
 

 
 
 
 
 
 
 
 

ABSTRACT 
 

Short-Term Load Forecasting Using System-Type Neural Network Architecture 
 

Shu Du, M.S. 
 

Mentor: Kwang Y. Lee, Ph.D. 
 
 
 This thesis presents a methodology for short-term load forecasting using a 

system-type neural network based on semigroup theory. A technique referred to as 

algebraic decomposition is used to decompose a distributed parameter system into a 

semigroup channel made of coefficient vectors and a function channel made of basis 

vectors. The actual load data is preprocessed by regression to become better correlated to 

daily time and temperatures. A rearrangement method based on the hourly temperature is 

developed to solve the problem of the roughness of the coefficient vector in the 

seimigroup channel. Interpolation or extrapolation of coefficient vector can be achieved 

for each hour using the historical temperatures and the temperature forecast. 

Recombination of the basis vector and predicted coefficient vector will give the next-day 

load forecasting. Load data from New England Independent System Operator is used to 

verify the capability of the proposed approach.  
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CHAPTER ONE 
 

Introduction 
 
 

Forecasting load accurately plays a very important role for electric utilities in a 

competitive environment created by the electric industry deregulation. An electric 

company is confronted with many economical and technical problems in operation, 

planning, and control of an electric energy system since customers requires high quality 

electric energy to be supplied in a secure and economic manner [1]. Load forecasting 

helps an electric utility with making important decisions on generating, interchanging, 

and purchasing electric power, load switching, and infrastructure development. Besides 

load forecasting is crucial for energy suppliers, financial institutions, and others involved 

in electric energy generation, transmission, distribution, and markets [2]. 

Based on various time intervals, load forecasting can be divided into three main 

categories: short-term forecasting, medium-term forecasting and long-term forecasting. 

Short-term forecasting usually forecasts one hour to one week, medium-term forecasting 

concerns the future electric load from a week to a month, and long-term forecasting often  

predicts load of a year or even longer. The short-term forecasting is used for controlling 

and scheduling power generation, and also as inputs to load-flow study or contingency 

analysis [1]. Additionally, short-term load forecasting can assist in estimating load flows 

and in making decisions to prevent overloading of power system components. The 

medium-term and long-term forecasting are applied to determine the capacity of 

generation, transmission, or distribution system additions, the type of facilities required in 
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transmission expansion planning, annual hydrothermal maintenance scheduling, etc.  

According to the work of Lee and Park [1], the load is a dynamic system which is 

mostly affected by two factors: time of the day and weather conditions. The time 

dependence of the load reflects the existence of a daily load pattern, which may vary for 

different weekdays and seasons. Among weather variables, temperature usually is the 

dominant weather factors influencing the load. Humidity and wind speed may also 

impact electric power consumption. For the models including weather variables, the total 

load may be decomposed into the non-weather sensitive load and the weather sensitive 

load which is usually predicted using correlation techniques. Besides, load series present 

different patterns for different types of customers. For instance, load consumed by 

residential and commercial customers usually shows a strong seasonal behavior as well as 

dependence on weather conditions. On the other hand, load with an industrial profile is 

much determined by operational decisions in a production or manufacturing facility. 

Short-term load forecasting draws much attention. A variety of methods using 

statistical techniques or artificial intelligence algorithms, which include regression 

models, time series, neural networks, statistical learning algorithms, fuzzy logic, or expert 

systems, have been developed for short-term forecasting [1]. These methods all have 

been succeeded in short-term load forecasting problems. The success of a forecasting 

technique depends not only on the approach but also on the quality of input data which 

could contain proper patterns representing the system dynamics. In general, the load 

presents two distinct patterns: weekday and weekend load patterns. Weekday patterns 

include Tuesday through Friday and weekend patterns include Sunday through Monday. 

In addition, holiday patterns are different from non-holiday patterns. 
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Forecasting has been expected as one of the most promising application areas of 

artificial neural network (ANN). In the past, several authors have successfully applied the 

backpropagation learning algorithm to train ANNs for forecasting time series. However, 

there was also a negative opinion that the forecasting performance of the backpropagation 

algorithm was inferior to the simple linear regression. In order to address the importance 

of ANNs in power system engineering, The National Science Foundation organized a 

workshop and the results demonstrated that ANNs can be successfully used in short-term 

load forecasting with accepted accuracy [3]. 

The purpose of this thesis is to apply the proposed system-type neural network 

architecture based on semigroup theory to accomplish short-term load forecasting. Given 

the data from New England Independent System Operator, regression used for 

preprocessing the raw load data and a rearrangement step with respect to temperatures are 

both performed. A modeling technique, algebraic decomposition, decomposes the whole 

system into basis vector and coefficient vector which are correspondingly delivered to 

function channel and semigroup channel in the system-type neural network. The product 

of the predicted coefficient vector generated in semigroup channel and the basis vector in 

function channel supplies the next-day load forecasting.  

This thesis consists of following chapters. Chapter two will introduce several 

approaches for short-term load forecasting. A few important neural networks are 

presented in Chapter three. Chapter four will give a general introduction to semigroup 

theory. The proposed approach in this thesis will be shown in Chapter five. Results are 

shown and discussed in Chapter six, and conclusions are drawn in Chapter seven. 
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CHAPTER TWO 
 

Background 
 
 

In general forecasting methods can be divided into two broad categories: 

parametric methods and artificial intelligence based methods. Based on analyzing 

qualitative relationships between the load and the factors affecting the load, the 

parametric methods formulate mathematical or statistical models of load. Then the 

parameters of the built model are estimated from historical data and the performance of 

the model is verified by analysis of forecast errors. Artificial intelligence based methods 

use artificial neural networks or fuzzy systems as load models. For both of the categories, 

several factors should be considered in short-term load forecasting, such as the time 

factor, weather data as well as possible customers’ classes. The time factors influence the 

load hourly, daily and seasonally. Loads between weekdays and weekends, as well as 

holidays and non-holidays also show differences. Apparently the electric loads are 

dependent upon weather conditions significantly. Variations of dry-bulb temperature, 

dew point, wind speed, humidity, and cloud cover can change the load dynamics. This is 

especially true in residential areas. For those areas where the industry collects, 

temperature may not be an important variable any longer. It may be necessary to have 

information regarding operational decisions of plants taken into account as factors. 

 
Parametric Load Forecasting Methods 

 
Diverse statistical techniques have been developed for short-term load forecasting. 

One of the most widely used techniques is the regression method which is usually applied 
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to model the relationships of load consumption and other factors such as weather and 

non-weather variables influencing the electric load. Based on the summary made by 

Moghram and Rahman [4], the explanatory variables of the model are usually identified 

on the basis of correlation analysis on each of these (independent) variables with load 

(dependent) variable. Experience about the load to be modeled helps an initial 

identification of the possible influential variables. The estimation of the regression 

coefficients is usually achieved using the least square estimation technique. Statistical 

tests (such as the F-statistic test) can be performed to determine the significance of these 

regression coefficients.  

Another approach is the time-series method, which treat the load pattern as a 

time-series signal with known seasonal, weekly, and daily periodicities. These 

periodicities give a rough prediction of the load at the given season, day of the week and 

time of the day. The difference between the predicted and the actual load is considered as 

a stochastic process. The analysis of this random process leads to a more accurate 

prediction [5]. Time-series models are based on the assumption that the data have an 

internal structure. The forecasting methods detect and explore such a structure. 

Techniques used to estimate the time-series signal of a load pattern include 

Autoregressive (AR) model, Autoregressive Moving Average (ARMA) model, spectral 

expansion technique and state estimation. The AR model has been used for decades in 

such fields as economics, digital signal processing, as well as electric load forecasting. In 

[5], an adaptive autoregressive modeling technique enhanced with partial autocorrelation 

analysis was presented. The ARMA model is used to express current value linearly in 

terms of past values. It has been extensively applied to load forecasting. An ARMA 
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model was obtained by identifying a finite order AR model for hourly load forecasting 

[6]. The spectral expansion technique utilizes Fourier series. Load pattern can be 

decomposed into a number of sinusoids with different frequencies. Each sinusoid with a 

specific frequency represents an orthogonal base. A linear combination of these 

orthogonal bases with proper coefficients can represent a perfectly periodic load pattern if 

the orthogonal bases span the whole signal space. The behavior of weather independent 

load component can be represented by Fourier series in terms of time functions [7]. 

Besides, state equations are used to model the load demand. The main reason is that the 

popular Kalman filtering theory can be applied to obtain the optimum forecasts. The 

identification of the model parameters is the main difficulty associated with this approach 

because Kalman filtering theory assumes that the model is exactly known beforehand [8]. 

Generally, techniques in time-series approach work well unless there is an abrupt change 

in the environmental or sociological variables which are believed to affect load pattern. If 

there is any change in those variables, the time-series techniques cannot provide accurate 

forecasting.  

 
Artificial Intelligence Based Load Forecasting Methods 

 
Among artificial intelligence based models, artificial neural networks (ANN) have 

probably received the most attention because of their straightforward implementation and 

relatively good performance. The ANN has also been applied in other power system 

problems such as security assessment, harmonic load identification, alarm processing, 

fault diagnosis, and topological observability [9]. It is known that one of the most 

promising application areas of ANN is the load forecasting. The application of artificial 

neural networks has been a widely studied electric load forecasting technique. Neural 
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networks reduce the computational burden within the parametric approach. Unlike the 

parametric methods, the great superiority of using neural networks is that they are able to 

learn the above mentioned dependencies directly from the historical data without the 

necessity of selecting an appropriate model.  

The most popular architecture for short-term load forecasting is feedforward 

network with backpropagation training algorithm, which uses real valued functions and 

supervised learning. Several authors have applied the backpropagation learning algorithm 

[10] to train ANNs for forecasting time series. Application of this idea to the real world 

problem can be found in Werbos’s work [11], where he applied the backpropagation 

algorithm to the recurrent gas market model.  

There are a few types of neural networks that have been applied for load 

forecasting. A multi-layered feedforward network with one hidden neuron layer is most 

commonly used [1], [12]. A recurrent ANN trained by dynamic backpropagation 

algorithm is proposed as the methodology for electric load forecasting [13]. A nonlinear 

load model is suggested and the parameters of the nonlinear model are estimated using 

dynamic backpropagation algorithm. And a modified recurrent neural network, named 

diagonal recurrent neural network, is presented to overcome the training and convergence 

problems which arise from fully connected recurrent neural network (FRNN). This new 

architecture requires fewer weights than FRNN and rapid convergence has been 

demonstrated [14]. In [15], an architecture including two ANN forecasters, one predicts 

the base load and the other forecasts the change in load, is proposed. The final forecast is 

computed by an adaptive combination of these forecasts. Also a radial basis function 

network (RBFN) has the predictive capability and the ability to produce accurate 
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measures. A comparison between results from the RBFN and the backpropagation neural 

network shows that the former one performs better than the latter [16]. 

Other artificial intelligence based techniques, like fuzzy logic and support vector 

machines have been also applied, however, typically in conjunction with ANN or 

statistical models. Several hybrid models have been developed for load forecasting. A 

short-term load forecaster with an ANN and a fuzzy logic system is presented [17]. A 

genetic algorithm based approach is developed to automatically optimize the number of 

rules and the fuzzy membership functions. In [18], Senjyu et al. propose a hybrid model 

in which a fuzzy logic, based on similar days, corrects the neural network output to 

obtain the next day forecasted load. 



 

9 

 
 
 

CHAPTER THREE 
 

Artificial Neural Networks 
 
 

Overview 
 

“A neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity for storing experiential knowledge and 

making it available for use” [19]. The inspiration of neural networks was from 

examination of the central nervous system and the neurons. It imitates the brain at two 

aspects. First, the network acquires the knowledge from its environment by a learning 

process. Second, interneuron connection strengths, known as synaptic weights, function 

to store the obtained knowledge [19]. Neural networks appear to be developed recently. 

However, the earliest work in neural network science dates back to the 1940’s. The 

neurophysiologist Warren McCulloch and the logician Walter Pitts introduced the first 

artificial neuron [20]. This started a completely new era within artificial intelligence. The 

next major development in neural network is made by Donald Hebb. He published a book 

“The Organization of Behavior” [21] which supported and further reinforced the theory 

of McCulloch and Pitts. Though, the future was not as bright as it had appeared at first 

glance. After an initial period of enthusiasm, the field of neural network underwent a 

period of frustration and disrepute. Minsky and Papert pointed out the limitations that the 

perceptron (two-layer network) has [22]. Such limitations led to the decline of the neural 

networks. However, this did not prevent some pioneers from keeping interest in neural 

networks. In the early 1980’s, neural networks retrieved attention of researchers. 
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Nowadays, the study of the ANN models is receiving rapid and increasing importance 

because of their superiority on some of the problems which have been intractable by 

standard serial computers in computer science and artificial intelligence. Neural networks 

are better suited for achieving human-like performance in fields, such as aircraft control, 

voice synthesis, image recognition, machine vision, manipulator controllers, etc.  

 
Conventional Neural Network 

 
Neural network architecture can be broken down into two main categories: 

feedforward neural network which consists of single-layer or multi-layer networks, and 

feedback (recurrent) neural network which is in opposition to the former. Feedforward 

ANN was the first simplest type of neural network developed. The information travels in 

only one direction, forward, from input nodes to output nodes. There are no cycles or 

loops (feedbacks) in the network, which means the output of any layer does not affect 

that same or previous layer. Figure 1 shows a simple feedforward artificial neural 

network. It is composed of three layers of computational units: a layer of “input” units, a 

layer of “hidden” units, and a layer of “output” units. Each neuron in one layer has 

directed connections to the neurons of the subsequent layer. The hidden neuron is 

typically modeled with a nonlinear sigmoidal activation function. It also can be modeled 

with other activation functions to constitute other types of neural networks, such as 

Gaussian functions, in which case these are radial basis function networks (RBFN) [19]. 

Feedback network allows signals transporting in both directions so that it has 

closed loops in the network topology. Feedback is said to exist in a dynamic system 

whenever the output of an element in the system influences in part the input applied to 
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that particular element, thereby producing one or more closed paths for the transmission 

of signals around the system. 

Feedback networks are dynamic; their states are changing continuously until they 

reach an equilibrium point. Once the input changes, the states leave the equilibrium point 

and a new equilibrium needs to be found. Feedback neural networks are developed to 

handle the time varying or time-lagged patterns and are very useful for the problems in 

which the dynamics of the process is complex. Examples of the recurrent neural networks 

are: Hopfield network, Regressive networks, diagonal recurrent neural networks, and 

Elman networks. 

 

 

Figure 1. A simple feedforward neural network. 
 
 
Overview of Learning Algorithms 
 

“Learning is a process by which the free parameters of a neural network are 

adapted through a continuing process of stimulation by the environment in which the 

network is embedded. The type of learning is determined by the manner in which the 

Input layer Hidden layer Output layer 
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parameter changes take place” [19]. There are three major learning paradigms, each 

corresponding to particular abstract learning task. These are supervised learning, 

unsupervised learning and reinforcement learning. The task of the supervised learning is 

to predict the value of the function for any valid input object after having seen a number 

of training examples (i.e., pairs of input and target output). Examples of supervised 

learning algorithms include the least-mean-square (LMS) algorithm and its generalization 

known as the backpropagation algorithm. The LMS algorithm involves a single neuron, 

whereas the backpropagation algorithm involves a multi-layered interconnection of 

neurons. Normally, the backpropagation algorithm is more powerful in application than 

the LMS algorithm [19]. Unsupervised learning is distinguished from supervised learning 

in that the learner is given only unlabeled examples.[19] “Reinforcement learning is the 

on-line learning of an input-output mapping through a process of trial and error designed 

to maximize a scalar performance index called a reinforcement signal.” [19]  

The backpropagation learning algorithm is the most frequent-used method in 

training the feedforward neural networks. It is a generalization of the Widrow-Hoff error 

correction rule [23]. Basically, the backpropagation process consists of two passes 

through the different layers of the network: a forward pass and a backward pass. In the 

forward pass, an activity pattern (input vector) is applied to the sensory nodes of the 

network, and its effect propagates throughout the network. Finally, the network produces 

a set of outputs as the actual responses. In the forward pass the synaptic weights of the 

network are all fixed. On the other hand, the synaptic weights are all adjusted in 

accordance with the error-correction rule during the backward pass. An error signal is 

produced by subtracting the actual response of the network from a desired (target) 
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response. This error signal is propagated backward through the network in the opposite 

direction of synaptic connections. The synaptic weights are adjusted so as to make the 

actual response of the network to be as close as much to the desired response [19].  

 
Benefit of Neural Network 
 

Having outstanding ability to derive meaning from complicated or imprecise data, 

neural networks can be applied to detect or extract highly complex patterns and trends. A 

well trained neural network can be thought of as an “expert” in handling the category of 

information it has been given. This expert can then be used to provide projections given 

new situations and answer “what if” questions. 

“A neural network derives its computing power through its massively parallel 

distributed structure and its capability to learn and generalize” [19]. Generalization 

involves producing reasonable outputs for inputs not encountered during training. With 

these two information-processing capabilities, it is possible for neural networks to solve 

complex (large-scale) problems that are currently intractable. In practice, neural networks 

need to be integrated into a consistent system engineering approach rather than work by 

themselves alone. Specifically, a complex problem of interest is decomposed into a 

number of relatively simple tasks, and neural networks are assigned a subset of the tasks 

in which they can put their inherent capabilities to good use [19]. 

 
Failures and Shortcomings of Conventional Neural Networks 
 

Recently, overall architecture of neural networks tends to shift from simple or 

component-type networks to system-type architectures. System-type architectures make 

use of combination of several neural networks to settle more complex tasks. The reasons 
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why emphasis shifts from component-type to system-type neural networks include: first, 

in the interests of advancing science, system-type neural networks are considered as the 

next stage; second, drawbacks have been found out in component-type neural networks 

[24]. Therefore, it is essential to exploit a system-type neural network which utilizes one 

or more components to learn individual functions, and another component to synthesize 

their contributions.  

The first attempts marching toward system-type neural networks used various ad-

hoc approaches mainly based on intuition. Recent efforts have been made to develop a 

disciplined approach in this area. The most popular architecture seems to be the “Modular 

Connectionist Architecture” which was advocated by Jacobs and Jordan [25]. One 

example of this architecture is shown in Figure 2 [26]. A group of expert networks which 

are trained individually are connected together through a component called the “gating 

network” element which is to decide the relative contributions to be made by each expert 

network component.  

The most serious flaw in system-type neural networks is the shortage of a 

coherent discipline in the architecture design as well as the design of the learning 

algorithm. The entire design is completed on intuition. However, the proposed method 

depends on semigroup theory for the design of both architecture and the learning 

algorithm.  

 
Radial Basis Function Network 

 
Radial basis functions were first introduced in the solution of the real multivariate 

interpolation problem. The early work on this subject is surveyed by Powell [27]. In [19], 

the statement of the interpolation problem is supplied in its strict sense: 
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Given a set of N  different points },,2,1|{ 0 NiRx m
i L=∈  and a corresponding set 

of N  real numbers },,2,1|{ 1 NiRdi L=∈ , find a function 1: RRF N →  that satisfies the 

interpolation condition: 

 NidxF ii ,,2,1,)( L==  (1) 
 
 

 

Figure 2. Modular connectionist architecture [26]. 
 
 

The radial basis function technique involves choosing a function F  that has the 

following form: 

 ∑
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where },,2,1|||)(||{ Nixx i L=−ϕ  is a set of N  arbitrary (generally nonlinear) functions, 

known as radial basis functions, and || || denotes a norm that is usually taken to be 

Euclidean. The known data points NiRx m
i ,,2,1,0 L=∈  are taken to be the centers of the 

radial basis functions [19]. 
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The structure of a radial basis function network in its most basic form involves 

three completely different layers. The first layer is an input layer containing source nodes. 

The second layer is a hidden layer of high enough dimension, whose served purpose is 

different from that in a multilayer perceptron. The output layer responds to the activation 

patterns applied to the input layer. From the input space to the hidden-unit space, the 

transformation is nonlinear, whereas from the hidden-unit space to the output space it is 

linear [19]. Design of radial basis function network may need more neurons when 

compared to standard feedforward networks. However, radial basis networks can be 

designed in a fraction of the time spent on training standard feedforward networks. Figure 

3 shows the architecture of a radial basis function network.  

 

 

Figure 3. Radial basis function network [19]. 
 
 

A mathematical justification for the rationale of a nonlinear transformation 

followed by a linear transformation may be dated back to an early paper by Cover [28]. It 

is noted from this paper that a pattern classification problem cast in a high dimensional 

space is more likely to be linearly separable than in a low dimensional space. Hence this 
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is the reason for designing high dimension of the hidden-unit space in an RBF network. 

Nevertheless, through careful design it is still possible to reduce the dimension of the 

hidden-unit space, especially when the centers of the hidden units are made adaptive [19]. 

In addition, it is important to note that the dimension of hidden-unit space is directly 

influencing the performance of the network to approximate a smooth input-output 

mapping [29]. The higher the dimension of the hidden space is, the more accurate the 

approximation is. 

 
Diagonal Recurrent Neural Network 

 
The diagonal recurrent neural network (DRNN) was developed by Ku and Lee 

[30]. The architecture of DRNN is shown in Figure 4. Since there are no interlinks among 

neurons in the hidden layer, the DRNN has considerably fewer weights than the fully 

connected recurrent neural network and the network is simplified considerably. Therefore 

the DRNN requires a shorter training time. 

The mathematical model for DRNN is represented as follows: 

 ))(()( krfko o=  (3) 
 
 ∑ ==

j
jjj

O
j ksfkxkxwkr ))(()(),()(  (4) 

 
 ∑+−=

i
i

I
ijj

D
jj kiwkxwks )()1()(  (5) 

 
where )(kii is the thi  input to the DRNN, )(ks j  is the sum of inputs to the thj  recurrent 

neuron, )(kx j  is the output of the thj  recurrent neuron and )(ko  is the output of the 

DRNN. Here )(⋅of  and )(⋅f  are the common sigmoid functions, and Iw , Dw , and Ow  

are input, recurrent, and output weight vectors, respectively, in 
inR , 

dnR , and 
onR  [30]. 
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On the basis of the similar procedure from Ku and Lee, the following Lemma can be 

derived. 

 

 

Figure 4. Diagonal recurrent neural network [30]. 
 
 

Lemma: Given the DRNN and described by (3), (4), and (5), the output gradients 

with respect to output, recurrent, and input weights, respectively, are given by 
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where D
j

j
j w

kx
kp

∂

∂
≡
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)(  and I
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j
ij w

kx
kq

∂

∂
≡
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)( , and satisfy the dynamic equations 
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The error function is defined as follows: 
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Let pE  be the measure of error on pattern p  and let ∑=
p

pEE  be the overall measure of 

the error, where pjt  is the target output for thj  component of the pattern p  and pjo  is the 

corresponding output for the thj  component. 

The output gradients can be used for DRNN to obtain the negative error gradient. 

Hence the weight update rule can be obtained as follows: 
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where Oη , Dη , and Iη  are the learning rate for DRNN weights Ow , Dw , Iw , 

respectively, and α  is the momentum constant to determine the effect of past weight 

changes.” The update rules require a proper choice of learning rate η . A small value of η  

ensures the convergence but the speed may be very slow; on the other hand, large η  will 

make the algorithm unstable [30]. 
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Simple Recurrent Network 
 

Simple recurrent network (SRN) is demonstrated in [31] and the structure of a 

SRN is shown in Figure 5.  

 

 

Figure 5. Simple recurrent network [32]. 
 
 

Besides the typical connections from input layer to hidden layer and from hidden 

layer to output layer, the SRN contains additional recurrent connections from the hidden 

neurons to a layer of context units with a fixed weight of one. These context units always 

maintain copies of the previous outputs of the hidden neurons, and then transport them 

back to the hidden layer. Thus the hidden neurons maintain a sort of their prior states, 

which allows the network to perform learning tasks that extend over time. Therefore, at 

each time cycle the hidden unit activations are copied to the context units; till the next 

time cycle, the context combined with the new inputs activates the hidden units. The 

hidden units then take on the job of mapping new inputs and prior states to the output so 
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as to respond to the external stimulus. Due to the nature of feedback between the hidden 

layer and context layer, hidden neurons may continue recycling information through the 

network over multiple time steps so that abstract representation of time can be discovered. 

The mathematical model of the simple recurrent neural network is developed in 

[32] and shown in Figure 5. It can be formulated as follows: 

 ∑ ∑
= =

=+=
N

j

M

m
m

u
im

c
j

x
iji Nikuwkxwkv

1 1
,,1),()()( LL       (15) 

 ))(()( kvfkx ii =       (16) 

 )1()( −= kxkx j
c
j       (17) 

 ∑
=

==
N

i
i

y
ill Llkxwky

1
,,1),()( LL       (18) 

where Ni ,,1 LL=  is the number of neurons in hidden layer, Nj ,,1 LL=  is the number 

of neurons in context layer, Mm ,,1 LL= is the number of neurons in input layer, and 

Ll ,,1 LL= is the number of neurons in output layer. 

Denote three weight matrices as following: 

 LN
y
ilyMN

u
imuNN

x
ijx wWwWwW ××× === ][,][,][       (19) 

then, 
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From (15), (16), (17), and (18), the output of SRN can be represented as follows: 
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CHAPTER FOUR 
 

Semigroup Theory 
 
 

Overview 
 

It is well known that differential equations play an important role in engineering 

and many areas of social sciences. These equations may have various forms in diverse 

problems, such as functional differential equations, partial differential equations, and 

even combination of interacting systems with ordinary and partial differential equations. 

Semigroup theory can be used to study some problems in the field of partial differential 

equations. However, some partial differential equations can be regarded as ordinary 

differential equations on abstract spaces by the semigroup approach. This is the area 

where semigroup theory demonstrates its usefulness. Additionally, semigroup theory has 

been extensively applied in the study of Markov process, ergodic theory, and 

approximation theory [33]. 

 
General Group Theory 

 
“A group is a finite or infinite set of elements together with an operation which 

combines any two elements to form another element” [32]. The set and operation must 

satisfy four fundamental group axioms including closure, which means the result of 

operation with any two elements in the group is also in the group; associativity, which 

means for any elements in the group, ))())(( cbacba ⋅⋅=⋅⋅  holds; identity, which means 

there exists an element e  such that aeaae =⋅=⋅  for all elements in the group; and 

inverse element, which means for any element a , there must be an element b  such that 
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eabba =⋅=⋅ . A semigroup differs from a group in that there may not be an inverse for 

each element nor an identity element. For example, the set of all positive and negative 

integers forms a group under addition, and only forms a semigroup under multiplication 

since these does not exist inverse element under multiplication. A more complicated 

example is the set of all nn×  real matrices under the operation of matrix multiplication. 

In general, this will represent a semigroup of operators from nR  to nR . 

 
Theory of Semigroups of Linear Operators 

 
Definition: Let X  be a Banach space. A one parameter family )(tT , ∞<≤ t0 , of 

bounded linear operators from X  to X  is a semigroup of bounded linear operator on X  

if 

 (i) IT =)0( , ( I  is the identity operator on X )      (22) 

 (ii) )()()( sTtTstT =+  for every 0, ≥st  (the semigroup property)      (23) 

A semigroup of bounded linear operators, )(tT , is uniformly continuous if  
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The linear operator A  defined by 
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and  
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0

)()(lim
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+
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−
=

t
t dt

xtTd
t

xxtTAx  for )(ADx∈       (26) 

is the infinitesimal generator of the semigroup )(tT , )(AD  is the domain of A  [34]. 

Theorem: A linear operator A  is the infinitesimal generator of a uniformly 

continuous semigroup if and only if A  is a bounded linear operator [34]. 
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Ordinary Differential Equations 
 

Consider the equation 

 
nRxx

tfortAxtx
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Whether A  is a constant operator or a time varying operator, it is always a 

bounded operator; therefore belongs to the space of bounded operators that map nR  to nR , 

denoted by )( nRB . In this case, A  is just an nn×  matrix. Because )( nRB  is an algebra, 

(not merely a vector space) sums and products of A  belong to )( nRB . Therefore, the 

exponential matrix ∑
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This shows that 0)( xetx At=  is the solution to (27). Note that the operator nn RRT →: , 

given by AtetT =)( , possesses the following properties: 

 IT =)0(       (29) 

 )()()( sTtTstT =+ , for all st,       (30) 
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Another property is that the mapping 0)( xtTt →  from R  into X  is differentiable 

for all Xx ∈0 . Notice that the procedure can be reversed. That is if the set )(tT  exists 

with the properties of (29) and (30), then it generates A , i.e., 

 Ae
dt
dtT

dt
d

t
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t
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t

At
ttttt

==≡
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==→→→ 00000
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where 
t

ItTAt
−

=
)( , and )(tT  is termed as the infinitesimal generator of A . If we allow 

A  to be any bounded operator on a Banach space X , exactly the same calculation will 

show that if 0xe At  solves the equation 
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then it is straightforward to represent the solution to the equation 
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where XRf →:  is continuous, by the variation of parameters formula 

∫ −+=
t stAAt dssfexetx
0

)(
0 )()(  [32]. 

 
Partial Differential Equations 

 
To give an idea of a semigroup property being possessed by a mapping involving 

a PDE, consider the following steady state heat flow model in Cartesian coordinates: 
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If we set )()()()()()(),( 2211 xeycxeycxEyCyxT T +== , where 

TycycyC )](),([)( 21= , )](),([)( 21 xexexE = , and ie  are orthonormal basis, then by 

substitution, 22112211 ecececec &&&&&&&& −−=+ . This, in turn implies 
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for a suitable matrix A , which leads to a semigroup for )(yC . Notice that the semigroup 

property is not reflected in the original data; it appears only in the coefficient vector 

portion of the system description [32]. 
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CHAPTER FIVE 
 

Short-Term Load Forecasting Using System-Type Neural Network Architecture 
 
 

Neural Network Architecture 
 

Neural networks are being applied for distributed parameter systems (DPS), i.e., 

described by PDE’s [35]. In previous papers [36]-[41], a system-type neural network had 

been proposed for implementing extrapolation. With this method, the distributed 

parameter system (DPS) surface determined by a given data set was expanded by being 

extrapolated along one axis to predict data in the unknown region. With respect to load 

forecasting, the load is in general a function, 

),,,( classesCustomerWeatherHourDayfLoad = , and is often considered as 

),( HourDayfLoad = , which is parameterized by weather and customer classes [41]. In 

this thesis, however, the load is modeled as ),( HoureTemperaturfLoad =  due to the 

importance of the temperature among many factors affecting the load. It will be shown 

that the load profile can be formulated in this form: )()(),( HETCHoureTemperaturL T= . 

Figure 6 shows the system-type architecture of the proposed neural network 

which implements an arbitrary load function ),( HTL . Instead of using one neural 

network to realize the mapping ),( HTL  like those conventional neural networks, the 

proposed architecture shows a system-type approach with two neural network channels, a 

Function Channel and a Semigroup Channel. The Function Channel outputs a vector of 

basis functions )(HE , while the Semigroup Channel supplies the Function Channel with 

a smoothened coefficient vector )(~ TC  as a function of the index T . Applying the 
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coefficient vector to the basis set )(HE  from the Function Channel causes the Function 

Channel to operate as one specific load function within a vector space of functions. These 

two channels bring about a semigroup-based implementation of the mapping in the 

following form:  

 )()(~),( HETCHTL T=       (36) 

where )](~,),(~[)(~
1 TcTcTC nL= , )](,),([)( 1 HeHeHE nL= . 

 

 

Figure 6. System-type architecture [36]. 
 
 
Function Channel 
 

The Function Channel is of Radial Basis Function (RBF) architecture [19]. The 

Channel, in which there are n  RBF networks, concerns with implementing each of the n  

orthonormal basis functions in )(HE  by each network. The outputs of the two channels 

are (internally) linearly summed so as to span an n-dimensional function space. Up to this 

step, the operation of the Function Channel is identical with the idea used by Phan and 

Frueh [42]. However, there are some essential differences between their approach and the 

Function Channel 
(NN1) 

Semigroup Channel 
(NN2) 

)0(C  

H

T  

)(~ TC  

)()(~),( HETCHTL T=  
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proposed approach, of which one is that the former requires prior engineering knowledge 

to select the basis vectors, and the presented approach does not. The RBF network is 

chosen because of several advantages it has, which excel other architectures. One 

advantage is that the functionality of RBF network can be given an explicit mathematical 

expression in which the neuron activation functions operate as Green’s functions. 

Another advantage is that they function as universal approximators [19]. And also RBF 

networks can be designed rather than trained. The well known universal approximation 

theorem of RBF networks is given as follows.  

Theorem (Universal Approximation Theorem): For any continuous input-output 

mapping function )(xf  there is a RBF network with a set of centers { } 1
1

m
iit =  and a 

common width 0>σ  such that the input-output mapping function )(xF  realized by the 

RBF network is close to )(xf  in the pL  norm, ],1[ ∞∈p  [43]. 

The universal approximation theorem for n-RBF networks is derived by Kim [32]. 

In the following Corollary, for any positive integer r , rR  denotes the normed linear 

space of real r-vectors and )( r
p RL  denotes the usual spaces of R-valued functions f  

defined on rR  such that f  is p-th power integrable and N  is the number of RBF 

networks. Let 
iKS  be the family of RBF networks consisting of functions iq  : RR r →  

defined by  
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where ∈M , 0>σ , Rw j ∈ , and r
j Rz ∈  for Mj ,,1L= , and  is the natural number 

set. Let S  be the family of linear combination of { }
NKK SS ,,

1
L . Then for any Sq∈ , 
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Corollary: Suppose that for all { }Ni ,,1L∈ , N  is the number of RBF networks, 

RRK r
i →:  is an integrable bounded function such that iK  is continuous almost 

everywhere and ∫ ≠
rR

i dxxK 0)( . Then the linear combination of the family S  is dense in 

)( r
p RL  for every ),1[ ∞∈p ” [32]. 

 
Semigroup Channel 
 

The Semigroup Channel can be adapted based upon the Diagonal Recurrent 

Neural Network (DRNN) [30] or the Simple Recurrent Network (SRN) architecture [31]. 

In this thesis, the SRN is applied in the Semigroup Channel. The input, that is the 

preliminary coefficient vector )(TC , is separated into a dynamic scalar component T  

and one static vector component, the initial vector )0(C . The output of the channel is a 

smoothened vector )(~ TC , which is associated with the dynamic input T  and the static 

input )0(C  by the semigroup property: )0()()(~ CTTC Φ= , where 

)()()( 2121 TTTT ΦΦ=+Φ . 

The internal weight structure of the Semigroup Channel is shown in Figure 7 

which includes four weight spaces in the SRN: input weight corresponding to dynamic 

component iW , input weights corresponding to static component cW , feedback weights 

fbW , and output weights oW . 

The following mathematical representations from [32] illustrate the nature of the 

weight pattern convergence with reviewing the SRN architecture in Figure 5. Let the  
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Figure 7. Internal weight architecture for Semigroup Channel [32]. 
 
 
error function be defined as follows, where p  is the number of input data and 

maxmin ppp << : 
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where dy  is desired output vector and Ll ,,1L= , and L  is the number of neurons in 

output layer. 

Based on the gradient-descent method, the following equations are obtained by 

differentiating the error function with respect to feedback, input, and output weights x
ijw , 

u
imw , and y

ilw , respectively in the SRN: 
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From (40), (41) and (42), since 
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After the weight pattern converges, the input can be split into a static component 

)0(u , and a dynamic component k , which corresponds to the static and dynamic weights, 

respectively. Therefore, (21) can be reformulated as follows by assuming the first input 

neuron is always used for the dynamic component: 
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The Proposed Training Method 

 
The first component of the system, the Function Channel, can be designed rather 

than trained due to the attribute of RBF networks. The first and significant step is 

determining the algebraic dimensionality of the orthonormal basis set )(HE , say n , then 

n  RBF networks need to be designed to emulate those n  basis functions which are the 

generations of the algebraic decomposition.  

The second component, the Semigroup Channel, needs to be trained in a 

successive way shown in Figure. 8. In each of trainings, the Semigroup Channel receives 

a preliminary coefficient vector )(TC  as input composed by the dynamic scalar 

component and the static initial vector component, and outputs a smoothened coefficient 
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vector )(~ TC . Therefore the primary objective of training in Semigroup Channel is to 

replicate and smoothen the vector )(TC  with a vector )(~ TC , which has the semigroup 

property: )0(~)()(~ CTTC Φ= , where )](~,),(~),(~[)(~
21 TcTcTcTC nL=  and )(TΦ  is an nn×  

matrix that satisfies: )()()( 2121 TTTT ΦΦ=+Φ .  

However, there is a secondary objective of training requiring that the channel 

must also replicate the semigroup property of the trajectory by gradually acquiring a 

semigroup property of its own in the weight space. In order to obtain this gradual 

acquisition of the semigroup property, the training should occur in a gradual manner, as 

shown in Figure 8. Note that N  is the number of data points in the coefficient vector. 

According to Figure 8, the proposed training method slices the entire trajectory into many 

nested sub-trajectories, each of which is composed by the previous sub-trajectory and one 

new data point. Therefore two kinds of convergence will happen in the training. Firstly 

during training of each sub-trajectory, the network weights, iW , where Ni ,,1L= , must 

converge. This means that the SRN is able to duplicate the sub-trajectory up to this data 

point. This convergence must reoccur for each subsequent training step. At certain future 

point, besides the weight convergence at each step, there will be a convergence in the 

overall pattern of weights. This second convergence will be referred to as the “the weight 

pattern convergence” which actually is the basis of extrapolation. 

In this proposed training approach, each sub-trajectory is trained using a 

conventional (batch) method, and the resulting weight is recorded. After all sub-

trajectories have been trained, the sequence of resulting weights is examined for the 

purpose of the weight pattern convergence. Only if the weight pattern convergence is 

achieved, can extrapolation start. 
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1W
2W

3W 4W N. . .Look for weight convergence

data point  

Figure 8. Overview of new training algorithm [37]. 
 
 

System Modeling 
 

In the previous applications [36]-[41], system modeling is realized by a technique 

referred to as algebraic decomposition which aims to approximate and model the given 

data set. It is a mathematical operation which represents the given function ),( HTL  in 

such a form: )()()(),( HETCHLHTL T
T == , where )(HLT  is the parameterized set of 

),( HTL . The generation of this process is the coefficient vector 

T
f

T TcTcTcTC )](,),(),([)( 21 L=  which is a representation of the parameterized function 

)(HLT  with respect to )(HE , and also )(HE  provides the algebraic basis for the 

representation of each element in this parameterized function. Technically algebraic 

decomposition starts by finding a low dimensional basis set whose sources are directly 

drawn from the given family of functions { })(HLT . For example, 

{ })(),(),( 961 HLHLHL TTT ===  is found to form a basis set such that any arbitrary element 

)(HL iT =  can be expressed as a linear combination of these basis: 
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 )()()()()()()( 936211 HLTcHLTcHLTcHL TTTiT ==== ++=       (45) 

In a word, algebraic decomposition is the process that forms an approximation 

surface ),(~ HTL  to ),( HTL  and can be summarized in following steps: (1) Parameterize 

),( HTL  as { })(HLT , fi TTT ,,L= . (2) Determine the dimensionality of { })(HLT  as n . 

(3) Choose n  elements from { })(HLT  and orthonormalize them to form a basis set 

)](,),(),([)( 21 HeHeHeHE nL=  using the Gram-Schmidt process. (4) For each element 

of the parameterized function family { })(HLT , determine the particular linear 

combination of the basis set using the least squares method. This step determines )(TC , 

and the product of )(TC  and )(HE provides the approximation ),(~ HTL  of the original 

load function, where )()()(),(~ HETCHLHTL T
T == .  

 
Regression Method 

 
Regression method is one of the most widely used approaches for load forecasting. 

Usually the forecasting model is developed by identifying a normal or weather-

insensitive load component and a weather-sensitive load component. Regression method 

can be applied to each component separately or to the total load. However, regression 

method is not playing the leading role to perform forecasting in this thesis. It is well 

known that the electric load in a complex system is influenced by many factors. It can be 

represented as the following form:  

 factorsotherweatherbasetotal LLLL ++=       (46) 

where baseL  is the base load component which is caused by time factor; weatherL  is the 

weather sensitive load component which is due to weather variables such as temperature, 
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dew point, wind speed, cloud cover, etc. Temperature is usually dominant among various 

weather variables; and factorsotherL  is a component of the load resulting from other factors. 

In terms of parameterization of the given load, load data is represented as a 

function with respect to two major variables, time and temperature. Therefore, regression 

method is used here to filter the load and remove the load component caused by other 

factors. In this thesis, following regression formulas are used to perform filtering: 

 )()( tTBAtL di ⋅+=       (47) 

 or 2)()()( tTCtTBAtL ddi ⋅+⋅+=       (48) 

where )(tLi  is the load at hour t  in i-th day; A , B , and C  are the regression coefficients 

which are assumed constant for different time intervals; )(tTd  is the temperature at hour 

t , in deg. F . Therefore, using regression method is to make the original load more 

correlated to time and temperature, that is, to form the function ),( HTL , which is ready 

to be decomposed. 

 
Rearrangement of Load 

 
Based on the research done by Kim, Velas, and Lee [44], the smoothness of the 

given data surface is the prerequisite for performing the extrapolation. They tested two 

different surfaces, one is a bivariate sinusoidal function with smoothness and another is 

the shape of pyramid including sharp edges. The results turn out that the modeling of the 

two surfaces can be perfectly achieved by algebraic decomposition, but extrapolation of 

the coefficient vector can only be implemented for the first surface due to the smoothness 

of the coefficient vector. Regarding the pyramid surface, algebraicly decomposing the 

surface with sharp transitions and discontinuities generates the coefficient vector with the 
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same attributes. Therefore the extrapolation in the second case is impossible on account 

of the discontinuities in the coefficient vector.  

As mentioned above, the load is already filtered to be more correlated to time and 

temperature. The filtered load, namely regression load, rises and falls mainly due to the 

fluctuation of the hourly temperatures for different days. The differences in temperatures 

for a given time (hour), which bring about differences in electric load, result in an non-

smooth load surface. Therefore, it is necessary to rearrange the regression load according 

to the hourly temperatures so that a smooth load surface can be obtained. Rearrangement 

of the load is applied for each hour based on either increasing or decreasing temperatures. 

Figure 9 illustrates the rearrangement of the load based on the temperature for the first 

hour. The same step can be applied for other hours. The darkest circle represents the load 

data with the highest temperature. 

 
Extrapolation Test 

 
The semigroup property should be ultimately realized in the Semigroup Channel 

as a sequence of weight changes that occurs after the weight pattern convergence takes 

place. The sequence of weight changes must follow a rule that leads to the semigroup 

property. A permissible rule for the thj  weight change, )()1( kwkw jjj Δ⋅=+Δ α , has 

been successfully applied in the previous applications [36]-[41]. This rule can derive the 

form )0()( j
k
jj wkw Δ⋅=Δ α  which has the semigroup property. 

However, before performing the extrapolation using this weight change rule with 

semigroup property, there are still two more steps needed to accomplish. First step is to 

confirm that the weight pattern convergence already happened in the Semigroup Channel. 

Identifying this convergence can be completed based upon observation of the following 
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two facts: (1) the output weights, the feedback weights, and those input weights with 

respect to the static input component undergo no significant changes for all steps after the 

weight pattern convergence occurs; (2) the only weight changes springs from those input 

weights dynamic
iw  which associates with the dynamic input component, that is, these 

weights must vary by differential amounts. Therefore, this results in 

))()(()1( kwkwkw i
dynamic
i

dynamic
i Δ+=+  where )(kwiΔ  is the change between )1( +kwdynamic

i  

and )(kwdynamic
i . 

 

 

Figure 9. Rearrangement of the regression load. 
 
 

Another step right before the extrapolation is the validation of the proposed 

weight change rule for the dynamic input component, and this step is called extrapolation 

test. In order to complete this, M  consecutive points in the coefficient vector are selected 

as an observation window. Based on the assumptions that the actual weight change 
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produced by training for weight “ j ” at point “ k ” is )(kw jΔ , and at the start point of the 

observation window there is an initial weight change of )0(jwΔ , a weight change 

sequence approximation is computed by 

 )()1( kwkw jjj Δ=+Δ α       (49) 

To check if this estimated weight change sequence can replace the actual weight 

change sequence which is produced by training the simple recurrent network over the 

observation window, the two trajectories of coefficient vector, which are the simulation 

outputs of the SRN using the actual and estimated weight change sequences, should be 

compared. If the error between the two trajectories is small, the estimated weight change 

sequence rule is acceptable. 

Thus, from this test, after the weight pattern converges, the weight change for the 

dynamic input component k  can be substituted for )0()( i
k
ii wkw Δ=Δ α , where the k

iα  

satisfies the semigroup property. Note that here )0(iwΔ  represents the weight change 

immediately following the convergence which has the initial weight )0(iw . Therefore, 

the final output of Semigroup Channel in (43) becomes 

 ( )∑ ∑ ∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+++−=

N

i

N

j

dynamicu
i

k
i

dynamicu
i

M

m
m

staticu
imj

x
ij

y
ill kwwuwkxwfwky

1 1

,
1

,
1

2

, )0()0()0()1()( α (50) 

 
Extrapolation 

 
Extrapolation involves only the coefficient vector and the Semigroup Channel. At 

the uppermost level, the idea is to train the neural network to replicate the coefficient 

vector in such a way that it is additionally replicating the semigroup property, which is 

responsible generating the coefficient vector by acquiring a semigroup property of its 
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own in the weight space. However, the implementation of extrapolation is not completely 

same with previous works [36]-[41]. Because the smoothened coefficient vector )(~ TC  is 

a function of the index T  and the temperature forecasting for the next day is assumed to 

be known already, the need to extrapolating coefficient vector totally depends on whether 

or not the temperature forecast at a given hour exceeds the historical temperature bounds 

in the same hour group. If it does, the coefficient vector which is going to be supplied to 

the Function Channel can be obtained through extrapolation. The load forecasting at this 

hour is achieved by recombining the extrapolated coefficient vector with the basis set. 

Forecasting load for other hours follows the same procedure when extrapolation is 

necessary. Figure 10 shows the extrapolation of the coefficient vector for the first hour. 

The white circle represents historical load data. The circle with stripes represents the load 

data to be forecasted. 

 
Interpolation 

 
Since the system for load forecasting is considered as DPS, the smoothened 

coefficient vector )(~ TC  can be counted as a continuous function with the variable of 

temperature, although the vector is composed of individual points. Therefore, the 

interpolation of coefficient vector based on the hourly temperatures can be performed 

when the temperature forecast at a given hour falls within the historical temperature 

range in the same hour group. The load forecasting at this hour is acquired by 

recombining the interpolated coefficient vector with the basis set. Forecasting load for 

other hours follows the same procedure if interpolation is needed. Figure 11 shows the 

interpolation of the coefficient vector for the first hour. The white circle represents 

historical load data. The circle with stripes represents the load data to be forecasted. 
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Figure 10. Extrapolation. 
 
 

Summary of Processes 
 

The following is to give a summary of the processes required for short-term load 

forecasting using the proposed approach. Assume that a load data set is available. 

Step 1: Regression. Let the original load data go through the specified regression 

method to obtain the regression load in the defined time interval. 

Step 2: Rearrangement. Arrange the regression load along the temperature 

coordinate. That is, rearrange the regression load ),( HourDayL  to 

),( HoureTemperaturL  based on the magnitudes of temperatures for 24 different hours. 

Step 3: Algebraic Decomposition. Choose n  vectors from the parameterized set  

{ })(HLT  to form a set of basis vectors { }nvv ,,1 L . Orthonormalize each vector 

{ }nvv ,,1 L  using Gram-Schmidt procedure to form the orthonormal set of basis vectors 

)](,),(),([)( 21 HeHeHeHE nL= . Design a radial basis function (RBF) network for each 
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of the orthonormalized vectors in the basis set. The number of hidden neurons is equal to 

the length of each basis vector. Determine the preliminary coefficient vector )(TC  using 

the least squares method. 

 

 

Figure 11. Interpolation. 
 
 

Step 4: Semigroup Channel. Design a simple recurrent network (SRN) with static 

inputs )0(C  and dynamic input T . It has been found through experimentation that the 

number of hidden neurons is approximately 25× (number of basis vectors + 1). Train the 

SRN in the gradual manner that increases the number of input points by 1 in each training.  

Step 5: Determine whether or not extrapolation or interpolation is needed. Based 

upon the relationships of the temperature forecasts and historical temperature among 24 

hours, the need of extrapolation or interpolation can be decided. If extrapolation is 
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required, then continue the following steps. Otherwise, skip to Step 8 if only interpolation 

is required. 

Step 6: Weight pattern convergence check. Check if the weight pattern of the 

SRN converges. Then perform extrapolation test to confirm if the test result is good.  

Step 7: Extrapolation. Extrapolate the smoothened coefficient vector )(~ TC . 

Step 8: Recombination. Multiply the interpolated or extrapolated )(~ TC  by the set 

of basis vector )(HE  for each individual hour, and then only keep the forecasting load 

value at the corresponding hour after each multiplication. Group the 24 hours’ forecasting 

load values to form the final one-day-ahead forecasting result. 
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CHAPTER SIX 
 

Simulation Studies 
 
 

Forecasting Procedure 
 

The proposed forecasting approach is tested by using the past load profile 

obtained from New England Independent System Operator (ISO). The hourly 

temperatures of each day are weighted average values of 8 weather stations in the New 

England area in degrees Fahrenheit. In the simulation, load data for the year 2002 is 

chosen for demonstrating the capability of the proposed approach. The simulation uses 

load and temperature data in a moving window of previous four weeks for each 

forecasting target day. Usually the load profile has two distinct patterns: weekday and 

weekend patterns. In general, Monday load is classified to weekend pattern which 

includes Saturday and Sunday since the level of Monday load in the early morning is low 

influenced by Sunday load. However, in this thesis Monday load is grouped to weekday 

pattern due to its similarity to weekday pattern comparing with weekend pattern. 

Therefore, previous weekday or weekend pattern load in the window of four weeks are 

selected as historical data to forecast next weekday or weekend load, respectively.  

 
Regression 

 
Here we choose an arbitrary weekday as the forecasting day to show the 

simulation procedures. The weekdays’ data of previous four weeks forms the moving 

window. At the very beginning, the actual raw data in the moving window should pass 

through the regression filter to generate regression load which is ready to be rearranged 



 

45 

and decomposed. Figure 12 shows the actual load at 8am on this chosen day. Then it is 

found that using 2)()()( tTCtTBAtL ddi ⋅+⋅+=  can perform well in the curve fitting 

based on the least squares method. Figure 13 illustrates the actual load and the regression 

load after the filtering. It shows that the regression method not only removes the load 

caused by other unknown factors but also makes up for the load component which is 

offset by other factors.  
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Figure 12. Actual load at hour 8. 
 
 

Rearrangement 
 

Instead of the regression load in the form ),( HourDayL , the load in the form of 

),( HoureTemperaturL  is preferred because the historical load surface needs to be 

smooth as much as possible. Therefore the objective of the process called rearrangement  
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Figure 13. Actual load and regression load at hour 8. 
 
 
is to sort the load data for each hour along the temperature coordinate to meet the 

smoothness requirement. At each individual hour, the loads of the historical days are 

sorted in temperature ascending or descending order. Figure 14 and Figure 15 show the 

regression load before and after the rearrangement, respectively. The one after the 

rearrangement is much smoother than that before this process since regression load which 

is highly correlated to the hourly temperatures is sorted by temperatures. Then a success 

of acquiring a smooth coefficient vector is expected.  

 
Implementation of the System-Type Neural Network 

 
In this application, the regression load profile ),( HTL  is parameterized as 

{ })(HLT , where for each T  there are 24 points corresponding to hours 24,,2,1 L=H . 

Following the implementation procedure, two vectors { })(HL iT =  are chosen as the basis 



 

47 

0
5

10
15

20
25

0
5

10

15
20

0.5

1

1.5

2

2.5

x 104

HourDay

M
W

 

Figure 14. Regression load before rearrangement. 
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Figure 15. Regression load after rearrangement. 
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vectors to procure a good duplicate of the regression load, that is, the dimensionality n  is 

two. The larger the n  is, the more precise the modeling is. But the reason why n  is set to 

two here is that the coefficient vector will be non-smooth when n  is equal or greater than 

three. With these basis vectors, the coefficient vector is obtained using the least squares 

method. Therefore, the Function Channel consists of two RBF networks. The number of 

hidden neurons in each RBF network is 24 because the length of the basis vector is 24, 

corresponding to the 24 hours. Then each individual RBF network is used to implement 

each basis vector. All regression load data have been used for duplicating the empirical 

load in the form of the product of coefficient vector and the set of basis vectors. The 

Semigroup Channel has one SRN with 3 input neurons, one for a dynamic scalar 

component T  and other two for the static coefficient vector )]0(),0([)0( 21 ccC = . The 

output of the SRN is the smoothened coefficient vector )]0(~),0(~[)(~
21 ccTC = . Since the 

number of input is 3, the number of hidden neurons in the SRN is chosen as 75325 =× . 

 
Algebraic Decomposition 

 
The chosen set of basis vectors will be orthonormalized to produce the 

orthonormal set of basis vectors: { })(),( 21 HeHe . The preliminary (rough) coefficient 

vector )(TC  is produced by the algebraic decomposition. The preliminary coefficient 

vector is shown in Figure 16 and Figure 17. Figure 18 and Figure 19 show the basis 

vectors produced by the RBF networks. The product of this rough coefficient vector 

together with the set of basis vectors will produce the computed regression load which is 

the modeling of the empirical regression load. Figure 20 shows the computed regression 

load. The errors between empirical and computed regression load is shown in Figure 21, 
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Figure 16. Preliminary coefficient C1. 
 
 
and Figure 22 shows the percent error. The average percent error is 0.92% which explains 

the sufficiency of the algebraic decomposition. 

 
Semigroup Channel Smoothing 

 
The preliminary coefficient vector needs to be smoothened. Therefore, the SRN is 

trained using the proposed successive training algorithm with the initial coefficient vector 

)]0(),0([)( 21 ccTC =  and dynamic scalar component T  as the input and the preliminary 

coefficient vector )](),([)( 21 TcTcTC =  as output. Figure 23 and Figure 24 show the 

smoothened coefficient vector generated by the trained SRN. The preliminary coefficient 

vector is well replicated and smoothened. 
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Figure 17. Preliminary coefficient C2. 
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Figure 18. Orthonormalized basis vector E1. 
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Figure 19. Orthonormalized basis vector E2. 
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Figure 20. Computed regression load. 
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Figure 21. Error between empirical and computed regression load. 
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Figure 22. Percent error. 
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Figure 23. Comparison of original and smoothened coefficient vector C1. 
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Figure 24. Comparison of original and smoothened coefficient vector C2. 
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Extrapolation 
 

The smoothened coefficient vector is observed to change dynamically over the 

temperature axis T . This dynamics is assumed to continue by the semigroup property 

and the extrapolation can be performed when it is needed. The dynamics of the 

coefficient vector is modeled by the SRN through the weight changes.  

 
The Weight Change Convergence Check 
 

The possibility for extrapolation is checked by observing the convergence of the 

weight change sequence as training is performed along the coefficient vector. In this case, 

weight convergence occurs as the training is repeated successively over longer intervals. 

It is this weight convergence that becomes the basis for extrapolation. There are 75 

hidden neurons connected to 3 inputs and 2 outputs through input and output weights, 

respectively. The output of each neuron is also connected back to itself and other neurons 

through feedback weight. The feedback weight changes become zero almost immediately 

and therefore are not shown. The output weight changes are shown in Figure 25 and 

Figure 26. The output weight changes are shown only for the weights connected to the 

first 15 neurons for each coefficient. It is observed that the output weight changes 

converge to zero after a sufficient number of data is trained and the output weights 

remain almost fixed.  

The input weight changes for dynamic component T  are shown in Figure 27 and 

the integral of the input weight changes is shown in Figure 28. The input weight changes 

for static component )0(C  are shown in Figure 29 and Figure 30. The input weight 

changes are shown only for the weights connected to the first 15 neurons. It is observed 

that the input weight changes become zero after a sufficient number of data is trained.  
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Figure 25. Output weight change for C1. 
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Figure 26. Output weight change for C2. 
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Figure 27. Input weight change for dynamic component T. 
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Figure 28. Integral of input weight change for dynamic component T. 
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Figure 29. Input weight change for static component C1(0). 
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Figure 30. Input weight change for static component C2(0). 
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However, there is an exception for weights corresponding to the dynamic input T . 

Although the scale does not reveal it in Figure 28, the dynamic input weights are 

changing by non-zero amounts compared to the static input weights. 

 
Extrapolation Test 
 

Because of the smoothness of the coefficient vectors, the possibility for 

extrapolation exists and the next step is to apply an extrapolation test in which the trailing 

end of the weight change sequence (produced by training) is replaced by an equivalent 

weight change sequence based on a rule that generates a semigroup. Based upon an 

observation of the weight change sequence on the interval in the observation window, a 

semigroup-based rule of weight change for dynamic weights is modeled according to (49) 

and used in place of the original dynamic weights on the interval in the extrapolation test 

window. For each dynamic weight, a model for the weight change in the form of (49) is 

derived which, when inserted into the neural network, produces the same results as the 

actual weight change sequence over the extrapolation test interval. Figure 31 and Figure 

32 show the extrapolation test for each coefficient. The similarity of the trajectories in the 

extrapolation test window supports that the weight change model can be applied and the 

extrapolation can be performed. 

 
Extrapolation 
 

Extrapolation (to the region where no data were assumed) consists of the 

autonomous continuation of the rule for the weight change which was modeled and tested 

during the extrapolation test. Since the weight change model in extrapolation test is 
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successful, the same modeling scheme can be applied to extrapolation. Figure 33 and 

Figure 34 show the extrapolation result for the next point of T . 

 
Interpolation 

 
The interpolation of coefficient vector is also needed at a given hour when the forecasting 

hourly temperature does not surpass the historical temperature boundaries. Assuming the 

coefficient vector is a continuous function with respect to the temperature variable, the 

interpolation becomes possible. Therefore, the interpolation can be implemented using 

the known historical temperatures and the forecasting temperature at a given hour. Figure 

35 and Figure 36 show the interpolation results at a certain hour. The interpolated 

coefficient values can be obtained based upon the two adjacent points. 
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Figure 31. Extrapolation test for C1. 
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Figure 32. Extrapolation test for C2. 
 
 

0 2 4 6 8 10 12 14 16 18
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T

C
1

 

 

Output
Smoothened C1

Observation

Extrapolation

 

Figure 33. Extrapolation for C1. 
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Figure 34. Extrapolation for C2. 
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Figure 35. Interpolation of C1. 
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Figure 36. Interpolation of C2. 
 
 

Simulation Results 
 

The proposed method is carried out for a one-day-ahead forecasting of hourly 

electric loads. The results are analyzed by the following formulas:  

(i) Standard Deviation:  

 ∑
=

−=
N

d

hdLhdL
N 1

2)],(ˆ),([1σ       (51) 

where ),( hdL  is empirical load data for a given day )(d  and hour )(h , ),(ˆ hdL  is the 

corresponding load forecast.  

(ii) Percent Error: 

 100),(),(ˆ),( ×−= hdLhdLhdLError       (52) 
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The simulation results include percent error and standard deviation at each hour, 

both being calculated from the regression load and the actual load. The regression load of 

the forecasting day can be derived from the historical regression model based on the 

assumption that the temperature forecasting has been completed. Table 1 shows the 

results of the regression load averaged for the whole year. Among the daily forecasting, 

Friday shows the best forecasting results and Saturday shows the worst forecasting results. 

For Friday, the average percent error is 1.05%, and the largest error is 1.25% at 19:00 and 

20:00 and the least error is 0.76% at 9:00. For Saturday, the average percent error is 

1.41%, and the largest error is 1.83% at 1:00 and the least error is 1.03% at 23:00. The 

total average error for daily forecasting is 1.20% and the average standard deviation is 

280 MW. The errors of Monday, Wednesday, Thursday, and Friday are below the total 

average level, with respective errors 1.15%, 1.17%, 1.13% and 1.05%. The errors of 

Tuesday, Saturday, and Sunday are above the total average level, with respective errors 

1.21%, 1.41%, and 1.25%.  

Table 2 shows the forecasting results of the actual load averaged for the whole 

year. Wednesday and Thursday show the best forecasting results and Saturday still shows 

the worst. For Wednesday, the average percent error is 3.24%, and the largest error is 

4.32% at 18:00 and the least error is 2.61% at 10:00. For Thursday, the average percent 

error is 3.24%, and the largest error is 4.63% at 18:00 and the least error is 2.44% at 

24:00. For Saturday, the average percent error is 4.61%, and the largest error is 6.18% 

and the least error is 3.53% at 1:00. The total average error for daily forecasting is 3.75% 

and the average standard deviation is 782 MW. The errors of Tuesday, Wednesday, 

Thursday, and Friday are below the total average level, with respective errors 3.42%, 
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3.24%, and 3.50%. The errors of Monday, Saturday, and Sunday are above the total 

average level, with respective errors 4.01%, 4.61% and 4.26%. 

 
Table 1. Statistics of average forecasting results of regression load for the year 2002. 

 
Mon. Tue. Wed. Thr. Fri. Sat. Sun. 

Hour Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err.

Std. 
Dev.

Per. 
Err.

Std. 
Dev.

Per. 
Err.

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err.

Std. 
Dev.

1 1.30 209 1.29 313 1.22 208 1.07 184 1.00 168 1.83 314 1.48 256
2 1.12 194 1.35 293 1.08 205 1.08 171 1.01 167 1.80 279 1.50 274
3 1.25 200 1.30 283 1.27 238 1.17 174 0.99 176 1.66 244 1.37 233
4 1.37 198 1.45 295 1.35 259 1.27 187 1.10 204 1.44 207 1.28 211
5 1.40 196 1.61 298 1.32 224 1.44 211 1.18 223 1.49 224 1.64 247
6 1.43 227 1.38 284 1.41 275 1.40 226 1.24 228 1.40 244 1.36 196
7 1.39 270 1.22 269 1.21 247 1.24 259 1.17 220 1.44 253 1.27 206
8 1.21 264 0.82 181 0.97 205 1.06 288 0.81 166 1.60 255 1.13 186
9 1.09 249 0.91 222 0.78 171 1.11 262 0.76 173 1.55 281 1.06 199
10 1.06 258 0.95 218 0.79 203 0.96 251 0.93 227 1.14 209 0.80 171
11 0.90 254 0.85 260 0.75 203 0.87 247 0.89 250 1.28 269 0.88 178
12 0.77 186 0.81 223 0.87 203 0.97 318 0.88 239 1.51 316 1.00 222
13 0.89 224 1.01 271 1.02 334 1.21 402 0.98 239 1.51 328 1.26 293
14 0.91 252 1.04 291 1.09 335 0.86 222 1.08 255 1.44 311 1.32 352
15 0.91 231 1.18 342 1.12 375 0.93 315 1.16 314 1.40 268 1.05 242
16 1.02 272 1.19 348 1.32 438 1.13 323 1.08 310 1.51 286 1.20 301
17 1.23 333 1.04 245 1.11 421 1.16 311 1.18 303 1.60 311 1.29 342
18 1.27 379 1.13 323 1.32 412 1.20 392 1.51 403 1.39 278 1.20 315
19 1.13 316 1.61 927 1.50 404 1.39 471 1.25 337 1.29 259 1.04 242
20 1.13 352 1.36 868 1.25 325 1.20 348 1.25 343 1.12 214 1.03 207
21 1.11 318 1.33 753 1.41 426 0.97 295 1.09 320 1.09 254 1.10 232
22 1.24 294 1.17 521 1.19 338 1.10 287 0.98 252 1.06 215 1.29 289
23 1.17 244 1.42 487 1.37 367 1.12 275 0.90 186 1.03 184 1.55 346
24 1.34 250 1.53 373 1.46 300 1.14 231 0.89 159 1.16 189 1.87 376

Avg 1.15 257 1.21 370 1.17 296 1.13 277 1.05 244 1.41 258 1.25 255
 
 

Table 3 and Table 4 show the monthly forecasting results of the regression load. 

January shows the least error 0.55% and August shows the largest error 2.01%. For 

January, the largest error is 0.76% at 24:00 and the least error is 0.30% at 11:00. For 

August, the largest error is 2.65% at 1:00 and the least error is 1.31% at 8:00. The total 

average error is 2.65% at 1:00 and the least error is 1.31% at 8:00%. The total average 
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Table 2. Statistics of average forecasting results of actual load for the year 2002. 
 

Mon. Tue. Wed. Thr. Fri. Sat. Sun. 
Hour Per. 

Err. 
Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err.

Std. 
Dev.

Per. 
Err.

Std. 
Dev.

Per. 
Err.

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err.

Std. 
Dev.

1 5.11 693 3.35 644 2.72 461 2.79 467 2.38 399 3.53 559 3.66 561
2 4.92 645 3.46 657 2.84 462 2.93 490 2.42 386 3.71 565 3.54 541
3 4.61 626 3.34 575 2.84 451 2.67 417 2.43 375 3.89 578 3.45 499
4 4.46 623 3.12 517 2.96 469 2.69 412 2.46 378 3.88 577 3.41 487
5 4.25 607 3.03 470 3.21 499 2.67 425 2.59 403 4.23 590 3.88 537
6 4.29 664 3.20 550 3.55 616 2.71 478 2.75 454 4.69 688 4.33 598
7 4.97 966 3.10 658 3.40 789 3.07 681 3.16 625 5.29 874 5.48 720
8 4.85 1123 3.06 769 3.01 859 3.18 831 2.97 683 6.18 1083 6.36 844
9 3.88 996 2.94 727 2.75 742 2.82 750 2.67 621 6.10 1126 6.25 937
10 3.55 993 2.76 701 2.61 674 2.89 751 2.88 674 5.65 1105 5.36 901
11 3.50 934 2.97 764 2.78 697 3.08 781 3.02 759 5.50 1128 4.61 870
12 3.41 913 3.07 798 3.02 731 3.48 879 3.30 860 4.86 1067 4.32 841
13 3.40 795 3.10 779 3.18 776 3.55 889 3.23 819 4.59 1030 4.28 860
14 3.79 922 3.35 868 2.96 756 3.82 947 3.50 864 4.78 1058 4.27 848
15 3.89 925 3.57 875 3.22 795 4.16 1032 3.74 952 4.74 1046 4.33 876
16 4.17 975 3.53 832 3.40 832 4.56 1159 3.74 900 4.97 1079 4.46 865
17 4.48 1026 4.14 996 3.97 950 4.40 1105 4.74 1105 5.14 1095 4.30 857
18 4.74 1163 4.39 1147 4.32 1090 4.63 1141 5.64 1311 4.93 1047 4.46 906
19 3.74 913 4.38 1174 4.30 1069 3.76 1037 5.78 1278 4.35 933 4.28 907
20 3.45 799 4.37 1193 3.97 974 3.43 919 6.15 1286 3.98 835 3.79 844
21 3.10 710 4.05 1044 3.51 852 2.80 709 5.53 1166 3.55 728 3.57 739
22 3.26 776 3.61 859 3.13 683 2.67 618 3.91 833 3.70 737 3.34 651
23 3.32 699 3.24 695 3.05 661 2.56 515 2.76 536 4.32 843 3.21 615
24 3.15 572 3.04 554 3.07 580 2.44 458 2.36 414 3.96 694 3.17 613

Avg 4.01 836 3.42 785 3.24 728 3.24 746 3.50 753 4.61 878 4.26 747
 
 
error for monthly forecasting is 1.19%. The errors of January, February, March, May, 

June, November and December are lower than the total average level, with respective 

errors 0.55%, 0.93%, 0.82%, 0.89%, 0.97%, 1.05% and 0.86%. The errors of April, July, 

August, September and October are higher than the total average level, with respective 

errors 1.20%, 1.86%, 2.01%, 1.57% and 1.61%. 

Table 5 and Table 6 show the monthly forecasting results of the actual load. 

February shows the least error 2.70% and September shows the largest error 6.10%. For 
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Table 3. Statistics of monthly forecasting results of regression load for the year 2002. 
 

Jan. Feb. Mar. Apr. May Jun. 
Hour Per. 

Err. 
Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

1 0.57 93 1.25 198 0.81 133 1.23 172 1.10 179 1.13 176 
2 0.52 79 1.14 181 0.87 144 1.31 159 0.92 120 0.79 130 
3 0.60 88 1.37 194 0.85 144 1.25 154 0.91 116 0.56 83 
4 0.59 85 1.30 186 0.95 160 1.39 172 0.91 111 0.60 82 
5 0.70 95 1.45 215 1.15 176 1.70 216 0.89 108 0.92 115 
6 0.73 105 1.33 221 1.04 156 1.80 265 0.85 116 0.95 142 
7 0.66 121 1.12 233 1.00 176 1.18 203 1.08 165 1.09 221 
8 0.54 104 0.81 184 0.84 151 1.21 218 1.10 193 1.30 335 
9 0.48 98 0.72 150 0.77 143 0.83 161 0.90 174 1.38 298 
10 0.41 88 0.63 138 0.66 125 0.68 127 0.73 187 1.18 301 
11 0.30 65 0.57 112 0.58 131 0.61 123 0.78 196 0.79 215 
12 0.38 81 0.85 160 0.73 180 0.80 182 0.95 230 0.93 213 
13 0.42 90 0.73 145 0.71 151 1.15 280 1.04 269 1.09 356 
14 0.52 104 0.67 146 0.67 159 1.11 264 1.00 242 0.82 185 
15 0.56 119 0.75 142 0.66 149 1.12 248 0.93 209 0.87 213 
16 0.60 142 0.72 143 0.84 183 1.24 288 0.82 176 1.12 334 
17 0.59 143 0.61 121 1.08 228 1.14 234 1.00 197 1.01 256 
18 0.56 148 0.67 152 0.89 219 1.11 210 1.03 201 1.03 310 
19 0.58 143 0.65 145 0.69 179 1.80 377 1.12 228 1.25 512 
20 0.45 101 0.59 136 0.78 193 1.40 285 1.06 195 0.85 169 
21 0.56 110 0.81 181 0.68 159 0.97 227 0.55 105 0.96 216 
22 0.59 107 0.92 192 0.70 132 0.99 201 0.48 97 0.83 168 
23 0.63 102 1.19 250 0.69 122 1.18 221 0.53 92 0.86 183 
24 0.76 114 1.50 321 0.95 151 1.56 248 0.67 97 1.08 202 

Avg 0.55 105 0.93 177 0.82 160 1.20 218 0.89 167 0.97 226 
 
 
February, the largest error is 3.99% at 7:00 and 8:00 and the least error is 2.07% at 23:00. 

For September, the largest error is 7.85% at 2:00 and the least error is 5.07% at 8:00. The 

total average error for monthly forecasting is 3.75%. The errors of January, February, 

March, April, May, October and November are lower than the total average level, with 

respective errors 2.91%, 2.70%, 2.79%, 3.20%, 3.10%, 2.85% and 3.19%. The errors of 

June, July, August, September and December are higher than the total average level, with 

respective errors 4.52%, 3.97%, 5.28%, 6.10% and 4.40%. 
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From the results, it can be observed that the percent errors with respect to 

regression load are most below 2% which meets the requirement in the power industry. 

However, due to ignoring the load which caused by other unknown factors, the results in 

terms of actual load don’t achieve the short-term load forecasting requirement. 

 
Table 4. Statistics of monthly forecasting results of regression load for the year 2002. 

 
July Aug. Sep. Oct. Nov. Dec. 

Hour Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

1 1.69 260 2.65 508 1.45 280 1.71 289 0.95 160 1.20 177 
2 1.70 275 2.48 440 1.89 369 1.74 268 0.89 165 1.03 147 
3 1.66 294 2.59 426 1.88 327 1.83 268 0.97 159 0.96 141 
4 1.99 356 2.22 377 1.70 287 2.01 296 1.22 187 1.02 150 
5 1.75 301 1.92 334 2.07 340 2.06 311 1.42 216 1.27 194 
6 1.69 319 1.70 332 1.89 332 2.01 311 1.56 254 0.95 175 
7 1.39 277 1.70 330 1.70 310 1.86 339 1.68 297 0.91 180 
8 1.18 221 1.31 247 1.04 226 1.51 282 1.39 278 0.81 166 
9 1.42 290 1.40 292 1.50 312 1.25 265 1.13 237 0.68 149 
10 1.42 336 1.56 341 1.08 225 1.20 243 1.07 215 0.77 168 
11 1.90 488 1.61 372 1.02 212 1.11 229 0.91 173 0.73 177 
12 1.40 357 1.78 470 1.02 250 1.16 223 0.89 172 0.73 206 
13 1.72 464 2.14 537 1.71 377 1.31 268 0.91 182 0.57 160 
14 1.71 447 1.96 472 1.72 440 1.60 353 0.86 170 0.61 165 
15 1.78 557 2.12 552 1.29 295 1.55 332 0.87 176 0.71 181 
16 1.78 505 2.32 603 1.77 440 1.62 321 0.80 162 0.72 186 
17 1.36 441 2.35 590 1.89 482 1.88 385 1.16 252 0.67 216 
18 1.65 451 2.31 597 2.26 540 1.67 378 1.51 479 0.72 231 
19 2.41 1236 1.97 462 1.89 425 1.48 342 1.08 281 0.81 223 
20 2.89 1245 2.06 482 1.23 286 1.14 235 0.94 226 0.84 220 
21 2.83 1106 2.39 622 1.14 230 1.33 284 0.80 211 0.95 226 
22 2.31 761 2.08 484 1.79 381 1.46 361 0.74 178 0.95 219 
23 2.55 712 2.10 395 1.33 324 1.84 413 0.68 145 1.04 206 
24 2.39 510 1.63 288 1.41 341 2.32 423 0.84 145 1.10 189 

Avg 1.86 509 2.01 440 1.57 335 1.61 309 1.05 213 0.86 186 
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Table 5. Statistics of monthly forecasting results of actual load for the year 2002. 
 

Jan. Feb. Mar. Apr. May Jun. 
Hour Per. 

Err. 
Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

1 2.35 347 2.61 370 2.59 386 2.80 382 3.00 394 3.89 646 
2 2.41 337 2.46 335 2.52 358 2.77 357 3.03 363 3.71 634 
3 2.47 346 2.36 307 2.40 329 2.69 351 2.86 335 3.66 597 
4 2.56 355 2.50 330 2.57 348 2.74 365 2.79 327 3.59 579 
5 2.86 392 2.64 358 2.56 343 2.96 384 2.71 332 3.76 594 
6 3.21 492 2.87 500 2.61 378 3.33 441 3.29 450 3.62 566 
7 4.28 808 3.99 903 3.40 558 3.44 527 3.77 709 3.83 619 
8 4.67 985 3.99 1036 3.51 592 3.32 570 3.82 854 4.11 754 
9 4.11 888 3.13 860 3.40 605 3.03 543 3.37 766 3.88 804 
10 3.47 794 2.60 704 3.24 597 2.73 523 3.07 692 4.02 928 
11 3.20 722 2.21 599 3.25 599 2.78 547 3.03 678 4.16 1006
12 3.02 650 2.20 566 3.10 576 3.01 569 3.07 698 4.67 1074
13 2.96 602 2.23 543 2.95 529 3.25 608 3.14 721 4.90 1102
14 3.07 612 2.27 556 2.98 525 3.20 628 3.29 779 5.50 1237
15 3.17 619 2.42 569 2.92 519 3.43 672 3.47 814 5.68 1281
16 3.16 604 2.74 604 3.11 536 3.62 719 3.53 827 5.93 1336
17 3.20 632 3.62 751 3.45 605 3.43 681 3.60 798 5.92 1329
18 2.23 525 3.84 819 3.98 735 3.93 735 3.78 790 6.13 1344
19 2.12 501 2.46 631 2.41 527 5.17 920 3.63 737 5.61 1211
20 2.15 491 2.45 619 2.17 452 4.03 733 3.96 719 5.40 1177
21 2.37 484 2.65 616 2.02 404 3.16 621 2.53 543 4.23 906 
22 2.46 440 2.42 520 1.77 333 2.83 537 2.03 412 4.13 851 
23 2.37 393 2.07 395 1.97 324 2.56 439 1.77 330 4.04 806 
24 2.02 312 2.13 343 2.10 316 2.57 390 1.91 303 4.08 770 

Avg 2.91 555 2.70 576 2.79 478 3.20 552 3.10 599 4.52 923 
 
 

Table 6. Statistics of monthly forecasting results of actual load for the year 2002. 
 

July Aug. Sep. Oct. Nov. Dec. 
Hour Per. 

Err. 
Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

1 3.66 617 4.22 707 7.15 1072 2.78 358 2.06 297 3.24 508 
2 3.56 570 4.71 741 7.85 1097 2.57 334 2.18 311 3.12 495 
3 3.37 550 4.61 690 7.55 994 2.61 331 2.28 321 2.94 484 
4 3.38 541 4.12 615 6.99 962 2.63 334 2.37 344 3.12 507 
5 3.52 559 4.04 601 6.83 912 2.81 360 2.56 382 3.61 570 
6 3.62 574 4.12 672 6.73 973 3.00 434 2.85 470 4.52 778 
7 3.78 647 3.96 687 5.29 950 3.42 576 3.51 732 6.05 1215
8 4.16 827 3.89 800 5.07 1070 3.55 676 3.96 868 6.60 1399
9 3.96 863 4.41 1007 5.64 1163 3.09 611 3.52 765 5.39 1166
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Table 6. Continued 
 

July Aug. Sep. Oct. Nov. Dec. 
Hour Per. 

Err. 
Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev.

Per. 
Err. 

Std. 
Dev. 

Per. 
Err. 

Std. 
Dev.

10 3.80 874 5.39 1203 5.20 1214 2.83 613 3.23 698 4.40 952 
11 3.90 931 6.01 1367 5.28 1220 2.91 651 2.98 673 3.72 815 
12 3.40 922 6.90 1531 5.20 1263 2.84 605 2.85 648 3.25 720 
13 3.58 1028 6.26 1451 5.39 1127 2.64 563 2.79 657 3.27 710 
14 3.79 1072 6.30 1437 5.43 1211 2.91 570 3.02 759 3.56 780 
15 3.86 1084 6.04 1420 6.10 1331 3.11 555 3.28 849 3.83 826 
16 3.87 1146 6.03 1383 5.92 1264 3.35 584 3.68 946 4.37 911 
17 3.99 1210 6.34 1489 6.18 1264 3.44 651 5.58 1238 4.74 1065
18 5.22 1492 6.72 1544 6.91 1464 3.43 712 5.75 1385 4.87 1195
19 5.83 1533 6.29 1430 6.69 1442 3.00 607 3.92 1031 5.19 1242
20 5.99 1501 5.65 1306 6.12 1351 2.72 589 3.59 895 5.65 1281
21 5.01 1248 5.52 1180 5.77 1257 2.53 514 3.28 701 5.83 1248
22 3.81 878 4.82 1034 5.58 1196 2.37 426 2.88 567 5.50 1076
23 3.37 716 5.43 1061 5.72 1089 2.03 347 2.29 431 4.81 838 
24 2.82 540 5.02 853 5.82 1006 1.80 293 2.09 368 4.11 652 

Avg 3.97 913 5.28 1092 6.10 1162 2.85 512 3.19 681 4.40 893 
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CHAPTER SEVEN 
 

Conclusions 
 
 

In this thesis, a new neural network approach for short-term load forecasting is 

proposed. The proposed method investigates a mathematical approach referred to as 

algebraic decomposition to obtain an analytic modeling of empirical load data, which is 

in the form of the product of a coefficient vector with temperature variable and a set of 

basis vectors with time variable. The new concept of a combination of Radial Basis 

Function (RBF) networks and a Simple Recurrent Network (SRN) provides the external 

basis for the interpolation and extrapolation. The new training algorithm in the SRN 

offers an existence of semigroup property in the weight space.  

Whether or not the coefficient vector is smooth is directly related to the 

possibility of implementing extrapolation. Therefore the assumption that actual load is 

mainly influenced by time and temperature factors is made, and the use of regression 

method makes the actual load to be more correlated to the expected two variables. An 

effort called rearrangement based upon the hourly temperature data is carried out to 

assure that a smooth regression load surface can be obtained with time and temperature 

coordinates. Finally according to historical temperatures and the known forecasting 

temperatures, we can perform interpolation or extrapolation for different hours when 

either is required. According to the obtained results, the percent errors with respect to 

regression load meet the short-term load forecasting objective, that is, normally errors 

should be below 2%. However, since actual load data used here represent load 
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consumption in a large area and the temperature data are average weighted values, the 

load includes various components caused by many factors besides time and temperature 

and correlation between load and temperature is not substantially strong. If we are given 

load and temperature which are highly correlated to each other, it is expected that much 

better results in regard to actual load can be achieved and the regression procedure can be 

removed.  
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