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Thesis Chairperson:  Robert J. Marks II, Ph.D. 
 
 
 Large groups of autonomous agents, or swarms, can exhibit complex emergent 

behaviors that are difficult to predict and characterize from their low-level interactions.  

These emergent behaviors can have hidden implications for the performance of the 

swarm should the operational theater be perturbed.  Thus, designing the optimal rules of 

operation for coordinating these multi-agent systems in order to accomplish a given task 

often requires simulations or expensive implementations.  This thesis project examines 

swarm dynamics and the use of inversion to optimize the rules of operation of a large 

group of autonomous agents in order to accomplish missions of tactical relevance: 

specifically missions concerning underwater frequency-based standing patrols and point-

defense between two competing swarms.  Modified genetic algorithms and particle 

swarm optimization are utilized in the inversion process, producing various competing 

tactical responses and patrol behaviors.  Swarm inversion is shown to yield effective and 

often creative solutions for guiding swarms of autonomous agents. 
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CHAPTER ONE 

 
Introduction 

 
 

Unmanned vehicle autonomy is an increasingly active area of artificial 

intelligence research that seeks to implement effective decision-making algorithms in 

undirected vehicles.  Most robots or unmanned vehicles, whether remotely operated, 

autonomous or otherwise, have internalized control algorithms that govern the dynamics 

of operation.  Designing the appropriate control scheme to achieve the desired vehicular 

response in all possible circumstances, and thus fully characterizing the explanation 

facility, is often a difficult if unobtainable objective.  Thus the state-of-the-art in 

autonomous control is frequently brittle, ad hoc expert systems that may exhibit 

undesirable emergent behaviors when the operational theater is perturbed.  Nevertheless, 

autonomous systems are necessary, as direct human control of all factors at all times may 

be outside the capability of the operator, and deterministic control is limited by scope and 

potential for abuse. 

 From automotive assembly lines to pacemakers and self-guided ‘smart’ weapons, 

autonomy requires a responsibly investigated explanation facility that reveals the 

decision-making process of the operating scheme.  Once activated, humans give up direct 

control of many of the operational features of these machines, so it’s vital that the 

relationships between stimulus and response, or antecedent and consequent are well 

established.  This does not mean full characterization of the system for all possible 

scenarios as systems do not necessarily need to be tested for tasks unrelated to their 
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intended purpose; most  engineering decisions are made in the context of the operational 

theater and often describe the forcing conditions or limits of operation. 

 The details of autonomy become increasingly complex when dealing with 

unmanned, multi-agent systems.  Large groups of autonomous, interacting agents, or 

swarms, can have emergent behaviors that are difficult to predict without simulation or 

implementation.  However, the investigation is important as large, interacting groups can 

often accomplish tasks individuals cannot.  In nature, many social creatures such as ants, 

birds and termites demonstrate this notion.  Termites build massive, well-ventilated and 

flood-controlled termite mounds while geese flock in a formation that reduces drag.  In 

both cases, these benefits emerge without any specific, centralized directive.  These 

emergent characteristics and behavior are the foundations of the area of swarm 

intelligence, where simple, individually often marginal rules of operation give rise to 

some indirect benefit to the collective. 

 
1.1   Statement of Purpose 

 
 A current trend in military technology is the use of unmanned and autonomous 

vehicles to accomplish tasks that would otherwise put personnel at risk.  For naval 

applications specifically, autonomous vehicles expand the range of operational capability.  

Currently, autonomous underwater vehicles (AUVs) undertake a wide variety of 

missions, from coastal surveys and ocean research and exploration to mine hunting [8].  

However, the maritime environment poses a significant problem in ship defense and 

national security.  The naval theater is a large expanse and detection capabilities are 

hampered in underwater environments.  As a result, actively searching for pirates, 

smugglers, intruders or invaders in a standing patrol is extremely difficult and costly; 
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well-established networks of autonomous sentries have the potential to be more vigilant.  

However, such automated and independent processes have the potential to give rise to 

unintended emergent behaviors when interacting in large groups.  These issues can be 

addressed through swarm theory and inversion. 

This thesis examines swarm theory and inversion processes and applies these 

techniques to two scenarios of tactical relevance: (1) coordinating the operation of large 

groups of AUVs in a frequency-based standing patrol of a specified target zone and also 

(2) the defense of a Very Important Person (VIP) from a similarly-sized swarm of enemy 

AUVs.  A pervading theme to these investigations is the limitations imposed by the 

underwater environment on the interactions of a multi-agent system, and how the 

advantages of swarm intelligence can overcome them.  In addition, preliminary 

investigations into agent dynamics and control are examined, specifically formation 

handling via graph theory and target assignment and analysis. 

 
1.2   Objective and Contribution 

 
This thesis is the culmination of a joint effort by Baylor University and the 

Pennsylvania State University Applied Research Laboratory as part of ONR’s University-

Laboratory Initiative Program.  This project, proposed by Dr. Benjamin B. Thompson at 

the Pennsylvania State University and Dr. Robert J. Marks II at Baylor University, 

entitled “Inversion of Swarm Dynamics for Underwater, Tactical Applications,” (ULI 

awards  #N000140910398 and #N000140910434 with CR #09PR04714-00) began in 

February of 2009 and ran for two years.  The goal of this program is to educate and 

induct a new generation of engineers in naval research.  The ULI program pairs a 

university student with a Navy-affiliated laboratory to conduct research into technology 
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relevant to ONR.  This project in particular focuses on an aspect of vehicle guidance and 

control applied to swarms of autonomous underwater vehicles. 

 The objective of this project is to investigate and characterize scenarios of tactical 

relevance to the Navy and examine the viability of swarm inversion in addressing these 

scenarios.  Inversion will be used to acquire optimal rules of operation that govern the 

behavior and interactions of a simulated swarm of underwater autonomous vehicles.  This 

process will provide a valuable contribution in affirming swarm inversion for naval 

applications. 

 
 

1.3   Organization of this Thesis 
 

This thesis is organized in the following manner.  Chapter 1 gives a brief 

discussion of autonomous control and swarm intelligence and presents the objectives to 

be solved.  Chapter 2 provides a literature review of relevant topics and introduces key 

concepts and terminology and will tie pertinent research into the main objective.  Chapter 

3 examines theory, including disjunctive synthesis, topology, and target allocation, 

localization and selection methods, and how these concepts can be applied to multi-agent 

systems.  Chapter 4 applies topology in governing the agent interactions and behaviors of 

a capture swarm.  Chapters 5 and 6 are applications of swarm inversion to two distinct 

scenarios.  Problem scenarios, methodology, simulation results and conclusions are 

included therein.  Chapter 7 concludes the thesis and examines potential future areas of 

interest. 
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CHAPTER TWO 

 
Background and Review 

 
 

The focus of this chapter is a literature review of swarm intelligence and multi-

agent inversion techniques.  This chapter will also introduce key tools and concepts such 

as particle swarm optimization and genetic algorithms.  Additionally, a brief overview of 

swarms and examples in human history are covered. 

 
2.1    Swarms 

 
 The word swarm often instills the image of social insects such as a collective of 

bees, ants or termites.  These images give the impression that swarms are just any large 

groups of agents.  However, this interpretation overlooks two key aspects of swarms: the 

sharing of information via agent interactions and the lack of a centralized controller 

governing social behavior.  Swarms are large groups of interacting agents, even if those 

interactions are indirect or unidirectional via pheromone trails, stigmergy or interference.   

 
2.1.1   Swarm Intelligence 
 
 Swarm intelligence is the notion that agents within large groups, individually 

enacting simple, local rules can give rise to complex, global behaviors.  These added 

benefits are known as emergent behaviors and have applications in communication [4], 

robotics [2] and optimization [9].  The exact relationship between these low-level rules 

and the collective emergent behavior often escapes analytic inspection, becoming 

difficult to ascertain one without the other.  Traditionally, emergent behavior is analyzed 

via simulation: the local rules are defined and then the emergent properties are observed.  
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When operating in large groups, the collective can accomplish tasks individual agents 

independently cannot.  In addition, swarm intelligence imparts three prospective 

advantages: (1) an adaptive nature to small changes in circumstance, (2) a robustness of 

the population and (3) a decentralized nature [3]. 

Ant colony optimization is a classic example.  When worker ants forage, they 

leave behind pheromone markers.  These pheromone trails evaporate and indirectly 

communicate with any other nearby ants in a process called stigmergy.  Foraging ants 

operate on a simple rule: to follow the direction of the strongest, external chemical 

marker.  Given two paths to a food source where one path is shorter than the other, ants 

recruited into harvesting the food source will initially choose both paths equally.  

However, ants returning via the shorter path reinforce the pheromone markers more often 

as they can make more trips in a given amount of time.  The result is that the pheromone 

markers on the shortest trail are reinforced the most, gradually leading to the swarm 

preferring the shortest path.  At large populations, the system is very robust and the entire 

process executes without the need for a centralized controller. 

 
2.1.2   Historic Military Swarms 
 
 Many historic armies appear to satisfy the definition of swarm at first glance.  

From ancient Greek phalanx hoplites to British Redcoats, many armies fulfill the notion 

of large groups operating under simple rules.  However, a key aspect that is overlooked in 

these examples is the decentralized and unsupervised nature of swarms.  These historic 

armies had generals and other commanding officers directing battlefield movement, 

effectively changing the nature of the rules of operation and fitness landscape in real-

time.  In contrast, a standard worker ant does not have a commanding officer to supervise 
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and direct its actions.  The ant knows inherently how to respond to local events and lets 

the collective interaction dictate the emergent global behavior.  Thus, it may seem that 

military swarms cannot exist as few armies operate effectively without discipline and a 

well-established command structure.  However, this is not the case. 

A classic example of a military swarm is the horse archer swarm.  Horse archers 

are an inherently minimalistic design that had very few rules of operation.  Riders simply 

tried to maintain distances to their target and control space through their mobility.  If the 

enemy army was too far away, the rider moved closer, shooting their bow and arrows.  If 

the enemy was too close, the horse archer retreated, continuously shooting in a maneuver 

called the “Parthian Shot,” a technique used extensively by Parthian horse archers against 

the Roman Empire.  The result was an emergent behavior that exhibits all the classic 

advantages of swarm intelligence: the horse archers would encircle and pulse the target 

[11].  In pulsing the target, the simple attack and retreat mechanic results in the swarm 

engulfing the target in a ring, attacking relentlessly from all sides. 

 

 

 
Figure 2.1   Historically, individual horse archers would “pulse” their target, closing the distance to shoot 
then performing an attacking retreat.  A swarm of pulsing horse archers executing this behavior collectively 
surrounds the target, forming a giant ring that attacks from all sides without specific instruction to do so. 

Horse Archer 

Opposing 
Force 

Individual riders 
pulse the target 

Gradual encirclement by 
the horse archer swarm 

Back and Forth 
“Pulsing” Behavior 
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 Here, both the advantages of robustness and adaptability and the swarms 

decentralized nature are apparent.  Ancient horse archer swarms typically numbered in 

the thousands: the ancient historian Plutarch wrote in his biographical Lives [27] that in 

53 BC, at the Battle of Carrhae, a force of over 9,000 Parthian horse archers and 1,000 

cataphracts defeated 40,000 Roman Legionaries and mercenaries under Crassus, 

capturing or killing over 30,000 while suffering only few, light casualties.  The large size 

of these swarms made the Parthian Shot very robust, guaranteeing a constant stream of 

arrows from all directions.  Losing one or two horse archers had minimal effect on the 

swarm as a whole; other agents would fill in the gaps to compensate and the swarm 

would still maintain a constant and unyielding surround and harass.  The decentralized 

nature of the swarm prevented the Parthians forces from losing any officers, direction or 

leadership when individual riders were killed. 

Additionally, if the target army attempted a counterattack, the threatened horse 

archers in the path of the counterattack or charge would simply retreat while horse 

archers at the flanks gave chase.  This behavior results in the entire horse archer ring 

moving with the entrapped army.  Thus, the horse archer swarm, through its mobility and 

very simple rules of operation was adaptable to a variety of enemy infantry 

counterattacks.  Crassus at the Battle of Carrhae is a classic example of this.  

Nonetheless, these tactics could be countered.  Encountering Scythian horse archers 

during his campaign, Alexander the Great spent two years stalled at Bactria and Sogdiana 

fighting a guerilla war [11].  Alexander determined that his Macedonian phalanx infantry 

and cavalry could only effectively counter the swarm by breaking its flexibility, often via 

pinning the horse archers against a large barrier such as a river or fort. 
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2.2   Optimization Techniques 
 
 Single and multi-variable optimization techniques are methods aimed at achieving 

some set engineering goal, given constraints.  Iterative improvement algorithms attempt 

to refine a solution towards an optimum, and comprise a field often subsumed in the 

discipline of computational intelligence.  Typically, these methods are applied to 

problems of such high complexity that closed-form or numerical solutions are not readily 

deducible and exhaustive searches are computational prohibitive.  There exist a variety of 

optimization techniques, such as gradient descent, ant colony optimization, particle 

swarm and genetic algorithms.   

 
2.2.1   Performance Fitness 
 
 The effectiveness of a proposed solution is often measured through a performance 

index, cost, error, utility or fitness function.  The fitness function provides a metric for an 

optimization technique to gauge a population’s performance. Extremizing objective 

functions is the basis for many dynamic and adaptive control schemes, whether to 

maximize the fitness or performance of a system or minimize its cost or error. 

 Defining an appropriate fitness metric for the performance of a solution in an 

optimization technique is usually a challenging and fickle aspect, often described as the 

‘art’ of optimization.  Seemingly obvious methods for judging the performance of a 

potential solution can have unintended consequences as the optimization algorithm may 

circumvent the true goal [22].  In battling an epidemic, for example, a method for 

measuring the effectiveness of a given solution may simply be a measure of the number 

of people infected within a population.  An optimization algorithm may then conclude 

that the optimal solution to eliminate the epidemic is to eliminate the population in its 
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entirety.  Within the definition of the performance index, the solution’s fitness is optimal 

as it results in zero population being infected, but the solution itself is unintended and the 

fitness function must be adjusted to reflect that aspect.  

 
2.2.2   Genetic Algorithms 
 
 Genetic algorithms are a type of improvement algorithm based on evolutionary 

techniques.  The solution space is searched via several instances, or genotypes, where a 

string or array of parameters forms the chromosome of the solution.  Genetic algorithms 

model an evolutionary process driven by selection [15], randomly initializing each 

genome within the solution space.  The effectiveness of each current chromosome is 

evaluated against a fitness criterion, which is extremized by the algorithm and ranked by 

performance.  From there, the population undergoes selection, where chromosomes 

reproduce in adherence to their performance.  High performers reproduce more, while the 

lowest performers are eliminated, and selection is often made via random selection or a 

performance threshold.  In this way, the progeny of the preeminent solutions are 

preserved, driving the population toward a higher-performing solution and hopefully a 

strong optimum. 

When reproducing, the chromosomes of the progenitor population typically 

undergo genetic operators such as mutation, crossover and elitism.  In mutation, elements 

of the chromosome are randomly changed by some defined probability.  This allows the 

chromosome to potentially leap across the solution space and search, reducing the 

likelihood of the population stagnating at a local optimum.  Crossover represents the 

actual process of reproductive coupling, where the genes of parent chromosomes are 

mixed to produce a new generation.  Elitism preserves the highest performing genomes of 



11 
 

each generation, ensuring that the solution isn’t quickly lost in the process of generating 

the next generation.  The population ideally inherits the best characteristics of their 

parents and as the process is iterated, the overall population should converge to an 

optimum solution. 

Many variants of the GA exist.  Often, population genomes are modeled as a 

binary sequence.  However, real-valued genomic representations are also possible and 

usage depends on the application.  In addition, a scrambling or randomization element 

can be used in addition to mutation to introduce the population to new genotypes, a 

process analogous to a population’s immigration component.  This process can also be 

applied to the entire population when the evolution has stalled in order to perturb the 

system and dislodge it from its current local optima. 

 
2.2.3   Particle Swarm Optimization 
 
 Eberhart and Kennedy’s Particle Swarm Optimization (PSO) is a stochastic, 

iterative, social optimization technique inspired by the flocking of birds over a fitness 

landscape [10].  Agents collectively share information on the locations of the solutions, in 

order to determine a global best.  This knowledge allows the swarm to home in on and 

around an optimal solution, and the effectiveness of the search is often considered an 

example of swarm intelligence.  Shi and Eberhart modified the PSO to include an inertial 

weighting component w, meant to balance the global and local searches [30].  The 

modified PSO’s kinematic update equations are described below in equations (2.1).  In 

the original equation, c1 and c2 are chosen to be 2 in order to have the weighting of both 

global and personal best influences to be 1 on average [21].  The inertial weight w is a 

variable value often between 0.9 and 1.4 [30, 31]. 
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 𝑣𝑘+1 = 𝑤𝑣𝑘 + 𝑐1𝑟𝑎𝑛𝑑( )�𝑥𝑘,𝑝𝑏 − 𝑥𝑘� + 𝑐2𝑟𝑎𝑛𝑑( )�𝑥𝑔𝑏 − 𝑥𝑘� 
𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘 

(2.1a) 
(2.1b) 

 
 
 Additional adjustments to the PSO algorithm can be made to improve its 

convergence properties.  Many implement a maximum velocity in order to prevent the 

PSO particles from potentially exploding outward indefinitely.  Clerc and Kennedy 

demonstrate that, through the use of constriction factors, the possibility of particles 

becoming unstable can be prevented without the implementation of a maximum velocity 

[5].  Additionally, the rate of convergence toward local optima can be shown and 

controlled through the choice of constriction coefficients, with a trade-off of slower 

convergence for more thorough searches.  Re-initialization may also be applied to 

occasionally scramble the particle’s locations and prevent them from settling on local 

optima when the algorithm has converged or stalled. 

 
2.3   Genomic Inversion 

 
 Utilizing a search technique to optimize control parameters in an otherwise 

computationally prohibitive solution space has been used in a variety of fields.  Large 

teams and multi-agent systems are often studied in the simulation or robotics domain.  

Many optimistic and pessimistic conclusions have been made regarding evolutionary 

programming in inverting controller behavior.  Of note are Craig Reynold’s boid flocks 

[28] and Jennifer Golbeck’s rover swarms [14]. 

In 1986, Reynolds coded computer-simulated ‘boids,’ bird flocks and fish schools 

that operated on three simple, local sensors: (1) separation, or the distance between boids, 

(2) alignment, or a tendency to align an individual’s velocity toward the collective’s 

average heading and (3) cohesion, or a tendency towards the local neighborhood’s center-
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of-mass.  Reynolds’ focus was in computer animation; animators utilized boids in short 

films as well as to produce the swarms of bats and penguin army in the 1992 “Batman 

Returns” movie.  Reynolds later applied genetic programming to evolve his boid’s 

flocking behavior in order to navigate, collision-free down a winding corridor [28].  

Agent jiggle, a randomness component attached to a boid’s trajectory, was found to be 

essential in the evolutionary process as it prevented the boids from memorizing the 

terrain due to non-jiggle’s deterministic evolution.  Memorizing the terrain produced 

weak or brittle strategies as the boids would not perform well when the terrain was 

slightly changed.  A stochastic simulation with jiggle prevented this condition from 

occurring, producing flocks that could adapt to terrain.   

Boid and other simulated behavioral ‘breeding’ is continued in other research, 

such as Kwong and Jacob’s examination of boid evolution to develop static controllers 

for different flocking, swirl and ring formations [23].  Zaera et al. attempted to utilize a 

genetic algorithm to evolve a neural network controller for a school of synthetic fish [34].  

Their findings were pessimistic as they concluded that the process of designing the 

fitness function for their process was as difficult as hand-tuning a controller, and a truly 

realistic schooling was never achieved.  Gaudiano et al. came to a similar conclusion in 

their Unmanned Aerial Vehicle (UAV) simulator [12].  Their simulator had five 

evolvable parameters that governed UAV state transitions.  When evolved, the fitness of 

the UAV system would quickly stagnate, leveling off and oscillating within 10 

generations of a 1200 generation run.  Gaudiano et al. concluded that fitness tuning was 

paramount, but the effort required over hand-tuning the controller made the process’s 

merit questionable.  
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 There have been more optimistic results, especially in robotics and swarm-bot 

simulations.  Baldassarre et al. evolved four Khepera simbots using a fitness function 

based on minimizing variations in proximity and formation [1].  They qualitatively 

examined and classified the results, noting several heuristic classes of motion behavior, 

designated “Flocking,” “Rose” and “Amoeba.”  Okada and Takagi evolved a RoboCup 

Soccer team against a benchmark with using a multi-objective GA, with the evolutionary 

search producing improved performance over a random search [26].  Their fitness 

function attempted to maximize goals for the team while minimizing goals-against, and 

their evolution brought about dominant solutions revealing offensive, defensive and 

balanced team behaviors. 

 Jennifer Golbeck applied this notion of evolving optimal parameters to a swarm 

of “unintelligent rovers” in an exploratory mission [14].  In her simulation, a 10 or 50 

agent swarm was evolved using a GA to search the immediate vicinity around a fixed 

central point.  Agents evolved scalar values corresponding to a weighting on the number 

of neighbors tracked, neighbor attraction, collision avoidance, acceleration towards the 

center and randomness.  Ten randomly scattered points of interest are loaded into the 

field and swarm fitness is a function of the total number of points discovered and the 

number of times these points were visited over the course of 1,400 steps, averaged over 5 

trials.  Golbeck found the inversion process did improve her fitness metric and that the 

swarming patrol total coverage yielded a Gaussian topography; the controller behavior 

made agents search the center the most as in a Gaussian distribution.  Another interesting 

aspect was the length of time the evolution was performed.  Golbeck’s fitness functions 
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peaked by the 20th generation of her GA, indicating that the inversion process did not 

need to take a long time to settle on a good, general solution. 

 
2.4   Competitive Co-evolution 

 
 Competitive co-evolution typically attempts to model predator-prey interactions 

where both teams are assumed to be evolving concurrently.  One potential outcome of 

this process is the evolutionary arms-race, an aspect of the “Red Queen” effect where 

both sides continuously improve their performance against their current opponent but do 

not dominate their opponent as to drive them to extinction.  Periodic advantages may 

appear then vanish in the evolutionary arms-race.  Rosin and Belew describe competitive 

co-evolution as producing ‘strong’ and ‘weak strategies’ [29].  Strong strategies are 

theoretical genotypes capable of defeating all opponents while weak strategies are 

inferior genotypes where individuals are only capable of defeating each other in a cycle.  

Strong strategies represent the search for the best, optimal solution that works in all cases, 

while weak strategies are more brittle, settling for defeating a subset of opponents in an 

evolutionary arms-race.  Rosin and Belew note that, if there is an optimal, best strategy, 

then only one side can have it and the competition is one-sided.  Without that guarantee, 

however, the goal becomes to develop an optimal solution that beats the non-optimal 

solutions or “teaching set.”  They note that competitive co-evolution should encourage 

niching or specialization to form the teaching set, and that the teaching set is complete 

only if it includes all non-optimal solutions. 

 Rosin and Belew applied their competitive co-evolutionary techniques to games 

of Nim and 3D Tic-Tac-Toe, evolving their populations using “simple fitness” and 

“fitness sharing” metrics [29].  For simple fitness, each individual genotype competes 
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against all concurrent, potential opponents and a success or failure rate fitness is applied.  

For fitness sharing, individuals are rewarded based on the difficulty of the opponents 

defeated.  Within finite populations, this preserves the rare genotype that may perform 

poorly against the majority of opponents, but whose genetic information is vital in 

specific circumstances.  Their infinite, or dynamic and unbounded populations would 

always preserve a list of high performers in order to encourage the searching for strong 

strategies.  For their Nim and 3D Tic-Tac-Toe examinations, Rosin and Belew found 

3DTTT to develop a clear dominant solution while Nim settled into an arms-race where 

each side took turns dominating and no best solution was found. 

 
2.5   Weapons-Target Allocation 

 
 One particular class of problem with historical significance is the Weapons-Target 

Allocation (WTA) problem, or alternatively the Target-Assignment Problem (TAP) [24].  

When multiple targets present themselves to multiple weapons, an efficient and optimal 

allocation of weapons to targets is desired to prevent weapons from being wasted on the 

same set of targets while ensuring a sufficient level of confidence that all targets have 

been eliminated.  These problems came to prominence during the Cold War and have 

often been used in the context of missile defense, utilizing Anti-Ballistic Missiles 

(ABMs) to intercept Inter-Continental Ballistic Missiles (ICBMs) or Multiple 

Independently-Targetable Reentry Vehicles (MIRVs) in their terminal or reentry stage 

[25].  Intercepting missiles in their initial ‘Boost’ or later in the exo-atmospheric 

‘Midcourse’ stages was initially more difficult; the actual course and target of a missile 

(city or region) is difficult to predict until the missiles’ terminal stage.  As MIRVs are 
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equipped with multiple warheads and decoys, dubbed Reentry Vehicles (RVs), these 

problems were also called terminal, point and or area defense.   

Typically these problems have been addressed with computationally intensive 

linear programming techniques.  In single-type WTA problems, a given number of 

weapons must efficiently allocate targets in order to maximize some objective function, 

such as to maximize damage, probability-to-hit or kill ratios. Solutions to WTA problems 

include using linear programming, nonlinear allocations [18], negotiation techniques [32] 

and neural network models [33].  However, these scenarios are often based on situations 

where global or direct local communication is possible, or target allocation is determined 

a priori and the dynamics of the weapons are simplified to hit probabilities. 
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CHAPTER THREE 

 
Theory 

 
 
 This Chapter reviews the topics of Graph Theory, including various topologies, 

disjunctive synthesis and Comb’s Method, and neighborhood target assignment, 

including a minimized group sorted distance selection algorithm and particle filters.  

Many of these topics will be used in Chapters 4 and 5 in the preliminary study as well as 

the Point-Defense scenario by providing a framework for modeling agent interactions 

within a population. 

 
3.1   Graph Theory 

 
 The various interactions of agents in a swarm can be modeled as a graph.  A 

graph is a network of nodes representing objects or actors and interconnections 

representing a sharing of information.  Graph Theory and Swarm Theory share many 

parallel concepts such as the aggregation of local interactions into global effects.  Swarm 

agents are nodes on the graph, and their local interactions can be modeled as a sharing of 

information via connections between nodes.  For swarms, the graphs are dynamic and 

connections are constantly made and destroyed as agents become aware of new targets 

and lose track of others.   

 The Laplacian or admittance matrix is a square matrix that characterizes the 

connections in a graph in its spectral layout and is presented in Equation (3.1).  The 

matrix can be calculated by taking the difference between the degree of a graph, or a 

diagonal matrix containing the number of connections for each given element, and its 
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adjacency matrix.  The product of the Laplacian’s non-zero eigenvalues over the total 

number of nodes gives the number of spanning trees of a graph.  In some cases, a 

normalized Laplacian is used to determine the spectrum of a graph. 

 

 𝐿 = 𝐷 − 𝐴 = �ℓ𝑖,𝑗�𝑛×𝑛
   where   ℓ𝑖,𝑗 = � 

deg(𝑥𝑖) 𝑖 = 𝑗
−1 𝑥𝑖 is adjacent to 𝑥𝑗
0 otherwise

� (3.1) 

 

 
Figure 3.1   A four element undirected graph in a topological ring formation and its associated Laplacian L 
matrix.  The L is 4x4, reflecting the number of nodes in the graph and is formed by the difference between 
the graph’s degree and adjacency matrixes.  Here, each node has 2 connections or degree, so the degree of 
the (1,1), (2,2) through (4,4) positions of L are each 2.  Node 1 is topologically adjacent to Nodes 3 and 4, 
so the adjacency of the (1,3), (1,4), (3,1) and (4,1) are all 1, and in the resulting difference from the degree 
leaves –1 in these positions in L and the rows and columns sum to zero.  Thus the L matrix contains all the 
information needed to reconstruct the relationship between nodes in the graph.   
 
 
 Graph topology describes the interrelations of a network of nodes.  Agents that 

share information, whether directly or indirectly via visual or auditory cues or even 

pheromones become connected on their respective network graph.  However, topology 

should not be thought of as an indicator of strict formations, shapes or visuals.  A ring, 

for example, is topologically equivalent to any other enclosed structure, such as a square 

or triangle.  In addition, a ring that twists itself in its transverse plane into a figure-eight is 

still a ring topologically as long as the specific connections between agents are 

maintained.  Topology not only provides insight into which agents detect each other but 

also which connections or influences are strongest in a given neighborhood of effect. 

1 

3 

4 

2 

𝐿 = �

2  −1 −1
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3.2   Disjunctive Synthesis 
 
 The calculus of Disjunctive Synthesis (DS) is an aggregation technique for 

modeling the complex and uncoupled nature of swarm interactions based on Combs 

Method [6] and has been developed and applied to engineering systems [7].  Traditional 

conjunctive Multi-Input Single-Output (MISO) systems take a set of antecedents and 

summarily form a consequent.  This means that the consequent C occurs when A1 and A2 

through AN occur.  However, a disjunctive form can be written through logical 

equivalence depicted in Equation (3.2), meaning that the consequent is achieved via its 

individual elements An.   

 

 ��𝐴𝑛

𝑁

𝑛=1

→ 𝐶� ≡ ��(𝐴𝑛 → 𝐶)
𝑁

𝑛=1

� (3.2) 

 
 
 The conjunctive form is considered to be a brittle model for the interactions 

between swarm agents.  In conjunctive synthesis, the consequent is the aggregate of all N 

antecedents.  Equivalently, this means that N inputs are required for this MISO system to 

operate, and failure to provide all N inputs for this highly coupled system precludes the 

output of the system.  Additionally, for M sets of responses for each input, the system 

becomes MN complex.  For swarm models operating under CS, this means that all 

potential inputs such as global position, target and ally information, visual cues and role 

assignments must be known beforehand by the agent in order to calculate the next 

operational step.  If one of these sensors were to fail the CS consequent would be 

incalculable and the swarm would become unresponsive. 

 In contrast, the disjunctive form is a much more robust model for swarm 

interactions.  In disjunctive synthesis, each antecedent has the ability to independently 
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bring about the consequent.  The DS model is loosely coupled and as a result of this 

independence is M×N complex.  Not all information is required in order to bring about 

the consequence.  A common analogy used to describe this equivalence is in steering a 

car.  A vehicle may turn right through a number of antecedents: turning the steering 

wheel right, speeding up the left side or applying brakes to the right side of the car.  In 

this system, failure of one of the antecedents, such as turning the wheel, does not prevent 

the system from achieving a desired output; the system can still turn right via other 

mechanisms. For swarms, this is a bottom-up characterization of interactions that greatly 

simplifies the model via the separability or independence of each input.  In addition, the 

DS model is conceptually intuitive and compliant for inversion.  

 
3.3   Target Allocation and Interception 

 
 A key aspect in designing a pursuit-based competitive swarm simulation is an 

appropriate targeting and intercept algorithm.  Swarms in particular must be able to 

quickly and effectively allocate targets with imperfect information.  This is increasingly 

important for games against an equally-sized opponent swarm.  Simple rules, such as 

pursuing the closest enemy target can lead to diminished collective performance as 

predators reduce their numerical advantages.  A closest target, for example, may lie 

outside the turning radius of an agent, as a classic solution to the Homicidal Chauffer 

problem [20], depicted in Figure 3.2.  Agents lying in the inaccessible regions of the 

interceptor’s physical constraints will be safe from capture due to turning limitations of 

the interceptor; an interceptor with only a pursuit mechanic will be forever trapped in a 

circular loop.  To prevent or escape this outcome the interceptor would have to take 

short-term, “undesirable” step such as moving away from the target in order to reposition 
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itself and renew its pursuit options.  This would require a separate cognitive module to 

recognize being trapped in such a situation.   

 

 
 
Figure 3.2   The inaccessible regions lie beyond the minimum turn radius of the agent.  Prey pursued by a 
predator can forever evade capture by staying just beyond the interceptor’s reach by pursuing these regions.  
This is a classic solution to the Homicidal Chauffer problem and requires the interceptor to take 
“undesirable” or momentarily counterproductive step, such as moving away from the prey in order to 
correct this situation and renew the pursuit.  
 
 
 One way to address this type of situation is to recognize when a target is in an 

inaccessible region.  If there are multiple targets and multiple interceptors, this may mean 

that this target is better left to others to intercept.  A way to map these regions of intercept 

for discretized time is through Particle Filters [16] by mapping space-time cones.  The 

objective behind this is to ‘grow’ loci of trees that represent areas reachable given yaw 

rate and speed constraints as in Figure 3.3, similar to forming fractals.  Once formed, the 

agent could simply test to see if a target lies within its reachable loci and assign a 

probability to intercept, pushing the model towards a more traditional WTA problem.  If 

a target is outside this region or if a tree has to be grown too long in order to encompass a 
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target, then the target should be left to others to pursue as this particular agent may never 

reach it in time or become trapped in a tail-chase.   

 
Figure 3.3   Mapping the zonal routes for the first 32 sec of activity at 4 sec time lapses of a set of agents 
traveling at 10 m/s.  Given these morphological constraints, at the 32 sec time mark, the agent can only 
intercept targets that lie within the green regions (the agent could always slow down in order to intercept 
targets that are less than the maximum distance away.) 
 
 
 Growing intercept cones is not limited just to pursuers.  The evading target may 

also grow a tree to represent its options of escape.  If target agents are limited by similar 

mechanics, the probability of intercept reflects the overlapping regions of the predator 

and prey’s zonal routes.  Additionally, if there is information known as to the preferences 

of the target, such as turning preferences or inertial limitations in the next step, then the 

route swaths can be adjusted to reflect those tendencies.  This can drastically change the 

shape of the route swaths, shrinking or skewing their range as depicted in Figure 3.4.  

Ideally, in multi-agent systems, a swarm of predators observing a swarm of prey should 

assign targets based on their probability to intercept.  By noting the overlapping regions 

of each agent’s tree, a probability can be assigned for deterministic prey.  Preys that 

Starting Location 
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observe their own trees can adjust their dynamics accordingly in order to evade pursuers 

forever.  As this method is scalable, it would benefit a swarm agent at its local 

neighborhood.  However, this generating these trees is a computational impediment for a 

simulation. 

 

 
           (a)   Mapping zonal routes based on                             (b)   Mapping zonal routes based on 
                    uniform random distribution                                       nonuniform random distribution 
 
 
Figure 3.4   Mapping the zonal routes for the first 32 sec of activity at 4 sec time lapses of a set of agents 
traveling at 10 m/s sampled from random distributions of preference.  In the case of (a) a tree is grown that 
is mostly symmetric.  For (b), the preference toward a right turn leads to the agents forming a more 
squashed, and skewed tree and a much smaller region of intercept. 
 
 
 At the local level with information only from the immediate neighborhood, agents 

must have a simpler and faster algorithm for allocating targets.  A simplistic nearest 

target method is insufficient as this does not make use of all of the agent’s available 

sensors.  In a situation where two predators chase two preys, both predators may share 

θ 

P(θ) 

θMAX –θMAX θ 

P(θ) 
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the same closest target.  However, the closest remaining prey may be outside the reach of 

one of the predators.  Even though both predators are maximizing their individual utility 

in this situation, the only predator that can reach the remaining prey should switch targets 

to maximize the utility of the team.  This concept is depicted below in Figure 3.5.  In 

order to maximize targets captured, this algorithm can be modeled as minimizing total 

neighborhood distances to all visible targets without replacement.  For only one 

interceptor this is the same as the closest target.  When there are more targets than 

interceptors, this algorithm reduces the intercept time, allowing lagged or subsequent 

interceptors a clearer perception of the field.  When there are more interceptors than 

targets, the furthest away or otherwise unassigned interceptors have a strong motivation 

to search elsewhere. 

 

 
           (a) Target Assignment via Closest Target                  (b) Target Assignment via Minimum Group  
                                                                                                      Distance under Visibility Constraints 
 
 
Figure 3.5.  In (a), target assignment is based on proximity, resulting in all of team D (chevrons) choosing 
target A1 to intercept.  In (b), team D chose targets based on their perceptions.  D1 and D2 recognize that 
D3 can only see A1, so they assume A1 is covered by D3.  Of the remaining targets, A2 is the closest to 
both.  To minimize the total travel distance to targets for both agents, D1 selects the farther target A3 and 
assumes D2 will select A2.  If D2 perceives the same world as D1 then it will make the same assignment. 
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A1 
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(a)   Initialization:  Single Point Burst (No Visible Allies) 

 
              Minimum Distance                    Minimum Sorted Distance               Minimum Group Distance 
 
 
(b)   Initialization:  Single Point Repeater (Sequential Visible Allies) 

 
              Minimum Distance                    Minimum Sorted Distance               Minimum Group Distance 
 
 
(c)   Initialization:  Multiple-Point Burst (Reduced Visible Allies) 

 
              Minimum Distance                    Minimum Sorted Distance               Minimum Group Distance 
 
Figure 3.6   Target allocations methods given separate initializations.  All targets (Red) are initialized 
simultaneously in a random spread.  Pursuers (Green) implement a closest or minimum distance, minimum 
sorted or with role assignment or minimized group distance algorithm.  In (a) Green is initialized all at once 
in from a centralized location.  In (b), Green is initialized sequentially as if fired from a gun and (c) Green 
initializes in a spread formation.  In conditions (a) and (c), Green is initialized in a formation that gives little 
visual information on allies as they are outside their arc of detection.   

2km 

Kills: 7 (1/8 Pursuers Left) Hits: 1  - LOSE 

2km 

Kills: 3 (5/8 Pursuers Left) Hits: 5  - LOSE 

2km 

Kills: 6 (2/8 Pursuers Left) Hits: 2  - LOSE 

2km 

Kills: 2 (0/8 Pursuers Left) Hits: 6  - LOSE 

2km 

Kills: 7 (1/8 Pursuers Left) Hits: 1  - LOSE 

2km 

Kills: 7 (1/8 Pursuers Left) Hits: 1  - LOSE 

2km 

Kills: 2 (0/8 Pursuers Left) Hits: 6  - LOSE 

2km 

Kills: 1 (0/8 Pursuers Left) Hits: 7  - LOSE 

2km 

Kills: 1 (0/8 Pursuers Left) Hits: 7  - LOSE 
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 In simple zone denial and point defense problems, the minimal total distance 

method is a notable improvement over closest targets, with or without role assignment 

and without communication.   A simple simulation test of an 8 versus 8 intercept scenario 

is shown if Figure 3.6 and recounted in Table 3.1.  

 
Table 3.1   Summary of total wins out of 100 repeated trials. 

Minimum Distance   

Initialization Total Wins Kills 

Single point burst 
Single point repeater 
Multiple point burst 

0 
24 
15 

15% 
85% 
82% 

Minimum Sorted Distance   
Initialization Total Wins Kills 

Single point burst 
Single point repeater 
Multiple point burst 

0 
0 
1 

13% 
60% 
56% 

Minimum Total SortedDistance   
Initialization Total Wins Kills 

Single point burst 
Single point repeater 
Multiple point burst 

0 
77 
10 

18% 
97% 
80% 

 
 
 In situations where multiple allies and enemies are visible, such as when 

initialized sequentially from a single point or in situations where effective target 

allocation is necessary, minimizing the total sorted distances is very effective at 

improving kill and wins ratios over other algorithms.  However, when the initialization 

already spreads predator and prey out in an optimum formation to intercept, such as in the 

multiple-point burst, then simply picking closest targets is the quickest and most reliable 

of ensuring all targets are covered as the formation is gives them that advantage.  In 

general, however, when there is no specific advantage given by initialization, minimizing 



28 
 

the total neighborhood sorted distance was the most effective at ensuring all targets had 

been addressed and countered.   

 Once a target is decided, an intercept path or homing methodology must be 

implemented.  In weapons dynamics, there is a popular fox and hound analogy.  Weapons 

heading where the target currently is are directed to chase their target, like a hound.  This 

hunting behavior is reactionary and if the prey is just as fast as the predator may result in 

a tail-chase.  The prey is usually caught via a culmination of environmental effects, jitter, 

obstructions and occasionally initialization effects.  Foxes, however, hunt differently by 

exhibiting a predictive behavior and heading to where their prey will be.  This may lead 

to over-thinking or overcompensating for the target.   

 

 
Figure 3.7   (a) Reactive versus (b) Predictive homing.  In situations where predator and prey move at the 
same speed, the reactive hunt may result in a tail-chase.  Predictive homing can potentially overcome this 
problem, provided an intercept point exists.  While straight-running and nonresponsive in this example, the 
same issues occur with a responsive prey.  No inertial or morphological constraints are enforced in this 
example; this is the idealized case where a predator is most maneuverable. 
 
 

When trying to intercept a target, a hybrid system of fox and hound, or predictive 

and reactionary behaviors is often used.  For example, torpedoes may be fired in a spread 

in order to maximize the probability to hit, such as the three straight-running Mark 8 

Predator Predator 

Prey Prey 

(a)   Reactive Chase 
 (Go where the target is) 

(b)   Predictive Chase 
        (Go where the  
          target will be)  



29 
 

torpedoes used by the HMS Conqueror to sink the ARA Belgrano during the 1982 

Falkland War [13].  Despite being straight-running torpedoes, their fire trajectories can be 

thought of as homing using only one discrete, initial update cycle, and the spread should 

ideally encompass the range of where the target currently is to where the target could 

potentially escape to in order to maximize their hit probabilities. 

Minimum total neighborhood sorted distance with predictive homing will be the 

method implemented in swarm target allocation in the competitive swarms of the point-

defense scenario described in Chapter 5.  Agents will use this algorithm in order to define 

an intercept point to approach.  The simulation depicted here is a simplified version of 

Chapter 5 but has applications to most predator-prey models. 
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CHAPTER FOUR 

 
Swarm Topological Design 

 
 
 This chapter utilizes concepts in Graph Theory in order to define and manipulate 

the topology of a swarm.  The goal of this chapter is to see how topology influences 

swarm dynamics in order to complete a given mission objective, such as capturing a 

target.  Both fixed and dynamically-formed topology examples are observed via 

simulation utilizing MATLAB, and these models will be used again in Chapter 5 for 

agent swarm dynamics. 

 
4.1   Introduction 

 
 As shown in chapter 3, the Laplacian matrix can be used to characterize the 

relationship between agents in a graph.  The Laplacian is formed by the difference 

between a graph’s degree and adjacency matrices.  If the Laplacian is applied directly to a 

swarm’s dynamics by multiplying with agent velocities, the nonzero elements of the 

adjacency matrix ensure that some aspect of adjoining agent behaviors will be added to a 

given agent’s trajectory.  How this matrix will change the dynamics of a weakly-

connected swarm may not be intuitive but can be observed via inspection and confirmed 

through simulation.   

 
4.2   Fixed Topology 

 
4.2.1   Single-Ring Topology 
 
 Consider a ring topology and its Laplacian matrix as defined in Figure 4.1.   Each 

element in the matrix has a degree of two, corresponding to two connections to adjacent 
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neighbors.  Now consider the dynamical update equations of a swarm of particles, 

presented in Equation 4.1 with no agent twiddle and the Laplacian used as a load 

variable.  The dynamics of the swarm are now deterministic and can be characterized by 

how it updates its velocity or next step, or its state-space description in Equation 4.2.  By 

inspection, this is a linear, time-invariant (LTI) system with all positive eigenvalues; the 

matrix is unstable and will cause the node elements to ‘explode’ or disperse if applied to 

their velocities.  To address this issue, a stabilizing factor or restoring force is needed in 

order to maintain a connection between adjacent neighbors.  This can be implemented as 

a threshold of effect or maximum connected distance. 

 

 
Figure 4.1   A fixed-ring or closed-chain topology.  Agent i th agent is directly connected to the i–1 and i+1 
agents.  This wraps around at the ends to ensure that all agents form two connections. 
 
 

 

𝑣𝑘+1 = 𝑣𝑘 + 𝑎𝐿𝑣𝑘 
𝑥𝑘+1 = 𝑥𝑘 + 𝑏𝑣𝑘 

𝑌𝑘+1 = � 𝐼𝑛×𝑛 𝑏𝐼𝑛×𝑛
 𝐼𝑛×𝑛 + 𝑎𝐿 � 𝑌𝑘 

where   𝑌 = �𝑥𝑣� 

(4.1a) 
(4.1b) 
 

(4.2) 
 

 
 
 Inspecting the state-space description in Equation 4.2 gives insight into the load 

effect on the swarm’s dynamics.  When applied to a swarm’s dynamics, each constituent 
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agent is compelled to reinforce their current velocity while being repulsed by any agents 

it is adjacent to by applying a scaled-negative component of their velocity. If these agents 

are constrained by a restorative or constrictive effect that limits this repulsion to a 

maximum threshold, then the behavior exhibited in Figure 4.2 results. 

 

 
 
Figure 4.2   A time-lapsed simulation of the fixed-ring topology depicted in Figure 4.1 using 9 swarm 
elements under random initialization.  A restorative force is applied to prevent the swarm from dispersing. 

 
 Figure 4.2 presents a typical result of implementing the fixed-ring topology under 

random initialization.  The dispersal or explosion of agents spreads the agents out along 

the threshold of effect, beyond which the stabilizing factor becomes dominant.  The fixed 

ring topology manifests as a fixed ring formation.  However the graph is only 

topologically equivalent to a ring; the connections between agents form a star and the 

smallest possible circle, as depicted in Figure 4.3.  The time taken to achieve this steady-

state formation depends on the initialization, requiring the agent graph to ‘unravel’ into 

the star form. 
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                      (a) Observed motion                                        (b)  Agent graph connections 
 
Figure 4.3   (a) Observed motion and (b) topological graph based on the Laplacian’s dispersal effect and the 
restorative stabilizing force. 
 

An interesting note on the Laplacian is that, for Equation 4.1a, positive values of 

a will lead to an outward dispersal of the swarm.  Negative values, however, do not 

indicate a collapse or complete reversal of the positive behavior.  Due to a non-zero 

average initialized velocity in the x and y-directions and the non-zero row sums of the 

Laplacian, the steady-state behavior of the swarm is not a convergence to a point but 

rather an average velocity.  This results in a drifting effect of the swarm where agents in 

no specific formation all move with the same speed and direction. 

 
4.2.2   Alternate Topologies 
 
 The effect of the fixed graph on the observed motions or formations of a swarm 

can be applied with other topologies.  Consider the joined or tethered ring topology 

proposed in Figure 4.4 and simulation result in 4.5.  A total of 14 agents are present, with 

a tether connecting a smaller ring of 5 to a larger ring of 7 agents.  Agents are initialized 

with random positions and velocities on a field and collapse over time into a steady-state 

formation. 
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Figure 4.4   A proposed alternate graph. Two rings are conjoined by a bridge of two elements.  
 
 

 
 
Figure 4.5   Two snapshots of the alternate graph simulation taken at various times.  A distinctly smaller 
ring, (indicated by circles) and larger ring (diamonds) are formed.  However, due to their constant motion 
these formations become collapsed together. 
 
 

The expected effect of the graph presented in Figure 4.4 is the generation of two 

enclosed rings.  In simulation, this result holds; two distinct rings are formed with the 

connected agents forming the constituents to each associated ring.  However, external 

factors begin to take effect on the structure of the physical formation.  Because there 

exists no damping effect on the velocities of agents, agents are forced to take a full step 
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on each update.  This velocity over the course of the simulation converges on the average 

initialized velocities of the swarm, as the applied Laplacian matrix has zero-sum along 

rows and columns.  In the single fixed-ring case, this results in the ring spinning as agents 

reconciled their forced velocities with their topology by travelling around the 

circumference of their formation.   

 In the second, alternate graph, however, this spinning motion has a reining effect 

on the swarm’s formations.  The connection between formations acts as a tether that coils 

and tightens around an axel with time.  Two distinct and uncoupled rings are not possible 

as a consequence of this mechanic: both rings form on top of each other as their orbits are 

linked by the tether that tightens with spin.   

The usefulness of fixed topologies as implemented here is thus debatable.  As 

many formations are topologically equivalent, e.g. circles versus triangles, squares and 

figure eights, there is not a wide range of formations that can be designed.  Many other 

simple, popular and easily characterized formations such as V or row-echelon cannot be 

guaranteed through this implementation without further adjustment to the state-space 

equation. 

 
4.3   Dynamic Topology Simulation 

 
 Dynamically forming topologies in order to achieve some desired formation is an 

interesting potential application of the topological approach to designing swarm 

behavioral tactics.  One possible application of note is the formation of rings in order to 

surround and capture a target, specifically in situations of low-visibility or 

communication where agents can only track or maintain a couple friendly contacts at a 

given time.  A simulation scenario can demonstrate the effectiveness of this dynamic. 
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4.3.1   Herding Scenario Description 
 
 The goal of this investigation is to dynamically apply ring-forming topologies to a 

shepherd swarm in order to trap or corral a herd.  In this simulation, 30 hounds attempt to 

trap a 5 sheep rout.  These hounds are blind in the sense that they cannot visually identify 

the location of sheep, only the approximate range of each unique sheep as if by smell.  

Hounds recruit other nearby hounds into a chase, communicating which agent in the local 

neighborhood is closest to a target as well as established inter-hound relationships.  

Hounds indirectly form connections to sheep, establishing a spring-like attraction-

repulsive mechanic between other recruited dogs based about the desired equilibrium 

range to the target sheep.  Hounds approach the local Laplacian’s closest hound about the 

equilibrium distance.  In contrast to hound dynamics, sheep do not coordinate their 

actions and are only interested in fleeing from the closest hound.   

All agents on the field have maximum visibility and speed constraints as well as 

inertial effects and therefore cannot instantaneously change directions.  They are 

initialized on the field uniformly with random positions and velocities.  The field is 

fenced in, preventing agents from leaving the theater or engaging in unbroken tail-chases.  

This restriction is necessary as both hounds and sheep have the same maximum speed in 

this simulation. 

 Topologies are dynamically formed via recruitment and proximity.  As hounds 

detect a sheep, they search for other nearby hounds that have detected that sheep as well, 

identified uniquely.  If they do not find others to form connections to, they will recruit 

any nearby unassigned hound into the search.  If, however, the number of nearby hounds 

that have detected that sheep is above a threshold of recruitment and that each recruited 
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member has a stronger connection, i.e. closer proximity to sheep, then that agent will 

break off and travel onwards.  The recruitment roster updates each time step to allow the 

local group to continuously update using the closest hound as well as break off extra 

hounds if necessary. 

 
4.3.2   Simulation Result 
 
 Implementation of the hound swarm is presented in Figure 4.6.  Typical runs of 

the simulator results in hounds trapping sheep in circles.  Occasionally, separate circles 

will merge together, corralling sheep into groups as seen in the top herd in the figure.  A 

recruitment limit of 5 hounds was used.  Despite limited sensory capabilities, the hounds 

were very effective at locating and encircling sheep quickly. 

 

 
 
Figure 4.6   The Hound and Sheep swarm using dynamically formed topologies. 
 
 

Sheep 
(Circles) 

Hounds 
(Dots) 

Hound Ring 
(Herding) Formation 
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 The spring-like attraction between recruited hounds counteracts the dispersive 

nature of the Laplacian, holding the hounds together in rings.  Interestingly, an indirect 

behavior reminiscent to the pulsing maneuvers of horse archers described in Chapter 2 

emerges through these rules of operation.  The spring-like behavior keeps the hounds 

oscillating about an equilibrium distance between agents and as a consequence, their 

target sheep.   

 
4.4   Summary 

 
 Swarm topology is a useful way of characterizing the interactions between swarm 

agents.  There is an observable relationship between ring-topologies and resulting swarm 

formations; setting a ring topology using a Laplacian matrix and a stabilizing factor will 

yield spontaneous ring-formation.  While this technique is clear, its practicability is 

limited and only well-suited toward ring-forming.  Alternative designs must expand upon 

this model to account for unexpected behavior such as spin tethering.  Nevertheless, ring-

forming using topology can be very effective given the situation, as demonstrated in the 

herding scenario.  There, the implementation of the ring topology gives rise to a pulsing-

like behavior exhibited in the hounds. 
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CHAPTER FIVE 

 
Competitive Evolution of Multi-Swarm Dynamics 

 
 

This chapter applies the previously examined dynamic topologies and target 

selection to a competitive scenario of tactical relevance.  Often, the goal of behavioral 

optimization is to produce theoretical genotypes that are capable of defeating all 

opponents.  However, this notion of a ubiquitous behavioral tactic does not apply to most 

complex games.  Instead, an optimal set of controller behaviors comprising a playbook 

that, depending on the nature of an opponent, divulges an appropriate response is 

preferred.  The objective is not to use evolutionary programming to find pervading, 

dominant tactics, but an efficient, natural progression of tactics and counter-tactics.  

 
5.1   Introduction 

 
 Weapons-Target Assignment problems are a well-studied field of optimization 

[24].  In single weapon-type WTA problems, a given number of homogeneous weapons 

must efficiently allocate targets in order to maximize some objective function, such as to 

maximize damage, probability-to-hit or kill ratios.  However, these scenarios are often 

based on situations where global or direct local communication is possible, or where 

target allocation is determined a priori and the dynamics of the weapons are simplified to 

hit probabilities.  In real-time, or environments where such communication is not 

possible, the system can be characterized by the emergent behavior of local interactions.  

Large-scale, multi-agent scenarios can be difficult to analyze via inspection [17] and this 

problem is compounded with multiple swarms.   
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 This chapter will focus on the use of competitive co-evolution in forming tactical 

playbooks for two swarms.  These two swarms form a team of attackers and defenders.  

Many variants of the scenario are examined, including GA modifications and scenario 

initializations. 

 
5.2   Methodology 

 
5.2.1   Scenario Description 
 
 The scenario of interest is the swarming defense of a Very Important Person 

(VIP) from being caught by an equal-size aggressor swarm.  Both attacker and defender 

swarms are initialized randomly, within fixed proximities from the VIP.  Attackers 

initialize randomly on a semi-circular arc at the edge of the theater, while defenders 

initialize near the VIP.  The inspiration for this scenario is the defense of a relatively 

immobile target against large-scale suicide attacks, whether the attackers are suicide 

bombers or guided missiles.  This is an objective-based extension of the classic predator-

prey model; the attacking swarm preys on the VIP target and the defending swarm repels 

the attackers.  All agents have the capability of disabling each other, and agents attack by 

detonating and disabling any friend or foe within a fixed blast radius.  A time or fuel limit 

is imposed to address stalemates which reward in favor of the defenders.  

 Agent autonomy is a primary concern in designing both swarms.  The attacker 

and defender swarms are homogeneous with limited interactive abilities and no specific 

role-assignment mechanisms.  Homogeneity is enforced to prevent overspecialization and 

direct the evolution of the swarm into developing a strong base set of rules of operation.  

The capabilities of each side are assumed to be equal as there is no reason to suspect any 

physical or technological superiority by one side or the other.  All agents utilize the same 
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maximum speed, update frequency and maximum sensing range.  Each agent is aware of 

its global position as well as all other agents within their sensor range.  There is no direct 

communication; agents can infer position and velocity from nearby allies, but not visual 

or target information.  In this scenario, agents reliably discern friend from foe, noting the 

closest ally, but not his specific identity, as well as the most threatening enemy. 

 The threat of an enemy reflects the team’s objectives.  For attackers, the 

designated threat of a defender is proximity as defenders are rewarded for attacker kills.  

For defenders, the threat of an attacker is based on whether that target has been handled 

by the rest of the swarm.  Since there is an equal number of attackers and defenders and 

no direct communication between any agents, defenders cannot know if each defender 

has been assigned the best attacker to neutralize.  Unlike the traditional static WTA 

problems, there is an imperfect, dynamic graph among agents due to local sensing and no 

forms of direct communication.  As agents move in and out of visual range, each agent is 

potentially introduced to new target and ally information.  Simply selecting the closest 

target is often suboptimal when allies are involved; another ally may be a better 

interceptor for the closest target despite being farther away.  Instead, a minimized cost 

algorithm based on shortest path distance is implemented for threat analysis and target 

allocation in the neighborhood defined by each agent’s sensor range.  

 
5.2.2   Parameterization for the Bomber (Kill-Chain) Scenario 
 
 Through the course of this thesis project multiple variants on the nature of agent 

interactions are examined.  The first variant is a capture, identify then kill scenario that is 

nonspecific to underwater applications.  Conceptually, a large group of suicide bombers 

attempt to overwhelm a defensive swarm.  Defenders have no visual input on the 
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attackers; defenders can only determine the range of the closest intruder on the field and 

not a specific heading or location.  As a result, defenders are primarily focused on 

slowing an attack, and they are given a numerical advantage of 3:1 over attackers.  

However, a majority of defenders are drones that are incapable of counterattacking and 

killing attackers, only obstruction or entrapment.  The defensive swarm is not 

homogeneous, however; a special subclass of investigating defenders, or Guards are the 

only agent type capable of killing attackers.  This makes the overarching mechanics of 

defense structured around a kill-chain.  Drones must identify and isolate potential targets 

for the Guards to investigate and potentially kill.  Attackers must try to maximize damage 

inflicted on the VIP.  In the simulator, 30 spotter drones and 2 Guards attempt to shield a 

VIP from an attack by 10 suicide bombers.  The small number of Guards prevents the 

defenders from overwhelming the attackers and winning by virtue of numbers. 

 Attackers and defenders evolve scalar responses to a variety of inputs.  Attackers 

have 7 evolvable parameters described in Table 5.1.  Defenders have 10 evolvable 

parameters that correspond to the stimuli described in Table 5.2.  These effects are 

Table 5.1   Attacker Evolvable Parameters 

Parameter Description 

1.  Momentum Inertial component to an agent’s velocity 

2.  Randomness Jitter weighting in the agent’s velocity update 

3.  VIP affinity Weighting on the vector towards the VIP 

4.  Enemy avoidance Weighted vector away from the closest enemy 

5.  Ally avoidance Weighted vector away from the closest ally 

6.  Enemy threat number Minimum enemy count to trigger detonation 

7.  Enemy threat proximity Minimum enemy distance to count as a threat 
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applied to an agent’s dynamics directly as scalar multipliers on the unit vector responses.  

For example, VIP affinity is a unit vector pointed toward the VIP at the center of the field 

at all times.  Positive scalar values will reinforce that attraction while negative evolved 

values will cause repulsion.  All these sensor affects are aggregated and combined into a 

final path decision.  The agent then takes a step on that path, subject to velocity and turn 

constraints. 

 
5.2.3   Parameterization for the Point-Defense Scenario 

 The other major scenario type tested used a homogeneous defender swarm.  In 

this scenario, dubbed Point-Defense, all defenders are capable of counterattacking and 

killing attackers.  In exchange for this capability, the number of defenders and attackers 

are equal.  A single hit by any attacker against the VIP constitutes an attacker victory.  

Proper target selection and interception became much more significant as defenders can 

no longer afford to waste their numbers.   

 
Table 5.2   Defender Evolvable Parameters 

Parameter Description 

1.  Chasing Momentum Inertial component while pursuing a target 

2.  Chasing Randomness Weighting on jitter while pursuing a target 

3.  Chasing VIP affinity Weighted vector towards the VIP while pursuing 

4.  Chasing group best Weighted affinity towards group-best agent 

5.  Chasing Laplacian Weighted on Laplacian component 

6.  Searching momentum Inertial component while searching 

7.  Searching randomness Jitter weighting while searching 

8.  Searching VIP affinity Weighted vector towards VIP while searching 

9.  Recruitment limit Maximum number of agents to recruit in chase 

10.Alert minimum Minimum number of chases to alert investigators 
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 A 9-element array is used to represent a team’s genome.  These genomes 

represent the swarm’s behavioral response to a given sensor.  Agents have sensors that 

determine the agent’s range from the VIP as well as all allies and enemies within its 

visual range.  After assessing enemy threats, agents respond to three antecedents: the 

relative position of the (1) VIP, (2) closest ally and (3) greatest enemy threat within 

visual range.  The range to each of these antecedents is passed through an evolved 

piecewise-linear response defined by 3 evolved parameters, each.  The resulting three 

consequents are summed to form the final response vector for the agent, subject to 

morphological constraints. 

 
5.2.4   Evolution, Counter-Evolution and Fitness 
 
 The goal of the evolutionary process is to identify behaviors that can be used to 

defeat an opposing swarm.  However, the tactics employed by the opposing force may 

not always be the same, and optimizing a swarm against one possible attack or defense 

 

Figure 5.1   An example of the 9-parameter, linear, piece-wise response, separated into the three sensor 
responses, that is evolved via the GA.  These three piecewise-linear functions determine an agent’s 
weighted response due to each sensor antecedent, if applicable.  In the above example, agents have a 
relatively low response to other visible allies, and are strongly attracted towards enemies (when close by) 
and the center of the field.  All three weighted vectors are combined to form the agent’s next update step 
with speed and yaw-limits applied.  If an antecedent is not applicable, i.e. no enemy is visible then no 
corresponding consequent is added to the combined response. 
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leaves the swarm vulnerable to being counteracted by a different behavior.  There is 

rarely a universal tactic for all situations; instead, a playbook of potential tactics for the 

corresponding forcing conditions is desirable.  This is inspired by co-evolution’s 

asymmetrical evolutionary arms-race; however, behavioral responses are developed 

sequentially instead of concurrently.  One side makes a behavioral breakthrough and 

exploits that solution until the other team discovers its own counter-solution. 

 The evolutionary technique applied is a modified genetic algorithm.  The 

attacking team is evolved against the best defender genome.  Then the defending team is 

optimized against the resulting best attacker genome and the cycle is repeated.  Mutation, 

crossover and elitism occur and all past high-performers are used to repopulate each new 

cycle.  Additional modifications to the GA’s were applied for the Suicide Bomber and 

Point-Defense scenarios.   

 

 Attacker Fitness =    

   0.1 x Time remaining 
+ 0.2 x Ratio of Attackers remaining 
+ 0.3 x Ratio of Defenders remaining 
+ 0.4 x Average final Attacker-VIP proximity 

(5.1a) 

  
 

  

 Defender Fitness = 

   0.1 x Time remaining 
+ 0.2 x Average final Attacker-VIP proximity 
+ 0.3 x Ratio of Defenders remaining 
+ 0.4 x Ratio of Attackers killed 

(5.1b) 

 
 
 In the Bomber scenario, a variable immigration rate is used to ensure diversity in 

the early stages of the evolution.  As the evolution progresses, the immigration rate 

decays to focus the search on the solutions on hand.  This procedure helps to ensure that 

the later stages of the evolution are spent near the optimal solutions already found and not 

jumping around the search space.  The fitness functions were designed to reflect a 
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number of effects, such as time taken, kill and survival ratios and distances run.  They are 

given below in Equation 5.1a and b. 

In the Point-Defense scenario, the immigration effect became a fixed value.  The 

result of five runs are averaged to determine the matchup’s fitness for both swarms as 

there is a random component to both the initialization of the swarms in the simulator as 

well as a jitter in their movements.  For attackers, fitness is based on their hit ratio 

relative to the total number of attackers.  For defenders, their fitness is the average win 

rate of the genome out of those five games. 

 Initially each team’s genome is generated randomly.  Opposing genomes are 

paired and the highest performing genome for the attackers becomes the first round 

opponent for the defenders.  This procedure serves as a random starting point for the 

evolutionary race.  Defenders are evolved against this attacker until the optimal defender 

is determined.  The focus then shifts to attackers, evolving their behavior until a suitable 

performance level is achieved.  These cycles are repeated and the optimum behaviors on 

both sides are compared. 

 
5.2.5   Simulator 
 
 A MATLAB script was written to perform the simulation and invert the swarms.  

In the Bomber scenario, 30 spotter drones and 2 Guards have to defend the VIP from 10 

attacking suicide bombers over 200 time steps.  For the Point-Defense scenario, swarms 

of 20 attackers against 20 defenders were used and agents had 1200 time steps in order to 

complete an attack.  Each simulation run is terminated when the time limit is reached or 

when all the attackers area dead, whether by detonating or being killed by defenders.  The 

fitness score is then calculated. 
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5.3   Bomber Simulation Results 
 
5.3.1   Fitness 
 
 The counter-evolutions over the first 400 generations for both attackers and 

defenders are shown in Figure 5.1.  Only team fitness during evolution is depicted. 

 

 
 
Figure 5.2   The average fitness result of the cyclical counter-evolutionary process for attackers and 
defenders.  Each 100 generations the other team is given a period of time to evolve. This results in the other 
team’s performance dropping off and gives the fitness function a saw tooth appearance. 
 
 
5.3.2   Parameter Evolution 
 
 The evolution of each parameter for both attackers and defenders are depicted in 

Figures 5.2a and b.  These plots are horizontally stacked histogram plots that demonstrate 

how the population has evolved each parameter value, with whiter pixels representing a 

higher bin count.  Ideally as the population converges to an optimal solution, a stretch of 

white pixels should be seen, indicating that the same bin was emphasized for a stretch of 

generations.  The more disorderly the generation’s histogram, the less effect the 
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parameter had in improving the population’s performance.   As each side is evolved, new 

equilibrium points should be established. 

 

 
 

Attacker Parameter 1   (Momentum) 
1 

 
0          Generation 1 → 900 

Attacker Parameter 2   (Randomness) 
1 

 
0          Generation 1 → 900 

Attacker Parameter 3   (VIP Affinity) 
1 

 
0          Generation 1 → 900 

Attacker Parameter 4   (Enemy Avoidance) 
1 

 
0          Generation 1 → 900 

Attacker Parameter 5   (Ally Avoidance) 
1 

 
0          Generation 1 → 900 

Attacker Parameter 6   (Minimum Number to Detonate) 
15 

 
0          Generation 1 → 900 

Attacker Parameter 7   (Closest Distance of Agents in Proximity before Detonating Bomb) 
1 

 
0          Generation 1 → 900 

 
Figure 5.3a   Histogram log of Attacker parameters as they evolve over 900 generations.  Parameters 3, 4, 6 
and 7 acquire distinct characteristics through the course of the run, becoming solid lines at points. 
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Defender Parameter 1   (Chasing Momentum) 
1 

 
0          Generation 1 → 900 

Defender Parameter 2   (Chasing Randomness) 
1 

 
0          Generation 1 → 900 

Defender Parameter 3   (Chasing POTUS Affinity) 
1 

 
–1          Generation 1 → 900 

Defender Parameter 4   (Chasing Group Best Affinity) 
1 

 
0          Generation 1 → 900 

Defender Parameter 5   (Chasing Laplacian Effect) 
1 

 
0          Generation 1 → 900 

Defender Parameter 6   (Searching Momentum) 
1 

 
0          Generation 1 → 900 

Defender Parameter 7   (Searching Randomness) 
1 

 
0          Generation 1 → 900 

Defender Parameter 8   (Searching POTUS Affinity) 
1 

 
–1          Generation 1 → 900 

Defender Parameter 9   (Recruitment Limit) 
10 

 
0          Generation 1 → 900 

Defender Parameter 10   (Secret Service Alert Minimum) 
10 

 
0          Generation 1 → 900 

Figure 5.3b   Histogram Log of defender parameters as they evolve over 900 generations. 
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 For Attackers there is a clear convergence to specific values for parameters 3, 4, 6 

and 7.  These parameters controlled VIP targeting, enemy avoidance, enemy interference 

number and minimum detonation distance.  From each parameter’s history, the Attackers 

consistently prioritized the VIP vector highly, indicating a charge toward the VIP.  

Enemy avoidance was relatively low and a high minimum chase limit to detonate 

suggests that Attackers prioritized getting to the VIP regardless of the defender threat.  

Minimum detonation distance is consistently low, suggesting that if the Attackers were to 

self-sacrifice, they would wait until the Defenders were very close by.  In addition, the 

prioritization of the VIP charge over any enemy threat supports the kamikaze behavior 

demonstrated in many of the evolved parameter sets. 

 For the Defenders, Parameter 3 was controlling the Defender’s affinity for 

approaching the VIP.  Parameter 3’s histogram over generations suggests that the most 

successful sets had positive or VIP approaching affinities.  This supports the fox-hound 

conclusion: Defenders cluster where they suspect the Attacker will be.  Attackers can 

only win by attacking, so defenders wait near the VIP in order to constrict attacker 

approach options.  Parameter 10 controlled the Investigator’s recruitment alert.  These 

values are also fairly low, suggesting that investigators were alerted when as few as one 

agent detected a threat. 

 
5.4   Point-Defense Simulation Results 

 
5.4.1   Fitness 
  
 The results of the simulation’s cyclical evolutions are shown in Figure 1. A 

population size of 50 genomes is used for both attackers and defenders. A limit of 200 

generations is chosen due to the GA’s propensity to quickly converge. When a team is 
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evolved, there is an observed spike in the performance of the opponent as the population 

reinitializes, but this effect is quickly nullified. 

 

 

Figure 5.4   Defender and attacker fitness per iteration. Attackers evolve for the first 200 iterations and then 
defenders counter-evolve for 200 iterations. This cycle is repeated. While the performance of each team 
population appears cyclical and typical of the evolution, the actual behaviors that emerge are not the same. 

 
 
5.4.2   Qualitative Observations 
 
 

Table 5.3   Defender Behaviors 

Name Primary Rules Description Counters 

(a) Turtle Stay near VIP 
Ignore Enemies 

Defenders hide in the center repel attackers 
unwilling to self-sacrifice. 

Evader 
Teaser 

(b) Bait Avoid VIP 
Stick Together 

Defenders exploit the attacker’s pulsing or teasing 
behavior by drawing them out and away from the 
VIP 

Teaser 

(c) Hunter Pursue Enemies Defenders actively pursue targets when provoked. Split 

(d) Goalie Stay near VIP 
Pursue Enemies 

Defenders swarm near the VIP, intercepting 
targets but rarely leaving the VIP’s immediate 
proximity. 

Rusher 

 
 
 In general, both defenders and attackers would cyclically evolve similar sets of 

behaviors when developing counters against each other. Qualitative observations were 
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used for a naming scheme of the behaviors that arose. Four persistent behaviors for 

defenders and attacker are listed in Tables 5.3 and 5.4, respectively. The naming behavior 

reflects the agents ability to counter the opponent the team evolved against, not 

necessarily the genome’s ability to address all other opponent types. 

 

 
 
 Applying K-Means clustering to the final genomes was generally found to 

coincide with the qualitative observations. Noise exists as the qualitative observations do 

not represent all possible variants of defender and attacker behaviors, nor are they 

demonstrate exact counters between them. The primary rules in Tables 5.3 and 5.4 reflect 

the dominant values in the final evolved genomes, but hybrids of splitters and rushers, or 

goalie-hunters and other variants exist and complicate clustering. Not all sensors are vital 

to the behavior: for example, Hunters are primarily characterized by enemy pursuit. 

However, Hunter reactions to other allies varied between cycles, with some ignoring 

allies and others actively repelling. Similarly, not all counters completely defeat a given 

behavior. There were instance of countered Goalie behaviors being addressed by a new, 

adapted Goalie with only slight variations in ally and enemy responses. 

Table 5.4   Attacker Behaviors 

Name Primary Rules Description Counters 

(a) Splitters Avoid allies Disperses the attackers and subsequently any 
pursuers. Against dense defenses, slips in one 
attacker at a time. 

Turtle 
Bait 

(b) Evaders Avoid enemies Avoids defenders, making baits particularly 
ineffective. 

Bait 

(c) Rushers Ignore enemies 
Pursue VIP 

Ignore defenses for a quick win. Effective when 
defenders pick optimum targets but cannot 
reposition themselves in time, or against dense 
clusters of enemies as individual blasts 
disproportionately disable defenders. 

Turtle 
Hunter 
Bait 

(d) Teasers Pulse enemies Attackers pulse defenders, drawing them out and 
opening cracks. 

Goalie 
Hunter 
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Figure 5.5   Defender (white trails) counters to attacker (black trails) behaviors. In (a) defenders tightly 
cluster the VIP, exploiting the attackers’ reluctance to engage. In (b) defenders take advantage of the 
attackers teasing attachment, a behavior used by attackers to draw defenders into wild chases, by leading 
the attackers away from the VIP and running out the clock. In (c), defenders leave the center to chase down 
optimal targets. In (d), defenders await to intercept rushing attackers where attacker movement is most 
constricted.  
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Figure 5.6   Attacker (black trails) counters to defender (white trails) behaviors. In (a) attackers avoid each 
other, leaving one attacker to attack at a time to break a defender bunker and lowering the VIP’s defense. In 
(b) attackers are repelled by defenders at any distance, letting them avoid any casualties and overcome baits 
and feints. In (c), rushing attackers ignore defenders completely, falling through the cracks as defenders 
leave the center to intercept them. In (d), attackers lead defenders on wild chases, eventually slipping 
through cracks in the defense. 

 
 
5.4.3   Evolved Parameter Classification 
 
 Many of the observed features of the final evolved genomes can be extracted via 

inspection.  These genomes are presented in Figures 5.6 and 5.7 for Defenders and 
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Attackers, respectively.  These features help characterize the explanation facility of the 

resultant swarms and describe why the agents behave in the manner observed in 

simulation. 

 

 
                                    Ally Attraction                Enemy Attraction               VIP Attraction 

 
 

Figure 5.7   Typical Defender evolved genomes.  For Goalies, either high ally or center attraction is needed, 
in addition to enemy attraction for pursuit when nearby.  For Hunters, High pursuit is the only consistent 
requirement.  For Turtles, high VIP attraction is observed.  For Baits, high VIP repulsion is seen. 
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                                    Ally Attraction                Enemy Attraction               VIP Attraction 
 
 
Figure 5.8   Typical Attacker evolved genomes.  For Evading attackers, all that is need is a negative or 
repulsive enemy effect.  For Teasing attackers, a pulsing behavior is seen, where agents are repulsed when 
targets are too close and attracted when they are farther away.  For Split, a pulsing behavior occurs amongst 
attackers, leading to a controlled dispersal and looser formation.  For Rush, the dominant effect is center 
attraction. 
 
 
 Disjunctive synthesis of behaviors was observed in the Goalie defenders. Some 

evolved Goalies developed their behavior via a strong attraction towards the VIP. Other 

Goalies, however, ignored the VIP and instead developed a strong attraction to each 

other, thereby swarming the center indirectly. The resulting effect is similar but the 

genomes emphasize different traits. An unbiased clustering of the entire resultant 
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genomes would overlook the emergent Goalie behavior and group these types separately. 

Ideally, clustering should classify agents by phenotype, not genotype. 

 Nonetheless, there is a clear order to the changes of each team’s behavioral 

dynamics resulting from the evolutionary process. For this scenario, teasing attackers are 

consistently met with Turtling defenders and then counter-evolved by sacrificial 

attackers. These behaviors indicate a rulebook of counteracting actions a swarm can take 

per the inversion’s evolutionary algorithm. 

 
5.5   Summary 

 
 WTA solutions often provide optimum target assignments in situations benefitting 

from global information or direct communication. However, situations involving large, 

multi-agent interactions obscure direct analytic inspection of the system. Inverting swarm 

dynamics via an evolutionary algorithm is shown to efficiently produce a range of 

behaviors and counter-behaviors. However, there remains a question as to whether the 

behavioral responses determined here are optimal tactics. Clearly, the Baiting defenders 

evolved for Teasing attackers demonstrate a counter-productive response for both teams, 

abandoning the VIP in order to draw susceptible attackers away. In these solutions, the 

impartial evolutionary algorithm allows exploitation of the minute and seemingly trivial 

aspects of a population’s genome. 

The roughness of the fitness landscape and the genome’s performance 

susceptibility to initial conditions poses a difficult challenge for evolutionary and 

optimization techniques. The protracted nature of the simulations means that small 

changes in agent controllers propagate over time into large changes in overall behavior. 

This scenario poses some interesting results on the issue of autonomous agent tactics. The 
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occasional high performer for a specific initial condition is an impediment to the 

optimizer. However for the tactician these results are useful, as they indicate the forcing 

conditions necessary to achieve a risky but particularly effective outcome. 

 Inversion of both swarms’ dynamics produces a useful playbook of operating 

behaviors that generate effective tactics for our simulation. Future areas of research 

should include the adaptability of swarms in transitioning behaviors to match an opposing 

force. For example, Goalie behaviors that need to transition into Bait may not be optimal 

if the transition occurs too slowly; instead, and a suboptimal Turtling transition could be 

more effective given the circumstance. An opponent’s tactic may not be obvious 

immediately at initialization, and the effects of behavioral adaptation in response to 

observations of the opponent would be beneficial.  
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CHAPTER SIX 

 
Swarm Behavioral Inversion for Undirected Underwater Search 

 
 
 This chapter takes the swarm models developed in previous chapters and applies 

it to another scenario of tactical relevance.  This proposed application of swarm inversion 

addresses the problem of dynamic undirected searches, specifically applied to a 

frequency-based, underwater area patrol scenario.  Here, a swarm of underwater 

autonomous vehicles is given a limited amount of time in order to establish and maintain 

a presence in a given target zone.  The primary difference between this scenario and 

similar work [12, 14, 19] is the inversion algorithm, nature of the agent’s control 

parameters and specific underwater morphological constraints.  Agents will not leave 

pheromone trails for other agents to find nor will they follow waypoints.  They will not 

be able to directly communicate amongst each other or to any central controller.  This 

scenario is approximated in 2D. 

 
6.1   Scenario Description 

 
 There are sensible, deterministic tactics to searching a given terrain.  Agents could 

line abreast and move in formation, comb the area or follow a pre-planned path.  

However, path planning in an environment with a spatially varying detection range is not 

a trivial task.  Planned paths also display behaviors that are relatively easy to observe, 

ascertain and circumvent.  The stochastic nature of swarms makes the patrolling agents 

much more difficult to predict and counter and the robust and adaptive nature of swarm 

intelligence would be advantageous in execution. 
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 The underwater environment affects an agent’s ability to search by restricting 

communications and obscuring visibility.  Unlike surface or aerial vehicles, an 

underwater vehicle has limited channel bands and no forms of direct communication.  

Instead, their interactions are indirect and passive; agents become aware of each other by 

observing proximity noise or crosstalk.  The underwater environment can also contain 

acoustic shadow zones, or areas with deviations in the sound-speed profile that cause 

refraction in acoustic transmissions, limiting the effective visible distance.  For this 

simulation, a high-level surface attenuation map is assumed to be known or 

approximately calculable, whether a priori or real-time via environmental readings. 

 
6.2   Methodology 

 
 A fixed number of homogeneous agents are initialized in a ring formation at the 

center of a 200x200 square theater.  Agents may leave the field but are attracted to the 

center once outside theater bounds.  Each agent has a scaled, maximum viewable distance 

of 5% of the map length and a memory decay rate of 0.99.  The swarm is allotted 9,000 

time steps to complete their patrol.  In the base scenario, there are 60 agents limited to 2 

channels.  

 
6.2.1   Agent Morphology and Confidence Coverage Maps 
 

The swarming model considered assumes a high-level environment attenuation 

map.  Agents are modeled to have a maximum speed and yaw-rate, and their acoustic 

sensing capabilities are approximated as a visibility arc representing the ensonified area 

with the highest probability of detection by that agent. As the agent travels, the 

previously ensonified areas are retained as a tail representing a memory component that 
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is only known to that particular agent. Each tail decays exponentially and eventually 

requires the agent to revisit and refresh these areas. 

As each agent travels, an aggregate mean confidence-coverage map is assembled 

representing the combined confidence that a pixel has been searched. This aggregate 

includes the decaying memory component of each agent.  After a fixed iteration interval, 

the scenario is terminated and the final mean combined pixel coverage and pixel standard 

deviation is recorded. 

 

 
 
Figure 6.1  (a) Ensonified arc approximation with memory decay component (b) Channel band interference 
and (c) Proximity interference:  Agents can conflict with each other in the above manners and their 
resulting ensonified swaths are considered void for the relevant time steps.  Agents indirectly communicate 
their directional position through this interference.  
 
 
6.2.2   Visibility Attenuation and Interference 
 

A high-level attenuation map is applied to the field. Each pixel is assigned a value 

between 0 and 1 that represents a scale modifier to the agent’s visibility. Lower values 

reduce the ensonified area of any agent on that pixel. Agents may interfere with each 

other due to channel constraints. Whereas two agents in different bands will see each 

other if encountered, two agents pinging in the same band will generate crosstalk and 

confusion. Similarly, two agents within close distance will generate proximity noise and 
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overload other acoustic signals, confusing both agents. This results in the agent’s 

ensonified arc becoming void for that particular time step and no contribution is made to 

the aggregate mean confidence-coverage map. 

 

 
                              (a)                                                                         (b) 
 
Figure 6.2   An (a) example high-level attenuation map representing a scaling modifier on an agent’s 
effective visibility range and (b) the resulting mean pixel confidence of agents patrolling for 9000 time 
steps with no responses to sensory inputs, displayed in contour form for clarity.  Agents within the shadow 
zone have their visibility significantly reduced and this is reflected in the patrol coverage of unevolved 
agents. 
 
 

6.3   Swarm Inversion 
 
6.3.1   Genomic Parameterization 
 

The evolved agent genome is an array representation of each behavioral response 

parameter to a given sensor.  A total of 12 evolvable parameters (initialized as uniform 

random ∈ [−1,1]) characterize 4 primary sensors.  Agents have sensors for encountering 

their own trails as well as their position in the attenuation map via a global positioning 

system (GPS) or inertial navigation system (INS.)   Agents have sensors for interference 

and are aware of the general direction but not range of the offending source.  Finally, 

agents generate a response to the closest visible agent.  Each sensor generates an evolved 

vector response that is aggregated and applied as a final heading change decision, subject 
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to yaw and speed constraints.  These 4 sensors and their constituent 12 parameters are 

depicted in Table 6.1. 

For sensors 1 and 2, the agent responds with a unit vector in the direction of the 

nearest visible ally or noise source scaled by the evolved parameter value. Sensors 3 and 

4 form a piecewise-linear model for agent response given an antecedent. For sensor 3, 

each agent’s next step is adjusted by the piecewise response to their current position’s 

coverage level in memory, scaled between ±90°. Similarly for sensor 4, each step 

contains an added inertial component of current velocity, increased or decreased 

according to the piecewise function.   

 
6.3.2   Fitness Function 
 

Developing a well-tuned fitness function is imperative for this simulation. 

Gaudiano et al. [12] examined evolving state transition parameters for a multi-agent 

system of missiles, concluding that the inversion process’s performance was heavily 

influenced by agent initialization and fitness function and that the formulation of the 

fitness function could introduce unwanted biases. Small adjustments made to the fitness 

function can drastically shift the inversion’s solution. Known strategies in developing the 

fitness function include the use of prior knowledge to limit the search space and fixed or 

Table 6.1   Agent Evolvable Parameters 

Parameter Description 

𝑎0  Weighted response of vector toward nearest visible ally, if applicable 

𝑏0  Weighted response to direction of source of interference, if applicable 

{𝑚0, … ,𝑚4}  Piecewise-linear memory angular response 

{𝑣0, … , 𝑣4}  Piecewise-linear visibility momentum response 
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de-randomized initializations [22].  To reduce the impact of initialization on this scenario, 

agents are initialized in a fixed ring formation at the center of the search zone. 

Multiple fitness variants were tested and three major objectives were determined: 

maximizing mean coverage μ of each pixel in the zone, maximizing uniformity of 

coverage via minimizing the standard deviation σ among all pixels on the map and 

minimizing average time blind experienced by all agents b.  A uniformity weighting 

factor λ was incorporated to tweak the fitness function and direct the optimization 

between mean and uniformity.  The fitness function is presented in Equation 6.1.  For this 

evolution, high fitness values are preferred. 

  
𝑓𝜆(𝜇, 𝜎, 𝑏) = 𝑒𝜇−𝜆𝜎−𝑏 

 

 
(6.1) 

 
6.3.3   Parameter Inversion 
 

Under default conditions with no specific or zero behavioral responses to the 

environment and ally interactions, agents produce a per-pixel coverage plot that reflects 

the high level attenuation map, as demonstrated in Figure 6.2. The shadow zone is poorly 

covered on average relative to higher-visibility areas. An ideal swarm model should 

search all areas as uniformly as possible.   

The Shi and Eberhart modified particle swarm optimization with re-initialization 

is utilized in optimizing the agents’ response functions. In general, a population size of 

200 agents searching over 400 generations is used. The PSO is used to optimize the 12 

evolvable parameters of the agent behavioral response genome. A modified genetic 

algorithm was also utilized, but was found to have comparable performance over a longer 

convergence time than the modified PSO. 
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6.3.4   Simulation 
 

A C++ program was written to perform the simulation and execute the PSO. 
 
 
 

6.4   Simulation Results 
 
6.4.1   Agent Evolved Genotypes and Behaviors 
 
 Figure 6.3 shows the final, refined piecewise responses for sensors 3 and 4 for 

when 𝜆 = 0.5. 

 

 
            (a)          (b) 
 
Figure 6.3   Piecewise response curves for (a) memory and (b) visibility levels for λ = 0.5.  Agents evolved 
a propensity to turn counterclockwise and have the least inertial effect when visibility is relatively high.  
The evolved values for nearest ally and nearest interference were 0.451 and 0.373, respectively. 
 

 Of note are the roles and interactions that arise between the homogeneous agents.  

In most cases, agents evolve a spinning, arcing patrol similar to the one depicted in 

Figure 6.4; however, these patterns vary depending on the objective.  Of particular 

interest is the transition between the shadow zone and the high-visibility areas.  Agents 

searching the high-visibility areas turn in the widest arcs, as indicated by the weighting 

on the inertial factor, dispersing their search.  Agents in the shadow zone perform a 

similar maneuver, but in this case, the behavior still benefits the swarm by reducing 

interference.  In the transition zone between these two areas, agents have the lowest 
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inertial weight and thus tightest turns, keeping agents relatively well-confined to each 

region. 

 

 
 
Figure 6.4   A snapshot of 60 swarm agents patrolling the theater for 𝜆 = 0.5.  Agents evolve to spin 
counterclockwise and begin emphasizing the shadow zone. 
 

6.4.2   Multi-Objective Fitness 
 

The multi-objective optimization demonstrates the inversion’s ability to search 

the shadow zone given a fitness function.  Increasing values of λ increase the relative 

importance of achieving high uniformity.  The evolution suppresses the standard 

deviation with increasing λ, as depicted in Figure 5.  However, this comes at a cost to 

mean and blind time.  

As expected, single-objective variants of the fitness function did not yield 

promising results. Simply maximizing the mean is insufficient as this encourages the 

agents to confine their search to areas of high returns, leading to agents avoiding the 

shadow zone. Alternatively, maximizing the minimum pixel confidence had trivial 

improvement over the same evolution time due to the strictness of the condition. 

Uniformity constraints were found to require the blindness term as otherwise fitness was 

driven to zero via interference at the expense of high coverage. 
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Figure 6.5   The mean, standard deviation and blind times of the final evolved agents for each value of λ 
run for 30 random center-ring formation initializations. 
 
 
 
 The resulting optimal solutions at each value λ also reveal separate tactics 

employed by the agents.  For low values of λ, the fitness function emphasizes high return 

coverage in order to raise the mean pixel value.  As a result, a tight, circular patrol with 

repulsion was favored as each agent claimed its own sector.  In Figure 6.6, the shadow 

zone is avoided when the objective is high average returns.  As λ increases, the area 

covered by agents spreads upwards and fills the shadow zone.  This increase in 

uniformity comes at the expense of mean coverage confidence, as expected. 

 
 

 
Figure 6.6   Resulting average coverage maps for various values of λ.  As λ increased, the coverage 
becomes more uniform. However, higher uniformity is at the expense of high mean coverage as agents 
spend more time in areas with reduced visibility. 
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6.4.3   Agent Robustness  
 
 The robustness of the agents about the λ = 0.5 solution is depicted in Figure 6.7. 

In the vicinity of 60 starting agents, there was little variation in the fitness value, mean 

confidence and mean blind-time. Agents were initialized in a ring formation.  For this 

circumstance, the swarm is robust and can maintain its performance despite variation in 

agent numbers.   

 

 
 
Figure 6.7   Fitness, mean, standard deviation and blind times of the final optimized agents of λ = 0.5 given 
the initial starting number of agents. 
 
 
6.4.4   Map Adaptation 
 
 The performance of the swarm was dependent on the terrain. Agents that were 

optimized for one attenuation maps did not maintain the performance for alternative 

orientations, as depicted in Figure 6.8, which can be expected as the crafted fitness 

function and resulting evolution was not map invariant.  For 𝜆 = 1, where uniformity is a 

priority, a student’s unspooled two-sample T-test with 30 random initializations each and 

𝛼 = 0.01 showed no significant difference in fitness for the rotated field but significant 

difference in the flipped field.  This indicates that the spinning behavior is adapted to a 

specific terrain type and does not react well when the map is reflected.  The solution here 

is to provide various representative maps during the training process. 
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Figure 6.8   The attenuation maps (top) and subsequent coverage maps (bottom) using the genome for λ = 1.  
For λ = 1, there was no significant difference with 𝛼= 0.01 between the evolved and rotated fields.  
However, the same genome had a significantly different performance on the flipped field, suggesting 
some map dependence. 
 
 

6.5   Summary 
 

Swarm inversion can be an effective tool in refining the behavior of a 

homogeneous group of autonomous agents in order to complete a given task. The 

classical advantages of swarms can be demonstrated as the resulting swarms were robust 

to changes in the initial population size, and adaptive to small rotations in terrain.  

However, there were demonstrable limitations in environment adaptation for this 

simulation setup as agents were not as effective on a reflected attenuation map.  Future 

work should investigate a larger selection of representative map types as well as the 

tradeoffs between patrol mean confidence and uniformity. 
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CHAPTER SEVEN 

 
Conclusions and Future Work 

 
 
 The goal of this project was to investigate the viability of swarm inversion as a 

means toward designing effective controllers for a multi-agent system and apply that 

technique to two scenarios of tactical relevance.  Through Chapters 5 and 6, swarm 

inversion was applied to a point defense and frequency-based area patrol scenario.   This 

optimization approach has been demonstrated in this thesis to have the ability to solve 

fairly complex problems.   

 There remain several notable areas of pursuit in expanding the investigation of 

swarm inversion.  While the inversion processes were shown to provide interesting, 

sometimes unexpected but often effective solutions to the given problem, there remains 

the issue as to whether the technique can compete with hand-crafted solutions.  In 

addition, constructing an effective fitness function was a significant obstacle in the 

development of this project.  This is a problem that has disrupted many other researchers 

utilizing improvement algorithms [12, 34]; swarm inversion is no exception. 

 In addition, there are a range of sub-areas within each of the examined tactical 

scenarios that can be expanded further.  In the Point-Defense scenario, there remains an 

interesting notion of role assignment and state switching.  In nature, worker ants 

occasionally take on the role of soldier ants when a given indicator emerges or a 

threshold is reached.  In this scenario, observing the attack being applied can serve as a 

rationale for state switching, and how that affects the dynamics and performance of each 

swarm remains to be seen.  In the Area Patrol scenario, how the swarm is limited by 
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agent number and its visibility map is a yet unexplored avenue of investigation.  A wider 

variety of representative attenuation maps should be tested and incorporated into the 

evolutionary process.   

 Swarm inversion can be an effective tool for refining the behavioral dynamics of 

a swarm in order to accomplish a given mission.  By applying evolutionary techniques, 

agents develop their own novel solutions for a specified task.  While care must be taken 

to craft the fitness function to prevent the evolution from circumventing the desired goal, 

this process can yield creative and successful solutions. 
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