
ABSTRACT

Theoretical Studies of LHC Physics in the Context of Exact Amplitude-Based
Resummation Realized by MC Methods

Aditi Mukhopadhyay, Ph.D.

Advisor: B.F.L. Ward, Ph.D.

With the announcement [1] of the Higgs Boson candidate in the LHC run,

it is now required to study the properties of the new particle as well as probe the

new physics. Therefore the era of the sub-1% precision on processes such as Z and

W production is upon us. In order to study the Standard Model and beyond more

rigorously a more precise Monte Carlo simulation is required. With the previous

comparisons with the FNAL data it was seen that HERWIRI1.0 gives a precise fit

to the data.

In this thesis we present the application of the exact amplitude-based resum- 

mation in quantum field theory to precision QCD calculation, by MC event gener- 

ator methods using HERWIRI1.031 as required by the LHC. Here we discuss the

recent results with the interplay of the attendant IR-Improved DGLAP-CS theory

and the precision of the exact NLO matrix-element matched parton shower MC’s in

the HERWIG6.5 environment, the HERWIRI1.031, determined by the recent LHC

experimental observations.

The agreement to the new precise data from the LHC is encouraging. For

completeness, we also discuss the theoretical perspectives of the exact amplitude-



based resummation theory. We present the step towards the sub-1% QCD⊗EW

total theoretical precision regime for the LHC physics of the Standard model and

beyond.
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CHAPTER ONE

Introduction

The successful LHC run during 2010− 2012 has produced a large collection of

data samples of the Standard Model processes like the heavy gauge boson production

and the decay to lepton pairs l l̄ along with the announcement [1] of the Brout-

Englert-Higgs (BEH) [2] boson candidate. This has produced the necessity of

prediction of QCD processes at precision tag of 1% or better now more than ever.

In order to obtain this desired level of accuracy the infrared (IR) improved

DGLAP-CS [3, 4] theory [5, 6] realization with HERWIRI1.031 [7] was done by

implementing the set of IR improved DGLAP kernels in HERWIG6.5 [8]. It has

been argued that this process allows better than 1% theoretical precision [9, 10].

In Ref. [10] the residuals of hard photon and hard gluons are to be simulta-

neously calculated in the powers of α and αs in the perturbation. These residuals

require the exact evaluations of higher point and higher loop Feynman diagrams.

Using the ”Chinese Magic” [11, 12, 13, 14] polarization scheme originally developed

for real emission of massless gauge particles, it is possible to get a more accurate

evaluation of the above.

In this thesis we give a comparison of the exact amplitude-based resummation

theory with the LHC data. In addition we show the theoretical implications, as

realized via MC event generator, of our results. To set the stage, we begin with a

review of the relevant background information, the standard model and the standard

quantum field theoretic methods used to investigate it. We then develop the theory

we use, and present our results and implications in Chapters 2–6. Chapter 7 sums

it up. The Appendices contain relevant technical details.
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Figure 1.1. Standard Model particles [15].

1.1 Standard Model

The Standard Model is a theory of the strong, weak, and electromagnetic

interactions of the fundamental particles. This SU(3)×SU(2)×U(1) gauge theory

can be considered well established. The structure of this theory is similar to that of

the gauge theories coupled to fermions. Fig. (1.1) gives the summary of elementary

particles in the Standard Model. It contains the quarks and leptons which are spin

1

2
. The quarks have both charge and color. The electro-weak leptons do not have

any color charge. There are three generations each consisting of four particles with

different masses but identical quantum numbers. The three generations in order of

increasing mass are: u

d


L

, uR, dR,

 νe

e


L

, eR,

 c

s


L

, cR, sR,

 νµ

µ


L

, µR,

 t

b


L

, tR, bR,

 ντ

τ


L

, τR,

2



where L and R are the left and the right handed components defined as:

ψL =
1− γ5

2
(1.1)

ψR =
1 + γ5

2
(1.2)

where ψ is a lepton or a quark.

In the Standard Model the force carriers are the photon γ, the gauge bosons

W+, W−, Z, and gluons which are spin 1. The Higgs particle with spin 0 gives

masses to fermions and heavy gauge bosons and acts a force carrier. The recent

observation [1] of the Higgs like particle at CERN has solidified the proof of the

theory.

The photon and the gluons are massless indicating conservation of correspond-

ing symmetry charges. The bosons W+, W−, Z are massive indicating the corre-

sponding symmetries to be broken. This breaking is spontaneous to preserve renor-

malizability.

1.2 Gauge Symmetries

The interactions are dictated by symmetry principles. In order to explain

the connection between the symmetries and conservation laws we need to construct

the Lagrangian. With each Lagrangian there is associated a corresponding set of

Feynman rules.

1.2.1 Noether’s Theorem

Consider the Lagrangian

L = iψ̄γµ∂
µψ −mψ̄ (1.3)

where each of the four components of ψ and ψ̄ is regarded as an independent field

variable. The above Lagrangian (1.3) is invariant under phase transformation

ψ(x)→ eiαψ(x) (1.4)

3



where α is a real constant. The family of phase transformations, U(α) ≡ eiα, forms

the unitary Abelian group U(1). Through the Noether’s theorem, U(1) invariance

implies the presence of a conserved current. Under the infinitesimal transformation,

ψ → (1 + iα)ψ (1.5)

the invariance requires the Lagrangian to be stationary.

0 = δL (1.6)

which reduces to the form of the conserved current equation:

∂µj
µ = 0, (1.7)

where

jµ =
ie

2
(
∂L

∂(∂µψ)
ψ − ψ̄ ∂L

∂(∂µψ̄)
) = −eψ̄γµψ. (1.8)

From (1.7) it follows that the charge

Q =

∫
d3xj0 (1.9)

is also a conserved quantity because of the U(1) invariance.

1.2.2 U(1) Local Gauge Invariance

Generalizing (1.5) into the transformation

ψ(x)→ eiα(x)ψ(x) (1.10)

where α(x) is both space and time dependent. This is the local gauge invariance.

However the Lagrangian (1.3) is not invariant under the transformation (1.10). The

second term in the Lagrangian is invariant. However, since the derivative of ψ does

not obey (1.10), the invariance of L is broken.

In order to insist on imposing the invariance of the Lagrangian, the covariant

derivative is defined, which transforms like ψ itself under the transformation (1.10)

Dµψ → eiα(x)Dµψ. (1.11)

4



Defining the covariant derivative as

Dµ ≡ ∂µ − ieAµ, (1.12)

the extra term produced due to the transformation of the derivative is canceled due

to the transformation properties of the vector field Aµ. Aµ transforms as

Aµ → Aµ +
1

e
∂µα. (1.13)

Therefore, the total Lagrangian is

L = iψ̄γµDµψ −mψ̄ψ = ψ̄(iγµ∂µ −m)ψ + eψ̄γµψAµ. (1.14)

If the new vector field is considered to be the photon field, the Lagrangian should

contain a kinetic term for the photon field which can only have field strength tensor,

Fµν = ∂µAν − ∂νAµ (1.15)

which leads to the final Lagrangian of quantum electrodynamics (QED)

L = ψ̄(iγµ∂µ −m)ψ + eψ̄γµψAµ −
1

4
FµνF

µν (1.16)

which describes the quantum electrodynamics.

QED is the theory that describes the electromagnetic interactions of the quarks

and the leptons. QED is the simplest example of a local gauge theory as it has only

one gauge particle namely the photon.

1.2.3 The Non-Abelian Gauge Invariance

The free Lagrangian is denoted by

L0 = q̄j(iγ
µ∂µ −m)qj (1.17)

where the qi’s are the three color fields. It is desired that L0 is invariant under the

transformation

q(x)→ Uq(x) ≡ eiαa(x)Taq(x) (1.18)

5



where Ta with a = 1, ..., 8 are the set of independent traceless matrices that generate

color transformations. In order for the Lagrangian (1.17) to be stationary under the

infinitesimal transformation of (1.18) we replace the derivative in the Lagrangian

with the covariant derivative

Dµ = ∂µ + igTaG
a
µ (1.19)

where Ga
µ transforms as

Ga
µ → Ga

µ −
1

g
∂µαa − fabcαbGµν

c . (1.20)

Therefore the complete QCD Lagrangian is given by

L = q̄(iγµ∂µ −m)q − g(q̄γµTaq)G
a
µ −

1

4
Ga
µνG

µν
a (1.21)

where Gµ represents the vector gluons, q the quarks and the g specified coupling -

which describes quantum chromodynamics.

Although it is well known that electromagnetic interactions bind the positro-

nium, it is also evident that it cannot bind the quarks to hadrons. A strong force

overrules the effects of the electromagnetic repulsion in order to bind the quarks

in a hadron. Thus the color charge is introduced which makes the strong binding

possible. Gluons are the quanta of the color field that binds the quarks in nucleons.

To repeat, the theory explained is called quantum chromodynamics (QCD). As seen

above it is a color gauge theory. Quarks carry color as well as electric charge. There

are three colors - Red, Green, and Blue. Color interactions can be assumed to be a

copy of the electromagnetic interactions with the replacement of
√

4πα →
√

4παS

in each vertex and the introduction of color factors. The exchange of colors occur

through eight gluons. Gluons interact with each other unlike photons in QED. At

short distances color interactions can be computed using perturbative techniques

similar to QED as αS is sufficiently small there.

6



1.2.4 Spontaneous Symmetry Breaking

For the Lagrangian, consider

L =
1

2
∂µφ∂

µφ− V (φ) (1.22)

where the potential is given by

V (φ) =
1

2
m2φ2 +

λ

4
φ4. (1.23)

In case of Fig. (1.2 a) where m2 > 0 , L is invariant under the symmetry operation

which replaces φ by −φ. The conditions of extrema

∂V

∂φ
= m2φ+ λφ3 = 0 (1.24)

and

∂2V

∂φ2
= m2 > 0 (1.25)

show that φ = 0 is a minima. It simply describes a scalar field with mass m. φ is a

self interacting field and the ground state (vacuum) corresponds to φ = 0. It obeys

the reflection symmetry of the Lagrangian. In the case of Fig (1.2 b) m2 < 0. Now

the Lagrangian has the mass term of the wrong sign for the field φ, since the relative

sign of φ2 and the kinetic energy term is positive. Let m2 = −µ2 where µ2 > 0. Now

for the extrema

∂V

∂φ
= −µ2φ+ λφ3, (1.26)

which gives φ = 0 or φ = ±
√
µ2

λ
and

∂2V

∂φ2
= −µ2 + 3λφ2 < 0 at φ = 0 and

∂2V

∂φ2
= −µ2 + 3λ

µ2

λ
= 2µ2 > 0 at φ = ±

√
µ2

λ
. In this case, therefore, there are

two minima at φ = ±v where v =

√
µ2

λ
. Here also the L is symmetric under

φ → −φ but the ground state does not possess the symmetry of the Lagrangian-

this is called Spontaneous Symmetry breaking. Define the vacuum expectation value

as < 0|φ|0 >. Now writing φ→ φ+ v we get

< 0|φ|0 >→< 0|φ|0 > + < 0|v|0 >= v. (1.27)
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Figure 1.2: The potential V (φ) =
1

2
m2φ2 +

λ

4
φ4 (a) m2 > 0 the Unique Vacuum (b)

m2 < 0 False and True Vacuum [15].

The above is in the case of the discrete symmetry φ → −φ. A similar approach is

used for continuous symmetry with the spontaneous breaking of the global symmetry.

Defining a complex scalar field φ such that φ+ = φ1 + iφ2 and φ− = φ1 − iφ2, the

potential is defined as

V (φ1, φ2) = −1

2
µ2(φ2

1 + φ2
2) +

λ

4
(φ2

1 + φ2
2)2, (1.28)

where µ2, λ > 0 and φ+φ− = φ2
1 + φ2

2. Therefore the total potential is

V (φ) = −1

2
µ2φ+φ− +

λ

4
(φ+φ−)2. (1.29)

Since the potential is invariant under phase transformation, let φ+ → eiαφ+ and

φ− → e−iαφ−. Let
∂V

∂φi
= 0 which implies φi = 0 or φ2

1 + φ2
2 =

µ2

λ
= v2. Therefore

there is now a circle of minima of potential V (φ) in the φ1, φ2 plane of radius

v. Therefore there are an infinite number of stable equilibrium points such that

< φ1 >
2 + < φ2 >

2= v2 (Fig. (1.3)).
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Figure 1.3. The Mexican hat potential [15].

1.2.4.1. Goldstone Theorem: Spontaneous breaking of a continuous symme-

try is associated with one or more massless excitations also called the Goldstone

Bosons.

1.2.5 Higgs Mechanism

Let us consider the simplest case that is the U(1) gauge symmetry. The

Lagrangian has to be invariant under the transformation φ → eiα(x)φ, therefore

the derivative is replaced by Dµ = ∂µ + ieAµ. Now constructing the combination

φ+ = φ1 + iφ2 and φ− = φ1 − iφ2 as earlier, the Lagrangian is

L = (D∗µφ
+)(Dµφ−) +

µ2

2
φ+φ− − λ

4
(φ+φ−)2 − 1

4
FµνF

µν . (1.30)

Minimizing the potential we get µ2 = λv2, < φ1 >= v and < φ2 >= 0 where

v = constant. On simplifying the kinetic term, the mass term of the gauge field

is obtained. After symmetry breaking there is an extra degree of freedom. The

Goldstone boson actually does not appear in the theory. This apparent extra degree

of freedom is actually spurious because it corresponds only to the freedom to make

a gauge transformation. The unwanted massless Goldstone boson has been turned

into the badly needed longitudinal polarization of the massive gauge particle, i.e. the

Goldstone boson is eaten by the gauge boson which is called the Higgs Mechanism.
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1.2.6 Masses of the Gauge Bosons

We want to formulate the Higgs Mechanism so that W± and Z0 become mas-

sive and the photon remains massless. To do this four real scalar fields φi are

introduced. So, SU(2) is taken which gives the weak interaction, and abelian U(1)

is put in by hand to allow for the electromagnetic interaction. Thus a SU(2)×U(1)

gauge invariant term for the scalar fields is added to the Lagrangian. To keep the

term gauge invariant, φi must belong to an SU(2)× U(1) multiplet. Introducing a

new quantum number, the weak hypercharge, Y, the covariant derivative is defined

as

Dµ = ∂µ + i
g

2
~T · ~Wµ + i

g′

2
Y Bµ. (1.31)

The most economical choice of φi is to arrange the four fields in an isospin doublet

of weak hypercharge Y = 1.

φ =

 φ+

φ0

 , (1.32)

with φ+ ≡ (φ1 + iφ2)/
√

2 and φ0 ≡ (φ3 + iφ4)/
√

2 which is the original choice made

by Weinberg [4]. The most appropriate choice for < φ0 > is

< φ >=
1√
2

 0

v

 . (1.33)

In order to determine the masses of the gauge Bosons we calculate (Dµφ)†(Dµφ).

This gives the masses of the W± bosons as
gv

2
, the Z boson as

v

2

√
g2 + g′2 and the

photon as 0 where

mW

mZ

= cos(θ)

cos(θ) =
g√

g2 + g′2
. (1.34)

The angle θ called the Weinberg angle is the weak mixing angle given by [4]

sin2(θ) = 0.23 (1.35)
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For SU(2)×U(1) couplings, the two relevant quantum numbers are T3 and Y . Now,

φ0 is neutral, therefore, Q = 0. Here, T3 = −1

2
and Y = 1. Therefore

Q = T3 +
Y

2
. (1.36)

1.2.7 Masses of the Fermions

Under weak interaction the left handed neutrino and electron form a doublet,

i.e.,

 νe

e


L

with YeL = −1, and the right chiral electron under SU(2) forms a

singlet where YeR = −2.

The Lagrangian in this case is given by

L = −Ge

(ν̄e, ē)L

 φ+

φ0

 eR + ēR(φ−, φ̄0)

 νe

e


L

 (1.37)

The symmetry is spontaneously broken by using
1√
2

 0

v + h(x)

 where the neu-

tral h(x) is the only remaining part of the Higgs doublet. Substituting and choosing

Ge such that me =
Gev√

2
generate the required electron mass. Similarly a Lagrangian

can be written for the quarks to generate their mass.1 A deficiency to the theory

is that the mass of the neutral Higgs mh is not predicted by the theory. From the

definition of the potential it is found that, m2
h = v2λ/2.

1.3 Calculations in Quantum Field Theory

In the accelerated beam experiments to probe the behaviors of the elementary

particles, two particles are collided, whose momenta are known and the end product

is observed. The final state is expressed in terms of the cross section. The cross

section is an inherent property of the colliding particles. In order to define the cross

1 The explanation of the Standard Model is based on ”Quarks an Leptons” by Halzen and
Martin

11



section, we consider a target at rest of particle type A, with density ρA. The target

is bombarded with particles type B with density ρB and velocity v. If the lengths of

the bunches of the particles be defined as lA and lB, then the cross section is defined

as

σ ≡ Number of scattering events

ρAlAρBlBA
, (1.38)

where A is the effective area of the beams. The symmetry in A and B means

that either the target could be rest or it could also be done in any other reference

frame.2 The above quantity has the units of area. Now assuming that the range

of interactions between the particles and the width of the individual particles are

small in comparison to the beam diameter ρA and ρB can be considered constant,

therefore we get

Number of events = σlAlB

∫
d2xρA(x)ρB(x). (1.39)

Now if the densities are constant, for an effective area A of the beams, we can write

Number of events =
σNANB

A
, (1.40)

where NA and NB are the total number of the particles A and B respectively. Now,

we define the differential cross section dσ
d3p1...d3pn

as the quantity which, when inte-

grated over small d3p1 . . . d
3pn, gives the cross section for scattering. The formula

for the differential cross section is given by

dσ =
|M|2

F
dQ, (1.41)

where

dQ =
n∏
f=1

d3pf
(2π)3

1

2Ef
(2π)4δ4(p−

∑
pf )

2 This section follows the treatment of ”An Introduction to Quantum Field Theory” by
Michael E. Peskin and Daniel V. Schroeder.
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is the n-body phase space factor and F is the incident flux. Standard Feynman

diagrammatic methods are used to obtain the invariant Feynman amplitude M in

(1.41).

Similarly we define the decay rate of an unstable particle A assumed to be at

rest, decaying to two or more particles as

Γ =
Number of decays per unit time

Number of A particles present
. (1.42)

In the non-relativistic quantum mechanics, near resonance energy E0, using the

Breit-Wigner formula the scattering amplitude is given by

f(E) ∝ 1

E − E0 + iΓ
2

. (1.43)

The cross section therefore satisfies

σ ∝ 1

(E − E0)2 + Γ2

4

. (1.44)

We see that the width of the resonance peak gives the value of the decay rate of the

unstable state mentioned earlier.

1.4 Experimental Tests at the Large Hadron Collider (LHC)

The LHC run from 2010–2012 produced a large amount of data for standard

model processes leading to the discovery of the Brout-Englert-Higgs (BEH) boson

candidate. The searches of the Standard Model Higgs boson were performed at

√
s = 7 and 8 TeV. The searches were performed in the five decay modes γγ, ZZ,

W+W−, τ+τ−, and bb̄. The results are presented in the following Figs. (1.4) -

(1.10) [1]. An excess of events was observed above the expected background, with

a local significance of > 5σ, the mass of which was near 125 GeV, indicating the

presence of a new particle.The mass mX of the observed boson is determined by

observing the γγ and ZZ decay modes, with the former dominating the precision

of the measurement.Now the decay of the new particle to two photons indicates
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that the new particle is a boson with spin 6= 1. These results are consistent, within

uncertainties, with the SM Higgs boson.
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Figure 1.4: Expected local p-values for a SM Higgs boson as a function of mH for the 
decay modes γγ, ZZ, WW , ττ , bb, and their combination [1]
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CHAPTER TWO

Exact Amplitude-Based Resummation Theory

2.1 Resummation

Resummation “is the art of constructing, from a subset of terms in a finite

order perturbation series, an all-orders expression whose expansion gives at least

those terms back” Eric Laenen, Theory Meeting, Nikhef, Sept 14, 2007. For a

perturbation series, one describes the observables as O =
∑

n(cnα
n
S + Rn) where cn

are computed using Feynman diagrams and Rn is the remainder at order n. In order

for this approach to work the following conditions have to be satisfied: O is infrared

safe, Rn has to be very small, αS small enough and cn should be well behaved at

large n.

Resummation is based on the organization of large logarithms in perturbative

expansions and can be explained as

Ô = 1 + αS(L2 + L+ 1) + α2
S(L4 + L3 + L2 + L+ 1) + . . .

= exp (Lg1(αSL) + g2(αSL) + αSg3(αSL) + . . .)C(αS) (2.1)

where αS is the coupling in the theory and L is a logarithm. This process not only

restores the predictive power, it also gives a better description of the physics and

increases the theoretical accuracy. The issue is that the residuals in any practical

application are the limits on precision.

2.2 QED⊗QCD Exponentiation

2.2.1 QED Exponentiation

We therefore focus on the YFS theory [17] as a general rearrangement of the

renormalized perturbation theory based on its IR behavior. We review the YFS

exponentiation to the prototypical process example of the Abelian gauge theory,
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e+e− → f̄f + n(γ), in this section. The process e+(p1)e−(q1) → f̄(p2)f(q2) +

n(γ)(k1, . . . , kn) is represented by

dσexp = e2αReB+2αB̃

∞∑
n=0

1

n!

∫ n∏
j=1

d3kj
k0
j

∫
d4y

(2π)4
eiy(p1+q1−p2−q2−

∑
j kj)+D

β̄n(k1, . . . , kn)
d3p2d

3q2

p0
2q

0
2

(2.2)

where B̃ is the real infrared function, B is the virtual infrared function, β̄n are the

hard photon residuals and where

2αB̃ =

∫ k≤Kmax d3k

k0

S̃(k)

D =

∫
d3k

S̃(k)

k0

(e−iy.k − θ(Kmax − k)). (2.3)

The standard YFS infrared emission factor is

S̃ =
α

4π

[
QfQ(f̄)′(

p1

p1k
− q1

q1.k
)2 + (. . .)

]
(2.4)

if Qf is the electric charge of f in units of the charge of the positron. This result

(2.2) has been used in Ref. [10] to achieve precision predictions for the LEP physics

such as .054% precision on the luminosity process of low angle Bhabha scattering.

2.2.2 QCD Exponentiation

Here we present the QCD exponentiation theory [6, 18, 19]. We use the process

in Fig. (2.1) as a prototypical process. This process contains all the theoretical issues

to form an extension of the original Yennie, Frautschi and Suura (YFS) [17] theory,

QCD soft exponentiation using the MC methods [6]. Using the GPS convention of

Ref. [20] for spinors {u, v, u}, the photon and gluon polarization vectors are given

by

(εµσ(β))∗ =
ūσ(k)γµuσ(β)√

2ū−σ(k)uσ
, (εµσ(ζ))∗ =

ūσ(k)γµuσ(ζ)√
2ū−σ(k)σ(ζ)

(2.5)
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Figure 2.1: The process Q̄′Q→ Q̄′′′+Q′′+n(G) . The four momenta are indicated in the
standard manner: q1 is the four momentum of the incoming Q, q2 is the four momentum
of the outgoing Q′′, etc., and Q = u, d, s, c, b,G.

with β2 = 0, ζ↑ = (1, 0, 0, 1) and ζ↓ = (1, 0, 0,−1). Now the amplitude of the process

Q̄′ᾱ +Qα → Q̄′′′γ̄Q′′γ + n(G) is given by

Mγγ̄(n)αᾱ =
∑
l

M
(n)αᾱ
γγ̄l , (2.6)

where, α, ᾱ, γ, γ̄ are the color indices and M
(n)
l is the contribution toM(n) from the

Feynman diagrams with l virtual loops. On symmetrization, we get

M
(n)
l =

1

l!

∫ l∏
j=1

d4kj
(2π)4(k2

j − λ2 + iε)
ρ

(n)
l (k1, . . . , kl), (2.7)

from which we get that ρ
(n)
l is symmetric in its arguments k1, . . . , kl. λ is the infrared

gluon regulator mass for IR singularities.

We define the virtual IR emission factor SQCD for a gluon of 4−momentum k

for the k → 0 regime of the loop integral, (2.7), as

lim
k→0

k2(ρ
(n)αᾱ
γγ̄1 (k)|leading Casimir contribution − SQCD(k)ρ

(n)αᾱ
γγ̄0 ) = 0. (2.8)
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Here the restriction to the leading color Casimir terms at one loop is introduced.

The virtual gluons are all on equal footing in ρ
(n)
l , therefore we can define the

residual amplitude β1
l (k1, . . . , kl−1; kl) through the equation,

ρ
(n)
l = SQCD(kl) ∗ ρ(n)

l−1(k1, . . . , kl−1) + β1
l (k1, . . . , kl−1; kl). (2.9)

Two properties of the residual amplitude worth mentioning are:

• It is symmetric in its first l − 1 arguments.

• The IR singularities in SQCD for the gloun l are no longer contained in the
residual amplitude.

Continuing iteratively, reapplying (2.9), we finally get the contribution to ρ
(n)
l as

ρ
(n)
l = SQCD(k1) . . . SQCD(kl) +

l∑
i=1

∏
j 6=i

SQCD(kj)β
1
1(ki) + . . .+ βll(k1, . . . , kl), (2.10)

where the virtual gluon residuals βii(k
′
1, . . . , k

′
i) have the following properties:

• they are symmetric functions of their arguments

• they do not contain any of the IR singularities which the product SQCD(k′1) . . .
SQCD(k′i) contains.

We denote βii as βi henceforward. (2.10) is an exact rearrangement of the

contributions of the Feynman diagrams which in turn contribute to ρ
(n)
l . Yennie,

Frautschi and Suura (YFS) [17] have already shown that Feynman diagrammatic

perturbation is still non-rigorous from the constructive quantum field theoretic per-

spective if the above approach is used.

Using (2.10) in (2.6) we get the “YFS representation”

Mn = eαSBQCD

∞∑
j=0

m
(n)
j , (2.11)

where it is defined that

αS(Q)BQCD =

∫
d4ki

(2π)4(k2 − λ2 + iε)
SQCD (2.12)
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and

m
(n)
j =

1

j!

∫ j∏
i=1

d4ki
(2π)4(k2

i − λ2 + iε)
βj(k1, . . . , kj). (2.13)

Here we have not proved βi(k1, . . . , ki) is completely free of IR singularities yet.

In a non-Abelian gauge theory, IR divergences other than the one arising out of

the divergences from the product SQCD(k1) . . . SQCD(ki) are also possible. However,

(2.11) does have an improved IR divergence structure. We write the differential cross

section associated with the M(n)

dσ̂n =
e2αSReBQCD

n!

∫ n∏
m=1

d3km

(k2
m + λ2)

1
2

δ(p1 + q1 − p2 − q2 −
n∑
i=1

ki)

∗ ρ̄(n)(p1, q1, p2, q2, k1, . . . , kn)
d3p2d

3q2

p0
2q

0
2

, (2.14)

where

ρ̄(n)(p1, q1, p2, q2, k1, . . . , kn) =
∑

color,spin

‖
∞∑
j=0

m
(n)
j ‖2 (2.15)

in the QQ̄ cms system.

For the functions, ¯ρ(n)(p1, q1, p2, q2, k1, . . . , kn) ≡ ρ̄(n)(k1, . . . , kn), which are

symmetric functions of their arguments k1, . . . , kn, at first for n = 1 we define

lim
|~k→0|

~k2(ρ̄1(k) |leading Casimir contribution −S̃QCD(k)ρ̄0) = 0. (2.16)

We repeat all the steps we did for SQCD

dσ̂exp =
∑
n

dσ̂nexp

= eSUMIR(QCD)

∞∑
n=0

∫ n∏
j=1

d3kj
k0
j

∫
d4y

(2π)4
eiy.(p1+q1−p2−q2−

∑
j kj)+DQCD

∗ β̄n(k1, . . . , kn)
d3p2

p0
2

d3q2

q0
2

, (2.17)

where

SUMIR(QCD) = 2αSReBQCD + 2αSB̃QCD(Kmax),

2αSB̃QCD(Kmax) =

∫
d3k0

k0
S̃QCD(k)θ(Kmax − k),
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DQCD =

∫
d3k

k
S̃QCD(k)

[
e−iy.k − θ(Kmax − k)

]
, (2.18)

1

2
β̄0 = dσ(1−loop) − 2αSReBQCDdσB,

1

2
β̄1 = dσB1 − S̃QCD(k)dσB, . . . . (2.19)

Here β̄n are the QCD hard gluon residuals . They are the non-Abelian analogs of

the residuals defined by Yennie Frautschi Suura.

The two things to be noted about the right hand side of the (2.17) are:

• There is no dependence on the dummy parameter Kmax which was intro-
duced for the cancellation of the infrared divergences in SUMIR(QCD) to
all orders in αS(Q) [21]. Q is the hard scale in the parton scattering process
described here.

• Its analog can also be derived in the new CEEX format [18].

Since the left hand side of (2.17) and SUMIR(QCD) are infrared finite, it

follows that

d¯̂σexp ≡ e−SUMIR(QCD)dσ̂exp (2.20)

should also be infrared finite to all orders in αS.

Now we define the left over non-Abelian infrared divergence part of each con-

tribution (β̄
(l)
n ) as

β̄ln = ˜̄βln +Dβ̄ln. (2.21)

The new function ˜̄β
(l)
n is completely free of infrared divergences . Therefore, the part

Dβ̄ln contains all the infrared divergences of non-Abelian origin. Dβ̄ln is normalized

so as to vanish in the Abelian limit fabc → 0.

At O(αnS(Q)), the IR finiteness of the contribution to ¯̂σexp requires

d¯̂σ(n)
exp ≡

∫ n∑
l=0

1

l!

l∏
j=1

∫
kj≥Kmax

d3kj
k0
j

S̃QCD(kj)
n−l∑
i=0

1

i!

l+i∏
j=l+1

∫
d3kj
k0
j

∗ β̄(n−l−i)
i (kl+1, . . . , kl+i)

d3p2

p0
2

d3q2

q0
2

(2.22)
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is finite. This, therefore, shows

Dd¯̂σ(n)
exp ≡

∫ n∑
l=0

1

l!

l∏
j=1

∫
kj≥Kmax

d3kj
k0
j

S̃QCD(kj)
n−l∑
i=0

1

i!

l+i∏
j=l+1

∫
d3kj
k0
j

×Dβ̄(n−l−i)
i (kl+1, . . . , kl+i)

d3p2

p0
2

d3q2

q0
2

(2.23)

is also finite. Therefore, we can drop Dβ̄
(l)
n because they do not have a contribution

in the final parton cross-section σ̂exp. Now, in order to show how we arrive at the

above result we define Dβ̄
(l)
n as∫

dPhDβ̄(l)
n ≡

n=l∑
i=1

dn,li lni(λ2), (2.24)

where the coefficient functions dn,li are independent of λ for λ → 0 and dPh is the

respective n-gluon Lorentz invariant phase space. In the above we have defined Dβ̄
(l)
n

by a minimal subtraction of the respective IR divergences in it so that if we would

use dimensional regularization it would only contains powers of the actual pole and

transcendental constants, 1
ε
−CE + ln(4π) for ε = 2− d

2
, where d is the dimension of

space-time. Here, CE is the Euler constant. Since the integration region for the final

particles is arbitrary, the independent powers of the IR regulator ln(λ2) in (2.23)

gives a zero contribution.

Therefore, finally we get

dσ̂exp =
∑
n

dσ̂nexp

= eSUMIR(QCD)

∞∑
n=0

∫ n∏
j=1

d3kj
k0
j

∫
d4y

(2π)4
eiy.(p1+q1−p2−q2−

∑
j kj)+DQCD

× ˜̄βn(k1, . . . , kn)
d3p2

p0
2

d3q2

q0
2

, (2.25)

where, the hard gluon residuals are defined as

˜̄βn(k1, . . . , kn) =
∞∑
l=0

˜̄β(l)
n (k1, . . . , kn). (2.26)

The hard gluon residuals are now free of all infrared divergences to all orders in

αS(Q).
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2.2.3 QED⊗QCD Exponentiation

We start with the prototypical process pp → l̄l + n(γ) + m(g) + X where,

l = e, µ. In this case we make the following replacements

Bnls
QCD → Bnls

QCD +Bnls
QED ≡ Bnls

QCED

B̃nls
QCD → B̃nls

QCD + B̃nls
QED ≡ B̃nls

QCED

S̃nlsQCD → S̃nlsQCD + S̃nlsQED ≡ S̃nlsQCED (2.27)

in the YFS [17] exponentiation algebra. Here the superscript nls denotes the infrared

functions are DGLAP-CS synthesized [3, 4]. Now we start from the basic algebra

dσ̂exp = eSUMIR(QCED)

∞∑
n=0

∫ n∏
j1=1

d3kj1
kj1

m∏
j2=1

d3kj2
kj2

∫
d4y

(2π)4
eiy.(p1+q1−p2−q2−

∑
j kj)+DQCED

∗ ˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m)
d3p2

p0
2

d3q2

q0
2

,

(2.28)

where the new YFS residuals, ˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m), with n hard photons and

m hard gluons represent the successive application of the YFS expansion. The

infrared functions are now given by

SUMIR(QCED) = 2αSRBnls
QCED + 2αSB̃

nls
QCED

DQCED =

∫
dk

k0
(e−iky − θ(Kmax − k0))S̃nlsQCED (2.29)

which is independent of Kmax. However the dummies in QED and QCD were set

to the same value for the purpose of the calculation. This is denoted as Quantum

ChromoElectroDynamics (QCED). In the (2.28) SUMIR(QCED) sums up to the

infinite order the maximal leading IR singular terms in the cross section for soft

emission below a dummy parameter Kmax, DQCED does the same for the regime

above Kmax, which therefore implies that (2.28) is independent of Kmax. Here the

entire soft gluon phase space is included in the representation. After the DGLAP-CS

synthesization, the residuals are truly perturbative and the leading order ˜̄β
(0,0)
0,0 gives

a good estimate of the size of the effects being studied.

25



CHAPTER THREE

IR-improved DGLAP-CS Theory

3.1 DGLAP-CS

The motivation of the improvement can be seen in the kernels that determine

the evolution of the structure functions by the attendant DGLAP-CS evolution of

the corresponding parton densities. Now, we consider the evolution of the non-

singlet (NS) parton density function qNS(x), where x is the Bjorken variable [22].

We start the analysis with the infrared divergence in the kernel that determines the

evolution

dqNS(x, t)

dt
=
αS(t)

2π

∫ 1

x

dy

y
qNS(y, t)Pqq(

x

y
) (3.1)

where the kernel Pqq(z) is for z < 1

Pqq(z) = CF
1 + z2

1− z
(3.2)

when t is set to t = ln µ2

µ2
0

for a particular reference scale µ0 with respect to which

the evolution of the scale of interest µ is studied. Here CF =
N2
C−1

2NC
, the quark

color representation’s quadratic Casimir invariant where NC is the number of colors,

which is 3. There is an unintegrable IR singularity at z = 1 which is the point of

zero energy gluon emission. Regularizing is possible by the replacement

1

(1− z)
→ 1

(1− z)+

(3.3)

with the distribution 1
(1−z)+

defined such that∫ 1

0

dz
f(z)

(1− z)+

=

∫ 1

0

dz
f(z)− f(1)

(1− z)
. (3.4)

Now, we may also write

1

(1− z)+

=
1

(1− z)
θ(1− ε− z) + ln εδ(1− z) (3.5)
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where ε ↓ 0. Here, θ(x) is the step function from 0 for x < 1 to 1 for x ≥ 0 and δ(x)

is the Dirac delta function. Now, we impose the final result∫ 1

0

dzPqq(z) = 0, (3.6)

which is satisfied by adding the effects of virtual corrections at z = 1 so that we

finally get

Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
. (3.7)

The smooth behavior in the original real emission result from the Feynman rules

with a divergent
1

1− z
behavior as z → 1 has been replaced with a mathematical

artifact such that the regime 1 − ε < z < 1 now has no probability at all and at

z = 1 there is a large negative integrable contribution so that we end-up finally with

a zero value for the total integral of Pqq(z).

Now the momentum conservation at the QCD vertex, at z < 1, gives

Pqq(z) = PGq(1− z)

PqG(z) = PqG(1− z)

PGG(z) = PGG(1− z). (3.8)

Therefore using (3.7) and (3.8) we get

PGq = CF
1 + (1− z)2

z
. (3.9)

Upon including the pair production contribution to the evolution of the quark

density the evolution equation becomes

dq(x, t)

dt
=
αS(t)

2π

∫ 1

x

dy

y
(q(y, t)Pqq(

x

y
) + g(y, t)PqG(

x

y
)). (3.10)

In (3.10) we have

PqG =
1

2
(z2 + (1− z)2), (3.11)
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which includes the probability that a gluon annihilates into a qq̄ pair such that the

quark has a fraction z of its momenta.

Now we write the gluon evolution equation as

dg(x, t)

dt
=
αS
2π

∫ 1

x

dy

y

(
q(y, t)PGq(

x

y
) + g(y, t)PGG(

x

y
)

)
(3.12)

where g(y,t) is the gluon density in the proton. In (3.12) we have

PGG(z) = 2CG

(
1− z
z

+
z

1− z
+ z(1− z)

)
. (3.13)

Again from the momentum conservation of the partons it may be written∫ 1

0

dzz[Pqq(z) + PGq(z)] = 0,∫
dzz[2nfPqG(z) + PGG(z)] = 0, (3.14)

where nf = number of quark flavors. Therefore

PGG(z) = 2CG

[
1− z
z

+
z

1− z
+ z(1− z) +

(
11

12
− 1

3

T

CG
δ(1− z)

)]
, (3.15)

where CG and T are the Casimir operators for the color group and for the represen-

tation of the fermions. Summing up we write

Pqq(z) = CF

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
,

PGq = CF
1 + (1− z)2

z
,

PqG =
1

2
(z2 + (1− z)2),

PGG(z) = 2CG

[
1− z
z

+
z

1− z
+ z(1− z)

(
11

12
− 1

3

T

CG
δ(1− z)

)]
(3.16)

3.2 IR-Improved DGLAP-CS

The question that concerns us is how much of the complete soft limit of the

DGLAP-CS theory is contained in the anomalous dimensions of the leading twist

operators in Wilson’s expansion which resides on the tip of the light cone. Here the
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Figure 3.1: (a) The process q → q(1 − z) + G(z), (b) The multiple gluon improvement
q → q(1− z) +G1(ξ1) + . . .+Gn(ξn).

long wavelength gluon effects to DGLAP-CS theory is calculated. [5, 6] The idea is

to sum up the leading IR terms in the corrections of Pqq with the goal that the IR

singularity is integrable. We apply the QCD exponentiation to the gluon emission

transition in Fig. (3.1) that corresponds to Pqq(z).

We start with splitting A→ B + C:

PBA = P 0
BA ≡

1

2
z(1− z)

∑̄
spins

|VA→B+C |2

p2
⊥

⇒ (3.17)

PBA =
1

2
z(1− z)

∑̄
spins

|VA→B+C |2

p2
⊥

zγqFY FS(γq)e
1
2
δq

where A = q, B = G, C = q and VA→B+C is the lowest order amplitude for q →

G(z) + q(1− z). Therefore the un-normalized exponentiated result is

Pqq(z) = CFFY FS(γq)e

1

2
δq 1 + z2

1− z
(1− z)γq (3.18)

where

γq = CF
αS
π
t =

4CF
β0

(3.19)

δq =
γq
2

+
αSCF
π

(
π2

3
− 1

2
) (3.20)
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and

FY FS(γq) =
e−CEγq

Γ(1 + γq)
. (3.21)

Here

β0 = 11− 2

3
nf , (3.22)

where nf = the number of active quark flavors and CE is the Euler constant and

Γ(w) is the Euler gamma function. The function FY FS was introduced by Yennie,

Frautschi and Suura [17] in their analysis of the IR behavior of QED. It can be seen

that the exponentiation has removed the unintegrable IR divergence at z = 1. To

see how equation(2.25) leads to (3.18) we write

SUMIR(QCD) = 2αSReBQCD + 2αSB̃QCD(Kmax)

=
1

2
(2CF

αS
π
t ln

Kmax

E
+ CF

αS
2π
t+

αSCF
π

(
π2

3
− 1

2
)) (3.23)

where on the RHS of the last result the DGLAP-CS synthesization procedure has

already been applied. When the soft gluon effects for energy fraction < z ≡ Kmax/E
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are taken into account we get

∫
αS
2π
PBAdtdz = eSUMIR(QCD)(z)

∫  ˜̄β0

∫
d4y

(2π)4
e

iy.(p1−p2)+
∫ k<Kmax d3k

k
S̃QCD(k)[e−iy.k−1]




+

 ˜̄β0

∫
d3k1

k1

˜̄β1(k1)

∫
d4y

(2π)4
e

iy.(p1−p2−k1)+
∫ k<Kmax d3k

k
S̃QCD(k)[e−iy.k−1]

+...


d3p2

p0
2

d3q2

q0
2

= eSUMIR(QCD)(z)

∫  ˜̄β0

∫
d4y

(2π)4
e

iy.(E1−E2)+
∫ k<Kmax d3k

k
S̃QCD(k)[e−iy.k−1]




+

 ˜̄β0

∫
d3k1

k1

˜̄β1(k1)

∫
d4y

(2π)4
e

iy.(E1−E2−k0
1)+

∫ k<Kmax d3k

k
S̃QCD(k)[e−iy.k−1]

+...


d3p2

p0
2

d3q2

q0
2

(3.24)

where it has been set Ei = p0
i , i = 1, 2 and the real infrared function S̃QCD is given

by

S̃QCD(k) = −αSCF
8π2

(
p1

kp1

− p2

kp2

)2
|DGLAP−CS synthesized (3.25)

The two important integrals required here are

IY FS(zE, 0) =

∫ ∞
−∞

dy

2π
e

iy(zE)+
∫ k<zE d3k

k
S̃QCD(k)(e−iyk−1)



= FY FS(γq)
γq
zE

IY FS(zE, k1) =

∫ ∞
−∞

dy

2π
e

iy(zE−k1)+
∫ k<zE d3k

k
S̃QCD(k)(e−iyk−1)



= (
zE

zE − k1

)1−γqIY FS(zE, 0) (3.26)
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Therefore, we can identify the factor∫
( ˜̄β0

γq
zE

+

∫
dk1k1dΩ1

˜̄βk1(
zE

zE − k1

)1−γq γq
zE

)
d3p2

E2q0
2

=

∫
dt
αS(t)

2π
P 0
BAdz +O(α2

S).

(3.27)

This leads finally to the exponentiated result by elementary differentiation:

PBA = P 0
BAz

γqFY FS(γq)e

1

2
δq

(3.28)

It is noted that the terms exponentiated here are not included in the standard

treatment of the Wilson expansion. The normalization condition,
∫ 1

0
dzPqq(z) = 0,

along with the IR improvement gives the final expression

Pqq(z) = CFFY FS(γq)e

1

2
∂q
[

1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)

]
(3.29)

where

fq(γq) =
2

γq
− 2

γq + 1
+

1

γq + 2
(3.30)

The latter result is the IR-Improved kernel for NS DGLAP-CS evolution in QCD.

The DGLAP-CS theory shows that the kernel PGq(z) is related to Pqq(1−z) directly.

For z < 1 we have

PGq(z) = Pqq(1− z) = CFFY FS(γq)e
1
2
δq

1 + (1− z)2

z
zγq . (3.31)

This gives a non-trivial check of the new IR-improved theory, the conservation of

momentum leads to ∫ 1

0

dzz(PGq(z) + Pqq(z)) = 0. (3.32)

Now, using the check, the following integral vanishes

I =

∫ 1

0

dzz(
1 + (1− z)2

z
zγq +

1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)). (3.33)

We note

z

1− z
=
z − 1 + 1

1− z
= −1 +

1

1− z
. (3.34)
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Introducing (3.34) in (3.33) we get

I =

∫ 1

0

dz

{
(1 + (1− z)2)zγq − (1 + z2)(1− z)γq +

1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)

}
.

(3.35)

The first two terms in the integral on the RHS cancel by using the change in variable

z → 1− z. The last two terms cancel from the normalization condition. Therefore,

it can be concluded that

I = 0. (3.36)

Therefore the quark momentum sum rule is satisfied.

Now,we note the standard formula for PqG(z)

PqG(z) =
1

2
(z2 + (1− z)2), (3.37)

which is already well behaved in the IR regime. We therefore next consider the

PGG(z), which in the lowest order form is

PGG(z) = 2CG(
1− z
z

+
z

1− z
+ z(1− z)) (3.38)

which has unintegrable singularities at z = 1 and z = 0. Now applying the expo-

nentiated analysis to the squared amplitude for the process G → G(z) + G(1 − z)

we get the exponentiated un-normalized result

PGG(z) = 2CGFY FS(γG)e

1

2
δG

(
1− z
z

zγG+
z

1− z
(1−z)γG+

1

2
(z1+γG(1−z)+z(1−z)1+γG)),

(3.39)

where we have gotten the γG and δG from the expressions of the γq and δq by using

the substitution CF → CG, which gives

γG = CG
αS
π
t =

4CG
β0

(3.40)

δG =
γG
2

+
αSCG
π

(
π2

3
− 1

2
). (3.41)
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From this it can be seen that the singularities at z = 1 and z = 0 have been rendered

integrable. We use the gluon momentum sum rule to normalize PGG such that∫ 1

0

dzz(2nfPqG(z) + PGG(z)) = 0. (3.42)

We then arrive at the final IR-improved result

PGG(z) = 2CGFY FS(γG)e

1

2
δG
{

1− z
z

zγG +
z

1− z
(1− z)γG

}

+ 2CGFY FS(γG)e

1

2
δG
{

1

2
(z1+γG(1− z) + z(1− z)1+γG)− fG(γG)δ(1− z)

}
(3.43)

where fG(γG) is given by

fG(γG) =
nf

6CGFY FS(γG)
e
−

1

2
δG

+
2

γG(1 + γG)(2 + γG)
+

1

(1 + γG)(2 + γG)

+
1

2(3 + γG)(4 + γG)
+

1

(2 + γG)(3 + γG)(4 + γG)
(3.44)

Therefore the improved results of Pqq(z), PGq(z) and PGG(z) together with the stan-

dard result PqG(z) give the IR-improved DGLAP-CS theory. In summary, listing

the above results, we have

P exp
qq (z) = CFFY FS(γq)e

1
2
δq

[
1 + z2

1− z
(1− z)γq − fq(γq)δ(1− z)

]
, (3.45)

P exp
Gq (z) = CFFY FS(γq)e

1
2
δq

1 + (1− z)2

z
zγq , (3.46)

P exp
GG (z) = 2CGFY FS(γG)e

1
2
δG{1− z

z
zγG +

z

1− z
(1− z)γG

+
1

2
(z1+γG(1− z) + z(1− z)1+γG)− fG(γG)δ(1− z)}, (3.47)

PqG(z) =
1

2
(z2 + (1− z)2). (3.48)

The superscript exp is used to denote the exponentiated result. In the actual appli-

cations, we also IR-improve PqG(z), so that we have

P exp
qG (z) = FY FS(γG)e

1
2
δG

1

2
{z2(1− z)γG + (1− z)2zγG} (3.49)
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with a corresponding change in fG to f̄G, where1

f̄G(γG) =
nf
CG

1

(1 + γG)(2 + γG)(3 + γG)
+

2

γG(1 + γG)(2 + γG)
+

1

(1 + γG)(2 + γG)

1

2(3 + γG)(4 + γG)
+

1

(2 + γG)(3 + γG)(4 + γG)
(3.50)

The new scheme has improved MC stability. In the attendant parton shower MC

based on the new kernels there is no need for an IR cut-off ‘k0’ parameter. The

new kernels agree with the usual kernels at O(αS) as the differences between them

start in O(α2
S). This means that the NLO matching formulas in the MC@NLO [25]

and POWHEG [26] apply directly to the new kernels for the realization of the exact

NLO ME/shower matching. We point-out finally here that the new IR-improvement

exponents γA, A = q,G, are genuine quantum loop effects; they vanish when ~→ 0.

3.2.1 Phenomenological Effects of IR-Improvement

In the non-singlet case we can write [6]

dMNS
n

dt
=
αS(t)

2π
ANSn MNS

n (t) (3.51)

where

MNS
n (t) =

∫ 1

0

dzzn−1qNS(z, t) (3.52)

and

ANSn =

∫ 1

0

dzzn−1P exp
qq (z),

= CFFY FS(γq)e
1
2
δq [B(n, γq) +B(n+ 2, γq)− fq(γq)] (3.53)

where the beta function is given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3.54)

1 The improvement in (3.45-3.49) should be distinguished from the resummation in parton
density evolution for “z → 0” Regge regime – see for example Refs. [23, 24]. This latter improvement
must also be taken into account for precision LHC predictions.
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The IR- improved exponent approaches a constant which is a multiple of −fq

as n → ∞ for 0 ≤ z < 1. At finite n, example n=2, ANS2 = CF (−0.966) where

αS ∼= .118.

Now the un-IR-improved result is

ANSn ≡ CF

[
−1

2
+

1

n(n+ 1)
− 2

n∑
j=2

1

j

]
. (3.55)

The asymptotic behavior for large n shows that the above diverges as −2CF lnn as

n→∞. Also, for the sake of comparison, for a finite value n = 2, ANS2 = CF (−1.33).

The solution to (3.51) is given by

MNS
n (t) = MNS

n (t0)e
∫ t
t0
dt′αS(t′)

2π
ANSn (t′)

= MNS
n (t0)eān[Ei(

1
2
δ1αS(t0))−Ei( 1

2
δ1αS(t))] (3.56)

=⇒t,t0 large with t�t0 MNS
n (t0)

(
αS(t0)

αS(t)

)ā′n
where Ei(x) =

∫ x
−∞ dr

er

r
is the exponential integral function,

ān =
2CF
β0

FY FS(γq)e
γq
4 [B(n, γq) +B(n+ 2, γq)− fq(γq)]

ā′n = ān

(
1 +

δ1

2

(αs(t0)− αs(t))
ln(αs(t0)/αs(t))

) (3.57)

Here δ1 is given by δ1 = CF
π

(
π2

3
− 1

2

)
.

Therefore, the size of γq is what is expected from analogy with QED,and with

αS ∼= .118 we get that γq is 10 times γe. The values of γj can be improved as

needed using perturbative results for the functions SUMIR(QCD), S̃QCD, ˜̄βn, which

is consistent with what is needed for the precise data.

3.2.2 Impact of IR-Improvement on the Standard Methodology

Now we address the relationship between the re-arrangement made of the exact

leading-logs in the QCD perturbabtion theory and the non-exponentiated DGLAP-
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CS theory [6]. Expanding the the exponentiated kernels

(1− z)a−1 =
1

a
δ(1− z) +

1

(1− z)+

+
∞∑
j=1

aj

j!

[
lnj(1− z)

1− z

]
+

, (3.58)

where it can be seen that Pqq and P exp
qq agree to the leading order. Therefore, the

leading log series which they generate for the respective NS parton distributions

agree through leading order in αS
π
L, where L is the respective big-log in momentum

space. If we denote the parton densities that we generate with IR-improvement by

{F ′i} and the reduced cross section by σ̂′, such that the same perturbative QCD

cross section is obtained order by order in perturbation theory, then we should have

σ =
∑
i,j

∫
dx1dx2Fi(x1)Fj(x2)σ̂(x1x2s)

=
∑
i,j

∫
dx1dx2F

′
i (x1)F ′j(x2)σ̂′(x1x2s). (3.59)

The mass singularities are factorized using the exponentiated kernels from the un-

factorized reduced cross-section and this generates the σ̂′. The analogous result holds

for deep inelastic scattering. Also, if exponentiated kernels are used to generate the

respective parton distributions, these kernels are used to factorize the respective hard

scattering cross-section and this gives the same perturbative QCD prediction for deep

inelastic structure functions. Thus the IR-improved theory has the same leading

log series as the un exponentiated DGLAP-CS kernels. The advantage is however

that the lack of +-functions in the generation of the configuration space functions

{F ′i , σ̂′} means that these functions lend themselves to Monte Carlo realization to

arbitrarily soft radiative effects. Unlike the the standard un-exponentiated kernels,

the exponentiated ones contain powers of the product αSL that describe the large

IR effects being resummed.
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CHAPTER FOUR

Monte Carlo Realization of the IR-Improved DGLAP-CS Theory in
HERWIRI1.031

In this section we show the implementation of the IR-improved kernels in the

HERWIG6.5 environment achieve a new MC which we will denote as HERWIRI1.0.

The kernels in module HWBRAN in the HERWIG6.5 are modified using the sub-

stitution

DGLAP − CS PAB ⇒ IR− I DGLAP − CS P exp
AB (4.1)

where the hard processes have been left alone for the moment. Following [27], the

probability that no branching occurs above virtuality cutoff Q2
0 is ∆a(Q

2, Q2
0) such

that

d∆a(t, Q
2
0) =

−dt
t

∆(t, Q2
0)
∑
b

∫
dz
αS
2π
Pba(z). (4.2)

This implies

∆a(Q
2, Q2

0) = exp

[
−
∫ Q2

Q2
0

dt

t

∑
b

∫
dz
αS
2π
Pba(z)

]
. (4.3)

The non-branching probability appearing in the evolution equation is given by

∆(Q2, t) =
∆a(Q

2, Q2
0)

∆a(t, Q2
0)

, t = k2
a the virtuality of gluon a. (4.4)

The virtuality of parton a is generated with

∆a(Q
2, t) = R, (4.5)

where R is a random number uniformly distributed in [0,1]. Using αS(Q) =
2π

b0 ln(
Q

Λ
)

we get ∫ 1

0

dz
αS(Q2)

2π
PqG(z) =

4π

2πb0 ln(
Q

Λ
)

∫ 1

0

dz
1

2
[z2 + (1− z)2]

=
2

3

1

b0 ln(
Q2

Λ2
)

. (4.6)
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The integration over dt gives

I =

∫ Q2

Q2
0

1

3

dt

t

2

b0 ln(
t

Λ2
)

=
2

3b0

ln ln
t

Λ2
|Q

2

Q2
0

=
2

3b0

ln(
ln(

Q2

Λ2
)

ln(
Q2

Λ2
)

)

 . (4.7)

On introduction of I in (4.2) we get

∆a(Q
2, Q2

0) = exp

− 2

3b0

ln(
ln(

Q2

Λ2
)

ln(
Q2

0

Λ2
)

)



=

 ln(
Q2

Λ2
)

ln(
Q2

0

Λ2
)

 . (4.8)

If we let ∆a(Q
2, t) = R then we get

 ln(
t

Λ2
)

ln(
Q2

Λ2
)


−

2

3b0

= R (4.9)

which in turn gives

t = Λ2(
Q2

Λ2
)R

3b0

2 . (4.10)

Now, in HERWIG6.5

b0 = (
11

3
nc −

2

3
nf )

=
1

3
(11nc − 10), nf = 5

≡ 2

3
BETAF (4.11)

using the notation of HERWIG6.5. The momentum available after a qq̄ split in

HERWIG6.5 [8] is given by

QQBAR = QCDL3(
QLST

QCDL3
)R

BETAF

, (4.12)
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in agreement with (4.10) with the identifications t = QQBAR2, Λ ≡ QCDL3,

Q = QLST .

Now repeating aforementioned calculations with the IR-improved kernels (3.48,

3.49), we have

P exp
qG (z) = FY FS(γG)eδG/2

1

2
[z2(1− z)γG + (1− z)2zγG ], (4.13)

such that ∫ 1

0

dz
αS
2π
PqG(z)exp =

4FY FS(γG)eδG/2

b0 ln(
Q2

Λ2
)(γG + 1)(γG + 2)(γG + 3)

. (4.14)

Therefore, the integral over dt is

I =

∫ Q2

Q2
0

dt

t

4FY FS(γG)eδG/2

b0 ln(
t

Λ2
)(γG + 1)(γG + 2)(γG + 3)

=
4FY FS(γG)eδG/2

(γG + 1)(γG + 2)(γG + 3)
Ei

1,
8.369604402

b0 ln(
t

Λ2
)

 |Q2

Q2
0
. (4.15)

In the above we have used

δG =
γG
2

+
αSCG
π

(
π2

3
− 1

2

)
, (4.16)

where CG = 3. The final IR-improved formula is

∆a(Q
2, t) = exp[−(F (Q2)− F (t))], (4.17)

where,

F (Q2) =
4FY FS(γG)e0.25γG

b0(γG + 1)(γG + 2)(γG + 3)
Ei

1,
8.269604402

b0 ln

(
Q2

Λ2

)
 , (4.18)

where Ei is the exponential integral function. In Fig. (4.1) the difference between

the two results for ∆a(Q
2, t) is shown. They agree within a few % except for the

softer values of t, as expected.
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Figure 4.1: Graph of ∆a(Q
2, t) for the DGLAP-CS and IR.Imp.DGLAP-CS kernels [3].

Q2 is a typical virtuality closer to squared scale of the hard sub-process - here we use
Q2 = 25 GeV 2 for illustration.

For further illustration, noting the q → qG branching process in HERWIG6.5

[8], the implementation of the usual DGLAP-CS [3, 4] kernels is given by the fol-

lowing

WMIN = MIN(ZMIN*(1. -ZMIN), ZMAX*(1.-ZMAX))

ETEST = (1. + ZMAX**2) * HWUALF(5-SUDORD*2, QNOW*WMIN)

ZRAT = ZMAX/ZMIN

30 Z1 = ZMIN * ZRAT**HWRGEN(0)

Z2 = 1. - Z1

PGQW = (1. + Z2*Z2)

ZTEST = PGQW * HWUALF(5-SUDORD*2, QNOW*Z1*Z2)

IF (ZTEST .LT. ETEST*HWRGEN(1)) GOTO 30

...

(4.19)
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where the branching of q to G at z = Z1 occurs in the interval from ZMIN

to ZMAX set by the inputs to the program and the current value of the virtuality

QNOW. HWUALF is the respective function for αS in the program and the HWR-

GEN are uniformly distributed random numbers in the interval of 0 to 1. To realize

the same with IR-improved kernel, the following is used in place of the code (4.19)

NUMFLAV = 5

B0 = 11. - 2./3.*NUMFLAV

L = 16./(3.*B0)

DELTAQ = L/2 + HWUALF(5-SUDORD*2, QNOW*WMIN)*1.184056810

ETEST = (1. + ZMAX**2) * HWUALF(5-SUDORD*2, QNOW*WMIN)

* EXP(0.5*DELTAQ) * FYFSQ(NUMFLAV-1) * ZMAX**L

ZRAT = ZMAX/ZMIN

30 Z1 = ZMIN * ZRAT**HWRGEN(0)

Z2 = 1. - Z1

DELTAQ = L/2 + HWUALF(5-SUDORD*2, QNOW*Z1*Z2)*1.184056810

PGQW = (1. + Z2*Z2) * EXP(0.5*DELTAQ) * FYFSQ(NUMFLAV-1)

* Z1**L

ZTEST = PGQW * HWUALF(5-SUDORD*2, QNOW*Z1*Z2)

IF (ZTEST .LT. ETEST*HWRGEN(1)) GOTO 30

...

(4.20)

which with the identifications γq ≡ L, δq ≡ DELTAQ, FY FS(γq) ≡ FYFSSQ

(NUMFLAV − 1) realizes the IR-improved DGLAP-CS kernel P exp
Gq . Continuing

in the similar manner all the kernels in the IR-improved DGLAP-CS were imple-
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mented in HERWIG6.5 environment, with its angle-ordered showers. This resulted

in the new MC, HERWIRI1.031 (see Appendices A and B for more details).
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CHAPTER FIVE

Review of Previous Comparisons of MC Realization of IR-Improved DGLAP-CS
Theory and Fermilab Collider Data

Following the Ref. [7] we review the comparison of the MC realization of the

IR-Improved DGLAP-CS theory in HERWIRI1.031 and HERWIG6.5 in relation to

data at Fermilab (FNAL) Tevatron collider energies.

In order to see what type of effects we can expect, we begin with some theo-

retical comparisons between the IR-improved and the unimproved MC’s. With an

eye already toward LHC, we use prototypical processes at 14 TeV.

For the generic hard processes at planned LHC energies (14 TeV) the com-

parison is shown in Figs. (5.1), (5.2) for the respective ISR z-distribution and p2
T

distribution at the parton level. Here, z is defined as Eparton/Ebeam where Ebeam is

the cms beam energy and Eparton is the respective parton energy in the cms system.

There are no cuts on the MC data. We see the expected softening of the spectra.

In the next part we concentrate on the luminosity process of single Z produc-

tion again at the planned 14 TeV LHC energy in Figs. (5.3),(5.4), (5.5) it is shown

respectively the ISR parton energy fraction distribution, the Z pT distribution, and

the Z rapidity distribution with cuts on the acceptance as MZ > 40 GeV, plT > 5

GeV for the Z → µ+µ− - all lepton rapidities are included. For the energy fraction

distribution and the pT distribution a softer spectra is seen in the former and similar

spectra in the latter in the IR-improved case. In the case of the rapidity plot, the

migration of some events to the higher values of Y is seen. It is consistent with a

softer spectrum for the IR-improved case. This sets the stage for the confrontation

with actual collider data. We now turn to FNAL data in this regard.
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To this end, we review the results for the comparison discussion, by making

a comparison with the FNAL data on the Z pT and rapidity spectra as reported in

Ref. [6]. The results are for 1.96 TeV cms energy in Figs. (5.6) and (5.7). Both

HERWIRI1.031 and HERWIG6.5 give a reasonable overall representation of the

CDF rapidity data [28] but HERWIRI1.031 is somewhat closer to the data for small

values of Y. The χ2/d.o.f are 1.77 and 1.54 for HERWIG6.5 and HERWIRI1.031

respectively. The data errors in Fig. (5.6) do not include luminosity and PDF errors,

so that they can only be used conditionally. Also, including the NLO contributions

to the hard process via MC@NLO/HERWIG6.510 and MC@NLO/HERWIRI1.031

improves the agreement for both HERWIG6.5 and for HERWIRI1.031. In this case

the χ2/d.o.f are 1.40 and 1.42 respectively. They are both consistent with one

another and within 10% of the data in the low Y region.

Also, the HERWIRI1.031 gives a better fit to the D0 pT data [29] in Fig.

(5.6) compared to HERWIG6.5 for low pT , showing that IR-improvement makes

a better representation of the QCD in the soft regime for a given fixed order in

perturbation theory. After adding the MC@NLO for the two programs we see that

O(αS) correction improves the χ2/d.o.f for HERWIRI1.031 in both the soft and hard

regimes. The O(αS) correction improves the HERWIG6.510 χ2/d.o.f for pT near 3.75

GeV where the distribution peaks. The χ2/d.o.f for MC@NLO/HERWIRI1.031 is

1.5 and for MC@NLO/HERWIG6.510 is worse for pT < 7.5 GeV.
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Figure 5.1: The z-distribution (ISR parton energy fraction) shower comparison in HER- 
WIG6.5 [7]
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Figure 5.2. The p2
T -distribution (ISR parton) shower comparison in HERWIG6.5 [7]
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WIG6.5 [7]
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Figure 5.4. The Z pT -distribution (ISR parton shower effect) comparison in HERWIG6.5 [7]
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Figure 5.6: Comparison with the FNAL data: D0 pT spectrum data on (z/γ∗) production 
to e+e− pairs, the circular dots are the data, the blue triangles are HERWIRI1.031, the 
green triangles are HERWIG6.510, the blue squares are MC@NLO/HERWIRI1.031 and
green squares are MC@NLO/HERWIG6.510 [7]
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CHAPTER SIX

Results of Comparison of the MC Realization Exact Amplitude-Based
Resummation Theory with LHC data and Theoretical Perspectives of Exact

Amplitude-Based Resummation Theory

6.1 Results

The comparisons with the FNAL data were encouraging- the IR-improved

MC did have better agreement with the data compared to the unimproved MC. The

key point is the ability to improve the accuracy of the IR-improved results without

physical precision barriers like ad hoc “k0”-parameters. The new data from the LHC

open up a new era for precision in QCD. In the single Z0/γ∗ production with decay

to lepton pairs, each of ATLAS and CMS have over 107 events, so that in measuring

the pT spectra, each bin will have per mille level statistical precision. Although it is

currently not available, we can expect that the respective systematic errors will also

be of a similar size. This means that the theoretical errors at the sub−1% regime

will be necessary to fully exploit such data.

This exploitation impacts both the comparison between theory and experi-

ment for SM and beyond the SM processes. Indeed, if the theoretical prediction

for standard candle processes such as single Z0/γ∗ production and decay to lepton

pairs is not under theoretical control,how can we believe any statement that the

data for any process, either SM or BSM, is consistent with expectations? Thus,

we turn to the new LHC data on single Z0/γ∗ production as a vehicle by which to

assess the interplay of our IR-improved amplitude-based results with issues of NLO

matrix-element matched MC precision in LHC physics.

In the new MC HERWIRI1.031 [7] is the first realization of the new IR-

improved kernels in HERWIG6.5 [8] environment. Using recent LHC data as the

baseline HERWIRI1.031 is compared [30] to HERWIG6.510 with and without the
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exact O(αS) correction via MC@NLO. In Fig. (6.1) for the single Z/γ∗ production of

the LHC the comparison of the CMS rapidity data with the MC theory predictions

is given. In Fig. (6.2) the analogous comparison with ATLAS pT is shown. (See

Appendices C and D for the ATLAS and CMS data used here.) The rapidity data are

the combined e+e−,µ+µ− results. The pT data is for the bare e+e− case. The results

are better appreciated if they are compared to the results obtained in the comparison

with the FNAL data on the single Z/γ∗ production in p̄ collision at 1.96 TeV. It

is seen that with the intrinsic rms pT parameter set to zero in HERWIG6.5, the

MC@NLO/HERWIG6.5 gives a good fit to the CDF rapidity distribution data,but

does not give a satisfactory fit to the D0 pT spectra.The corresponding comparison

the simulation data for MC@NLO/HERWIRI1.031 gives a good fit to both sets of

data with PTRMS=0. Here PTRMS corresponds to the rms value of an assumed

intrinsic Gaussian distribution in pT . To get a good fit to both sets of data the

authors of HERWIG have put in an intrinsic PTRMS∼= 2 GeV [31, 32]. Therefore

in analyzing the new LHC data we have set PTRMS=2.2 GeV in HERWIG6.510

simulation and PTRMS=0 in HERWIRI simulations. In addition, as a cross-check,

we have also set PTRMS=0 in HERWIG6.510 simulations. In Fig. (6.1) we show

both the results with and without the exact O(αS) corrections which are realized

using MC@NLO and which we continue to reference as MC@NLO/A, where A =

HERWIG6.510, HERWIRI1.031. The difference between the leading order results in

the solid lines and their NLO exact ME matched parton shower analog in the squares

shows the size of the exact O(αS) correction in the CMS rapidity distribution for

single Z/γ∗ production at the LHC. The latter correction is clearly needed to describe

the data. In Fig. (6.2), we show the analogous plots against the ATLAS pT data. In

the case of pT note that it is important to compare the squares with the corresponding

solid lines to see the size of the exact O(αS) correction, as these simulations have

the same value of PTRMS – the triangles shown in Fig. (6.2) have PTRMS = 0.
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Again, we see that the exact O(αS) correction is clearly needed to describe the data.

Quantitatively, we use the χ2/d.o.f as a measure of the goodness of the fits. The

χ2/d.o.f for the rapidity and the pT data are (.72, .72) for MC@NLO/HERWIRI1.031

and (.70,1.37) for MC@NLO/HERWIG6510 (PTRMS = 2.2 GeV) and (.70,2.23) for

the MC@NLO/HERWIG6510 (PTRMS = 0 GeV) simulations.

It is expected that differences between the three calculations occur in the soft

regime where pT . 7 GeV, because the IR-improvement takes effect mainly in this

regime. Therefore we see the main differences in the Fig. (6.2) between the three

predictions is in the regime below 10 GeV. Taking a detailed snapshot of it in Fig.

(6.3) with a finer binning of 0.5 GeV/c as compared to 3.0 GeV/c considered in the

above figure, we see the differences in more detail. The Fig. (6.3) shows that the

three theoretical predictions have significantly different shapes. These are testable

with the precise data of the CMS and ATLAS experiments. Specifically with more

than 107 events in each of ATLAS and CMS, the per mille level accuracy in the finer

bins will give well more than 6σ significance for the differences in the three theories.

We note that above pT ∼= 10 GeV the three predictions in Fig. (6.2) approach

one another. This is as it should be, as they all have the same exact NLO matrix

element so that in the hard gluon regime they should approach the same result. This

is an important cross check on the correctness of the NLO/ME matching calculus –

it shows that the IR-improvement has not spoiled this calculus.

We also show in Fig. (6.4) the Z/γ∗ mass spectrum for the MC@NLO/ HER-

WIRI1.031 (blue squares) and MC@NLO/HERWIG6510(PTRMS=2.2 GeV) (green

squares) predictions when the lepton decay satisfies the LHC type requirement that

their transverse momenta exceed 20 GeV. The peaks differ by 2.2%. With more

than 107 events in each of ATLAS and CMS, even if the binning between ±ΓZ of

the resonance, where most of the events lie, is done at .25 GeV/bin, there will be

per mille level accuracy on the bins near the peak. This means that 2.2% differ-
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ences will be seen with well beyond 10σ significance. Here, ΓZ ∼= 2.5 GeV is the Z

boson width. From this we see that the high precision data from LHC ATLAS and

CMS experiments will allow one to distinguish between the two sets of theoretical

predictions.

We may note that the differences seen in Figs. (6.3) and (6.4) are consistent

with the results in Fig. (4.1) for the difference in the radiation probability between

the IR-improved and the unimproved cases. The radiation probabilities differ mainly

in the low virtuality regime, the soft regime. This led to the expectation that the

main differences in Fig. (6.3) would be in the soft regime, as noted above. In Fig.(6.4),

we see main differences in the regime near the Z peak, where, because of the small

value of the Z width ΓZ , only soft radiation is allowed so that again the soft regime is

probed.

The results on the rapidity in Fig. (6.1) are also consistent with those in Fig.

(4.1). This obtains because the rapidity distribution integrates over all values of pT

consistent with a given value of rapidity and the integrals of the curves in Fig. (4.1)

are normalized to the same value when implemented on the MC.

Our results show that our new IR-improved MC realization opens the way to

a rigorous path to the sub−1% precision regime for standard candle processes at

the LHC, as required by the new LHC data. How does it compare with the existing

paradigms in this connection? We turn to this question in the next section.
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Figure 6.1: Comparison of the LHC data: CMS rapidity data on Z/γ∗ 

production to e+e−, µ+µ− pairs, the circular dots are the data, the 
green(blue) lines are HERWIG6.510(HERWIRI1.031), the blue(green) squares are
MC@NLO/HERWIRI1.031(MC@NLO/HERWIG6.510(PTRMS=2.2 GeV)). [30, 33]
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Figure 6.2: Comparison with LHC data: ATLAS pT spectrum data on 
the Z/γ∗ production to (bare) e+e− pairs, the circular dots are data, the 
blue(green)lines are HERWIRI1.031(HERWIG6.510), the blue(green) squares are
MC@NLO/HERWIRI1.031(MC@NLO/HERWIG6.510(PTRMS=2.2 GeV)) and the green
triangles are MC@NLO/HERWIG6.510(PTRMS=0). These are otherwise untuned theo- 
retical results. [30, 34]
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Figure 6.4: Normalized vector boson mass spectrum at the LHC for pT (lepton) > 20 GeV. [30]
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6.2 Theoretical Perspectives of Exact Amplitude-Based Resummation Theory

It is therefore seen that in order to reproduce the LHC data on the pT dis-

tribution of the Z/γ∗ in the pp collision the usual DGLAP-CS kernels require a

hard intrinsic PTRMS. The hardness of the PTRMS required is completely ad-hoc,

it is in disagreement with the already existing proton wave function models [35],

where the scale of corresponding intrinsic PTRMS is found to . 0.4 GeV. Also it

contradicts the the experimental observations of the precociousness of the Bjorken

scaling [22]. (See Appendix E for the explanation of Bjorken scaling.)The SLAC-

MIT experiment [36] on the deep inelastic electron-proton scattering process show

that the Bjorken scaling occurs already at Q2 = 1+ GeV2 for Q2 = −q2 where q

is the 4-momentum transfer from the electron to proton. Since the corrections to

Bjorken scaling from intrinsic pT are O(p2
T/Q

2), this precociousness is impossible for

PTRMS ∼= 2 GeV. What we therefore now advocate is that the ad hoc ”hardness”

of the PTRMS ∼= 2.2 GeV value is just a phenomenological representation of the

more fundamental dynamics described by the IR-improved DGLAP-CS theory be-

cause, if the proton constituents really had a Gaussian intrinsic pT distribution with

PTRMS ∼= 2 GeV , the pioneering SLAC-MIT observations would not be possible.

In order to link the experimental results with the theoretical predictions we

start with the fully differential representation of a hard LHC scattering process:

dσ =
∑
i,j

∫
dx1dx2Fi(x1)Fj(x2)dσ̂res(x1x2s), (6.1)

where {Fj} and dσ̂res are the parton densities and the reduced hard differential cross

section respectively. The subscript on dσ̂res indicates that it has been resummed for

all large EW and QCD higher order corrections in a manner consistent with achieving

a total precision tag of 1% or better for the total theoretical precision of ( 6.1). The

proof of the correctness of the value of the total theoretical precision ∆σth of (6.1)

is the key theoretical issue for the realization of precision QCD for the LHC. The
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theoretical precision can therefore be written as [30]

∆σth = ∆F ⊕∆σ̂res, (6.2)

where ∆A is the contribution to the uncertainty on the quantity A to ∆σth. Here

we discuss the situation in which the two errors in (6.2) are independent. Therefore

(6.2) has to be modified when the two errors are not independent. The proof of the

correctness is indispensable to validate the application of a given theoretical predic-

tion to precision experimental observations for the discussion of the background and

the signals of both the SM and new physics (NP) studies, specifically the overall

normalization in such studies. If a calculation is used with an unknown value of

∆σth the NP itself can very well be missed.

We note that ∆σth [37] is the total theoretical uncertainty that derives from the

physical and technical precision contributions. The physical precision contribution,

∆σphysth , from sources such as missing graphs, approximations to graphs, truncations,

etc. The technical precision contribution, ∆σtechth , from sources such as bugs in

codes, numerical rounding errors, convergence issues, etc. When bugs in codes are

referenced, we have in mind that all gross errors such as those that give obviously

wrong results,as determined by cross checks, are eliminated and only programming

errors are left such as those in the logic: suppose for programming error reasons

a DO-loop ends at 999 steps instead of the intended 1000 steps, resulting in a per

mille level error, that could alternate in sign from event to event. As per mille level

accuracy is good enough in many applications, the program would remain reliable,

but it would have what we call a technical precision error at the per mille level.

With that understanding, we may write the total theoretical error as

∆σth = ∆σphysth ⊕∆σtechth . (6.3)

Even though the desired value for ∆σth depends on the specific requirements of the

observations, as a general rule, it should fulfill ∆σth ≤ f∆σexpt, where ∆σexpt is the
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respective experimental error and f .
1

2
. This is so that the theoretical uncertainty

does not adversely affect the physics analysis of the data.

In the interest of completeness we recapitulate the theory developed in Chapter

2 which is the QCD⊗QED resummation theory for the reduced cross section. The

master formula, which applies to both to resummation of the reduced cross section

and to the evolution of the parton densities, is identified as

dσ̄res = eSUMIR(QCED)

∞∑
n,m=0

1

n!m!

∫ n∏
j1=1

d3kj1
kj1

m∏
j2

d3k′j2
k′j2

∫
d4y

(2π)4
eiy.(p1+q1−p2−q2−

∑
j kj)+DQCED

∗ ˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m)
d3p2

p0
2

d3q2

q0
2

, (6.4)

where dσ̄res is either the reduced cross section dσ̄res or the differential rate associated

to the DGLAP-CS [3, 4] kernel involved in the evolution of the {Fj} and where the

new YFS residuals, ˜̄βn,m(k1, . . . , kn; k′1, . . . , k
′
m), with n hard gluons and m hard

photons represent the successive application of the YFS expansion. In this case we

again make the following replacements

Bnls
QCD → Bnls

QCD +Bnls
QED ≡ Bnls

QCED

B̃nls
QCD → B̃nls

QCD + B̃nls
QED ≡ B̃nls

QCED

S̃nlsQCD → S̃nlsQCD + S̃nlsQED ≡ S̃nlsQCED (6.5)

in the YFS [17] exponentiation algebra. Here the superscript nls denotes again

the infrared functions are DGLAP-CS synthesized [3, 4]. Compared to chapter 2

we have interchanged the order of the gluons and photons without loss of physical

content.
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The infrared functions are now again given by

SUMIR(QCED) = 2αSRBnls
QCED + 2αSB̃

nls
QCED

DQCED =

∫
dk

k0
(e−iky − θ(Kmax − k0))S̃nlsQCED (6.6)

which is independent of Kmax. However again the dummies in QCD and QED were

set to the same value for the purpose of the calculation. This is still denoted as

Quantum ChromoElectroDynamics (QCED). In (6.6) SUMIR(QCED) still sums up

to the infinite order the maximal leading IR singular terms in the cross section for

soft emission below a dummy parameter Kmax, DQCED
1 does the same for the

regime above Kmax, which therefore implies that (6.6) is independent of Kmax, as

interchanging the roles of gluons and photons does not affect the independence on

Kmax. Here the entire soft gluon phase space is included in the representation. In

order to maintain exactness order by order in perturbation theory in both α and αS

in the presence of the resummed terms, we generate the residuals ˜̄βn,m by iterative

computation to match the attendant exact results to all orders in α and αS.Following

Ref. [10], the new non-Abelian residuals ˜̄βm,n allow rigorous shower/ME matching

via their shower subtracted analogs: in (6.4) we make the replacement

˜̄βn,m →
ˆ̄̃
βn,m (6.7)

where the
ˆ̄̃
βn,m have had all effects in the shower associated to the {Fj} removed

from them.To see how contact is made with
ˆ̄̃
βn,m and the differential distributions

in MC@NLO we see that the MC@NLO differential cross section is represented by

dσMC@NLO = [B + V +

∫
(RMC − C)dΦR]dΦB[∆MC(0) +

∫
(RMC/B)∆MC(kTdΦR)]

+ (R−RMC)∆C(kT )dΦBdΦR (6.8)

1 If we want to include more of the maximal exponentiating terms from the formalism of
Ref. [21] in the two exponents SUMIR(QCED), DQCED, we may do so with a consequent change

in the attendant residuals ˜̄βn,m.
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where B is the Born distribution, V is the regularized virtual contribution, C is

the corresponding counter-term required at the exact NLO, R is the respective real

emission distribution for exact NLO, RMC = RMC(PAB) is the parton shower real

emission distribution such that the Sudakov form factor is given by

∆MC(pT ) = e

[
−

∫
dΦR

RMC (ΦB,ΦR)

B
θ(kT (ΦB ,ΦR)−pT )

]
(6.9)

where as usual it describes the respective no-emission probability. The respective

Born and real emission differential phase spaces are denoted by dΦA, A=B,R, re-

spectively.

In Refs. [5, 6] it has been shown that our approach is consistent with the

methods in Refs. [38, 39]. However the methods in [38, 39] gives approximations

to the hard gluon residuals
ˆ̄̃
βn,0 as they are not exact results. In the threshold

resummation methods in [38], the non-singular contributions to the cross sections

at z → 1 are dropped in resumming the logs in n-Mellin space using

|
∫ 1

0

dzzn−1f(z) |≤ (
1

n
) max
z∈[0,1]

|f(z)|, (6.10)

for any integrable function f(z). In Ref. [39], the SCET theory, the terms of O(λ)

are dropped at the amplitude level. There λ =
√

Λ
Q

with Λ ∼ .3 GeV so that

λ ∼= 5.5% with Q ∼ 100 GeV. As the two approaches are equivalent, the error in the

threshold resummation is similar. Therefore these approaches can only be used as

guide to the non-Abelian residuals
ˆ̄̃
βn,0 that are developed for the (sub-)1% precision

regime.

We continue the consistency discussion with the Refs. [40, 41] which is again

an approximate formalism. This theory is used widely at the LHC. The theory is

also used in the data analysis for the Tevatron. See for example the recent analysis

in Ref. [42] where this theory, as it is implemented in the MC integration program

RESBOS [43, 44, 45], is compared to recent LHC data and to recent analysis of

Tevatron data. The question is whether the theory in Refs. [40, 41] can be used
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to reach ≤ 1% physical precision for the QCD predictions. Let us note that the

authors in Ref. [41] give us a hint to the answer to our question in their footnote on

the journal page with number 215 for the paper, wherein they equate as ‘negligible’

20% in discussing possible nonperturbative contributions in their formalism. Let us

keep this footnote in mind in what follows.

The defining formula in the Refs. [40, 41] is that for the differential cross

section for the pT distribution for the production of heavy gauge bosons in the

hadron-hadron collision. Here we specify the Drell-Yan γ∗ production2 , as

dσ

dQ2dydQ2
T

∼ 4π2α2

9Q2s

{∫
d2b

(2π)2
ei

~QT .~bW̃ (b;Q, xA, xB) + Y (QT ;Q, xA, xB)

}
, (6.11)

where, ~QT = ~pT is the γ∗ transverse momentum. A,B are the protons at LHC, s is

the cms squared energy of the protons. Qµ is the γ∗ 4-momentum and Q2 is the mass

squared. y = 1
2

ln(Q
+

Q−
) is the γ∗ rapidity such that xA = ey Q√

s
and xB = e−y Q√

s
. Also,

Q is near MZ here. The term involving W̃ carries the effect from QCD resummation

and the Y term includes those contributions which are regular at QT = pT → 0 as

in Refs. [40, 41] that is, order by order in perturbation theory they are divided from

parts of the hard scattering coefficients that are less singular than,Q2
T̄
×(logs or 1) or

δ( ~QT ) as QT = pT → 0. The Y term is perturbative and can be computed up to the

required accuracy using the standard methods. Therefore, the question is regarding

the precision of the W̃ .

Therefore, when b << 1
Λ

where Λ is a hadronic mass scale like the inverse of

the proton radius from Refs. [40, 41], we get

W̃ (b;Q, xA, xB) =
∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξBF a
A

(ξA;µ)F b
B

(ξB;µ)e−SSC

×
∑
j

e2
jCja(

xA
ξA
, b;

C1

C2

; g(µ), µ)Cjb(
xB
ξB
, b;

C1

C2

; g(µ), µ), (6.12)

2 The analogous results for the W± and Z/γ∗ are obtained by straightforward substitutional
manipulations of the EW aspects of the formula we record here as described in Ref. [41] so that
we omit such manipulations here without loss of content of the QCD aspects of our discussion.
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where [40, 41]

SSC =

∫ C2
2Q

2

C2
1
b2

dµ̄2

µ̄2
[ln(

C2
2Q

2

µ̄2
)A(g(µ);C1) +B(g(µ̄);C1, C2)]. (6.13)

Here, we show the explicit dependences of the parton density functions {Fl}

and the dependences of the perturbatively calculable exponentiation and scattering

coefficient functions A, B and C as given in the Refs. [40, 41]. The µ is usually

set to C1

b
and C1 and C2 are order 1 constant. The result for W̃ is accurate up

to terms O(mq
Q
, 1

(bQ)
) when 1

Q
<< b << 1

Λ
where mq represents the quark masses.

Also, according to Refs. [40, 41] the terms of O(mq
Q
, QT
Q

) are dropped in the regime

0 ≤ QT << Q in (6.11).

Now considering the regime b & 1
Λ

, according to Refs. [40, 41] the functions

A,B and C have to be replaced according to

A(g(µ̄);C1)→ A(g(µ̄),mq/µ̄;C1)

B(g(µ̄);C1, C2)→ B(g(µ̄),mq/µ̄;C1, C2)∑
a,b

∫ 1

xA

dξA

∫ 1

xB

dξBFa/A(ξA;µ)Fb/B(ξB;µ)
∑
j

e2
jCja(xA/ξA, b;C1/C2; g(µ), µ)

× Cjb(xB/ξB, b;C1/C2; g(µ), µ)→
∑
j

e2
j P̄j/A(xA, b;C1/C2)P̄j/B(xB, b;C1/C2).

(6.14)

It can be seen then the quark masses cannot be neglected anymore and the convo-

lutions C ∗ F are no longer appropriate.

From Refs. [40, 41], the two results for the regimes b << 1
Λ

and b & 1
Λ

are

joined as follows. Define

W̃ (b;Q, xA, xB) ≡
∑
j

e2
jW̃j(b;Q, xA, xB), (6.15)

which is well defined in both the regimes. Considering bmax to be a parameter in

the perturbative regime we can write

W̃j(b;Q, xA, xB) = W̃j(b
∗;Q, xA, xB)e{− ln(Q2/Q2

0)g1(b)−gj/A(xA,b)−gj/B(xB ,b)}, (6.16)
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where g1,gj/A,gj/B have non-perturbative content and

b∗ = b/
√

1 + b2/b2
max. (6.17)

With the definition above, Refs. [40, 41] arrive at the following conclusion

dσ

dQ2dydQ2
T

∼ 4π2α2

9Q2s

{∫
d2b

(2π)2
ei
~QT ·~b

∑
j

e2
jW̃j(b

∗;Q, xA, xB)

× e{− ln(Q2/Q2
0)g1(b)−gj/A(xA,b)−gj/B(xB ,b)} + Y (QT ;Q, xA, xB)

}
. (6.18)

Now in RESBOS in Refs. [43, 44] the following three realizations of the non-

perturbative functions are used:

ln(Q2/Q2
0)g1(b) + gj/A(xA, b) + gj/B(xB, b)

=


[g1 + g2 ln(Q/(2Q0))]b2, DWS [46]

[g1 + g2 ln(Q/(2Q0))]b2 + g1g3 ln(100xAxB)b, LY [43]

[g1 + g2 ln(Q/(2Q0)) + g1g3 ln(100xAxB)]b2, BLNY [44].

(6.19)

The gi are the parameters on the RHS of (6.19). The best fit to the data considered

in Ref. [44] was obtained from the BLNY parametrization with the values

g1 = 0.21+0.01
−0.01 GeV2, g2 = 0.68+0.01

−0.02 GeV2, g3 = −0.6+0.05
−0.04 (6.20)

when bmax = 0.5 GeV−1 and Q0 = 1.6 GeV.

On the question of the physical precision of (6.18) it is observed that, with

the errors shown on the constants gi for the best BLNY parametrization, the -0.02

error on g2 represents already a 1.5% uncertainty at the saddle point position for the

integration over b in the respective Z analogue of (6.11). This exceeds the theory

error budget in precision QCD that we advocate here. On the LHS of (6.18) the

gl which do not (do) multiply ln( Q
Q0

) are unspecified functions of xj, b(b) that are

required to vanish at b = 0 while on the RHS these dependencies are simplified to
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second order polynomials in b and either no or linear ln(xAxB) dependence on xj.

These simplifications are generically ad hoc and cannot be considered as a rigorous

platform for testing the fundamental QCD theory.3

Now, on the question of the physical precision of (6.18), we note that in the

regime 0 ≤ QT ≤ Q it has an error of O(QT/Q) as such terms have been dropped,

order by order in perturbation theory in the construction of W̃j. For Q = MZ and

QT = 5 GeV, there is an error of ∼= 5.5% and it is twice this size at QT = 10

GeV. This shows that the formalism in [40, 41] cannot be used for (sub-)1% theory

predictions for the heavy gauge boson pT spectrum at the LHC.4 At QT = 0

following Parisi and Petronzio in Refs. [47], the integral over ~b in (6.11)is dominated

by a saddle point at

bSP =
1

Λ
(
Q

Λ
)−A

(1)/(A(1)+β1) (6.21)

where we have A =
∑

N A
(N)(αS/π)N and β1 = 1

12
(33 − 2NF ) where NF is the

number of effective quark flavors which we take as 5 here. Then we have A(1) = 4/3

so that

bSP =
1

Λ
(
Q

Λ
)−0.41. (6.22)

3 Note that, with the IR-improvement of the parton shower in HERWIRI1.031, there is
no longer any need even for an IR cut-off parameter, as all formerly IR-divergent integrals now
converge; there is no issue of the validity of perturbation theory in the shower because the shower
resums the large logs in it to all orders in αS ; the shower runs down to the hadronization scale
∼ 1 GeV and the transition to hadrons is a smooth one due to local parton hadron duality [46]and
the precociousness of Bjorken scaling [22, 36] which occurs already at 1+ GeV2 – the properties
of the shower such as its pT and its energy are independent of the transition to hadrons to very
high accuracy. No arbitrary ad hoc parameters that affect resummed results from the shower such
as the parameters in (6.19) appear – even the un-IR-improved parton shower in HERWIG6.5 is
well-behaved at small pT and no part of the result of O(QT /Q) in (6.4) is just dropped as it is in
(6.18).

4 We stress that in any given realization of (6.18) such as that in Ref. [45] the quantity Y is
known only to a finite order in αS , in the latter reference this is to first order in αS . This means
that the physical precision error O(QT /Q) on the part of the resummed singular part of (6.18)
from O(αn

S), n ≥ 2, cannot be compensated by Y in Ref. [45], for example. If Y is known to

O(αn
S), physical precision error O(QT /Q) from the W̃j part of (6.18) from O(αm

S ), m ≥ n + 1,
cannot be compensated by Y even in principle.
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For Q = MZ we get, bSP ∼= .48 GeV−1 and we take Λ = 0.15 GeV [41]. This result for

bSP is in the perturbative regime. Also, from [40, 41] we know that the error on the Z

production analogue of W̃j at this point is O(1/(bSPMZ)) ∼= 2.3%.Thus, even when

(6.12) is reliable in the perturbative regime, the error is too large. From comparison

of ATLAS and Tevatron data related to the pT spectrum in single Z/γ∗ in Ref. [42]

it can be seen that RESBOS misses the data by 2% for the pT near 0 and it misses the

data by & 5% for the regime of pT & 10 GeV, and is consistent with our estimate

of the physical precision. The non-perturbative factor in (6.18) compromises the

predictive power of the formalism in Refs. [40, 41]. In the Ref. [46] it is argued that

for W , Z production considered here the prediction in (6.18) is insensitive to the non-

perturbative parametrization in (6.19) in the regime 6 GeV < QT < 16 GeV. This

indicates that the effects discussed above are the main obstacles to using Refs. [40, 41]

for the precision QCD physics predictions at the LHC in the latter regime for the

precision at or below 1%. Ref. [48] presents another version of (6.11) with the

same physical precision as realized in RESBOS with different treatment of the non-

perturbative regime. So comparison to the data in Ref. [42] in the perturbative

regime, our physical precision estimate for this regime also applies to the realization

of (6.11) in Ref. [48]. It cannot be therefore used for the study of 1% precision LHC

physics.

Ref. [48] discusses the uncertainty in their results as a function of the variation

of the values associated with their renormalization, factorization and resummation

scales. They estimate, for example, that this is at the level of 10% near the peak

of the QT spectrum in the single Z/γ∗ production at the LHC. These uncertainties

can in principle be reduced by computing the perturbative terms in their results to

higher and higher orders. Also an additional PDF error is estimated at this region at

the level of 2%. This in principle can be reduced by improving the determination of

the respective PDF’s. The error in the defining result (6.18) derived in Refs. [40, 41]
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on which their results are based is an error of O(QT/Q) that applies order by order

in the perturbation theory - it is separate from the scale and PDF errors discussed

in Ref. [48].

The SCET theory approach used in Ref. [49] is used to recover (6.18) and it is

explicitly shown that the improvement of the perturbative scale errors indeed occurs

when higher order corrections are included in the calculation of the perturbative

terms in the respective SCET realization of (6.18). The error that we discuss here of

O(QT/Q) due to the approximations in the defining derivations of (6.18)in Refs. [40,

41] also applies to the order-by-order results in Ref. [49]. As noted above, SCET

involves for single Z production at the LHC the defining error
√

Λ/MZ ≡ 5.7% for

the typical hadronic transverse size Λ ∼= 0.3 GeV and this is consistent with the

approximations made in Refs. [40, 41]. Such approximations cannot be used for the

1% precision QCD theory.

In summary we see that even though a new variable QT−related variable [50]

is used in some of the comparisons, φ∗η = tan (1
2
(π −∆φ)) sin θ∗ ∼= |

∑ piT sinφi
Q
| +

O(
p2
iT

Q2 ), where ∆φ = φ1 − φ2 is the azimuthal angle between the two leptons which

have transverse momenta piT , i = 1, 2 and θ∗ is the scattering angle of the dilepton

system relative to the beam direction when one boosts to the frame along the beam

direction such that the leptons are back to back, it is seen that φ∗η−comparisons

also show the underlying physical precision error associated with defining (6.11); as

expected the comparisons are somewhat better than the QT spectra comparisons

because this φ∗η is more inclusive - two different values of QT with corresponding

compensating differences in the attendant φi can have the same value of φ∗η. From

the discussions just completed, we see that, in order to have a strict control on the

theoretical precision in (6.1), we need both the resummation of the reduced cross

section and that of the attendant evolution of {Fj}.
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To demonstrate the above from Ref. [34] in Fig. (6.5) we compare the mea-

surement to the predictions of pQCD calculations as well as of different generators.

The O(αS) and O(α2
S) pQCD predictions of the pT dependent cross section are ob-

tained using FEWZ and MSTW PDF sets. Around the scale µR = µF = MZ with

the constraint 0.5 ≤ µR/µF ≤ 2, the uncertainties on the normalized predictions

are evaluated by variation of the normalization and factorization scales by factors

of 2, with a range corresponding to 90% confidence-level limits, by variation of αS

and by using the PDF error eigenvector sets. With a dominant contribution of 9%

and 6.5% from the scale variations, the above amount to ∼ 10% and ∼ 8% for

O(αS) and O(α2
S) prediction respectively. The pT distribution suffers from scale

uncertainty. This indicates non-negligible missing higher order corrections. The

above measurements are also compared to the predictions of RESBOS and various

other event generators. The RESBOS prediction is based on CTEQ6.6. The general

consistency with data is verified using a χ2 test. The data deviates from RESBOS

by 2.5% for low pT and by 5% for larger value of pT . Continuing to further demon-

strate, following Ref. [42] we show in Fig. (6.6) the ratio of combined normalized

differential cross section to RESBOS [43, 44, 45], a QCD calculation by A. Banfi [48]

and that obtained from FEWZ. The CTEQ6M PDF set is used in [48]. For FEWZ

the PDF set CT10 is used. The uncertainties are evaluated as explained above. The

difference between RESBOS prediction and data is ∼ 2% for φ∗η < 0.1, increasing to

5% for higher φ∗η values. The description provided by A. Banfi [48] is not better than

RESBOS. The prediction of FEWZ undershoots the data by ∼ 10%. The predictions

of FEWZ is only given for φ∗η > 0.1, as it diverges away from the data for lower values

- it needs IR-improvement.

These results corroborate the physical precision error estimates made above

for attendant approaches. What this means is that we have opened the way to

something fundamentally new: a practical way to achieve sub 1% precision results via
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Figure 6.5: Ratios of the combined data and various predictions over the RESBOS pre-
dictions for the normalized differential cross section as a function of pT : predictions from
PYTHIA [51], MC@NLO [25], POWHEG [26],ALPGEN and SHERPA [52]. The data
points are shown with combined statistical and systematic uncertainties [34].

Figure 6.6: The ratio of the combined differential cross section 1/σ · dσ/dφ∗η to RESBOS 
predictions as a function of φ∗η. The inner and outer error bars on the data points represent 
the statistical and total uncertainties, respectively. The uncertainty due to QED FSR is
included in the total uncertainties. The measurements are also compared to predictions,
which are represented by a dashed line from Ref. [48] and FEWZ. Uncertainties associated
with these two calculations are represented by shaded bands. The prediction for FEWZ is
only presented for φ∗η > 0.1.
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MC methods. This allows arbitrary detector cuts so that contact with experimental

data is manifest. We used single Z/γ∗ production as our prototypical process. But

HERWIRI1.031 runs the same set of processes as does HERWIG6.510. Thus the

entire set of standard candle processes and the BSM processes at the LHC is within

our approach.

74



CHAPTER SEVEN

Conclusion

In this thesis we have shown that the realization of IR-improved DGLAP-CS

theory in HERWIRI1.031, when used in the MC@NLO/HERWIRI1.031 exact O(αS)

ME matched parton shower framework, affords one the opportunity to explain, on an

event-to-event basis, both the rapidity and the pT spectra of the Z/γ∗ in pp collisions

in the recent LHC data from CMS and ATLAS, respectively, without the need of an

unexpectedly hard intrinsic Gaussian pT distribution with rms value of PTRMS∼=

2 GeV in the proton’s wave function. Therefore it can be interpreted as providing

a rigorous basis for the phenomenological correctness of such unexpectedly hard

distributions insofar as describing these data using the usual DGLAP-CS showers

is concerned. It is further emphasized that the precociousness of Bjorken scaling

argues against the fundamental correctness of the hard scale intrinsic pT ansatz

with the unexpectedly hard value of PTRMS∼= 2 GeV, as do the successful models

of the proton’s wave function, which would predict this value to be . 0.4 GeV.

We also point-out that the fundamental description in MC@NLO/HERWIRI1.031

can be systematically improved to the NNLO parton shower/ME matched level -

a level which we anticipate is a key ingredient in achieving the (sub-)1% precision

tag for such processes as single heavy gauge boson production at the LHC. We

conclude that the physical precision of the other more approximate approaches are

the above 1% precision tag that is now aspired. However, it is to be noted that there

is no contradiction between the other more approximate approaches and the exact

IR-improved DGLAP-CS theory.
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APPENDIX A

Herwiri1.031

HERWIRI1.031 is a Monte Carlo package for simulating high energy radiation

with IR improvement. The functions modified in HERWIG are

HWBRAN

HWBSUD

HWBSU1

HWBSU2

HWBSUG

HWIGIN

HWSGQQ (modified in version 1.02)

HWSFBR (modified in version 1.031)

The new functions in HERWIRI1.031 are

IRNF Computes the number of active flavours based on Q.

IREI Computes the exponential integral Ei(x) for x ¿ 0.

IRQQBAR Newton-Raphsons method to solve an algebraic equation of the form

F(x)=0.

A.1 hwmain.f

PROGRAM HWIGPR

C—COMMON BLOCKS ARE INCLUDED AS FILE HERWIG65.INC

INCLUDE ’HERWIG65.INC’

INTEGER N

EXTERNAL HWUDAT
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C—MAX NUMBER OF EVENTS THIS RUN

MAXEV= 1000

C—BEAM PARTICLES

PART1=’P’

PART2=’P’

open (unit = 1, file = ”output.dat”)

C—BEAM MOMENTA

PBEAM1=7000.

PBEAM2=7000.

C—PROCESS

IPROC=1353

C—INITIALISE OTHER COMMON BLOCKS

CALL HWIGIN

C—USER CAN RESET PARAMETERS AT THIS POINT, OTHERWISE DE-

FAULT

C VALUES IN HWIGIN WILL BE USED.

NOWGT = .TRUE.

PRVTX = .FALSE.

MAXPR = 5

C PTMIN=100.

PTMIN = 5 C—COMPUTE PARAMETER-DEPENDENT CONSTANTS

CALL HWUINC

C—CALL HWUSTA TO MAKE ANY PARTICLE STABLE

CALL HWUSTA(’PI0 ’)

C—USER’S INITIAL CALCULATIONS

CALL HWABEG

C—INITIALISE ELEMENTARY PROCESS
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CALL HWEINI

C—LOOP OVER EVENTS

DO 100 N=1,MAXEV

C—INITIALISE EVENT

CALL HWUINE

C—GENERATE HARD SUBPROCESS

CALL HWEPRO

C—GENERATE PARTON CASCADES

CALL HWBGEN

C—FINISH EVENT

CALL HWUFNE

C—USER’S EVENT ANALYSIS

CALL HWRAP

100 CONTINUE

C—TERMINATE ELEMENTARY PROCESS

CALL HWEFIN

C—USER’S TERMINAL CALCULATIONS

CALL HWAEND

close(1)

STOP

END

SUBROUTINE HWABEG

C USER’S ROUTINE FOR INITIALIZATION

C———————————————————————-

END

C———————————————————————-

SUBROUTINE HWAEND
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C USER’S ROUTINE FOR TERMINAL CALCULATIONS, HISTOGRAM OUT-

PUT, ETC

C———————————————————————-

END

C———————————————————————-

SUBROUTINE HWRAP

C USER’S ROUTINE TO CALCULATE THE RAPIDITY DISTRIBUTION OF

THE Z

C ZLOW : MINIMUM VALUE OF Z FOR CUT

C PTLCUT : CUT ON LEPTON MOMENTUM

C ETACUT : CUT ON LEPTON RAPIDITY

C———————————————————————-

INCLUDE ’HERWIG65.INC’

INTEGER IST, I

LOGICAL ZCUT, PTTEST, PLUS, MINUS

DOUBLE PRECISION ZLOW, PX, PY, PT, PTLP,PTLM, ETAL,

& PTLCUT, MUPLUS, MUMINUS, E, PZ, ETA,

& ETAFNL, ETACUT

ETACUT = 50

ZLOW = 40

PTLCUT = 5

IF (IERROR.NE.0) RETURN

ZCUT = .FALSE.

PLUS = .FALSE.

MINUS =.FALSE.

DO 30 I=1, NHEP

IST = ISTHEP(I)
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C MAKE CUT ON Z

IF((IST .EQ. 120) .AND. (IDHEP(I) .EQ. 23)) THEN

IF(PHEP(5,I) .GT. ZLOW) THEN

E = PHEP(4,I)

PZ= PHEP(3,I)

ETAFNL = 0.5*LOG((E+PZ)/(E-PZ))

ZCUT = .TRUE.

ENDIF

ENDIF C MAKES CUT ON PT and Y FOR MU-MINUS

IF ((IST .EQ. 190) .AND.(IDHEP(I) .EQ. 13) ) THEN

PX = PHEP(1,I)

PY = PHEP(2,I)

E = PHEP(4,I)

PZ = PHEP(3,I)

ETA = 0.5*LOG((E+PZ)/(E-PZ))

PTLM = SQRT(PX*PX + PY*PY)

IF((PTLM .GT. PTLCUT) .AND. (ABS(ETA) .LT.ETACUT )) THEN

PLUS = .TRUE.

ENDIF

ENDIF

C MAKES CUT ON PT and Y FOR MU-PLUS

IF ((IST .EQ. 190) .AND.(IDHEP(I) .EQ. -13) ) THEN

PX = PHEP(1,I)

PY = PHEP(2,I)

E = PHEP(4,I)

PZ = PHEP(3,I)

ETA = 0.5*LOG((E+PZ)/(E-PZ))
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PTLP = SQRT(PX*PX + PY*PY)

IF((PTLP .GT. PTLCUT) .AND. (ABS(ETA) .LT.ETACUT)) THEN

MINUS = .TRUE.

ENDIF

ENDIF

30 CONTINUE

IF(ZCUT) THEN

C ONYLY WRITE EVENTS THAT PASS LEPTON TEST

IF(PLUS .AND. MINUS) THEN

WRITE(1,*), ETAFNL

ENDIF

ENDIF

END

C————————————————————————–
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APPENDIX B

Sample Run Data

INPUT CONDITIONS FOR THIS RUN

BEAM 1 (P ) MOM. = 7000.00

BEAM 2 (P ) MOM. = 7000.00

PROCESS CODE (IPROC) = 1353

NUMBER OF FLAVOURS = 6

STRUCTURE FUNCTION SET = 8

AZIM SPIN CORRELATIONS = T

AZIM SOFT CORRELATIONS = T

QCD LAMBDA (GEV) = 0.1800

DOWN QUARK MASS = 0.3200

UP QUARK MASS = 0.3200

STRANGE QUARK MASS = 0.5000

CHARMED QUARK MASS = 1.5500

BOTTOM QUARK MASS = 4.9500

TOP QUARK MASS = 174.3000

GLUON EFFECTIVE MASS = 0.7500

EXTRA SHOWER CUTOFF (Q)= 0.4800

EXTRA SHOWER CUTOFF (G)= 0.1000

PHOTON SHOWER CUTOFF = 0.4000

CLUSTER MASS PARAMETER = 3.3500

SPACELIKE EVOLN CUTOFF = 2.5000

INTRINSIC P-TRAN (RMS) = 0.0000

DECAY SPIN CORRELATIONS= T
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SUSY THREE BODY ME = T

SUSY FOUR BODY ME = F

MIN MASS FOR DRELL-YAN = 10.0000

MAX MASS FOR DRELL-YAN =14000.0001

NO EVENTS WILL BE WRITTEN TO DISK

B d: Delt-M/Gam =0.7000 Delt-Gam/2*Gam =0.0000

B s: Delt-M/Gam = 10.00 Delt-Gam/2*Gam =0.2000

PDFLIB NOT USED FOR BEAM 1

PDFLIB NOT USED FOR BEAM 2

Checking consistency of particle properties

WRITING SUDAKOV TABLE ON UNIT 77

WRITING MATRIX ELEMENT TABLE ON UNIT 88

CHECKING SUSY DECAY MATRIX ELEMENTS

PARTICLE TYPE 21=PI0 SET STABLE

INITIAL SEARCH FOR MAX WEIGHT

PROCESS CODE IPROC = 1353

RANDOM NO. SEED 1 = 1246579

SEED 2 = 8447766
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NUMBER OF SHOTS = 10000

NEW MAXIMUM WEIGHT = 9.666181036104836

NEW MAXIMUM WEIGHT = 19.14190263622064

HWWARN CALLED FROM SUBPROGRAM HWSMRS: CODE = 4

EVENT 0: SEEDS = 17673 & 63565 WEIGHT = 0.0000E+00

EVENT SURVIVES. EXECUTION CONTINUES

WARNING: MRST98 CALLED WITH X OUTSIDE ALLOWED RANGE!

X VALUE=1.261E-06, MINIMUM=1.000E-05, MAXIMUM=1.000E+00

NO FURTHER WARNINGS WILL BE ISSUED

NEW MAXIMUM WEIGHT = 21.25145338674105

INITIAL SEARCH FINISHED

OUTPUT ON ELEMENTARY PROCESS

N.B. NEGATIVE WEIGHTS NOT ALLOWED

NUMBER OF EVENTS = 0

NUMBER OF WEIGHTS = 10000

MEAN VALUE OF WGT = 6.0962E+00

RMS SPREAD IN WGT = 4.4149E+00

ACTUAL MAX WEIGHT = 2.0496E+01

ASSUMED MAX WEIGHT = 2.1251E+01

PROCESS CODE IPROC = 1353

CROSS SECTION (PB) = 6096.
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ERROR IN C-S (PB) = 44.15

EFFICIENCY PERCENT = 28.69

SUBROUTINE TIMEL CALLED BUT NOT LINKED.

DUMMY TIMEL WILL BE USED. DELETE DUMMY

AND LINK CERNLIB FOR CPU TIME REMAINING.

HWWARN CALLED FROM SUBPROGRAM HWSMRS: CODE = 5

EVENT 1: SEEDS = 17673 & 63565 WEIGHT = 0.6096E+01

EVENT SURVIVES. EXECUTION CONTINUES

WARNING: MRST98 CALLED WITH Q OUTSIDE ALLOWED RANGE!

Q VALUE=1.540E+04, MINIMUM=1.118E+00, MAXIMUM=3.162E+03

NO FURTHER WARNINGS WILL BE ISSUED

EVENT 1: 7000.00 GEV/C P ON 7000.00 GEV/C

P PROCESS: 1353

SEEDS: 17673 & 63565 STATUS: 40 ERROR: 0

WEIGHT: 6.0962E+00

Table B.1. INITIAL STATE

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

1 P 2212 101 0 0 0 0 0.00 0.00 7000.0 7000.0 0.94

2 P 2212 102 0 0 0 0 0.00 0.00 -7000.0 7000 0.94

3 CMF 0 103 1 2 0 0 0.00 0.00 0.01400 0.01400 0.00

EVENT 2: 7000.00 GEV/C P ON 7000.00 GEV/C P PROCESS: 1353

SEEDS: 1794949213 & 1372457633 STATUS: 40 ERROR: 0 WEIGHT: 6.0962E+00

EVENT 3: 7000.00 GEV/C P ON 7000.00 GEV/C P PROCESS: 1353

SEEDS: 655683739 & 1202914484 STATUS: 40 ERROR: 0 WEIGHT: 6.0962E+00
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Table B.2. HARD SUBPROCESS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

4 UQRK 2 121 6 5 9 5 0.00 0.00 -0.4 0.5 0.32

5 UQRK -2 122 6 4 16 4 0.00 0.00 -635.0 635.0 0.32

6 Z0/GAMA* 23 120 4 5 7 8 -6.43 -0.77 -635.4 635.6 11.76

Table B.3. H/W/Z BOSON DECAYS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

7 MU- 13 123 6 7 21 7 5.46 1.88 -377.1 377.2 0.11

8 MU+ -13 124 6 8 22 8 -5.46 -1.88 -258.3 258.4 0.11

Table B.4. PARTON SHOWERS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

9 UQRK 94 141 4 6 11 15 -6.81 -1.97 80.4 -80.3 -8.56

10 CONE 0 149 9 12 0 0 1.00 0.08 -62.6 62.6 0.00

11 GLUON 21 149 9 12 0 20 1.64 -0.38 -15.8 15.9 0.75

12 GLUON 21 149 9 13 0 11 2.16 0.04 -28.9 29.0 0.75

13 GLOUN 21 149 9 14 0 12 3.04 1.16 -29.7 29.9 0.75

14 GLUON 21 149 9 15 0 13 -0.03 1.14 -5.7 5.9 0.75

15 UD 2101 147 9 18 0 14 0.00 0.00 6999.7 6999.7 -2.30

16 UBAR 94 142 5 6 18 20 0.38 1.20 -715.9 715.9 -1.76

17 CONE 0 100 5 4 0 0 -0.96 0.26 -42.8 42.8 0.00

18 UQRK 2 149 16 19 0 15 -1.09 -0.31 -877.9 877.9 0.32

19 UU 2203 148 16 20 0 18 0.00 0.00 -3223.7 3223.7 0.35

20 DQRK 1 149 16 11 0 19 0.71 -0.89 -2182.4 2182.5 0.32

21 MU- 13 190 7 6 0 0 3.11 1.60 -201.9 201.9 0.11

22 MU+ -13 190 8 6 0 0 -9.54 -2.37 -433.5 433.7 0.11

Table B.5. INITIAL STATE

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

1 P 2212 101 0 0 0 0 0.00 0.00 7000.0 7000.0 0.94

2 P 2212 102 0 0 0 0 0.00 0.00 -7000.0 7000.0 0.94

3 CMF 0 103 1 2 0 0 0.00 0.00 0.01400 0.01400 0.00

87



Table B.6. HARD SUBPROCESS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

4 DQRK 1 121 6 5 9 5 0.00 0.00 957.9 957.9 0.32

5 DBAR -1 122 6 4 11 4 0.00 0.00 0.6 0.7 0.32

6 Z0/GAMA* 23 120 4 5 7 8 1.40 -2.41 958.5 958.6 12.30

Table B.7. H/W/Z BOSON DECAYS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

7 MU- 13 123 6 7 20 7 4.10 3.69 -690.7 690.7 0.11

8 MU+ -13 124 6 8 21 8 -4.10 -3.69 267.9 267.9 0.11

Table B.8. PARTON SHOWERS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

9 DQRK 94 141 4 6 10 10 0.00 0.00 1194.5 1194.5 0.32

10 UU 2203 147 9 13 0 19 0.00 0.00 5805.5 5805.5 0.47

11 DBAR 94 142 5 6 13 19 1.40 -2.41 -235.9 -235.8 -6.85

12 CONE 0 100 5 4 0 0 0.98 -0.17 116.9 116.9 0.00

13 DQRK 1 149 11 14 0 10 0.30 1.27 0.5 1.4 0.32

14 UU 2203 148 11 15 0 13 0.00 0.00 -6988.2 6988.2 -3.67

15 DQRK 1 149 11 16 0 14 0.78 0.80 -11.2 11.3 0.32

16 GLUON 21 149 11 17 0 15 -1.33 -0.56 22.3 22.4 0.75

17 GLUON 21 149 11 18 0 16 -0.28 0.67 35.2 35.2 0.75

18 GLUON 21 149 11 19 0 17 -0.96 1.21 87.8 87.8 0.75

19 GLUON 21 149 11 10 0 18 0.08 -0.97 89.6 89.6 0.75

20 MU- 13 190 7 6 0 0 4.78 2.52 665.2 665.2 0.11

21 MU+ -13 190 8 6 0 0 -3.38 -4.93 293.4 293.4 0.11

Table B.9. INITIAL STATE

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

1 P 2212 101 0 0 0 0 0.00 0.00 7000.0 7000.0 0.94

2 P 2212 102 0 0 0 0 0.00 0.00 -7000.0 7000.0 0.94

3 CMF 0 103 1 2 0 0 0.00 0.00 0.01400 0.01400 0.00

EVENT 5: 7000.00 GEV/C P ON 7000.00 GEV/C P PROCESS: 1353

SEEDS: 1264112893 & 538273190 STATUS: 40 ERROR: 0 WEIGHT: 6.0962E+00
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Table B.10. HARD SUBPROCESS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

4 UBAR -2 121 6 5 9 5 0.00 0.00 73.6 73.6 0.32

5 UQRK 2 122 6 4 15 4 0.00 0.00 -0.4 0.5 0.32

6 Z0/GAMA* 23 120 4 5 7 8 -4.22 -0.94 73.2 74.2 11.24

Table B.11. H/W/Z BOSON DECAYS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

7 MU- 13 123 6 7 17 7 -1.71 -2.01 3.9 4.7 0.11

8 MU+ -13 124 6 8 18 8 1.71 -2.01 69.3 69.4 0.11

Table B.12. PARTON SHOWERS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

9 UBAR 94 141 4 6 11 14 -4.22 -0.94 73.8 73.7 -4.99

10 CONE 0 100 4 5 0 0 -0.73 0.68 4.5 4.6 0.00

11 UQRK 2 149 9 12 0 16 2.30 0.35 1042.5 1042.5 0.32

12 UD 2101 147 9 13 0 11 0.00 0.00 4099.1 4099.1 0.31

13 UQRK 2 149 9 14 0 12 0.89 -0.71 1742.1 1742.1 0.31

14 GLUON 21 149 9 16 0 13 1.04 1.30 42.5 42.5 0.75

15 UQRK 94 142 5 6 16 16 0.00 0.00 -0.5 0.5 0.01

16 UD 2101 148 15 11 0 14 0.00 0.00 -6999.5 6999.5 0.37

17 MU- 13 190 7 6 0 0 -4.03 1.49 9.4 10.3 0.11

18 MU+ -13 190 8 6 0 0 -0.19 -2.43 63.9 63.9 0.11

Table B.13. INITIAL STATE

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

1 P 2212 101 0 0 0 0 0.00 0.00 7000.0 7000.0 0.94

2 P 2212 102 0 0 0 0 0.00 0.00 -7000.0 7000.0 0.94

3 CMF 0 103 1 2 0 0 0.00 0.00 0.01400 0.01400 0.00

OUTPUT ON ELEMENTARY PROCESS

N.B. NEGATIVE WEIGHTS NOT ALLOWED

NUMBER OF EVENTS = 1000

NUMBER OF WEIGHTS = 3473
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Table B.14. HARD SUBPROCESS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

4 UQRK 2 121 6 5 9 5 0.00 0.00 458.9 458.9 0.32

5 UBAR -2 122 6 4 15 4 0.00 0.00 -0.4 0.5 0.32

6 Z0/GAMA* 23 120 4 5 7 8 -3.28 -0.67 458.5 459.5 30.29

Table B.15. H/W/Z BOSON DECAYS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

7 MU- 13 123 6 7 24 7 2.92 -2.82 450.6 450.6 0.11

8 MU+ -13 124 6 8 25 8 -2.92 2.82 7.9 8.9 0.11

Table B.16. PARTON SHOWERS

IHEP ID IDPDG IST M01 M02 DA1 DA2 P-X P-Y P-Z ENERGY MASS

9 UQRK 94 141 4 6 11 14 -1.92 3.85 503.6 503.5 -10.81

10 CONE 0 100 4 5 0 0 -0.01 1.00 11.2 11.2 0.00

11 GLUON 21 149 9 12 0 23 0.99 -0.45 15.9 16.0 0.75

12 GLUON 21 149 9 13 0 11 0.81 -1.33 37.8 37.9 0.75

13 GLUON 21 149 9 14 0 12 0.12 -2.06 713.2 713.2 0.75

14 UD 2101 147 9 17 0 13 0.00 0.00 5729.5 5729.5 0.36

15 UBAR 94 142 5 6 17 23 -1.36 -4.51 -45.1 -44.0 -11.00

16 CONE 0 100 5 4 0 0 0.93 0.38 20.3 20.3 0.00

17 UQRK 2 149 15 18 0 14 -0.61 0.93 -5.2 5.3 0.32

18 UU 2203 148 15 19 0 17 0.00 0.00 -6932.3 6932.3 0.25

19 DQRK 1 149 15 20 0 18 -0.46 1.10 -61.4 61.4 0.32

20 GLUON 21 149 15 21 0 19 1.01 -0.65 0.9 1.7 0.75

21 GLUON 21 149 15 22 0 20 0.94 0.58 14.2 14.2 0.75

22 GLUON 21 149 15 22 0 21 0.35 0.87 8.3 8.4 0.75

23 GLUON 21 149 15 11 0 22 0.14 1.69 20.6 20.7 0.75

24 MU- 13 190 7 6 0 0 1.30 -3.15 445.4 445.4 0.11

25 MU+ -13 190 8 6 0 0 -4.58 2.49 13.1 14.1 .11

MEAN VALUE OF WGT = 6.0018E+00

RMS SPREAD IN WGT = 4.4205E+00

ACTUAL MAX WEIGHT = 2.0460E+01

ASSUMED MAX WEIGHT = 2.1251E+01
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PROCESS CODE IPROC = 1353

CROSS SECTION (PB) = 6002.

ERROR IN C-S (PB) = 75.01

EFFICIENCY PERCENT = 28.24

———————————————————————————
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APPENDIX C

CMS Data Used

Table C.1: Measurement of the normalized differential cross section (σ dσ
d|y|) for the Drell-

Yan lepton pairs in the Z-boson mass region (60 < Mll < 120 GeV) as a function of the
absolute value of rapidity, separately for the muon and electron channels and combined.
Detector geometry and trigger uniformity requirements limit the muon channel measure-
ment to |y| < 2.0. The uncertainties shown are the combined statistical and systematic
uncertainties. [33]

Normalized Differential Cross section

|y| Range Muon Electron Combined

[0.0,0.1] 0.324±0.012 0.359±0.015 0.337±0.010

[0.1, 0.2] 0.338±0.013 0.326±0.016 0.335±0.010

[0.2, 0.3] 0.338±0.013 0.344±0.017 0.341±0.010

[0.3, 0.4] 0.341±0.013 0.355±0.017 0.346±0.010

[0.4, 0.5] 0.363±0.013 0.339±0.017 0.354±0.011

[0.5, 0.6] 0.342±0.013 0.351±0.018 0.346±0.010

[0.6, 0.7] 0.312±0.013 0.360±0.018 0.328±0.010

[0.7, 0.8] 0.354±0.013 0.331±0.018 0.347±0.011

[0.8, 0.9] 0.343±0.014 0.355±0.018 0.347±0.011

[0.9, 1.0] 0.332±0.014 0.332±0.018 0.332±0.011

[1.0, 1.1] 0.336±0.014 0.316±0.018 0.329±0.011

[1.1, 1.2] 0.324±0.014 0.352±0.019 0.334±0.011

[1.2, 1.3] 0.321±0.014 0.332±0.019 0.325±0.011

[1.3, 1.4] 0.355±0.016 0.321±0.019 0.341±0.012

[1.4, 1.5] 0.326±0.016 0.313±0.019 0.319±0.012

[1.5, 1.6] 0.331±0.018 0.330±0.020 0.330±0.013

[1.6, 1.7] 0.294±0.018 0.306±0.022 0.299±0.014

[1.7, 1.8] 0.331±0.021 0.332±0.024 0.331±0.016

[1.8, 1.9] 0.324±0.025 0.294±0.024 0.308±0.017

[1.9, 2.0] 0.328±0.032 0.328±0.026 0.038±0.020

[2.0, 2.1] 0.294±0.027 0.294±0.027

[2.1, 2.2] 0.298±0.029 0.298±0.029

[2.2, 2.3] 2.290±0.031 2.290±0.031

[2.3, 2.4] 0.278±0.035 0.278±0.035

[2.4, 2.5] 0.199±0.038 0.199±0.038

[2.5, 2.6] 0.249±0.040 0.249±0.040

[2.6, 2.7] 0.241±0.037 0.241±0.037

[2.7, 2.8] 0.256±0.035 0.256±0.035

[2.8, 2.9] 0.221±0.034 0.221±0.034

[2.9, 3.0] 0.165±0.035 0.165±0.035

[3.0, 3.1] 0.183±0.040 0.183±0.040

[3.1, 3.2] 0.228±0.045 0.228±0.045

[3.2, 3.3] 0.078±0.043 0.078±0.043

[3.3, 3.4] 0.105±0.051 0.105±0.051

[3.4, 3.5] 0.089±0.062 0.089±0.062
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Table C.2: Measurement of the normalized differential cross section for the Drell-Yan
lepton pairs in the Z-boson mass region (60 < Mll < 120 GeV) as a function of pT ,
separately for muon and electron channels and for the combination of the two channels.
The distribution is normalized by the cross section for the Z-bosons with both leptons
having |η| < 2.1 and pT > 20 GeV. The uncertainties listed in the table are the combined
statistical and systematic uncertainties. [33]

pT Range (GeV) Muon Channel Electron Channel Combination

[0.0,2.5] (3.21±0.14)×10−2 (3.24± 0.25)× 10−2 (3.22± 0.13)× 10−2

[2.5, 5.0] (5.89± 0.21)× 10−2 (6.03± 0.32)× 10−2 (5.92± 0.17)× 10−2

[5.0, 7.5] (5.51± 0.21)× 10−2 (5.32± 0.32)× 10−2 (5.50± 0.16)× 10−2

[7.5, 10.0] (3.90± 0.18)× 10−2 (4.20± 0.30)× 10−2 (3.96± 0.14)× 10−2

[10.0, 12.5] (3.49± 0.16)× 10−2 (3.60± 0.28)× 10−2 (3.53± 0.12)× 10−2

[12.5, 15.0] (2.74± 0.15)× 10−2 (2.70± 0.25)× 10−2 (2.72± 0.12)× 10−2

[15.0, 17.5] (2.23± 0.14)× 10−2 (2.00± 0.22)× 10−2 (2.16± 0.10)× 10−2

[17.5, 20.0] (1.68± 0.12)× 10−2 (1.59± 0.20)× 10−2 (1.65± 0.09)× 10−2

[20.0, 30.0] (1.14± 0.04)× 10−2 (1.20± 0.05)× 10−2 (1.16± 0.04)× 10−2

[30.0, 40.0] (6.32± 0.28)× 10−3 (5.62± 0.31)× 10−3 (5.98± 0.27)× 10−3

[40.0, 50.0] (3.53± 0.21)× 10−3 (3.18± 0.24)× 10−3 (3.38± 0.18)× 10−3

[50.0, 70.0] (1.74± 0.10)× 10−3 (1.90± 0.12)× 10−3 (1.81± 0.09)× 10−3

[70.0, 90.0] (7.76± 0.71)× 10−4 (7.86± 0.77)× 10−4 (7.79± 0.54)× 10−4

[90.0, 110.0] (4.87± 0.55)× 10−14 (4.57± 0.59)× 10−4 (4.75± 0.42)× 10−4

[110.0, 150.0] (1.79± 0.22)× 10−4 (2.18± 0.26)× 10−4 (1.93± 0.17)× 10−4

[150.0, 190.0] (7.10± 1.40)× 10−5 (4.82± 1.31)× 10−5 (6.00± 0.99)× 10−5

[190.0, 250.0] (1.17± 0.51)× 10−5 (2.05± 0.64)× 10−5 (1.51± 0.43)× 10−5

[250.0, 600.0] (2.24± 0.78)× 10−6 (0.81± 0.52)× 10−6 (1.29± 0.44)× 10−6
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APPENDIX D

ATLAS Data Used

Table D.1: The measured normalized differential cross section 1
σ
dσ
dpT

in bins of pT for

Z/γ∗ → e+e−. The cross sections are to be multiplied by the factor k corresponding to
bare electrons. The relative statistical (stat.) and total systematic (syst.) uncertainties
are given. [34]

pT bin 1
σ
dσ
dpT

GeV −1

(GeV) Z/γ∗ → e+e− uncert. (%)

bare electron k stat. syst.

0 - 3 3.21 .10−2 3.3 4.7

3 - 6 5.60 .10−2 2.4 3.3

6 - 9 4.64 .10−2 2.7 2.3

9 - 12 3.56 .10−2 3.1 2.4

12 - 15 3.09 .10−2 3.3 2.7

15 - 18 2.16 .10−2 3.9 3.0

18 - 21 1.73 .10−2 4.4 3.3

21 - 24 1.37 .10−2 4.8 3.6

24 - 27 1.11 .10−2 5.5 3.8

27 - 30 1.03 .10−2 6.5 4.0

30 - 36 7.26 .10−3 4.8 4.2

36 - 42 4.85 .10−3 5.8 4.5

42 - 48 3.59 .10−3 7.0 4.8

48 - 54 3.20 .10−3 7.8 5.0

54 - 60 2.08 .10−3 9.2 5.4

60 - 80 1.17 .10−3 6.5 5.7

80 - 100 5.44 .10−4 9.8 5.9

100 - 180 1.67 .10−4 9.6 6.1

180 - 350 0.73 .10−5 27.0 7.8
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APPENDIX E

Parton Model of Hadron Structure – Bjorken Scaling

The following chapter follows the explanation of the parton model and Bjorken

scaling in Quantum Field Theory by Peskin and Schroeder [16].

The cross section for e+e− annihilation to hadrons can be computed using

a model in which quarks are treated as non-interacting fermions which gives an

accurate formula for the cross section. Now we consider the case of proton-proton

collision. At high energy, collisions of protons in the center of mass produce a large

number of pions. These pions are produced mostly with momenta collinear with the

collision axis. This limited transverse momentum led to the modelling of hadron as

a loosely bound assembly of many components. So when a proton is struck with

another proton, it shatters into a cloud of pieces. In a high energy collision, the two

initial hadrons have almost lightlike momenta. The pieces of the hadron forming

the cloud possess lightlike momenta parallel to the original momentum vectors as

well. So by exchanging momenta q among the pieces in a way such that even if the

components of q are large, q2 is always small, the final state can be produced. As

ejection of a hadron at large transverse momenta requiring large q2 is rare, it can be

stated that hadrons are loose clouds of constituents which cannot absorb large q2.

The SLAC-MIT [36] deep inelastic scattering experiments put the above model

to test. The experiments saw hard scattering of electrons from the protons. Only in

rare cases a single proton emerged from the scattering processes. The deep inelastic

region of the phase space contributed the largest part of the rate. Therefore, Bjorken

and Feynman gave a simple model called the parton model to explain the above.

In this theory it was assumed that the proton was made of a small number of com-

ponents called partons. These includes quarks and antiquarks and neutral species
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that are responsible for their binding. Now in a scattering, the hadrons produced

are collinear with the direction of the original struck proton.

We now consider the electron-proton inelastic scattering in Fig. (E.1).

Figure E.1. Kinematics of deep inelastic electron scattering in the parton [16].

As qµ is a spacelike vector, we can express its invariant square in terms of

Q2 = −q2, (E.1)

where Q is a positive quantity. The Mandelstam variable t̂ is given by −Q2. A

given parton can be characterized by the fraction of the proton’s momentum that

it carries(ξ). Here it is assumed 0 < ξ < 1. So the total momentum of the parton

is given by p = ξP , where P is the momentum of the proton. So if k be the initial

momentum of the electron, the Mandelstam variable ŝ is given by

ŝ = (p+ k)2 = 2p.k = 2ξP.k = ξs. (E.2)

Here s is the center of mass energy squared. The mass of scattered parton is small

compared to s and Q2, so we get

0 ≈ (p+ q)2

= 2p.q + q2 (E.3)

= 2ξP.q −Q2.

This leads to

ξ = x where x ≡ Q2

2P.q
. (E.4)
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It is possible to determine Q2 and x for the scattering process from each electron.

The cross section at ξ = x is

d2σ

dxdQ2
=
∑
i

fi(x)Q2
i ·

2πα2

Q4

[
1 +

(
1− Q2

xs

)2
]
, (E.5)

where fi(x) is the parton distribution function at ξ = x. When the cross section is

divided by 1+(1−Q2/xs)2

Q4 , we get a quantity that depends only on x. This is known

as the Bjorken Scaling [22, 36]. According to Bjorken scaling the proton structure

appears to be the same irrespective of how hard the proton is struck.
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APPENDIX F

χ2 Test

The formula for χ2 is given by

χ2 =
∑ (experimental value− theoretical prediction)2

theoretical prediction
. (F.1)

Degrees of freedom is defined as

df = n− 1, (F.2)

where n is the number of classes.
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