
ABSTRACT

Topics in Odds Ratio Estimation in the Case-Control Studies
and the Bioequivalence Testing in the Crossover Studies

Denka G. Markova, Ph.D.

Chairperson: Dean M. Young, Ph.D.

The double-sampling paradigm, which has become an important part of the

epidemiological designs, includes two stages. First, individuals are classified into

groups by disease and exposure levels using a fallible test, and second, some indi-

viduals are classified into a subset using a “gold standard” test. The parameter of

interest in our study is the odds ratio as an association between disease level and ex-

posure level. Here we compare four confidence intervals for the odds ratio under the

assumption of differential or non-differential misclassification. More specifically, we

compare the coverage and interval widths of the Wald, score, profile likelihood, and

approximate integrated likelihood intervals with different specificity and sensitivity

values, as well as different sample sizes and odds ratios for the case-control clinical

studies. Our investigations implies the consistent superiority of the approximate

integrated confidence interval.

Also, we eliminate the effect of several parameters on a bioequivalence test-

ing procedure that plays an important role in the development of generic drugs.

The current FDA criteria is not flexible with respect to highly variable drugs, and

this characteristic has caused many good drugs to be rejected. Most often in the

literature, we find studies examining the sample size or the within-subject variabil-

ity as the main factors affecting the outcome of a bioequivalence test. Frequently,



pharmaceutical companies have tried to convince the FDA that their product would

meet the bioequivalence criteria just by increasing the sample size. Here we exam-

ine the effect of the between-subject variability as well as the effect of the mean

ratio difference between the test and reference formulations. We use a Monte Carlo

simulation to draw conclusions based on the importance of these two sources of vari-

ability and to show that simply increasing the sample size is insufficient to meet the

bioequivalence criteria.
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CHAPTER ONE

Introduction

This dissertation consists of two topics. Therefore, in this chapter we sepa-

rately introduce the concepts and background information for each topic.

1.1 Introduction to Confidence Intervals for the Odds Ratio

1.1.1 Overview

Essentially, every statistical inference problem begins with an unknown state

of nature represented by a parameter of interest value, Basu (1977). We often plan

and perform a statistical experiment and generate sample observations to obtain

further information about the parameter of interest through a careful analysis of

the data. In traditional statistics, we define a probability measure of the events

of interest that is dependent on the parameter of interest. However, statistical

models where the probability measure depends on only one parameter are rare.

Typically, the model is defined by the parameter of interest and an additional set

of unknown parameters known as nuisance parameters. Furthermore, to access the

information on the parameter of interest, we must account for or eliminate the

nuisance parameters.

The analysis of binary data, i.e., data with underlying binomial distribution,

is important because such data is collected from a wide range of applications, in-

cluding medical diagnosis, survey analysis, and political voting, Boese (2005). One

area of the medical field where one finds such data is epidemiology, where the disease

status and exposure level of a patient treated for a certain condition are collected.

The parameter of interest is sometimes the odds ratio that represents a measure of

association between disease level and true exposure level. However, when we collect

1



data, we can make misclassification errors. Such errors may cause incorrect counts

that affect our odds ratio inferences. Bross (1954) has shown that estimation of

the population proportion parameter based on samples subject to misclassification

is biased. To correct for this bias, we must adjust our parameter estimation. A

procedure for obtaining such an estimator using binomial data with misclassifica-

tion, called a double-sampling plan, has been developed by Tenenbein (1970). The

procedure is used to derive nearly unbiased estimates and appropriate confidence

intervals (CIs) for the odds ratio defined above. Nevertheless, the double-sampling

paradigm produces one or more nuisance parameters that must be eliminated or

accounted for.

One of the most important problems in statistical inference is, “How can we

eliminate the effect of the nuisance parameters?” Basu (1977) has classified the

answer to this question in roughly ten overlapping categories. This study considers

the use of a maximum-likelihood-estimation approach to derive Wald and Score CIs

and compare them to the profile likelihood and approximate integrated likelihood

CIs derived using pseudo-likelihood estimation. Hence, we compare four interval

estimation methods for the odds ratio for measuring the association between disease

and exposure levels under a double-sampling procedure for binomial data with two

types of misclassification.

The remainder of this section is organized as follows. In Subsection 1.1.2 we

explain the design of the case-control study that is examined in this paper. In

Subsection 1.1.3 we detail an overview of the double-sampling scheme defined by

Tenenbein (1970). Because we are dealing with misclassified data, we approach the

problem assuming differential or non-differential misclassification. The definitions

of the two types of misclassification are presented in Subsection 1.1.4. Finally,

in Subsection 1.1.5 we explain the confidence interval methods we utilize in this

dissertation.
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1.1.2 Types of Studies

The methods and analyses presented here are often applied in epidemiology,

which is the study of factors that affect the health and illness of populations. Epi-

demiological research aims to obtain the prevalence of a disease, to examine the

causes, and even to decide if a given exposure can cause or prevent the disease.

Many different types of study designs can address these questions. The two most

common studies are case-control and cohort.

Case-control studies are observational epidemiological studies that we use to

identify factors that contribute to a medical condition by comparing a group of

patients who have the condition, known as “cases,” to a group of patients who do

not have the condition, known as “controls.” We select the subjects based on their

disease status, and we treat cases and controls as independent groups. The studies

examine potential exposures that both groups have encountered over time. They

are usually cost effective and fast, but very sensitive to bias.

The cohort is another type of epidemiological study that selects subjects based

on their exposure status. Therefore, at the beginning of the study the participants

are disease free. The cohort group of individuals is observed over time and then

tested for the disease. However, in situations where the disease has a very low

probability of occurring, the use of a cohort is not appropriate because it will not

guarantee that diseased cases will be in the group. Cohort studies tend to be more

costly and time consuming and have a greater chance of losing subjects.

In the following chapters we present analyses for the case-control type of study

and address some of the difficulties that occur.

1.1.3 Double-Sampling Procedure

The double-sampling procedure has been increasingly incorporated in the epi-

demiological design studies. Bross (1954) has shown that, under misclassification,
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the sample estimate of the binomial proportion is biased and the bias could be

substantial. Therefore, we need to obtain sufficient information about the misclas-

sification probabilities to adjust for the bias. Tenenbein (1970) has proposed the

use of the double-sampling plan to obtain an unbiased estimator for the population

proportion of binary data with misclassification. He has suggested that we compare

the results from testing the same group of sampling units by two or more measuring

devices. Such a scheme requires the use of a large data set and a smaller data subset.

Suppose we conduct a test or procedure that allows us to obtain a disease

status on a large sample of participants. However, such an instrument, although

fast, inexpensive, and perhaps noninvasive, can be fallible. Hence, the counts we

observe will have errors due to misclassification, thus leading to biased estimators of

the parameter of interest, the odds ratio. To calculate the misclassification rate and

account for the bias, we obtain a subsample of the original data set and use not only

the fallible test, but also a second, inerrant test, referred to as the “gold standard”

test. This “gold standard” procedure is often very expensive, invasive, and time con-

suming. Hence, the sample that we test with both devices is much smaller than the

original fallible sample. The fallible sample is called the main or incomplete study,

whereas the infallible sample is called a validation or complete study. Dahm et al.

(1995) have investigated the value of additional fallible classification for improving

estimates of the odds ratio in case-control and cohort studies. Also, Karunaratne

(1991) has examined different approaches of estimation in both types of studies un-

der differential and non-differential misclassification. In this dissertation we utilize

a double-sampling procedure to assess the misclassification rate and develop several

confidence intervals that account for nuisance parameters.
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1.1.4 Types of Misclassification

When analyzing misclassified data, a researcher focuses on whether the mis-

classification rates between the fallible and infallible tests depend on the true disease

status of the patient, Tenenbein (1970). Often misclassification is linked to the levels

of specificity and sensitivity for the study of interest. Hence, high levels of specificity

and sensitivity indicate low misclassification rates.

If the rate is independent of the disease outcome level, then such misclassifica-

tion is referred to as nondifferential. Therefore, for nondifferential misclassification

we can assume that the specificity and sensitivity are independent of the disease

status, i.e., they are the same for both diseased (cases) and non-diseased (controls)

individuals (see Karunaratne (1991)).

When the misclassification rate is not independent of the disease level, then

we define this as differential misclassification. In such instances the sensitivity and

specificity between the diseased and non-diseased groups are assumed to be different.

This case often results when information for the validation study is obtained from a

previous study and not directly from the current study population.

In this dissertation we conduct simulations to compare confidence intervals for

the odds ratio using double-sampling for case-control studies under both differential

and nondifferential misclassification. We denote the case-control study with differ-

ential misclassification as CCDIFF and the nondifferential as CCNDIFF. Thus, we

compare four different confidence intervals for each of the previous situations as well

as two levels of misclassification: low and high as defined by Dahm et al. (1995).

1.1.5 Confidence Interval Methods

In statistics we infer a population parameter based on a sample of values. Let

x = (x1, x2, ..., xn)′ be a random vector of n iid observations sampled from the prob-

ability density f(x|θ), where θ = (θ1, θ2, ..., θp)
′ is a parameter vector of dimension
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p contained in the parameter space Θ. The likelihood function, L(θ|x) = f(θ|x), is

viewed as a function of θ given the observations x, and by the likelihood principle,

contains all the information concerning the experiment of interest, Bjornstad (1996).

Thus, inferences about θ depend on the random variable only through the likelihood

function, see Berger et al. (1999). Although θ is a vector of parameters, we are often

interested in only one parameter or a subset of those parameters. Hence, we can

partition θ = (ψ,η′)′, where ψ is a parameter of interest and η is a subvector of

nuisance parameters.

We derive four CIs to estimate the parameter of interest, the odds ratio for

the proportion of diseased versus non-diseased under misclassification using double-

sampling. We compare the intervals using the criteria of coverage and interval width.

Specifically, we consider Wald and score CIs as well as the profile likelihood and the

approximate integrated likelihood CIs.

1.2 The Bioequivalence Testing Procedure

1.2.1 Overview

Pharmaceutical manufacturing has become one of the most vital industries in

the world. An integral role in new drug development is the bioequivalence (BE)

study. The United States Food and Drug Administration (FDA) defines bioequiva-

lence as “the absence of a significant difference in the rate and extent to which the

active ingredient or active moiety in pharmaceutical equivalents or pharmaceutical

alternatives becomes available at the site of drug action when administered at the

same molar dose under similar conditions in an appropriately designed study” (FDA

(2003)). Essentially, we call two drug products bioequivalent when they are expected

to perform the same and can be interchanged.

The main reason for the popularity of BE studies is the approval of new generic

drugs. When a reference-listed drug on the market might be too expensive for the
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general population, companies often attempt to develop a generic version that is

more accessible. In such instances, the FDA requests a BE study to determine the

rate and extent of absorption of each therapeutic moiety for the generic and the

reference products. BE studies are also useful when we have new formulations for

old drug products that are proven to work or if we are testing a new dosage or

including new inactive ingredients.

Because the BE studies do not depend on the actual outcome of the trial but

only on the rate and extent of availability of the tested product, they are generally

conducted in a healthy population. Male and female adults are given the drug under

standardized conditions and are monitored throughout the length of the trial. In

some cases, however, one might be forced to use diseased patient groups for safety

reasons, Davit, Nwakama, Buehler, Conner, Haidar, Patel, Yang, Yu, and Woodcock

(2009). Also, most BE studies are conducted on the highest strength of a drug.

In this section we define the components considered when we are testing the

BE of two pharmaceutical products. In Subsection 1.2.2 we define the parameters

of interest investigated and the study design utilized in the simulation study we

conduct. In Subsection 1.2.3 we discuss the statistical and mathematical criteria for

passing a BE test. We explain how we assess our simulation results and reach our

conclusions. In Subsection 1.2.4, we list the sources of variability we control in the

simulation study presented in this paper.

1.2.2 Parameters of Interest and Study Design

BE assessment depends on the bioavailability of the administered drugs in the

participants’ systems. Bioavailability is defined by the FDA (2003) as “the rate

and extent to which the active ingredient or active moiety is absorbed from a drug

product and becomes available at the site of action. For drug products that are not

intended to be absorbed into the bloodstream, bioavailability may be assessed by
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measurements intended to reflect the rate and extent to which the active ingredient

or active moiety becomes available at the site of action.” Hence, when we conduct

BE studies, we focus on two main pharmacokinetic parameters: the area under

the curve of the drug plasma concentration versus time (AUC) and the maximum

concentration (Cmax). In our study, however, we focus on only the AUC because

both criteria have very similar characteristics and the conclusions drawn for one can

be expanded to the other.

BE studies are performed using two types of designs according to the drugs

to be tested – crossover or parallel designs. The most common approach is the

crossover design with two sequences and two periods. This design is referred to as a

2× 2 crossover design and is the type of design we utilize in our study. In Chapter

4 we discuss the definitions and reasons behind our choice of design as well as the

choice of the parameter to be investigated in detail.

1.2.3 Criteria for Declaring BE

Recall the definition of bioequivalence from Section 1.2.1. The “no significant

difference” portion of the definition is assessed by examining a confidence interval

(CI) from the geometric mean test/reference ratios for both pharmacokinetic param-

eters AUC and Cmax. We want the 90% confidence interval of the geometric mean

test versus reference ratio to fall within preset bioequivalence limits of 80%− 125%

(FDA (2003)). The BE limits are based on medical judgment and FDA experience

that a difference of 20% or less in drug exposure is not clinically significant for most

drugs, Haidar et al. (2008a). An investigation of the properties of the two param-

eters and the reasons for choosing the particular BE limits above are discussed in

Chapter 4.
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1.2.4 Sources of Variability

In every clinical trial several sources of variability can affect the outcome of a

statistical decision procedure. In this paper we investigate some of the well-known

sources and, thus, expand on previous research. We consider within- and between-

subject variabilities, sample size, and the value of the mean ratio difference in order

to better understand their effects on a BE trial. Several of those parameters have

been discussed in the literature; however, in our study we expand on them and

consider the between-subject variability as an added layer of complexity in our sim-

ulation. Further reasoning and discussion on our choices of parameters can be found

in Chapter 4 of this dissertation.

1.3 Dissertation Organization

In this dissertation we present two distinct topics: the first concerns the in-

terval estimation of the odds ratio parameter in the case-control studies, and the

second is an investigation of the sources of variability in the bioequivalence study

with a 2× 2 crossover design.

In the first part of this dissertation, we derive four approximate likelihood-

related confidence intervals for the odds ratio when using double-sampling proce-

dures. The underlying distribution of the data is binomial but is subject to misclas-

sification. We consider case-control studies with two kinds of misclassification errors

– differential and nondifferential. In Chapter 2 we focus on case-control studies sub-

ject to differential misclassification. We define the model and derive the maximum

likelihood estimators as well as the restricted maximum likelihood estimators. We

then use the MLEs and/or RMLEs to derive and estimate four competing confi-

dence intervals for the odds ratio of interest. The intervals based on the maximum

likelihood procedures we consider are Wald and score, and the intervals which are

based on the pseudo-likelihood procedures are profile likelihood and approximate
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integrated likelihood. In the last part of the chapter, we conduct a simulation study

to compare the discussed intervals using two levels of misclassification – low and

high.

In Chapter 3 we focus on the nondifferential misclassification in case-control

studies. We follow essentially the same outline as in Chapter 2. That is, we intro-

duce the model and explain the difference between the derivations in this chapter

compared to the differential procedures. We derive and evaluate the four proposed

confidence intervals. Then, we design and perform a simulation study to compare

the CI competing under low and high misclassification errors.

In Chapter 4 we investigate a new topic concerning the bioequivalence testing

in the pharmaceutical industry. We explain what BE studies are and why they

are important in the drug development process. Then we discuss the reasons for

creating an extensive simulation investigation and describe the Monte Carlo study

design and methods used in this chapter. Last, we present the results of our Monte

Carlo simulation study and our conclusions.
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CHAPTER TWO

Confidence Intervals for the Odds Ratio in Case-Control Studies
with Differential Misclassification

2.1 Introduction

Case-control trials are studies in which we compare one group of people with

a medical condition (cases) to a group of people without the medical condition

(controls). We often conduct these studies to investigate the association between

the occurrence of a disease and a specific binary risk factor (exposure) of primary

interest, Forbes and Santner (1995). The odds ratio is one the most popular rela-

tive measures of the exposure-disease relation, and we can estimate the odds ratio

from retrospective data, Cornfield (1951). We often encounter problems in the form

of measurement error because the epidemiological studies are usually observational

rather than experimental and because the variables under study are generally sub-

jective and must be ascertained by a subject’s self report. If we ignore the mis-

classification errors and perform a naive analysis on the cases where discrepancies

exist between apparent and actual exposure status, we may obtain highly biased

estimates, as first shown by Bross (1954).

A large epidemiological literature provides methods for correcting data mis-

classification. For instance, Walter and Irwig (1988) have discussed the deleterious

effects of ignoring misclassification, and Thomas, Stram, and Dwyer (1993) have

reviewed correction methods. Gustafson, Le, and Saskin (2001) have studied a

Bayesian scenario where reasonable guesses are available for the misclassification

probabilities and suggest methods to adjust odds ratio estimators.

One of the first methods proposed for estimating a population proportion of

exposure was the double sampling procedure introduced by Tenenbein (1970), who
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has derived the maximum likelihood estimators for a binomial parameter when both

false-negative and false-positive error rates occur. Other authors have considered

the one proportion model with only one type of misclassification. For instance, Lie,

Heuch, and Irgens (1994) have corrected for false-negative counts using only multiple

fallible classifiers and have also derived the MLE.

In this paper we investigate the estimation of a confidence interval (CI) for

the odds ratio parameter when we have binomial data subject to misclassification.

This topic is a broad and heavily discussed subject in epidemiology, as well as in

statistics. Until recently, many considered the Wald interval that uses the MLE of

the binomial parameter to be the standard method for interval estimation. However,

many authors now recognize the erratic coverage probability of the Wald intervals.

In particular, Brown, Cai, and DasGupta (2001) have investigated in detail the

unsatisfactory coverage properties of the Wald interval. Also, Boese, Young, and

Stamey (2006) have given five asymptotic confidence intervals in the false-positive

misclassification model. The interval estimators examined in Boese, Young, and

Stamey (2006) have been based on likelihood and pseudo-likelihood methods. Also,

Paul and Thedchanamoorthy (1997) have examined the likelihood-based confidence

intervals for the common odds ratio, and Lee and Byun (2008) have derived Bayesian

credible sets for the case of binomial data with false-positive misclassification and

double sampling.

In this chapter we derive four confidence intervals for the odds ratio parameter

in a case control study using double sampling. Two of the intervals, the Wald and

score intervals, are likelihood based, and two intervals, the profile likelihood and

approximate integrated likelihood, are pseudo-likelihood based. We consider differ-

ential misclassification for the two samples of interest (complete and fallible); that

is, the specificity and sensitivity of those samples are not assumed to be equal. The

double-sampling procedure allows us to estimate nuisance parameters, then employ
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the four interval estimation methods mentioned above that eliminate or account for

the nuisance parameters, and obtain a CI for the odds ratio. A point estimation

method has been presented by Karunaratne (1991), and a real data example using

his results has been given by Dahm, Gail, Rosenberg, and Pee (1995).

We have organized the remainder of the chapter as follows. First, in Section

2.2 we present the model and introduce the notation. Also, we discuss the double-

sampling procedure in more detail. Then, in Section 2.3 we derive the maximum

likelihood estimators of the parameter of interest and the model nuisance parame-

ters. These results are used to derive a Wald CI. To derive the other three confidence

intervals, we define the restricted maximum likelihood estimators (RMLEs) of the

nuisance parameters and describe this method in detail in Section 2.4. Further, in

Section 2.5 we derive the observed information matrix. We then derive the four

confidence intervals for the odds ratio: the Wald, score, profile likelihood, and ap-

proximate integrated likelihood intervals. In Section 2.6 we present a simulation

study for the efficacy of the four intervals by comparing them on the basis of width

and coverage and examining the effects of sample sizes and of probabilities for dis-

ease outcome and misclassification on the intervals. Last, in Section 2.7 we comment

on the simulation results.

2.2 The Model

We assume the underlying distribution for our population to be binomial be-

cause subjects either have or do not have a certain medical condition. Let the binary

random variable D represent the disease status (D = 1 for diseased, D = 0 for non-

diseased) for each individual in the population. Then, to form a case-control study,

we independently chose a number of individuals from the diseased group and the

control group. The number of people selected for each group is determined by the

researcher. Hence, this type of study is extremely useful when the rate of a disease
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is low in the study population and, therefore, using a random sampling procedure

might not provide us with an adequate number of observations for each group.

Now, to facilitate the use of the double-sampling design, we assume that we

have two testing procedures that can determine the disease status of each participant.

In the first stage, we classify all of the individuals in the study using only a fallible

procedure. Let Z denote the fallible exposure level, where Z = 1 represents an

individual that is diagnosed with the disease by the fallible test and Z = 0 represents

an individual with no disease according to the fallible procedure. Such a procedure

is usually fast, inexpensive, and noninvasive and is performed on a relatively large

sample. In the second stage of the double-sampling scheme, we use a smaller sub-

sample of the fallible test sample and perform a second “gold standard” procedure on

this sub-sample P . Let X denote the exposure level measured by the infallible (“gold

standard”) test, where X = 1 indicates a disease and X = 0 indicates someone who

is free of a disease. This test is often expensive, time consuming, and extremely

invasive. Therefore, we perform it on only a small group of individuals. Because we

know that the “gold standard” test is absolutely accurate, we can use the parameter

estimates from this sub-sample to correct for the estimator biases, Tenenbein (1970).

Now, let the subscripts i, j, and k represent the fallible test outcome, Z = i,

the “gold standard” outcome, X = j, and the true disease status, D = k. We denote

the complete data cell count where both tests are performed by Vijk and the incom-

plete data cell count by Wik. Also, we use Mk to indicate the sample size from the

disease group D = k for the complete data and Nk for the incomplete data. Notice

that Mk+Nk gives us the total sampled from each group of diseased or non-diseased

in the first stage of the double-sampling procedure. For a visual representation,

please refer to Table 2.1. Also, in the complete sample, let Tk represent the number

from each disease group for which the “gold standard” test gave a positive result,

X = 1. The number of individuals tested with both fallible and “gold standard”
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procedures, Mk, is predetermined by the researcher and is a sub-sample of the total

number of people participating in the study, Mk +Nk for each k = 0, 1.

Table 2.1: Counts for a study with misclassified exposure data

Validation study (complete) Main study (incomplete)
Fallible Cases (D=1) Controls (D=0) Cases (D=1) Controls (D=0)

(Z) X=1 X=0 X=1 X=0
Z=1 V111 V101 V110 V100 W11 W10

Z=0 V011 V001 V010 V000 W01 W00

T1 M1 − T1 T0 M0 − T0

M1 M0 N1 N0

Next, we define the probabilities we use in this study. For the complete (valida-

tion, infallible) study, we denote the probability of exposure, that is, the probability

where X = 1 for the kth group (D = k) by

πk = Pr(X = 1|D = k), (2.1)

where k = 0, 1 for controls and cases, respectively. Also, after introducing the

fallible test we define the sensitivity (true positive rate), Sk, as the probability that

an individual tests positive under the fallible test (Z = 1), given that an individual

has a positive result on the “gold standard” procedure (X = 1) for each case or

control group. Thus,

Sk = Pr(Z = 1|X = 1, D = k), (2.2)

for k = 0, 1. We denote the probability that an individual does not have the disease

according to the fallible test (Z = 0) given that the individual tested negative by

the “gold standard” test (X = 0) for each cases and controls group by

Ck = Pr(Z = 0|X = 0, D = k), (2.3)

where k = 0 or 1. We remark that we have distinct values for the specificity and

sensitivity for each of the cases or controls group, which we refer to as differential
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misclassification. We can usually reasonably assume this observation when working

with case-control studies and will derive the CIs of interest in this chapter based on

this assumption.

Based on the equations (2.1) - (2.3), and derivations in Prescott and Garth-

waite (2002), we induce the following distributions on the observable counts for the

complete study. We assume

Tk = V01k + V11k ∼ Bin(Mk, πk), (2.4)

V11k|Tk ∼ Bin(Tk, Sk), (2.5)

and

V00k|Tk ∼ Bin(Mk − Tk, Ck), (2.6)

where k = 0 or 1 indicates actual disease status of the person in the study (“0” is

diseased, and “1” is non-diseased). Also, for the incomplete study, we have

W1k ∼ Bin(Nk, πkSk + (1− πk)(1− Ck)),

where k = 0, 1. Now, the parameter of interest, the odds ratio ψ, is

ψ ≡ π1(1− π0)

π0(1− π1)
. (2.7)

One can find many real-world examples for the case-control design. Greenland

(1988) has provided an example from a case-control study on sudden infant death

syndrome (SIDS) first used in Drews, Kraus, and Greenland (1990) and also de-

scribed in Morrissey and Spiegelman (1999). The study examined the relationship

between maternal use of antibiotics during pregnancy and incidence of SIDS. Drug

use was measured by interview (Z) and validated by medical record (X). Another

example has been given by Dahm et al. (1995), where the effect of ambient exposure

to radon in the homes of lung cancer-risk patients was investigated. For this study

samples from the population of cases (with lung cancer) were drawn independently
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from the population of controls (no lung cancer). Then, a “gold standard” test (X)

was administered that involved one year of continuous monitoring on radon levels,

whereas a fallible test (Z) was assessed by just taking the measurements over one

week only, see Karunaratne (1991).

2.3 Maximum Likelihood Estimators

To estimate the CIs for ψ, the parameter of interest in this study, we first derive

the MLEs of all the nuisance parameters, η. Let d ≡ (W00,W01,W11,W10, V111, V001,

V110, V000, V011, V101, V010, V100)
′ denote the observed data counts for the full data

(both main and validation studies), and let ` = `(π1, π0, C1, C0, S1, S0|d) represent

the log likelihood function. Then,

` ∝ W11 ln[π1S1 + (1− π1)(1− C1)] +W10 ln[π0S0 + (1− π0)(1− C0)]

+ (N1 −W11) ln[1− π1S1 − (1− π1)(1− C1)] + T1 ln(π1)

+ (N0 −W10) ln[1− π0S0 − (1− π0)(1− C0)] + T0 ln(π0)

+ (M1 − T1) ln(1− π1) + (M0 − T0) ln(1− π0)

+ V111 ln(S1) + V110 ln(S0) + V001 ln(C1) + V000 ln(C0)

+ (T1 − V111) ln(1− S1) + (T0 − V110) ln(1− S0)

+ [(M1 − T1)− V001] ln(1− C1)

+ [(M0 − T0)− V000] ln(1− C0).

Because we are interested in estimating the odds ratio, from (2.7) we have

π0 =
π1

π1 − π1ψ + ψ
,

and then substituting into the log-likelihood function (2.3), we get
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`ψ ∝ (M0 − T0) ln

[
1− π1

ψ + π1 − ψπ1

]
+W10 ln

[
(1− C0)(1− π1)ψ + π1S0

ψ + π1 − ψπ1

]
+ T0 ln

[
π1

ψ + π1 − ψπ1

]
+ (N0 −W10) ln

[
C0ψ + π1 − C0ψπ1 − π1S0

ψ + π1 − ψπ1

]
+ (M0 − T0 − V000) ln(1− C0) + (M1 − T1 − V001) ln(1− C1)

+ V110 lnS0 + (T0 − V110) ln(1− S0) + V000 lnC0

+ V111 lnS1 + (T1 − V111) ln(1− S1) + V001 lnC1

+ (N1 −W11) ln(C1 + π1 − C1π1 − π1S1)

+W11 ln [(1− C1)(1− π1) + π1S1]

+ T1 lnπ1 + (M1 − T1) ln(1− π1),

(2.8)

where η = (π1, C1, C0, S1, S0)
′ is the nuisance parameter vector.

Next, to derive closed-form maximum likelihood estimators of the odds ratio ψ

and the nuisance parameters η, we use Tenenbein (1970)’s re-parametrization of the

likelihood function. From Joseph et al. (1995) and Prescott and Garthwaite (2002),

the MLEs for ψ and η are

ψ̂ =
(V100 + V110) [(V000 + V010)(V000 + V100) + V000W00] + (V000 + V010)V100W10

(V100 + V110) [(V000 + V010)(V010 + V110) + V010W00] + (V000 + V010)V110W10

× (V101 + V111)[(V001 + V011)(V011 + V111) + V011W01] + (V001 + V011)V111W11

(V101 + V111) [(V001 + V011)(V001 + V101) + V001W01] + (V001 + V011)V101W11

,

π̂1 =
(V101 + V111 +W11)(V011V101 + V001V111)

(V001 + V011 + V101 + V111 +W01 +W11)(V101 + V111)(V001 + V011)

+
(V001 + V011 +W01)(V011V101 + V011V111)

(V001 + V011 + V101 + V111 +W01 +W11)(V101 + V111)(V001 + V011)
,

Ŝk =
(V00k + V01k)V11k(V10k + V11k +W1k)

(V10k + V11k)((V00k + V01k)(V01k + V11k) + V01kW0k) + (V00k + V01k)V11kW1k

,

and

Ĉk =
V00k(V10k + V11k)(V00k + V01k +W0k)

(V10k + V11k)((V00k + V01k)(V00k + V10k) + V00kW0k) + (V00k + V01k)V10kW1k

,

where k = 0, 1 represent the true disease status D = 0 or 1. Note that the MLE ψ̂

is a direct result from the invariance property of the MLEs, i.e.,

ψ̂ =
π̂1(1− π̂0)

π̂0(1− π̂1)
.
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For a more detailed overview of this derivation, see Appendix A.1. Also, observe that

all the MLEs are in terms of only the observed cell counts, d. However, the likelihood

function is in terms of both the cell counts and the category totals (Mk, Nk, Tk, for

k = 0, 1). Therefore, when expressing the MLEs, we substitute the row totals from

Table 2.1 with the corresponding sum of observed cell counts. For instance, in (2.8)

we have (N0 −W10), but this quantity is equivalent to W00. Therefore, we use W00

in further derivations. For all other substitutions and simplifications, refer to Table

2.1.

2.4 Restricted Maximum Likelihood Estimation

Some of the CI methods we consider require more than one evaluation at

the MLEs. Recall that to calculate the score, profile likelihood, and approximate

integrated likelihood CIs, we must evaluate the likelihood function at the condi-

tional (restricted) estimates to eliminate the nuisance parameters. Therefore, in

this section we derive the restricted maximum likelihood estimators of the nuisance

parameters.

First, we consider the cell counts for the fallible study (refer to Table 2.1).

Table 2.2: Counts for the main study with unobserved, misclassified data

Main study (incomplete)
Fallible Cases (D=1) Controls (D=0)

(Z) X=1 X=0 X=1 X=0
Z=1 U111 W11 − U111 U110 W10 − U110

Z=0 U011 W01 − U011 U010 W00 − U010

U111 + U011 N1 − (U111 + U011) U110 + U010 N0 − (U110 + U010)
N1 N0

These counts are the subject to misclassification. We define a set of new

unknown latent variables, Uijk, for the unobserved misclassified data counts under

the hypothesis that an infallible test was performed. Again, i, j, and k have values 0
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for diseased or 1 for non-diseased and correspond to the outcomes of the fallible test

(Z), “gold standard” test (X), and true disease condition (D), respectively, for each

patient in the study. In Table 2.2 we show how the latent variables are distributed

in the main study. Hence, Uijk are the unobserved portions of the observed Wik

counts.

Further, based on previous derivations and the assumption that the complete

study is a sub-sample of the infallible sample we can write the unobserved count

distributions as

(U11k + U01k) ∼ Bin(Nk, πk),

U11k|(U11k + U01k) ∼ Bin(U11k + U01k, Sk),

(W0k − U01k)|(U11k + U01k) ∼ Bin(Nk − (U11k + U01k), Ck),

where k = 0 indicates the control group and k = 1 indicates the cases group distribu-

tions. See Joseph et al. (1995) for more details. Also, let dfull = (W00,W01,W11,W10,

V111, V001, V110, V000, V011, V101, V010, V100, U111, U011, U110, U010)
′ represent the full data

vector including the latent variables, and let `U(ψ,η|d full) denote the log-likelihood

function for the full data, from the main study and validation study. Then,

`U ∝ (U111 + U011 + T1 + U110 + U010 + T0) lnπ1 + (W11 +W01 +M1 − U111

− U011 − T1 +W10 +W00 +M0 − U110 − U010 − T0) ln(1− π1)

− (W10 +W00 +M0) ln(π1 − π1ψ + ψ)

+ (W00 + V000 − U010) lnC0 + (W10 +M0 − T0 − V000 − U110) ln(1− C0)

+ (W01 + V001 − U011) lnC1 + (W11 +M1 − T1 − V001 − U111) ln(1− C1)

+ (V110 + U110) lnS0 + (T0 − V110 + U010) ln(1− S0)

+ (V111 + U111) lnS1 + (T1 − V111 + U011) ln(1− S1)

+ (W10 +W00 +M0 − U110 − U010 − T0) lnψ.

(2.9)
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Because we cannot derive a closed-form solution for the RMLEs, we construct

an EM algorithm to determine the RMLEs for a fixed value of ψ. This procedure

consists of the following two steps:

E-step: Let Φ(r) = (ψ, π
(r)
1 , S

(r)
0 , S

(r)
1 , C

(r)
0 , C

(r)
1 )′ be the current parameter

vector at the rth iteration. First, we derive the conditional expectations for the

latent variables U = (U111, U011, U110, U010)
′, given the observable counts and current

parameter estimates. These expressions are

U111|d,Φ(r) ∼ Bin

(
W11,

π1
(r)S1

(r)

π1
(r)S

(r)
1 + (1− π1

(r))(1− C(r)
1 )

)
,

U011|d,Φ(r) ∼ Bin

(
W01,

π1
(r)(1− S(r)

1 )

π1
(r)(1− S(r)

1 ) + (1− π1
(r))C

(r)
1

)
,

U110|d,Φ(r) ∼ Bin

(
W10,

π1
(r)S

(r)
0

π1
(r)S

(r)
0 + ψ(1− π1

(r))(1− C(r)
0 )

)
,

and

U010|d,Φ(r) ∼ Bin

(
W00,

π1
(r)(1− S(r)

0 )

π1
(r)(1− S(r)

0 ) + ψ(1− π1
(r))C

(r)
0

)
.

Thus, the conditional expectations of the unobserved counts are

U∗111 ≡ E[U111|d,Φ(r)] =
W11π1

(r)S
(r)
1

π1
(r)S

(r)
1 + (1− π1

(r))(1− C(r)
1 )

,

U∗011 ≡ E[U011|d,Φ(r)] =
W01π1

(r)(1− S(r)
1 )

π1
(r)(1− S(r)

1 ) + (1− π1
(r))C

(r)
1

,

U∗110 ≡ E[U110|d,Φ(r)] =
W10π1S0

π1
(r)S

(r)
0 + ψ(1− π1

(r))(1− C(r)
0 )

,

and

U∗010 ≡ E[U010|d,Φ(r)] =
W00π1

(r)(1− S(r)
0 )

π1
(r)(1− S(r)

0 ) + ψ(1− π1
(r))C

(r)
0

.

M-step: We then update the parameter estimates using the solutions to the

full-data estimating equations

∂`U
∂π1

= −W11 +W01 +M1 − U∗111 − U∗011 − T1 +W10 +W00 +M0 − U∗110 − U∗010 − T0

1− π1

+
U∗111 + U∗011 + T1 + U∗110 + U∗010 + T0

π1

− (W10 +W00 +M0)(1− ψ)

π1 − π1ψ + ψ
= 0,
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∂`U
∂S0

=
V110 + U∗110

S0

− T0 − V110 + U∗010

1− S0

= 0,

∂`U
∂S1

=
V111 + U∗111

S1

− T1 − V111 + U∗011

1− S1

= 0,

∂`U
∂C0

=
W00 + V000 − U∗010

C0

− W10 +M0 − T0 − V000 − U∗110

1− C0

= 0,

and

∂`U
∂C1

=
W01 + V001 − U∗011

C1

− W11 +M1 − T1 − V001 − U∗111

1− C1

= 0.

Now, solving these estimating equations for the respective nuisance parameters η,

we get the full-data MLEs in terms of ψ. We then use these estimates to update the

parameter estimates π
(r)
1 , S

(r)
k , and C

(r)
k in the rth iteration for k = 0, 1, corresponding

to D = 0 for non-diseased and D = 1 for diseased. Hence,

π
(r+1)
1 =

B −
√
B2 − 4AC

2A
,

where

A = (ψ − 1)(M1 +W01 +W11),

B = M0 +W00 +W10 + ψ(M1 +W01 +W11)

+ (ψ − 1)(T0 + T1 + U∗010 + U∗011 + U∗110 + U∗111),

and

C = ψ(T0 + T1 + U∗010 + U∗011 + U∗110 + U∗111),

and

C
(r+1)
k =

W0k + V00k − U∗01k

W0k +W1k +Mk − Tk − U∗01k − U∗11k

,

and

S
(r+1)
k =

V11k + U∗11k

T0 + U∗01k + U∗11k

.
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2.5 Four Confidence Intervals for ψ

We next derive four particular confidence intervals for the odds ratio ψ.

2.5.1 The Observed Information Matrix

Recall that when constructing a likelihood-based interval, we need to calculate

or at least approximate the variance of the MLE of interest. In the multivariate case,

we often use the observed information matrix. Let θ = (ψ,η′)′ represent our vector

of parameters, where ψ is the odds ratio, which is the parameter of interest, and η is

a nuisance parameter vector. Recall that we have five nuisance parameters because

we assume differential misclassification so that the specificity and sensitivity for cases

and controls are different. Hence, η = (π1, S0, S1, C0, C1)
′ is the nuisance parameter

vector. Then, the observed information matrix is

J(ψ,η) = −



∂2`
∂ψ2

∂2`
∂ψ∂π1

∂2`
∂ψ∂S0

∂2`
∂ψ∂S1

∂2`
∂ψ∂C0

∂2`
∂ψ∂C1

. ∂2`
∂π2

1

∂2`
∂π1∂S0

∂2`
∂π1∂S1

∂2`
∂π1∂C0

∂2`
∂π1∂C1

. . ∂2`
∂S2

0

∂2`
∂S0∂S1

∂2`
∂S0∂C0

∂2`
∂S0∂C1

. . . ∂2`
∂S2

1

∂2`
∂S1∂C0

∂2`
∂S1∂C1

. . . . ∂2`
∂C2

0

∂2`
∂C0∂C1

. . . . . ∂2`
∂C2

1


, (2.10)

where ` is the log-likelihood function as derived in (2.8). In Appendix A.2 we give

expressions for each of the terms in (2.10). Also, let the observed information matrix

be partitioned as

J(ψ,η) =

 J11 J12

J21 J22

 , (2.11)

where J11 ≡ Jψ is a scalar.
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2.5.2 A Wald CI

The first CI we consider is a Wald CI, which is likelihood related. The Wald

statistic for ψ when nuisance parameters η are involved is

W = (ψ̂ − ψ)2[J11(ψ̂, η̂)]−1,

where J11 = (J11−J12J
−1
22 J21)

−1 (see Pawitan (2001)). An approximate 100(1−α)%

Wald confidence interval for the odds ratio consists of the values of ψ that satisfy

(ψ̂ − ψ)2[J11(ψ̂, η̂)]−1 < χ2
1(1− α), (2.12)

where χ2
1(1−α) denotes the 1−α quantile of a central chi-squared distribution with

one degree of freedom. Then, solving (2.12) directly for ψ, we get

ψ̂ −
√
χ2

1(1− α)[J11(ψ̂, η̂)] < ψ < ψ̂ +

√
χ2

1(1− α)[J11(ψ̂, η̂)] (2.13)

as an approximate (1−α)% Wald confidence interval for ψ under the double-sampling

procedure with differential misclassification. The information matrix used in the

interval is evaluated at the MLEs derived in Section 2.3 for both the odds ratio and

the nuisance parameters. We utilize the bisectional method to determine the bounds

of the CI.

2.5.3 A Score CI

Next, we derive the score CI, which is also a maximum likelihood-based in-

terval. It is an alternative method to the Wald and likelihood ratio tests; however,

we cannot confirm its superiority uniformly. Hence, we compare the score CI with

the Wald CI for the odds ratio of interest. The score interval is based on the score

statistic and is given by

Sc =
[
S(ψ, η̂ψ)

]2 [
J11(ψ, η̂ψ)

]
∼̇χ2

p,

24



where ψ is the parameter of interest and η is the vector of nuisance parameters, and

θ = (ψ,η′)′. An approximate 100(1− α)% score CI consists of the values of ψ that

satisfy [
S(ψ, η̂ψ)

]2 [
J11(ψ, η̂ψ)

]
< χ2

1(1− α), (2.14)

where η̂ψ is the restricted MLE (RMLE) of the nuisance parameter, η, evaluated at

a fixed value of ψ and χ2
1(1− α) denotes the 1− α quantile of a central chi-squared

distribution with one degree of freedom. Here we evaluate the information matrix

at the RMLEs of the nuisance parameters for a fixed value of ψ. We cannot directly

solve for ψ and, therefore, we use an EM procedure described in Section 2.4 and a

bisectional method to determine the above CI for ψ.

2.5.4 A Profile Likelihood CI

The next confidence interval we consider is the profile likelihood CI, which

is pseudo-likelihood based. For this CI we replace the nuisance parameters in the

likelihood function with their RMLEs to eliminate them. Recall that the profile

likelihood CI is based on the profile likelihood function

LP (ψ) ≡ max
η

L(ψ,η) = L(ψ, η̂ψ),

where η̂ψ is the vector of RMLEs in terms of the parameter of interest ψ. Again

we employ the use of the RMLEs computed using the EM algorithm described in

Section 2.4. Then, an approximate 100(1− α)% profile likelihood CI consists of the

values of ψ that satisfy

−2
[
`(ψ, η̂ψ)− `(ψ̂, η̂)

]
< χ2

1(1− α), (2.15)

where χ2
1(1−α) denotes the 1−α quantile of a central chi-squared distribution with

one degree of freedom, where `(ψ̂, η̂) ≡ ln
[
L(ψ̂, η̂)

]
is evaluated at the MLEs ψ̂ and

η̂, given in Section 2.3. We use a bisectional method on the log-likelihood `(ψ, η̂ψ)

evaluated at the RMLEs from Section 2.4 to compute the CI of interest. Because
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we cannot derive the exact RMLEs, no closed form derivation exists for the profile

likelihood interval. However, as mentioned by Riggs (2006), the profile likelihood

interval is often used for its simplicity and ease of understanding, although it does

not account for the uncertainty in the nuisance parameters estimation and can yield

optimistically short intervals for ψ.

2.5.5 An Approximate Integrated Likelihood CI

The last interval we consider utilizes the integration procedure as a method

of eliminating the nuisance parameters from the likelihood function. Therefore, this

interval is called the approximate integrated likelihood CI because it approximates

the integrated likelihood function. Often, the integration of the nuisance parameters

can be an impossible task, so we use the Laplace approximation method to derive

the approximate integrated likelihood function

LAI(ψ) =

∫
L(ψ,η)dη ≈ cLP (ψ)∣∣∣Ĵη(ψ, η̂)

∣∣∣1/2 , (2.16)

where c = (2π)ν/2, ν is the dimension of the nuisance parameter, and LP (ψ) is the

profile likelihood defined as

LP (ψ) ≡ max
η

L(ψ,η) = L(ψ, η̂ψ). (2.17)

Notice that Jη is the nuisance parameter sub-matrix of the observed information.

Thus, from (2.11) we have Ĵη is J22 evaluated at the MLEs of the nuisance param-

eters. We use the expressions for the information matrix included in Appendix A.2

and the expressions for the MLEs in Section 2.3. Then, we define an approximate

100(1 − α)% approximate integrated likelihood CI as the set of values of ψ that

satisfy

−2
[
`AI(ψ)− `AI(ψ̂AI)

]
< χ2

1(1− α). (2.18)

Here, `AI(ψ) is the approximate integrated log likelihood evaluated at a fixed value

of ψ where `AI(ψ̂AI) is the log likelihood.
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2.6 A Simulation Study

Here, we examine the behavior of four different confidence intervals for the

estimation of the odds ratio, ψ, in a case-control study with differential misclassifi-

cation when using double sampling. We wish to compare the performance of those

intervals based on coverage and width. We performed a Monte Carlo simulation

to examine the effect of the sample sizes of both cases and controls, Mk and Nk,

respectively, for k = 0 and 1, the effect of the disease probability πj, for j = 0, 1, for

the “gold standard” test outcome X = 0, 1, and the magnitude of the odds ratio ψ,

on the coverage and width of the CIs defined in intervals (2.13) to (2.18).

2.6.1 Parameter and Sample Size Configurations

For the simulation, we first chose the assumed values for the odds ratio ψ. We

considered two values for ψ: ψ = 2 and ψ = 4. Also, we let π0 ≡ Pr(X = 1|D = 0)

and π1 ≡ Pr(X = 1|D = 1) where X = 0, which indicates that the “gold standard”

test showed non-diseased and D = 0 indicated the true condition of the participant

as non-diseased.

Table 2.3: Odds ratio and probabilities for the simulation in CCDIFF

ψ π0 π1

2 0.25 0.40
4 0.38 0.71

Next, we defined the probabilities of differential misclassification, i.e., the sen-

sitivity and specificity for cases or controls. Dahm et al. (1995) have considered

the misclassification to be in one of three categories – low, medium and high. We

considered only low and high misclassification with the corresponding probability

values in Table 2.4.
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Table 2.4: Specificity and Sensitivity for CCDIFF

Misclassification Specificity Sensitivity

C0 C1 S0 S1

Low 0.99 0.97 0.98 0.96
High 0.90 0.85 0.80 0.75

Again, the specificity was Ck = Pr(Z = 0|X = 0, D = k) and sensitivity was

Sk = Pr(Z = 1|X = 1, D = k) for k = 0, 1, for non-diseased and diseased, respec-

tively. We examined the CIs for eight different sample sizes in each of the described

situations – low or high misclassification with ψ = 2 or 4. The sample sizes for each

of the complete or incomplete studies are shown in Table 2.5.

Table 2.5: Sample sizes used in the simulation for CCDIFF

A1 A2 A3 A4 A5 A6 A7 A8

M0 50 50 75 100 125 150 175 200
M1 30 30 37 50 62 75 87 100
N0 250 500 750 1000 1250 1500 1750 2000
N1 120 250 370 500 620 750 870 1000

Notice that the sample sizes for the complete studies are substantially smaller

than the corresponding sample sizes for the incomplete studies. Thus, the summa-

rized parameter configurations for this simulation are ψ ∈ {2, 4}, π1 ∈ {0.40, 0.71},

S0 ∈ {0.98, 0.80}, S1 ∈ {0.96, 0.75}, C0 ∈ {0.99, 0.90}, and C1 ∈ {0.97, 0.85}. We

generated 10,000 data sets and calculated the four 95% confidence intervals for the

binomial odds ratio, ψ, under double sampling with differential misclassification in

case-control studies.
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2.6.2 Results

We first consider the scenario where we have low differential misclassification.

Refer to Table 2.4 to recall the appropriate probabilities. The assumed odds ratio

parameter is ψ = 2. Figure 2.1 shows the coverage of all four intervals and Figure

2.2 shows the boxplots of the four competing CI widths.

Consider the Wald interval first. From figure 2.1 we see that the Wald interval

is very conservative and overestimated the desired 95% confidence level for all of the

sample size scenarios, A1 - A8 (Table 2.5). This statement is also supported by the

boxplot Figure 2.2 showing that the Wald interval has a consistently higher median

and mean width compared to the profile likelihood and the approximate-integrated

likelihood. This property makes containing the true parameter value easier and

more frequent, thus causing the over- coverage of the Wald CI. When the sample

size increased, we observed significant improvement in the interval widths. However,

the coverage did not seem to be affected.

From the score interval, we see an interesting result. Although the interval

had the highest median and average width for the first five sample size scenarios,

it still had the lowest coverage for all of the sample size scenarios considered. This

result is perhaps explained by the interval variability. We see that even after we

increased the sample sizes, the range of the score interval was quite large compared

to that of the competing intervals. This fact is somewhat unusual because the score

interval is generally believed to be an improvement of the Wald interval.

Next, consider the profile likelihood CI. From Figure 2.1 we see that even

though the interval underestimates the coverage throughout all the sample size ex-

amples, a definite improvement occurred with the sizes increasing from A1 to A8

(Table 2.5). The profile likelihood showed better estimation than the score and

Wald; however, its coverage was still less than the approximate-integrated CI. This

behavior is seen better on Figure 2.1. Notice that the profile likelihood CI widths’
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median and mean values were consistently smaller than those of the approximate-

integrated likelihood CI, thus explaining the profile likelihood CI’s undercoverage.

Again, notice the definite improvement of interval variability with the increasing of

the sample sizes.

The last interval we consider in this paper is the approximate-integrated in-

terval. As per our expectations, this method seemed to give the best results in the

estimation of the odds ratio. Figure 2.1 shows that the AI interval also underesti-

mated the coverage. However, with the increased sample sizes, he interval was it

gets much closer to the desired 95% confidence level than the three competing inter-

vals, a statement also supported by Figure 2.2. The approximate-integrated interval

median and average width were higher than the profile likelihood, making for more

conservative coverage and constantly improving with the sample size increase from

A1 to A8.

Next, we considered the case with low differential misclassification (see Table

2.4) and the parameter of interest of ψ = 4. The results of the simulation anal-

ysis are shown in Figures 2.3 and 2.4. The conclusions we obtained in this case

were almost identical to the conclusion from the previous case with low differential

misclassification and ψ = 2 discussed earlier in this section. We noticed that the

Wald interval overestimated the desired 95% confidence level for all the sample size

examples – A1 to A8. Again, we see from the interval width boxplot in Figure 2.4

that this interval had a higher median and average width compared to those of the

other pseudo-likelihood CIs and that the interval tightened when the sample size

was increased. The results for the score interval were similar to the previous score

interval preformance discussed before. However, in this case we noticed that the

coverage actually declined with an increase in the sample size. Looking at Figure

2.4, we see that this result was supported by the decrease of the CI widths. Thus,

the tighter CIs had smaller chances of containing the true parameter, ψ. The profile
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Figure 2.1: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with low differential misclassification
and an odds ratio of ψ = 2

likelihood interval followed the exact same pattern as the profile likelihood from the

case with ψ = 2. It also underestimated the 95% confidence limit, and its average

and median widths were less than the approximate-integrated likelihood interval.

Again, the approximate-integrated interval underestimated the coverage, but the

coverage improved significantly with the sample size increase. Also, we conclude

that the best interval in terms of coverage is the AI interval.

Now, we consider the second scenario, where we have high differential misclas-

sification (refer to Table 2.4) and an odds ratio parameter of ψ = 2. Figures 2.5 and

2.6 show the results of the analysis of the simulated datasets under those conditions.
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Figure 2.2: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with low differential misclassification and
an odds ratio of ψ = 2
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Notice again the coverage plot patterns for the odds ratio for all four intervals

are similar. With high misclassification we found more consistent results. We see in

Figures 2.5 that we can order the confidence intervals by worst to best coverage in

the ordering score, Wald, profile likelihood, and approximate integrated.

Figure 2.3: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with low differential misclassification
and odds ratio of ψ = 4

The Wald CI underestimates the desired confidence level; nevertheless, it shows

significant improvement with the sample sizes increasing from A1 through A8. The

boxplot indicates that similar results should be expected since the mean and range

of the widths of the Wald CI are consistently smaller than the PL and the AI CIs.
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Figure 2.4: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with low differential misclassification and
an odds ratio of ψ = 4

The next interval of interest is the score CI. As our previous discussion from

the case of low misclassification shows we expect the score to perform worse than
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the rest. The figures support this claim. We see on Figure 2.5 that the score in-

terval vastly underestimated the confidence level but still showed improvement for

the larger sample sizes. This observation is supported by Figure 2.6, as well, where

we see that the score interval widths were smaller than all three other intervals

throughout the eight sample size scenarios. The ranges and means of the widths of

the interval are smaller, as well as the median, which made this interval much less

conservative than the rest.

Figure 2.5: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with high differential misclassification
and odds ratio of ψ = 2

Next we look at the profile likelihood interval. Again, it underestimated the

coverage over all the sample sizes; nevertheless, the estimation was much closer to
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Figure 2.6: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with high differential misclassification and
an odds ratio of ψ = 2
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the desired 95% confidence level. The boxplot Figure 2.6 is also consistent with this

finding. The profile likelihood interval had higher medians and ranges of the widths

than the two full likelihood based intervals making it more likely to contain the true

parameter value.

Figure 2.7: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with high differential misclassification
and odds ratio of ψ = 4

The last interval considered in this paper is the approximate-integrated in-

terval. For this set-up the interval performed better than the rest of the intervals.

For a couple of the sample size scenarios, it overestimated the confidence level de-

sired; however, with the increase of sample size values, the interval had much better
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results. Again, we see that the boxplot yielded similar results. The interval was

definitely wider than the Wald and score intervals, and it was very close to the

profile likelihood one. The overall variability of the approximate-integrated interval

was better than the profile likelihood since its interquartile range was consistently

smaller. Overall, all four intervals underestimated for the smaller sample sizes. How-

ever, the coverage properties became considerably better for the larger sample sizes.

The smaller variability in the observed results might be due to the fact that we have

more information for the fallible samples when we have a higher misclassification.

The last case we consider is the case of high misclassification and an odds ratio

parameter of ψ = 4. Figures 2.7 and 2.8 summarize our findings. Again we see that

the overall patterns and results were similar to those of the high misclassification

case discussed above. The Wald confidence interval performed much better than the

score but somewhat worse than the profile likelihood and the approximate-integrated

intervals. The boxplot also supports this conclusion. The Wald interval was com-

paratively tighter than the two pseudo-likelihood intervals but wider than the score

interval. The median value was consistently smaller than the profile likelihood and

the approximate-integrated intervals, which explains its lower coverage.

Next, we look at the score interval, and again as expected, it performed more

poorly than the rest. From the boxplot Figure 2.8, we see that the score interval

had the smallest median value as well as the smallest interquartile range. This result

explains its lower coverage percentages. Nevertheless, both Wald and score intervals

coverage properties improved greatly when the sample sizes were increased.

Let us consider the profile likelihood interval next. The profile likelihood inter-

val showed consistent improvement when the sample sizes changed from A1 to A8.

From Figure 2.8 we see that the profile likelihood and the approximate-integrated

intervals showed little difference in interval width. Also, consistent with all of the

previous cases discussed, the approximate-integrated interval improved with the in-
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crease of the sample size. The similarity in interval width between the two pseudo-

likelihood-based intervals is illustrated in Figure 2.8 as well.

Figure 2.8: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with high differential misclassification and
an odds ratio of ψ = 4
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2.7 Overall Conclusions and Comments

Overall, we found that the approximate integrated interval performed best un-

der the scenarios of low or high misclassification and different values of the odds ratio

parameter considered here. This finding is consistent with the results mentioned by

other authors that examined this interval under different conditions (Greer (2008)

and Boese (2005)). Significantly, the interval is not too computationally or the-

oretically complicated. The score interval performed worst among all CIs in our

simulations in terms of coverage properties.

Also, although the simulations were performed with the same seed assignment,

odds ratio value, and sample sizes for each combination of misclassification, we still

had an issue with the small probabilities for each of the cells in Table 2.1 and Table

2.2. Therefore, when the simulated results produced a zero count, we replaced the

missing empty cell values between 0.0001 and 0.05. Thus, for a small number of

cases this replacement affects the coverage and the variability of the interval widths.
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CHAPTER THREE

Confidence Intervals for the Odds Ratio in Case-Control Studies with
Non-differential Misclassification

3.1 Introduction

Epidemiological research is currently one of the most popular research areas.

This science relies heavily on statistical analysis for establishing and quantifying

the relationship between risk factors and disease, and for analyzing the presence

of a particular disease in a given geographic area. Hence, statisticians have been

designing many different types of studies to produce this information.

Here, we consider one particular type of statistical study; the case-control

study, that is based on events that have already occurred (retrospective, observa-

tional study) rather than on events that will occur in the future (prospective study).

Case control studies date back as early as the eighteen hundreds and are highly

utilized in the domain of cancer research, Breslow (1996). The main idea behind

this study design is to compare a cohort of people that exhibit a disease of interest

(cases) to a cohort of individuals without the disease (controls) to obtain conclu-

sions about the rates, risk factors (exposure), and consequences of that disease. The

most popular relative measure of such exposure-disease relation is the odds ratio.

Its utility is not because of its intelligibility as an effect measure for epidemiological

research results, but rather for its convenient mathematical properties, Nurminen

(1995).

Although, case-control design is an extremely useful and efficient way of con-

ducting epidemiological studies, it is also known for its numerous shortcomings and

limitations, such as selection bias, recall bias, and confounding (see Breslow (1996)

and Langholz (2010)). Epidemiological studies are usually observational and ret-
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rospective. They often rely on self reporting and recollection of events and factors

in the past, for which the researcher has no control. This fact causes measurement

error. We recognize two major types of misclassification – differential and non-

differential. For differential misclassification we assume that the cases group and

controls group exhibit different specificity and sensitivity measures, whereas for the

non-differential case those probabilities are assumed to be equal. Bross (1954) first

addressed the crucial impact of misclassification errors when performing statistical

analysis.

Many statisticians and scientists have proposed various methods for correcting

the bias and estimating the misclassification error in case-control studies. Walter

and Irwig (1988) have discussed the deleterious effect of ignoring misclassification

and Thomas, Stram, and Dwyer (1993) have offered a review of a few methods

of correction. Espeland and Hui (1987) have proposed several ideas for adjusting

for misclassification using information on error rates assessed in different ways and

Gustafson, Le, and Saskin (2001) have examined a scenario where partial knowl-

edge on the misclassification was available and used to correct the odds ratio esti-

mates. Maximum-likelihood and closed-form estimators of some epidemiologic mea-

sures have been considered by Greenland (2008). Also, Morrissey and Spiegelman

(1999) have presented matrix methods for estimating the odds ratio subject to expo-

sure misclassification. However, one of the most utilized procedures for estimating

the population proportion of exposure is the double sampling procedure first intro-

duced by Tenenbein (1970). He suggested that by comparing the results obtained

by two or more measuring devices, one can obtain information on the extend of

misclassification, and thus, make corrections to the biased estimators. Tenenbein’s

double sampling idea has also been implemented by Dahm, Gail, Rosenberg, and

Pee (1995), who investigated the value of additional fallible data in order to improve

the point estimation of the odds ratio.
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Several authors have discussed different methods of calculating confidence in-

tervals under these circumstances. Likelihood-based confidence intervals for the

proportion parameters with binary data have been considered by Paul and Thed-

chanamoorthy (1997) and Boese (2005). A Bayesian approach to CI estimation for

the population proportion under the double sampling and false-positive misclassifi-

cation has been offered by Lee and Byun (2008). For the odds ratio of two bino-

mial samples, Troendle and Frank (2001) have derived unbiased CIs and Reiczigel

et al. (2008) have derived an exact unconditional CI. In regards to the case of non-

differential misclassification, Correa-Villaseor et al. (1995) examined in detail the

effects of bias in case-control studies with three levels of exposure. In particular, our

attention lies in determining the CIs for the odds ratio under non-differential mis-

classification assumption. We utilize the double sampling paradigm as the method

of choice for correcting for misclassification errors.

In this chapter we derive four confidence intervals for the odds ratio parameter

of interest in a case-control study with non-differential misclassification. We consider

two likelihood-based intervals - the Wald and score CIs, and two pseudo-likelihood-

based intervals - the profile likelihood and approximate integrated likelihood CIs.

Here, the double-sampling process of sampling usually produces not only the pa-

rameter of interest, but also a set of nuisance parameters. To eliminate the effect of

the nuisance parameters we employ the four methods of calculating CIs mentioned

above. Karunaratne (1991) has discussed and developed point estimates of the odds

ratio parameter for the case-control study under double sampling and non-differential

misclassification, which is the basis for this paper.

The reminder of the chapter is organized as follows. First, in Section 3.2 we

present the model, basic terms, and notation used for this study. We also discuss

the double sampling procedure in more detail, as well as the assumption of non-

differential misclassification. Then, in Section 3.3 we derive maximum likelihood

43



estimating equations for both the parameter of interest and the nuisance parame-

ters. We utilize the Newton-Raphson method for estimating those parameters when

we cannot reach closed form solutions. The results of this section are used to de-

velop a Wald confidence interval. The other three intervals require the derivation of

restricted maximum likelihood estimators (RMLEs). We present an EM algorithm

to yiels the RMLEs in Section 3.4. Further, in Section 3.5, we give an overview of

the four CIs after implementing the results from the previous two sections. Also, we

derive the observed information matrix, which is an essential part of the derivation

of the Wald and score CIs. In Section 3.6 we describe a simulation study compar-

ing the coverage and interval widths of each of the four intervals for two levels of

misclassification - low and high. Finally, in Section 3.7 we give several comments,

concerns, and concluding remarks on the four CIs compared here.

3.2 The Model

The case-control study of interest here involves the double-sampling method.

Let D be the true indicator of a disease status. Then, suppose we have two different

procedures that one can use to test for a particular illness. One procedure is a very

accurate, well-known and proven method for detection of the disease, whereas the

other gives less reliable and faulty results. We refer to the first method as the “gold

standard” and the second as the fallible test. Let X and Z be the binary outcomes

measuring the exposure level of each of the tests respectively. Thus, X = 1 represents

an individual that has been positively diagnosed by the infallible test and Z = 1

represents an individual positively diagnosed by the fallible test. For our study we

first choose a larger group of people that are tested using only the erroneous device.

Then, we choose a smaller sub-sample that is tested with the absolutely accurate

device. This smaller sample is referred to as the validation or complete sample.

Tenenbein (1970) has referred to this method a double-sampling method.
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Let, the subscripts i, j, k = 0, 1 represent the outcomes of the fallible test,

Z = i, the “gold standard” test, X = j, and the true disease status, D = k, where

“1” indicates diseased and “0” indicates healthy. Now, define Vijk to be the cell

counts for the complete data (where both tests are performed) and Wik for the in-

complete data (where only erroneous test is used). Refer to Table 3.1 for a visual

explanation of the notation. Also, let Mk denote the sample size from the disease

group D = k from the complete study. For the incomplete study, Nk represent the

number of patients in the patient group where D = k . Notice that Mk + Nk gives

the total amount of participants in the study for each group of cases or controls.

The first step sample sizes from the double-sampling procedure are Nk and Mk+Nk.

We define the counts Tk as the number of people from each disease group (D = 0 or

1) that tested positive from the infallible test, X = 1.

Table 3.1: Counts for a study with misclassified exposure data

Validation study (complete) Main study (incomplete)
Fallible Cases (D=1) Controls (D=0) Cases (D=1) Controls (D=0)

(Z) X=1 X=0 X=1 X=0
Z=1 V111 V101 V110 V100 W11 W10

Z=0 V011 V001 V010 V000 W01 W00

T1 M1 − T1 T0 M0 − T0

M1 M0 N1 N0

For the validation study we denote the probability of exposure (X = 1) for

each D = k group by πk. Thus,

πk = Pr(X = 1|D = k), (3.1)

where k = 0 is the control group and k = 1 is the cases group. In the complete study

we also utilize a fallible test measure for which we define specificity and sensitivity

probabilities. The sensitivity, S, is also known as the true positive rate, indicates the

probability that an individual tests positive by the fallible test (Z = 1) given that
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he/she tested positive by the “gold standard” test as well (X = 1). The specificity, C,

represents the probability that a subject is not positive as obtained by the fallible test

(Z = 0), given that he/she was also found to be not positive by the “gold standard”

(X = 0). In Section 3.1, we briefly discussed the different types of misclassification

error. Here, we are interested in estimating only the odds ratio under the assumption

of non-differential measurement error. Non-differential misclassification of exposure

between diseased and non-diseased subjects occurs when the exposure, Z and X,

are equally misclassified among cases the (D = 1) and controls (D = 0). Then, the

exposure status is independent of the disease outcome level. We define the specificity

and sensitivity probabilities, respectfully, as

S = Pr(Z = 1|X = 1, D = 0)

= Pr(Z = 1|X = 1, D = 1)

(3.2)

and

C = Pr(Z = 0|X = 0, D = 0)

= Pr(Z = 0|X = 0, D = 1).

(3.3)

Based on (3.1) - (3.3), and the derivations in Prescott and Garthwaite (2002), we in-

duce the following distributions for the complete study and the observed cell counts:

Tk = V01k + V11k ∼ Bin(Mk, πk), (3.4)

V11k|Tk ∼ Bin(Tk, Sk), (3.5)

and

V00k|Tk ∼ Bin(Mk − Tk, Ck), (3.6)

where k = 0 or 1 indicates the true disease status of the participant. We define the

observable counts’ distributions and probabilities in the incomplete data set as

W1k ∼ Bin(Nk, πkS + (1− πk)(1− C)),
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where k is indexed as described above. Finally, our parameter of interest, the odds

ratio, is

ψ ≡ π1(1− π0)

π0(1− π1)
. (3.7)

The estimation of the odds ratio and other statistics of interest in the case-control

study design have been examined by many scientists. One of the most examined

studies is one concerning sudden infant death syndrome (SIDS) that was first ex-

amined by Drews et al. (1990). The study examined the maternal use of antibiotics

during pregnancy and the incidences of SIDS. The drug use was measured by un-

reliable personal interview (Z) and was validated be the mother’s medical records

(X). Later, Greenland (1988) and Morrissey and Spiegelman (1999) have consid-

ered this data for in both the differential and non-differential misclassification cases.

Karunaratne (1991) has explained that the non-differential misclassification is of-

ten unreasonable for case-control studies because disease outcome is known prior to

exposure classification.

3.3 Maximum Likelihood Estimation

In this section we derive the maximum likelihood estimator (MLE) of the pa-

rameter of interest, ψ, as well as the nuisance parameters defined in Section 2.2. Let

the vector of all parameters be θ, where θ = (ψ,η′)′ and η is the vector of nuisance

parameters. To derive the CIs for the odds ratio we first derive the MLEs for the

nuisance parameters. Let d = (W00,W01,W11,W10, V111, V001, V110, V000, V011, V101,

V010, V100)
′ denote the observed data counts for the full data (both main and valida-

tion studies), let L = L(π1, π0, C, S|d) denote the full-likelihood function, and let `

represent the log-likelihood function. Then,
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` ∝ W11 ln[π1S + (1− π1)(1− C)] +W10 ln[π0S + (1− π0)(1− C)]

+ (N1 −W11) ln[1− π1S − (1− π1)(1− C)] + T1 ln(π1)

+ (N0 −W10) ln[1− π0S − (1− π0)(1− C)] + T0 ln(π0)

+ (M1 − T1) ln(1− π1) + (M0 − T0) ln(1− π0)

+ (V011 + V010) ln(1− S) + (V101 + V100) ln(1− C)

+ (V111 + V110) lnS + (V001 + V000) lnC.

We use the substitution

π0 =
π1

π1 − π1ψ + ψ

to get

`ψ ∝ (M0 − T0) ln

[
1− π1

ψ + π1 − ψπ1

]
+W10 ln

[
(1− C)(1− π1)ψ + π1S

ψ + π1 − ψπ1

]
+ T0 ln

[
π1

ψ + π1 − ψπ1

]
+ (N0 −W10) ln

[
Cψ + π1 − Cψπ1 − π1S

ψ + π1 − ψπ1

]
+ (V001 + V000) lnC + (V101 + V100) ln(1− C)

+ (N1 −W11) ln(C + π1 − Cπ1 − π1S)

+ (V111 + V110) lnS + (V011 + V010) ln(1− S)

+W11 ln [(1− C)(1− π1) + π1S]

+ T1 ln π1 + (M1 − T1) ln(1− π1),

(3.8)

where `ψ is the log-likelihood in terms of ψ and the nuisance parameters η =

(π1, C, S)′, given the observed data counts. For this particular model we cannot

obtain closed-form MLEs, Karunaratne (1991), therefore, we use the a numerical

method for finding extremes of functions.

3.4 Restricted Maximum Likelihood Estimation

In Section 3.3 we have derived the maximum likelihood estimators of the odds

ratio and the nuisance parameters. However, a couple of the intervals we consider

not only require evaluation at the MLEs but also at the restricted MLEs (RMLEs)
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of the nuisance parameters.In this section we derive the RMLEs of the nuisance

parameters evaluated at a fixed value of ψ.

First, we consider the incomplete (main) study and its cell counts as described

in Table 3.1 that used only the fallible test as a classification procedure. Therefore,

we assume we have misclassified data in the observed cell counts, Wik. Also, sup-

pose we performed the “gold standard” test on this data set. Then, we define a new

set of variables, Uijk, that are unobserved, because we have not actually performed

the test. Again, i, j, and k have values 0 for non-diseased and 1 for diseased and

correspond to the outcomes of the fallible test (Z), “gold standard” (X), and the

actual disease condition (D), respectively, for each patient in the study. For details

consider Table 3.2, where we see how the latent variables are distributed across the

cells Notice that Uijk are the unobserved portions of the observed Wik counts.

Table 3.2: Counts for the main study with unobserved, misclassified data

Main study (incomplete)
Fallible Cases (D=1) Controls (D=0)

(Z) X=1 X=0 X=1 X=0
Z=1 U111 W11 − U111 U110 W10 − U110

Z=0 U011 W01 − U011 U010 W00 − U010

U111 + U011 N1 − (U111 + U011) U110 + U010 N0 − (U110 + U010)
N1 N0

Further, recall that the main study is a sub-sample of the complete study and,

hence, we assume the same probability of misclassification. We can then write the

distributions of the new latent variables as

(U11k + U01k) ∼ Bin(Nk, πk),

U11k|(U11k + U01k) ∼ Bin(U11k + U01k, S),

(W0k − U01k)|(U11k + U01k) ∼ Bin(Nk − (U11k + U01k), C),
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where k = 0 represents the “controls” group and k = 1 represents the “cases” group,

see Joseph et al. (1995). Also, recall that the S and C are the same for “cases”

and “controls”, which is the assumption of non-differential misclassification. Let

dfull = (W00,W01,W11,W10, V111, V001, V110, V000, V011, V101, V010, V100, U111, U011, U110,

U010)
′ represent the full data vector including the latent variables. Now, we can write

the likelihood function in terms of the latent variables as

LU ∝

 N1

U111 + U011


 U111 + U011

U111


 N1 − (U111 + U011)

W01 − U011


×

 N0

U110 + U010


 U110 + U010

U110


 N0 − (U110 + U010)

W00 − U010


× (π1S)U111 [π1(1− S)]U011(π0S)U110 [π0(1− S)]U010

× [(1− π0)(1− C)]W10−U110 [(1− π0)C]W00−U010

× [(1− π1)(1− C)]W11−U111 [(1− π1)C]W01−U011

× CV001(1− C)(M1−T1)−V001CV000(1− C)(M0−T0)−V000

× SV111(1− S)T1−V111SV110(1− S)T0−V110

× πT1
1 (1− π1)

M1−T1πT0
0 (1− π0)

M0−T0 ,

(3.9)

where for ease of visualization we have omitted the constant terms. Refer to Ap-

pendix B.1 for a detailed derivation and simplification of (3.9).

Because we cannot derive closed-form solutions for the RMLEs, we use the EM

(expectation-maximization) algorithm to determine the RMLEs for a fixed value of

ψ. We consider the two steps in the algorithm individually.

E-step: First, outline at the expectation step. Here we are interested in deriv-

ing the conditional expected values for the latent variables U = (U111, U011, U110, U010)
′,

given the observed data and the current parameter values Φ(r) = (ψ, π
(r)
1 , S(r), C(r))′,

where r stands for the current iteration number. From the likelihood function (3.9)
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and the derivations in B.1, the conditional distributions of the latent variables are

U111|d,Φ(r) ∼ Bin

(
W11,

π
(r)
1 S

π
(r)
1 S(r) + (1− π(r)

1 )(1− C(r))

)
,

U011|d,Φ(r) ∼ Bin

(
W01,

π
(r)
1 (1− S(r))

π
(r)
1 (1− S(r)) + (1− π(r)

1 )C(r)

)
,

U110|d,Φ(r) ∼ Bin

(
W10,

π
(r)
1 S(r)

π
(r)
1 S(r) + ψ(1− π(r)

1 )(1− C(r))

)
,

and

U010|d,Φ(r) ∼ Bin

(
W00,

π
(r)
1 (1− S(r))

π
(r)
1 (1− S(r)) + ψ(1− π(r)

1 )C(r)

)
.

Thus, the conditional expectations of the unobserved variables are

U∗111 ≡ E[U111|d,Φ(r)] =
W11π

(r)
1 S(r)

π
(r)
1 S(r) + (1− π(r)

1 )(1− C(r))
,

U∗011 ≡ E[U011|d,Φ(r)] =
W01π

(r)
1 (1− S(r))

π
(r)
1 (1− S(r)) + (1− π(r)

1 )C(r)
,

U∗110 ≡ E[U110|d,Φ(r)] =
W10π

(r)
1 S(r)

π
(r)
1 S(r) + ψ(1− π(r)

1 )(1− C(r))
,

and

U∗010 ≡ E[U010|d,Φ(r)] =
W00π

(r)
1 (1− S(r))

π
(r)
1 (1− S(r)) + ψ(1− π(r)

1 )C(r)
.

M-step: In the maximization step we update the parameter of interest in

each iteration by using the solutions to the full data log-likelihood equations. First,

define dfull = (W00,W01,W11,W10, V111, V001, V110, V000, V011, V101, V010, V100,

U111, U011, U110, U010)
′ as the full data vector including the latent variables. Also, let

`U(ψ,η|d full) denote the log-likelihood of both the main and validation studies (full

data). Then, in (3.9) we let π0 = π1

π1−π1ψ+ψ
and group with respect to the nuisance

parameters η = (π1, S, C)′. Hence, the conditional log-likelihood function is
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`U ∝ (N0 +M0) lnψ − (N0 +M0) ln(π1 − π1ψ + ψ)

+ (N0 +M0 − U110 − U010 − T0 +N1 +M1 − U111 − U011 − T1) ln(1− π1)

+ (U110 + U010 + T0 + U111 + U011 + T1) lnπ1

+ (V110 + U110 + V111 + U111) lnS + (V010 + U010 + V011 + U011) ln(1− S)

+ (W10 + V100 − U110 +W11 + V101 − U111) ln(1− C)

+ (W00 + V000 − U010 +W01 + V001 − U011) lnC.

Therefore, the full-data estimating equations are

∂`U
∂π1

≡ −W11 +W01 +M1 − U∗111 − U∗011 − T1 +W10 +W00 +M0 − U∗110 − U∗010 − T0

1− π1

+
U∗111 + U∗011 + T1 + U∗110 + U∗010 + T0

π1

− (W10 +W00 +M0)(1− ψ)

π1 − π1ψ + ψ
= 0,

(3.10)
∂`U
∂C
≡ W00 + V000 − U∗010 +W01 + V001 − U∗011

C

− W10 +M0 − T0 − V000 − U∗110 +W11 +M1 − T1 − V001 − U∗111

1− C
= 0,

(3.11)

and

∂`U
∂S
≡ V110 + U∗110 + V111 + U∗111

S
− T0 − V110 + U∗010 + T1 − V111 + U∗011

1− S
= 0. (3.12)

Solving (3.10) - (3.12) for the rth iteration, we have

π
(r+1)
1 =

B −
√
B2 − 4AC

2A
,

where

A = (ψ − 1)(M1 +W01 +W11),

B = M0 +W00 +W10 + ψ(M1 +W01 +W11)

+ (ψ − 1)(T0 + T1 + U∗010 + U∗011 + U∗110 + U∗111),

and

C = ψ(T0 + T1 + U∗010 + U∗011 + U∗110 + U∗111),
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so that

C(r+1) =
W00 + V000 − U∗010 +W01 + V001 − U∗011

W00 +W10 +M0 − T0 − U∗010 − U∗110 +W01 +W11 +M1 − T1 − U∗011 − U∗111

,

and

S(r+1) =
V110 + U∗110 + V111 + U∗111

T0 + U∗010 + U∗110 + T0 + U∗011 + U∗111

.

3.5 The Confidence Intervals

Here we consider four confidence intervals for the odds ratio parameter: the

Wald CI, the score CI, the profile likelihood CI, and the approximate integrated (AI)

likelihood CI. Below we derive and describe each one of CIs based on the results from

the previous sections.

3.5.1 The Observed Information Matrix

The Wald and the score confidence intervals are likelihood-based intervals.

For their construction we have to calculate or at least approximate the variance of

the MLE of interest. In the multivariate parameter case, in order to estimate the

variance we often use the observed information matrix. Let us denote the vector

of parameters as θ = (ψ,η′)′, where ψ is the odds ratio and the parameter of

interest and η is the nuisance parameter vector. Recall that we have three nuisance

parameters because we are considering the non-differential case of misclassification

with equal sensitivities and specificities. Then, we have η = (π1, S, C)′, where S is

the common sensitivity and C is the common specificity. Let

J(ψ,η) = −



∂2`
∂ψ2

∂2`
∂ψ∂π1

∂2`
∂ψ∂S

∂2`
∂ψ∂C

. ∂2`
∂π2

1

∂2`
∂π1∂S

∂2`
∂π1∂C

. . ∂2`
∂S2

∂2`
∂S∂C

. . . ∂2`
∂C2


, (3.13)

denote the observed information matrix where ` is the log likelihood function given

in (3.8). In Appendix B.2 we include the formulas for each of the terms in the matrix

(3.13).
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3.5.2 A Wald CI

First, we consider the Wald CI. Let W denote the statistic. Then,

W = (ψ̂ − ψ)2[J11(ψ̂, η̂)]−1,

where

J(ψ,η) =

 J11 J12

J21 J22

 , (3.14)

is the partitioning of the observed information matrix and ψ̂ and η̂ are the MLEs

of ψ and η respectively and J11 = (J11 − J12J
−1
22 J21)

−1. Hence, an approximate

100(1− α)% confidence interval for the odds ratio are the values of ψ that satisfy

(ψ̂ − ψ)2[J11(ψ̂, η̂)]−1 < χ2
1(1− α), (3.15)

where χ2
1(1 − α) denotes the 1 − α quantile of a central chi-squared distribution

with one degree of freedom. Notice that in (3.15) J11 is evaluated at the MLEs (as

derived in Section 3.3) for both the odds ratio and the nuisance parameters. Thus,

the Wald CI is

ψ̂ −
√
χ2

1(1− α)[J11(ψ̂, η̂)] < ψ < ψ̂ +

√
χ2

1(1− α)[J11(ψ̂, η̂)]. (3.16)

3.5.3 A Score CI

An alternative to the Wald CI and the score CI which is also a maximum

likelihood-based interval. The score interval is based on the score statistic which is

Sc =
[
S(ψ, η̂ψ)

]2 [
J11(ψ, η̂ψ)

]
∼̇χ2

p,

where

S(θ) ≡ ∂

∂θ
ln(L(θ))

is the score function and θ = (ψ,η′)′ is the vector of nuisance parameters and

parameter of interest. An approximate 100(1−α)% score interval is the values of ψ

that satisfy [
S(ψ, η̂ψ)

]2 [
J11(ψ, η̂ψ)

]
< χ2

1(1− α), (3.17)
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where η̂ψ is the restricted MLE (RMLE) of the nuisance parameter and χ2
1(1 − α)

denotes the 1 − α quantile of a central chi-squared distribution with one degree

of freedom (see Riggs (2006)). For this interval the observed information matrix

is evaluated at the RMLEs of the nuisance parameters for a fixed value of ψ. To

determine the limits of the score CI for the odds ratio we use the bisectional method.

However, because we cannot directly solve for ψ, we use the EM algorithm in Section

3.4 to help determine those limits.

3.5.4 A Profile Likelihood CI

The third confidence interval we consider in this paper is the profile likelihood

interval. It is pseudo-likelihood based and it is believed to give better results than

the usual basic Wald and score intervals. To eliminate the nuisance parameters

we replace them by their RMLEs in the likelihood function. The profile likelihood

function is, therefore,

LP (ψ) ≡ max
η

L(ψ,η) = L(ψ, η̂ψ), (3.18)

where η̂ψ is the vector of RMLEs in terms of the parameter of interest ψ. Again we

have no closed form for the RMLEs therefore, we use an EM algorithm to compute

the RMLEs (see Section 3.4). Thus, an approximate 100(1− α)% profile likelihood

CI for the odds ratio is the set of values of ψ that satisfy

−2
[
`(ψ, η̂ψ)− `(ψ̂, η̂)

]
< χ2

1(1− α), (3.19)

where χ2
1(1 − α) denotes the 1 − α quantile of a central chi-squared distribution

with one degree of freedom, `(ψ̂, η̂) is the log-likelihood function evaluated at the

MLEs (see Section 3.3), and `(ψ, η̂ψ) is the log-likelihood function evaluated at the

RMLEs. The profile likelihood CI procedure has a major flaw in that it does not

account for the uncertainty in the nuisance parameter estimation. This flaw can lead

to optimistically precise estimates for the odds ratio parameter, see Riggs (2006).
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3.5.5 An Approximate Integrated Likelihood CI

The last interval we consider is the approximate integrated interval, which is

also a pseudo-likelihood based CI. The procedure of calculating this interval involves

integration to eliminate the nuisance parameters. It is usually an improvement over

the profile likelihood method and yields closer estimates of the odds ratio without

ignoring the uncertainty in the nuisance parameters. However, often the integration

is not a feasible task and we have to resort to different methods such as the Laplace

approximation method. An approximate integrated likelihood function is

LAI(ψ) =

∫
L(ψ,η)dη ≈ cLP (ψ)∣∣∣Ĵη(ψ, η̂)

∣∣∣1/2 , (3.20)

where c = (2π)ν/2, ν is the dimension of the nuisance parameter, and LP (ψ) is

the profile likelihood as defined in (3.18). The notation Jη represent the nuisance

parameter sub-matrix of the observed information matrix. Hence, from (3.14) we

have Ĵη is J22 evaluated at the MLEs of the nuisance parameters. This sub-matrix

is calculated using the formulas for the MLEs from Section 3.3 and the information

matrix terms included in Appendix B.2. A 100(1 − α)% approximate integrated

likelihood CI for the odds ratio is the set of values of ψ that satisfy

−2
[
`AI(ψ)− `AI(ψ̂AI)

]
< χ2

1(1− α), (3.21)

where `AI(ψ) represent the approximate integrated log-likelihood as defined in (3.20)

evaluated at a fixed value of ψ and `AI(ψ̂AI) is the log-likelihood of (3.20).

3.6 A Monte Carlo Simulation Study

In this paper we aim to estimate the odds ratio in a case-control study by

implementing a double sampling procedure and assuming non-differential misclas-

sification between the cases and controls. We considered four confidence intervals

that differed from each other by the method used to eliminate the nuisance param-

eters. In this section we describe a simulation study to compare the performance
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of these intervals in terms of coverage and interval width. We use a Monte Carlo

simulation to examine the effect of the sample sizes of the cases and controls (k = 0

or 1 respectively) for the complete, Mk, and the incomplete studies, Nk. Also, we

are interested in the effect of the disease probability πj, for j = 0, 1 for the “gold

standard” test outcome X = 0, 1, and the magnitude of the odds ratio , ψ, on the

coverage and interval width of the CIs defined in (3.16) - (3.21).

3.6.1 Parameter and Sample Size Configurations

We considered two values for the odds ratio parameter ψ = 2 and ψ = 4 with

the corresponding probabilities shown in Table 3.3. The probability π0 is when the

Table 3.3: Odds ratio and probabilities for simulation in CCNDIFF

ψ π0 π1

2 0.25 0.40
4 0.38 0.71

“gold standard” test indicates a diseased individual (X = 1) but the true condition

is non-diseased (D = 0), i.e. π0 ≡ Pr(X = 1|D = 0). Then the probability of

being truly diseased and the non-fallible test indicating that one is indeed diseased

is represented by π1 ≡ Pr(X = 1|D = 1). Recall that we are only interested in

the case of non-differential misclassification, i.e the specificities and sensitivities are

the same for “cases” and “controls”. Often the misclassification is defined in three

categories – low, medium, and high. In our simulation we only consider the low and

high with the values given in Table 3.4.

Again, specificity is defined as C = Pr(Z = 0|X = 0) and sensitivity is

S = Pr(Z = 1|X = 1) regardless of the given true status of the participant. To

obtain reasonable results for comparisons we derive CIs for eight different sample

sizes for low and high misclassification and for ψ = 2 or 4. By definition we know
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Table 3.4: Specificity and sensitivity for CCNDIFF

Misclassification Specificity (C) Sensitivity (S)

Low 0.99 0.98
High 0.85 0.75

that the complete sample sizes are much smaller than the fallible sample sizes due to

factors discussed previously. We give the sample size values we simulate in Table 3.5.

Table 3.5: Sample sizes used in the simulation for CCNDIFF

A1 A2 A3 A4 A5 A6 A7 A8

M0 50 50 75 100 125 150 175 200
M1 30 30 37 50 62 75 87 100
N0 250 500 750 1000 1250 1500 1750 2000
N1 120 250 370 500 620 750 870 1000

and summarize the parameter configuration for this simulation as ψ ∈ {2, 4}, π1 ∈

{0.40, 0.71}, S ∈ {0.98, 0.75}, and C ∈ {0.99, 0.85}. We generated 10,000 data sets

under each combination of conditions and calculate the 95% confidence intervals for

the binomial odds ratio under double sampling and non-differential misclassification

in case-control studies for each of the CI methods described in this chapter.

3.6.2 Results

We first consider the scenario with low non-differential misclassification and an

assumed odds ratio parameter is ψ = 2. Refer to Table 3.4 to recall the appropriate

misclassification probabilities. In this case we encounter a problem when using the

score interval for estimating the parameter. Hence, in Figure 3.1 and Figure 3.2, we

see results for only the three other CIs. Figure 3.1 gives the coverage of each of the

intervals and Figure 3.2 shows the boxplots of the interval widths.
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Consider the Wald interval first. From Figure 3.1 we see that the Wald interval

overestimated the desired 95% confidence level for most of the sample size scenarios,

A1 to A8 (Table 3.5). Nevertheless, the interval showed significant improvement

Figure 3.1: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with low nondifferential misclassifi-
cation and an odds ratio of ψ = 2

towards the desired confidence level when the sample size increased. This statement

is consistent with the results presented in Figure 3.2. The Wald interval had a

higher median and mean interval width compared to the profile likelihood and the

approximate-integrated likelihood intervals. This property caused over-coverage of

the Wald CI. However, notice that for the larger sample size values the average
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Figure 3.2: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with low nondifferential misclassification
and an odds ratio of ψ = 2
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widths of the Wald CIs were comparable to the interval width characteristics of the

other two intervals.

Next, we discuss the profile likelihood and the approximate-integrated likeli-

hood CIs. They both follow a very similar pattern and the resulting coverage and

interval width characteristics are essentially the same. In Figure 3.1 we noticed that

the profile likelihood interval started with good coverage properties. However, with

the increase of the sample size they worsened and then improved once we reached

the larger sample sizes. The same behavior is seen with the approximate-integrated

interval. Nevertheless, neither the profile nor the AI CIs achieved the desired 95%

confidence level because they both greatly underestimate the desired coverage. This

shortcoming can be explained by the boxplots shown in Figure 3.2. The intervals

widths are extremely small thus yielding very tight CIs and, hence, lower probability

of capturing the true parameter value.

Next, we review the scenario with low nondifferential misclassification (Table

3.4) and odds ratio parameter ψ = 4. In this case we were able to calculate the score

interval.

First, we consider the Wald interval coverage shown in Figure 3.3. The Wald

CI was extremely conservative and overestimated the desired 95% confidence level

throughout all the given sample sizes. Nevertheless, with an increased sample size,

we noticed a great improvement of the coverage of this interval. The boxplots

presented in Figure 3.4 showed that the average interval width is similar to the one

of the pseudo-likelihood intervals. No obvious evidence existed to show a reason for

the overestimation of the Wald interval in this case.

Next, we examined the score interval. Consider the coverage plot in Figure

3.3. The behavior of the score interval was extremely different than the rest of the

intervals. Notice that the increased sample size actually significantly decreased the

probability of the score interval capturing the true parameter. The interval started
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highly conservative and ended highly under-covering. This behavior is supported by

the boxplots in Figure 3.4. Notice in this figure that the score interval had a much

higher average width than the other three intervals for the smaller sample size cases.

Figure 3.3: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with low nondifferential misclassifi-
cation and odds ratio of ψ = 4

This fact explains why the score interval overestimated at the beginning. However,

we see that with the change of sample size values from A1 to A8, the mean width

and interquartile range of the score interval decreased quickly, thus supporting the

behavior we observed in the coverage plot in Figure 3.3.

The next interval we considered is the profile likelihood interval. The shape

of the coverage curve for the different sample sizes was similar to the coverage plot
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Figure 3.4: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with low nondifferential misclassification
and an odds ratio of ψ = 4
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for the ψ = 2 case. The intervals started with almost perfect coverage for the

smallest sample size and then decreased coverage for the sample size scenario A3,

and improved coverage going from A4 to A8 (Table 3.5). In Figure 3.4 we see that

the profile likelihood interval had a much smaller interquartile range of the interval

widths throughout all sample sizes, hence causing undercoverage.

The last interval examined here is the approximate-integrated interval. The

coverage probabilities for the AI CI followed a similar pattern to the profile-likelihood

interval coverage properties. Notice that although both intervals underestimated

the desired confidence level of 95%, they both showed great improvement when the

sample size was increased.

The next simulation scenario presented in this chapter is the case of high

nondifferential misclassification and odds ratio parameter value of ψ = 2. The

coverage and boxplots interval width of the four competing confidence intervals are

shown in Figures 3.3 and Figure 3.4, respectively.

Here we combine the discussion for the Wald, profile likelihood, and approximate-

integrated likelihood intervals since they have almost identical coverage and follow

the same coverage pattern. The Wald interval started slightly underestimating; how-

ever, with an increase in sample size, it approached the desired 95% confidence level.

The profile-likelihood and the approximate-integrated likelihood intervals stayed

consistently on the 95% confidence level, making them great CI estimators for the

odds ratio parameter. In Figure 3.3 we see that these three intervals had very similar

confidence interval widths. The widths became gradually smaller with the increase

of sample size. The interval width boxplots were consistent with the conclusion that

these three intervals are excellent interval estimators of ψ.

Next, we consider the score interval. In Figure 3.3 we see that the coverage of

this interval became increasingly worse with the increase of the sample size. This

behavior might be explained by the width boxplots shown in Figure 3.4. We notice
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Figure 3.5: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with high nondifferential misclassi-
fication and odds ratio of ψ = 2

that the average width of the score interval was greater than the competing inter-

vals at the smaller sample size examples, thus explaining the fact that the interval

overestimates the coverage for greater sample sizes. However, the score coverage

was very different from the coverage of the competing intervals. This fact led us to

conclude that this particular interval should be further investigated.

The last scenario we examined was the case of high nondifferential misclassifi-

cation and odds ratio parameter ψ = 4. The results are shown in Figure 3.7 for the

coverage of the four intervals of interest and in Figure 3.8 for the confidence interval

widths.
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Figure 3.6: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with high nondifferential misclassification
and an odds ratio of ψ = 2
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Figure 3.7: Coverage probabilities of the Wald, score, profile, and approximate inte-
grated likelihood CIs for the case-control study with high nondifferential misclassi-
fication and odds ratio of ψ = 4

The first interval we observed was the Wald CI. Notice this was the only case

where the CI underestimated the coverage throughout all the possible sample sizes.

However, the Wald CI improved with an increase of sample size values. In Figure

3.8 we see that this observation was supported by the boxplots of the CI widths.

The Wald interval had consistently smaller average and median interval widths

in all of the sample size scenarios. Certainly, the variability decreased with the

increase in N ; nevertheless, the Wald interval was much smaller than the competing

interval widths, making it difficult to capture the true parameter value.
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Figure 3.8: Interval widths of the Wald, score, profile, and approximate integrated
likelihood CIs for the case-control study with high nondifferential misclassification
and an odds ratio of ψ = 4
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Next, we discuss the score interval. We see in Figure 3.7 that the score interval

was very conservative, and an increase of sample size did not affect the coverage

probability. Again, this fact was supported by the results shown in Figure 3.8. The

score interval had a much greater median width value than the rest of the intervals.

Thus, the score intervals were wider and allowed for easier capturing of the true odds

ratio parameter. An increase of the sample size decreased the variability. However,

an increase in sample size had almost no effect on the coverage of the interval.

The profile likelihood interval was an improvement compared to both the Wald

and the score intervals in terms of coverage. Nevertheless, it was also consistently

conservative, and an increase in sample size did not affect the coverage properties.

Last, we discuss the approximate-integrated CI. Notice in Figure 3.7 that

this interval had almost perfect coverage throughout all of the sample size scenarios.

With an increase of the sample size, we saw a decrease in variability and the coverage

levels very close to 95%, which was the exact confidence level we desired. Also, in

Figure 3.8 we see that the approximate-integrated intervals mean and median widths

shrunk steadily with an increase of the sample size. Hence, the AI CI is an excellent

estimator for the odds ratio under the parameter scenario.

3.7 Comments

In conclusions, the different scenarios and combinations of low and high mis-

classification, ψ = 2, 4, and the sample sizes from A1 to A8 showed very inconsistent

results. First, we considered the case of low nondifferential misclassification (recall

Table 3.4). The Wald interval was consistently overestimating and the profile like-

lihood and approximate-integrated likelihood intervals were underestimating. None

of the intervals showed great potential as an omnibus interval for estimating ψ.

Then, we considered the case of high nondifferential misclassification. Recall

that high probability of misclassification gives more information about the errors
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and, hence, leads to better estimates. The results presented in this section showed

that the approximate-integrated interval is an extremely good estimator and gives al-

most exact coverage. The competing intervals performed differently for the different

odds ratio values, and they cannot be ordered in terms of coverage properties.

The consistent conclusion, however, was that the score interval behaved ex-

tremely differently from the competing intervals but also behaved differently for

each of the combination scenarios. Hence, a further investigation on this interval is

warranted.
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CHAPTER FOUR

Simulation Study on Bioequivalence Tests Under Several Variability Conditions

4.1 Introduction

Pharmaceutical manufacturing has become one of the most important indus-

tries in the world. Bioequivalence (BE) studies play an integral role in the new drug

development. The United States Food and Drug Administration (FDA) defines bioe-

quivalence as “the absence of a significant difference in the rate and extent to which

the active ingredient or active moiety in pharmaceutical equivalents or pharmaceu-

tical alternatives becomes available at the site of drug action when administered at

the same molar dose under similar conditions in an appropriately designed study”,

FDA (2003). Also, Birkett (2003) has stated that “two pharmaceutical products are

bioequivalent if they are pharmaceutically equivalent and their bioavailabilities (rate

and extent of availability) after administration in the same molar dose are similar

to such a degree that their effects, with respect to both efficacy and safety, can be

expected to be essentially the same. Pharmaceutical equivalence implies the same

amount of the same active substance(s), in the same dosage form, for the same route

of administration and meeting the same or comparable standards.” Essentially, both

definitions state the same basic idea. We call products bioequivalent when they are

expected to perform the same and can be interchanged.

BE studies have been used in the pharmaceutical industry for several years.

The main reason is for the approval of new generic drugs. When a reference-listed

drug on the market is too expensive for the general population, companies often

attempt to develop a generic version that is more accessible. In such instances, the

FDA requests a BE study to determine the rate and extent of absorption of each
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therapeutic moiety for the test drug and reference drug. In addition, BE studies are

employed to test new formulations for old drug products or new dosages or inactive

ingredients.

BE studies are not dependent on the actual outcome of a clinical trial, but

only on the rate and extent of availability of the tested product, and are generally

conducted in healthy populations. Male and female adults are given the drug under

a standardized condition and are monitored throughout the trial. Most BE studies

are conducted on the highest strength of a product line. In some cases, however,

the BE study must be conducted on diseased patients for safety reasons, Davit,

Nwakama, Buehler, Conner, Haidar, Patel, Yang, Yu, and Woodcock (2009).

An interesting question that arises about BE testing is, “What happens with a

new product if it does not meet the BE criteria?” BE studies are performed in Phase

III of the drug development process, and usually by that time, the pharmaceutical

company has invested considerable time and resources into the new product. Hence,

the pharmaceutical company is interested in marketing the drug. Because BE studies

are generally conducted on a very small group of people, a common suggestion for a

solution to the failed BE case is to increase the number of subjects participating in

the study and to thereby narrow the CI used for testing BE, see Tothfalusi, Endrenyi,

Midha, Rawson, and Hubbard (2001).

In this paper we investigate whether or not the increase of sample size is

enough of an adjustment to alter the results of a failed BE test. Our hypothesis is

that several different types of variability affect the outcome of the BE test and, thus,

the increase in sample size is not always a solution. Here we extensively investigate

the variables that are known to impact the BE test. Such variables are within-

subject variability, assumed mean ratio difference between treatment and reference

products, and sample size. By design, the overall variability of a crossover design

is not affected by the between-subject variability. Nevertheless, we consider the
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between-subject variability in our paper because the BE studies are now conducted

on a wide range of people, Midha, Rawson, and Hubbard (1997).

This chapter is organized as follows. First, in Section 4.2 we present some

background information on the BE testing procedures and variables of interest. We

also present a derivation of the geometric mean ratio confidence interval as well

as a step-by-step approach for reaching a conclusion in a BE trial. In Section 4.3

we discuss the study design and the types of variability parameters we consider

in our investigation. We next explain the simulation set-up and the parameter

configurations we consider. We also discuss the statistical methods for deciding on

the BE test outcome and presenting the results. In Section 4.4 we give the results

and our conclusions on the effect of each variable of interest on the BE test outcome.

In Section 4.5 we give overall comments.

4.2 Background

Bioequivalence studies are designed to assess “the absence of a significant

difference” (FDA (2003)) between a well-established product and a new generic

or investigational test drug. We denote the reference product by R and the test

treatment or generic formulation by T .

4.2.1 BE Study Design

The type of BE design usually is related to the type of products tested. The two

main types of BE designs are parallel-group and crossover. In this paper we examine

the crossover design with two sequences and two periods because the FDA generally

asks applicants to conduct BE studies with pharmacokinetic endpoints using a single-

dose crossover design, see Haidar et al. (2008a). A graphic representation of the

crossover design is shown in Figure 4.1. Subjects are usually healthy and receive a

single dose of T or R products on separate occasions with random assignment to

the two possible sequences of product administration. Such design is preferred by
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the FDA because it is proven to be more sensitive to detecting potential differences

between products, FDA (2003). Recall that in a crossover design, subjects are

randomly assigned to receive a sequence of treatments that contain all the treatments

in the study, Chow and Wang (2001). Hence, in our case, subjects are assigned to

receive one of two sequences of treatments – TR or RT – where TR indicates that

the test drug is administered first in the first period and the reference drug is given

second in the second period and the reverse for the RT sequence. Because each

subject receives both treatments, we need to ensure that the drugs do not interact.

That goal is achieved by allowing an adequate duration washout period between drug

administrations such that the drug of interest cannot be detected in the subjects’

plasma. Based on the length of the washout period, BE studies implementing this

design can be fairly quick. Another advantage of this design is the use of fewer

subjects because each subject is given both drugs. Also, we can use each subject as

its own control, which allows us to compare the within-subject variability (WSV)

between the treatments.

Figure 4.1: Graphical representation of the 2× 2 crossover design.

4.2.2 Parameters of Interest

BE assessment depends on the bioavailability of the administered drugs in the

participants’ systems. Bioavailability is defined as “the rate and extent to which

the active ingredient or active moiety is absorbed from a drug product and becomes
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available at the site of action. For drug products that are not intended to be absorbed

into the bloodstream, bioavailability may be assessed by measurements intended to

reflect the rate and extent to which the active ingredient or active moiety becomes

available at the site of action,” FDA (2003). Hence, when we conduct BE studies,

we focus on two main pharmacokinetic parameters: the area under the curve (AUC)

and the maximum concentration (drug peak plasma concentration) (Cmax). Several

other parameters are also monitored, such as time to achieve maximum concentration

(tmax), half-time of maximum concentration (t-half), and elimination rate constant

(λ). However, the area under the curve, AUC, of the drug plasma concentration

versus time is the most important measure, see Davit et al. (2009).

Another point of interest when discussing the AUC and Cmax criteria is that

both variables have skewed distributions. Therefore, we assume that both have

a log-normal distribution. Thus, before statistical analysis, the FDA requires the

logarithmic transformation of the data for several reasons that are not only sta-

tistical, but also clinical and pharmacokinetic in nature. Rani and Pargal (2004)

have reviewed the explanation of this assumption. From a statistical standpoint,

because we are analyzing skewed biological data, the log-transformation is a natural

transformation to obtain approximately normal data. When the data is skewed, the

parameter variances tend to increase with the means. Thus, the log-transformation

makes the data nearly symmetric resulting in variances that are more independent

of the means. The second reason for the log-transformation is pharmacokinetic. The

assumption in the crossover design when we use ANOVA to obtain BE statistics is

that the data is a function of additive effects due to subject, period, treatment, and

error (Rani and Pargal (2004), Davit et al. (2009)). However, the pharmacokinetic

equation for AUC has a multiplicative character because AUC = (F ∗D)/(V ∗Ke),

where F is the fraction of drug absorbed, D is the given dose, V is the volume of

distribution, and Ke is the elimination rate constant. For this reason the FDA has
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concluded that if data is analyzed in its original scale, the additive assumption is

violated. Thus, because lnAUC = lnF + lnD− lnV − lnKe, the logarithmic trans-

formation allows one to use ANOVA to analyze the BE experiment. Notice that a

similar argument can be made for the Cmax parameter. Both AUC and Cmax must

pass the BE criteria for a test drug to be considered bioequivalent to its reference

product.

4.2.3 BE Criteria

The AUC and Cmax criterias are statistically analyzed using two one-sided

test procedures to determine whether the average values of these measures, esti-

mated after administration of the test and reference products, are comparable, see

Schuirmann (1987). The average values of the data are considered as their geomet-

ric mean ratio (GMR) between the test and reference products. However, because

both AUC and Cmax are assumed to be log-normally distributed, the GMR can be

computed as the difference of the log-transformed parameter values. According to

the FDA definition, bioequivalence is reached if a 90% confidence interval for the

differences of log means (or the interval of the GMR of test versus reference) lies

within preset BE limits, Davit et al. (2009). The traditional approach to BE testing

suggests that those limits are 80%− 125%. These limits are based on medical judg-

ment and FDA experience that a difference of 20% or less in drug exposure is not

clinically significant for most drugs, see Haidar et al. (2008a). The 80% limit can be

interpreted as occurring when the test product is no less than 80% of the reference,

whereas a 125% limit indicates that the reference product is no less than 80% of the

test product. This CI method for testing BE was first proposed by Westlake (1972).

4.2.4 Steps in Analyzing Bioequivalence Data

Based on the requirements for these parameters of interest and the study de-

sign, we next outline a fundamental approach to perform a BE test. First, we
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transform the AUC and Cmax data using the natural log-transformation. Second,

we calculate the differences of the transformed values for each parameter for each

subject. Usually, we subtract the reference values from the test values. Third, we

calculate the average value for the differences of each metric, i.e., we determine

(lnAUCT − lnAUCR)/number of subjects. Fourth, we calculate the standard de-

viations of the differences between the transformed data. Fifth, we determine the

appropriate value of the test statistic. Sixth, we calculate the upper and lower lim-

its of the mean difference for each AUC and Cmax. More explicitly, we let lnµ

and ln σ denote the mean difference and standard deviation of the log-transformed

data for either of the parameters. Then, the upper and lower bounds of the CI

are UB ≡ elnµ+tα,n−1 lnσ/
√
n and LB ≡ elnµ−tα,n−1 lnσ/

√
n, where n is the number of

subjects. The interval is appropriate for the AUC or Cmax. After calculating the CI

limits, we take the anti-log in order to return to the original scale and, thus, use the

preset bioequivalence limits (BEL) of .80 to 1.25. The last step is to decide whether

our test product is bioequivalent to the reference product. As mentioned before, the

result of the BE test depends on the interval UB and LB calculated in the previous

step. The requirement is that LB ≥ .8 and UB ≤ 1.25.

4.2.5 Sources of Variability

The outcome of a BE trial is highly affected by the variables used in calculating

the CI of the GMR. Recall that the upper and lower limits of the mean ratio interval

must lie within the BE limits. The CI bounds are UB ≡ elnµ+tα,n−1 lnσ/
√
n and

LB ≡ elnµ−tα,n−1 lnσ/
√
n, where n is the number of subjects, lnµ is the mean of the

log-transformed reference product, and lnσ is the standard deviation of the reference

product. Hence, we identify the quantities of interest in a BE study.

First, we consider the variability in each sample. The two main types of vari-

ability are within-subject (WSV) and between-subject variability (BSV). The WSV
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is assumed to have the greatest effect on the study outcome. WSV is a measure of

each individual’s response to the two drug treatments because each person serves as

its own control. A person reacts differently even when the same drug is administered

under the same conditions (Kytariolos, Karalis, Macheras, and Symillides (2006)).

The next source of variability we control for in this study is the BSV. This is a

measure of group homogeneity. In this paper we study the crossover design. Its

main advantage is that because the treatments are compared on the same subject,

the BSV does not contribute to the error variability and the calculation of the ap-

propriate CIs. Nevertheless, because we use a mixed group of participants in the

BE trials, the BSV will be affected. The effect of this variability source on a BE

crossover design has received little or no attention in the literature.

Another important variable in the BE test outcome is the number of people,

N , participating in the trial. BE studies are usually performed on a small group

of healthy subjects because pharmaceutical companies try to minimize cost, time,

and effort by using the smallest possible sample size. Employing a crossover design

helps minimize the required sample size because only about half of the parallel-group

study size are needed to achieve the desired power. It is a well-known fact that when

N is small, we have wider confidence intervals, which could possibly push the CI

bounds beyond the BE limits.

The last variable we investigate is the assumed tolerable geometric mean ratio

between the test and reference products. Here we attempt to answer the question

“How much of an initial difference between the two drugs should be allowed?” Cur-

rently, the FDA allows a 20% difference in the concentration of active ingredients in

the blood of one drug to the other, Davit et al. (2009). However, in this study we

examine the effect of changing this value on the BE test results.
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4.3 Study Design and Simulation Set-Up

The purpose of this study is to investigate the impact of the sample size, BSV,

WSV, and the mean ratio difference on the outcome of a Phase III BE study. We

performed an extensive Monte Carlo simulation study that compared each of the

parameters of interest and their effect on the BE trial outcome. The two criteria

of concern are the area under the curve (AUC) and the maximum concentration of

the drug (Cmax). However, because both AUC and Cmax are assumed to have a log-

normal distribution with only slightly different variability, we performed a simulation

for AUC using only SAS 9.2.

We simulated two-treatment, two-period, crossover bioequivalence studies as-

suming sample sizes of N = 10, 20, ..., 90, 100. Although, N = 100 is not a common

sample size for such a study, we examined it to assess the effect of large sample size

on the BE test. The underlying distribution was log-normal for the reference drug

product. By design of the crossover studies, the between-subject variability was not

calculated in the total variability, Midha et al. (1997). However, BE studies were

first performed on only male adults, Davit et al. (2009). Now BE studies have ex-

panded to a wider range of participants, and the difference between subjects should

no longer be disregarded. Although investigators put a great effort on obtaining a

homogenous sample of participants, homogeneity is nearly impossible, and there-

fore, the BSV should be considered as a source of variability that could affect the

BE test outcome. We controlled for the between-subject variability and used it to

calculate the log-normal sample standard deviation as SD = BSV ∗MEAN , where

the MEAN is the average parameter value for the reference formulation and was

set to 100 arbitrary units. The possible BSV values we considered were 10%, 20%,

... , 60%. Then, we assumed that the within-subject variability was known and

gave it different values, and we generated a second sample for the test formulation.

The possible percentages for WSV were 10%, 20%, ... , 60%. To achieve this result
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for the 10% WVS, we set the values of WVS in the simulation to range between

5% and 15%. Each subject was assumed to have its own WSV based on a uniform

distribution for the given range. We remark that the FDA defines drugs that have

higher than 30% WSV as highly variable drugs. Therefore, in our simulation we

addressed the possible problems arising when highly variable drugs are investigated.

Thus, the last parameter for which we controlled for was the allowed mean ratio

(MR) difference between the reference and test products. By the FDA regulations,

a mean ratio difference of 0.2 is acceptable, and the BE criteria is satisfied if the

drugs are equivalent, Davit et al. (2009). Thus, the possible MR values we consid-

ered were 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, and 20%, where each of the

values was assumed to be the same for all subjects in that particular scenario. Refer

to Table 4.1 for visual representation of the possible values of each of the parameters

of interest. Notice that we investigated each possible combination of values. Hence,

we had 8 × 10 × 6 × 6 = 2880 scenarios of parameter combinations. We generated

ten thousand simulated BE trials under each condition.

Last, we evaluated the simulated trials and declared bioequivalence if a 90%

confidence interval around the ratio of the estimated geometric means for the two

drug products fell between the 80% to 125% BE limits. The percentages of accepted

studies were recorded, and power curves were then plotted.

4.4 Results and Discussions

In this section we discuss the results of our Monte Carlo simulation. Here,

we divide the results into two groups based on the WSV. As mentioned earlier,

pharmaceutical products with higher than 30% WSV are considered to be highly

variable. Since different methods of analyzing such drugs exist, we present the

results in two groups – normal (WSV less than 30%) and highly variable (WSV

greater than 30%).
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Table 4.1: Sample sizes used in the simulation for BE trials

N BSV % WSV % MR % Diff

Sample 1 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 2.5
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 2 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 5.0
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 3 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 7.5
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 4 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 10.0
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 5 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 12.5
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 6 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 15.0
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 7 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 17.5
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

Sample 8 10, 20, 30, 40, 50, 10, 20, 30, 5−15, 15−25, 25−35 20.0
60, 70, 80, 90, 100 40, 50, 60 35−45, 45−55, 55−65

First, we considered the scenario of normal WSV and an assumed MR differ-

ence of 0.025. This MR difference indicates that the products do not initially have

any known differences (see Figure 4.2). The same colors indicate the same BSV, and

the same type of line indicates the same WSV. We had six possible values of BSV

and for this case only three possible values of WSV – 0.1, 0.2, 0.3. Notice that under

the same BSV values, the BE results were similar for all three values of WSV. For

small values of BSV (0.1 and 0.2), the difference in the WSV had a greater effect

than for higher values of BSV. We see here that when we had reasonable BSV (less

than 0.3), the sample size increase definitely improved the chances of passing at least

80% of the simulated samples under those conditions. Hence, if a pharmaceutical

company suggests an increase of the sample size of its trial in order to increase the

possibility of meeting the BE criteria, it would have to first ensure that it has a

normal-variability drug and the tested subjects are highly homogenous. The inter-
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Figure 4.2: Percent studies passing the BE criteria under normal WSV and an as-
sumed MR difference of 0.025

esting discovery here is that when the BSV went to values greater than 30%, the

increase in sample size made no difference in meeting the BE criteria. Again, this

fact emphasizes the importance of the similarity in the tested groups. In fact, notice

that under high BSV with an increase in N , we introduce so much variability that

it becomes even harder for the BE criterion to be met. Recall that this discussion

is only for the case with MR difference of 0.025.

Figure 4.3 shows the results for the next scenario, where we allowed for a larger

difference between the test and reference products. In this case, even when we had

a BSV of 0.2, the variability was so large that increasing the sample size made no

difference on the chances of meeting the BE requirements. Interestingly, under the

right conditions – low WSV, BSV of 0.1 – 0.6 of the simulated samples met the BE
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Figure 4.3: Percent studies passing the BE criteria under normal WSV and an as-
sumed MR difference of 0.05

criteria for sample sizes near 20. Hence, the increase in sample size to a larger value

of around 30 made no difference. A good drug product performed well even with

a small sample size. Nevertheless, the homogeneity of the tested group should be

controlled for with caution.

Next, consider the results shown on Figure 4.4. Here we allowed for more

assumed variability between the test and reference product – MR difference of 0.075.

A greater MR difference made it more difficult to detect equivalence, even with very

similar products. Also, the BE criterion was more sensitive to the other types of

variability. Notice in Figure 4.4 that the BE is met only under the conditions in the

previous example. However, the BE is met at a larger number of subjects. Hence,

by allowing for a greater difference between the two products, we must ensure that
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Figure 4.4: Percent studies passing the BE criteria under normal WSV and an as-
sumed MR difference of 0.075

we have a larger sample size to meet the BE criteria. The rest of the figures show

the results under the different MR values. However, because they are similar, they

are included in Appendix C.1. When we allowed for an MR difference greater than

0.125 (Figure 4.5), a very small and insignificant number of simulated samples met

the BE criteria. This result is somewhat consistent with the fact that these products

were most likely too different to be found equivalent.

Overall, we conclude that the BSV does impact the outcome of the BE test

and should be closely monitored. Also, if two drugs have a reasonable amount of

variability, then they would be declared bioequivalent even with the small sample

sizes. Hence, the currently used sample size of around 30 patients for these studies is

reasonable. Increasing the sample size when the products already have a substantial
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Figure 4.5: Percent studies passing the BE criteria under normal WSV and an as-
sumed MR difference of 0.125

amount of variability between them did not make a significant difference on the BE

outcome in the case of normal within-subject variability.

Next, we considered the scenario of highly variable drugs. Recall that these

drugs have a WSV greater than 30% (FDA (2003)). First, we considered the case

of almost no MR difference assumed, i.e. MR = 0.025, (see Figure 4.6). We remark

that significant differences occurred in the overall shape of the BE passing curves.

The curves with the same BSV and different WSV values had significant differences

whereas with a normal WSV, they were very close. Hence, in this scenario even a

small change in the WSV decreased the chance of meeting the BE criteria signifi-

cantly. For example, for the case when BDV was 0.2 and WSV was 0.4, we found

that about 30 subjects in the BE trial would be sufficient to meet the BE criteria

85



 

Figure 4.6: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.025

at least 80% of the time. However, if we chose a WSV value of 0.5, this number

jumped to 50 subjects, and with a WSV value of 0.6, no subjects reached declaration

of BE. Also, the fact that under some larger values of BSV, the increase of WSV and

sample size actually improved the chances of meeting the BE criteria. For instance,

consider the case of BSV of 0.4. When the subjects increased to 40 and above, the

studies with larger values of WSV (0.5 and 0.6) had an improved percent passing

rate. This is consistent with our expectations that an increased sample size would

minimize the effect of the WSV. Nevertheless, not enough improvement existed to

meet the BE criteria in at least 80% of the studies.

Next, the conclusions from Figure 4.7 are similar to those above except that

the larger assumed MR difference made any case with a BSV value of greater than 0.3
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Figure 4.7: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.05

almost impossible to pass the BE requirement. However, the results shown in Figure

4.5 are very interesting because the plots showed the significance of the BSV. Also,

this figure is a great example of our earlier discussion about the relationship between

the increase in WSV and sample size. Clearly, we see that in the case of a BSV of 0.1

and an MR difference of 0.125, and when we have a large WSV of 0.6, the increase in

sample size of up to 90 subjects for the BE trial improved the chances of meeting the

BE criteria. Again, this conclusion is somewhat consistent with the pharmaceutical

companies’ suggestion of increasing the sample size to yield BE. However, we remark

here that in the case of normal variability drugs, the increased sample size did not

make any difference. The plots with larger values of MR difference are included in

Appendix C.2 because they showed the same results and indicated only that when
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Figure 4.8: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.125

the MR difference is large, the two drugs cannot be BE under any scenario of sample

size, BSV, or WSV.

Overall, in the case of large variability drugs, we see that in fact an increased

sample size decreased the width of the confidence intervals and helped two highly

variable drugs meet the BE criteria. However, a large sample size is not always

attractive to pharmaceutical companies because of time and cost issues. Also, we

see that the BSV should be closely monitored and should not be ignored as a source

of variability that affects the outcome of any BE trial. Fortunately, this defect is

corrected when one uses the crossover design. Nevertheless, if not accounted for, it

could cause a trial to fail the BE test.
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4.5 Comments

In the previous section we discussed the results of our extensive simulation

trial designed to assess the sources of variabilities affecting the outcome of a BE

trial. The overall conclusions indicated that a significant difference existed between

the normal and highly variable drugs. In both scenarios we noticed that the BSV

is a parameter that pharmaceutical companies should monitor. Also, in the case of

normal WSV drugs, the increase of sample size did not make any difference on the

outcomes. Hence, when the products were “similar,” BE was detected even with the

small sample sizes. Again, this fact confirms the current regulatory requirements and

designs for these particular studies and the use of a small sample size of subjects.

However, we saw that in the case of highly variable drugs, the increase of sample

size improved the chances of the two drugs tested being declared BE.

This fact brings us to a different topic that is of future interest. Because the

FDA has considered the highly variable products as a separate group, many methods

have been suggested for analyzing such trials using different BE criteria. The most

common suggestion is using scaling of the regular interval endpoints to accommodate

for the extra variability and the increased interval width of the BE test. Haidar,

Makhlouf, Schuirmann, Hyslop, Davit, Conner, and Yu (2008c) have evaluated this

approach. Also, Kytariolos et al. (2006) have presented novel scaled BE limits for the

highly variable drugs. Haidar, Davit, Chen, Conner, Lee, Li, Lionberger, Makhlouf,

Patel, Schuirmann, and Yu (2008a) as well as Tothfalusi, Endrenyi, Midha, Rawson,

and Hubbard (2001) have given a good overall picture of the problems associated

with such products. Last but not least, Tothfalusi and Endrenyi (2003) have well

summarized several scaled approaches and how the CI limits should be adjusted for

the BE comparison of highly variable drugs. When dealing with a highly variable

drug, a company should very carefully consider the design and BE limits calculation

for its trial. We will investigate this topic in our future work.
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APPENDIX A

Derivations for Chapter Two

A.1 Maximum Likelihood Estimators for ψ and η

1.1.1 Tenenbein (1970)’s Re-parameterizations

To derive the MLEs, we re-parameterize so that

αk = πkSk + (1− πk)(1− Ck),

βk =
πkSk
αk

,

γk =
πk(1− Sk)

1− αk
,

1− βk =
(1− πk)(1− Ck)

αk
,

and

1− γk =
(1− πk)Ck

1− αk
,

where k = 0, 1 indicates the disease group of the participant, D = 0 or 1 for diseased

and non-diseased, respectively.

1.1.2 Likelihood and Log-Likelihood Functions in Terms of α, β, and γ

The likelihood function is

L ∝ [π1S1 + (1− π1)(1− C1)]
W11 [1− π1S1 − (1− π1)(1− C1)]

N1−W11

× [π0S0 + (1− π0)(1− C0)]
W10 [1− π0S0 − (1− π0)(1− C0)]

N0−W10

× (π1)
T1(1− π1)

M1−T1(S1)
V111(1− S1)

T1−V111

× (π0)
T0(1− π0)

M0−T0(S0)
V110(1− S0)

T0−V110

× (C1)
V001(1− C1)

(M1−T1)−V001

× (C0)
V000(1− C0)

(M0−T0)−V000 .

(A.1)
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For ease of derivation, we consider each part of the likelihood that comes from the

cases (D = 1) or controls (D = 0) separately. With substitution of the parameters

defined in Appendix A.1, Section (1.1.1), and some algebraic manipulation, we see

that the full likelihood is a product of binomials so that

L ∝ αW11+V111+V101
1 (1− α1)

W01+V011+V001βV111
1 (1− β1)

V101γV011
1 (1− γ1)

V001

× αW10+V110+V100
0 (1− α0)

W00+V010+V000βV110
0 (1− β0)

V100γV010
0 (1− γ0)

V000 .

Then, the log-likelihood is

` ∝ (W11 + V111 + V101) ln(α1) + (W01 + V011 + V001) ln(1− α1)

+ V111 ln(β1) + V101 ln(1− β1) + V011 ln(γ1) + V001 ln(1− γ1)

+ (W10 + V110 + V100) ln(α0) + (W00 + V010 + V000) ln(1− α0)

+ V110 ln(β0) + V100 ln(1− β0) + V010 ln(γ0) + V000 ln(1− γ0).

(A.2)

1.1.3 Partial First Derivatives and MLEs for α, β, and γ

To determine the MLEs for αk, βk, and γk (k = 0, 1), we first find the partial

first derivatives of the log-likelihood function defined in (A.2) with respect to each

of the parameters so that

∂ lnL

∂αk
=
W1k + V11k + V10k

αk
− W0k + V01k + V00k

1− αk
,

∂ lnL

∂βk
=
V11k

βk
− V10k

1− βk
,

∂ lnL

∂γk
=
V01k

γk
− V00k

1− γk
,

where k = 0 indicates non-diseased status and k = 1 indicates a diseased status.

Therefore, the MLEs are

α̂k =
V10k + V11k +W1k

Mk +Nk
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β̂k =
V11k

V10k + V11k

γ̂k =
V01k

V00k + V01k

.

Now, going back to our original notation and using the invariance property of the

MLEs to derive ψ̂, we get the results given in Section 2.3.

A.2 Observed Information Matrix

To calculate the confidence intervals of interest, we obtain the observed infor-

mation matrix. Recall from Chapter 2 that the matrix has the form

J(ψ,η) = −



∂2`
∂ψ2

∂2`
∂ψ∂π1

∂2`
∂ψ∂S0

∂2`
∂ψ∂S1

∂2`
∂ψ∂C0

∂2`
∂ψ∂C1

. ∂2`
∂π2

1

∂2`
∂π1∂S0

∂2`
∂π1∂S1

∂2`
∂π1∂C0

∂2`
∂π1∂C1

. . ∂2`
∂S2

0

∂2`
∂S0∂S1

∂2`
∂S0∂C0

∂2`
∂S0∂C1

. . . ∂2`
∂S2

1

∂2`
∂S1∂C0

∂2`
∂S1∂C1

. . . . ∂2`
∂C2

0

∂2`
∂C0∂C1

. . . . . ∂2`
∂C2

1


.

Now, we derive each term on the upper diagonal for the symmetric matrix

∂2`

∂ψ2
=

[
π1(π1 − 1)2(S0 + C0 − 1)W10 [2(C0 − 1)ψ(π1 − 1) + π1(S0 − C0 + 1)]

[(C0 − 1)ψ(π1 − 1) + π1S0]2

+
π1(π1 − 1)2(S0 + C0 − 1)W00 [2C0ψ(π1 − 1) + π1(S0 − C0 − 1)]

[C0ψ(π1 − 1) + π1(S0 − 1)]2

+
π1(M0 − T0) (2ψ(π1 − 1)− π1)

ψ2
+ (π1 − 1)2T0

]/
(ψ + π1 − ψπ1)

2 ,
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∂2`

∂ψ∂π1

=
π1(T0 −M0)

ψ(π1 − 1)(−ψ − π1 + ψπ1)
+

π1(T0 −M0)

ψ(π1 − 1)(ψ + π1 − ψπ1)2

+
T0(π1 − 1)(ψ − 1)

(ψ + π1 − ψπ1)2
+

T0

ψ + π1 − ψπ1

+
2(M0 − T0)π1(ψ − 1)

ψ(ψ + π1 − ψπ1)2
+

M0 − T0

ψ(ψ + π1 − ψπ1)

+
(−ψ + π1 + ψπ1)(S0 + C0 − 1)(N0 −W10)

(ψ + π1 − ψπ1)2(C0ψ(π1 − 1) + π1(S0 − 1))

− ψπ1(π1 − 1)(S0 + C0 − 1)2(N0 −W10)

(ψ + π1 − ψπ1)2(C0ψ(π1 − 1) + π1(S0 − 1))2

− ψπ1(π1 − 1)(S0 + C0 − 1)2W10

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)2

+
(ψ(π1 − 1) + π1)(S0 + C0 − 1)W10

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)
,

∂2`

∂ψ∂S0

=

[
C2

0ψ(1− π1) [2N0(ψ(π1 − 1)− π1S0) +W10(ψ + 2π1 − ψπ1)]

+ C3
0N0ψ

2(π1 − 1)2 + C0N0(ψ − ψπ1 + π1S0)
2 − π2

1(S0 − 1)2W10

− C0W10

[
ψ2(π1 − 1)2 − 2ψπ1(π1 − 1) + π2

1(2S0 − 1)
] ]

× π1(1− π1)

[C0ψ(π1 − 1) + π1(S0 − 1)]2[(C0 − 1)ψ(π1 − 1) + π1S0]2
,

∂2`

∂ψ∂S1

= 0,

∂2`

∂ψ∂C0

=

[
ψ(π1 − 1)(S0 + C0 − 1)(N0 −W10)

(C0ψ(π1 − 1) + π1(S0 − 1))2
+

ψ(π1 − 1)(S0 + C0 − 1)W10

((C0 − 1)ψ(π1 − 1) + π1S0)2

− W10

(C0 − 1)ψ(π1 − 1) + π1S0

+
−N0 +W10

C0ψ(π1 − 1) + π1(S0 − 1)

]
× (π1 − 1)π1

ψ(π1 − 1)− π1

,

∂2`

∂ψ∂C1

= 0,
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∂2`

∂π2
1

=
2(M0 − T0)(ψ − 1)

(π1 − 1)(ψ + π1 − ψπ1)2
+

ψT0

(−ψ − π1 + ψπ1)π2
1

+
ψ(ψ − 1)T

π1(ψ + π1 − ψπ1)2

− T1

π2
1

+
−M1 + T1

(π1 − 1)2
+

2ψ(ψ − 1)(S0 + C0 − 1)(N0 −W10)

(ψ + π1 − ψπ1)2(C0ψ(π1 − 1) + π1(S0 − 1))

+
T0 −M0

(π1 − 1)2(ψ + π1 − ψπ1)2
− (S1 + C1 − 1)2W11

(1 + C1(π1 − 1) + π1(S1 − 1))2

− ψ2(S0 + C0 − 1)2(N0 −W10)

(ψ + π1 − ψπ1)2(C0ψ(π1 − 1) + π1(S0 − 1))2

− ψ2(S0 + C0 − 1)2W10

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)2

+
2ψ(ψ − 1)(S0 + C0 − 1)W10

(ψ + π1 − ψπ1)2((C0 − 1)ψ(π1 − 1) + π1S0)

− (S1 + C1 − 1)2(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2
,

∂2`

∂π1∂S0

=

[
C2

0ψ(1− π1) [2N0(ψ(π1 − 1)− π1S0) +W10(ψ + 2π1 − ψπ1)]

+ C3
0N0ψ

2(π1 − 1)2 − π2
1(S0 − 1)2W10 + C0N0(ψ − ψπ1 + π1S0)

2

− C0W10

[
ψ2(π1 − 1)2 − 2ψπ1(π1 − 1) + π2

1(2S0 − 1)
] ]

× −ψ
[C0ψ(π1 − 1) + π1(S0 − 1)]2[(C0 − 1)ψ(π1 − 1) + π1S0]2

,

∂2`

∂π1∂S1

=

[
C2

1(π1 − 1)[2N1(1 + π1(S1 − 1))−W11(π1 + 1)]

+ C1[N1(1 + π1(S1 − 1))2 +W11(−1− 2π2
1(S1 − 1))]

+ C3
1N1(π1 − 1)2 − π2

1(S1 − 1)2W11

]
× −1

[C1(π1 − 1) + π1(S1 − 1)]2[1 + C1(π1 − 1) + π1(S1 − 1)]2
,
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∂2`

∂π1∂C0

=

[
2W10ψπ1(π1 − 1)(S0 − 1)S0 −W10π

2
1(S0 − 1)S0

+W10ψ
2(π1 − 1)2

[
1 + C2

0 + 2C0(S0 − 1)− S0

]
+N0(S0 − 1)[(C0 − 1)ψ(π1 − 1) + π1S0]

2

]
× ψ

[C0ψ(π1 − 1) + π1(S0 − 1)]2[(C0 − 1)ψ(π1 − 1) + π1S0]2
,

∂2`

∂π1∂C1

=
W11

1 + C1(π1 − 1) + π1(S1 − 1)
− (π1 − 1)(S1 + C1 − 1)(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2

+
N1 −W11

C1(π1 − 1) + π1(S1 − 1)
− (π1 − 1)(S1 + C1 − 1)W11

(1 + C1(π1 − 1) + π1(S1 − 1))2
,

∂2`

∂S2
0

=
V110 − T0

(S0 − 1)2
− V110

S2
0

− π2
1(N0 −W10)

(C0ψ(π1 − 1) + π1(S0 − 1))2

− π2
1W10

((C0 − 1)ψ(π1 − 1) + π1S0)2
,

∂2`

∂S0∂S1

= 0,

∂2`

∂S0∂C0

=

[
N0 −W10

(C0ψ(π1 − 1) + π1(S0 − 1))2
+

W10

((C0 − 1)ψ(π1 − 1) + π1S0)2

]
× ψπ1(π1 − 1)(ψ(π1 − 1)− π1)

ψ + π1 − ψπ1

,

∂2`

∂S0∂C1

= 0,

∂2`

∂S2
1

= −V111

S2
1

+
V111 − T1

(S1 − 1)2
− π2

1(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2

− π2
1W11

(1 + C1(π1 − 1) + π1(S1 − 1))2
,
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∂2`

∂S1∂C0

= 0,

∂2`

∂S1∂C1

= − W11π1(π1 − 1)

(1 + C1(π1 − 1) + π1(S1 − 1))2
+

(−N1 +W11)π1(π1 − 1)

(C1(π1 − 1) + π1(S1 − 1))2
,

∂2`

∂C2
0

= −V000

C2
0

+
V000 −M0 + T0

(C0 − 1)2
− ψ2(π1 − 1)2(N0 −W10)

(C0ψ(π1 − 1) + π1(S0 − 1))2

− ψ2(π1 − 1)2W10

((C0 − 1)ψ(π1 − 1) + π1S0)2
,

∂2`

∂C0∂C1

= 0,

and

∂2`

∂C2
1

= −V001

C2
1

+
V001 −M1 + T1

(C1 − 1)2
− (π1 − 1)2(N1 −W11)

(C1(π1 − 1) + π1(S1 − 1))2

− (π1 − 1)2W11

(1 + C1(π1 − 1) + π1(S1 − 1))2
,

where the reminder of the terms under the diagonal are found by the symmetry

property of the information matrix.
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APPENDIX B

Derivations for Chapter Three

B.1 Restricted Maximum Likelihood Estimation

First, let LU be the full likelihood function. Then,

LU =

 U111 + U011

U111

SU111(1− S)U011

 U110 + U010

U110

SU110(1− S)U010

×

 N1

U111 + U011

 πU111+U011
1 (1− π1)

N1−(U111+U011)

×

 N0

U110 + U010

 πU110+U010
0 (1− π0)

N0−(U110+U010)

×

 N1 − (U111 + U011)

W01 − U011

CW01−U011(1− C)W11−U111

×

 N0 − (U110 + U010)

W00 − U010

CW00−U010(1− C)W10−U110

×

 T1

V111

SV111(1− S)T1−V111

 T0

V110

SV110(1− S)T0−V110

×

 M1

T1

 πT1
1 (1− π1)

M1−T1

 M0

T0

 πT0
0 (1− π0)

M0−T0

×

 M1 − T1

V001

CV001(1− C)(M1−T1)−V001

×

 M0 − T0

V000

CV000(1− C)(M0−T0)−V000 ,
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where the function is in terms of the complete observed and unobserved data, and

the last four lines come from the complete data. Then, we rewrite this equation with

the intention of grouping for each of the latent variables, Uijk, so that

LU =

 N1

U111 + U011


 U111 + U011

U111


 N1 − (U111 + U011)

W01 − U011


×

 N0

U110 + U010


 U110 + U010

U110


 N0 − (U110 + U010)

W00 − U010


× (π1S)U111 [π1(1− S)]U011 [(1− π1)(1− C)]W11−U111 [(1− π1)C]W01−U011

× (π0S)U110 [π0(1− S)]U010 [(1− π0)(1− C)]W10−U110 [(1− π0)C]W00−U010

×

 T1

V111

SV111(1− S)T1−V111

 T0

V110

SV110(1− S)T0−V110

×

 M1

T1

 πT1
1 (1− π1)

M1−T1

 M0

T0

 πT0
0 (1− π0)

M0−T0

×

 M1 − T1

V001

CV001(1− C)(M1−T1)−V001

×

 M0 − T0

V000

CV000(1− C)(M0−T0)−V000 ,

where π0 = π1

π1−π1ψ+ψ
. Define the mixture of binomial distributions for the complete

data as f1(T0), f2(T1), f3(V111|T1), f4(V110|T0), f5(V001|T1), and f6(V000|T0). Then,

after several adjustments and regrouping as described by Joseph et al. (1995), we

get
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LU ∝
W11!

U111!(W11 − U111)!

W10!

U110!(W10 − U110)!

W01!

U011!(W01 − U011)!

W00!

U010!(W00 − U010)!

×
[

π1S

π1S + (1− π1)(1− C)

]U111
[

(1− π1)(1− C)

π1S + (1− π1)(1− C)

]W11−U111

×
[

π0S

π0S + (1− π0)(1− C)

]U110
[

(1− π0)(1− C)

π0S + (1− π0)(1− C)

]W10−U110

×
[

π1(1− S)

π1(1− S) + (1− π1)C

]U011
[

(1− π1)C

π1(1− S) + (1− π1)C

]W01−U011

×
[

π0(1− S)

π0(1− S) + (1− π0)C

]U010
[

(1− π0)C

π0(1− S) + (1− π0)C

]W00−U010

× f1(T0)f2(T1)f3(V111|T1)f4(V110|T0)f5(V001|T1)f6(V000|T0).

Substituting for π0 = π1

π1−π1ψ+ψ
gives us

LU ∝
W11!

U111!(W11 − U111)!

W10!

U110!(W10 − U110)!

W01!

U011!(W01 − U011)!

W00!

U010!(W00 − U010)!

×
[

π1S

π1S + (1− π1)(1− C)

]U111
[

(1− π1)(1− C)

π1S + (1− π1)(1− C)

]W11−U111

×
[

π1S

π1S + ψ(1− π1)(1− C)

]U110
[

ψ(1− π1)(1− C)

π1S + ψ(1− π1)(1− C)

]W10−U110

×
[

π1(1− S)

π1(1− S) + (1− π1)C

]U011
[

(1− π1)C

π1(1− S) + (1− π1)C

]W01−U011

×
[

π1(1− S)

π1(1− S) + ψ(1− π1)C

]U010
[

ψ(1− π1)C

π1(1− S) + ψ(1− π1)C

]W00−U010

× f1(T0)f2(T1)f3(V111|T1)f4(V110|T0)f5(V001|T1)f6(V000|T0).

Clearly, the conditional distributions of the latent variables are binomial with pa-

rameters as described in Chapter 3, Section 3.4.
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B.2 Observed Information Matrix

To calculate the confidence intervals of interest, we obtain the observed infor-

mation matrix. Recall from Chapter 3 that the matrix has the form

J(ψ,η) = −



∂2`
∂ψ2

∂2`
∂ψ∂π1

∂2`
∂ψ∂S

∂2`
∂ψ∂C

. ∂2`
∂π2

1

∂2`
∂π1∂S

∂2`
∂π1∂C

. . ∂2`
∂S2

∂2`
∂S∂C

. . . ∂2`
∂C2


.

Now, we derive each term on the upper diagonal for the symmetric J(ψ,η) matrix.

Hence,

∂2`

∂ψ2
=

(−1 + π1)π1(V000 + V100)

ψ(π1 + ψ − π1ψ)2
− π1(V000 + V100)

ψ2(π1 + ψ − π1ψ)
+

(−1 + π1)
2(V010 + V110)

(π1 + ψ − π1ψ)2

+
C(−1 + π1)

2π1(−1 + C + S)W00

(π1(−1 + ψ)− ψ)(Cψ − π1(−1 + Cψ + S))2

+
(−1 + π1)

2π1(−1 + C + S)W00

(π1 + ψ − π1ψ)2(−Cψ + π1(−1 + Cψ + S))

+
(−1 + C)(−1 + π1)

2π1(−1 + C + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)2

+
(−1 + π1)

2π1(−1 + C + S)W10

(π1 + ψ − π1ψ)2((−1 + C)(−1 + π1)ψ + π1S)
,
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∂2`

∂ψ∂π1

=
π1(−1 + ψ)(V000 + V100)

ψ(π1 + ψ − π1ψ)2
+

V000 + V100

ψ(π1 + ψ − π1ψ)

+
(−1 + π1)(−1 + ψ)(V010 + V110)

(π1 + ψ − π1ψ)2
+

V010 + V110

π1 + ψ − π1ψ

+
(−1 + π1)π1(−1 + C + S)(−1 + Cψ + S)W00

(π1(−1 + ψ)− ψ)(Cψ − π1(−1 + Cψ + S))2

− (−1 + π1)(−1 + C + S)W00

(π1(−1 + ψ)− ψ)(−Cψ + π1(−1 + Cψ + S))

− π1(−1 + C + S)W00

(π1(−1 + ψ)− ψ)(−Cψ + π1(−1 + Cψ + S))

+
(−1 + π1)π1(−1 + ψ)(−1 + C + S)W00

(π1 + ψ − π1ψ)2(−Cψ + π1(−1 + Cψ + S))

+
(−1 + π1)π1(−1 + C + S)((−1 + C)ψ + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)2

− (−1 + π1)(−1 + C + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)

− π1(−1 + C + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)

+
(−1 + π1)π1(−1 + ψ)(−1 + C + S)W10

(π1 + ψ − π1ψ)2((−1 + C)(−1 + π1)ψ + π1S)
,

∂2`

∂ψ∂S
=

(−1 + π1)π1

π1(−1 + ψ)ψ

[
W00

Cψ − π1(−1 + Cψ + S)
− W10

(−1 + C)(−1 + π1)ψ + π1S

+ π1(−1 + C + S)

(
W00

(Cψ − π1(−1 + Cψ + S))2

+
W10

((−1 + C)(−1 + π1)ψ + π1S)2

) ]
,

∂2`

∂ψ∂C
=

1

π1(−1 + ψ)− ψ
(−1 + π1)π1

×
[

(−1 + π1)ψ(−1 + C + S)W00

(Cψ − π1(−1 + Cψ + S))2
+

W00

Cψ − π1(−1 + Cψ + S)

+
(−1 + π1)ψ(−1 + C + S)W10

((−1 + C)(−1 + π1)ψ + π1S)2
− W10

(−1 + C)(−1 + π1)ψ + π1S

]
,
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∂2`

∂π2
1

=
V000 + V100

(−1 + π1)2(π1(−1 + ψ)− ψ)
+

(−1 + ψ)(V000 + V100)

(−1 + π1)(π1 + ψ − π1ψ)2

− V001 + V101

(−1 + π1)2
+

(−1 + ψ)ψ(V010 + V110)

π1(π1 + ψ − π1ψ)2
− ψ(V010 + V110)

π2
1(π1 + ψ − π1ψ)

− V011 + V111

π2
1

+
ψ(−1 + C + S)(−1 + Cψ + S)W00

(π1(−1 + ψ)− ψ)(Cψ − π1(−1 + Cψ + S))2

+
(−1 + ψ)ψ(−1 + C + S)W00

(π1 + ψ − π1ψ)2(−Cψ + π1(−1 + Cψ + S))
− (−1 + C + S)2W01

(C(−1 + π1) + π1(−1 + S))2

+
ψ(−1 + C + S)((−1 + C)ψ + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)2

+
(−1 + ψ)ψ(−1 + C + S)W10

(π1 + ψ − π1ψ)2((−1 + C)(−1 + π1)ψ + π1S)

− (−1 + C + S)2W11

(1 + C(−1 + π1) + π1(−1 + S))2
,

∂2`

∂π1∂S
=

π1ψ(−1 + C + S)W00

(π1(−1 + ψ)− ψ)(Cψ − π1(−1 + Cψ + S))2

− ψW00

(π1(−1 + ψ)− ψ)(−Cψ + π1(−1 + Cψ + S))

+
W01

C(−1 + π1) + π1(−1 + S)
− π1(−1 + C + S)W01

(C(−1 + π1) + π1(−1 + S))2

+
π1ψ(−1 + C + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)2

− ψW10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)

+
W11

1 + C(−1 + π1) + π1(−1 + S)
− π1(−1 + C + S)W11

(1 + C(−1 + π1) + π1(−1 + S))2
,
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∂2`

∂π1∂C
=

(−1 + π1)ψ
2(−1 + C + S)W00

(π1(−1 + ψ)− ψ)(Cψ − π1(−1 + Cψ + S))2

− ψW00

(π1(−1 + ψ)− ψ)(−Cψ + π1(−1 + Cψ + S))

+
W01

C(−1 + π1) + π1(−1 + S)
− (−1 + π1)(−1 + C + S)W01

(C(−1 + π1) + π1(−1 + S))2

+
(−1 + π1)ψ

2(−1 + C + S)W10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)2

− ψW10

(π1(−1 + ψ)− ψ)((−1 + C)(−1 + π1)ψ + π1S)

+
W11

1 + C(−1 + π1) + π1(−1 + S)
− (−1 + π1)(−1 + C + S)W11

(1 + C(−1 + π1) + π1(−1 + S))2
,

∂2`

∂S2
= −V010 + V011

(−1 + S)2
− V110 + V111

S2

− π2
1W00

(Cψ − π1(−1 + Cψ + S))2
− π2

1W01

(C(−1 + π1) + π1(−1 + S))2

− π2
1W10

((−1 + C)(−1 + π1)ψ + π1S)2
− π2

1W11

(1 + C(−1 + π1) + π1(−1 + S))2
,

∂2`

∂S∂C
= (−1 + π1)π1

(
− ψW00

(Cψ − π1(−1 + Cψ + S))2
− W01

(C(−1 + π1) + π1(−1 + S))2

− ψW10

((−1 + C)(−1 + π1)ψ + π1S)2
− W11

(1 + C(−1 + π1) + π1(−1 + S))2

)
,

and

∂2`

∂C2
= −V000 + V001

C2
− V100 + V101

(−1 + C)2
− (−1 + π1)

2ψ2W00

(Cψ − π1(−1 + Cψ + S))2

− (−1 + π1)
2W01

(C(−1 + π1) + π1(−1 + S))2
− (−1 + π1)

2ψ2W10

((−1 + C)(−1 + π1)ψ + π1S)2

− (−1 + π1)
2W11

(1 + C(−1 + π1) + π1(−1 + S))2
.
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APPENDIX C

Additional Plots For Chapter Four

C.1 Additional Plots with Assumed Normal Within-subject Variability

In this section we include the plots that were not discussed in the results section of

Chapter Four in the case of normal variability case.

 

Figure C.1: Percent studies passing the BE criteria under normal WSV and an
assumed MR difference of 0.10
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Figure C.2: Percent studies passing the BE criteria under normal WSV and an
assumed MR difference of 0.15
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Figure C.3: Percent studies passing the BE criteria under normal WSV and an
assumed MR difference of 0.175
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Figure C.4: Percent studies passing the BE criteria under normal WSV and an
assumed MR difference of 0.20
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C.2 Additional Plots with Assumed High Within-subject Variability

In this section we include the plots that were not discussed in the results

section of Chapter Four in the case of highly variable drugs.

 

Figure C.5: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.075
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Figure C.6: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.10
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Figure C.7: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.15
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Figure C.8: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 1.075
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Figure C.9: Percent studies passing the BE criteria under high WSV and an assumed
MR difference of 0.20
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