
 

 

 

 

ABSTRACT 

Using Remote Sensing to Assess Potential Impacts of Hurricanes on Mosquito Habitat 

Formation: Investigating the Mechanisms for Interrelationship between Climate and the 

Incidence of Vector-Borne Diseases 

 

Zainab R. Naqvi, M.S. 

Mentor:  Joseph D. White, Ph.D. 

 

 

 The present study examined the relationship between climate and the incidence of 

vector-borne disease.  The climatological phenomenon El Niño Southern Oscillation 

(ENSO) was found to be significant in predicting the frequency and intensity of hurricane 

seasons for the Atlantic Ocean and the Yucatan Peninsula between 1985 to 2007.  

Satellite analysis for hurricanes that impacted the Yucatan Peninsula, specifically the 

country of Belize, between 1995 and 2007 determined changes in the Normalized 

Difference Vegetation Index (NDVI), mid-infrared range (MIR), and thermal infrared 

range (TIR) immediately after and one month after the hurricanes.  Regression analyses 

found that correlations between reported cases of malaria and dengue fever for Belize and 

changes in the NDVI, MIR, and TIR existed between immediate and persistent impacts 

and disease incidence.   
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CHAPTER ONE 

 

Introduction 

 

 

 Climate variability has had a demonstrated impact on infectious diseases (Epstein 

2002, 374).  ENSO-driven climate changes have been linked to increased disease 

transmission (Epstein 2001, 758; Pascual et al. 2000, 1766; Epstein 1999, 347; Checkley 

et al. 1997, 442).  Mosquitoes, as poikilotherms, are very sensitive to temperature 

changes, with warming events causing increases in reproduction and the number of blood 

meals taken, a longer reproductive season, and a shorter maturation period for pathogens 

(Epstein 2005, 1435). 

 Extremes in climactic condition can have effects on vector abundance in different 

ways, which can increase the risk of outbreaks of various infectious diseases (Epstein 

2002, 373-74).  Drought conditions can suppress mosquito predators (Bouma and Dye 

1997, 1772).  On the other hand, heavy rains can increase food supplies, which can 

promote the likelihood of good conditions for mosquito breeding and propagation 

(Linthicum et al. 1999, 397).  There is a higher risk of malaria due to elevated Anopheles 

spp. populations from the flooding of immature habitats following periods of heavy 

rainfall (Gabaldon 1949, 113).  Various studies of the transmission of malaria in highland 

areas have suggested that temperature is a principal limiting factor in the epidemiology of 

malaria (Haworth 1988, 1379-420; Macdonald 1957).  Higher temperatures can possibly 

assist malaria transmission by shortening the extrinsic cycle of the Plasmodium in the 

vector (Pulwarty 1994).  
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 Habitat specificity of Anopheles spp. and Aedes spp. mosquitoes allow for 

estimation and prediction of where outbreaks are likely to occur.  For example, the 

southern and western portions of the tropical country of Belize have more broadleaf hill 

forests, agricultural land, and wetland vegetation types, and have consistently higher rates 

of malaria than northern urbanized areas (Hakre et al. 2004).  Anthropogenic changes 

through the conversion of forest land to agricultural land has also had an impact on 

mosquito populations, as agricultural runoff has contributed to providing habitats for 

mosquito vectors (Grieco et al. 2006, 615).  By studying the dynamics of spatial 

heterogeneity, interactions among heterogeneous landscapes, and effects of these 

interactions on biotic processes, we can better understand mosquito dispersion and habitat 

prevalence (Kitron 1998, 435-38).  Changes in land-use maps over time can provide 

information about the developmental changes in the landscape which could be 

contributing factors to disease.  

 The goal of this study was to determine whether climate was the major driver of 

vector-borne diseases, specifically malaria and dengue fever, within the country of Belize 

since 1985.  In order to determine these relationships, the study was separated into 

different questions, each addressing an integral part of the larger picture.  Specifically, 

the following general questions are addressed by the hypotheses presented within this 

work: 

What was the impact of climate on hurricane activity in the Atlantic?   

What measurable impacts did hurricane activity have on land cover and water cover 

within the country of Belize?   
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How would land cover changes likely affect vectors, and the diseases that they 

vector?   

What confounding factors contribute to variations in vector-borne disease occurrence 

that are not explained by climate changes alone? 

 In order to achieve these goals, I will target a few objectives for each component 

of the study.  The first objective is to understand the influence that the El Niño Southern 

Oscillation exerts on the Atlantic hurricane season, in order to determine the role that 

large-scale climate shifts may have on hurricane activity.  The next objective is to 

determine what measurable impacts hurricane activity has on land and vegetative cover, 

and water deposition, within the country of Belize.  The third objective is to determine 

how vegetation cover changes, and predicted areas of water inundation, correspond to the 

incidence of vector-borne diseases, specifically malaria and dengue fever, in Belize.   

 

Belize 

 

 Belize is located in Central America, between Mexico and Guatemala adjacent to 

the Caribbean Sea and covers 22,966 square kilometers (15˚45'-18˚30'N and 87˚30'-

89˚15'W on UTM Zone 16; Central Statistics Office 2004).  The country is divided into 

six political districts: Corozal, Orange Walk, Belize, Cayo, Stann Creek, and Toledo (Fig. 

1; Statistical Institute of Belize 2008).  The topography is described as mostly flat, with 

swampy coastal plains and the Maya Mountain foothills in the south that extend 

westward into Guatemala.   
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Figure 1. District-based map of Belize 

 

 

 The climate of Belize is tropical, with wet and dry seasons (Land and Surveys 

Department 2006).  Average annual rainfall is variable, ranging from around 1,700 mm to 

over 2,100 mm (Table 1).   

 

Table 1. Average annual rainfall in Belize, 2001-2005 

 

Year Average Annual Rainfall (mm) 

2001 1,994 

2002 1,761 

2003 1,692 

2004 1,754 

2005 2,134 

 Source: National Meteorological Services, 2006 

 

 

Mean annual temperature is moderately variable, expected for a tropical climate, with 

annual minimum and maximum temperatures of 22˚C and 31˚C, respectively (Table 2).  

 The country is a mixture of different types of land cover and land uses (Fig. 2).  

Ecosystems described for Belize include urban areas, agricultural lands, wetlands, 
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savannahs, and forested wooded areas, which includes broadleaf forests, pine forests, and 

mangrove and littoral forests that are represented in all political districts.   

 

Table 2. Mean annual temperature in Belize, 1970-2003 

Year Max Min Average 

1970-1997 30˚C 23˚C 27˚C 

1998 31˚C 24˚C 27˚C 

1999 30˚C 22˚C 26˚C 

2000 30˚C 23˚C 27˚C 

2001 30˚C 23˚C 27˚C 

2002 31˚C 23˚C 27˚C 

2003 31˚C 23˚C 27˚C 

   Source: Meteorology Department, 2006 

 

 

The most current assessments of land cover are based on measurements by the Land 

Information Center (LIC) of Belize.  In 2005, the majority of the land fell under 

“allocated lands,” which includes lands devoted to agriculture, followed by “protected 

land,” including federally-controlled areas (Table 3). 

 

Table 3. Land use in Belize 1995 and 2005 

 

Type of land 1995 

(km) 

2005 

(km) 

Protected land   8,013   7,998 

Allocated land 11,093 12,546 

Urban land        38      130 

Unallocated land   3,821   2,291 

Total land area  22,965 22,965 

 Source: Land and Surveys Department, 2006 

 

 

 A study conducted by Hakre et al. in 2004 found that areas with highest malaria 

rates were those with a higher total area of agricultural land, broadleaf forests, and 

seasonally waterlogged fire-induced shrubland, while areas with lower malaria rates were 

those with higher total area of mangrove forests, needle-leaf forests, seasonal swamp 
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forests, tall herb wetland communities, urban development, and water.  Southern Belize 

also has more broadleaf hill forests, extensive river systems, and gets more annual 

precipitation than northern Belize.  The northern half of Belize is mainly flat, low-lying 

coastal plains and a low plateau.  In the south, there is a narrow coastal plain, with the 

Maya Mountains and a tall plateau in the west (Waddell 1961, 57-58).  

 

 

 
 

Figure 2. Land use and land cover map for mainland Belize, 1989/1992 

 

 

 Previous land cover assessments by the LIC also provide a history of the trend of 

land cover changes in the country.  The most evident trend is the increase in lands used 

for urban development with a concomitant decrease in lands that are considered 

“protected.”  Changes in land cover type have been shown to have an impact on the 

incidence of vector-borne diseases (Chaves et al. 2008; Lindblade et al. 2000, 272).  
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Deforestation of land and conversion to agriculture, and increased population migrations 

to these areas all play a role in increasing the incidence of mosquito-borne diseases 

(Guerra et al. 2006, 189-90).  

 There is increased pressure on natural resources in Belize.  Changes in land cover 

types in Belize are associated with recent increased population size, increased urban 

development, increased conversion to agricultural lands, and increased ecotourism 

promotion.  The increase in population size was the result of both a high population 

growth rate and increased immigration into the country from Mexico and Guatemala.  As 

a result of increasing populations, there is a need for urban development to accommodate 

the growing urban population.  Increases in agricultural lands (allocated lands) also 

reflect the increased population, as a result of increased demand for agricultural products.  

Rural areas also have a high degree of poverty, and poor rural communities also engage 

in farming and exploitation of forest resources to a greater extent than urban areas.  The 

result is an increase in pressure on resources, which means more land clearing and 

changes in land use.  However, the growth of ecotourism as an industry has had a hand in 

promoting the protection of natural reserves and other protected natural areas, which is 

reflected in the limited loss of protected areas over time.   

 Current government regulations and policies in place have attempted to limit 

environmental degradation and loss of biodiversity.  As of 2003, twenty-two Acts were in 

place with multiple regulations directly relating to impacts on biological diversity 

(National Policy Development Committee 2003, 14).  However, continued environmental 

degradation has been the result of lack of enforcement of legislation.  Another problem is 
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the overlap of legal mandates between different agencies over managing the same 

resource, resulting in poor coordination and implementation of existing legislation.   

 Three important districts to consider within the country of Belize are Belize, 

Stann Creek, and Toledo.  These three districts are all coastal districts, and therefore 

likely to demonstrate physical changes from hurricane impacts.  They also all have 

varying degrees of urban development (Table 4).  Belize District has the highest relative 

urban population, with cities like Belize City and San Pedro.  Stann Creek District has 

recently increased development, with developing towns such as Placencia and Dangriga, 

although it has not yet reached the level of Belize District.  Toledo District, comprised of 

small towns and villages such as Punta Gorda, has had very little urban development, 

with most of its population living rurally.   

 

Table 4. Population of Belize by district separated by urban and rural areas in 2000 

 

Population type Population Percent 

Country   

Urban 108,602 46.79 

Rural 123,509 53.21 

Total 232,111    100 

Belize    

Urban   49,392 78.32 

Rural   13,669 21.68 

Total   63,061    100 

Stann Creek    

Urban    8,424 34.46 

Rural  16,019 65.54 

Total   24,443    100 

Toledo    

Urban   4,266 18.45 

Rural  18,851 81.55 

Total  23,117    100 
 Source: Statistical Institute of Belize, 2008 
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Hurricanes 

 

 Hurricanes occur most frequently around the equator during the late summer and 

early fall.  In the North Atlantic and the Caribbean, the official hurricane season is from 

June 1 to November 30.  Hurricanes typically form under three conditions: a sea surface 

temperature at or above 26˚C, high humidity, and high wind speeds (Hood 1998, 19-21).  

Low pressure drives wind speeds to accelerate, increasing the size and power of the 

hurricane (Treaster 2007, 17-19).  Hurricane categories are typically based on the Saffir-

Simpson scale.  Over the past ten to fifteen years, catastrophic hurricanes have affected 

Belize, particularly in 1998, 2000, 2001, and 2005.  For this study, years in which 

hurricanes made landfall in Belize were the focal point of study and analysis (Table 5). 

 

Table 5. Belize Hurricane History 

Year Name Dates of persistence 

1995 Opal 

Roxanne 

Sept. 27-Oct. 6 

Oct. 7-21 

1996 Dolly Aug 19-25 

1998 Mitch Oct. 22-Nov. 9 

1999 Tropical Storm Katrina Oct. 28-Nov 1 

2000 Gordon 

Keith 

Sept. 14-21 

Sept. 28-Oct. 6 

2001 Chantal 

Iris 

Aug 14-22 

Oct. 4-9 

2003 Tropical Storm Bill 

Claudette 

Tropical Storm Larry 

June 28-July 3 

July 7-17 

Sept. 27-Oct 7 

2005 Cindy 

Emily 

Stan 

Wilma 

July 3-11 

July 11-21 

Oct. 1-5 

Oct. 15-26 

2007 Dean 

Felix 

Aug. 13-23 

Aug. 31-Sept. 6 
 Source: Unisys Weather, 2007 
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 Short-term impacts of hurricanes include damage caused by winds, flooding, and 

storm surges.  High speed winds can destroy buildings and force rain and seawater across 

larger areas.  Aside from winds, hurricanes can bring anywhere from 150 to 305 mm of 

rain in a single day.  Ocean levels can rise 30 to 70 cm higher than the average high tide, 

causing a storm surge which increases flooding and pushes water further inland (Treaster 

2007, 20-21; Hood 1998, 25-29).  Increased rainfall can result in increased shallow and 

deep freshwater pools that serve as breeding sites for mosquitoes.  Long-term impacts of 

hurricanes include retained water pools as breeding sites and the increased reservoir of 

disease within animal and human populations due to initial vector and disease outbreaks 

caused by hurricane effects.  

 

El Niño Southern Oscillation 

 

 The El Niño Southern Oscillation (ENSO) is a climatological phenomenon that 

occurs in an irregular cycle of every 2-7 years.  The term “El Niño” refers to the large-

scale ocean-atmosphere interactions that cause periodic warming in sea surface 

temperatures across the central and east-central equatorial Pacific, marking the warm 

phase of the ENSO (Anyamba et al. 2006).  The opposite cold phase of the ENSO is 

known as La Niña.  The ENSO is a source of inter-annual variability in weather and 

climate around the world.  El Niño and La Niña are officially defined as “sustained sea 

surface temperature anomalies,” and can cause localized impacts such as flooding and 

droughts through drastically increased or decreased rain activity (Anyamba et al. 2006).   

 ENSO is the result of changes in the equatorial trade winds in the Pacific Ocean, 

which then causes changes in the equatorial Pacific surface ocean circulation.  The 

variations in the trade winds and ocean circulation cause changes in the sea surface 
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temperature, which then feeds back into the atmosphere, causing more changes to the 

surface winds.  This cyclical atmosphere-ocean interaction continues to build until a large 

shift in warm waters occurs across the Pacific towards the South American coast.  During 

an El Niño event, sea surface temperatures can increase by as much as 2-4˚C.  Changes in 

atmospheric circulation cause changes in precipitation, with increased rainfall on western 

South American coast, and drier conditions in the Caribbean and northern Brazil (Steffan 

et al. 2005, 60-61).  El Niño events usually act to reduce hurricane activity in the 

Caribbean Sea region by increasing vertical wind shear (Anyamba et al. 2006).  The 

opposite occurs during a La Niña event. 

 Two parameters of the El Niño Southern Oscillation are anomalies of the sea 

surface temperatures in the eastern equatorial Pacific and the Southern Oscillation Index 

(SOI).  The Southern Oscillation Index is measured as air pressure deviations between the 

eastern and western Pacific, taken from the island of Tahiti and Darwin, Australia 

(Bouma and van der Kaay 1996, 89).  An El Niño shows a positive deviation of the sea 

surface temperature and a negative deviation of the SOI, while the La Niña events show a 

negative deviation from the sea surface temperature and a positive deviation of the SOI 

(Bouma and van der Kaay 1996, 89; Nicholls 1993).  The SOI is the most commonly 

used index to measure the ENSO phenomenon (Glantz, Katz, and Nicholls 1991, 1-12; 

Chagas and Puppi 1986, 1-15). 

 Extremes in climate conditions can affect the numbers of mosquito vectors.  A 

strong El Niño event can cause droughts through reduced hurricane activity and rain, 

which can suppress mosquito predators, leading to increased disease transmission 

(Anyamba et al. 2006).  On the other side, a strong La Niña event can cause increased 
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hurricane activity which can increase rainfall and breeding habitats for mosquitoes.  

Several disease outbreaks have been linked to El Niño, including Murray Valley 

encephalitis, bluetongue, Ross River virus disease, dengue fever, and malaria (Woodruff 

2002, 385-90; Nicholls 1993, 1284-85; Nicholls 1986, 587-88).  Finally, the impact of the 

ENSO on hurricane activity in the Caribbean has become increasingly important as 

increased global temperatures cause higher extremes in the SOI and in sea surface 

temperatures.   

 

Vector-Borne Diseases 

 

 Vector-borne diseases are diseases that are caused by pathogens that are carried 

and transmitted by arthropod vectors.  For the cases of this study, all vectors associated 

with vector-borne diseases are mosquitoes.  Mosquitoes are responsible for vectoring 

several important pathogens to disease, including Plasmodium spp. (which causes 

malaria) and the dengue virus (which causes dengue fever and dengue hemorrhagic 

fever).  Mosquitoes play an important medical role in Central America in the spread of 

these diseases.  

 

Anopheles Mosquitoes and Malaria 

 

 Anopheles spp. mosquitoes are vectors for Plasmodium spp., the causative agent 

of malaria.  Anopheles mosquitoes breed in water, usually permanent or semi-permanent 

habitats, such as the edges of lakes, ponds, streams, and pools, although they also 

commonly use irrigated fields and reservoirs as breeding sites (Foster and Walker 2002, 

213-22).  Anopheles mosquitoes are usually found in deciduous and mixed forests, as 

well as near human habitation (Palsson et al. 2004, 746-52).  Female Anopheles lay their 
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eggs in small pools of water (Foster and Walker 2002, 213-22).  Important development 

factors include quantity of water, density of larvae within the pool, and salinity of the 

water (el-Akad 1992, 459-65).  Anopheles eggs are laid singly on the surface of the water 

and increased temperatures accelerate the development of Anopheles aquatic larvae 

(Khasnis and Nettleman 2005, 693).  Optimal larval development for Anopheles is 28˚C 

and optimal adult development is between 28˚C and 32˚C (Bayoh and Lindsay 2003, 

375-81).  Anopheles mosquitoes can survive for several weeks in this larval stage.   

 There are four species of Plasmodium that cause malaria: Plasmodium 

falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale.  P. 

falciparum and P. vivax is commonly found in the tropics, with the range of P. vivax 

extending to some temperate areas.  P. malariae has a wide distribution but is not as 

common, and P. ovale occurs mainly in Africa (Foster and Walker 2002, 240-42).  The 

optimum temperature for development of Plasmodium falciparum and Plasmodium vivax 

in a mosquito host is 18˚C and 15˚C, respectively (Patz and Reisen 2001, 171).  

Plasmodium spp. transmission cannot occur below 16˚C or above 33˚C, with ideal 

conditions between 20˚C and 30˚C with high humidity (Khasnis and Nettleman 2005, 

693).  At least 20˚C is needed to create a malaria epidemic (Lindsay and Martens 1998, 

34-35).  For example, at 20˚C, it takes P. falciparum 26 days to incubate; at 25˚C, it only 

takes 13 days to incubate (Bunyavanich et al. 2003, 44-52).  

 

Aedes Mosquitoes and the Dengue Virus 

 

 Aedes mosquitoes generally develop in temporary water, with eggs laid on or 

attached to solid substrates out of water.  The larvae remain quiescent until inundated.  

Aedes eggs can survive periods of cold and desiccation and can remain viable for years.  
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Hatching will occur at warm temperatures after the eggs have been submerged.  Preferred 

habitats for Aedes oviposition include floodplains, salt marshes, tree holes, and artificial 

containers.  Aedine species often broadly distribute eggs over several potential 

development sites, into water containers, and over drying mud or plant debris on low 

ground.  Ideal conditions for Aedes larval growth is 26˚C to 28˚C (Foster and Walker 

2002, 213-22).   

 Female Aedes spp. mosquitoes become infected with the dengue viruses following 

a blood meal from an infected host.  During the extrinsic incubation period, which 

typically lasts from 7 to 10 days, the Aedes spp. mosquito is capable of transmitting the 

viruses.  Infected mosquitoes can then transmit the viruses during subsequent blood 

meals (Yang and Ferreira 2007, 401; Veronesi 1991).   

 Dengue fever is caused by the dengue virus, a flavivirus that is transmitted by the 

mosquitoes of the genus Aedes spp. (Kurane 2006, 330).  As a result of being pathogenic 

in humans and capable of transmission in heavily population areas, dengue virus can 

cause widespread epidemics in many tropical and subtropical regions of the world where 

Aedes spp. vectors are found (Monath 1988).  There are four different serotypes of 

dengue virus, and all four serotypes cause three distinct syndromes – classic dengue 

fever, dengue hemorrhagic fever, and dengue shock syndrome (Yang and Ferreira 2007, 

401).   

 

Factors Affecting Vector-borne Diseases 

 

 The numbers of mosquito that can serve as vectors of pathogens is affected 

primarily by the presence of breeding sites for mosquitoes and by the existence of 

optimal conditions to promote mosquito growth.  Breeding sites for mosquitoes can 
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develop as a result of rainfall which can cause inland flooding in geographically flat or 

depressed areas.  Optimal conditions for mosquito growth include temperatures between 

26˚-28˚C (78˚-82˚F), water sources for the eggs, larvae, and pupae (which require at least 

a film of water for most species), and food sources from organic detritus, suspended 

materials, and small organisms, including bacteria, protists, fungi, algae, and 

microinvertebrates (Foster and Walker 2002, 213-22).  

 

Remote Sensing 

 

 Remote sensing techniques have been applied in the prediction and detection of 

breeding habitats for mosquitoes (Achee et al. 2006, 382).  The use of remotely sensed 

data to predict areas that are high risk for vector populations is based on the relationship 

between individual vector species and specific environmental variables, including 

emergent vegetation, precipitation levels and persistence, and surface water (Andre, 

Roberts, and Rejmankova 1995, 27-35).  Remote sensing can be used to measure 

biophysical variables including location, elevation, color, chlorophyll absorption 

characteristics, biomass, temperature, surface texture, and moisture content (Lillesand 

and Kiefer 1994; Jensen et al. 1989, 111-32).  Remote sensing can also be used to 

identify and map potential parasite, vector and host habitats.  These data can be utilized 

to monitor changes in habitats and predict possible associated changes in vector and host 

populations and map disease risks used for control programs (Hay 1997, 105-06; Hugh-

Jones 1989, 244-51).   

 Remote sensing capabilities vary with regard to spatial resolution, temporal 

resolution, and spectral resolution (Kitron 1998, 438).  Finer spatial resolution images, 

like those from Landsat Thematic Mapper (TM), with a spatial resolution of 30 m, and 
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the French satellite SPOT, with a spatial resolution of 10-20 m, can be used to 

characterize vector habitats on a finer spatial scale (Lillesand and Kiefer 1994; Kitron 

and Mannelli 1994, 198-239).  Images with lower spatial resolution can be useful for 

coarser-scale studies of vector distribution.  The advanced very high resolution 

radiometer (AVHRR) images with a spatial resolution of 1.1 km have been used for 

studies of trypanosomiasis, East Coast fever, and malaria (Rogers and Randolph 1991, 

739-41; Perry et al. 1990, 100-04).   

 Landsat TM, a sensor found on Landsat 4 and 5, records in the visible, reflective-

infrared, mid-infrared, and thermal regions.  Bands 1 through 5 and band 7 have a 

resolution of 30m x 30m, with the thermal infrared band 6 having a resolution of 120m x 

120m.  For Landsat 7, the thermal infrared band has a resolution of 60m.  These bands 

were chosen for their use in discrimination of vegetation type and cover, soil moisture 

penetration, differentiation of clouds, snow, and ice, and water penetration (Jensen 2007, 

203-09).   

 Band 4, the near-infrared band, senses in a spectral region that is sensitive to 

vegetation varieties and conditions (Quinn 2001).  This band is useful for land/water 

contrasts and amount of vegetation present.  Because water is a strong absorber in the 

near IR range, band 4 can help delineate water bodies, and discriminate between dry and 

moist soils, such as between barren lands and croplands (Quinn 2001).  Band 4 is also 

important in calculating the NDVI.   

 Band 5, the mid-infrared band, is sensitive to water and provides detailed 

information about soil moisture.  It also is sensitive to turgidity of water in plants (Quinn 

2001).  Band 5 is able to differentiate water bodies from croplands, barren lands, and 
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grasslands.  Additionally, inland lakes and streams can be identified with greater 

precision using the infrared bands because of the infrared absorption of water.   

 The thermal band measures the radiant energy from the surface and can be used 

for vegetation classification, soil moisture studies, and differences in topography (Jensen 

2007, 205).  Determining the changes in surface temperature over time can elucidate 

regarding the persistence or evaporation of water ponds as a result of rainfall.  Relative 

land surface temperatures can also be used to determine whether optimal or deterring 

conditions exist for mosquito development.   

 Remote sensing values can also be interpreted into indices using multiple band 

analysis.  The normalized difference vegetation index (NDVI) is an index that provides a 

standardized method of comparing vegetation greenness and relative biomass between 

satellite images (Boone et al. 2000, 737-44, Chen and Brutsaert 1998, 1225-38).  It is 

calculated as the normalized ratio of near-infrared and red and wavelength reflectance 

(Tucker and Townshend 1985, 369-75).  Recent studies have used NDVI derived from 

Landsat TM imagery to determine impacts of hurricanes on forested areas, coastal 

vegetation, and wetlands (Rodgers, Murrah, and Cooke 2009, 496; Sheikh 2006, Ramsey 

et al. 2001, 279-92).   
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CHAPTER TWO 

 

Methods 

 

 

El Niño Southern Oscillation and hurricane activity 

 

 In order to determine the role that large-scale climate shifts may have on 

hurricane activity, the influence of the El Niño Southern Oscillation (ENSO) must be 

considered.  Studies have shown that the Southern Oscillation Index (SOI) values are a 

primary indicator of the El Niño and La Niña cycles, which make up the ENSO (Glantz 

et al. 1991, 1-12; Chagas and Puppi 1986, 1-15).  The SOI is calculated as a standardized 

difference between air pressure deviations taken at Tahiti and at Darwin, Australia 

(Climate Prediction Center 2009).   

 SOI = (Standardized Tahiti – Standardized Darwin) eq. 1 

      MSD 

where the MSD is the monthly standard deviation.  In order to solve for the SOI, the 

standardized Tahiti is calculated in the following way: 

 Standardized Tahiti = (Actual SLPT – Mean SLPT) eq. 2 

           σT 

 

where SLPT is the sea level pressure at Tahiti and σT is the standard deviation of those 

pressures.  Similarly, the equation for the Standardized Darwin pressure is: 

 Standardized Darwin = (Actual SLPD – Mean SLPD) eq. 3 

             σD 

where the SLPD is the sea level pressure at Darwin and the σD is the corresponding 

standard deviation.  To solve for the Monthly Standard Deviation (MSD):  
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 MSD = √ ∑ ((Standardized Tahiti – Standardized Darwin) * 2) eq. 4 

             N 

where N is equal to the total number of summed months.  The NOAA Climate Prediction 

Center reports SOI values on a monthly scale.  SOI values were obtained for the time 

period of 1985 to 2007.   

 Using the NOAA National Hurricane Center Archive of Hurricane Seasons 

(www.nhc.noaa.gov), a record was obtained of all storms during the Atlantic hurricane 

season from 1985 to 2007.  A subset of storms that impacted the Yucatan Peninsula was 

created from the larger Atlantic hurricane database.  The databases included dates of 

persistence and strength based on the Saffir-Simpson scale of each hurricane.  This 

database was analyzed and the annual numbers of hurricanes and the average intensity of 

the hurricanes based on the Saffir-Simpson scale were calculated.   These analyses were 

applied separately by location (all Atlantic storms compared to storms that hit the 

Yucatan peninsula), and also by intensity (inclusion and exclusion of tropical storms 

from within the Atlantic storms and Yucatan storms).  All statistical analysis was 

conducted in SPSS (SPSS Inc. Chicago, Il).   

 A Mann-Whitney U test was chosen in order to evaluate the difference in 

hurricane attributes between El Niño and La Niña cycles.  El Niño and La Niña cycles 

were determined by evaluating the annual SOI values.  Generally, years in which the SOI 

value is above 0.0 are considered La Niña years, whereas years in which the SOI falls 

below 0.0 are considered El Niño years.  However, graphical representation of hurricane 

frequency against SOI values demonstrated a cutoff point below which the variability in 

hurricane frequency dropped to near zero, and above which hurricane frequency 

variability increased dramatically.  For Atlantic storms, the SOI cutoff point was -1.02 
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(Fig. 1).  For Yucatan storms, the SOI cutoff point was -0.90 (Fig. 2).  These cutoff 

points were used as the bases of ranking rather than the traditional 0.00.   
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Figure 3. Distribution of Atlantic storm frequency against Southern Oscillation Index (SOI) 

values.  Lines serve as delineations at the traditional cutoff point of 0.00 and the inferred 

cutoff point of -1.02, chosen due to the change in variability in storms above and below this 

point.   

 

 

Based on the average SOI value for a given year, that year was ranked as either a “1” 

(indicating annual SOI ≤ cutoff) or a “2” (indicating annual SOI > cutoff).  The Mann-

Whitney U test was run for four different outcomes; all Atlantic storms, only Atlantic 

hurricanes, all Yucatan storms, and only Yucatan hurricanes.  Mann-Whitney U tests 

were also run around the same predicted cutoff value to rank the strength of hurricanes as 

measured by the Saffir-Simpson scale.  Independent samples T-tests were run in order to 

determine whether a statistically significant SOI value existed as a “predictor” value 

around which the frequency and intensity of future hurricane seasons could be calculated.   
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Figure 4. Distribution of Yucatan storm frequency against Southern Oscillation Index (SOI) 

values.  Lines serve as delineations at the traditional cutoff point of 0.0 and the inferred 

cutoff point of -0.90. , chosen due to the change in variability in storms above and below this 

point.   

 

 

Hurricane Impacts Detected Through Satellite Analysis 

 

 

Image Selection 

 

 In order to determine land cover changes in the country of Belize, Landsat 

satellite data were used for satellite analysis.  Using Landsat satellite data had several 

advantages over other satellite imagery.  First, Landsat is one of the most widely used 

remotely sensed data because of its low cost.  Numerous studies have used Landsat data 

to investigate changes in land cover following hurricanes (Rodgers, Murrah, and Cooke 

2009, 496).  Secondly, the Landsat satellites have a sun-synchronous orbit that completes 

a cycle around the Earth every 16 days.  This provides data frequently, and due to 

unexpected longevity of the sensors has provided data for long periods of time.  
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However, the orbits do limit the Landsat data to only dates when passes are made over 

the study area, regardless of the extent of cloud cover.  As a result, some images have a 

lower number of pixels that can be analyzed because of the high amount of cloud cover 

across the country.  The temporal scale can also affect the analysis, if the dates of the 

orbit are not as precisely near to the hurricane event.  Thirdly, the spectral resolution of 

sensors found on Landsat satellites is conducive to land change studies.  The Thematic 

Mapper (TM) sensor found on Landsat satellites 4 and 5 has seven bands, from the 

visible through the thermal regions.  The reflective bands (bands 1, 2, 3, 4, 5, and 7) have 

a spatial resolution of 30m, with the thermal band 6 having a resolution of 120m.  The 

Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat 7 has a similar spectral 

resolution, with the same seven bands, and an additional eighth band as a panchromatic 

band.  The spectral extent of the bands on Landsat 5 and Landsat 7 are included in tables 

6 and 7. 

 

Table 6. Spectral extent of the Landsat 5 TM sensor 

 

TM Sensor Wavelength (μm) Resolution (m) 

Band 1     0.45 – 0.52   30 

Band 2     0.52 – 0.60   30 

Band 3     0.63 – 0.69   30 

Band 4     0.76 – 0.90   30 

Band 5     1.55 – 1.75   30 

Band 6 10.40 – 12.50 120 

Band 7     2.08 – 2.35   30 

 Source: USGS, 2009 

 

 

 The spectral extent of the satellites can be used to determine specific hurricane 

impacts on Belize.  Water bodies tend to reflect highly in the visible spectrum  

(0.45 μm – 0.69 μm).  Water bodies also increasingly absorb near and mid-infrared 

wavelengths (0.74 μm – 1.75 μm), making them appear darker in those images.  
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Vegetation conditions and soil moisture can also be differentiated by the near and mid-

infrared regions.   

 

Table 7. Spectral extent of the Landsat 7 ETM+ sensor 

 

TM Sensor Wavelength (μm) Resolution (m) 

Band 1     0.45 – 0.52 30 

Band 2     0.53 – 0.61 30 

Band 3     0.63 – 0.69 30 

Band 4     0.75 – 0.90 30 

Band 5     1.55 – 1.75 30 

Band 6 10.40 – 12.50 60 

Band 7     2.09 – 2.35 30 

Band 8 (Panchromatic)     0.52 – 0.90 15 

 Source: USGS, 2009 

 

 

 Additionally, the thermal band on the ETM sensor has a resolution of 60m, and 

the panchromatic band as resolution of 15m.  Lastly, the spatial resolution is 

advantageous because of the small amount of land area that is being analyzed.  The 

country of Belize covers approximately 23,000 square kilometers (Central Statistics 

Office 2004).  A larger spatial resolution would not be as precise in measuring land cover 

changes.  The visible bands, near-infrared (NIR), mid-infrared (MIR), and thermal bands 

have all demonstrated proficiency when used to assess land cover changes.  The visible 

and near-infrared bands can be used to determine locations of vegetation cover changes.  

The mid-infrared band is sensitive to water and is able to differentiate areas that have 

water deposition.  The thermal band can be used to determine changes in surface 

temperature before and after the occurrence of hurricanes.  Changes in temperature can 

indicate areas of water deposition, since areas with flooding will demonstrate a lower 

thermal emission than areas of dry land.  Analyzing the thermal band (10.40 μm – 12.5 
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μm) using images taken after the hurricane and one month later can therefore show areas 

of persistent water deposition to supplement data from the mid-infrared band.   

 Landsat images were obtained from the USGS Global Visualization Viewer 

(usgs.glovis.gov) for the time period 1995 to 2007.  For each hurricane that impacted the 

Yucatan Peninsula, three images were downloaded.  These images correspond to three 

time periods under study; immediately before the hurricane, immediately following the 

hurricane, and one month after the hurricane.  This was done in order to determine direct 

and persistent changes in land cover, continuous water deposition, and effects on land 

surface temperature.  Table 8 gives a summary of the database of imagery collected for 

each hurricane. 

 

Image Processing 

 

 All image processing was performed using IMAGINE 9.3 (Leica Geosystems 

Atlanta, GA), a software tool designed specifically to process geospatial satellite 

imagery.  The images were acquired from Landsat 5 TM and Landsat 7 ETM.   

 The three scenes that comprise the country of Belize (taken from Landsat path 19, 

rows 47, 48 and 49) were combined to provide a single dataset for analysis.  All images 

were georeferenced to the World WGS 1984 North, Zone 16 reference coordinate system 

in order to analyze them on the same spatial scale.  WGS84 was used because it is a 

reference frame for the broadcast orbits defined by the National Geospatial-Intelligence 

Agency and is also closely aligned to International Earth Rotation Service Terrestrial 

Reference Frame (National Geodetic Survey 2009).   
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Table 8. Record of downloaded satellite imagery 

Hurricane dates Hurricane Pre-hurricane Post-hurricane One month after 

Sept. 27-Oct. 6, 1995 Opal 09-23-1995 10-09-1995 11-10-1995 

Oct. 7-21, 1995 Roxanne 09-23-1995 10-25-1995 11-26-1995 

Aug 19-25, 1996 Dolly 08-08-1996 08-24-1996 09-25-1996 

Oct. 22-Nov. 9, 1998 Mitch 10-17-1998 11-18-1998 12-04-1998 

Oct. 28-Nov 1, 1999 Katrina 10-20-1999 11-05-1999 12-07-1999 

Sept. 14-21, 2000 Gordon 09-04-2000 09-20-2000 10-22-2000 

Sept. 28-Oct. 6, 2000 Keith 09-20-2000 10-06-2000 10-22-2000 

Aug 14-22, 2001 Chantal 06-11-2001 08-30-2001 09-15-2001 

Oct. 4-9, 2001 Iris 10-01-2001 10-17-2001 01-05-2002 

June 28-July 3, 2003 Bill 05-16-2003 07-19-2003 08-04-2003 

July 7-17, 2003 Claudette 07-19-2003 08-04-2003 08-20-2003 

Sept. 27-Oct 7, 2003 Larry 09-21-2003 10-23-2003 11-24-2003 

July 3-11, 2005 Cindy 06-06-2005 07-24-2005 08-09-2005 

July 11-21, 2005 Emily 06-06-2005 07-24-2005 08-25-2005 

Oct. 1-5, 2005 Stan 09-10-2005 10-12-2005 11-13-2005 

Oct. 15-26, 2005 Wilma 09-10-2005 10-28-2005 11-29-2005 

Aug. 13-23, 2007 Dean 07-30-2007 08-31-2007 10-18-2007 

Aug. 31-Sept. 6, 2007 Felix 07-30-2007 10-18-2007 11-03-2007 

 

 

A shapefile of the country boundary of Belize was obtained from the Biodiversity and 

Environmental Resource Data System of Belize and was used to subset the satellite data 

for the area of Belize.  Prior to any image differencing, a mask was created to exclude 

non-terrestrial areas (open water, cloud cover).  This mask was created by using the three 

satellite images per hurricane as inputs to prevent inclusion of false pixel values 

(specifically those pixels which correlated to the Caribbean Sea and cloud cover within 

the country).  In order to create this mask, an “if-then” equation was established to 

differentiate between acceptable and unacceptable pixels.  This statement stated that any 

pixel with a value less than or equal to 0 would be classified as a “0” value and any other 

pixel would be classified as a “1” value.   
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 After the masks were imposed on each image, the Normalized Difference 

Vegetation Index (NDVI) was calculated for each image.  The NDVI was calculated 

using the equation: 

 NDVI = (Band 4 – Band 3) eq. 5 

              (Band 4 + Band 3) 

 After the NDVI was found, calculations were run in order to determine the 

percent change between two consecutive images.  The general equation for these 

calculations was as follows: 

 Percent change = 100 x (Image2 – Image1) eq. 6 

                                    Image1 

These calculations yielded two images; one that showed the difference between impacts 

immediately after the hurricane relative to conditions before the hurricane, and one that 

showed the difference between one month after the hurricane from the image 

immediately after the hurricane.  The percent differences were then determined for the 

NDVI, the mid-infrared range, and the thermal range.  The mean, standard deviation, and 

mode for each percent difference was calculated for NDVI, the mid-infrared range 

(MIR), and the thermal range (TIR).  Because of the large variations in values and high 

standard deviations, the mode was used as the primary indicator of change rather than the 

mean.   

 

Disease and Satellite Analysis 

 

 Disease epidemiological data was acquired from the Belize Ministry of Health 

(Epidemiology Unit 2008; Epidemiology Unit 2007; Epidemiology Unit 2006; 

Epidemiology Unit 2004).  This data included the number of reported cases of malaria 

and dengue fever between the years of 1995 and 2007 (Table 9).  Malaria and dengue 
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were chosen because they are two prevalent vector-borne diseases in the country.  They 

also demonstrate variability annually.  Epidemiological records also exist and were 

accessible for the time period of the study.  In order to better understand the role that 

vegetation cover and development has on the impacts of hurricanes and the incidence of 

disease, a district-based analysis was also conducted.  For this analysis, malaria and 

dengue fever epidemiological data was obtained by district from 1999 to 2007 (tables 10 

and 11; Epidemiology Unit 2008).   

 The accuracy of the epidemiological data is an unavoidable weakness within the 

study.  Epidemiological statistics were taken from the Belize Ministry of Health; 

therefore, there is no way to determine the precision with which disease reporting was 

completed.  Currently, disease reporting is dependent on different medical facilities 

within a district to report to that district’s health department.  Those departments then 

report to the central Ministry of Health.  This, however, leaves large room for error.  For 

one, due to the unequal poverty levels and sparse medical facilities in Belize, and because 

malaria and dengue fever are endemic to the country, there is no guarantee that all people 

with malaria or dengue infections go to physicians for medical treatment.  There is also 

no way to determine the accuracy of diagnosis of these diseases once someone does visit 

a hospital.  Serotyping is done to a limited degree within the country, which reduces the 

accuracy of diagnosis.  This can then increase the chances of both false positives and 

false negatives within the disease data.   
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Table 9. Number of malaria and dengue fever cases for the country of Belize by year 

 

Year Malaria Dengue fever 

1995 9413 107 

1996 6605     0 

1997 4014 201 

1998 1936   18 

1999 1853     7 

2000 1486     4 

2001 1092     4 

2002 1113   41 

2003 1319   18 

2004 1066   41 

2005 1549 652 

2006  844   11 

2007  845   63 

 Source: Epidemiology Unit, Ministry of Health, 2008 

 

 

Table 10. Number of malaria cases by district for the country of Belize by year 

Year Belize Stann Creek Toledo 

1999 44 307 1077 

2000 26 370  632 

2001 13 266  536 

2002 21 268  441 

2003 30 479  418 

2004 24 307  303 

2005 31 653  358 

2006  8 405  273 

2007 13 263  436 

  Source: Epidemiology Unit, Ministry of Health, 2008 

 

 

Table 11. Number of dengue fever cases by district for the country of Belize by year 

 

Year Belize Stann Creek Toledo 

1999   4 3   0 

2000   4 0   0 

2001   0 4   0 

2002 22 0   0 

2003   0 0   0 

2004 13 0 13 

2005 18 5   1 

2006   8 0   0 

2007 38 7   0 

 Source: Epidemiology Unit, Ministry of Health, 2008 
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 Analysis between satellite-detected changes and disease incidence was based 

solely on a conceptual model that ignored socioeconomic factors, and considered only the 

physical characteristics that would relate to disease.  The average changes in NDVI, MIR, 

and TIR for each year for each difference image (immediately following the hurricane – 

before the hurricane; one month following the hurricane – immediately following the 

hurricane) were compared to that year's reported incidence rates for malaria and dengue 

separately.  In this analysis, the relationship was between the changes in NDVI, MIR 

reflectance, TIR emission in one year and that year's reported cases of disease.  All 

statistical analysis was conducted in SPSS (SPSS Inc. Chicago, Il).   

 The percent change calculations for the NDVI, mid-infrared (MIR), and thermal 

infrared (TIR) bands were compared to malaria and dengue cases.  Because the 

epidemiological data was reported on an annual time scale, it was necessary to determine 

the changes in NDVI, MIR and TIR also on an annual time scale.  This was done by 

averaging the percent changes from all hurricanes within a year (for example, averaging 

calculated changes between hurricanes Opal and Roxanne for 1995).  This was done on 

the assumption that the development time necessary for mosquito growth and disease 

transmission was confined to within that year.  Using a linear regression model, the 

coefficient of determination was calculated comparing the diseases (malaria and dengue 

fever) to each calculated change (NDVI, MIR, and TIR).  In order to account for multiple 

land use changes, multiple linear regressions were also run, comparing disease to the 

immediate impacts of hurricanes across the three satellite indices.  This was to assess the 

interactions of the satellite indices.  A stepwise linear regression with an F-value entry of 

values greater than or equal to 3.84 and removal of values less than or equal to 2.71 was 
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also run on the data in order to determine the model which best fit the malaria and dengue 

data. 

 The changes in NDVI, MIR, and TIR were also compared on a delayed one-year 

scale.  This was done to determine if a lag existed as a result of mosquito development 

and disease transmission.  The changes in NDVI, MIR, and TIR for each year for each 

difference image were plotted against the following year's malaria and dengue incidence 

rates.  The correlation coefficient was calculated for each of these to determine the 

strength of the relationship between the changes and the disease.   

 Because of the disparities between the incidences of malaria and dengue within 

the different districts of Belize, a district-based analysis was also completed in order to 

determine whether hurricane impacts would affect disease incidence for areas with 

different land uses and development.  A shapefile of Belize districts was produced by 

creating a JPEG file by scanning in a map of Belize (Epidemiology Unit 2008), 

converting it to an image file, and georeferencing the image to the WGS84 projection 

used for all other images.  This file was then used to create areas of interest shapefiles for 

the districts of Belize, Stann Creek, and Toledo.   

 In order to determine the impact to each district, the districts were subset from 

hurricane images and separately analyzed through difference calculation.  Using a 

multiple linear regression model, the coefficients of determination was calculated by 

comparing the diseases (malaria and dengue fever) to each calculated change (NDVI, 

MIR, and TIR) for each of the three districts (Belize, Stann Creek, and Toledo).  Pearson 

correlation coefficients were also used in order to determine the degree and direction of 

correlations between the disease incidence and percent changes for each district. 
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CHAPTER THREE 

 

Results 

 

 

El Niño Southern Oscillation and Hurricane Activity 

 

 The non-parametric Mann-Whitney U test and independent samples T-test 

showed that El Niño years had significantly lower number of storms and hurricanes than 

La Niña for both the Atlantic and Yucatan Peninsula analyses (Table 12).  For the 

Atlantic, during El Niño conditions, there were on average 7.50 storms, 3.50 of which 

were hurricanes (p < 0.05).  However, during La Niña years, there were on average 14.00 

storms, 7.82 of which were hurricanes (p < 0.05).  For the Yucatan, El Niño conditions 

had on average 0.14 storms, whereas La Niña conditions had 1.31 storms (p < 0.05).  Of 

those storms, 0.14 were hurricanes during El Niño conditions, and 1.06 were hurricanes 

during La Niña conditions (p < 0.05).  The average Saffir-Simpson rating for Atlantic 

hurricanes during El Niño years was 1.90 and was 2.32 during La Niña years, although 

there is no significant difference between the two groups (p > 0.05).  For Yucatan 

hurricanes, the average Saffir-Simpson rating was significantly different for hurricanes, 

with an average rating of 0.29 during El Niño years and was 1.95 during La Niña years  

(p < 0.05). 
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Table 12. Mann-Whitney U and independent samples T-test results for all Atlantic 

storms, Atlantic hurricanes only, all Yucatan storms, and Yucatan hurricanes only, 

ranked around a cutoff SOI values of -1.02 (for the Atlantic datasets) and -0.90 (for the 

Yucatan datasets).  The mean rank of the two groups (with significance at p ≤ .05), the 

mean frequency of storms and hurricanes (with significance at p ≤ .05), and the average 

Saffir-Simpson rating for hurricanes (with significance at p ≤ .05) for each ranked group 

were determined. 

 
Model Mean 

rank  

(SOI ≤) 

Mean 

rank  

(SOI >) 

Sig Mean  

freq  

(SOI ≤) 

Mean  

freq  

(SOI >) 

Sig SS  

rating 

(SOI ≤) 

SS  

rating 

(SOI >) 

Sig 

Atlantic 

storms 

4.50 14.65 0.00 7.50 14.00 0.00    

Atlantic 

hurricanes 

4.00 14.82 0.00 3.50 7.82 0.00 1.90 2.32 0.09 

Yucatan 

storms 

7.14 14.13 0.02 0.14 1.31 0.00    

Yucatan 

hurricanes 

7.79 13.84 0.03 0.14 1.06 0.01 0.29 1.95 0.01 

 

 

Hurricane Impacts Through Satellite Analysis 

 

 The mean differences in mode from 1995 to 2007 for the NDVI, MIR, and TIR 

were also calculated (Table 13).  Although not significantly different, analysis showed 

that immediately following hurricanes demonstrated an average decrease of NDVI of -

74.98 ± 35.15%.  The decrease in NDVI continues one month after the hurricane, with an 

average percent change of -45.81 ± 37.36%.  Percent changes in the mid-infrared and 

thermal infrared ranges also decreased the two test periods, although neither the MIR nor 

TIR were statistically different.   

 

Table 13: Mean differences in percent change calculations in the NDVI, MIR,  

and TIR from 1995 to 2007.  Values shown are mean ± standard deviation.   

A paired T-test determined significance at p ≤ .05. 

 

Satellite index 2-1 3-2 Sig 

NDVI -74.98 ± 35.15 -45.81 ± 37.36 0.11 

MIR -17.37 ± 16.71 -24.80 ± 16.99 0.33 

TIR -12.09 ± 13.21   -7.07 ± 12.49 0.37 
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Figure 5. Percent change calculations for NDVI between images taken prior to the 

hurricane subtracted from images taken prior to the hurricane (dark gray) and images 

taken immediately after the hurricane subtracted from those taken one month after the 

hurricane (light gray).  There is no significant difference between the two groups  

(p = 0.11). 

 

 

 Figure 5 illustrates the percent differences for each difference calculation for the 

Normalized Difference Vegetation Index (NDVI) for each year.  The two groups 

demonstrated no statistical difference (p > 0.05).   

 Figure 6 illustrates the percent differences for each difference calculation for the 

mid-infrared range (MIR) for each year.  The two groups demonstrated no statistical 

difference (p > 0.05).   

 Figure 7 illustrates the percent differences for each difference calculation for the 

thermal range (TIR) for each year.  The two groups demonstrated no statistical difference 

(p > 0.05).   
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Figure 6. Percent change calculations for the MIR between images taken prior to the 

hurricane subtracted from images taken prior to the hurricane (dark gray) and images 

taken immediately after the hurricane subtracted from those taken one month after the 

hurricane (light gray).  There is no significant difference between the two groups  

(p = 0.33). 
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Figure 7. Percent change calculations for the TIR between images taken prior to the 

hurricane subtracted from images taken prior to the hurricane (dark gray) and images 

taken immediately after the hurricane subtracted from those taken one month after the 

hurricane (light gray).  There is no significant difference between the two groups  

(p = 0.33). 
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Disease and Satellite Analysis 

 

Country-based Analysis 

 

 Linear regression models were run in order to compare malaria and dengue fever 

to calculate percent changes in the NDVI, MIR, and TIR.  The stepwise linear regression 

found that the relationship between the exponential function of the inverse of malaria and 

the changes in NDVI immediately after a hurricane had a significant r
2
 value of 0.64 

(tables 14 and 15).   

 

Table 14. Stepwise linear regression model results comparing the relationship between 

the exponential function of the inverse of the incidence of malaria in Belize to percent 

changes in NDVI calculated between prior to a hurricane and immediately following a 

hurricane. 

 

Disease Predictors r2 Std. Error of estimate 

Malaria NDVI (2-1) 0.64 0.00 

 

 

Table 15. ANOVA results from the stepwise linear regression of malaria and percent 

change in NDVI immediately after a hurricane. 

 

Model Sum of Squares Df Mean Square F Sig. 

Regression 0.00 1 0.00 12.66 0.01 

Residual 0.00 7 0.00   

Total 0.00 8    

 

 

 A stepwise linear regression models run on dengue fever incidence found that the 

relationship between TIR one month after a hurricane was significant (p < 0.05) with an 

r
2
 value of 0.51 (Tables 16 and 17).   
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Table 16. Stepwise linear regression model results comparing the incidence of dengue 

fever in Belize to percent changes in TIR calculated between immediately following a 

hurricane and one month after a hurricane. 

 

Disease Predictors r2 Std. Error of estimate 

Dengue fever TIR (3-2) 0.51 158.24  

 

 

Table 17. ANOVA results from the stepwise linear regression of dengue fever and 

percent change in TIR one month after a hurricane. 

 

Model Sum of Squares Df Mean Square F Sig. 

Regression 182459.30 1 182759.28 7.30 0.03 

Residual 175288.30 7 25041.18   

Total 253047.6 8    

 

 

 A stepwise linear regression analysis run taking into account a delay in mosquito 

development found that, for the NDVI calculations of immediately following hurricanes, 

the model was not significant for malaria (r
2
 = 0.47, p < 0.05).  For dengue fever a 

stepwise linear regression could not be run, but a simple linear regression found that the 

model was not significant between dengue fever and changes in TIR for one month after 

hurricane events (r
2
 = 0.01, p = 0.70).   

 

District-based Analyses 

 

 A district-based stepwise linear regression analysis was not possible because of 

the sample size.  Also, a simple and multiple linear regression models taken for each of 

the districts were consistent in returning models that were not significant at the p ≤ 0.05 

value.  Therefore, Pearson correlations were run to compare malaria to percent changes in 

NDVI (Table 18), MIR reflectance (Table 19), and TIR emittance (Table 20).   
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Table 18. Pearson correlation results between incidence of malaria and percent changes 

in the NDVI immediately after hurricanes (2-1) and one month after hurricanes (3-2) for 

the districts of Belize, Stann Creek, and Toledo.  Significance is measured at the p ≤ 0.05 

value. 

 

Model NDVI  

2-1 

Belize 

NDVI  

3-2 

Belize 

NDVI  

2-1 

Stann Creek 

NDVI  

3-2 

Stann Creek 

NDVI  

2-1 

Toledo 

NDVI  

3-2 

Toledo 

Malaria 

Pearson Corr 

 

-0.55 

 

0.52 

 

0.53 

 

0.21 

 

-0.48 

 

0.38 

Significance  0.26 0.29 0.28 0.69  0.33 0.46 

 

 

Table 19. Pearson correlation results between incidence of malaria and percent changes 

in the mid-infrared (MIR) reflectance immediately after hurricanes (2-1) and one month 

after hurricanes (3-2) for the districts of Belize, Stann Creek, and Toledo.  An asterisk (*) 

indicates significance at the p ≤ 0.05 value. 

 

Model MIR 

2-1 

Belize 

MIR 

3-2 

Belize 

MIR 

2-1 

Stann Creek 

MIR 

3-2 

Stann Creek 

MIR 

2-1 

Toledo 

MIR 

3-2 

Toledo 

Malaria 

Pearson Corr 

 

0.14 

 

-0.59 

 

-0.26 

 

-0.23 

 

  0.91* 

 

-0.17 

Significance 0.79  0.22  0.63  0.67 0.01  0.75 

 

 

Table 20. Pearson correlation results between incidence of malaria and percent changes 

in the thermal (TIR) emittance immediately after hurricanes (2-1) and one month after 

hurricanes (3-2) for the districts of Belize, Stann Creek, and Toledo.  An asterisk (*) 

indicates significance at the p ≤ 0.05 value. 

 

Model TIR 

2-1 

Belize 

TIR 

3-2 

Belize 

TIR 

2-1 

Stann Creek 

TIR 

3-2 

Stann Creek 

TIR 

2-1 

Toledo 

TIR 

3-2 

Toledo 

Malaria 

Pearson Corr 

 

 -0.93* 

 

0.12 

 

-0.05 

 

 -0.86* 

 

-0.37 

 

0.51 

Significance 0.02 0.82  0.91 0.03  0.47 0.30 

 

 

 Pearson correlation tests found that, for malaria, the indicators that demonstrated 

significance were the MIR measurements taken from Toledo immediately after a 

hurricane (r = 0.91, p < 0.05), changes in the TIR immediately after a hurricane in Belize 
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district (r = -0.93, p < 0.05), and changes in the TIR one month after a hurricane in Stann 

Creek district (r = -0.86, p < 0.05).   

 

Table 21. Pearson correlation results between incidence of dengue fever and percent 

changes in the NDVI immediately after hurricanes (2-1) and one month after hurricanes 

(3-2) for the districts of Belize, Stann Creek, and Toledo.  Significance is measured at the 

p ≤ 0.05 value. 

 

Model NDVI  

2-1 

Belize 

NDVI  

3-2 

Belize 

NDVI  

2-1 

Stann Creek 

NDVI  

3-2 

Stann Creek 

NDVI  

2-1 

Toledo 

NDVI  

3-2 

Toledo 

Dengue fever 

Pearson Corr 

 

0.35 

 

0.37 

 

0.45 

 

0.16 

 

-0.07 

 

-0.32 

Significance 0.50 0.47 0.37 0.80  0.90  0.54 

 

 

Table 22. Pearson correlation results between incidence of dengue fever and percent 

changes in the mid-infrared (MIR) reflectance immediately after hurricanes (2-1) and one 

month after hurricanes (3-2) for the districts of Belize, Stann Creek, and Toledo.  

Significance is measured at the p ≤ 0.05 value. 

 

Model MIR 

2-1 

Belize 

MIR 

3-2 

Belize 

MIR 

2-1 

Stann Creek 

MIR 

3-2 

Stann Creek 

MIR 

2-1 

Toledo 

MIR 

3-2 

Toledo 

Dengue fever 

Pearson Corr 

 

0.17 

 

0.43 

 

-0.48 

 

-0.05 

 

-0.08 

 

0.03 

Significance 0.75 0.39  0.33  0.93  0.88 0.96 

 

 

Table 23. Pearson correlation results between incidence of dengue fever and percent 

changes in the thermal infrared (TIR) emittance immediately after hurricanes (2-1) and 

one month after hurricanes (3-2) for the districts of Belize, Stann Creek, and Toledo.  

Significance is measured at the p ≤ 0.05 value. 

 

Model TIR 

2-1 

Belize 

TIR 

3-2 

Belize 

TIR 

2-1 

Stann Creek 

TIR 

3-2 

Stann Creek 

TIR 

2-1 

Toledo 

TIR 

3-2 

Toledo 

Dengue fever 

Pearson Corr 

 

-0.43 

 

-0.14 

 

-0.51 

 

-0.09 

 

0.37 

 

-0.67 

Significance  0.47  0.80  0.24  0.86 0.47  0.15 
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 Pearson correlation tests did not find any significant correlations between the 

incidence of dengue fever and changes in NDVI, MIR, or TIR by district for the analysis 

period following hurricane events (Tables 21, 22, and 23).   
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CHAPTER FOUR 

 

Discussion 

 

 

El Niño Southern Oscillation and Hurricane Activity 

 

 In this study, I found that hurricane activity and intensity for the Atlantic and for 

the Yucatan can be predicted for with statistical significance for El Niño and La Niña 

years, given certain SOI values.  This information, in conjunction with more precise and 

comprehensive parameters, can be used to predict future El Niño-La Niña intensities.  

The El Niño Southern Oscillation (ENSO) is a consistent cyclical phenomenon that can 

be determined to have had historical impacts on the world climate, and will likely 

continue to exert increasing influence with future climate change (Boer et al. 2004; Cane 

2004, 228).  The influence of ENSO on increasing and decreasing the frequency and 

intensity of the hurricane season that impacts the Yucatan Peninsula can influence the 

health of the people of Belize.  Therefore, more studies should assess climatic predictive 

factors that could be utilized to forecast hurricane impacts as a form of environmental 

public health prophylaxis.   

 The SOI measurements of air pressure deviations show a significant estimate of 

ENSO impacts on hurricane activity in the Atlantic.  For the Atlantic, the predicted range 

of number of hurricanes was 7.82 and 14.0 storms for any year in which the annually 

averaged SOI value was above -1.02, defined as La Niña years.  For years in which the 

SOI was below -1.02, El Niño years, the numbers of hurricanes ranged from 3.50 and 

7.50.  Hurricane intensities were also related to SOI values with more intense hurricanes 

during La Niña versus El Niño years.  
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 My analysis also showed that the Yucatan Peninsula is impacted by hurricanes 

similar to the Atlantic, though with a slightly different SOI threshold value.  For those 

years in which the SOI value was above -0.90, La Niña years, there was an average of 

1.31 tropical storms and 1.06 defined hurricanes, which had an average Saffir-Simpson 

rating of 1.95.  For those years in which the SOI was below -0.90, El Niño years, the 

average numbers of tropical storms and hurricanes were 0.14 and 0.14, respectively, with 

an average Saffir-Simpson rating of 0.29.   

 This analysis confirms current understanding of El Niño and La Niña conditions 

and their impacts on hurricane activity (Anyamba et al. 2006).  El Niño conditions tend to 

reduce hurricane activity, while hurricane activity is expected to increase during La Niña 

conditions, which is confirmed by the study.  Although traditionally years are  separated 

into El Niño and La Niña conditions around the 0.00 SOI value, this study finds that 

analyzing at a different SOI level can also demonstrate statistically important levels of 

hurricane activity.  This can be used to predict future hurricane seasonality and inform 

future researchers on the spatial variability of ENSO as a mesoscale meteorological 

event.   

 Recent studies have also attempted to predict El Niño conditions based on sea 

surface temperature and air pressure deviations within the Pacific (Climate Prediction 

Center 2009).  These data indicates that, given certain parameters of air pressure 

deviations as measured by the SOI, future predictions of hurricane seasons in the Atlantic 

can be made regarding the frequency and intensity of the seasons.   

 The influence that the ENSO can have on specific countries such as those located 

on the Yucatan Peninsula reveals the type of hurricane seasons that can be expected given 
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SOI parameters.  This type of analysis can also be adapted to address specific hazard 

management and mitigation policies.  This foreknowledge of an intense or weak 

hurricane season can also contribute to early preparation for hurricane damages and 

resulting disease problems, not only vector-borne but also water-borne and food-borne 

illnesses.   

 

Hurricane Impacts Through Satellite Analysis 

 

 Recent development and access to satellite imagery has enabled scientists to use 

remotely-sensed data from Landsat satellites to determine impacts of hurricanes on 

flooding, erosion, and changes in vegetation (Rodgers et al. 2009, David 2005).  For this 

reason, the impacts of hurricanes were assessed through satellite analysis.  Satellite 

analysis enabled calculations-based change detection in terms of land cover and 

vegetation cover changes, changes in water cover, and changes in temperature.  The two 

time periods chosen for this study were determined to detect immediate and lasting 

impacts of hurricane activity.  Because hurricanes can change vegetation for years 

following, vector habitats are also impacted.  However, the specific detection of habitat 

qualities such as water impoundment and temperature are likely to be diluted by other 

environmental factors as time elapses following the hurricane disturbance. 

 Data calculated from Landsat-5 and Landsat-7 indicated that the impacts of 

hurricanes on Belize were evident for at least one month following the hurricane events.  

Following a hurricane, loss of vegetation (as measured by the NDVI) was substantial, and 

this vegetative cover loss continued one month after the hurricane, although to a lesser 

extent.  Mid-infrared reflectance is sensitive to soil and plant moisture conditions, and 

can be used to differentiate between wet and dry soils (Jensen 2007, 205).  This means 
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that MIR reflectance would decrease following the hurricane, indicating increased water 

presence.  The decrease in MIR continued one month after the hurricane indicating areas 

of water inundation (Table 12).  This could be because a result of increased vegetative 

loss, allowing for increased water ponding locations to form.  Thermal infrared emittance 

decreased following a hurricane.  This is in line with the idea that there was increasing 

water deposition on the surface of land areas.  Water, which has a higher latent heat than 

soil, would tend to decrease thermal emittance.  Another reason for the drop in thermal 

emittance is the denuding of vegetation.  By removing vegetation across a certain area, 

the emissivity of the area decreases, causing a drop in thermal emittance (Jensen 2007, 

205).  The areas of water deposition continued to persist one month after the hurricane, 

although to a lesser extent because of evaporation.  This is confirmed by the TIR 

measurement taken one month after the hurricane event.   

 The changes detected by the NDVI, MIR, and TIR were able to pick out areas that 

were affected by hurricanes.  While this does not directly correlate to disease, 

understanding mosquito life cycles and habitat preferences can help determine which 

places are more susceptible to mosquito habitat formation.  This can be important in 

future analysis in order to determine which land use areas (for example, agricultural, 

urban, or forest preserves) are more affected by hurricane activity.  By understanding 

which areas are disproportionately affected by hurricane activity, targeted mitigation 

efforts can reduce or prevent epidemics.   

 Hurricanes demonstrate their influence through a few major indicators.  Changes 

in vegetation following a hurricane, a result of high winds and heavy rainfall, are the 

most evident change that occurs.  The amount of rainfall deposited during hurricanes can 
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then change the surface reflection in the mid-infrared range, as well as the temperature 

emitted from the surface.  These three indicators – vegetation, mid-infrared reflection, 

and surface temperature changes – have shown to be the best indicators for measuring 

hurricane impacts on land cover changes and the resulting influence they demonstrate on 

mosquito populations and disease incidence.  Other studies have utilized similar or the 

same satellite indices to determine relationships to disease incidence.  Thompson et al. 

(1999, 2-7) studied the role that NDVI plays in predicting malaria infections in Gambia.  

Hay, Snow, and Rogers (1998, 13-18) studied the relationship between malaria incidence 

in Kenya and remotely-sensed monthly NDVI, mid-infrared (MIR) radiance data, and 

land surface temperature (LST).  Rogers et al. (2006, 183-211) studied the role of NDVI, 

MIR, and LST on the incidence of dengue fever.   

 

Disease and Satellite Analysis 

 

Country-based Analysis 

 

 Understanding the direct and indirect impacts of hurricane activity on land cover, 

vegetation cover, water ponding, and surface temperature is important for assessing 

relationship between hurricanes and vector-borne diseases incidence.  The role of 

hurricanes in mosquito habitat formation especially helps us to understand fluctuations in 

malaria and dengue fever, which are both endemic to the country of Belize.  By analyzing 

the changes in the various satellite index values with the incidence of disease, this 

provided the best proximate analysis of hurricane-disease interactions.  

 The study found that malaria was best explained by changes occurring 

immediately after the hurricane rather than persistent changes caused by hurricanes.  The 

relationship between the percent changes in NDVI immediately after a hurricane and the 
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inverse of the incidence of malaria demonstrated a strong correlation between vegetation 

removal and malaria.  Whether vegetation removal leads directly to mosquito habitat 

formation is not clear from these results, however it does implicate disturbance of 

vegetation as an important feature of disease incidence. 

 For dengue fever, incidence was best explained by changes measured in the 

thermal infrared range one month after hurricanes.   

 The results of the regression analysis indicate that, for Anopheline mosquitoes as 

malarial vectors may be dependent on habitat since the strongest correlation exists 

between changes in NDVI.  However, for Aedine species, as dengue fever vectors, is 

correlated to surface temperatures following disturbance.  This is consistent with current 

understandings of the species respective life histories traits.  Anopheline mosquitoes lay 

their eggs in shallow pools.  The loss of vegetation cover, which would create new areas 

of ponding, as well as immediate inundation of previously dry areas, would result in an 

increase in Anopheles spp. mosquito reproduction.  Aedine mosquitoes, however, are 

container species and can lay their eggs in dry areas.  These eggs remain quiescent until 

the areas get inundated by rain.  Temperatures cool slightly as a result of rainfall, 

resulting in Aedes larval development which was observed for most hurricane events  

(Fig 5).   

 

District-based Analysis 

 

 For the analysis of satellite index changes and diseases incidence, different 

districts of Belize analyzed showed different sensitivities, possibly indicating variable 

environmental, cultural, or social factors.  The Pearson correlation determined that a 

negative correlation existed between immediate changes in the thermal infrared emittance 
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and the incidence of malaria for Belize.  This is explained by the temperature required for 

growth of mosquito larva in standing water coupled with the transience of water pools in 

a developing area.  For Stann Creek a negative correlation existed between changes in the 

TIR one month after hurricane and malaria.  The time difference between the Belize and 

Stann Creek districts is explained because there is less development and therefore 

likelihood of standing water to persist longer in this district.  The Toledo district, 

however, showed a strong positive correlation between changes in mid-infrared 

reflectance taken immediately after a hurricane and malaria.  This is a direct indicator of 

the presence of standing water in the area, and thus increased mosquito habitat. The lack 

of any significant correlation between satellite index change and dengue fever by districts 

is related to the low number of cases by district.   

 Environmental, cultural, and social issues shed light on the results of the Pearson 

correlation as to the differences within the districts.  These factors, including vegetation 

cover, development, and population, have both direct and indirect impacts on disease 

incidence.  The district of Belize has the highest level of development, higher than any of 

the other two districts.  This helps explain the trends with disease incidence.  Malaria is a 

disease that is commonly found in areas with high vegetation.  Studies have shown that 

for Belize, Anopheles mosquitoes preferentially live in areas with forest cover and 

agricultural lands, because of the availability of habitat (Hakre et al. 2004).  

Development, with its resultant removal of natural vegetation in favor of pavement and 

housing areas, limits the natural habitat of the Anopheles mosquito.   

 Stann Creek exhibits a similar pattern as the district of Belize because of its 

increasing development.  As Stann Creek moves from rural areas toward more urban 
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areas, increasing development affects mosquito populations.  Removal of forested areas 

to make way for human habitation can reduce habitats for Anopheles mosquitoes. 

 The district of Toledo exhibits the behavior that one would expect from a mostly 

rural area.  Located in the southernmost part of Belize, adjacent to Guatemala, little 

development has occurred in the area for a few reasons.  One main reason is that the main 

inhabitants of the area are descendents of the Mayan Indians, who tend to live traditional 

agricultural lifestyles.  Another reason is the success of ecotourism in the area through 

the promotion of a natural forests and Mayan ruins.  Because of this, much of the area is 

still undisturbed natural vegetation.  This also means ample Anopheles habitat and the 

potential for high numbers of Aedes mosquitoes, given rainfall.   

 

Table 24. Percentage of population of Belize with access to sewer systems in 2004 

 

District Percent with access 

Belize 89.6 

Stann Creek 57.4 

Toledo 24.8 

Total country 60.8 
 Source: Epidemiology Unit, Ministry of Health, 2008 

 

 These results also indicate the ability of development to serve as a buffer against 

climatic influences.  In many cases, increasing development also leads to increased 

sewage and drainage systems, which would have immeasurable benefits during periods of 

heavy rainfall (Table 24).  The removal of water ponds, coupled with residual spraying 

around homes and buildings in developing areas, reduces the chances of mosquito vectors 

surviving and becoming transmitters of disease.  These types of behaviors, including 

drainage, residual spraying, and removal of potential areas that might be susceptible to 
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inundation, can serve to limit Anopheline mosquito habitat and reduce the incidence of 

malaria within the population.   

 However, development can also serve as a confounding factor, affecting the 

relationship between disease and physical environmental characteristics.  Higher 

population densities as a result of increased development would promote disease 

incidence.  However, increased access to medical care, as well as preventative measures 

taken to reduce disease, would limit the spread of vector-borne diseases in those areas.  

When considering thermal emittance, increased housing for a growing population would 

affect the emittance of an area.  By considering only environmental factors, the results of 

the analysis fail to consider the multiple other reasons for differences within disease 

incidence between districts.  This study reveals that, while beneficial in some ways, in 

this case, analysis based solely on physical changes detected by satellites was not a good 

indicator for disease for the districts of Belize and Stann Creek.  For Toledo, however, 

the limited development and high levels of forest and agricultural lands does show that 

physical changes can serve as a major indicator for disease.  

 Although correlation and regression analyses for dengue fever yielded no 

significant results, this does not diminish the prevalence of dengue fever in the country 

nor lessen the need to understand the behavior of Aedes mosquitoes in the transmission of 

the dengue virus.  Considered a container species, Aedes mosquitoes are able to survive, 

and thrive, in areas with garbage collections, empty buckets, tires, and tree holes, among 

other places.  This type of behavior indicates that Aedine species would survive better 

near developing or developed areas, where rainfall can result in inundation and 

development of mosquito larvae.  This is even reflected in the raw incidence rates of 
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dengue fever for the different districts of Belize, Stann Creek, and Toledo (Table 11).  

Although not strictly measurable by satellite analysis, actions can be taken to limit the 

population of Aedes mosquitoes, and therefore, the incidence of dengue fever, within the 

population through residual spraying and removal of potential habitats such as open 

containers, tires, and other garbage areas. 
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CHAPTER FIVE 

 

Conclusions 

 

 

 Climate and vector-borne disease are related in some way.  The sharpness of this 

relationship was very difficult to define in this study, however.  Nevertheless, climate has 

been shown to have an affect on countries, regardless of size.  Large-scale climatic 

phenomena such as the El Niño Southern Oscillation, the North Atlantic Oscillation, and 

the Pacific Decadal Oscillation have all demonstrated impacts world-wide.  Small 

countries, like Belize, are exposed to the same climatic influences. 

 Considering this, climate change can indeed affect small countries.  Aside from 

the changes in global surface temperature, increases in the variability of climatic 

phenomena can have potentially disastrous effects on small countries, which often have 

limited management capabilities due to their size.  As globalization and urbanizing 

development continue world-wide, more attention needs to be given to the potential 

hazards this creates in an epidemiological sense. 

 Moderate resolution satellites, such as the Landsat, have the advantage of being 

both inexpensive and widely available.  They have provided long-term useful data for 

large-scale studies.  However, use of these moderate resolution satellites for studies of 

smaller countries is not as proficient as hoped.  Although the capabilities within the 

satellites allow for similar tests as higher-resolution satellites, problems such as cloud 

cover, missing data, or sensor problems can yield meaningless results.   

 The use of these satellites in epidemiological capabilities is not to be underscored, 

however.  Satellite data alone is not a good predictor of disease within countries.  
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However, because of the temporal resolution of the satellites, basic predictors of disease 

(such as changes in land surface temperature or amount of rainfall within a country in a 

given time period) can be determined and monitored through the use of these satellites, 

and can be useful in predicting and preventing future epidemics.   
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