than

the results from the centered priors in Table 2.3. However, we still have fairly high

coverage.

Table 2.5. True Sensitivity of 0.9 and True and Specificity of 0.7, With Offset Priors

Parameter actual mean sd 2.5% 97.5% coverage
Se 0.9 0.892 0.011 0.869 0.913 0.92
Sp 0.7 0.711 0.021 0.669 0.751 0.926
β0 -0.20 -0.219 0.142 -0.522 0.034 0.974
β1 1.8 1.875 0.313 1.364 2.570 0.972

SeX 0.8 0.797 0.036 0.725 0.864 1
SpX 0.9 0.897 0.029 0.834 0.947 1

deviance 12832.620 71.0674 12685.218 12962.746

20



For the final simulation, we have the true sensitivity at 0.7, the true specificity

at 0.9, and the priors are slightly offset from the true value. The results are given in

Table 2.6. Again, our estimates and credible intervals are very similar to the results

in the second simulation. As with the previous simulation, the coverage is less than

in Table 2.4, but the coverage is still adequate.

Table 2.6. True Sensitivity of 0.7 and True Specificity of 0.9, With Offset Priors

Parameter actual mean sd 2.5% 97.5% coverage
Se 0.7 0.708 0.017 0.674 0.740 0.938
Sp 0.9 0.888 0.015 0.858 0.915 0.886
β0 -0.20 -0.210 0.141 -0.509 0.044 0.978
β1 1.8 1.858 0.308 1.349 2.544 0.984

SeX 0.8 0.797 0.036 0.724 0.864 1
SpX 0.9 0.897 0.029 0.835 0.947 1

deviance 12995.098 71.185 12847.651 13125.511

The priors for our diagnostic tests are fairly wide, and we are relying on our

prior information only. Thus, we have high coverage for SeX and SpX . As an

extension to this model, we could add a second diagnostic test for X, the fallible

diagnostic test for exposure, as previously mentioned. This will tighten the intervals

and bring the coverage closer to nominal.

2.4.2 Math Data

We applied our model to the math data set discussed in Section 2.3. Table 2.7

provides the priors for this model. We chose non-informative Beta priors for the

regrssion coefficients and informative priors centered around the truth for the sensi-

tivies and specificities. The regression coefficient β1 refers to the exposure variable,

this allows for the misclassification in our exposure variable. The remaining β’s refer

to each covariate - location of study (β2), high school GPA (β3), and gender (β4).

The Se and Sp estimates refer to the math variables. Se1 and Sp1 are the sensitivity

and specificity for the math fluency variable, while Se2 and Sp2 are for the math
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calculation skills variable. Finally, the SeX and SpX estimates refer to the verbal

variables - passage comprehension (SeX1 and SpX1) and reading fluency (SeX2 and

SpX2). Table 2.8 displays the results, including the parameter estimates, standard

deviations, and 95% credible intervals.

Table 2.7. Priors for the Math Data Set

Variable Prior
Se1 Beta(9, 1)
Sp1 Beta(8, 2)
Se2 Beta(9, 1)
Sp2 Beta(8, 2)
β0 Beta(0, 0.1)
β1 Beta(0, 0.1)
β2 Beta(0, 0.1)
β3 Beta(0, 0.1)
β4 Beta(0, 0.1)
SeX1 Beta(8, 2)
SpX1 Beta(9, 1)
SeX2 Beta(8, 2)
SpX2 Beta(9, 1)

As a comparison, we also analyzed the math data set without accounting

for misclassification. These results are displayed in Table 2.9. Since we are not

accounting for any misclassification, we are not interested in the sensitivities and

specificities. For the results in which we do not account for misclassification, we

arbitrarily chose to use Math Calculation Skills (MCS) and Passage Comprehension

(PC) as the gold standard. For MCS, we used a cutoff of 80, meaning ≤ 80 indicates

diagnosed and ¿ 80 indicates non-diagnosed. Likewise, for PC, we used a cutoff of

100, such that ≤ 100 represents diagnosed and ¿ 100 represents non-diagnosed. The

coefficient β1 represents the coefficient for Passage Comprehension, β2 represents

location of study, β3 is for high school GPA, and β4 is the coefficient for gender.

Math Calculation Skills was used as our diagnostic test. The priors are the same as

we used in the model accounting for misclassification.
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Table 2.8. Math Data Accounting for Misclassification

Parameter mean sd 2.5% 97.5%
β0 -0.7384 2.948 -6.536 4.952
β1 -0.8169 2.88 -6.5 4.647
β2 -1.849 1.726 -5.656 1.735
β3 -0.8761 1.943 -5.962 1.882
β4 0.5759 2.579 -5.223 5.076
Se1 0.9045 0.08484 0.6874 0.9976
Sp1 0.8941 0.02334 0.8438 0.9362
Se2 0.9136 0.08017 0.7 0.9977
Sp2 0.9579 0.01658 0.9218 0.9854
SeX1 0.357 0.03475 0.2912 0.4263
SpX1 0.9008 0.08988 0.6619 0.9973
SeX2 0.4085 0.03539 0.3402 0.4798
SpX2 0.8993 0.09158 0.662 0.9972

Table 2.9. Math Data Not Accounting for Misclassification

Parameter mean sd 2.5% 97.5%
β0 -2.925 1.109 -5.131 -0.7291
β1 0.2574 0.6774 -1.126 1.565
β2 -0.2397 0.2958 -0.8343 0.3471
β3 0.8965 0.2457 0.4287 1.39
β4 0.6956 0.3052 0.08638 1.3

2.4.3 Convergence

Thinning is a common way to reduce autocorrelation in the sample in a sim-

ulation. We found that thinning of 3 removed autocorrelation and thus helped

achieve convergence in the simulated data. The convergence plots below show the

autocorrelation for the specified parameters in a given simulation.

2.4.3.1 Simulated Data. Figure 2.1 shows the history plots for β0 and β1 for

the simulated data with sample size n = 200. This model did not require thinning

or other remedial measures.
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Figure 2.1: Convergence plots for β0 and β1 for our simulated data set with no thinning
and a sample size of n = 200.

Figure 2.2: Convergence plots for β0 and β1 for our simulated data set with thinning of 3
and a sample size of n = 200.
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Figure 2.2 shows the same autocorrelation plots of the β’s for the simulated

data with a sample size of n = 200. We noted that thinning, or some other measure,

was necessary. Thus, we chose to thin at 3. We can see that after thinning we have

a smoother autocorrelation plot, one that looks more like white noise.

For comparison purposes, we produces similar history plots for a larger sample

size. Figure 2.3 shows the autocorrelation plots for β0 and β1 for the simulated data

with a sample size of n = 1000. In this model we did not thin.

Figure 2.4 shows the same autocorrelation plots for the β’s for the simulated

data with a sample size of n = 1000. Again, some measure was necessary as Fig-

ure 2.3 does not look like white noise. We chose to thin at 3 for this example. We

can see that as our sample size and thinning value increase, our autocorrelation plots

smooth out and we produce history plots that look like white noise, which indicates

no autocorrelation.

2.4.3.2 Math Data. Similar plots were constructed for the math data set.

As with the simulated data, each data set included 10000 iterations after a 1000

iteration burn-in to produce the following results. Figure 2.5 displays the conver-

gence plots of β0, β1, β2, β3, and β4 for the math data set in which we account

for misclassification. Some remedial measures are necessary, as the plots do not

look like white noise. We chose different thinning rates until we reached our desired

outcome. Figure 2.6 displays the history plots of the β’s for the math data set not

accounting for misclassification and a thinning rate of 10. Thinning produces much

better history plots, though more measures may be necessary.

Finally, for the math data set in which we did not account for misclassification,

Figure 2.7 displays the history plots of the β’s. Thinning was not necessary as our

plots look like white noise.
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Figure 2.3: Convergence plots for β0 and β1 for our simulated data set with no thinning
and a sample size of n = 1000.

Figure 2.4: Convergence plots for β0 and β1 for our simulated data set with thinning of 3
and a sample size of n = 1000.
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Figure 2.5: Convergence plots of the β’s for the math data set that accounts for misclas-
sification with no thinning.

27



Figure 2.6: Convergence plots of the β’s for the math data set that accounts for misclas-
sification with thinning of 10.
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Figure 2.7: Convergence plots of the β’s for the math data set that does not account for
misclassification.
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2.4.4 Varying Priors

In section 2.2.1 we discussed that care was necessary in choosing the prior

variance for β. We will take a look at different prior variances to investigate the

sensitivity to this selection the model exhibits.

We will look at four different priors distributions: highly diffuse, moderately

difuse, moderately informative, and highly informative. For the highly diffuse priors,

we use β0 ∼ Normal(−2, 100) and β1 ∼ Normal(0.5, 100). Figure 2.8 displays the

history plots for β0 and β1 when the prior variances were highly diffuse. We can see

that we have a lot of variability within the data, our parameter estimates are not as

accurate. With highly diffuse priors, the parameter estimates for β0 and β1 are 3.7

and -7.8, respectively.

Figure 2.8: Convergence plots for β0 and β1 for one data set with highly diffuse prior
variances.

For the moderately diffuse priors, we use β0 ∼ Normal(−2, 25) and β1 ∼

Normal(0.5, 25). The history plots are displayed in Figure 2.9. Again, the parameter

estimates are not as accurate, and the history plots show much variability.

For the moderately informative priors, we use β0 ∼ Normal(−2, 3) and β1 ∼

Normal(0.5, 3). Figure 2.10 displays the history plots for β0 and β1 when the prior
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Figure 2.9: Convergence plots for β0 and β1 for one data set with moderately diffuse prior
variances.

variances were moderately informative. We can see that we have less variability

within the data compared to the previous two tables, and our parameter estimates

are more accurate to the true value.

For the highly informative priors, we use β0 ∼ Normal(−2, 1) and β1 ∼

Normal(0.5, 0.5). The history plots are displayed in Figure 2.11. The parameter

estimates are much more accurate with more informative priors. The parameters

estimates for β0 and β1 are -2.15 and -0.3, respectively.

2.5 Discussion

The main advantage of a Bayesian approach for measurement error problems

is that it allows the problem to be modeled in a conceptually straightforward way

without approximations (Ren and Stone (2007)). All the available information is

utilized and the uncertainty from different sources is properly reflected in the pa-

rameter estimates. Moreover, it works under more complicated model frameworks

such as misclassification and measurement error.
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Figure 2.10: Convergence plots for β0 and β1 for one data set with moderately informative
prior variances.

In this chapter, our methods incorporated the information from two dichoto-

mous tests, one continuous test, and the misclassification of the covariates, using

logistic regression, into a single model, while not considering any method to be a

gold standard. We have improved on the previous work by combining all these

tests into one model, while allowing the covariates to be misclassified. In particu-

lar, we do not require that these parameters be known and provide the means to

incorporate information about them from previous studies and expert opinion. We

use prior distributions to model our uncertainty about the values of the parame-

ters in both the response model and the measurement error model. In this way, the

Bayesian approach provides an attractive method for adjusting inferences to account

for measurement error and misclassification. Given that there is no gold standard,

our credible intervals do not appear wide, indicating little uncertainty about the

prevalence of a disease.

For the simulation example, we chose 0.7 and 0.9 as the true values for speci-

ficity and sensitivity, respectively. Typically, psychological measures tend to have

32



Figure 2.11: Convergence plots for β0 and β1 for one data set with highly informative prior
variances.

higher specificity because of low base rates, however, we chose to start with lower

specificity. This is for comparison purposes.

For the Math example we consider, it appears we need a much larger sample

size. Our data set only had 181 subjects, which accounts for the large standard

deviations in the results. A larger sample size or more informative priors should

yield better results. In Tables 2.8 and 2.9 β2, β3 and β4 are directly comparible,

as the represent location of study, high school GPA and gender, respectively. The

credible intervals in Table 2.8 for these parameters encompass 0, indicating they

are not useful when accounting for misclassification. However, in Table 2.9, when

we do not account for misclassification, the credible intervals do not encompass 0

for these parameters. From a (psychological) theoretical perspective gender, overall

GPA, and location shouldn’t necessarily be good predictors. This may suggest that

not accounting for misclassification makes the model susceptible to finding chance-

relationship (i.e. Meehl’s crud factor) when the variables are measured with error

(Meehl (1997)).
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There are a number of limitations, indicating the need for further work. First,

we assumed that our continuous test results were normally distributed across the

population. This assumption is routinely made, but clearly, other distributions can

be used (Scott et al. (2008)). We also assumed conditional independence between

tests, which may not always hold. If necessary, methods are available that can

account for conditional dependence between tests (Dendukuri and Joseph (2001);

Black and Craig (2002)), and these can be extended to continuous data. For exam-

ple, the normal mean can be made a function of the results of one or both of the

dichotomous tests. When three conditionally dependent tests are used the model

can become non-identifiable, so adding additional tests, if available, could be useful.
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CHAPTER THREE

Sample Size Estimation for Independent, Joint Modeling of Efficacy and Safety

Current practice for sample size computations in clinical trials is largely based

on frequentist or classical methods. These methods are limited in that they require

a point estimate of the variance of the treatment effect. These methods are also

based on arbitrary settings of type I and II errors and make no explicit use of prior

information (Kikuchi and Gittins (2009)).

The Poisson distribution has a wide spectrum of applications ranging from

economics and medicine to actuarial science, and thus, has always been a valuable

tool in statistical modeling. One issue of a Poisson setup is the fact that data

are often underreported (Stamey and Katsis (2007); Stamey et al. (2004)), such as

in environmental and biological data. Failing to account for this underreporting

results in biased estimates and inaccurate sample sizes. We illustrate this issue by

determining the required sample size to estimate a single Poisson rate utilizing a (1−

α)100% confidence interval. Assuming that no underreporting exists, a frequentist

formula yields

t =

(
2zα/2
δ

)2

λ̂ (3.1)

where δ denotes the intervals width and λ̂ is an estimate of λ the unknown rate,

zα/2 is the upper (α/2)100% percentile of the standard normal distribution, and t is

the necessary sample size. A drawback of this approach is that λ must be estimated

in order to determine the sample size. The above equation is modified in the case

where not all Poisson events are recorded. Practical situations where this may occur

include absences from work (Stamey et al. (2004)) or deaths as recorded on death

certificates (Whittemore and Gong (1991)).
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In this case, the distribution of X1, X2, . . . , Xn is Poisson(λp). It is straightfor-

ward to show that, if p is known, the maximum likelihood estimator for λ is λ̂ = x̄/p,

which has a standard error
√
λ/np. If p denotes the probability of reporting the

event, where p < 1 then (3.1) becomes

n =

(
2zα/2
δ

)2
λ̂

p

which results in higher values for n. However, p is rarely known with certainty and

the normality assumption for the above equation does not always hold.

Since the reporting probability is usually unknown, the Bayesian approach

seems like a natural choice for determining the sample size since it takes into account

the uncertainty, which is inherent in any estimation of the unknown parameters. In

a Bayesian setting, this uncertainty is expressed through the prior distribution on

the parameters of interest.

Stamey et al. (2004) considered a Bayesian analysis for sample size determi-

nation as described above. We will extend these methods to the case where we are

interested in efficacy and safety. For a drug to be acceptable it must be both safe

and effective, and, although some small trade-off between safety and efficacy may

be allowable, it is desirable to consider these properties separately when formulat-

ing a testing problem (Jennison and Turnbull (1993); Conaway and Petroni (1995),

(1996); Bryant and Day (1995)). Jennison and Turnbull (1993) presented sequential

designs for bivariate normal endpoints representing treatment efficacy and safety,

while Conaway and Petroni (1995) and Bryant and Day (1995) proposed sequential

designs for phase II trials that measure antitumor activity and toxicity as binary

outcomes

The rest of this chapter is as follows: we describe two models in Section 3.1,

one with and one without underreporting. In Section 3.2 we discuss sample size

determination and the priors for each parameter in the models. The remaining

sections include the results, which includes a Type I error analysis, and a discussion.
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3.1 Statistical Methods

Throughout our discussion in this chapter we assume that prior information on

the parameters of probability distributions is expressible by means of conjugate prior

distributions, which is, frequently, a realistic assumption. One reason for making

this assumption is that it simplifies what is, in any case, a complex presentation and

ensures that the calculations that we need to make are computationally feasible.

For any sampling distribution, there is a natural family of prior distributions,

called the conjugate family. The beta family is conjugate for the binomial family.

Thus, if we start with a beta prior, we will end up with a beta posterior. The

updating of the prior takes the form of updating its parameters. Mathematically,

this is very convenient, for it usually makes calculations quite easy.

For simplicity, we shall also assume that the prior distributions for the dif-

ference in efficacy between the new and standard treatments, and for the incidence

of adverse events with each of the treatments, are independent. In general, there

may be a tendency for more active drugs to be both more efficacious and to cause

more adverse reactions, leading to dependent prior distributions. However, there are

also many cases for which an assumption of independence is reasonable; published

examples include calcineurin inhibitors for immunosuppression in liver transplanta-

tion (Perry and Neuberger (2005)), Rosuvastatin to reduce low-density lipoprotein

cholesterol (Olsson et al. (2001); Davidson et al. (2002); Saito et al. (2003)), and in-

fliximab (a monoclonal antibody against Tumor Necrosis Factor) for Crohn’s disease

(Targan et al. (1997)).

The values of the prior distribution hyperparameters, both for efficacy and for

the incidence of adverse events, are based on previous experience.
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3.1.1 Distribution Theory – Efficacy

Suppose that X and Y are a new treatment and a standard treatment, re-

spectively, and that the treatment groups have the same sample size, n(> 1). Let

two independent continuous variables Xi and Yi for i = 1, 2, . . . , n, be the clinical

outcomes on some appropriate scale. The subscript i refers to patient i in each

treatment group, and Xi and Yi are unpaired and independent. If Xi ∼ N(θ+ δ, σ2)

and Yi ∼ N(θ, σ2), for i = 1, 2, . . . , n, then,

X =

∑i=n
i=1 Xi

n
,

Y =

∑i=n
i=1 Yi
n

, and

U = X − Y .

Using the moment generating function, we can find the distribution of U .

Because we know the distribution of X and Y , we know the moment generating

functions of X and Y

MX(t) = exp

[
(θ + δ)t+

1

2n
σ2t2

]
MY (t) = exp

[
θt+

1

2n
σ2t2

]
.

Thus,

MU(t) = E
[
exp

(
Ut
)]

= E
[
exp

[(
X − Y

)
t
]]

= exp

[
(θ + δ − θ)t+

1

2n
(σ2 + σ2)t2

]
= exp

[
δt+

1

2n
2σ2t2

]
.

It follows that U ∼ N(δ, 2σ2/n). Thus, δ is the mean improvement in efficacy

achieved by the new treatment.
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Also, writing

S2
x =

i=n∑
i=1

(
Xi −X

)2
,

S2
y =

i=n∑
i=1

(
Yi − Y

)2
, and

S2 = S2
x + S2

y ,

since S2
x/σ

2 ∼ χ2
n−1 and S2

y/σ
2 ∼ χ2

n−1 we have S2/σ2 ∼ χ2
2n−2. Let f(s2

x, s
2
y, un|δ, σ2)

denote the likelihood function for S2
x, S

2
y , and Un, which is proportional to

(
σ2
)−(2n− 1)

2 exp

[
− 1

2σ2

{
s2
x + s2

y +
n

2
(un − δ)2

}]
. (3.2)

Following O’Hagan (1994), the conjugate prior density function for δ and σ2 has the

form

π(δ, σ2) = k(a, g, ω)
(
σ2
)−g + 3

2 exp

[
− 1

2σ2

{
a+ (δ − µ)2/ω

}]
. (3.3)

where k(a, g, ω) = ag/22−(g+1)/2(πω)−1/2 {Γ(g/2)}−1, and a, g, and ω are hyperpa-

rameters assigned on the basis of prior information. Note that π(δ, σ2) = π(σ2)π(δ|σ2),

where the distribution of a/σ2 is chi-squared with g degrees of freedom, and π(δ|σ2)

is N(µ, σ2ω).

In terms of expectation and variance of the prior distribution for σ2 we have

g = 4 + 2E(σ2)2/Var(σ2),

a = E(σ2)(g − 2) and

ω = τ 2/E(σ2),

where τ 2 is the variance of the prior distribution for δ. Applying Bayes theorem and

using (3.2) and (3.3), the posterior density for δ and σ2 may be written as

π(n)(δ, σ2|x, y) = k(a′, g′, ω′)(σ2)−(g′+3)/2 exp
[
−(1/2σ2)

{
a′ + (δ − µ′)2/ω′

}]
. (3.4)
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Here

ω′ =
2ω

2 + nω
,

µ′ =
2µ+ nωzn

2 + nω
,

g′ = g + 2n− 1,

a′ = a+ s2 +
n(zn − µ)

2 + nω
.

The mean and variance of the prior distribution for δ are µ and ωa/(g − 2) = τ 2,

respectively.

The marginal posterior density function of δ can be obtained by integrating

the joint posterior density (3.4) over σ2 and we have

π(n)(δ|x, y) =
1

B(g′/2, 1/2)
(a′ω′)−1/2

{
1 +

(δ − µ′)2

a′ω′

}−(g′+1)/2

.

where

1/B(g′/2, 1/2) = ([(g′ − 1)/2]!)/(
√
g′π[(g′ − 1/2)/2]!).

Therefore, (δ−µ′)/
√
ω′z′/g′ has a t-distribution with g′ degrees of freedom and the

mean and variance of the posterior distribution for δ are µ′ and τ
′2 = ω′a′/(g′ − 2),

respectively.

If the outcomes are binary responses (success of failure) for each patient, with

success probabilities PXi
and PYi for i = 1, 2, . . . , n, we may convert the outcome to

a continuous scale by assuming

Xi = log
PXi

1− PXi

∼ N(θ + δ, σ2) and

Yi = log
PYi

1− PYi
∼ N(θ, σ2) for i = 1, 2, . . . , n.

3.1.2 Distribution Theory – Adverse Reactions/Safety

Both within the clinical trial and in later use, there are costs associated with

adverse events for users of both the current and the new drugs (Kikuchi and Gittins
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(2009)). The frequency of adverse reactions also impacts the new drug and whether

or not it makes it to market. Assume that adverse reactions occur at the unknown

Poisson rate (incidence rate) λ for each patient. We distinguish the new and the

current drugs by the subscripts i = 1 and 2, respectively. Let r1 and r2 denote the

number of adverse reactions, for the new and current drugs, respectively, during a

total of t patient-years, such that

ri ∼ Poisson(tλi).

Suppose that before the phase II trials λi has a prior distribution which is

Γ(αi0, βi0), and that during phase II there are ri0 adverse events over a total of ti0

patient-years. By Bayes theorem it follows that the posterior density for λi after

phase II is proportional to

Γ(αi0, βi0) density× P (a Poisson (λiti0) random variable = ri0)

=
λαi0−1
i βαi0

i0

(αi0 − 1)!
exp [−λiβi0]

(λiti0)ri0

ri0!
exp [−λiti0]

∝ λαi0+ri0−1
i exp [−λi(βi0 + ti0)] .

Thus, the posterior distribution for λi after phase II is Γ(αi0 +ri0, βi0 +ti0). This can

be used as the prior distribution for λ before phase III, and we write αi = αi0 + ri0

and βi = βi0 + ti0. Commonly βi0 and αi0 are set to small values such as 0.01.

Our posterior distributions for λi remain within the gamma family because

this is the family of conjugate prior distributions for the parameters of a Poisson

process. Note that Γ(α, β) distribution has mean αβ−1 and variance αβ−2.

3.1.3 Model 1 – Without Underreporting

In this chapter, we will look at two models, one in which we take into account

that adverse events are often underreported and one in which we do not. If we do

not account for underreporting, the model is as described above.
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3.1.4 Model 2 – With Underreporting

In Model 2, we will take into account that adverse reactions are often under-

reported. Failing to account for underreporting may result in inaccurate estimates.

Inaccurate estimates may, in turn, be costly in an experiment. The Poisson model

we consider here is the following

wi ∼ Poisson(tλipi), i = 1, 2, (3.5)

where wi represents the underreported counts. Now, while the true number of oc-

currences is r, we only observe w of these.

Here, t is the sample size, sometimes referred to as the opportunity size because

it is often an area or length of time, λi is the Poisson rate of the ith population and pi

is the probability that a particular occurrence is observed in the ith sample, referred

to as the reporting probability. Assuming the reporting probability is the same in

both populations reduces the amount of variability in the estimators and generally

would lead to a smaller required sample size, but this could be a strong assumption.

This model is an extension of Stamey et al. (2004), who determined the re-

quired fallible sample size for the one sample case. We use the same prior structure

as in Fader and Hardie (2000), placing a beta distribution on p and a gamma dis-

tribution on λ:

πp(p) =
pa−1(1− p)b−1

B(a, b)
, a, b > 0

πλ(λ) =
λα−1

Γ(α)βα
e−λ/β, α, β > 0.

The derived posterior distributions are not in a true “closed form” since they

are functions of hypergeometric functions and confluent hypergeometric functions,

which are infinite sums. Specifically, the posterior for λ is

π(λi|wi) =
(ti + βi)

wi+αiλwi+αi−1
i

Γ(wi + αi)
1F1(wi + ai, wi + ai + bi,−tiλi)

2F1(wi + αi, bi, wi + ai + bi, ti/(ti + βi))
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where 1F1 is the confluent hypergeometric function, 2F1 is the Gauss hypergeometric

function, and t1 = t2 (Anderson et al. (1994)). These forms are not particularly

useful in a simulation-based sample size determination procedure; thus, we use the

Gibbs sampler to estimate the posterior densities.

The Gibbs sampler is a special case of Metropolis-Hastings sampling. The

Gibbs sampler is a technique for generating random variables from a (marginal)

distribution indirectly, without having to calculate the density. This is particularly

useful when direct sampling is difficult. Through the use of techniques like the Gibbs

sampler, we can avoid difficult calculations, replacing them instead with a sequence

of easier calculations.

For the Gibbs sampler, we augment the observable data with the latent vari-

ables Zi which are the unobserved underreported number of occurences in population

i. Combining the Poisson data in (3.5) with the above conjugate priors and the latent

data yields the following joint posterior:

π(λ1, λ2, p1, p2, Z1, Z2|w1, w2) ∝
2∏
i=1

pwi+ai−1
i (1− pi)Zi+b1−1e−(ti+βi)λiλwi+Zi+αi−1

i . (3.6)

The full likelihood contains the x’s and y’s, and because they are independent, the

full likelihood is just the product of the two components.

If the reporting probabilities are assumed to be the same, the joint posterior

simplifies slightly since there is one less unknown parameter. To implement the

Gibbs sampler, we rearrange and manipulate (3.6), which yields

λi|Zi, pi = c1λ
wi+Zi+αi−1
i e−(ti+βi)λi ,

pi|Zi, λi = c2p
wi+ai−1(1− p)Zi+bi−1, and

Zi|ν, τ, λ, p,x = c3
[(1− p)λi]Zi

Zi!
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where

c1 =
ti + βi

Γ(wi + Zi + αi)
,

c2 =
Γ(wi + ai + Zi + bi)

Γ(wi + ai)Γ(Zi + bi)
, and

c3 = e−(1−pi)λi .

Thus, the following full conditionals are required:

λi|Zi, pi ∼ Gamma(wi + Zi + αi, ti + βi)

Pi|Zi, λi ∼ Beta(wi + ai, Zi + bi)

Zi|ν, τ, λ, p,x ∼ Poisson(tiλi(1− pi))

where t1 = t2.

After a suitable burn-in, sampling iteratively from the above distributions

yields a Markov Chain Monte Carlo (MCMC) approximation to the posterior dis-

tribution. From this chain, quantities such as the ratio, λ1/λ2, or the difference,

λ1 − λ2, may be approximated as well.

3.2 Sample Size Determination

In this section we overview the simulation-based procedure of Wang and Gelfand

(2002) and apply it to our model. This model was also recently applied by Beavers

and Stamey (2012). Throughout this section we assume interest lies in the posterior

distribution of the difference of the two normal means, δµ, for the efficacy variable

and the difference of the two rates, λ1 − λ2, for the safety variable.

For frequentist sample size approaches, unknown parameters and effect sizes

are replaced with fixed estimates that are elicited from experts, based on pilot data,

or chosen for their conservative performance. Instead of plugging in fixed numbers

for inputs, Wang and Gelfand (2002) suggest eliciting probability distributions that

allow for uncertainty in these estimates. These distributions are referred to as design
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priors. The design priors are usually required to be at least moderately informative,

representing the assumed true nature of the data, as opposed to the prior distribu-

tions used for data analysis, or analysis priors, which can be either informative or

diffuse.

We assume that a specific effect for λ1 − λ2 is available for our sample size

determination procedure. For instance, we believe there is a difference in the rates

of 2, so we fix this value in the design phase. Likewise, for δµ, we believe there is

a difference in the means of 5, so we fix this value in the design phase. For the

rest of the parameters, we recommend using design priors that elicit “most likely”

values according to prior knowledge, along with a range in which these parameters

are most likely to fall.

3.2.1 Type I Error Analysis

Interest lies in determining the required sample size to show that a parameter

is “significantly” different from 0. A threshold other than 0 would be straightforward

to incorporate into the procedure. If a positive relationship between the difference

of the normally distributed responses is expected, a Bayesian power criterion selects

n so that, for probabilities α and η,

E
[
I
{
Pr
(
δµ > 0|d(n)

)
> 1− α

}]
≥ η (3.7)

where I{}, is the indicator function, δµ = µX − θ, and d(n) represents a generated

data set of size n. Common choices for α are 0.1, 0.05, and 0.01 while η is typically 0.8

or 0.9. Here, the expectation is with respect to the design prior and the posterior

probability, which is the argument of the indicator function. For each data set,

d(n), the null hypothesis of H0 : δµ ≤ 0 is rejected in favor of H1 : δµ > 0 if

Pr(δµ > 0|d(n)) > 1 − α. With equation (3.7), we seek the sample size for which

such hypotheses are rejected at least 100(1 − η)% of the time. If the relationship
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with the covariate is expected to be negative, equation (3.7) becomes

E
[
I
{
Pr
(
δµ < 0|d(n)

)
> 1− α

}]
≥ η.

Results are displayed in Figure 3.1(left).

If interest is in the treatment/safety relationship, a similar criterion is used.

In the same degree, if a positive relationship between the difference of the normally

distributed responses is expected, a Bayesian power criterion selects t so that, for

probabilities α and η,

E
[
I
{
Pr
(
δλ > 0|d(t)

)
> 1− α

}]
≥ η (3.8)

where δλ = λ1−λ2 and d(t) represents a generated data set of size t. Figure 3.1(right)

displays these results.

Figure 3.1: Type I error analysis results for δµ when δµ = 0 (left) and for δλ when δλ = 0
for the model not accounting for underreporting.

These procedures can be extended to the situation of testing multiple hypothe-

ses simultaneously. For instance, testing both H0 : δµ = 0 and H0 : δλ = 0 may

be of interest. Extension can be made to other multiple hypothesis structures as

well. The goals of multiple testing need to be carefully considered. For instance,

Sozu et al. (2011) provides a sample size formula for testing superiority with mul-

tiple end-points. In their case, the overall null hypothesis is rejected if each of the
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individual components is rejected and sample size is determined to achieve certain

power to reject the overall null hypothesis. In our case, this would correspond to

E
[
I
{
Pr
(
δµ > 0|d(n)

)
> 1− α ∩ Pr

(
δλ > 0|d(n)

)
> 1− α

}]
≥ η. (3.9)

This has a large impact on Type II error, but Type I error will be quite small using

this framework. Figure 3.2 displays these results. An alternative would be to find the

sample sizes for both criteria (3.7) and (3.8) and choose the larger. This approach

tends to inflate Type I error, so the value of α may have to be adjusted slightly. For

instance, the value of α may be verified by checking via simulation to assure that it

is controlled at a reasonable level. These results are in Figure 3.2.

Figure 3.2: Type I error analysis results for the model not accounting for underreporting
when δµ = 0 and δλ = 0.

The computing algorithm for Bayesian power is given below, and we wish to

determine the total sample size n that satisfies our power criteria. The expected

power is approximated for each sample size based on B simulated data sets. In

the following sequence, the subscript k ∈ {1, . . . , B} refers to the iteration in the

simulation for each sample size. The following steps are used for a single value of n,

and they are repeated across a grid of potential sample sizes.
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(1) Generate a single value for each parameter value λ1, λ2, θ, and µX from

appropriate distributions.

(2) For sample size n, simulate error-free data Xi, Yi, and ri, i = 1, . . . , n from

a suitable distribution over its expected range.

(3) Fit the Bayesian model to the simulated data generated in steps 1 and 2 using

the analysis priors and approximate the posterior distribution of λ1 − λ2,

including the alternative posterior probability Pr(λ1−λ2 6= 2|d(n,k)), where

d(n,k)) denotes the data generated at the kth iteration for sample size n.

(4) Repeat steps 1 - 3 B times at each sample size value n, each time storing

Pr(λ1 − λ2 6= 2|d(n,k)).

(5) Calculate the posterior probability that Pr(λ1 − λ2 6= 2|d(n,k)) > 1− α via

the formula

m(n) =
1

B

B∑
k=1

I{Pr(λ1 − λ2 6= 2|d(n,k)) > 1− α}.

(6) Finally, repeat steps 1 - 5 for a range of sample sizes and plot m(n) by n to

find a sample size that achieves a desired level of power.

The same process was applied to the normal differencing, µX − θ. Therefore,

the probability of interest in step 3 becomes Pr(µX − θ 6= 5|d(n,k)).

The method was performed using the software packages R and WinBUGS.

These packages are freely available on the internet, and the code is available in

Appendix B.

3.2.2 Prior Distributions

To complete the Bayesian model, we require prior distributions for the model

parameters. The sample size determination approach we apply here is similar to that

proposed by Wang and Gelfand (2002) in which multiple data sets are simulated and
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then fit using a Bayesian model. The simulation-based approach requires two sets

of prior distributions. One set, known as the design priors, is discussed in the next

section. The other set, the anlaysis priors, are the priors used in the data anlaysis

of the simulation-based sample size determination scheme and would be used to

analyze the data when the study is actually performed.

In the absence of relevant prior data or expert opinion, diffuse normal prior

distributions are often employed as analysis priors for the means of the data.

3.2.2.1 Model 1 – Without Underreporting. For the first model, where we

do not account for underreporting in the safety variable, we determine the required

sample size to obtain a (1−α)100% posterior interval for δµ and δλ. For efficacy, the

data are described in Section 3.1.1, where X and Y are Normal, and δµ = µX − θ,

the difference in the Normal means. The parameters above will have the following

diffuse priors:

θ ∼ Normal(0, 0.0001)

µX ∼ Normal(0, 0.0001)

σ2 ∼ Uniform(0.1, 50).

For the safety variable, the data are described in Section 3.1.2, where ri represents

the number of adverse events and δλ = λ1 − λ2. The parameters have the following

priors:

λi ∼ Gamma(0.01, 0.01)

δλ = λ1 − λ2.

Prior distributions are based on previous experience or expert opinion. We are

interested in δµ and δλ, the mean improvement in efficacy and safety, respectively,

as well as the power associated with each. A curve can then be fit using the sample

sizes and corresponding powers.
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3.2.2.2 Model 2 – With Underreporting. For the case in which we do not

account for underreporting, we determine the required sample size to obtain a (1−

α)100% posterior interval for δµ and δλ. For efficacy, the data are defined in Section

3.1.1, and the priors are the same as the model without underreporting (described

in Section 3.2.1.1). For the safety variable, the data are defined in Section 3.1.4,

where wi are the observed number of underreported adverse events. The priors are

p ∼ Beta(50,10)

λi ∼ Gamma(0.01, 0.01)

δλ = λ1 − λ2,

where p is the same for the new and standard drug. We allow ri to be the true

number of adverse reactions, which we do not know in this case. Again, prior

distributions are based on previous experience or expert opinion. We are interested

in δµ and δλ, the mean improvement in efficacy and safety, respectively, as well as

the power associated with each. A curve can then be fit using the sample sizes and

corresponding powers to find the total required sample size.

3.2.3 MCMC Implementation

In the analysis of our data, we utilized a flexible software for the Bayesian

analysis of complex statistical models using Markov Chain Monte Carlo (MCMC)

methods. This iterative algorithm builds approximations to the posterior distribu-

tions of interest based on Monte Carlo simulations. Compared with alternatives

such as numerical integration, MCMC methods require much less computing times

and are easier to implement and customize, especially using the package WinBUGS.

All simulations in Section 3.3 used B = 500 datasets generated at each sample

size, with sample sizes ranging from 5 to 200 in varying increments. We produce pos-

terior approximations and probabilities based on MCMC samples of 10000 posterior

iterates after a 1000 iteration burn-in for each generated dataset.
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3.3 Results

3.3.1 Model 1 – Without Underreporting

Using the data and priors described in Section 3.2.1, we obtain the follow-

ing power curves for δµ, the difference in Normal means, and δλ, the difference

in Poisson rates. In Figure 3.3(left), we note that with the efficacy power curve,

roughly 150 participants are needed for a power of 80%. However, the safety curve,

Figure 3.3(right), shows a necessary sample size of 15 person-years (or some other

appropriate person-time) to reach a power of 80%.

Figure 3.3: Simulation results for δµ (left) and δλ (right) for the model not accounting for
underreporting.

3.3.2 Model 2 – With Underreporting

Using the data and priors described in Section 3.2.2, we obtain the following

power curves for δµ, the difference in Normal means, and δλ, the difference in Poisson

rates. In Model 2, we arbitrarily chose parameters for p, the reporting probability,

to be roughly 85%. In other words, we expect 85% of adverse events to be reported.

For efficacy, in Figure 3.4(left), roughly 150 participants are necessary for a power

of 80%, as with the previous model. However, for the safety variable the necessary

sample size is now 20 person-years for a power of 80% in Figure 3.4(right).
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Figure 3.4: Simulation results for δµ (left) and δλ (right) for the model accounting for
underreporting.

Our results did not change for efficacy because we did not alter our model

for efficacy. The data was constructed from the same distributions, and the priors

did not change. We expected the results for efficacy to be very similar from Model

1 to Model 2. The safety results, on the other hand, did change. For the same

power, our sample size increased from Model 1 (no underreporting) to Model 2

(with underreporting).

Recall that p is the reporting probability, and we assume that p is the same for

both treatment groups in Model 2. The reporting probability can have a great effect

on the desired outcome. A higher reporting probability represents more reported

adverse reactions. A higher reporting of adverse events would lead to more accurate

sample sizes. Conversely, a lower reporting probability represents fewer reported

adverse events and adds to the posterior variability. Table 3.1 below shows the

power and sample sizes associated with different reporting probability parameters.

Across the top are different priors for the reporting probability, and down the left

side are different sample sizes.

We can see that as the reporting probability parameters increase, so does the

power associated with each opportunity size. We expect this phenomenon to be
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Table 3.1: Simulation Results For δλ for the Model Not Accounting for Underreporting
With Different Reporting Probability Parameters.

t Beta(10,10) Beta(30,10) Beta(50,10) Beta(70,10) Beta(90,10)
5 31.4 39.0 39.4 38.2 43.4
10 45.8 61.6 62.6 64.2 61.8
20 64.4 82.2 84.6 85.0 82.8
35 81.8 91.4 96.8 95.6 96.6
50 90.6 98.8 99.0 99.4 98.0

the case because a higher parameter value indicates a greater probability of adverse

events being reported. For instance, if the prior for p is a Beta(90,10), we can

expect an average of 90/(90 + 10) = 90% of adverse events to be reported. On

the other hand, if the prior for p is a Beta(10,10), we expect only an average of

10/(10 + 10) = 50% of adverse events to be reported. If all of the adverse events are

reported, our results are similar to those of Model 1, in which we do not account for

underreporting. However, since we do not always have complete reporting of adverse

reactions, our results vary slightly.

We also note that as our opportunity size increases within each reporting

probability prior, our power increases as well. For instance, the column with prior

parameters 50 and 10 indicate a mean reporting of adverse events to be 50/(50+10) =

83%. The power greatly increases as the opportunity size increases from 5 to 50.

3.4 Discussion

In this chapter, our models accurately estimate the difference in the means of

the data as well as the difference in the Poisson rates, while allowing efficacy and

safety to be independent. The model with underreporting was found to increase the

needed sample size.

In general, a tendency may exist for more active drugs to be both more effica-

cious and to cause more adverse reactions, leading to dependent prior distributions.
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However, many cases also exist for which an assumption of independence is reason-

able. In the next chapter, we will consider a model where efficacy and safety are

dependent. This dependence will be depicted using regression modeling. We will,

again, account for underreporting of adverse events, and we will compare our results

to a model not accounting for underreporting. We expect that this underreporting

will affect the power curve for efficacy as well as for safety.

Due to the computational requirements, Monte Carlo or some other method

of posterior approximation is required to estimate the sample size. We have consid-

ered the effect of prior information about p on the required sample size. Gains are

more pronounced as the reporting probability nears 1. Finally, note that in some

applications, the sample sizes are in terms of linear feet and time, not a number of

observations. For these applications the sample would not need to be constrained

to an integer.
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CHAPTER FOUR

Sample Size Estimation for Dependent, Joint Modeling of Efficacy and Safety

Poisson data with underreporting is a well-researched problem due to its ap-

plicability in many fields, including economics, epidemiology, and actuarial science.

The increased uncertainty due to the underreporting causes traditional methods of

sample size determination to underestimate the needed sample size.

In this chapter, we will look at a problem similar to that of Kikuchi and

Gittins (2009) using different sample size methods. Kikuchi and Gittins (2009) used

a behavioral Bayes method to determine the sample size of a clinical trial, taking into

effect efficacy and safety. Their paper followed that of Gittins and Pezeshk (2000),

which introduced a fully Bayesian approach to sample size determination in clinical

trials. In contrast to the usual Bayesian decision theoretic methodology, which

assumes a single decision maker, the Gittins and Pezeshk approach recognizes the

existence of three decision makers, namely: the pharmaceutical company conducting

the trial, which decides on its size; the regulator, whose approval is necessary for the

drug to be licensed for sale; and the public at large, who determine ultimate usage.

Moreover, they model the subsequent usage by plausible assumptions for actual

behaviour, rather than assuming that it represents decisions which are in some sense

optimal. Their results show that the optimal sample size depends strongly on the

expected benefit from a conclusively favourable outcome, and on the strength of the

evidence required by the regulator.

In this chapter, we will use methods similar to that of Chapter 3, but we

will allow efficacy and safety to be dependent. This is an important extension. We

chose to apply this dependence using regression modelling. However, we could use

a random effects model to account for the dependence (Hedeker et al. (1994)).
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The rest of this chapter is as follows: we describe two models in Section 4.1,

one with and one without underreporting. In Section 4.2 we discuss sample size

determination and the priors for each parameter in the models. The results are

given in Section 4.3, which includes analysis of different prior parameters as well as

a Type I error analysis. The final section contains a discussion.

4.1 Statistical Methods

We assume that the difference in efficacy between the new and standard treat-

ments, and for the incidence of adverse reactions with each of the treatments, are

dependent. In general, there may be a tendency for more active drugs to be both

more efficacious and to cause more adverse reactions, leading to dependent prior

distributions. This dependence will be expressed through a regression model.

The values of the prior distribution hyperparameters, both for efficacy and for

the incidence of adverse reactions, are based on previous experience.

4.1.1 Distribution Theory – Efficacy

Suppose that

Yi ∼ Normal(θi, σ
2)

for i = 1, 2, . . ., be the clinical outcomes on some appropriate scale, such that

θi = β0 + β1Z(i),

where Z is an indicator such that if Z = 0, the data is from the standard treatment,

and if Z = 1, the data is from the new treatment. The subscript i refers to patient

i in each treatment group. It would be straightforward to include more covariates,

θi = β0 + β1Z1 + β2Z2 + β3Z3.

4.1.2 Distribution Theory – Adverse Reactions/Safety

Both within the clinical trial and in later use, there are costs associated with

adverse events for users of both the current and the new drugs (Kikuchi and Gittins
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(2009)). Their frequency also impacts the new drug and whether it makes it to

market. Assume that adverse reactions occur at the unknown Poisson rate (incidence

rate) λ for each patient. We distinguish the new and the current drugs by the

subscripts i = 1 and 2, respectively.

Let

ri ∼ Poisson(µri)

denote the numbers of adverse events, for the new and current drugs during a total

of t patient-years, such that

log(µri) = γ0 + γ1Z(i) + γ2(Yi − θ),

where γ2 allows for correlation between the efficacy and safety variables.

Note our rate is an exponential function. Thus, the difference in the treatment

groups is now exp(γ1), and the treatment group has an increase in the rate of adverse

events of exp(γ1). For instance, if γ1 = 0.6, our rate of increase is exp(0.6) = 1.82.

Likewise, if we are interested in how large the sample needs to be for an increase in

rate of 2, then γ1 = log(2) = 0.693.

4.1.3 Model 1 – Without Underreporting

In this chapter, we will look at two models, one in which we take into account

that adverse events are often underreported and one in which we do not. If we do

not account for underreporting, the model is as described above. We will use Poisson

priors for the safey variable.

4.1.4 Model 2 – With Underreporting

In Model 2, we will take into account that adverse events are often underre-

ported. Failing to account for underreporting may result in inaccurate estimates.

Inaccurate estimates may, in turn, be costly in an experiment. The Poisson model
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we consider here is the following

wi ∼ Poisson(µw), i = 1, 2, (4.1)

where wi represents the underreported counts. We define the Poisson rate as:

µw = pµri , where

log(µri) = γ0 + γ1Zi + γ2(Y − µY ).

Here, pi is the probability a particular occurrence is observed in the ith population,

referred to as the reporting probability, γi are the coefficients, Zi is the indicator for

the data, and Y are the data for efficacy. Assuming the reporting probability is the

same in both populations reduces the amount of variability in the estimators and

generally would lead to a smaller required sample size, but this could be a strong

assumption.

This model is an extension of Chapter Three, in which we determine the nec-

essary sample size for independent efficacy and safety. In this chapter, we allow

efficacy and safety to be dependent on each other. We use the same prior struc-

ture as in Fader and Hardie (2000), placing a beta distribution on p and a gamma

distribution on λ:

πp(p) =
pa−1(1− p)b−1

B(a, b)
, a, b > 0

πλ(λ) =
λα−1

Γ(α)βα
e−λ/β, α, β > 0.

The derived posterior distributions are not in a true “closed form” since they

are functions of hypergeometric functions and confluent hypergeometric functions,

which are infinite sums. Specifically, the posterior for λ is

π(λi|wi) =
(ti + βi)

wi+αiλwi+αi−1
i

Γ(wi + αi)
1F1(wi + ai, wi + ai + bi,−tiλi)

2F1(wi + αi, bi, wi + ai + bi, ti/(ti + βi))

where 1F1 is the confluent hypergeometric function, 2F1 is the Gauss hypergeometric

function, and t1 = t2. These forms are not particularly useful in a simulation-based
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sample size determination procedure; thus, we use the Gibbs sampler to estimate

the posterior densities.

The Gibbs sampler is a technique for generating random variables from a

(marginal) distribution indirectly, without having to calculate the density. This is

particularly useful when direct sampling is difficult. Through the use of techniques

like the Gibbs sampler, we can avoid difficult calculations, replacing them instead

with a sequence of easier calculations. As with other MCMC algorithms, Gibbs

sampling generates a Markov chain of samples.

For the Gibbs sampler, we augment the observable data with the latent vari-

ables Zi which are the unobserved underreported number of occurences in population

i. Combining the Poisson data in (4.1) with the above conjugate priors and the latent

data yields the following joint posterior:

π(λ1, λ2, p1, p2, Z1, Z2|w1, w2) ∝
2∏
i=1

pwi+ai−1
i (1− pi)Zi+b1−1e−(ti+βi)λiλwi+Zi+αi−1

i . (4.2)

After a suitable burn-in, sampling iteratively from the above distributions

yields an Markov Chain Monte Carlo (MCMC) approximation to the posterior dis-

tribution. From this chain, quantities for the coefficients β1 and γ1 may be approx-

imated.

4.2 Sample Size Determination

In this section we overview the simulation based procedure of Beavers and

Stamey (2012) and apply it to our model. Throughout this section we assume

interest lies in the posterior distribution of the difference of the two rates, β1.

For frequentist sample size approaches, unknown parameters and effect sizes

are replaced with fixed estimates that are elicited from experts, based on pilot data,

or chosen for their conservative performance. Instead of plugging in fixed numbers

for inputs, Wang and Gelfand (2002) suggest eliciting probability distributions that
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allow for uncertainty in these estimates. These distributions are referred to as design

priors. The design priors are usually required to be at least moderately informative,

representing the assumed true nature of the data, as opposed to the prior distribu-

tions used for data analysis, or analysis priors, which can be either informative or

diffuse.

We assume that a specific effect for β1 is available for our sample size deter-

mination procedure. For instance, we believe the treatment effect has an increase

of 3 units, so we fix this value in the design phase. For the rest of the parameters,

we recommend using design priors that elicit “most likely” values according to prior

knowledge, along with a range in which these parameters are most likely to fall.

The computing algorithm for Bayesian power is given below, and we wish to

determine the total sample size n that satisfies our power criteria. The expected

power is approximated for each sample size based on B simulated data sets. In

the following sequence, the subscript k ∈ {1, . . . , B} refers to the iteration in the

simulation for each sample size. The following steps are used for a single value of n,

and they are repeated across a grid of potential sample sizes.

(1) Generate a single value for each covariate β0, β1, γ0, γ1 and γ2.

(2) For sample size n, simulate error-free data Xi, Yi, and wi, i = 1, . . . , n from

a suitable distribution over its expected range.

(3) Fit the Bayesian model to the simulated data generated in steps 1 and

2 using the analysis priors and approximate the posterior distribution of

β1, including the alternative posterior probability Pr(β1 > 0|d(n,k)), where

d(n,k)) denotes the data generated at the kth iteration for sample size n.

(4) Repeat steps 1 - 3 B times at each sample size value n, each time storing

Pr(β1 > 0|d(n,k)).
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(5) Calculate the posterior probability that Pr(β1 > 0|d(n,k)) > 1 − α via the

formula

m(n) =
1

B

B∑
k=1

I{Pr(β1 > 0|d(n,k)) > 1− α}.

(6) Finally, repeat steps 1 - 5 for a range of sample sizes and plot m(n) by n to

find a sample size that achieves a desired level of power.

The same process was applied to the normal differencing, µX − θ. Therefore,

the probability of interest in step 3 becomes Pr(µX − θ 6= 5|d(n,k)).

The method was performed using the software packages R and WinBUGS.

These packages are freely available on the internet, and the code is available in

Appendix C.

4.2.1 Prior Distributions

To complete the Bayesian model, we require prior distributions for the model

parameters. The sample size determination approach we apply here is similar to

that used in Chapter Three, which was based on the methds proposed by Wang and

Gelfand (2002). These methods involve simulating multiple data sets and then fit

them using a Bayesian model. The simulation-based approach requires two sets of

prior distributions. One set, known as the design priors, is discussed in the next

section. The other set, the anlaysis priors, are the priors used in the data anlaysis

of the simulation-based sample size determination scheme and would be used to

analyze the data when the study is actually performed.

In the absence of relevant prior data or expert opinion, diffuse normal prior

distributions are often employed as analysis priors for the means of the data.

4.2.1.1 Model 1 – Without Underreporting. For the first model in which we

do not account for underreporting in the safety variable, we determine the required

sample size to obtain a (1−α)100% posterior interval for β1 and γ1. For efficacy, the
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data are described in Section 4.1.1. The parameters will have the following diffuse

priors:

β0 ∼ Normal(0,0.01)

β1 ∼ Normal(0,0.01)

σ2 ∼ Uniform(0.1, 50).

For safety, the data are described in Section 4.1.2, where ri represents the number of

adverse events, γi are the coefficients, Zi is the data indicator, and Y are the data.

The parameters will have the following diffuse priors:

γ0 ∼ Normal(0,0.1)

γ1 ∼ Normal(0,0.1)

γ2 ∼ Normal(0,0.1).

We are interested in β1 and γ1, the mean improvement in efficacy and safety, respec-

tively, as well as the power associated with each. A curve can then be fit using the

sample sizes and corresponding power.

4.2.1.2 Model 2 – With Underreporting. For the case of not accounting

for underreporting we determine the required sample size to obtain a (1 − α)100%

posterior interval for β1 and γ1. For efficacy, the data are, again, described in

Section 4.1.1, and the priors are discussed in Section 4.2.1.1. For safety, the data

are described in Section 4.1.4, where wi are the observed number of underreported

adverse reactions. The parameters will have the following diffuse priors:

γ0 ∼ Normal(0,0.1) γ1 ∼ Normal(0,0.1)

γ2 ∼ Normal(0,0.1) p ∼ Beta(50, 10).

and p is the same for the new and standard drug. We allow ri to be the true number

of adverse reactions, which we do not know in this case. Again, prior distributions
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are based on previous experiments or expert opinion, and we are interested in β1

and γ1, the mean improvement in efficacy and safety, respectively, as well as the

power associated with each. A curve can then be fit using the sample sizes and

corresponding power.

4.2.2 MCMC Implementation

In the analysis of our data, we utilized a flexible software for the Bayesian

analysis of complex statistical models using Markov Chain Monte Carlo (MCMC)

methods. This iterative algorithm builds approximations to the posterior distribu-

tions of interest based on Monte Carlo simulations. Compared with alternatives

such as numerical integration, MCMC requires much less computing times and is

easier to implement and customize.

All simulations in the next section used B = 500 datasets generated at each

sample size from 5 to 200 in varying increments. We produce posterior approxi-

mations and probabilities based on Markov Chain Monte Carlo samples of 10000

posterior iterates after a 1000 iteration burn-in for each generated dataset.

4.3 Results

4.3.1 Model 1 – Without Underreporting

Using the data and priors described in Section 4.2.1, we obtain the following

power curves for β1, the coefficient for the mean of the Normal data, and γ1, the

coefficient for the mean of the Poisson rate. We note that for the efficacy variable, in

Figure 4.1(left), 175 participants are needed for a power of 80%. However, the safety

power curve, in Figure 4.1(right), shows a necessary sample size of 75 person-years

(or some other appropriate person-time) to reach a power of 80%.
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Figure 4.1: Simulation results for β1 (left) and γ1 (right) for the model not accounting for
underreporting.

4.3.2 Model 2 – With Underreporting

Using the data and priors described in Section 4.2.2, we obtain the following

power curves for β1, the coefficient for the mean of the Normal data, and γ1, the

coefficient for the mean of the Poisson rate. We note that in Figure 4.2(left), for

the efficacy variable, 200 participants are needed for a power of 70%. However, the

safety power curve shows a necessary sample size of 100 person-years (or some other

appropriate person-time) to reach a power of 80% in Figure 4.2(right).

Figure 4.2: Simulation results for β1 (left) and γ1 (right) for the model accounting for
underreporting.

64



We note that in Chapter Three our efficacy sample size did not change when

underreporting was accounted for in the model. In this chapter, our efficacy sample

size did change. Now that efficacy and safety are dependent through a regression

model, as one changes, so does the other. In Model 2, we need more participants to

reach a smaller power for efficacy. For safety, we also need a larger sample size.

Recall that p is the reporting probability. We assume that p is the same for

both treatment groups in Model 2. The reporting probability can have a great effect

on the desired outcome. A higher reporting probability represents more reported

adverse events. A higher reporting of adverse events would lead to more accurate

sample sizes. Table 4.1 below shows the power and sample sizes associated with

different reporting probability parameters.

Table 4.1: Simulation Results for γ1 for the Model Not Accounting for Underreporting
With Different Reporting Probability Parameters.

n Beta(10,10) Beta(30,10) Beta(50,10) Beta(70,10) Beta(90,10)
50 55.8 63.6 69.2 69.6 69.0
60 65.0 71.0 72.2 70.6 78.4
75 67.2 75.8 80.2 79.6 81.4
90 77.0 80.8 84.8 81.2 83.4
100 77.0 83.4 87.4 86.2 85.6

We can see that as the reporting probability parameters increase, so does the

power associated with each opportunity size. We expect this phenomenon to be

the case because a higher parameter value indicates a greater probability of adverse

events being reported. For instance, if the prior for p is a Beta(90,10), we can

expect an average of 90/(90 + 10) = 90% of adverse events to be reported. On

the other hand, if the prior for p is a Beta(10,10), we expect only an average of

10/(10 + 10) = 50% of adverse events to be reported. If all of the adverse events are

reported, our results are similar to those of Model 1, in which we do not account for

underreporting. However, since we do not always have complete reporting of adverse

reactions, our results vary slightly.
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We also note that as our opportunity size increases within each reporting

probability prior, our power increases as well. For instance, the column with prior

parameters 50 and 10 indicate a mean reporting of adverse events to be 50/(50+10) =

83%. The power greatly increases as the opportunity size increases from 50 to 100.

4.3.3 Varying Priors – Without Underreporting

A common prior for β would be independent normal distributions with zero

mean and a common large variance. While a simple ‘non-informative’ choice is

appealing, we would argue that some care is necessary. If the variance is too large,

the induced prior on β could cause problems in our analysis. Thus, some care

is necessary in the choice of the variance in order to obtain a reasonable ‘non-

informative’ normal prior for the regression coefficients. We will take a look at

different prior variances and how the results are affected.

We will look at three different prior distributions for the model not accounting

for underreporting: highly diffuse, moderately difuse, and informative priors. For

the highly diffuse priors, we use β0 ∼ Normal(10, 50), β1 ∼ Normal(3, 15), γ0 ∼

Normal(0.1, 10), γ1 ∼ Normal(log(2), 10) and γ2 ∼ Normal(0.1, 10).

Figure 4.3 displays the history plots for β0, β1, γ0, γ1 and γ2 when the prior

variances were highly diffuse. We can see that we have a lot of variability within

the data. To account for this, we ran the same data with a thinning rate of three.

After a thinning rate of three, there was still some variability, so we increased the

thinning to ten. The results are in Figure 4.4. By thinning, we were able to account

for the variability and autocorrelation.

For the moderately diffuse priors, we use β0 ∼ Normal(10, 25), β1 ∼ Normal(3, 10),

γ0 ∼ Normal(0.1, 5), γ1 ∼ Normal(log(2), 5) and γ2 ∼ Normal(0.1, 5). We reached

similar results with the moderately diffuse priors as we did with the highly diffuse

priors. We adjusted the thinning rate to 10, and achieved more stability in the plots.
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Figure 4.3: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with highly diffuse
prior.
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Figure 4.4: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with highly diffuse
prior and thinning of 10.
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Figure 4.5: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with informative
prior.
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Figure 4.6: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with informative
prior and thinning of 10.
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For the informative priors, we use β0 ∼ Normal(10, 2), β1 ∼ Normal(3, 1),

γ0 ∼ Normal(0.1, 0.5), γ1 ∼ Normal(log(2), 1) and γ2 ∼ Normal(0.1, 0.5). Figure 4.5

displays the history plots for β0, β1, γ0, γ1 and γ2 when the prior variances are

informative. Again, we have autocorrelation, so we thin. In this case, we thinned at

a rate of ten. Figure 4.6 displays the results, which show more stability.

4.3.4 Varying Priors – With Underreporting

Now we will look at three different priors distributions for the model account-

ing for underreporting. For the highly diffuse priors, we use β0 ∼ Normal(10, 50),

β1 ∼ Normal(3, 15), γ0 ∼ Normal(0.1, 10), γ1 ∼ Normal(log(2), 10) and γ2 ∼

Normal(0.1, 10). Because we have variability at the beginning of the chain, we adjust

our burn-in (increased from 1000 to 5000) and thinning rate (thinned at ten). We

still had some problems, so we changed our priors to slightly more informative. We

now have the following highly diffuse priors: β0 ∼ Normal(10, 5), β1 ∼ Normal(3, 5),

γ0 ∼ Normal(0.1, 5), γ1 ∼ Normal(log(2), 5) and γ2 ∼ Normal(0.1, 5).

For the moderately diffuse priors, we use β0 ∼ Normal(10, 25), β1 ∼ Normal(3, 10),

γ0 ∼ Normal(0.1, 5), γ1 ∼ Normal(log(2), 5) and γ2 ∼ Normal(0.1, 5). The history

plots are displayed in Figure 4.7. We had similar problems as with the highly dif-

fuse priors. Thus, we changed our priors to be slightly more informative: β0 ∼

Normal(10, 4), β1 ∼ Normal(3, 3), γ0 ∼ Normal(0.1, 2), γ1 ∼ Normal(log(2), 3) and

γ2 ∼ Normal(0.1, 2). Again, we changed our burn-in to 5000 and thinned at 10.

Results are in Figure 4.8. Our plots look much more stable with these changes.

For the informative priors, we use β0 ∼ Normal(10, 2), β1 ∼ Normal(3, 1),

γ0 ∼ Normal(0.1, 0.5), γ1 ∼ Normal(log(2), 1) and γ2 ∼ Normal(0.1, 0.5). Figure 4.9

displays the history plots for β0, β1, γ0, γ1 and γ2 when the prior variances are infor-

mative. Again, we changed our burn-in and thinning to account for the variability

in the plots. Figure 4.10 displays the changes, which again show stability.
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Figure 4.7: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with moderately
diffuse prior.
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Figure 4.8: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with moderately
diffuse prior, thinning of 10 and burn-in of 5000.
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Figure 4.9: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with informative
prior.
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Figure 4.10: Convergence plots for β0, β1, γ0, γ1 and γ2 for one data set with informative
prior, thinning of 10 and burn-in of 5000.
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4.3.5 Type I Error Analysis

We are interested in determining the required sample size to show that a

parameter is “significantly” different from 0; a threshold other than 0 would be

straightforward to incorporate into the procedure. If a positive relationship between

the difference of the normally distributed responses is expected, a Bayesian power

criterion selects n so that, for probabilities α and η,

E
[
I
{
Pr
(
β1 > 0|d(n)

)
> 1− α

}]
≥ η (4.3)

where I{}, is the indicator function and d(n) represents a generated data set of size n.

Common choices for α are 0.1, 0.05, and 0.01 while η is typically 0.8 or 0.9. Here, the

expectation is with respect to the design prior and the posterior probability, which is

the argument of the indicator function. For each data set, d(n), the null hypothesis

of H0 : β1 ≤ 0 is rejected in favor of H1 : β1 > 0 if Pr(β1 > 0|d(n)) > 1 − α. With

equation (4.3), we seek the sample size for which such hypotheses are rejected at

least 100(1 − η)% of the time. If the relationship with the covariate is expected to

be negative, equation (4.3) becomes

E
[
I
{
Pr
(
β1 < 0|d(n)

)
> 1− α

}]
≥ η.

Results are displayed in Figure 4.11(left).

If interest is in the treatment/safety relationship, a similar criterion is used.

If a positive relationship between the difference of the treatments is expected, a

Bayesian power criterion selects t so that, for probabilities α and η,

E
[
I
{
Pr
(
γ1 > 0|d(t)

)
> 1− α

}]
≥ η (4.4)

where d(t) represents a generated data set of size t. Figure 4.11(right) displays these

results.
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Figure 4.11: Type I error analysis results for β1 when β1 = 0 (left) and for γ1 when γ1 = 0
for the model not accounting for underreporting .

These procedures can be extended to the situation of testing multiple hy-

potheses simultaneously. For instance, testing both H0 : β1 = 0 and H0 : γ1 = 0

simultaneously may be of interest. Extension can be made to other multiple hypoth-

esis structures as well. The goals of multiple testing need to be carefully considered.

For instance, Sozu et al. (2011) provides a sample size formula for testing superi-

ority with multiple end-points. In their case, the overall null hypothesis is rejected

if each of the individual components is rejected and sample size is determined to

achieve certain power to reject the overall null hypothesis. In our case, this would

correspond to

E
[
I
{
Pr
(
β1 > 0|d(n)

)
> 1− α ∩ Pr

(
γ1 > 0|d(n)

)
> 1− α

}]
≥ η (4.5)

This has a large impact on Type II error, but Type I error will be quite small using

this framework. Figure ?? displays these results. An alternative would be to find

the sample sizes for both criteria (4.3) and (4.4) and choose the larger. However,

this approach tends to inflate Type I error, so the value of α may have to be adjusted

slightly. Results of this multiple testing are in Figure 4.12.
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Figure 4.12: Type I error analysis results for the model not accounting for underreporting
when δµ = 0 and δλ = 0.

4.4 Discussion

Our models accurately estimate the difference in the means of the data as well

as the difference in the Poisson rates. The model with underreporting was found to

increase the necessary sample size.

In general, a tendency may exist for more active drugs to be both more effica-

cious and to cause more adverse reactions, leading to dependent prior distributions.

An alternative way to relate the two variables is to incorporate a correlated random

effect into the model. However, we feel this model is appropriate as often times the

more effective the drug, the higher the dose, and thus leads to more adverse events.

If this assumption is not reasonable, the random effects model would be straight

forward to use.

The next step with these two models is to include covariates. This should be

fairly straightforward due to the regression aspect of the model.

Due to the computational requirements, Monte Carlo or some other method

of posterior approximation is required to estimate the sample size. We have consid-

ered the effect of prior information about p on the required sample size. Gains are

more pronounced as the reporting probability nears 1. Finally, note that in some
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applications, the sample sizes are in terms of linear feet and time, not a number of

observations. For these applications the sample would not need to be constrained

to an integer.
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CHAPTER FIVE

A Meta Analysis

In this chapter, I will discuss a meta analysis project I worked on as an intern

at Baylor Health Care Systems in Dallas, Texas. I worked with a heart surgeon, Dr.

James Edgerton, who works at The Heart Hospital Baylor Plano.

5.1 Introduction

Atrial fibrillation (AF) is defined as supraventricular tachyarrhythmia charac-

terized by the uncoordinated activation and deterioration of mechanical function of

the atria (Fuster et al. (2006)). In the general population, the estimated prevalence

of AF is 0.4%-1% (Go et al. (2001)), as AF is the most common cardiac arrhythmia

encountered in clinical practice. There are a few options for the management of

AF, which include pharmacologically achieved rate control, mechanistic prevention

of thromboembolism, and the correction of the rhythm abnormality through surgical

or catheter-based approaches (Fuster et al. (2006)).

Dr. Cox and colleagues initiated atrial fibrillation ablation with the introduc-

tion of the Maze procedure (2000). Although the Maze procedure has a high success

rate (Edgerton and Edgerton (2009)) the operation required sternotomy access and

arrest of the heart on cardiopulmonary bypass. The associated morbidities and

complex nature of the procedure resulted in a relatively low adoption rate (Mack

(2009); Edgerton and Edgerton (2009)). The Cox Maze III is rarely performed as a

stand-alone procedure for AF, though it is still widely performed for AF concomi-

tant to another cardiac surgical procedure (Ederton and Edgerton (2008)). For the

treatment of stand-alone AF, surgery has largely been replaced by ever improving

catheter based techniques. Consequently, catheter ablation is known to cause en-
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docardial trauma, therapeutic thrombus, and high re-ablation rates due to limited

efficacy (Cui et al. (2010)).

More recently, the development of enabling technology has allowed surgical

ablation to be performed on the beating heart with techniques that require minimal

access. This eliminates much of the morbidity associated with the original cut and

sew Cox Maze III procedure. These minimally invasive surgical techniques hold

the promise of higher potential curative benefits over catheter ablation (CA) for

stand-alone AF, but have been only minimally discussed in the academic literature.

Therefore, the present chapter describes the available publications from 2009 to

2011 of surgical intervention for stand-alone AF and provides an early depiction

of summative results via preliminary meta-analysis. Results are then compared to

published meta-analyses of CA success rates, and treatment recommendations are

drawn.

5.2 Methods

5.2.1 Search Strategy

A comprehensive literature search was performed using the United States Na-

tional Library of Medicine and the National Institutes of Health PubMed engine.

The search criteria included all English manuscripts of observational studies of hu-

man subjects published from January 1, 2009, to September 10, 2011, with specified

terms (See Appendix D).

All studies were examined to meet the inclusion criteria of longitudinal eval-

uation of freedom from atrial fibrillation (AF), atrial tachycardia (AT), or atrial

flutter (Aflutter) following stand-alone ablative surgery with at least three months

of follow-up data. Studies were excluded if information was published as an abstract,

review, or case report. In addition, if the focus of the publication was a description

of a surgical technique, or if the primary outcome of interest was different than free-
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dom from AF or return to normal sinus rhythm (NSR), studies were excluded. A

total of 1,364 published manuscripts were initially identified by MeSH key words in

the identified time period. Figure 5.1 displays the exclusion criteria used to limit

our analysis to the 13 remaining articles.

Figure 5.1: Schematic breakdown of studies included within systematic review and meta-
analysis of stand-alone surgical ablation for atrial fibrillation (AF), 2009-2011.

5.2.2 Data Analysis

In each of the remaining articles, the following data elements were noted: to-

tal size of the study population, subset who received stand-alone ablative surgery

(if applicable), mean age of study population, length of follow-up time in months,

surgical technique used, primary outcome of interest, outcome assessment method,

percent of patients who had previously undergone CA, mean left atrial size, and

ejection fraction, if available. Type of AF was assigned according to the terminol-

ogy recommended in the “Heart Rhythm Society (HRS)/European Heart Rhythm

Association (EHRA)/European Cardiac Arrhythmia Society (ECAS) Expert Con-
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sensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation,” in which

paroxysmal AF is referred to as recurrent AF that terminates spontaneously within

7 days; persistent AF is AF sustained longer than 7 days or lasting less than 7 days

but requiring either pharmacologic or electrical cardioversion; and long-standing

persistent (LSP) AF is continuous AF of more than 1 year in duration.

5.2.3 Meta Analysis

Meta-analysis results are commonly displayed graphically as ‘forest plots’. At

a glance, forest plots show the effect size of all the studies, and the results of the

meta-analysis.

Heterogeneity measures the variability between studies. In other words, it

gives an indication how comparable studies in the meta-analysis are. Visually, we

can assess heterogeneity by checking for overlap of the confidence intervals (CI).

Studies are regarded as homogeneous if the CIs of all studies overlap.

Additionally, a test for heterogeneity examines the null hypothesis that all

studies are evaluating the same effect. The usual test statistic, Cochrane’s Q, is com-

puted by summing the squared deviations of each study’s estimate from the overall

meta-analytic estimate, weighting each study’s contribution in the same manner as

in the meta-analysis:

Q =
∑

w(E − EC)2,

where EC =
∑
wE/

∑
w, w is the weight, and E is the effect size of the individual

study. P values are obtained by comparing the statistic with a χ2 distribution with

k − 1 degrees of freedom (where k is the number of studies).

An alternative approach that quantifies the effect of heterogeneity, providing

a measure of the degree of inconsistency in the studies’ results, is the I2 statistic.

This quantity describes the percentage of total variation across studies that is due

to heterogeneity rather than chance. I2 can be readily calculated from basic results
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obtained from a typical meta-analysis as

I2 = 100%× (Q− df)

Q
,

where Q is Cochrane’s heterogeneity statistic and df is the degrees of freedom.

Negative values of I2 are set equal to zero so that I2 lies between 0% and 100%. A

value of 0% indicates no observed heterogeneity, and larger values show increasing

heterogeneity.

The primary outcome was post-operative freedom from AF, AT, and Aflutter.

All analyses were performed by stratifying included studies based on the described

primary outcome: freedom from AF or return to NSR, according to the definitions

provided within each manuscript. Estimates and pooled outcomes with 95% confi-

dence intervals were calculated using fixed effects models. Statistical heterogeneity

between studies was tested with the Cochrane test. The I2 statistic was also exam-

ined, and I2 > 50% was considered to signify heterogeneity between studies.

Publication bias was assessed via funnel plots. In a funnel plot we expect larger

studies to be near the average and smaller studies to be spread on both sides of the

average. As the studies become less precise (i.e. higher standard error), we expect

the results of the studies to be more variable, scattered to both sides of the more

precise larger studies. Variation from this assumption can indicate publication bias

and this is seen in a funnel plot that shows an asymmetrical shape. Once the studies

are plotted, if the plot is not symmetrical and does not resemble an inverted funnel,

publication bias may be the cause. However, other factors lead to an assymetrical

plot as well. If publication bias is not present, we expect the funnel plot to be

roughly symmetrical. Statistical analyses were performed with R (version 2.13.1),

and Appendix D contains the code for this chapter.
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5.3 Results

Following all of the listed inclusion criteria, there were 13 published observa-

tional studies that included longitudinal follow-up of patients who underwent stand-

alone ablative surgery for AF. In total, the 13 included articles allowed for a total

study population of 699 patients. Six studies described freedom from AF as the

primary endpoint, and 7 designated return to NSR as the primary endpoint. All

included studies measured recurrence of AF or return to NSR through 24 hour-

Holter monitor, electrocardiogram (ECG), AF monitor device, or a combination of

the three. Table 5.1 displays these results.

Surgical technique varied among the studies: 8 used PVI, 2 studies used pul-

monary vein isolation (PVI) with the Dallas Lesion Set (Edgerton et al. (2009a)),

and 3 performed a version of the Cox Maze procedure. Report of previous CA based

therapy varied greatly between studies, see Table 5.2.

5.3.1 Meta Analysis

The 13 described studies were then combined within a meta-analysis, the re-

sults of which can be seen in Figures 5.2 and 5.3. Combined results of postoperative

freedom from AF (Figure 5.2A) indicate an overall 84% (80.0 to 88.0) success rate

for the 6 included studies. Combined results of postoperative return to NSR indi-

cate an 83% (79.0 to 87.0) success rate (Figure 5.2B). Cochrane evaluation of these

groups indicated no heterogeneity, with I2 values < 50% (p > 0.05).

Because of small sample sizes, the studies had to be combined to include both

freedom from AF and return to NSR when stratified by type of AF (paroxysmal,

persistent, or long-standing persistent). Those patients with paroxysmal AF who un-

derwent stand-alone ablative surgery experienced an 85% (80.0 to 89.0) success rate

when the study results were combined (Figure 5.3A). Patients with persistent AF

had a 79% (0.70 to 86.0) success proportion (Figure 5.3B), but results are unstable
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according to the Cochrane evaluation (I2 = 64.8%; p = 0.0092). The patients with

long-standing persistent AF had a 64% (54.0 to 73.0) success rate in freedom from

AF/return to NSR according to the 7 studies included in the analysis (Figure 5.3C).

The funnel plot in Figure 5.4 indicates a potential for publication bias within

the study group, as the included studies do not represent a symmetrical pattern

about the mean.

5.3.2 Results of Catheter Ablation Review Articles, Registries, Meta Analyses

To compare the surgical meta-analysis to catheter meta-analyses, we chose

three meta-analyses of catheter ablation already published in peer reviewed litera-

ture. Each of these studies sought to collate published literature on the effectiveness

and safety of at least one catheter-based therapy approach and utilized sound re-

search methodology.

Calkins et al. (2009) published two separate systematic reviews and one meta-

analysis in one manuscript, only a portion of which is applicable to the current

discussion. In all, this review included 9 randomized clinical trials (RCTs) and 54

observational studies (42 prospective, 12 retrospective) with a total of 8,789 patients.

The minimum follow-up time for inclusion was set at 7 days, and the study observed

a mean age at time of ablative procedure of 55 years and duration of AF at 6.0

years. Patients with paroxysmal AF made up 35.8% of study participants, 33.3%

had persistent AF, and 30.8% had long-standing persistent AF. Success was defined

as the lack of recurrence of arrhythmia throughout the follow-up period, and the

combined results indicated success following a single-procedure of patients either on

or off anti-arrhythmic drug (AAD) therapy at 72%. For patients requiring multiple

procedures, the success rate was 77% (73 to 81) following radiofrequency catheter

ablation (RFA) either on or off AADs. The mean follow-up period for these studies

was 14 months, with a range of 2 to 30 months.
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In 2010, Kong et al. (2011) published a meta-analysis of 6 RCTs following

a single catheter ablative procedure, with success defined as freedom from AF or

AT, either with or without the ongoing use of AADs. All patients within this study

received either pulmonary vein isolation (PVI) CA or PVI with complex fractionated

atrial electrogram (CFAE) CA, and had a follow-up time of at least 3 months. A

total of 538 patients were included within the analysis, 50.3% with paroxysmal

AF and 49.7% with persistent AF. Combined results were stratified by length of

follow-up, with 48% of patients who underwent PVI alone and 66% who underwent

PVI+CFAE were free from AF/AT after one procedure with or without AADs,

with a mean follow-up of 10.5 ± 1.8 months. Longer term follow-up results (14.2 ±

4.9 months) indicated 68% success following PVI alone and 82% success following

PVI+CFAE respectively.

Li et al. (2011) performed and published a meta-analysis of seven controlled

clinical trials (four with randomization, three without randomization) of patients

following PVI+CFAE for AF. The authors sought to understand how CFAE fol-

lowing a single PVI procedure impacted the maintenance of sinus rhythm. In all,

662 patients were included within the analysis, with follow-up time ranging from 12

to 19 months. Patients with paroxysmal AF who underwent PVI experienced 75%

maintenance of sinus rhythm, and 45% of patients with persistent or long-standing

persistent AF achieved sinus rhythm maintenance.

Finally, we make reference to a systematic review of catheter ablation for long

standing persistent atrial fibrillation, Brooks et al. (2010). When PVI alone was

performed the success rate is 21%. When substrate ablation was added to PVI the

mean success jumps to 47%.
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Figure 5.4: Funnel plot of all studies included (n=13) within systematic review and meta-
analysis of stand-alone surgical ablation for atrial fibrillation (AF), 2009-2011.
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5.4 Conclusions

The best available data from meta-analyses of catheter and surgical literature

yields the following results.

The results from stand-alone surgical ablation are as follows. For overall suc-

cess: post-operative freedom from AF with or without AAD is 84%, while post-

operative freedom of AF, AT, Aflutter with or without AADs is 83%. Looking

at success by AF type, we have: paroxysmal at 85%, persistent at 79%, and long

standing persistent at 64% success.

The results from the catheter ablation literature are as follows. In Kong et al.

(2011), freedom from AF/AT after one procedure with or without AADs using PVI

is 48%, while using PVI+CFAE is 66%. Freedom from AF/AT after all procedures

with or without AADs using PVI is 68%, while PVI+CFAE is 82%. In Calkins et al.

(2009), freedom from AF without AADs in a single procedure is at 57%, while in

multiple procedures, freedom from AF without AADs is 71%. Li et al. (2011) found

paroxysmal to be at 75% and persistent/LSP to be at 45.25%. Finally, Brooks et al.

(2010) noted freedom from AF/AT for LSP at 47%.

It seems clear to us that the initial ablative approach to patients with parox-

ysmal AF should be catheter ablation. The results of catheter ablation in this

population approach those of surgery, with less morbidity. The paroxysmal patients

can be treated with PVI alone, without the need to perform the more difficult linear

ablations needed for substrate modification in more advanced types of AF. Addi-

tionally, improvements in catheter design and technology should further facilitate

antral ablation.

For patients with persistent atrial fibrillation, there is insufficient evidence

to argue for either catheter or surgical ablation. The ablative approach to these

patients should be individualized with the more difficult patients being referred for

minimal access surgical approach.
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Based on the data above, we believe that the appropriate initial ablative pro-

cedure for patients with long standing persistent AF should be a totally thorascopic

surgical Maze procedure. The surgical meta-analysis above shows a success rate of

64% contrasted with a 47% success for catheter ablation.

5.5 Discussion

Catheter ablation has made great strides in the treatment of atrial fibrillation.

The results in paroxysmal AF are admirable and approach those of surgical ablation.

Limitations of catheter ablation technology make it difficult to reliably produce the

linear transmural lesions that are usually required for success in more advanced

types of AF. One of the strengths of minimal-access surgical ablation is its ability to

produce linear lesions. This contributes to the higher success rate in long-standing

persistent AF and justifies surgery as the ablative procedure of choice for these

difficult cases.

Readers should note that the potential for bias in estimation is inherent in

the meta-analysis design. This analytic approach allows for the collation of a large

number of studies and thereby increased sample size and power, but results should

be interpreted with caution. Publication bias and the potential for heterogeneity of

included studies can lead to bias estimation of success proportions. We utilized a

funnel plot (Figure 5.4) as a tool to understand the potential for heterogeneity of

study populations, which indicate a need for caution in interpretation of results. This

heterogeneity may be caused by differing definitions of AF and success. Additionally,

not all studies reported complete information on proportion by type of AF and

defining characteristics of assessed outcomes. This lack of information does not

allow for assured collation of outcomes within the meta-analysis.

Practitioners in the future will be encouraged or required to work in multidis-

ciplinary teams. Those who dispense with old competitive predispositions and adopt
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this new paradigm will be most successful. The precedent is set for this collabora-

tion. The Society of Thoracic Surgeons, American College of Cardiology, the Food

and Drug Administration, and the Center for Medicare and Medicaid Services have

joined together to collaboratively introduce transcatheter aortic valve replacement

as a mandatory multidisciplinary team approach with mandatory long term follow-

up (Mack and Holmes (2011)). More work is needed in all these areas of ablation

of atrial fibrillation. Future studies should report their results in compliance with

the HRS, EHRA, ECAS expert consensus statement (Calkins et al. (2007)) so that

results can be easily compared and conclusions more clearly made.
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CHAPTER SIX

Conclusion

6.1 Future Work in the Area of Misclassification

The main advantage of a Bayesian approach for measurement error problems

is that it allows the problem to be modeled in a conceptually straightforward way

without approximations (Ren and Stone (2007)). All the available information is

utilized and the uncertainty from different sources is properly reflected in the pa-

rameter estimates. Moreover, it works under more complicated model frameworks

and accounts for measurement error in a relatively straightforward way.

Our methods in Chapter Two incorporated the information from two dichoto-

mous test, one continuous test, and the misclassification of the covariates, using

logistic regression, into a single model, while not considering any method to be a

gold standard. We have improved on the previous work by combining all these tests

into one model, while allowing the covariates to be misclassified. In particular, we do

not require that these parameters be known and provide the means to incorporate

information about them from previous studies and expert opinion. We use prior dis-

tributions to model our uncertainty about the values of the parameters in both the

response model and the measurement error model. In this way, the Bayesian context

provides an attractive method for adjusting inferences to account for measurement

error and misclassification. Given that there is no gold standard, our credible in-

tervals do not appear wide, indicating little uncertainty about the prevalence of a

disease.

As for the Math data set, we need a much larger sample size. Our data set

only contained 181 subjects, which accounts for the large standard deviations in the

results. A larger sample size in our math data set should provide better results.
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6.2 Future Work in the Area of Independent Efficacy and Safety Sample
Size Determination

In Chapter Three, we determined the necessary sample size for independent ef-

ficacy and safety. We compared the model with underreporting to the model without

underreporting. Our models accurately estimate the difference in the means of the

data as well as the difference in the Poisson rates. The model with underreporting

was found to increase the needed sample size.

In general, there may be a tendency for more active drugs to be both more

efficacious and to cause more adverse events, leading to dependent prior distribu-

tions. However, there are also many cases for which an assumption of independence

is reasonable. Published examples include calcineurin inhibitors for immunosup-

pression in liver transplantation Perry and Neuberger (2005), rosuvastatin to reduce

low-density lipoprotein cholesterol Olsson et al. (2001), Davidson et al. (2002), Saito

et al. (2003), and infliximab (a monoclonal antibody against Tumor Necrosis Factor)

for Crohn’s disease Targan et al. (1997).

6.3 Future Work in the Area of Dependent Efficacy and Safety Sample
Size Determination

In Chapter Four, we determined the necessary sample size for efficacy and

safety, while allowing the two variables to be dependent through regression mod-

eling. Again, we compared the model with underreporting to the model without

underreporting. Our models accurately estimate the difference in the means of the

data and the difference in the Poisson rates, and the model with underreporting was

found to increase the necessary sample size.

An alternative way to relate efficacy and safety is to incorporate a correlated

random effect into the model. However, we feel our model is appropriate as often

times the more effective the drug, the higher the dose, which leads to more adverse
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events. If this assumption is not reasonable, the random effects model would be

straight forward to use.

6.4 Future Work in the Area of Atrial Fibrillation

Chapter Five provides the cumulative results of a preliminary meta-analysis

of the available stand alone atrial fibrillation surgical intervention publications from

2009 to 2011. The primary outcome of this review was postoperative freedom from

atrial fibrillation, atrial tachycardia, and atrial flutter. After inclusion and exclusion

criteria were applied, there were 13 eligible published observational studies that

included longitudinal follow-up of patients undergoing stand-alone surgical ablation

for AF.

For patients with persistent atrial fibrillation, there was insufficient evidence to

argue for either catheter or surgical ablation. The ablative approach to these patients

should be individualized with the more difficult patients being referred for minimal

access surgical approach. We believe that the appropriate initial ablative procedure

for patients with long standing persistent AF should be a totally thorascopic surgical

Maze. The surgical meta-analysis shows a success rate of 64% contrasted with a 47%

success for catheter ablation.

Practitioners in the future will be encouraged or required to work in multidis-

ciplinary teams. Those who dispense with old competitive predispositions and adopt

this new paradigm will be most successful. The precedent is set for this collabora-

tion. The Society of Thoracic Surgeons, American College of Cardiology, the Food

and Drug Administration, and the Center for Medicare and Medicaid Services have

joined together to collaboratively introduce transcatheter aortic valve replacement

as a mandatory multidisciplinary team approach with mandatory long term follow-

up (Mack and Holmes (2011)). More work is needed in all these areas of ablation

of atrial fibrillation. Future studies should report their results in compliance with
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the HRS, EHRA, ECAS expert consensus statement (Calkins et al. (2007)) so that

results can be easily compared and conclusions more clearly made.
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APPENDIX A

Misclassification Codes

A.1 R Code

library(R2WinBUGS)

library(xtable)

m=500

bugs.out=vector()

data.sens=matrix(0,m,4)

data.spec=matrix(0,m,4)

data.beta0=matrix(0,m,4)

data.beta1=matrix(0,m,4)

data.sens.X=matrix(0,m,4)

data.spec.X=matrix(0,m,4)

data.deviance=matrix(0,m,4)

coverage.sens=vector()

coverage.spec=vector()

coverage.beta0=vector()

coverage.beta1=vector()

coverage.sens.X=vector()

coverage.spec.X=vector()

for(i in 1:m){

N=1000

p.E = 0.5

beta0 = -2
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beta1 = 0.5

#original values

sens.X = 0.8 #0.9

spec.X = 0.9 #0.8

#alternative values (.9/.7)

sens = 0.9 #0.7

spec = 0.7 #0.9

#E is the exposure, the true status of covariates

#defines the unobserved true status data

E <- rbinom(N, 1,p.E)

#Bern prob for fallible test

p.X<- E*sens.X + (1-E)*(1-spec.X)

#fallible diagnostic test for exposure, E

#defines the observed data sent to WinBUGS

X <- rbinom(N, 1, p.X)

continuous.test.mean <- c(38.4, 118.6)

continuous.test.sd <- c(21.3, 48.6)

continuous.test.mean.mean=c(0, 0)

continuous.test.mean.tau=c(.001, .001)

continuous.test.sd.lower=c(0.1, 0.1)

continuous.test.sd.upper=c(60, 120)

b1.mu=0

b1.prec=.1

b0.mu=0

b0.prec=.1

sens.alpha.x = 80

sens.beta.x = 20

102



spec.alpha.x = 90

spec.beta.x = 10

#original (centered) values for priors: (for sens/spec = .9/.7)

#for sens/spec = .7/.9

sens.alpha = 90 #70

sens.beta=10 #30

spec.alpha = 70 #90

spec.beta=30 #10

#alternative (offset) values for priors: (for sens/spec = .9/.7)

#for sens/spec = .7/.9

sens.alpha = 84 #76

sens.beta=16 #24

spec.alpha = 76 #84

spec.beta=24 #16

#logit(prev) <- beta0 + beta1*E

prev <- exp(beta0 + beta1*E) / (1 + exp(beta0 + beta1*E))

true.status <- rbinom(N, 1,prev)

true.status.index <- 1 + true.status

#T is a dicohtomous test and p.T is the probability of

#a positive test result

p.T <- sens * true.status + (1-spec)*(1 - true.status)

T <- rbinom(N,1,p.T)

continuous.test <-

rnorm(N, continuous.test.mean[true.status.index],

continuous.test.sd[true.status.index])

#the data list from the defined data
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data.list<- list("E", "T", "continuous.test", "N",

"continuous.test.mean.mean", "continuous.test.mean.tau",

"continuous.test.sd.lower", "continuous.test.sd.upper",

"continuous.test", "b1.mu", "b1.prec", "b0.mu", "b0.prec",

"sens.alpha", "sens.beta", "spec.alpha", "spec.beta",

"sens.alpha.x", "sens.beta.x", "spec.alpha.x",

"spec.beta.x", "true.status")

#parameters of interest

parameters<-list("sens","spec", "beta0", "beta1",

"sens.X", "spec.X")

#initial values

initials<-list(list(beta0=-2, beta1=0.5, sens=0.9, spec=0.8,

sens.X = 0.8, spec.X = 0.9, p.E=0.5,

continuous.test.mean=c(38.4, 118.6),

continuous.test.sd=c(21.3, 48.6),

true.status=

c(0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,

1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0,

1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0,

1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,

0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1,

1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,

0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,

1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1,

1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1,
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0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,

0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0,

1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,

1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1,

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0,

1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1,

1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,

0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1,

0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,

1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1,

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0,

0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,

1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,

1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1,

1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,

0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0,

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,

0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1,

0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,

0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
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0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1,

1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,

0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1,

0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,

0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,

1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1,

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0,

1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1,

1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0)))

#calling WinBUGS, given the initial values and parameters above

posterior =bugs(data=data.list, inits=initials, parameters,

"Bugs.txt", n.iter=5000, n.chains=1,n.burnin=1000,

n.thin=3, debug=TRUE)

#[,1] mean, [,2] sd, [,3] 2.5%, [,7] 97.5%

data.sens[i,]=c(posterior$summary[1,1],posterior$summary[1,2],

posterior$summary[1,3],posterior$summary[1,7])

data.spec[i,]=c(posterior$summary[2,1],posterior$summary[2,2],

posterior$summary[2,3],posterior$summary[2,7])

data.beta0[i,]=c(posterior$summary[3,1],posterior$summary[3,2],

posterior$summary[3,3],posterior$summary[3,7])

data.beta1[i,]=c(posterior$summary[4,1],posterior$summary[4,2],

posterior$summary[4,3],posterior$summary[4,7])

data.sens.X[i,]=c(posterior$summary[5,1],posterior$summary[5,2],

posterior$summary[5,3],posterior$summary[5,7])

data.spec.X[i,]=c(posterior$summary[6,1],posterior$summary[6,2],
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posterior$summary[6,3],posterior$summary[6,7])

data.deviance[i,]=c(posterior$summary[7,1],posterior$summary[7,2],

posterior$summary[7,3],posterior$summary[7,7])

############ Coverage ############

#sens

if(sens>posterior$summary[1,3] && sens<posterior$summary[1,7])

{ cov.sens=1 }

else { cov.sens=0 }

coverage.sens=c(coverage.sens,cov.sens)

#spec

if(spec>posterior$summary[2,3] && spec<posterior$summary[2,7])

{ cov.spec=1 }

else { cov.spec=0 }

coverage.spec=c(coverage.spec,cov.spec)

#beta0

if(beta0>posterior$summary[3,3] && beta0<posterior$summary[3,7])

{ cov.beta0=1 }

else { cov.beta0=0 }

coverage.beta0=c(coverage.beta0,cov.beta0)

#beta1

if(beta1>posterior$summary[4,3] && beta1<posterior$summary[4,7])

{ cov.beta1=1 }

else { cov.beta1=0 }

coverage.beta1=c(coverage.beta1,cov.beta1)

#sens.X

if(sens.X>posterior$summary[5,3] && sens.X<posterior$summary[5,7])
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{ cov.sens.X=1 }

else { cov.sens.X=0 }

coverage.sens.X=c(coverage.sens.X,cov.sens.X)

#spec.X

if(spec.X>posterior$summary[6,3] && spec.X<posterior$summary[6,7])

{ cov.spec.X=1 }

else { cov.spec.X=0 }

coverage.spec.X=c(coverage.spec.X,cov.spec.X)

}

#print our bugs output by parameter

# (average of all m simulations)

avg.sens = c(mean(data.sens[,1]), mean(data.sens[,2]),

mean(data.sens[,3]), mean(data.sens[,4]))

avg.spec = c(mean(data.spec[,1]), mean(data.spec[,2]),

mean(data.spec[,3]), mean(data.spec[,4]))

avg.beta0 = c(mean(data.beta0[,1]), mean(data.beta0[,2]),

mean(data.beta0[,3]), mean(data.beta0[,4]))

avg.beta1 = c(mean(data.beta1[,1]), mean(data.beta1[,2]),

mean(data.beta1[,3]), mean(data.beta1[,4]))

avg.sens.X = c(mean(data.sens.X[,1]), mean(data.sens.X[,2]),

mean(data.sens.X[,3]), mean(data.sens.X[,4]))

avg.spec.X = c(mean(data.spec.X[,1]), mean(data.spec.X[,2]),

mean(data.spec.X[,3]), mean(data.spec.X[,4]))

avg.deviance=c(mean(data.deviance[,1]),mean(data.deviance[,2]),

mean(data.deviance[,3]), mean(data.deviance[,4]))

avg.cov.sens = sum(coverage.sens)/m
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avg.cov.spec = sum(coverage.spec)/m

avg.cov.beta0 = sum(coverage.beta0)/m

avg.cov.beta1 = sum(coverage.beta1)/m

avg.cov.sens.X = sum(coverage.sens.X)/m

avg.cov.spec.X = sum(coverage.spec.X)/m

#print summary stats

#print coverage

A.2 WinBUGS Code, Simulated Data

model

{

# N: number of observations

for (i in 1:N)

{

#true.status = Y, 0 or 1

true.status[i] ~ dbern(prev[i])

true.status.index[i] <- 1 + true.status[i]

# -- Covariate --

#E is the exposure, the true status of covariates

logit(prev[i]) <- beta0 + beta1*E[i]

E[i] ~ dbern(p.E)

#X is the fallible diagnostic test for exposure

#X is the observed covariates

X[i] ~ dbern(p.X[i])

p.X[i] <- E[i]*sens.X+(1-E[i])*(1-spec.X)

#sens.X and spec.X are the sens and spec for X,

#the true status of the covariates
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# -- Dichotomous test(s) --

#diagnostic tests are T (T_1, T_2, etc.), 0 or 1

T[i] ~ dbern(pos.diag.pr[i, 1, true.status.index[i]])

pos.diag.pr[i, 1, 2] <- sens

pos.diag.pr[i, 1, 1] <- 1 - spec

# -- Continuous test --

#continuous.test = W

continuous.test[i] ~

dnorm(continuous.test.mean[true.status.index[i]],

continuous.test.tau[true.status.index[i]])

}

# ---- Priors -----------------------------------

#p.X is the Bern prob for true status of covariates

p.X ~ dbeta(50, 50)

sens ~ dbeta(sens.alpha, sens.beta)

spec ~ dbeta(spec.alpha, spec.beta)

sens.X ~ dbeta(sens.alpha.x, sens.beta.x)

spec.X ~ dbeta(spec.alpha.x, spec.beta.x)

beta0 ~ dnorm(b0.mu, b0.prec)

beta1 ~ dnorm(b1.mu, b1.prec)

for (j in 1:2)

{

continuous.test.mean[j] ~ dnorm(continuous.test.mean.mean[j],

continuous.test.mean.tau[j])
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continuous.test.sd[j] ~ dunif(continuous.test.sd.lower[j],

continuous.test.sd.upper[j])

continuous.test.tau[j] <- 1/pow(continuous.test.sd[j],2)

}

}

A.3 WinBUGS Code, Beaujean Data, With Misclassification

#with X and T both misclassified

model

{

# N: number of observations

for (i in 1:N)

{

#true.status = Y, 0 or 1

true.status[i] ~ dbern(prev[i])

true.status.index[i] <- 1 + true.status[i]

# -- Covariate --

#E is the exposure, the true status of covariates

logit(prev[i]) <- beta0 + beta1*E[i] + beta2*Z1[i]

+ beta3*Z2[i] + beta4*Z3[i]

E[i] ~ dbern(p.E[i])

logit(p.E[i]) <- gamma0 + gamma1*Z1[i]

+ gamma2*Z2[i] + gamma3*Z3[i]

#Z1 is location, Z2 is HSGPA, Z3 is sex

#X is the fallible diagnostic test for exposure;

# the observed covariates

#X is the verbal points
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#Se1, Se2, Sp1, Sp2 are the sens and spec for the 2 X’s,

#for the true status of the covariates

# 1,0,0,0 if both 1s; 0,1,0,0 if MJ3PC 1 and MJ3RF 0

# 0,0,1,0 if MJ3PC 0 and MJ3RF 1; 0,0,0,1 if both 0s

p.X[i,1] <- E[i]*se.X1*se.X2 + (1-E[i])*(1-sp.X1)*(1-sp.X2)

p.X[i,2] <- E[i]*se.X1*(1-se.X2) + (1-E[i])*(1-sp.X1)*sp.X2

p.X[i,3] <- E[i]*(1-se.X1)*se.X2 + (1-E[i])*sp.X1*(1-sp.X2)

p.X[i,4] <- E[i]*(1-se.X1)*(1-se.X2) + (1-E[i])*sp.X1*sp.X2

X[i,1:4] ~ dmulti(p.X[i,1:4],1)

# -- Dichotomous test(s) --

#D=2

#two math tests, MF, MCS

# 1,0,0,0 if both 1s; 0,1,0,0 if MF 1 and MCS 0

# 0,0,1,0 if MF 0 and MCS 1; 0,0,0,1 if both 0s

#diagnostic tests are T (T_1, T_2, etc.), 0 or 1

p.T[i,1] <- true.status[i]*se1*se2

+ (1-true.status[i])*(1-sp1)*(1-sp2)

p.T[i,2] <- true.status[i]*se1*(1-se2)

+ (1-true.status[i])*(1-sp1)*sp2

p.T[i,3] <- true.status[i]*(1-se1)*se2

+ (1-true.status[i])*sp1*(1-sp2)

p.T[i,4] <- true.status[i]*(1-se1)*(1-se2)

+ (1-true.status[i])*sp1*sp2

T[i,1:4] ~ dmulti(p.T[i,1:4],1)

# -- Continuous test --
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#math, AP

#continuous.test = W

continuous.test[i] ~

dnorm(continuous.test.mean[true.status.index[i]],

continuous.test.tau[true.status.index[i]])

}

# ---- Priors -----------------------------------

#p.X is the Bern prob for true status of covariates

#p.X ~ dbeta(50, 50)

se1 ~ dbeta(sens.alpha, sens.beta)

sp1 ~ dbeta(spec.alpha, spec.beta)

se2 ~ dbeta(sens.alpha, sens.beta)

sp2 ~ dbeta(spec.alpha, spec.beta)

se.X1 ~ dbeta(sens.alpha.x, sens.beta.x)

sp.X1 ~ dbeta(spec.alpha.x, spec.beta.x)

se.X2 ~ dbeta(sens.alpha.x, sens.beta.x)

sp.X2 ~ dbeta(spec.alpha.x, spec.beta.x)

beta0 ~ dnorm(b0.mu, b0.prec)

beta1 ~ dnorm(b1.mu, b1.prec)

beta2 ~ dnorm(b2.mu, b2.prec)

beta3 ~ dnorm(b3.mu, b3.prec)

beta4 ~ dnorm(b4.mu, b4.prec)

for (j in 1:2)

{

continuous.test.mean[j] ~ dnorm(continuous.test.mean.mean[j],
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continuous.test.mean.tau[j])

continuous.test.sd[j] ~ dunif(continuous.test.sd.lower[j],

continuous.test.sd.upper[j])

continuous.test.tau[j] <- 1/pow(continuous.test.sd[j],2)

}

}

A.4 WinBUGS Code, Beaujean Data, No Misclassification

# BUGS code, new

model

{

# N: number of observations

for (i in 1:N)

{

#true.status = Y, 0 or 1

true.status[i] ~ dbern(prev[i])

true.status.index[i] <- 1 + true.status[i]

# -- Covariate --

logit(prev[i]) <- beta0 + beta1*E[i] + beta2*Z1[i]

+ beta3*Z2[i] + beta4*Z3[i]

#E is the exposure, the true status of covariates

#Z1 is location, Z2 is HSGPA, Z3 is sex

#use MJ3PC (Passage Comprehension) for E

# -- Dichotomous test(s) --

T[i] ~ dbern(prev[i])

#use MCS for T

# -- Continuous test --

#math, AP
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#continuous.test = W

continuous.test[i] ~

dnorm(continuous.test.mean[true.status.index[i]],

continuous.test.tau[true.status.index[i]])

}

# ---- Priors -----------------------------------

se ~ dbeta(sens.alpha, sens.beta)

sp ~ dbeta(spec.alpha, spec.beta)

se.X ~ dbeta(sens.alpha.x, sens.beta.x)

sp.X ~ dbeta(spec.alpha.x, spec.beta.x)

beta0 ~ dnorm(b0.mu, b0.prec)

beta1 ~ dnorm(b1.mu, b1.prec)

beta2 ~ dnorm(b2.mu, b2.prec)

beta3 ~ dnorm(b3.mu, b3.prec)

beta4 ~ dnorm(b4.mu, b4.prec)

for (j in 1:2)

{

continuous.test.mean[j] ~ dnorm(continuous.test.mean.mean[j],

continuous.test.mean.tau[j])

continuous.test.sd[j] ~ dunif(continuous.test.sd.lower[j],

continuous.test.sd.upper[j])

continuous.test.tau[j] <- 1/pow(continuous.test.sd[j],2)

}

}
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APPENDIX B

Independent Efficacy and Safety Codes

B.1 R Code for the Model Not Accounting for Underreporting

library(R2WinBUGS)

library(MASS)

n<-100 #data: Normal - sample size

t<-100 #data: Poisson - sample size

m<-500

data.delta=matrix(0,m,4)

data.delta.r=matrix(0,m,4)

p.value1 <- vector()

p.value2 <- vector()

power.lambda=matrix(0,m,4)

power.mu=matrix(0,m,4)

for(k in 1:m){

alpha1 <- 4

#shape parameter for lambda1 gamma for population 1

beta1 <- 1

#scale parameter for lambda1 gamma for population 1

delta.r <- 2

lambda1 <- rgamma(1, alpha1, beta1)

#mean: alpha1/beta1

lambda2 <- delta.r + lambda1

#want this to be 2

116



mu.theta <- 80

#mean for theta

tau.theta <- 5

#variance for theta

delta <- 5

theta <- rnorm(1, mu.theta, tau.theta) #mean: 80

mean.x <- theta + delta

mu.r1 <- t*lambda1

mu.r2 <- t*lambda2

#safety

r1 <- rpois(1, mu.r1)

r2 <- rpois(1, mu.r2)

a=15

b=20

sig <- runif(1, a, b)

tau <- 1/(sig*sig)

#efficacy

y <- rnorm(n, theta, sig)

x <- rnorm(n, mean.x, sig)

#the data list from the defined data

data.list<-list("n","t","r1","r2","y","x")

#parameters of interest

parameters<-list("delta", "delta.r","p.val.lambda","p.val.mu")

#initial values

initials<-list(list(lambda1=1, theta=80 , sig=17))

#calling WinBUGS, given the initial values and parameters above
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pow =bugs(data=data.list, inits=initials, parameters,

"BUGS_Ch3_NOunderrep_07MAY12.txt", n.iter=10000,

n.chains=1, n.burnin=1000)

#[,1] mean, [,2] sd, [,3] 2.5%, [,7] 97.5%

data.delta[k,]=c(pow$summary[1,1],pow$summary[1,2],

pow$summary[1,3],pow$summary[1,7])

data.delta.r[k,]=c(pow$summary[2,1],pow$summary[2,2],

pow$summary[2,3],pow$summary[2,7])

power.lambda[k,]=c(pow$summary[3,1],pow$summary[3,2],

pow$summary[3,4],pow$summary[3,6])

power.mu[k,]=c(pow$summary[4,1],pow$summary[4,2],

pow$summary[4,4],pow$summary[4,6])

# assign a value of 1 if the posterior probability

# is greater than 0.95 and a value of 0 otherwise

if(power.mu[k,1]>0.95){p.value1[k]=1} else p.value1[k]=0

if(power.lambda[k,1]>0.95){p.value2[k]=1} else p.value2[k]=0

}

avg.delta=c(mean(data.delta[,1]), mean(data.delta[,2]),

mean(data.delta[,3]), mean(data.delta[,4]))

avg.delta

avg.delta.r=c(mean(data.delta.r[,1]), mean(data.delta.r[,2]),

mean(data.delta.r[,3]), mean(data.delta.r[,4]))

avg.delta.r

#the average power
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power.delta.mu <- mean(p.value1)

power.delta.lam <- mean(p.value2)

power.delta.mu

power.delta.lam

B.2 WinBUGS Code for the Model Not Accounting for Underreporting

model

{

for (i in 1:n)

{

#efficacy

y[i] ~ dnorm(theta, tau)

x[i] ~ dnorm(mean.x, tau)

}

theta ~ dnorm(0, 0.0001) #non-informative

mean.x ~ dnorm(0, 0.0001)

delta <- mean.x - theta

#mean.x <- theta + delta

#delta ~ dnorm(0, 0.000001)

tau <- 1/(sig*sig)

#sig ~ dunif(.01,200)

sig ~ dunif(.1,50)

#safety

r1 ~ dpois(mu.r1)

r2 ~ dpois(mu.r2)

mu.r1 <- t*lambda1

mu.r2 <- t*lambda2

lambda1 ~ dgamma(.01, .01) #non-informative

119



lambda2 ~ dgamma(.01, .01)

delta.r <- lambda2 - lambda1

#lambda2 <- delta.r + lambda1

#delta.r ~ dnorm(0, 0.000001)

p.val.lambda <- step(delta.r)

p.val.mu <- step(delta)

}

B.3 R Code for the Model Accounting for Underreporting

library(R2WinBUGS)

library(MASS)

n<-20 #data: Normal - sample size

t<-20 #data: Poisson - sample size

m<-500

data.delta=matrix(0,m,4)

data.delta.r=matrix(0,m,4)

p.value1 <- vector()

p.value2 <- vector()

power.lambda=matrix(0,m,4)

power.mu=matrix(0,m,4)

for(k in 1:m){

alpha1 <- 4 #shape parameter for lambda1 gamma

beta1 <- 1 #scale parameter for lambda1 gamma

delta.r <- 2

lambda1 <- rgamma(1, alpha1, beta1) #mean: alpha1/beta1

lambda2 <- delta.r + lambda1 #want this to be 2

mu.theta <- 80 #mean for theta
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tau.theta <- 5 #variance for theta

delta <- 5

theta <- rnorm(1, mu.theta, tau.theta) #mean: 80

mean.x <- theta + delta

c <- 90 #first parameter for binomial prior

d <- 10 #first parameter for binomial prior

p <- rbeta(1, c, d)

A1 <- t*lambda1*p

A2 <- t*lambda2*p

#underreporting, safety

w1 <- rpois(1, A1)

w2 <- rpois(1, A2)

a=15

b=20

sig <- runif(1, a, b)

tau <- 1/(sig*sig)

#efficacy

y <- rnorm(n, theta, sig)

x <- rnorm(n, mean.x, sig)

#the data list from the defined data

data.list<-list("n","c","d","t","y","x","w1","w2")

#parameters of interest

parameters<-list("delta", "delta.r","p.val.lambda","p.val.mu")

#initial values

initials<-list(list(lambda1=1, theta=80 , sig=17 , p=.9))

#calling WinBUGS, given the initial values and parameters above
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pow=bugs(data=data.list, inits=initials, parameters,

"BUGS_Ch3_Underreporting_07MAY12.txt", n.iter=10000,

n.chains=1, n.burnin=1000)

#[,1] mean, [,2] sd, [,3] 2.5%, [,7] 97.5%

data.delta[k,]=c(pow$summary[1,1],pow$summary[1,2],

pow$summary[1,3],pow$summary[1,7])

data.delta.r[k,]=c(pow$summary[2,1],pow$summary[2,2],

pow$summary[2,3],pow$summary[2,7])

power.lambda[k,]=c(pow$summary[3,1],pow$summary[3,2],

pow$summary[3,4],pow$summary[3,6])

power.mu[k,]=c(pow$summary[4,1],pow$summary[4,2],

pow$summary[4,4],pow$summary[4,6])

# assign a value of 1 if the posterior probability is greater

# than 0.95 and a value of 0 otherwise

if(power.mu[k,1]>0.95){p.value1[k]=1} else p.value1[k]=0

if(power.lambda[k,1]>0.95){p.value2[k]=1} else p.value2[k]=0

}

avg.delta = c(mean(data.delta[,1]), mean(data.delta[,2]),

mean(data.delta[,3]), mean(data.delta[,4]))

avg.delta

avg.delta.r = c(mean(data.delta.r[,1]), mean(data.delta.r[,2]),

mean(data.delta.r[,3]), mean(data.delta.r[,4]))

avg.delta.r

122



#the average power

power.delta.mu <- mean(p.value1)

power.delta.lam <- mean(p.value2)

power.delta.mu

power.delta.lam

B.4 WinBUGS Code for the Model Accounting for Underreporting

model

{

for (i in 1:n)

{

#efficacy

y[i] ~ dnorm(theta, tau)

x[i] ~ dnorm(mean.x, tau)

}

theta ~ dnorm(0, 0.0001) #non-informative

mean.x ~ dnorm(0, 0.0001)

delta <- mean.x - theta

#mean.x <- theta + delta

#delta ~ dnorm(0, 0.000001)

tau <- 1/(sig*sig)

#sig ~ dunif(.01,200)

sig ~ dunif(.1,50)

#underreporting for safety

w1 ~ dpois(A1)

w2 ~ dpois(A2)

A1 <- t*lambda1*p

A2 <- t*lambda2*p
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p ~ dbeta(c, d)

lambda1 ~ dgamma(.01, .01) #non-informative

lambda2 ~ dgamma(.01, .01)

delta.r <- lambda2 - lambda1

#lambda2 <- delta.r + lambda1

#delta.r ~ dnorm(0, 0.000001)

p.val.lambda <- step(delta.r)

p.val.mu <- step(delta)

}
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APPENDIX C

Code for Dependent Efficacy and Safety

C.1 R Code for the Model Not Accounting for Underreporting

library(R2WinBUGS)

library(MASS)

n<-165

m<-500

data.beta1=matrix(0,m,4)

data.gamma1=matrix(0,m,4)

power.beta=matrix(0,m,4)

power.gamma=matrix(0,m,4)

p.value1 <- vector()

p.value2 <- vector()

for(k in 1:m){

beta0 <- rnorm(1, 10, 3)

beta1 <- 3

#treatment has an increase of ’beta1’ units

gamma0 <- rnorm(1, 0.1, 0.05)

gamma1 <- log(2) #difference in treatments is exp(gamma1)

gamma2 <- rnorm(1, 0.1, 0.05) #needs to be small

a=5

b=10

sig <- runif(1, a, b)

tau <- 1/(sig*sig)
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Z <- rbinom(n, 1, 0.5)

theta <- beta0 + beta1*Z

#efficacy

y <- rnorm(n, theta, sig)

#safety

mu.r <- exp(gamma0 + gamma1*Z + gamma2*(y-theta))

r <- rpois(n, mu.r)

#the data list from the defined data

data.list<-list("n","r","y","Z")

#parameters of interest

parameters<-list("beta1","gamma1","p.val.beta","p.val.gamma")

#initial values

initials<-list(list(lambda1=1))

#calling WinBUGS, given the initial values and parameters above

pow =bugs(data=data.list, inits=initials, parameters,

"BUGS_Ch4_NOunderrep.txt", n.iter=10000,

n.chains=1, n.burnin=1000, n.thin=1)

#[,1] mean, [,2] sd, [,3] 2.5%, [,7] 97.5%

data.beta1[k,]=c(pow$summary[1,1],pow$summary[1,2],

pow$summary[1,4],pow$summary[1,6])

data.gamma1[k,]=c(pow$summary[2,1],pow$summary[2,2],

pow$summary[2,4],pow$summary[2,6])

power.beta[k,]=c(pow$summary[3,1],pow$summary[3,2],

pow$summary[3,4],pow$summary[3,6])

power.gamma[k,]=c(pow$summary[4,1],pow$summary[4,2],
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pow$summary[4,4],pow$summary[4,6])

# assign a value of 1 if the posterior probability is

# greater than 0.95 and a value of 0 otherwise

if(power.beta[k,1]>0.95){p.value1[k]=1} else p.value1[k]=0

if(power.gamma[k,1]>0.95){p.value2[k]=1} else p.value2[k]=0

}

avg.beta1 = c(mean(data.beta1[,1]), mean(data.beta1[,2]),

mean(data.beta1[,3]), mean(data.beta1[,4]))

avg.beta1

avg.gamma1 = c(mean(data.gamma1[,1]), mean(data.gamma1[,2]),

mean(data.gamma1[,3]), mean(data.gamma1[,4]))

avg.gamma1

#the average power

power.beta1 <- mean(p.value1)

power.gamma1 <- mean(p.value2)

power.beta1

power.gamma1

C.2 WinBUGS Code for the Model Not Accounting for Underreporting

model

{

for (i in 1:n)

{

y[i] ~ dnorm(theta[i], tau)

#this includes all the data (x and y)

theta[i] <- beta0 + beta1*Z[i]
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#Z is an indicator. if Z=0, data=y. if Z=1, data=x

r[i] ~ dpois(mu.r[i]) #all r’s together

log(mu.r[i]) <- gamma0 + gamma1*Z[i] + gamma2*(y[i]-theta[i])

}

tau <- 1/(sig*sig)

sig ~ dunif(0.1, 50)

beta0 ~ dnorm(0, 0.0001)

beta1 ~ dnorm(0, 0.0001)

gamma0 ~ dnorm(0, 0.1)

gamma1 ~ dnorm(0, 0.1)

gamma2 ~ dnorm(0, 0.1)

p.val.beta <- step(beta1)

p.val.gamma <- step(gamma1)

}

C.3 R Code for the Model Accounting for Underreporting

library(R2WinBUGS)

library(MASS)

n<-180

m<-500

data.beta1=matrix(0,m,4)

data.gamma1=matrix(0,m,4)

power.beta=matrix(0,m,4)

power.gamma=matrix(0,m,4)

p.value1 <- vector()

p.value2 <- vector()

for(k in 1:m){
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beta0 <- rnorm(1, 10, 3)

beta1 <- 3

#treatment has an increase of ’beta1’ units

gamma0 <- rnorm(1, 0.1, 0.05)

gamma1 <- log(2) #difference in treatments is exp(gamma1)

gamma2 <- rnorm(1, 0.1, 0.05) #needs to be small

a=5

b=15

sig <- runif(1, a, b)

tau <- 1/(sig*sig)

Z <- rbinom(n, 1, 0.5)

theta <- beta0 + beta1*Z

#efficacy

y <- rnorm(n, theta, sig)

c <- 50 #first parameter for binomial prior

d <- 10 #first parameter for binomial prior

p <- rbeta(1, c, d)

#safety

#underreporting

mu.r <- exp(gamma0 + gamma1*Z + gamma2*(y-theta))

mu.w <- p*mu.r

w <- rpois(n, mu.w)

#the data list from the defined data

data.list<-list("n","w","y","Z")

#parameters of interest

parameters<-list("beta1","gamma1","p.val.beta","p.val.gamma")
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#initial values

initials<-list(list(beta0=0, beta1=0, gamma0=0,

gamma1=0, gamma2=0, p=.9))

#calling WinBUGS, given the initial values and parameters above

pow =bugs(data=data.list, inits=initials, parameters,

"BUGS_Ch4_Underreporting.txt", n.iter=10000,

n.chains=1, n.burnin=1000, n.thin=10)

#[,1] mean, [,2] sd, [,3] 2.5%, [,7] 97.5%

data.beta1[k,]=c(pow$summary[1,1],pow$summary[1,2],

pow$summary[1,3],pow$summary[1,7])

data.gamma1[k,]=c(pow$summary[2,1],pow$summary[2,2],

pow$summary[2,3],pow$summary[2,7])

power.beta[k,]=c(pow$summary[3,1],pow$summary[3,2],

pow$summary[3,4],pow$summary[3,6])

power.gamma[k,]=c(pow$summary[4,1],pow$summary[4,2],

pow$summary[4,4],pow$summary[4,6])

# assign a value of 1 if the posterior probability is

# greater than 0.95 and a value of 0 otherwise

if(power.beta[k,1]>0.95){p.value1[k]=1} else p.value1[k]=0

if(power.gamma[k,1]>0.95){p.value2[k]=1} else p.value2[k]=0

}

avg.beta1 = c(mean(data.beta1[,1]), mean(data.beta1[,2]),

mean(data.beta1[,3]), mean(data.beta1[,4]))

avg.beta1

avg.gamma1 = c(mean(data.gamma1[,1]), mean(data.gamma1[,2]),
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mean(data.gamma1[,3]), mean(data.gamma1[,4]))

avg.gamma1

#the average power

power.beta1 <- mean(p.value1)

power.gamma1 <- mean(p.value2)

power.beta1

power.gamma1

C.4 WinBUGS Code for the Model Accounting for Underreporting

model

{

for (i in 1:n)

{

y[i] ~ dnorm(mu.y[i], tau)

#this includes all the data (x and y)

mu.y[i] <- beta0 + beta1*Z[i]

#Z is an indicator. if Z=0, data=y. if Z=1, data=x

w[i] ~ dpois(mu.w[i]) #all r’s together

log(mu.r[i]) <- gamma0 + gamma1*Z[i] + gamma2*(y[i]-mu.y[i])

mu.w[i] <- p*mu.r[i]

}

tau <- 1/(sig*sig)

sig ~ dunif(0.1, 50)

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

gamma0 ~ dnorm(0, 0.1)

gamma1 ~ dnorm(0, 0.1)
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gamma2 ~ dnorm(0, 0.1)

p ~ dbeta(50, 10)

p.val.beta <- step(beta1)

p.val.gamma <- step(gamma1)

}
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APPENDIX D

Code for Meta Analysis

D.1 MeSH Terms for Literature Search

(‘‘surgical procedures, operative’’[MeSH Terms] OR

(‘‘surgical’’[All Fields] AND ‘‘procedures’’[All Fields] AND

‘‘operative’’[All Fields]) OR ‘‘operative surgical procedures’’[All Fields]

OR ‘‘surgical’’[All Fields]) AND ablation[All Fields] AND

(‘‘atrial fibrillation’’[MeSH Terms] OR (‘‘atrial’’[All Fields]

AND ‘‘fibrillation’’[All Fields]) OR ‘‘atrial fibrillation’’[All Fields])

D.2 R Code for Meta Analysis

library(meta)

meta1 <- metaprop(event, samp_size, studlab=paste(Reference), data=data1)

forest(meta1, rightcols=c("effect", "ci", "w.fixed"), sm="PRAW",

comb.random=FALSE, leftlabs=c("Author", NA, NA, NA, NA),

title="Overall Outcome")

funnel(meta1)
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