

ABSTRACT

Construction and Validation of a Reconfigurable Computer Cluster

Willis Scott Troy, M.S.E.C.E.

Advisor: Russell W. Duren, Ph.D.

Cluster computing networks multiple computers (nodes) to exploit their parallel

processing power. By pooling resources of multiple computers, computations can be

decomposed and allocated across nodes with partial solutions collected and combined to

form a complete solution (scatter and gather). By augmenting cluster nodes with

reconfigurable hardware, systems can be configured with assistive devices that improve

their computational performance; thus reducing computation time and increasing

computational flexibility. This thesis evaluates a cluster of 16 Virtex II Pro Development

boards that were integrated as an experimental cluster. The well-known 3DES algorithm

was used to measure the runtime of multiple partitioned datasets (1 to 16 partitions) to

quantify the execution speedup over a varying number of nodes. The results showed that

performance can be improved with hardware acceleration, although there is complex

interplay between node communication and file I/O timing that impacts the magnitude of

the speedup.

Page bearing signatures is kept on file in the Graduate School.

Construction and Validation of a Reconfigurable Computer Cluster

by

Willis S. Troy, B.S.

A Thesis

Approved by the Department of Electrical and Computer Engineering

Kwang Y. Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of

Baylor University in Partial Fulfillment of the
Requirements for the Degree

of
Master of Science in Electrical and Computer Engineering

Approved by the Thesis Committee

Russell W. Duren, Ph.D., Chairperson

Steven R. Eisenbarth, Ph.D.

David B. Sturgill, Ph.D.

Accepted by the Graduate School
August 2009

J. Larry Lyon, Ph.D., Dean

Copyright © 2009 by Willis Scott Troy

All rights reserved

iii

TABLE OF CONTENTS

LIST OF FIGURES

vi

LIST OF TABLES

vii

ACRONYMS

viii

ACKNOWLEDGMENTS

x

DEDICATION

xi

CHAPTER ONE
 Introduction
 Importance
 Research Objectives
 Thesis Organization

1
1
1
2

CHAPTER TWO
 Background Information on Reconfigurable Computing Clusters
 Cluster Computing
 Computer Cluster Example
 Communication
 Reconfigurable Computer Clusters
 Reconfigurable Computer Cluster Example
 Reconfigurable Computing

3
3
3
4
5
5
5

CHAPTER THREE
 Design and Implementation of Hardware Base
 Reconfigurable Elements
 Multi-board setup
 Power
 Custom Power Supply
 Base System Creation in XPS

8
8
8

10
11
12

CHAPTER FOUR
 Design and Implementation of Operating System
 QNX
 MonteVista
 Debain

13
14
15
16

iv

CHAPTER FIVE
 Applications
 3DES Encryption Algorithm
 3DES IP Core, Standalone Version
 3DES Implementations
 Software Based Implementation
 Hardware Based Implementation
 Hardware
 Device Driver
 User Application
 Communication and File I/O Overhead Implementation
 Runtime

19
19
20
20
21
21
22
22
24
24
24

CHAPTER SIX
 Findings and Discussions

26

CHAPTER SEVEN
 Conclusions and Final Recommendations
 Lessons Learned
 Conclusions
 Recommendations

32
32
32
33

APPENDIX A
 XPS Creation of Hardware Base

35

APPENDIX B
 Porting the OS to the XUP V2P

51

APPENDIX C
 The Menuconfig Options

60

APPENDIX D
 Setting 3DES for a Standalone Implementation

86

APPENDIX E
 Software based 3DES

113

APPENDIX F
 Adding the 3DES IP CORE into the Base Design

131

APPENDIX G
 Code for the Device Driver

132

APPENDIX H
 Compiling and Loading the Device Driver

148

v

APPENDIX I
 3DES Implementation that use the Hardware Implementation

149

APPENDIX J
 Communication Overhead Code

165

APPENDIX K
 Test results

170

BIBLIOGRAPHY

177

vi

LIST OF FIGURES

Figure 1:

Stone Souper Computer 1

Figure 2:

Virtex II Pro 7

Figure 3:

16 Node Cluster Rack Mounted Physical System 9

Figure 4:

16 Node Cluster Logical Design 9

Figure 5:

Power Supply Diagram 11

Figure 6:

System Assembly View of Base System 12

Figure 7:

Runtime Versus Unencrypted Input File Size 30

Figure 8:

Runtime Versus Nodes Used 31

vii

LIST OF TABLES

Table 1:

File Sizes 26

Table 2:

Phase One Results Using 15 Boards 28

Table 3:

Phase Two Results, 40 MB Unencrypted Input File Size 29

viii

ACRONYMS

3DES - Triple Data Encryption Standard

BRAM - Block Random Access Memory

COTS - Commercial off the Shelf

CPU - Central Processing Unit

DDR SDRAM - Double Data Rate Synchronous Dynamic Random Access Memory

DHCP - Dynamic Host Configuration Protocol

EDA - Electronic Design Automation

EDK - Embedded Development Kit

FPGA - Field Programmable Gate Array

HDL - Hardware Description Language

HLL - High Level Language

HPC - High Performance Computing

IAT - Impulse Accelerated Technology

ICAP - Internal Configuration Access Port

JTAG - Joint Test Action Group

MPI - Message Passing Interface

NFS - Network File System

OS - Operating System

RAM - Random Access Memory

RCC - Reconfigurable Computer Cluster

RFS - Root File System

ix

SATA - Serial Advanced Technology Attachment

SYSACE -System ACE

UART - universal asynchronous receiver/transmitter

VHDL - VHSIC Hardware Description Language

VHSIC - Very-High-Speed Integrated Circuits

XPS - Xilinx Platform Studio

XUP - Xilinx University Program

x

ACKNOWLEDGMENTS

 I would like to thank Dr. Duren for giving me the opportunity to pursue research

avenues I enjoy and bending my mind in ways I thought unbendable. I would like to

thank Dr. Eisenbarth for his guidance and his willingness to always help me. I would like

to thank Dr. Sturgill for tolerating me in his courses despite the fact I was wholly

unprepared, and yet genuinely seemed interested in teaching me. I would like to thank

Spenser Gilland, whose help with the OS allowed this thesis come to fruition and allowed

me to make a friend in the process. And lastly, I would like to thank my friends and

family who tolerated my bickering and odd hours due to this thesis.

xi

DEDICATION

To my family
for believing in me when I could hardly believe in myself

1

CHAPTER ONE

Introduction

Importance

Cluster computing refers to the technique of networking multiple computers to

exploit their parallel processing power. By pooling the resources of multiple computers,

computations can be allocated to systems and solved independently. Upon completion

these systems can report to the partial solutions to a master node (system that distributed

data) for further instruction. Clusters are typically comprised of commercial off-the-

shelve (COTS) components such as prefabricated computers. While these systems offer

remarkable performance, they lack flexibility and sub-optimal for many tasks. By

augmenting these computer systems with reconfigurable hardware, such as contained in

FPGAs, we can tailor the system hardware for specific functionality, and hence improve

performance. For most applications, hardware accelerators run two to three magnitudes

faster than equivalent software implementations. Thus, a reconfigurable computing

cluster has the capability to reduce computation time and grant greater computational

flexibility.

Research Objectives

The primary objective of this thesis was to investigate the performance

characteristics of a reconfigurable computing cluster. The cluster adhered to both the

cluster computing and reconfigurable computing paradigms. Particular to cluster

computing, the cluster must be scalable, affordable, and applicable to a wide range of

2

computational tasks. The reconfigurable paradigm calls for hardware flexibility with

high performance. For research purposes, the cluster must allow porting of existing well-

known applications, remain non-proprietary, and have a minimal learning curve.

Thesis Organization

The background of reconfigurable computing and computing clusters will be

covered in Chapter 2. Chapter 3 will discuss the hardware implementation- in particular

the board’s Xilinx setup and the cluster’s overall construction. Chapter 4 will then cover

the operating system ported to the XUP Virtex II Pro boards, and lessons learned

concerning particular operating systems. Chapter 5 will discuss the applications that are

used to generate quantifiable execution data. Chapter 6 will cover the findings from the

test applications implemented on the cluster. And finally, Chapter 7 will discuss the

findings, and conclude with recommendations for further research.

3

CHAPTER TWO

Background on Reconfigurable Computing Clusters

Aforementioned in Chapter 1, a reconfigurable computing cluster is the mix of

two distinct computing paradigms: reconfigurable computing and cluster computing. The

mix of these two computing paradigms calls for scalability, affordability, hardware

flexibility, and high performance.

Cluster Computing

Cluster computing is the utilization of multiple processing elements to gain the

advantage of distributed computing. Nodes within a computer cluster are generally

interconnected via Ethernet to allow communication across the system. Cluster

computers have a strong presence in academia due to their availability and affordability.

Computer Cluster Example

A classic cluster computer example is the ―Stone Souper Computer‖, Oak Ridge

National Laboratories’ first Beowulf cluster. The cluster was constructed from 126

surplus machines after their proposal for funding was denied. The end product was a

heterogeneous cluster used to ―produce maps of regions of ecological similarity within

the 48 continuous US states‖ [1]. The cluster is pictured in figure 2. While the ―Stone

Souper Computer‖ was built mainly because of its affordability, there are many other

clusters built for performance alone, various examples can be found at

http://www.top500.org/.

http://www.top500.org/

4

Figure 1: Stone Souper Computer [1]

Communication

Cluster computing’s divide and conquer approach to problem solving requires

communication amongst the nodes. These communications are referred to as the scatter

and gather process, in which data is sent from a single source to multiple destinations

(scatter) and multiple sources send data to a single destination (gather). The scatter

gather process predominantly utilizes the ―single instruction multiple data‖ (SIMD)

technique. SIMD has each node perform the same instruction on received data, thus

partitioning the overall task. However, the ―multiple instruction multiple data‖ (MIMD)

technique can also be deployed on clusters by having nodes perform unique instructions

on received data.

The effective standard for communication has become MPI (Message Passing

Interface). This protocol is language independent and has three implementations:

MPICH [2], LAM/MPI [3], and Open MPI [4]. For our purposes we use LAM/MPI

within C/C++. This allows us to develop MPI communication within C/C++ programs.

5

Reconfigurable Computer Clusters

 A reconfigurable computing cluster (RCC) is a cluster that uses reconfigurable

components. Implementations can vary from a cluster of CPUs that interface to

reconfigurable logic to a cluster of FPGAs. Our cluster will be of the latter form and will

be predominately FPGAs.

Reconfigurable Computer Cluster Example

 Cray’s XD1 is a high performance computer comprised of twelve 64-bit AMD

Opteron processors, six or twelve RapidArray processors, zero or six FPGA application

acceleration processors, and one management processor. Each node is comprised of a

―two-way or four-way Opteron SMP (Symmetric Multiprocessing) and its associated

memory, one or two RapidArray processors, and an optional application acceleration

processor.‖ The application processors are FPGAs that act as coprocessors to the

Opterons. The FPGAs are based off the Virtex II Pro and are included to accelerate tasks

that are repetitive or computationally intensive [5]. Assuming that the optional FPGAs

are included in the system, the XD1 is a RCC.

Reconfigurable Computing

Reconfigurable computing is the exploitation of reconfigurable logic to gain the

advantages of hardware acceleration. Generally computation can be accomplished by

either hardware elements or software programs or a combination. In most computing

systems, hardware is fixed and only software is modifiable. In a reconfigurable system

both the hardware and software may be configured to offer optimal solutions to

computing tasks.

6

Hardware is configured or ―programmed‖ by an Electronic Design Automation

(EDA) toolset that generates a physical implementation from hardware description code.

The toolset is typically proprietary and provided by the reconfigurable component

manufacturer- in this case Xilinx’s EDK suite 9.1i. The hardware code is written in a

HDL (Hardware Description Language), which is either VHDL (VSHIC Hardware

Description Language) or Verilog. However, HLL (High Level Languages) to HDL

compilers have become popular in hardware development in an effort to enable

developers’ strong backgrounds in languages such as C, C++, and Java. Impulse C [6],

Join Java [7], and System C [8] are examples of such language-compiler combinations

that utilize HLLs for hardware development. These development tools convert HLL to

HDL for the developer, a la black box methods. The generated HDL can then be used by

the EDA toolsets to implement the target component. While HLL based compilers

reduce complex designs to a HLL, they lack the degree of specification and optimization

available in handcrafted HDL code.

IMPULSE C was utilized to develop applications for the experimental cluster.

IMPULSE C is a C-to-HDL compiler developed by IMPULSE Accelerated Technology.

IMPULSE C was used over a conventional HDL because the project required a complex

peripheral to adequately validate the cluster’s success. IMPULSE C was used over other

HLL-to-HDL languages because previous research [9] at Baylor had concluded that

IMPULSE C is a simple and inexpensive tool to use in application development. The

specifics of the application are covered in Chapter 5.

Generally, the reconfigurable components in a reconfigurable computer are Field

Programmable Gate Arrays (FPGAs). A FPGA typically contains reconfigurable logic

7

blocks, a microprocessor(s), RAM, and I/O blocks. The reconfigurable logic is the EDA

toolset’s target for the HDL physical realization. The reconfigurable components used

were embedded in a Virtex II Pro development board produced by Xilinx. Sixteen of

these boards comprised the nodes of the experimental cluster. The Virtex II Pro substrate

contains two IBM PowerPC processors, 136 eighteen-bit multipliers, 136 BRAMs, and

one XC2VP30 FPGA with approximately three million logic gates. The development

board features a 2 GB DDR SDRAM DIMM slot and supports several I/O configurations

e.g. RS-232, 10/100 Ethernet, JTAG, and SATA. Figure 1 depicts the Virtex II Pro

development board with labeled I/O [10]. This research does not utilize all of the board’s

resources. The particulars of the boards’ setup are discussed more in depth in Chapter 3.

Figure 2: Virtex II Pro Development Board [10]

8

CHAPTER THREE

Design and Implementation of Hardware Base

Reconfigurable Elements

 As mentioned in Chapter 2, the Virtex II Pro Development board is our

reconfigurable component. These boards are available from Digilent, Inc. [11]. The

structure of the Virtex II Pro substrate is described in Chapter 2; however this research

only utilizes 1 of the 2 PowerPC 405 processors. Although the DIMM slot is capable of

holding 2 GB of RAM for this research the slot contained a single 256 MB RAM DIMM.

Of the I/O capabilities only the 10/100 Mb Ethernet was utilized and connected to a

centralized switch/router. The RS232 port was incorporated in the design for system

level debugging, and the JTAG interface was used hardware debugging. SYSACE

interfaced with a Compact Flash (CF) card to initialize the board’s setup at boot, as well

as containing a RW OS image. (The multi-gigabit transceivers, video, audio, SATA and

PS2 were not used.) The multipliers, BRAMs and logic gates are used where needed as

dictated by the functional requirements of each hardware accelerator. The Xilinx

Platform Studio tool-chain’s configuration of the base system is given in Appendix A.

Multi-Board Setup

The cluster consists of:

1. 16 - XUP V2P boards (http://www.xilinx.com/univ/xupv2p.html),
2. Mini-ITX VIA-x86 form factor system (running Debian 5.0),
3. PROSAFE® 24 port Gigabit Ethernet switch 10/100/1000 Mbps, Model JGS524,
4. A custom 10 AMP 5 VDC power supply,
5. A custom rack to support all the hardware,
6. Off the shelf CAT-5 Ethernet cables

9

These components can be clearly seen in Figure 3, and a diagram is listed below in

Figure 4 for convenience.

Figure 3: 16 Node Cluster Rack Mounted Physical System

Figure 4: 16 Node Cluster Logical Design

10

The boards are physically arranged in groups of four. This allows boards to be

easily replaced if one fails. The Mini-ITX acts as a Network File System (NFS) to easily

transfer files to the CF card in each development board. The Mini-ITX has two network

interfaces- one, a 10/100 Mb port is connected to the switch and the second 10 Mb port is

connected to the internet. The system also served as a network address (DHCP) server

which provided local IP addresses during boot-up of each node. Each node has the

RS232 port facing forward for easy access to the node’s serial debugging channel.

Power

The cluster is connected to the power mains through a surge protector, which

allows the entire cluster to be turned off and on at once. Although 5 VDC is supplied to

each node, an onboard power regulator reduces the voltage level to 3.3 VDC.

Custom Power supply

A custom power supply was constructed to supply the 5 volts to the boards. This

was done to reduce the number of AC plugs needed to connect the system to the AC

mains, and increase aesthetics. The power supply consists of 2 Lambda HK150A-5/A

single output switched regulator supplies, with supply side noise filters. Figure 5 is a

diagram of the custom power supply.

11

Figure 5: Power Supply Diagram

Base System Creation in XPS

Each node possesses a basic framework of common peripherals. These

peripherals include the SYSACE, the DDR controller, the UART, and the Ethernet. The

SYSACE provides boot capability by copying the OS image into RAM from the CF. The

executable image of developed applications was loaded onto the CF card and loaded into

memory for execution by a multicast MPI command (mpirun) from the master node

(Mini-ITX system). The DDR controller allows BUS access to RAM; the processor and

peripherals are connected via this BUS which allows the flow of data/programs stored in

RAM to be accessed by the processor and peripherals. The UART is included as a

console port accessible by the OS to allow OS monitored system debugging and system

messages during boot-up. An Ethernet controller is included to provide high speed

communication between each node and the master node via the switch. However, much

of the functionality of the board is left unused, but can be incorporated in expanded

research endeavors. For example, the boards have two processors, but this research

12

utilized only a single processor. Step-by-step instructions for the base system creation

are included in Appendix A. The system assembly view window should appear as in

figure 6.

Figure 6: System Assembly View of Base System

13

CHAPTER FOUR

Design and Implementation of Operating System

 Due to the complexity involved in developing networking and cluster software, an

operating system was needed on the XUPV2P. Versions of Linux and QNX have been

ported to the PPC 405. Linux (Debian 5.0 and MonteVista), and QNX 2.1 support the

PPC processors inside the XUPV2P. Linux versions are typically free, open source, and

commonly used in clusters. QNX is a real-time microkernel architecture OS designed

specifically for embedded devices, small binary sizes, and low resource usage. From a

educational perspective, QNX is the better OS for this research because it provides better

timing support, however, Linux was more malleable to our situation and allowed us to

quickly develop a workable solution. (Note: QNX was closed source during our attempts

but has recently been open-sourced).

 In embedded software development, there are usually two computers involved.

The machine that is used to build the basic system components such as the kernel and file

system is called the cross-development host and the machine on which the software runs

is called the target. In all of the attempts, an Intel X86 based host was used to develop

PowerPC software.

 Multiple attempts were made at configuring these operating systems to the Virtex

II Pro, but were often thwarted due to complexity and inexperience with software

development. QNX and MonteVista Linux were configured using Windows XP as the

cross-development host. The Debian port was developed using Redhat Linux as the cross

development host. In generally, the Windows cross development environment was found

14

to be less stable and slower than a Linux cross-development environment. In addition,

the multiple versions of CYGWIN on the Windows cross-development host which

needed to be installed for the development environment and the Xilinx tools generated

registry conflicts.

QNX

The initial attempt at configuring an operating system focused on QNX [12].

QNX was chosen because professor Eisenbarth had used it on previous projects. QNX is

a POSIX compliant mircokernel RTOS. A RTOS would be an ideal OS for a

reconfigurable computer cluster because of its deterministic nature in relation to I/O. The

configuration was derived from a working implementation for Xilix’s ML403

development board. The ML403 utilizes the same hard processor as the XUPV2P, so

only peripheral changes were needed. The new configuration simply matched the

address range of peripherals to those of the QNX’s ML403 project. From here, the

hardware and libraries were generated to build the SYSACE file. While QNX was

successfully up and running on a ram disk, the configuration was not ideal and had very

little flexibility. As new peripherals were added; the absence of functional device drivers

and correct configuration information made device driver debugging difficult. In

addition the development environment CYGWIN interface crashed under windows.

CYGWIN is a program that allows emulation of a POSIX like environment in Windows.

Also, a writable file system could not be successfully configured. Ultimately the decision

was made to move on to a new OS when development stalled and it was determined

QNX lacked the functionality needed. Besides the setup lacking the ability to add

components, QNX at the time was not free to download or open source. It was also

15

determined that QNX did not seem to support SSH, a secure protocol for communication

between networked systems; because the eventual goal was to connect this system to the

internet for remote use it was decided a different OS was a better option. In addition,

QNX networking (Qnet), a transparent networking protocol, does not work across

machines differing in endianness, thus Qnet can’t be used between the XUP V2P boards

and the Mini-ITX. Because of the inability to configure QNX easily with the

functionality desired; it was decided to default to a Linux distribution as Linux is the

typical OS of choice for clusters.

MonteVista

MonteVista [13] is a Linux distribution that has been successfully ported to the

XUP-V2P [14] boards by others, but this project was not similarly successful. In

hindsight, difficulties included using a Windows XP as development platform and not

fully understanding the cross-compilation process. The instructions in reference 13 were

attempted under the CYGWIN environment; whereas the original document used the

Gentoo PowerPC-based OS as the development platform. Because Gentoo is a Linux

distribution that runs on the PowerPC their instructions did not require a cross-compiler

toolset, a mistake this researcher failed to realize. Most build issues occurred because the

CYGWIN environment lacked the necessary applications to reproduce the build. The

inability of the CYGWIN environment to correctly support the development process is

not surprising in hindsight because the CYGWIN environment supports a subset of Linux

system applications. However, MonteVista can likely be successfully configured for the

boards using the same method in the following section. Gentoo is not necessary to

configure the OS for these boards; it just greatly simplifies the cross-compilation process.

16

DEBIAN

Our current system utilizes the Linux kernel from the Xilinx GIT repository. This

is a 2.6.28 Linux kernel, upon which a Debian 5.0 root file system was created. Debian

[15] is known as a very robust and secure server distribution with vast quantities of

precompiled software and support for several processor architectures. Debian was

chosen because of its extensive online software repository system and solid PowerPC

support. The online software repository system allows binary images of programs to be

quickly downloaded without worrying about software dependencies. Debian was chosen

because it was the quickest path to a root file system with the networking and the

applications needed. The Debian target configuration was hosted on an x86 machine

running Redhat Linux with version 9.1i of Xilinx EDK and a cross-compiler built using

the crosstools script [16]. While Xilinx EDK 10.1i is the latest version that supports the

XUP V2P, this research determined that the memory controller did not load the OS’s

kernel correctly into RAM and prevented the OS from booting. This issue was resolved

by using EDK 9.1i which utilizes a different memory controller in the XUP V2P board

support package.

A lot of the preparatory work has already been completed by Xilinx. Specifically,

the device tree generator and the Xilinx port of the Linux kernel can be downloaded from

the git.xilinx.com website. Using these two projects it was possible to generate the Open

Firmware device-tree files and a Linux kernel for the XUPV2P.

17

The device tree generator is used to provide the Linux kernel with an Open

Firmware device tree file. Using this file, the Linux kernel is able to find and utilize the

various peripherals in the system including the custom peripheral for 3DES acceleration.

The device tree generator allows us to completely change the address map of the system

and still boot Linux.

 After placing the device tree in the Linux kernel source code, it is time to

configure the kernel. A common configuration from the Xilinx ML405 was used as the

base and some small additional tweaks were made. After building the Linux kernel, the

kernel and BIT file were installed for testing using the JTAG interface.

Building Linux is a process of trial and error. It took well over 50 build and test

cycles to decide on the final configuration. The development environment must be agile

and allow quick reconfigurations and rebuilds. Using the JTAG interface and a well-

designed development environment described at http://baylor-recomp.wikidot.com/, it

was easy generate new images.

 The JTAG interface was used primarily to quickly download new bitstream logic

maps, OS images, and debug the kernel; however for the final implementation an ACE

file was used to store the boot image. The Xilinx ACE system is essentially a bootloader

for the Xilinx FPGAs. A specifically formatted Compact Flash (CF) card allowed the

Xilinx system to find and install the ACE file located on the first partition of the Compact

Flash card. The ACE file is a wrapper around both the bitstream logic maps and the

kernel image. The first partition of the Compact Flash card is 128MB in length and

contains this ACE file. The second partition is 1.9 GB in length and contains a Debian

root file system.

http://baylor-recomp.wikidot.com/

18

 The root file system on the second partition was created using debootstrap. This

program creates an entire Debian root file system utilizing an internet connection to the

Debian repositories. The Debian repositories are a collection of software which represent

the Debian distribution. Debootstrap with its ―--foreign‖ option allows the program to be

run in 2-stages. The first stage is performed on the development host and requires

Internet access and the second stage occurs on the target and requires no Internet access.

Utilizing, the open-source Linux kernel from the Xilinx GIT repository and the Debian

5.0 distribution it was possible to quickly create a Linux system for the Xilinx boards.

The steps to configure the OS to the XUPV2P are covered in Appendix B.

19

CHAPTER FIVE

Applications

 Three applications were developed to run on the cluster after construction. Two

applications developed for the system were 3DES implementations; one that did not use

the logic resources and one that did. These two applications were used to determine the

runtime difference between the hardware implementation and the software

implementation. The third application is small program written to measure the

communication overhead for file I/O and network communication between nodes. 3DES

was chosen for implementation because of the algorithm’s inherent parallelizability and

the ability to generate a 3DES hardware implementation.

3DES Encryption Algorithm

3DES is an encryption algorithm included in IMPULSE Technology’s IMPULSE

C tutorial. The purpose of the tutorial was to demonstrate the speedup of hardware over

software. The project is included with CoDeveloper 2.10 [6] and can be found in the

CoDeveloper subdirectory under /Examples/Xilinx/VirtexIIPro/3DES. The example also

corresponds to Chapter 8 in the IMPULSE C book ―Practical FPGA Programming in C‖

[17]. However, the IMPULSE C implementation does not use an OS or parallelization.

The algorithm encrypts an input stream eight characters (64 bit) at a time; this granularity

makes it an algorithm that is easily parallelized. The granularity of the 3DES algorithm

combined with the hardware implementation makes this a prime candidate for cluster

evaluation.

20

3DES IP Core, Standalone Version

 The 3DES IP core was generated and implemented on a standalone system (no

OS present) to gain familiarity with IMPULSE C. The IP core was designed to connect

to the PLB Bus and generates the hardware code in VHDL. IMPULSE C also generates

application code (EDK C) to test the device once implemented on the XUPV2P, which

gives information about the hardware interface needed for a device driver. Since the

standalone application code communicates directly with the hardware without the

presence of a device driver, the application must be aware of the hardware interface

details. These details will be addressed in greater detail in the device driver section

below. Appendix D shows how to create a standalone system, add the 3DES core, and

add the IMPULSE C application code. It is also worth noting that page 160 from the

IMPULSE C book claims that the hardware implementation is 10.6X faster than the

software version. However, the results show the speedup is only 5.1X, as indicated by

the final screen shot in Appendix D.

3DES Implementations

Two 3DES implementations were used for the system; one that is completely

written in C++ and one that utilizes the configurable logic of the development systems

with an interface written in C++. Both implementations use LAM-MPI, a

communication protocol common among distributed computer clusters. The two

implementations allow each algorithm’s runtime to be quantified and compared, thus is

can be determined whether utilizing hardware is faster than software alone.

21

Software Based Implementation

The IMPULSE C project supplies C source code for the 3DES encryption

algorithm. The C code was written by Phil Karn and is publicly available. To verify the

code, a separate C++ implementation was developed that encrypted the 8 hexadecimal

numbers from the application code within the XPS project. Once this code was validated,

MPI was used to scatter the input data and gather the computational results. Node 0 was

used to scatter the data. Node 0 transmits the first nth chunk of data to node 1 (if

available) and subsequent chunks to higher numbered nodes until node 0 gets the last nth

chunk of data. If the data available to node 0 is not divisible by 8 then the data is zero

padded. Node 1 gathers all the partial solutions and writes them to a file since node 1

received the first chunk of data. If node 0 is the only node in use, node 0 reads and writes

out all the data. The code is compiled using the command mpic++. To run the code use

―mpirun –np <number of nodes used> <program> <file input><file output> 0‖. For

testing, use ―time‖ prior to the program call to display the lapsed time, e.g. ―time mpirun

–np <number of nodes used> <program><file input> <file output> 0‖. Appendix E

contains the code for the 3DES software implementation.

Hardware Based Implementation

Applications that utilize the reconfigurable logic have three parts require

development; the hardware structure, a device driver to interface the hardware structure

with the operating system, and the application software.

22

Hardware. The hardware is the developed logic integrated into the system. This

is referred to as a custom IP (imported peripheral) and can be developed via an

assortment of tools. As previously mentioned, the IP was generated through IMPULSE

C.

Redhat Linux was used to host the base system design; however CoDeveloper 2.1

was hosted on a Windows XP machine. The CoDeveloper 3.0 distribution for Redhat

Linux does not contain the 3DES project, so it had to be moved from CoDeveloper 2.1 to

CoDeveloper 3.0. Also, IMPULSE C on Linux machines is command-line based and

does not possess a GUI. After the device is generated by IMPULSE C adding the IP

takes a rescan of the user repositories, wiring the new IP to the PLB, and giving the

added device an address. These steps are basic and are the same as the implemented

standalone version in Appendix D; however Appendix F contains the method for

simplicity as well as documenting the command line steps.

Device Driver. A character device driver was written to provide an interface with

the hardware. This allows the device to be accessed as a file in the /dev directory tree (as

/dev/des). The IOCTL template was utilized to generate the interface between the

application code and the device. The resulting device driver contains 4 function calls

that interface with the device to write the key, write data, initiate read, and read the data.

The development of the device driver required a basic understanding of the 3DES

IP Core I/O. Fortunately, the standalone version implemented above gave insight into the

communication with the device. Using the application code generated by IMPULSE C,

one can work backwards and prune the code to determine the required read and write

operations on the device. Much of the test application code was frivolous because the

23

code implements two versions of the 3DES algorithm- one that is hardware based, and

one that is software based. First, the code that is used for the software implementation

was removed – such as the entire des_c function in des_sw.c code file. Next, the code

that uses the opb_timer was removed, which was an obvious decision since it will not be

used the device driver implementation. Overall, the code was reduced until only the

interface C code to the IP Core was left. From here, IMPULSE C specific commands

were replaced with the EDK C equivalents- this is accomplished by backtracking through

the IMPULSE C include files. For example, HW_STREAM denotes a pointer to a

register space. After these steps are done, the hardware I/O is evident and the hardware

interface can be easily developed. The reduced application code only requires that the

EDK defined data types be converted to a C format, e.g. Xuint32 is u32. From here a

framework for an IOCTL device driver can be written.

Because the hardware was created from an existing project implementation and

there was little detailed understanding of device driver functionality, debugging the

device driver interface was difficult. The most significant problem was determining

which functions forced the device to ―close‖ when a task completion was signaled. For

example, if the device had encrypted 8 bytes and sent a signal of completion, the device

was no longer readable. While the device does not require notification of completed

encryption, it does require notification that the encryption key is done writing to the

device. This means that when the key is written to hardware it cannot be changed unless

the hardware is reset. The device driver code and the reduced application code is listed in

Appendix G.

24

User Application. The user application that uses the device driver is written in

C++ and utilizes MPI. This program performs all file I/O and is similar to the software

implementation. The data is scattered and gathered exactly the same as the software

implementation but differs in that the algorithm is implemented in hardware. The code is

compiled using the command mpic++. To run the code use ―mpirun –np <number of

nodes used> <program> <file input><file output>‖. For testing purposes, the ―time‖

system command is invoked prior to the program call to display the lapsed time, e.g.

―time mpirun –np <number of nodes used> <program><file input> <file output>‖.

Appendix I contains the user application code.

Communication and File I/O Overhead Implementation

 The third program was written to quantify the communication and file I/O

overhead inherent in the system. This program calculates the overhead by scattering and

gathering a test file among nodes which each in turn immediately sends this data back to

the gathering node. Ultimately, this program reads a given file and outputs the same file

under a given name. Just like the 3DES implementations, it does not calculate timing

within the program but is called with the system call ―time‖ prior to the program call, e.g.

―time mpirun –np <number of nodes used> <program> <file input> <file output>‖.

Appendix J contains the code.

Runtime

 From the standalone 3DES implementation, where the hardware implementation

ran 5.1X faster than the software implementation, it is clear that the MPI 3DES hardware

implementation should run faster. However, communication and file overhead will

25

impact the speed of both implementations. In addition, the device driver will slow the

hardware implementation runtime execution. These obstacles make it clear that the

hardware implementation may not run as originally hoped. The runtimes will be

discussed in Chapter 6.

26

CHAPTER SIX

Findings and Discussions

 This chapter discusses the runtimes of the developed 3DES and communication

overhead applications. Recorded runtimes should clearly demonstrate which 3DES

implementation is faster, which will indicate whether reconfigurable logic is viable for

our specific application. The runtime for the non-3DES application will give an estimate

of the communication and file I/O overhead for the 3DES implementations. Testing is

split into two phases: the first phase uses 15 nodes and varies the input file for

encryption and the second phase uses a 40 MB file for encryption but varies the number

of nodes used. Phase one will demonstrate which algorithm is faster when varying the

size of the input data file, and phase two will determine the speedup when more nodes are

utilized by each application. Each application was run 20 times so that the impact of

timing variations could be reduced. There are 12 unencrypted input file sizes such that

each implementation was run 240 times for phase one, totaling 720 runs. Phase two uses

15 nodes so each implementation is executed a total of 300 times, totaling 900 runs. The

unencrypted input file sizes can be broken up into 2 distinct groups: a small file size

range and a large file size range [table 1].

Table 1: File Sizes

Small File

Sizes
14 KB 27 KB 54 KB 108 KB 216 KB 433 KB 866 KB

Large File
Sizes

10 MB 20 MB 40 MB 80 MB 160 MB

27

Table 2: Phase One Results Using 15 Boards

File Size
(MB)

Average Runtime
3DES Without
Hardware (sec)

Variance of 3DES
Without Hardware

(sec)

Average Runtime 3DES
With Hardware (sec)

Variance of 3DES
With Hardware (sec)

Average Runtime
Overhead (sec)

Variance of
Overhead (sec)

.014 4.63 0.90 4.98 1.10 4.67 1.29

.027 4.81 1.17 4.63 0.87 4.96 1.15

.054 5.14 1.05 4.76 1.22 5.17 1.04

.108 5.51 1.34 4.97 0.97 4.79 0.91

.216 6.06 1.30 5.69 1.14 5.85 1.26

.433 6.92 1.58 6.14 1.21 6.10 1.10

.866 7.71 1.85 9.07 1.14 7.52 2.05

10 51.92 2.97 45.23 2.84 27.83 1.50

20 98.97 3.98 83.32 3.25 58.88 3.17

40 191.20 3.71 162.10 2.57 114.95 2.84

80 373.61 3.32 320.73 2.57 218.56 5.22

160 745.56 4.92 630.90 2.62 429.81 5.10

28

Table 3: Phase Two Results, 40 MB Unencrypted Input File Size

Number of Boards
Average Runtime

3DES Without
Hardware (sec)

Variance of 3DES
Without Hardware

(sec)

Average Runtime
3DES with Hardware

(sec)

Variance of 3DES
With Hardware

(sec)

Average Runtime
Overhead (sec)

Variance of
Overhead (sec)

1 847.28 3.33 425.58 12.16 136.41 2.42

2 426.27 2.81 240.37 1.86 127.17 2.25

3 378.54 2.76 215.83 2.70 120.31 2.98

4 319.40 2.51 207.11 4.67 119.63 2.38

5 284.40 1.82 202.35 2.41 116.56 3.16

6 260.39 1.78 192.46 2.90 115.75 3.87

7 243.13 1.95 184.70 2.49 115.43 3.00

8 230.52 2.56 179.10 2.82 115.11 3.02

9 220.77 2.65 176.03 3.00 115.60 3.60

10 213.13 3.24 172.49 3.36 115.00 1.71

11 206.91 2.02 169.20 2.65 114.48 2.73

12 201.82 3.03 165.93 1.84 113.85 2.12

13 199.67 8.17 164.31 2.61 115.18 2.70

14 193.94 2.49 163.12 2.51 114.01 3.78

15 191.20 3.71 162.10 2.57 114.33 2.38

29

Tables 2 and 3 make it apparent that that the 3DES application that utilizes the

reconfigurable logic runs faster. However, the hardware implementation does not run as

theoretically possible. A pure hardware implementation runs 10.6 times faster than a

pure software implementation on a single board [17, pg160]; hence this research expected

better performance across a parallel implementation. Unfortunately, the communication

and file I/O overhead has a significant impact on runtime. Figure 7 displays phase one

runtimes on large files sizes. The graph clearly shows that communication and file I/O

overhead comprises more than half of runtime (purple line, non-3DES).

Figure 7: Runtime Versus Unencrypted Input File Size

0

100

200

300

400

500

600

700

800

0 50 100 150 200

R
un

tim
e

(s
)

File Size (MB)

Runtime of Large Files Across 15 Boards

3DES Software

3DES Hardware

Non-3DES

30

 In an ideal setting communication would be instantaneous, meaning that using 4

boards versus 1 board would result in a 4x speedup. Phase two shows that this type of

speedup does not occur when increasing the number of boards, but begins to level off.

The nearly constant value of the non-3DES timing (purple line) implies that speedup is

limited by file I/O. Initially, network communication was thought to limit runtime,

however the non-3DES data for a single node (left most purple data point) in Figure 8

shows a runtime consistent with mutiple nodes.

Figure 8: Runtime Versus Nodes Used

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16

R
un

tim
e

(s
)

Number of Boards

Runtime of 40 MB File Across Varying Number of Boards

3DES Software

3DES Hardware

Non-3DES

31

CHAPTER SEVEN

Conclusions and Final Recommendations

Lessons Learned

 File I/O was the limiting factor for application speedup; this was the result of the

CF’s read and write time being non-trivial in application execution. File I/O overhead

can be reduced by 2 methods. First, the unencrypted data and encrypted solution can be

stored in RAM. This method would prevent any read and write calls to the CF within the

application, thus circumventing the current file I/O overhead for testing. However, this

requires a separate application to collect the solution from RAM if the encrypted data

needs to be stored. The second method is to use a network storage device with faster read

and write times for file I/O; this allows the unencrypted data file and solution to be

stored. Unfortunately, this method may introduce non-trivial communication overhead

because of network congestion.

Conclusions

Overall, the construction of Baylor’s Reconfigurable Computer Cluster was a

qualified success. In reference to the outlined goals of Chapter 1, the only goal not met

was that pertaining to the minimal ―learning curve‖ usage metric. Currently, for an

application developer to fully utilize the cluster he/she must develop an expertise in the

use of Xilinx tools, C++, MPI, and device driver construction. The system clearly meets

the other goals.

32

The reconfigurable logic alone has shown speed up over its software counterpart

via IMPULSE C. This thesis’ implementations of the 3DES algorithms confirm that

using the reconfigurable logic results in improved computational speedup.

Unfortunately, the 3DES algorithm’s runtime was over twice that of the theoretical speed

from the IMPULSE C results [17, pg 160]. However, the current hardware

implementation is not the fastest possible. IMPULSE C has a faster hardware version

that has a speedup of 425 over the IMPULSE C created software [17, pg 207];

unfortunately this version could not be implemented because of time constraints. Despite

the results, there exist algorithms for this cluster that would most likely show greater

speedup than the 3DES algorithm implementation.

Recommendations

The first recommendation would be to implement a faster technique for file I/O

such as a RAM-disk or network based file storage; otherwise application runtime will

continue to be limited by file I/O overhead. The second recommendation would be to

dynamically load designed logic onto the board. This can be done via ICAP, and is

supported by the kernel from the Xilinx GIT tree. This would reduce the time it takes to

configure and boot the cluster. The third recommendation is to upgrade the nodes in the

cluster to Virtex 5 development boards. The XUP V2P boards are currently legacy

products and support is being discontinued. New boards would offer new features for

further research.

33

APPENDICES

34

APPENDIX A

XPS Creation of Hardware Base

 This appendix gives step by step instructions in creating the hardware base of our

boards in XPS. The instructions assume you are using EDK 9.1i and have the board

support package downloaded (http://www.digilentinc.com/Data/Products/XUPV2P/EDK-

XUP-V2ProPack.zip). Screenshots are given instead of explicit instructions, which

should be easy enough to follow for those familiar with XPS.

When you start XPS you are given the option to create a new project or open an existing

one. You will want to create a new project, as depicted above.

http://www.digilentinc.com/Data/Products/XUPV2P/EDK-XUP-V2ProPack.zip
http://www.digilentinc.com/Data/Products/XUPV2P/EDK-XUP-V2ProPack.zip

35

You can name the project anything you choose, but make sure you are pointing to where

ever you board support package is as shown above.

36

37

38

39

40

41

42

43

44

45

46

47

48

49

This concludes the construction of the hardware base in XPS.

50

APPENDIX B

 Porting the OS to the XUP V2P

This appendix gives step by step instructions in porting Linux to the Virtex II Pro

boards. This appendix assumes that you have already completed Appendix A, that you

are using a x86 PC running Red Hat 5.2, and are using EDK 9.1i.

Installing the Cross Compiler

Step 1: Get the development tools necessary for the Cross Compiler.

In a terminal window type:

sudo yum groupinstall 'Development Tools'

Step 2: Now we need to setup a directory for the cross compiler to install into the default

is /opt/crosstool and you should replace USER_NAME with your actual username.

In a terminal window type:

sudo mkdir /opt/crosstool/ # create the crosstool directory

sudo chown -r USER_NAME /opt/crosstool

chmod u+rwx /opt/crosstool/

chmod a+rx /opt/crosstool/

Step 3: Download and Install. These commands will download, unpack the crosstool

script, and start the build process for a powerpc-405 cross compiler.

51

In a terminal window type:

wget http://www.kegel.com/crosstool/crosstool-0.43.tar.gz

tar xzf crosstool-0.43.tar.gz

cd crosstool-0.43

./demo-powerpc-405.sh

Step 4: Make it easier to use. Right now in order to use the cross compiler you'd have

type an insanely long path name. However, by adding two lines to your ~/.bashrc you can

cross-compile just as easy as native compiling.

In a terminal window type:

vi ~/.bashrc

PowerPC Cross Compiler aliases

export PATH=$PATH:/opt/crosstool/gcc-4.1.0-glibc-2.3.6/powerpc-405-linux-gnu/bin

alias ppckmake="make ARCH=powerpc CROSS_COMPILE=powerpc-405-linux-gnu-"

alias ppcmake="make CC=powerpc-405-linux-gnu-gcc"

Incorporating the OS with the system

Here you will need to go back to XPS and open your project. You need to go to

the software settings and change the data to match the following screen shots.

52

53

Notice the our bootargs are set to console=/dev/ttyS0,115200 root=/dev/xsa2 rw

<— this little ―rw‖ addition will save you tons of headache when you are trying to

understand why you can’t write to the disk.

54

Here are two tables that describe the bootargs.

device type console text

xps_uart16550 console=ttySN

xps_uartlite console=ttyULN

N is 0 for the first device of the type. N is 1 for the second device of the type etc.

root
filesystem
location

bootarg options

ramdisk root=/dev/ram

compact flash
disk

root=/dev/xsaN (where N is the partition number of the root file
system.)

nfs root=/dev/nfs nfsroot=<nfs server>:<nfs share>,tcp (e.g. root=/dev/nfs
nfsroot=192.168.1.1:/nfsroots/development,tcp)

Git and Setup Linux

We will be using the open-source Linux version from Xilinx. Change to your

project directory.

In a terminal window type:

cd <project-directory>

git clone git://git.xilinx.com/linux-2.6-xlnx.git

cd linux-2.6-xlnx/arch/powerpc/boot/dts

ln -s ../../../../../ppc405_0/libsrc/device-tree/xilinx.dts virtex405-xupv2p.dts

cd <project-directory>

ln -s linux-2.6-xlnx/arch/powerpc/boot/simpleImage.virtex405-xupv2p.elf .

Generate a bit file

We now need to generate a bitfile and download it to the board.

55

Generate libraries and BSPs.

In EDK click

Hardware -> Download Bitstream

Software -> Generate Libraries and BSPs

Creating a Debian RFS on Compact Flash

Creating a Debian RFS on a CF card is a two stage process. The first stage must

be done on a standard x86 workstation but the second stage must be completed on the

board itself.

On the card we will need two partitions one for the ACE file and one where we

will place the RFS. We have mostly 2 GB CF cards so they were partitioned them as

follows.

Stage One:

Partition sizes are:

1 128 MB Ace File

2 1.9 GB Debian Root File System

Partitioning using parted, mkdosfs and mkfs.ext2

The command below partitions the drive as described above.

56

parted -s $CF_DEV rm 1 # Remove old partitions

parted -s $CF_DEV rm 2

parted -s $CF_DEV mkpart primary fat16 0 128 # Create ACE Partition

parted -s $CF_DEV mkpart primary ext2 128 2048 # Create RFS Partition

mkdosfs -F 16 -R1 $CF_PART1

mkfs.ext2 $CF_PART2

Bootstrap using Debootstrap

In this next part will bootstrap a basic Debian system. Make sure you have

internet access before attempting this part.

The first step is to mount your RFS partition. I choose to mount it to /mnt because it is

common place to mount file systems.

mount $CF_PART2 /mnt

Next using debootstrap generate an absolutely minimal Debian Etch RFS on the CF card.

debootstrap --arch powerpc --foreign etch /mnt http://ftp.debian.org/debian

Stage Two: Finish Bootstrap

At this point you have a bare minimal RFS for Debian. In order to make this a fully

featured RFS you will need to boot the board using XMD or the System ACE.

There is only one special condition for booting this minimal RFS.

In Software->Software Platform And Settings select the OS and Libraries option and then

append /bin/bash to the bootargs.

57

Once booted run this command to finish the bootstraping procedure

./debootstrap/debootstrap —second-stage

You now have a basic Debian RFS you can add more packages with apt-get and task-sel.

I recommend running task-sel standard to install some basic necessities.

Create a Linux Kernel

Go into the linux-2.6-xlnx directory and run the following within a terminal:

ppckmake 40x/virtex4_defconfig #

ppckmake menuconfig

ppckmake simpleImage.virtex405-xupv2p

The particulars of our menuconfig can be found in Appendix C.

Testing on JTAG

Start XMD and load the kernel into memory using JTAG.

xmd

connect ppc hw

dow simpleImage.virtex405-xupv2p.elf

run

On the serial you should see Linux start to boot. From here you can create an ACE file to

boot off of.

Create ACE File

In the Xilinx command shell type:

xmd –tcl genace.tcl –opt genace.opt

Where genace.opt contains:

-jprog

58

-board xupv2p

-target ppc_hw

-hw implementation/download.bit

-elf simpleImage.virtex405-xupv2p.elf

-ace system.ace

59

APPENDIX C

 The Menuconfig Options

 This appendix has our Menuconfig options, which we need to specify kernel

abilities.

Automatically generated make config: don't edit
Linux kernel version: 2.6.28
Wed Apr 29 14:31:28 2009

CONFIG_PPC64 is not set

Processor support

CONFIG_6xx is not set
CONFIG_PPC_85xx is not set
CONFIG_PPC_8xx is not set
CONFIG_40x=y
CONFIG_44x is not set
CONFIG_E200 is not set
CONFIG_4xx=y
CONFIG_PPC_MMU_NOHASH=y
CONFIG_PPC_MM_SLICES is not set
CONFIG_NOT_COHERENT_CACHE=y
CONFIG_PPC32=y
CONFIG_WORD_SIZE=32
CONFIG_ARCH_PHYS_ADDR_T_64BIT is not set
CONFIG_MMU=y
CONFIG_GENERIC_CMOS_UPDATE=y
CONFIG_GENERIC_TIME=y
CONFIG_GENERIC_TIME_VSYSCALL=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_GENERIC_HARDIRQS=y

60

CONFIG_HAVE_SETUP_PER_CPU_AREA is not set
CONFIG_IRQ_PER_CPU=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_HAVE_LATENCYTOP_SUPPORT=y
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_ARCH_HAS_ILOG2_U32=y
CONFIG_GENERIC_HWEIGHT=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_GENERIC_FIND_NEXT_BIT=y
CONFIG_ARCH_NO_VIRT_TO_BUS is not set
CONFIG_PPC=y
CONFIG_EARLY_PRINTK=y
CONFIG_GENERIC_NVRAM=y
CONFIG_SCHED_OMIT_FRAME_POINTER=y
CONFIG_ARCH_MAY_HAVE_PC_FDC=y
CONFIG_PPC_OF=y
CONFIG_OF=y
CONFIG_PPC_UDBG_16550=y
CONFIG_GENERIC_TBSYNC is not set
CONFIG_AUDIT_ARCH=y
CONFIG_GENERIC_BUG=y
CONFIG_DEFAULT_UIMAGE is not set
CONFIG_PPC_DCR_NATIVE=y
CONFIG_PPC_DCR_MMIO=y
CONFIG_PPC_DCR=y
CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config"

General setup

CONFIG_EXPERIMENTAL is not set
CONFIG_BROKEN_ON_SMP=y
CONFIG_LOCK_KERNEL=y
CONFIG_INIT_ENV_ARG_LIMIT=32
CONFIG_LOCALVERSION=""
CONFIG_LOCALVERSION_AUTO is not set
CONFIG_SWAP=y
CONFIG_SYSVIPC=y
CONFIG_SYSVIPC_SYSCTL=y

61

CONFIG_BSD_PROCESS_ACCT is not set
CONFIG_TASKSTATS is not set
CONFIG_AUDIT is not set
CONFIG_IKCONFIG=y
CONFIG_IKCONFIG_PROC=y
CONFIG_LOG_BUF_SHIFT=14
CONFIG_CGROUPS is not set
CONFIG_SYSFS_DEPRECATED=y
CONFIG_SYSFS_DEPRECATED_V2=y
CONFIG_RELAY is not set
CONFIG_NAMESPACES=y
CONFIG_UTS_NS is not set
CONFIG_IPC_NS is not set
CONFIG_BLK_DEV_INITRD is not set
CONFIG_CC_OPTIMIZE_FOR_SIZE is not set
CONFIG_SYSCTL=y
CONFIG_EMBEDDED is not set
CONFIG_SYSCTL_SYSCALL=y
CONFIG_KALLSYMS=y
CONFIG_KALLSYMS_EXTRA_PASS is not set
CONFIG_HOTPLUG=y
CONFIG_PRINTK=y
CONFIG_BUG=y
CONFIG_ELF_CORE=y
CONFIG_COMPAT_BRK=y
CONFIG_BASE_FULL=y
CONFIG_FUTEX=y
CONFIG_ANON_INODES=y
CONFIG_EPOLL=y
CONFIG_SIGNALFD=y
CONFIG_TIMERFD=y
CONFIG_EVENTFD=y
CONFIG_SHMEM=y
CONFIG_AIO=y
CONFIG_VM_EVENT_COUNTERS=y
CONFIG_SLAB=y
CONFIG_SLUB is not set
CONFIG_SLOB is not set
CONFIG_PROFILING is not set
CONFIG_HAVE_OPROFILE=y

62

CONFIG_KPROBES is not set
CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y
CONFIG_HAVE_IOREMAP_PROT=y
CONFIG_HAVE_KPROBES=y
CONFIG_HAVE_KRETPROBES=y
CONFIG_HAVE_ARCH_TRACEHOOK=y
CONFIG_HAVE_GENERIC_DMA_COHERENT is not set
CONFIG_SLABINFO=y
CONFIG_RT_MUTEXES=y
CONFIG_TINY_SHMEM is not set
CONFIG_BASE_SMALL=0
CONFIG_MODULES=y
CONFIG_MODULE_FORCE_LOAD is not set
CONFIG_MODULE_UNLOAD=y
CONFIG_MODVERSIONS is not set
CONFIG_MODULE_SRCVERSION_ALL is not set
CONFIG_KMOD=y
CONFIG_BLOCK=y
CONFIG_LBD is not set
CONFIG_BLK_DEV_IO_TRACE is not set
CONFIG_LSF is not set
CONFIG_BLK_DEV_INTEGRITY is not set

IO Schedulers

CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED_AS=y
CONFIG_IOSCHED_DEADLINE=y
CONFIG_IOSCHED_CFQ=y
CONFIG_DEFAULT_AS is not set
CONFIG_DEFAULT_DEADLINE is not set
CONFIG_DEFAULT_CFQ=y
CONFIG_DEFAULT_NOOP is not set
CONFIG_DEFAULT_IOSCHED="cfq"
CONFIG_CLASSIC_RCU=y
CONFIG_FREEZER is not set

Platform support

63

CONFIG_PPC_CELL is not set
CONFIG_PPC_CELL_NATIVE is not set
CONFIG_PQ2ADS is not set
CONFIG_PPC4xx_GPIO is not set
CONFIG_ACADIA is not set
CONFIG_EP405 is not set
CONFIG_HCU4 is not set
CONFIG_KILAUEA is not set
CONFIG_MAKALU is not set
CONFIG_WALNUT is not set
CONFIG_XILINX_VIRTEX_GENERIC_BOARD=y
CONFIG_PPC40x_SIMPLE is not set
CONFIG_XILINX_VIRTEX_II_PRO=y
CONFIG_XILINX_VIRTEX_4_FX=y
CONFIG_IBM405_ERR77=y
CONFIG_IBM405_ERR51=y
CONFIG_IPIC is not set
CONFIG_MPIC is not set
CONFIG_MPIC_WEIRD is not set
CONFIG_PPC_I8259 is not set
CONFIG_PPC_RTAS is not set
CONFIG_MMIO_NVRAM is not set
CONFIG_PPC_MPC106 is not set
CONFIG_PPC_970_NAP is not set
CONFIG_PPC_INDIRECT_IO is not set
CONFIG_GENERIC_IOMAP is not set
CONFIG_CPU_FREQ is not set
CONFIG_FSL_ULI1575 is not set
CONFIG_XILINX_VIRTEX=y

Kernel options

CONFIG_HIGHMEM is not set
CONFIG_NO_HZ is not set
CONFIG_HIGH_RES_TIMERS is not set
CONFIG_GENERIC_CLOCKEVENTS_BUILD=y
CONFIG_HZ_100 is not set
CONFIG_HZ_250=y

64

CONFIG_HZ_300 is not set
CONFIG_HZ_1000 is not set
CONFIG_HZ=250
CONFIG_SCHED_HRTICK is not set
CONFIG_PREEMPT_NONE is not set
CONFIG_PREEMPT_VOLUNTARY is not set
CONFIG_PREEMPT=y
CONFIG_PREEMPT_RCU is not set
CONFIG_BINFMT_ELF=y
CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS is not set
CONFIG_HAVE_AOUT is not set
CONFIG_BINFMT_MISC is not set
CONFIG_MATH_EMULATION=y
CONFIG_IOMMU_HELPER is not set
CONFIG_PPC_NEED_DMA_SYNC_OPS=y
CONFIG_ARCH_ENABLE_MEMORY_HOTPLUG=y
CONFIG_ARCH_HAS_WALK_MEMORY=y
CONFIG_ARCH_ENABLE_MEMORY_HOTREMOVE=y
CONFIG_ARCH_FLATMEM_ENABLE=y
CONFIG_ARCH_POPULATES_NODE_MAP=y
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
CONFIG_PAGEFLAGS_EXTENDED=y
CONFIG_SPLIT_PTLOCK_CPUS=4
CONFIG_MIGRATION=y
CONFIG_RESOURCES_64BIT is not set
CONFIG_PHYS_ADDR_T_64BIT is not set
CONFIG_ZONE_DMA_FLAG=1
CONFIG_BOUNCE=y
CONFIG_VIRT_TO_BUS=y
CONFIG_UNEVICTABLE_LRU=y
CONFIG_PPC_4K_PAGES=y
CONFIG_PPC_16K_PAGES is not set
CONFIG_PPC_64K_PAGES is not set
CONFIG_FORCE_MAX_ZONEORDER=11
CONFIG_PROC_DEVICETREE=y
CONFIG_CMDLINE_BOOL=y
CONFIG_CMDLINE=""
CONFIG_EXTRA_TARGETS="simpleImage.virtex405-xupv2p"
CONFIG_PM is not set

65

CONFIG_SECCOMP=y
CONFIG_COMPRESSED_DEVICE_TREE is not set
CONFIG_ISA_DMA_API=y

Bus options

CONFIG_ZONE_DMA=y
CONFIG_4xx_SOC=y
CONFIG_PPC_PCI_CHOICE=y
CONFIG_PCI is not set
CONFIG_PCI_DOMAINS is not set
CONFIG_PCI_SYSCALL is not set
CONFIG_ARCH_SUPPORTS_MSI is not set
CONFIG_PCCARD is not set
CONFIG_HAS_RAPIDIO is not set

Advanced setup

CONFIG_ADVANCED_OPTIONS is not set

Default settings for advanced configuration options are used

CONFIG_LOWMEM_SIZE=0x30000000
CONFIG_PAGE_OFFSET=0xc0000000
CONFIG_KERNEL_START=0xc0000000
CONFIG_PHYSICAL_START=0x00000000
CONFIG_TASK_SIZE=0xc0000000
CONFIG_CONSISTENT_START=0xff100000
CONFIG_CONSISTENT_SIZE=0x00200000
CONFIG_NET=y

Networking options

CONFIG_COMPAT_NET_DEV_OPS=y
CONFIG_PACKET=y
CONFIG_PACKET_MMAP is not set

66

CONFIG_UNIX=y
CONFIG_XFRM=y
CONFIG_XFRM_USER is not set
CONFIG_NET_KEY is not set
CONFIG_INET=y
CONFIG_IP_MULTICAST=y
CONFIG_IP_ADVANCED_ROUTER is not set
CONFIG_IP_FIB_HASH=y
CONFIG_IP_PNP=y
CONFIG_IP_PNP_DHCP=y
CONFIG_IP_PNP_BOOTP=y
CONFIG_IP_PNP_RARP is not set
CONFIG_NET_IPIP is not set
CONFIG_NET_IPGRE is not set
CONFIG_IP_MROUTE is not set
CONFIG_SYN_COOKIES is not set
CONFIG_INET_AH is not set
CONFIG_INET_ESP is not set
CONFIG_INET_IPCOMP is not set
CONFIG_INET_XFRM_TUNNEL is not set
CONFIG_INET_TUNNEL=y
CONFIG_INET_XFRM_MODE_TRANSPORT=y
CONFIG_INET_XFRM_MODE_TUNNEL=y
CONFIG_INET_XFRM_MODE_BEET=y
CONFIG_INET_LRO is not set
CONFIG_INET_DIAG=y
CONFIG_INET_TCP_DIAG=y
CONFIG_TCP_CONG_ADVANCED is not set
CONFIG_TCP_CONG_CUBIC=y
CONFIG_DEFAULT_TCP_CONG="cubic"
CONFIG_IPV6=y
CONFIG_IPV6_PRIVACY is not set
CONFIG_IPV6_ROUTER_PREF is not set
CONFIG_INET6_AH is not set
CONFIG_INET6_ESP is not set
CONFIG_INET6_IPCOMP is not set
CONFIG_INET6_XFRM_TUNNEL is not set
CONFIG_INET6_TUNNEL is not set
CONFIG_INET6_XFRM_MODE_TRANSPORT=y
CONFIG_INET6_XFRM_MODE_TUNNEL=y

67

CONFIG_INET6_XFRM_MODE_BEET=y
CONFIG_IPV6_SIT=y
CONFIG_IPV6_NDISC_NODETYPE=y
CONFIG_IPV6_TUNNEL is not set
CONFIG_NETWORK_SECMARK is not set
CONFIG_NETFILTER=y
CONFIG_NETFILTER_DEBUG is not set
CONFIG_NETFILTER_ADVANCED=y

Core Netfilter Configuration

CONFIG_NETFILTER_NETLINK_QUEUE is not set
CONFIG_NETFILTER_NETLINK_LOG is not set
CONFIG_NF_CONNTRACK is not set
CONFIG_NETFILTER_XTABLES=y
CONFIG_NETFILTER_XT_TARGET_CLASSIFY is not set
CONFIG_NETFILTER_XT_TARGET_DSCP is not set
CONFIG_NETFILTER_XT_TARGET_MARK is not set
CONFIG_NETFILTER_XT_TARGET_NFLOG is not set
CONFIG_NETFILTER_XT_TARGET_NFQUEUE is not set
CONFIG_NETFILTER_XT_TARGET_RATEEST is not set
CONFIG_NETFILTER_XT_TARGET_TCPMSS is not set
CONFIG_NETFILTER_XT_MATCH_COMMENT is not set
CONFIG_NETFILTER_XT_MATCH_DCCP is not set
CONFIG_NETFILTER_XT_MATCH_DSCP is not set
CONFIG_NETFILTER_XT_MATCH_ESP is not set
CONFIG_NETFILTER_XT_MATCH_HASHLIMIT is not set
CONFIG_NETFILTER_XT_MATCH_IPRANGE is not set
CONFIG_NETFILTER_XT_MATCH_LENGTH is not set
CONFIG_NETFILTER_XT_MATCH_LIMIT is not set
CONFIG_NETFILTER_XT_MATCH_MAC is not set
CONFIG_NETFILTER_XT_MATCH_MARK is not set
CONFIG_NETFILTER_XT_MATCH_MULTIPORT is not set
CONFIG_NETFILTER_XT_MATCH_OWNER is not set
CONFIG_NETFILTER_XT_MATCH_POLICY is not set
CONFIG_NETFILTER_XT_MATCH_PKTTYPE is not set
CONFIG_NETFILTER_XT_MATCH_QUOTA is not set
CONFIG_NETFILTER_XT_MATCH_RATEEST is not set
CONFIG_NETFILTER_XT_MATCH_REALM is not set

68

CONFIG_NETFILTER_XT_MATCH_RECENT is not set
CONFIG_NETFILTER_XT_MATCH_STATISTIC is not set
CONFIG_NETFILTER_XT_MATCH_STRING is not set
CONFIG_NETFILTER_XT_MATCH_TCPMSS is not set
CONFIG_NETFILTER_XT_MATCH_TIME is not set
CONFIG_NETFILTER_XT_MATCH_U32 is not set
CONFIG_IP_VS is not set

IP: Netfilter Configuration

CONFIG_NF_DEFRAG_IPV4 is not set
CONFIG_IP_NF_QUEUE is not set
CONFIG_IP_NF_IPTABLES=y
CONFIG_IP_NF_MATCH_ADDRTYPE is not set
CONFIG_IP_NF_MATCH_AH is not set
CONFIG_IP_NF_MATCH_ECN is not set
CONFIG_IP_NF_MATCH_TTL is not set
CONFIG_IP_NF_FILTER=y
CONFIG_IP_NF_TARGET_REJECT is not set
CONFIG_IP_NF_TARGET_LOG is not set
CONFIG_IP_NF_TARGET_ULOG is not set
CONFIG_IP_NF_MANGLE=y
CONFIG_IP_NF_TARGET_ECN is not set
CONFIG_IP_NF_TARGET_TTL is not set
CONFIG_IP_NF_RAW is not set
CONFIG_IP_NF_ARPTABLES is not set

IPv6: Netfilter Configuration

CONFIG_IP6_NF_QUEUE is not set
CONFIG_IP6_NF_IPTABLES is not set
CONFIG_ATM is not set
CONFIG_BRIDGE is not set
CONFIG_VLAN_8021Q is not set
CONFIG_DECNET is not set
CONFIG_LLC2 is not set
CONFIG_IPX is not set
CONFIG_ATALK is not set

69

CONFIG_NET_SCHED is not set
CONFIG_DCB is not set

Network testing

CONFIG_NET_PKTGEN is not set
CONFIG_HAMRADIO is not set
CONFIG_CAN is not set
CONFIG_IRDA is not set
CONFIG_BT is not set
CONFIG_PHONET is not set
CONFIG_WIRELESS is not set
CONFIG_RFKILL is not set

Device Drivers

Generic Driver Options

CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"
CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
CONFIG_FW_LOADER=y
CONFIG_FIRMWARE_IN_KERNEL=y
CONFIG_EXTRA_FIRMWARE=""
CONFIG_SYS_HYPERVISOR is not set
CONFIG_CONNECTOR is not set
CONFIG_MTD is not set
CONFIG_OF_DEVICE=y
CONFIG_OF_I2C=y
CONFIG_PARPORT is not set
CONFIG_BLK_DEV=y
CONFIG_BLK_DEV_FD is not set
CONFIG_BLK_DEV_COW_COMMON is not set
CONFIG_BLK_DEV_LOOP=y
CONFIG_BLK_DEV_CRYPTOLOOP is not set
CONFIG_BLK_DEV_NBD is not set

70

CONFIG_BLK_DEV_RAM=y
CONFIG_BLK_DEV_RAM_COUNT=16
CONFIG_BLK_DEV_RAM_SIZE=8192
CONFIG_BLK_DEV_XIP is not set
CONFIG_CDROM_PKTCDVD is not set
CONFIG_ATA_OVER_ETH is not set
CONFIG_XILINX_SYSACE=y
CONFIG_XILINX_SYSACE_OLD is not set
CONFIG_BLK_DEV_HD is not set
CONFIG_MISC_DEVICES=y
CONFIG_EEPROM_93CX6 is not set
CONFIG_ENCLOSURE_SERVICES is not set
CONFIG_XILINX_DRIVERS=y
CONFIG_NEED_XILINX_LLDMA=y
CONFIG_NEED_XILINX_IPIF=y
CONFIG_HAVE_IDE=y
CONFIG_IDE is not set

SCSI device support

CONFIG_RAID_ATTRS is not set
CONFIG_SCSI is not set
CONFIG_SCSI_DMA is not set
CONFIG_SCSI_NETLINK is not set
CONFIG_ATA is not set
CONFIG_MD is not set
CONFIG_MACINTOSH_DRIVERS is not set
CONFIG_NETDEVICES=y
CONFIG_DUMMY is not set
CONFIG_BONDING is not set
CONFIG_EQUALIZER is not set
CONFIG_TUN is not set
CONFIG_VETH is not set
CONFIG_PHYLIB is not set
CONFIG_NET_ETHERNET=y
CONFIG_MII=y
CONFIG_IBM_NEW_EMAC is not set
CONFIG_IBM_NEW_EMAC_ZMII is not set
CONFIG_IBM_NEW_EMAC_RGMII is not set

71

CONFIG_IBM_NEW_EMAC_TAH is not set
CONFIG_IBM_NEW_EMAC_EMAC4 is not set
CONFIG_IBM_NEW_EMAC_NO_FLOW_CTRL is not set
CONFIG_IBM_NEW_EMAC_MAL_CLR_ICINTSTAT is not set
CONFIG_IBM_NEW_EMAC_MAL_COMMON_ERR is not set
CONFIG_B44 is not set
CONFIG_XILINX_EMAC=y
CONFIG_XILINX_EMACLITE is not set
CONFIG_NETDEV_1000=y
CONFIG_XILINX_TEMAC is not set
CONFIG_XILINX_LLTEMAC=y
CONFIG_XILINX_LLTEMAC_MARVELL_88E1111_RGMII is not set
CONFIG_XILINX_LLTEMAC_MARVELL_88E1111_GMII is not set
CONFIG_XILINX_LLTEMAC_MARVELL_88E1111_MII=y
CONFIG_NETDEV_10000 is not set

Wireless LAN

CONFIG_WLAN_PRE80211 is not set
CONFIG_WLAN_80211 is not set
CONFIG_IWLWIFI_LEDS is not set
CONFIG_WAN is not set
CONFIG_PPP is not set
CONFIG_SLIP is not set
CONFIG_NETPOLL is not set
CONFIG_NET_POLL_CONTROLLER is not set
CONFIG_ISDN is not set
CONFIG_PHONE is not set

Input device support

CONFIG_INPUT=y
CONFIG_INPUT_FF_MEMLESS is not set
CONFIG_INPUT_POLLDEV is not set

Userland interfaces

72

CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX=y
CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024
CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
CONFIG_INPUT_JOYDEV is not set
CONFIG_INPUT_EVDEV is not set
CONFIG_INPUT_EVBUG is not set

Input Device Drivers

CONFIG_INPUT_KEYBOARD=y
CONFIG_KEYBOARD_ATKBD=y
CONFIG_KEYBOARD_SUNKBD is not set
CONFIG_KEYBOARD_LKKBD is not set
CONFIG_KEYBOARD_XTKBD is not set
CONFIG_KEYBOARD_NEWTON is not set
CONFIG_KEYBOARD_STOWAWAY is not set
CONFIG_INPUT_MOUSE=y
CONFIG_MOUSE_PS2=y
CONFIG_MOUSE_PS2_ALPS=y
CONFIG_MOUSE_PS2_LOGIPS2PP=y
CONFIG_MOUSE_PS2_SYNAPTICS=y
CONFIG_MOUSE_PS2_LIFEBOOK=y
CONFIG_MOUSE_PS2_TRACKPOINT=y
CONFIG_MOUSE_PS2_ELANTECH is not set
CONFIG_MOUSE_PS2_TOUCHKIT is not set
CONFIG_MOUSE_SERIAL is not set
CONFIG_MOUSE_VSXXXAA is not set
CONFIG_INPUT_JOYSTICK is not set
CONFIG_INPUT_TABLET is not set
CONFIG_INPUT_TOUCHSCREEN is not set
CONFIG_INPUT_MISC is not set

Hardware I/O ports

CONFIG_SERIO=y
CONFIG_SERIO_I8042 is not set
CONFIG_SERIO_SERPORT=y

73

CONFIG_SERIO_LIBPS2=y
CONFIG_SERIO_XILINXPS2 is not set
CONFIG_SERIO_XILINX_XPS_PS2 is not set
CONFIG_SERIO_RAW is not set
CONFIG_GAMEPORT is not set

Character devices

CONFIG_VT=y
CONFIG_CONSOLE_TRANSLATIONS=y
CONFIG_VT_CONSOLE=y
CONFIG_HW_CONSOLE=y
CONFIG_VT_HW_CONSOLE_BINDING is not set
CONFIG_DEVKMEM=y
CONFIG_SERIAL_NONSTANDARD is not set

Serial drivers

CONFIG_SERIAL_8250=y
CONFIG_SERIAL_8250_CONSOLE=y
CONFIG_SERIAL_8250_NR_UARTS=4
CONFIG_SERIAL_8250_RUNTIME_UARTS=4
CONFIG_SERIAL_8250_EXTENDED is not set

Non-8250 serial port support

CONFIG_SERIAL_UARTLITE is not set
CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
CONFIG_SERIAL_OF_PLATFORM=y
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_LEGACY_PTY_COUNT=256
CONFIG_IPMI_HANDLER is not set
CONFIG_HW_RANDOM=y
CONFIG_NVRAM is not set
CONFIG_GEN_RTC is not set

74

CONFIG_XILINX_HWICAP=y
CONFIG_R3964 is not set
CONFIG_RAW_DRIVER is not set
CONFIG_I2C=y
CONFIG_I2C_BOARDINFO=y
CONFIG_I2C_CHARDEV=y
CONFIG_I2C_HELPER_AUTO=y

I2C Hardware Bus support

I2C system bus drivers (mostly embedded / system-on-chip)

CONFIG_I2C_IBM_IIC is not set
CONFIG_I2C_MPC is not set
CONFIG_I2C_SIMTEC is not set

External I2C/SMBus adapter drivers

CONFIG_I2C_PARPORT_LIGHT is not set

Other I2C/SMBus bus drivers

CONFIG_I2C_PCA_PLATFORM is not set

Miscellaneous I2C Chip support

CONFIG_PCF8575 is not set
CONFIG_I2C_DEBUG_CORE=y
CONFIG_I2C_DEBUG_ALGO=y
CONFIG_I2C_DEBUG_BUS is not set
CONFIG_I2C_DEBUG_CHIP is not set
CONFIG_SPI is not set
CONFIG_ARCH_WANT_OPTIONAL_GPIOLIB=y
CONFIG_GPIOLIB is not set

75

CONFIG_W1 is not set
CONFIG_POWER_SUPPLY is not set
CONFIG_HWMON is not set
CONFIG_THERMAL is not set
CONFIG_THERMAL_HWMON is not set
CONFIG_WATCHDOG is not set
CONFIG_SSB_POSSIBLE=y

Sonics Silicon Backplane

CONFIG_SSB is not set

Multifunction device drivers

CONFIG_MFD_CORE is not set
CONFIG_MFD_SM501 is not set
CONFIG_HTC_PASIC3 is not set
CONFIG_MFD_TMIO is not set
CONFIG_PMIC_DA903X is not set
CONFIG_MFD_WM8400 is not set
CONFIG_MFD_WM8350_I2C is not set
CONFIG_REGULATOR is not set

Multimedia devices

Multimedia core support

CONFIG_VIDEO_DEV is not set
CONFIG_DVB_CORE is not set
CONFIG_VIDEO_MEDIA is not set

Multimedia drivers

CONFIG_DAB is not set

76

Graphics support

CONFIG_VGASTATE is not set
CONFIG_VIDEO_OUTPUT_CONTROL is not set
CONFIG_FB=y
CONFIG_FIRMWARE_EDID is not set
CONFIG_FB_DDC is not set
CONFIG_FB_BOOT_VESA_SUPPORT is not set
CONFIG_FB_CFB_FILLRECT=y
CONFIG_FB_CFB_COPYAREA=y
CONFIG_FB_CFB_IMAGEBLIT=y
CONFIG_FB_CFB_REV_PIXELS_IN_BYTE is not set
CONFIG_FB_SYS_FILLRECT is not set
CONFIG_FB_SYS_COPYAREA is not set
CONFIG_FB_SYS_IMAGEBLIT is not set
CONFIG_FB_FOREIGN_ENDIAN is not set
CONFIG_FB_SYS_FOPS is not set
CONFIG_FB_SVGALIB is not set
CONFIG_FB_MACMODES is not set
CONFIG_FB_BACKLIGHT is not set
CONFIG_FB_MODE_HELPERS is not set
CONFIG_FB_TILEBLITTING is not set

Frame buffer hardware drivers

CONFIG_FB_OF is not set
CONFIG_FB_VGA16 is not set
CONFIG_FB_S1D13XXX is not set
CONFIG_FB_IBM_GXT4500 is not set
CONFIG_FB_XILINX=y
CONFIG_FB_VIRTUAL is not set
CONFIG_FB_METRONOME is not set
CONFIG_FB_MB862XX is not set
CONFIG_BACKLIGHT_LCD_SUPPORT is not set

Display device support

77

CONFIG_DISPLAY_SUPPORT is not set

Console display driver support

CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY is not set
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION is not set
CONFIG_FONTS=y
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y
CONFIG_FONT_6x11 is not set
CONFIG_FONT_7x14 is not set
CONFIG_FONT_PEARL_8x8 is not set
CONFIG_FONT_ACORN_8x8 is not set
CONFIG_FONT_MINI_4x6 is not set
CONFIG_FONT_SUN8x16 is not set
CONFIG_FONT_SUN12x22 is not set
CONFIG_FONT_10x18 is not set
CONFIG_LOGO=y
CONFIG_LOGO_LINUX_MONO=y
CONFIG_LOGO_LINUX_VGA16=y
CONFIG_LOGO_LINUX_CLUT224=y
CONFIG_SOUND is not set
CONFIG_HID_SUPPORT is not set
CONFIG_USB_SUPPORT is not set
CONFIG_MMC is not set
CONFIG_MEMSTICK is not set
CONFIG_NEW_LEDS is not set
CONFIG_ACCESSIBILITY is not set
CONFIG_RTC_CLASS is not set
CONFIG_DMADEVICES is not set
CONFIG_XILINX_EDK=y
CONFIG_XILINX_LLDMA_USE_DCR is not set
CONFIG_UIO is not set
CONFIG_STAGING is not set

78

File systems

CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR is not set
CONFIG_EXT2_FS_XIP is not set
CONFIG_EXT3_FS is not set
CONFIG_EXT4_FS is not set
CONFIG_REISERFS_FS is not set
CONFIG_JFS_FS is not set
CONFIG_FS_POSIX_ACL is not set
CONFIG_FILE_LOCKING=y
CONFIG_XFS_FS is not set
CONFIG_OCFS2_FS is not set
CONFIG_DNOTIFY=y
CONFIG_INOTIFY=y
CONFIG_INOTIFY_USER=y
CONFIG_QUOTA is not set
CONFIG_AUTOFS_FS=y
CONFIG_AUTOFS4_FS=y
CONFIG_FUSE_FS=y

CD-ROM/DVD Filesystems

CONFIG_ISO9660_FS is not set
CONFIG_UDF_FS is not set

DOS/FAT/NT Filesystems

CONFIG_FAT_FS=y
CONFIG_MSDOS_FS=y
CONFIG_VFAT_FS=y
CONFIG_FAT_DEFAULT_CODEPAGE=437
CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
CONFIG_NTFS_FS is not set

Pseudo filesystems

79

CONFIG_PROC_FS=y
CONFIG_PROC_KCORE is not set
CONFIG_PROC_SYSCTL=y
CONFIG_PROC_PAGE_MONITOR=y
CONFIG_SYSFS=y
CONFIG_TMPFS=y
CONFIG_TMPFS_POSIX_ACL is not set
CONFIG_HUGETLB_PAGE is not set
CONFIG_CONFIGFS_FS is not set

Miscellaneous filesystems

CONFIG_HFSPLUS_FS is not set
CONFIG_CRAMFS=y
CONFIG_VXFS_FS is not set
CONFIG_MINIX_FS is not set
CONFIG_OMFS_FS is not set
CONFIG_HPFS_FS is not set
CONFIG_QNX4FS_FS is not set
CONFIG_ROMFS_FS=y
CONFIG_SYSV_FS is not set
CONFIG_UFS_FS is not set
CONFIG_NETWORK_FILESYSTEMS=y
CONFIG_NFS_FS=y
CONFIG_NFS_V3=y
CONFIG_NFS_V3_ACL is not set
CONFIG_ROOT_NFS=y
CONFIG_NFSD=y
CONFIG_NFSD_V3=y
CONFIG_NFSD_V3_ACL is not set
CONFIG_LOCKD=y
CONFIG_LOCKD_V4=y
CONFIG_EXPORTFS=y
CONFIG_NFS_COMMON=y
CONFIG_SUNRPC=y
CONFIG_SMB_FS=y
CONFIG_SMB_NLS_DEFAULT is not set
CONFIG_CIFS is not set
CONFIG_NCP_FS is not set

80

CONFIG_CODA_FS is not set

Partition Types

CONFIG_PARTITION_ADVANCED is not set
CONFIG_MSDOS_PARTITION=y
CONFIG_NLS=y
CONFIG_NLS_DEFAULT="iso8859-1"
CONFIG_NLS_CODEPAGE_437=y
CONFIG_NLS_CODEPAGE_737 is not set
CONFIG_NLS_CODEPAGE_775 is not set
CONFIG_NLS_CODEPAGE_850 is not set
CONFIG_NLS_CODEPAGE_852 is not set
CONFIG_NLS_CODEPAGE_855 is not set
CONFIG_NLS_CODEPAGE_857 is not set
CONFIG_NLS_CODEPAGE_860 is not set
CONFIG_NLS_CODEPAGE_861 is not set
CONFIG_NLS_CODEPAGE_862 is not set
CONFIG_NLS_CODEPAGE_863 is not set
CONFIG_NLS_CODEPAGE_864 is not set
CONFIG_NLS_CODEPAGE_865 is not set
CONFIG_NLS_CODEPAGE_866 is not set
CONFIG_NLS_CODEPAGE_869 is not set
CONFIG_NLS_CODEPAGE_936 is not set
CONFIG_NLS_CODEPAGE_950 is not set
CONFIG_NLS_CODEPAGE_932 is not set
CONFIG_NLS_CODEPAGE_949 is not set
CONFIG_NLS_CODEPAGE_874 is not set
CONFIG_NLS_ISO8859_8 is not set
CONFIG_NLS_CODEPAGE_1250 is not set
CONFIG_NLS_CODEPAGE_1251 is not set
CONFIG_NLS_ASCII=y
CONFIG_NLS_ISO8859_1=y
CONFIG_NLS_ISO8859_2 is not set
CONFIG_NLS_ISO8859_3 is not set
CONFIG_NLS_ISO8859_4 is not set
CONFIG_NLS_ISO8859_5 is not set
CONFIG_NLS_ISO8859_6 is not set
CONFIG_NLS_ISO8859_7 is not set

81

CONFIG_NLS_ISO8859_9 is not set
CONFIG_NLS_ISO8859_13 is not set
CONFIG_NLS_ISO8859_14 is not set
CONFIG_NLS_ISO8859_15 is not set
CONFIG_NLS_KOI8_R is not set
CONFIG_NLS_KOI8_U is not set
CONFIG_NLS_UTF8=y

Library routines

CONFIG_BITREVERSE=y
CONFIG_CRC_CCITT=y
CONFIG_CRC16 is not set
CONFIG_CRC_T10DIF is not set
CONFIG_CRC_ITU_T is not set
CONFIG_CRC32=y
CONFIG_CRC7 is not set
CONFIG_LIBCRC32C is not set
CONFIG_ZLIB_INFLATE=y
CONFIG_PLIST=y
CONFIG_HAS_IOMEM=y
CONFIG_HAS_IOPORT=y
CONFIG_HAS_DMA=y
CONFIG_HAVE_LMB=y

Kernel hacking

CONFIG_PRINTK_TIME is not set
CONFIG_ENABLE_WARN_DEPRECATED=y
CONFIG_ENABLE_MUST_CHECK=y
CONFIG_FRAME_WARN=1024
CONFIG_MAGIC_SYSRQ is not set
CONFIG_UNUSED_SYMBOLS is not set
CONFIG_DEBUG_FS is not set
CONFIG_HEADERS_CHECK is not set
CONFIG_DEBUG_KERNEL is not set
CONFIG_DEBUG_BUGVERBOSE=y
CONFIG_DEBUG_MEMORY_INIT=y

82

CONFIG_RCU_CPU_STALL_DETECTOR is not set
CONFIG_LATENCYTOP is not set
CONFIG_SYSCTL_SYSCALL_CHECK=y
CONFIG_HAVE_FUNCTION_TRACER=y

Tracers

CONFIG_DYNAMIC_PRINTK_DEBUG is not set
CONFIG_SAMPLES is not set
CONFIG_HAVE_ARCH_KGDB=y
CONFIG_PRINT_STACK_DEPTH=64
CONFIG_IRQSTACKS is not set
CONFIG_PPC_EARLY_DEBUG is not set

Security options

CONFIG_KEYS is not set
CONFIG_SECURITY is not set
CONFIG_SECURITYFS is not set
CONFIG_SECURITY_FILE_CAPABILITIES is not set
CONFIG_CRYPTO=y

Crypto core or helper

CONFIG_CRYPTO_FIPS is not set
CONFIG_CRYPTO_MANAGER is not set
CONFIG_CRYPTO_MANAGER2 is not set
CONFIG_CRYPTO_NULL is not set
CONFIG_CRYPTO_CRYPTD is not set
CONFIG_CRYPTO_AUTHENC is not set
CONFIG_CRYPTO_TEST is not set

Authenticated Encryption with Associated Data

CONFIG_CRYPTO_CCM is not set
CONFIG_CRYPTO_GCM is not set

83

CONFIG_CRYPTO_SEQIV is not set

Block modes

CONFIG_CRYPTO_CBC is not set
CONFIG_CRYPTO_CTR is not set
CONFIG_CRYPTO_CTS is not set
CONFIG_CRYPTO_ECB is not set
CONFIG_CRYPTO_PCBC is not set

Hash modes

CONFIG_CRYPTO_HMAC is not set

Digest

CONFIG_CRYPTO_CRC32C is not set
CONFIG_CRYPTO_MD4 is not set
CONFIG_CRYPTO_MD5 is not set
CONFIG_CRYPTO_MICHAEL_MIC is not set
CONFIG_CRYPTO_RMD128 is not set
CONFIG_CRYPTO_RMD160 is not set
CONFIG_CRYPTO_RMD256 is not set
CONFIG_CRYPTO_RMD320 is not set
CONFIG_CRYPTO_SHA1 is not set
CONFIG_CRYPTO_SHA256 is not set
CONFIG_CRYPTO_SHA512 is not set
CONFIG_CRYPTO_TGR192 is not set
CONFIG_CRYPTO_WP512 is not set

Ciphers

CONFIG_CRYPTO_AES is not set
CONFIG_CRYPTO_ANUBIS is not set
CONFIG_CRYPTO_ARC4 is not set
CONFIG_CRYPTO_BLOWFISH is not set

84

CONFIG_CRYPTO_CAMELLIA is not set
CONFIG_CRYPTO_CAST5 is not set
CONFIG_CRYPTO_CAST6 is not set
CONFIG_CRYPTO_DES is not set
CONFIG_CRYPTO_FCRYPT is not set
CONFIG_CRYPTO_KHAZAD is not set
CONFIG_CRYPTO_SEED is not set
CONFIG_CRYPTO_SERPENT is not set
CONFIG_CRYPTO_TEA is not set
CONFIG_CRYPTO_TWOFISH is not set

Compression

CONFIG_CRYPTO_DEFLATE is not set
CONFIG_CRYPTO_LZO is not set

Random Number Generation

CONFIG_CRYPTO_ANSI_CPRNG is not set
CONFIG_CRYPTO_HW=y
CONFIG_PPC_CLOCK is not set
CONFIG_VIRTUALIZATION is not set

85

APPENDIX D

 Setting 3DES for a Standalone Implementation

 This appendix discusses how to get the 3DES core into a generic project. This

section assumes you are using EDK 9.1i on a windows machine and have CoDeveloper

2.1 installed.

Step 1: Create IP Core

First you will need to open CoDeveloper 2.1. Once open you will need to open

the 3DES project for the Virtex II Pro. On my machine this project is located under the

CoDeveloper directory at /Examples/Xilinx/VirtexIIPro/3DES.

Next you will need modify the options of Project, go to Project->Options as indicated

below.

86

Once in the options you will get a screen such as the one below.

Go to the Generate Tab on the options screen and modify the fields to match those below.

Once done, click OK.

87

Next, you need to export the generated hardware and software, as indicated in the

following two screen shots. Exporting the hardware and software will automatically

generate the hardware and software if not all ready done so.

Step 2: Create a standalone system. Start XPS and follow the screenshots below.

88

89

90

91

92

Note: I used the OPB UARTLITE Peripheral for RS232_Uart_1 because we did not have

license at the time for any other RS232 core.

93

94

95

Note: Here you need to click the Add Peripheral button to add the OPB TIMER

Peripheral as needed by the IMPULSE C application code.

96

If you clicked the Add Peripheral button you should get a window like the one below.

Select the OPB TIMER and click OK.

97

If you successfully added the OPB TIMER, your window should appear as the one

below.

98

Note: I kept the memory test under sample application selection so I could use the linker

script when I add the application test from IMPULSE C.

99

100

101

Step 3: Add the 3DES IP Core to the standalone system

To add the 3DES Core to your system you need to go to the IP Catalog and look under

―Project Local pcores‖. Simply double click on plb_des to the IP Core to the system.

102

Once you have added the 3DES IP core to the system, you will need to wire it to the PLB

bus as indicated below.

103

After the IP Core has been wired, you will need to go to the address section in the main

window. Once here click Generate Addresses.

104

Step 4: Load the generated application software

Now that the IP Core is wired within the system, you need to add the IMPULSE C

software application project. Go to the Applications tab under the Project Information

Area and double click ―Add Software Application Project‖

A window should pop up like the one below, where you can choose to name the project

name.

105

Double click the Compiler Options under the newly created project and change the

Linker Script so that it points to the TestApp_Memory linker script.

106

Next, right click the Sources under the newly created software project and select Add

Existing files.

107

The files you need to add are co_init.c and des.sw.c.

As is, the code will not compile. Des_sw.c must be modified to work, on line 41 modify

the like to read ―int Asmversion‖ as shown below.

108

Now you need to initialize the project. Right click the project’s name and select ―Mark

to Initialize BRAMs‖. If TestApp_Memory is initialized, de-initialize via the same

process.

Step 5: Run the Test Application

Before you run the application, make sure HyperTerminal is running and a RS232 cable

is connected between the board and computer. To setup HyperTerminal, simply follow

the screenshots below.

109

110

Once hyperterminal is setup, you can go back to XPS and click download bitstream. This

will download the hardware to the board and run the software.

Step 6: Output of Test

Once the bitstream has completed downloading, you should see the following results on

the HyperTerminal.

111

112

APPENDIX E

 Software based 3DES

 This appendix contains the code that comprises our software implementation of

3DES. The code is comprised of four files: mpi_soft.c, deskey.c, sp.c, and des.h.

mpi_soft.c

#include <iostream>

#include <stdio.h>

#include <stdlib.h>

#include <vector>

#include <string.h>

#include <fstream>

#include <mpi.h>

#include "des.h"

#include "sp.c"

#include "deskey.c"

using namespace std;

int NumBlocks;

vector <unsigned char> Blocks;

/* Keyschedule */

DES3_KS Ks;

#define F(l,r,key){\

 work = ((r >> 4) | (r << 28)) ^ key[0];\

 l ^= Spbox[6][work & 0x3f];\

 l ^= Spbox[4][(work >> 8) & 0x3f];\

 l ^= Spbox[2][(work >> 16) & 0x3f];\

 l ^= Spbox[0][(work >> 24) & 0x3f];\

 work = r ^ key[1];\

 l ^= Spbox[7][work & 0x3f];\

113

 l ^= Spbox[5][(work >> 8) & 0x3f];\

 l ^= Spbox[3][(work >> 16) & 0x3f];\

 l ^= Spbox[1][(work >> 24) & 0x3f];\

}

void get_data(int rank, int size, string filename)

{

 vector <int> temp;

 int temp_size=0;

 MPI_Status status;

 /* have p0 get data at end to pick up extras */

 if(rank==0)

 {

 int start, end, total;

 int tBlocks;

 int current_rank=1;

 int p0_size=0;

 int c_size=0;

 ifstream infile;

 infile.open(filename.c_str());

 start=infile.tellg();

 infile.seekg(0, ios::end);

 end=infile.tellg();

 infile.seekg(0, ios::beg);

 total=end-start;

 /* take total and right shift by 3, eg divide by 8 */

 tBlocks=total/DES_BLOCKSIZE;

 if(total % DES_BLOCKSIZE)

 tBlocks++; /* tells total number of blocks */

 NumBlocks=tBlocks / size;

 MPI_Bcast(&NumBlocks, 1, MPI_INT,0, MPI_COMM_WORLD);

 temp_size=NumBlocks*DES_BLOCKSIZE;

 NumBlocks=tBlocks-(size-1)*NumBlocks;

 /* Data on p0 will be zero padded to ensure that it

 contains a number of elements divisiable by 8 */

 p0_size=total-temp_size*(size-1);

 Blocks.resize(NumBlocks*DES_BLOCKSIZE,0);

114

 for(int i=1; i<=size; i++)

 {

 current_rank=i%size; /* gives correct rank to receive from */

 if(current_rank>0)

 c_size=temp_size;

 else

 {

 c_size=p0_size;

 }

 for(int j=0; j<c_size; j++)

 {

 Blocks[j]=infile.get();

 }

 if(current_rank!=0)

 MPI_Send(&Blocks.front(), temp_size, MPI_CHAR, current_rank, 0,

MPI_COMM_WORLD);

 }

 }

 else

 {

 MPI_Bcast(&NumBlocks, 1, MPI_INT, 0, MPI_COMM_WORLD);

 temp_size=NumBlocks*DES_BLOCKSIZE; /* NumBlocks * 8, tells number of

elements */

 Blocks.resize(temp_size);

 MPI_Recv(&Blocks.front(), temp_size,

MPI_CHAR,0,0,MPI_COMM_WORLD,&status);

 }

}

// This is the plain C 3DES process. It reads the keyschedule and block

// inputs from global variables initialized in the des_producer process

// and does all processing using standard C code.

//

//

void des_c(int rank,int size, string filename2)

{

 int i;

115

 unsigned int blockCount = 0;

 int current_rank;

 unsigned char block[8];

 unsigned long left,right,work;

 vector <unsigned char> solution;

 vector <unsigned char> temp;

 int write_id;

 MPI_Status status;

 while(blockCount<NumBlocks) {

 for (i = 0; i < DES_BLOCKSIZE; i++) { /* DES_BLOCKSIZE is always 8 */

 block[i]=Blocks[blockCount * DES_BLOCKSIZE + i];

 }

 // Process the block...

 // Read input block and place in left/right in big-endian order

 //

 left = ((unsigned long)block[0] << 24)

 | ((unsigned long)block[1] << 16)

 | ((unsigned long)block[2] << 8)

 | (unsigned long)block[3];

 right = ((unsigned long)block[4] << 24)

 | ((unsigned long)block[5] << 16)

 | ((unsigned long)block[6] << 8)

 | (unsigned long)block[7];

// Hoey's clever initial permutation algorithm, from Outerbridge

// (see Schneier p 478)

//

// The convention here is the same as Outerbridge: rotate each

// register left by 1 bit, i.e., so that "left" contains permuted

// input bits 2, 3, 4, ... 1 and "right" contains 33, 34, 35, ... 32

// (using origin-1 numbering as in the FIPS). This allows us to avoid

// one of the two rotates that would otherwise be required in each of

// the 16 rounds.

//

 work = ((left >> 4) ^ right) & 0x0f0f0f0f;

 right ^= work;

 left ^= work << 4;

 work = ((left >> 16) ^ right) & 0xffff;

 right ^= work;

116

 left ^= work << 16;

 work = ((right >> 2) ^ left) & 0x33333333;

 left ^= work;

 right ^= (work << 2);

 work = ((right >> 8) ^ left) & 0xff00ff;

 left ^= work;

 right ^= (work << 8);

 right = (right << 1) | (right >> 31);

 work = (left ^ right) & 0xaaaaaaaa;

 left ^= work;

 right ^= work;

 left = (left << 1) | (left >> 31);

 /* First key */

 F(left,right,Ks[0]);

 F(right,left,Ks[1]);

 F(left,right,Ks[2]);

 F(right,left,Ks[3]);

 F(left,right,Ks[4]);

 F(right,left,Ks[5]);

 F(left,right,Ks[6]);

 F(right,left,Ks[7]);

 F(left,right,Ks[8]);

 F(right,left,Ks[9]);

 F(left,right,Ks[10]);

 F(right,left,Ks[11]);

 F(left,right,Ks[12]);

 F(right,left,Ks[13]);

 F(left,right,Ks[14]);

 F(right,left,Ks[15]);

 /* Second key (must be created in opposite mode to first key) */

 F(right,left,Ks[16]);

 F(left,right,Ks[17]);

 F(right,left,Ks[18]);

 F(left,right,Ks[19]);

 F(right,left,Ks[20]);

 F(left,right,Ks[21]);

 F(right,left,Ks[22]);

 F(left,right,Ks[23]);

117

 F(right,left,Ks[24]);

 F(left,right,Ks[25]);

 F(right,left,Ks[26]);

 F(left,right,Ks[27]);

 F(right,left,Ks[28]);

 F(left,right,Ks[29]);

 F(right,left,Ks[30]);

 F(left,right,Ks[31]);

 /* Third key */

 F(left,right,Ks[32]);

 F(right,left,Ks[33]);

 F(left,right,Ks[34]);

 F(right,left,Ks[35]);

 F(left,right,Ks[36]);

 F(right,left,Ks[37]);

 F(left,right,Ks[38]);

 F(right,left,Ks[39]);

 F(left,right,Ks[40]);

 F(right,left,Ks[41]);

 F(left,right,Ks[42]);

 F(right,left,Ks[43]);

 F(left,right,Ks[44]);

 F(right,left,Ks[45]);

 F(left,right,Ks[46]);

 F(right,left,Ks[47]);

 /* Inverse permutation, also from Hoey via Outerbridge and Schneier */

 right = (right << 31) | (right >> 1);

 work = (left ^ right) & 0xaaaaaaaa;

 left ^= work;

 right ^= work;

 left = (left >> 1) | (left << 31);

 work = ((left >> 8) ^ right) & 0xff00ff;

 right ^= work;

 left ^= work << 8;

 work = ((left >> 2) ^ right) & 0x33333333;

 right ^= work;

 left ^= work << 2;

 work = ((right >> 16) ^ left) & 0xffff;

118

 left ^= work;

 right ^= work << 16;

 work = ((right >> 4) ^ left) & 0x0f0f0f0f;

 left ^= work;

 right ^= work << 4;

 /* Put the block into the output stream with final swap */

 block[0] = (int) (right >> 24);

 block[1] = (int) (right >> 16);

 block[2] = (int) (right >> 8);

 block[3] = (int) right;

 block[4] = (int) (left >> 24);

 block[5] = (int) (left >> 16);

 block[6] = (int) (left >> 8);

 block[7] = (int) left;

 for (i=0; i<DES_BLOCKSIZE; i++) {

 solution.push_back(block[i]);

 }

 ++blockCount;

 }

 // if there is more than one processor, the 2nd processor receives date,

 // otherwise, p0 keeps all data

 if(size>1)

 write_id=1;

 else

 write_id=0;

 if(rank==write_id)

 {

 int size_temp=0;

 ofstream outfile;

 outfile.open(filename2.c_str());

 // receive data and store in a vector

 for(int i=1; i<=size; i++)

 {

 current_rank=i%size; /* gives correct rank to receive from */

119

 if(current_rank==rank)

 {

 for(int j=0;j<solution.size();j++)

 {

 outfile.setf(ios::hex,ios::basefield);

 outfile<<solution[j];

 }

 }

 else

 {

 MPI_Recv(&size_temp,1, MPI_INT, current_rank, 0,

MPI_COMM_WORLD,&status);

 temp.resize(size_temp);

 MPI_Recv(&temp.front(),size_temp, MPI_CHAR, current_rank, 0,

MPI_COMM_WORLD, &status);

 for(int j=0; j<size_temp;j++)

 {

 outfile.setf(ios::hex,ios::basefield);

 outfile<<temp[j];

 }

 }

 }

 outfile.close();

 }

 else

 {

 /* send my solution to process 0 */

 int tSize=solution.size();

 MPI_Send(&tSize, 1, MPI_INT, write_id, 0, MPI_COMM_WORLD);

 MPI_Send(&solution.front(),tSize , MPI_CHAR, write_id, 0, MPI_COMM_WORLD);

 }

}

int main(int argc, char *argv[])

{

 int npes, myrank;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &npes);

120

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 int crypt_choice;

 unsigned char * key = (unsigned char *) "Gflk jqo40978J0dmm$%@878"; /* 24 bytes

*/

 string filename, filename2;

 filename =argv[1];

 filename2 = argv[2];

 // 0 for encryption, 1 for decryption

 crypt_choice=atoi(argv[3]);

 des3key(Ks, key, crypt_choice);

 /* Grab data and send out*/

 get_data(myrank, npes, filename);

 /* encryption/decryption step */

 des_c(myrank, npes, filename2);

 MPI_Finalize();

 return(0);

}

121

deskey.c

// Copyright(c) 2003-2007 Impulse Accelerated Technologies, Inc.

// All rights reserved.

// www.ImpulseC.com

//

// This source file may be used and distributed without restriction provided

// that this copyright notice is not removed from the file and that any

// derivative work contains this copyright notice.

//

// Portable C code to create DES key schedules from user-provided keys

// This doesn't have to be fast unless you're cracking keys or UNIX

// passwords

//

#include <iostream>

#include <string.h>

#include "des.h"

using namespace std;

/* Key schedule-related tables from FIPS-46 */

/* permuted choice table (key) */

static unsigned char pc1[] = {

 57, 49, 41, 33, 25, 17, 9,

 1, 58, 50, 42, 34, 26, 18,

 10, 2, 59, 51, 43, 35, 27,

 19, 11, 3, 60, 52, 44, 36,

 63, 55, 47, 39, 31, 23, 15,

 7, 62, 54, 46, 38, 30, 22,

 14, 6, 61, 53, 45, 37, 29,

 21, 13, 5, 28, 20, 12, 4

};

/* number left rotations of pc1 */

static unsigned char totrot[] = {

 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28

};

/* permuted choice key (table) */

122

static unsigned char pc2[] = {

 14, 17, 11, 24, 1, 5,

 3, 28, 15, 6, 21, 10,

 23, 19, 12, 4, 26, 8,

 16, 7, 27, 20, 13, 2,

 41, 52, 31, 37, 47, 55,

 30, 40, 51, 45, 33, 48,

 44, 49, 39, 56, 34, 53,

 46, 42, 50, 36, 29, 32

};

/* End of DES-defined tables */

/* bit 0 is left-most in byte */

static int bytebit[] = {

 0200,0100,040,020,010,04,02,01

};

// Generate key schedule for encryption or decryption

// depending on the value of "decrypt"

//

void deskey(DES_KS k,unsigned char *key,int decrypt)

//DES_KS k; /* Key schedule array */

//unsigned char *key; /* 64 bits (will use only 56) */

//int decrypt; /* 0 = encrypt, 1 = decrypt */

{

 unsigned char pc1m[56]; /* place to modify pc1 into */

 unsigned char pcr[56]; /* place to rotate pc1 into */

 register int i,j,l;

 int m;

 unsigned char ks[8];

 for (j=0; j<56; j++) { /* convert pc1 to bits of key */

 l=pc1[j]-1; /* integer bit location */

 m = l & 07; /* find bit */

 pc1m[j]=(key[l>>3] & /* find which key byte l is in */

 bytebit[m]) /* and which bit of that byte */

 ? 1 : 0; /* and store 1-bit result */

 }

123

 for (i=0; i<16; i++) { /* key chunk for each iteration */

 memset(ks,0,sizeof(ks)); /* Clear key schedule */

 for (j=0; j<56; j++) /* rotate pc1 the right amount */

 pcr[j] = pc1m[(l=j+totrot[decrypt? 15-i : i])<(j<28? 28 : 56) ? l:

l-28];

 /* rotate left and right halves independently */

 for (j=0; j<48; j++){ /* select bits individually */

 /* check bit that goes to ks[j] */

 if (pcr[pc2[j]-1]){

 /* mask it in if it's there */

 l= j % 6;

 ks[j/6] |= bytebit[l] >> 2;

 }

 }

 /* Now convert to packed odd/even interleaved form */

 k[i][0] = ((long)ks[0] << 24)

 | ((long)ks[2] << 16)

 | ((long)ks[4] << 8)

 | ((long)ks[6]);

 k[i][1] = ((long)ks[1] << 24)

 | ((long)ks[3] << 16)

 | ((long)ks[5] << 8)

 | ((long)ks[7]);

 }

}

// Generate key schedule for triple DES in E-D-E (or D-E-D) mode.

//

// The key argument is taken to be 24 bytes. The first 8 bytes are K1

// for the first stage, the second 8 bytes are K2 for the middle stage

// and the third 8 bytes are K3 for the last stage

//

void

des3key(DES3_KS k,unsigned char *key, int decrypt)

{

 if(!decrypt){

 deskey(&k[0],&key[0],0);

 deskey(&k[16],&key[8],1);

 deskey(&k[32],&key[16],0);

 } else {

124

 deskey(&k[32],&key[0],1);

 deskey(&k[16],&key[8],0);

 deskey(&k[0],&key[16],1);

 }

}

sp.c

#define SPBOX_X 8

#define SPBOX_Y 64

unsigned long Spbox[8][64] = {

0x01010400,0x00000000,0x00010000,0x01010404,

0x01010004,0x00010404,0x00000004,0x00010000,

0x00000400,0x01010400,0x01010404,0x00000400,

0x01000404,0x01010004,0x01000000,0x00000004,

0x00000404,0x01000400,0x01000400,0x00010400,

0x00010400,0x01010000,0x01010000,0x01000404,

0x00010004,0x01000004,0x01000004,0x00010004,

0x00000000,0x00000404,0x00010404,0x01000000,

0x00010000,0x01010404,0x00000004,0x01010000,

0x01010400,0x01000000,0x01000000,0x00000400,

0x01010004,0x00010000,0x00010400,0x01000004,

0x00000400,0x00000004,0x01000404,0x00010404,

0x01010404,0x00010004,0x01010000,0x01000404,

0x01000004,0x00000404,0x00010404,0x01010400,

0x00000404,0x01000400,0x01000400,0x00000000,

0x00010004,0x00010400,0x00000000,0x01010004,

0x80108020,0x80008000,0x00008000,0x00108020,

0x00100000,0x00000020,0x80100020,0x80008020,

0x80000020,0x80108020,0x80108000,0x80000000,

0x80008000,0x00100000,0x00000020,0x80100020,

0x00108000,0x00100020,0x80008020,0x00000000,

0x80000000,0x00008000,0x00108020,0x80100000,

0x00100020,0x80000020,0x00000000,0x00108000,

0x00008020,0x80108000,0x80100000,0x00008020,

0x00000000,0x00108020,0x80100020,0x00100000,

0x80008020,0x80100000,0x80108000,0x00008000,

0x80100000,0x80008000,0x00000020,0x80108020,

0x00108020,0x00000020,0x00008000,0x80000000,

0x00008020,0x80108000,0x00100000,0x80000020,

125

0x00100020,0x80008020,0x80000020,0x00100020,

0x00108000,0x00000000,0x80008000,0x00008020,

0x80000000,0x80100020,0x80108020,0x00108000,

0x00000208,0x08020200,0x00000000,0x08020008,

0x08000200,0x00000000,0x00020208,0x08000200,

0x00020008,0x08000008,0x08000008,0x00020000,

0x08020208,0x00020008,0x08020000,0x00000208,

0x08000000,0x00000008,0x08020200,0x00000200,

0x00020200,0x08020000,0x08020008,0x00020208,

0x08000208,0x00020200,0x00020000,0x08000208,

0x00000008,0x08020208,0x00000200,0x08000000,

0x08020200,0x08000000,0x00020008,0x00000208,

0x00020000,0x08020200,0x08000200,0x00000000,

0x00000200,0x00020008,0x08020208,0x08000200,

0x08000008,0x00000200,0x00000000,0x08020008,

0x08000208,0x00020000,0x08000000,0x08020208,

0x00000008,0x00020208,0x00020200,0x08000008,

0x08020000,0x08000208,0x00000208,0x08020000,

0x00020208,0x00000008,0x08020008,0x00020200,

0x00802001,0x00002081,0x00002081,0x00000080,

0x00802080,0x00800081,0x00800001,0x00002001,

0x00000000,0x00802000,0x00802000,0x00802081,

0x00000081,0x00000000,0x00800080,0x00800001,

0x00000001,0x00002000,0x00800000,0x00802001,

0x00000080,0x00800000,0x00002001,0x00002080,

0x00800081,0x00000001,0x00002080,0x00800080,

0x00002000,0x00802080,0x00802081,0x00000081,

0x00800080,0x00800001,0x00802000,0x00802081,

0x00000081,0x00000000,0x00000000,0x00802000,

0x00002080,0x00800080,0x00800081,0x00000001,

0x00802001,0x00002081,0x00002081,0x00000080,

0x00802081,0x00000081,0x00000001,0x00002000,

0x00800001,0x00002001,0x00802080,0x00800081,

0x00002001,0x00002080,0x00800000,0x00802001,

0x00000080,0x00800000,0x00002000,0x00802080,

0x00000100,0x02080100,0x02080000,0x42000100,

0x00080000,0x00000100,0x40000000,0x02080000,

0x40080100,0x00080000,0x02000100,0x40080100,

0x42000100,0x42080000,0x00080100,0x40000000,

0x02000000,0x40080000,0x40080000,0x00000000,

126

0x40000100,0x42080100,0x42080100,0x02000100,

0x42080000,0x40000100,0x00000000,0x42000000,

0x02080100,0x02000000,0x42000000,0x00080100,

0x00080000,0x42000100,0x00000100,0x02000000,

0x40000000,0x02080000,0x42000100,0x40080100,

0x02000100,0x40000000,0x42080000,0x02080100,

0x40080100,0x00000100,0x02000000,0x42080000,

0x42080100,0x00080100,0x42000000,0x42080100,

0x02080000,0x00000000,0x40080000,0x42000000,

0x00080100,0x02000100,0x40000100,0x00080000,

0x00000000,0x40080000,0x02080100,0x40000100,

0x20000010,0x20400000,0x00004000,0x20404010,

0x20400000,0x00000010,0x20404010,0x00400000,

0x20004000,0x00404010,0x00400000,0x20000010,

0x00400010,0x20004000,0x20000000,0x00004010,

0x00000000,0x00400010,0x20004010,0x00004000,

0x00404000,0x20004010,0x00000010,0x20400010,

0x20400010,0x00000000,0x00404010,0x20404000,

0x00004010,0x00404000,0x20404000,0x20000000,

0x20004000,0x00000010,0x20400010,0x00404000,

0x20404010,0x00400000,0x00004010,0x20000010,

0x00400000,0x20004000,0x20000000,0x00004010,

0x20000010,0x20404010,0x00404000,0x20400000,

0x00404010,0x20404000,0x00000000,0x20400010,

0x00000010,0x00004000,0x20400000,0x00404010,

0x00004000,0x00400010,0x20004010,0x00000000,

0x20404000,0x20000000,0x00400010,0x20004010,

0x00200000,0x04200002,0x04000802,0x00000000,

0x00000800,0x04000802,0x00200802,0x04200800,

0x04200802,0x00200000,0x00000000,0x04000002,

0x00000002,0x04000000,0x04200002,0x00000802,

0x04000800,0x00200802,0x00200002,0x04000800,

0x04000002,0x04200000,0x04200800,0x00200002,

0x04200000,0x00000800,0x00000802,0x04200802,

0x00200800,0x00000002,0x04000000,0x00200800,

0x04000000,0x00200800,0x00200000,0x04000802,

0x04000802,0x04200002,0x04200002,0x00000002,

0x00200002,0x04000000,0x04000800,0x00200000,

0x04200800,0x00000802,0x00200802,0x04200800,

0x00000802,0x04000002,0x04200802,0x04200000,

127

0x00200800,0x00000000,0x00000002,0x04200802,

0x00000000,0x00200802,0x04200000,0x00000800,

0x04000002,0x04000800,0x00000800,0x00200002,

0x10001040,0x00001000,0x00040000,0x10041040,

0x10000000,0x10001040,0x00000040,0x10000000,

0x00040040,0x10040000,0x10041040,0x00041000,

0x10041000,0x00041040,0x00001000,0x00000040,

0x10040000,0x10000040,0x10001000,0x00001040,

0x00041000,0x00040040,0x10040040,0x10041000,

0x00001040,0x00000000,0x00000000,0x10040040,

0x10000040,0x10001000,0x00041040,0x00040000,

0x00041040,0x00040000,0x10041000,0x00001000,

0x00000040,0x10040040,0x00001000,0x00041040,

0x10001000,0x00000040,0x10000040,0x10040000,

0x10040040,0x10000000,0x00040000,0x10001040,

0x00000000,0x10041040,0x00040040,0x10000040,

0x10040000,0x10001000,0x10001040,0x00000000,

0x10041040,0x00041000,0x00041000,0x00001040,

0x00001040,0x00040040,0x10000000,0x10041000,

};

128

des.h

// Copyright(c) 2003-2007 Impulse Accelerated Technologies, Inc.

// All rights reserved.

// www.ImpulseC.com

//

// This source file may be used and distributed without restriction provided

// that this copyright notice is not removed from the file and that any

// derivative work contains this copyright notice.

/* Signal values that indicate which task to do */

#define DES_ENCRYPT 0

#define DES_DECRYPT 1

/* 3DES constants, don't change these */

#define DES_BLOCKSIZE 8 /* unsigned chars per block */

#define DES_KS_DEPTH 48 /* key pairs */

#define SPBOX_X 8

#define SPBOX_Y 64

typedef unsigned long DES_KS[16][2]; /* Single-key DES key schedule */

typedef unsigned long DES3_KS[48][2]; /* Triple-DES key schedule */

/* In deskey.c: */

void deskey(DES_KS,unsigned char *,int);

void des3key(DES3_KS,unsigned char *,int);

129

APPENDIX F

 Adding the 3DES IP CORE into the Base Design

 This appendix describes how to add the 3DES IP Core to the Xilinx base design.

I will assume that the 3DES project has already been copied over to the Redhat machine,

or already exists on the Redhat machine.

First open a terminal window and change your directory to where the project is stored.

Next, in the terminal you will need to run ―icProj2make.pl 3des.icProj‖.

Following, run ―Make –f _Makefile build‖.

Next you will need to modify the _Makefile.defs so you are able to export the hardware

to your target project. Change the $Option ―GenCodeHWExportDir‖ line to point to

your project directory. For example, $Option

―GenCodeHWExportDir=/home/user/3des_proj‖.

Finally run ―Make –f _Makefile export_build‖ to export the hardware to your project.

Once this is done, simply start XPS and rescan the user repositories and add the new IP

Core. This step is just like those displayed in Appendix D.

130

APPENDIX G

 Code for the Device Driver

This appendix contains the code that comprises the device driver for the 3DES IP

Core, as well as my reduced application code for XPS. Appendix H contains how to

compile this code and load it onto a board.

DEVICE DRIVER CODE
Des.c

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/ioport.h>
#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_from/to_user */
#include <asm/io.h> /* inb, outb */
#include <linux/delay.h>

#include "des.h" /* IOCTL cmds */
#define reg_off_1 0x00000010 /* offset to point to blocks_out_addr */
#define reg_off_2 0x00000020 /* offset to point to input_stream_addr */

#if defined __GNUC__
define SYNCHRONIZE_IO __asm__ volatile ("eieio")
#elif defined __DCC__
define SYNCHRONIZE_IO __asm volatile(" eieio")
#else
define SYNCHRONIZE_IO

131

#endif

MODULE_LICENSE("Dual BSD/GPL");

static const unsigned phy_add = 0xc9c00000;
/* Physical address as dictated by XPS address */
static const unsigned remapSize = 0x10000;
volatile static unsigned virt_add;

static int des_ioctl(struct inode *inode, /* see include/linux/fs.h */
 struct file *file, /* ditto */
 unsigned int ioctl_num, /* number and param for
ioctl */
 unsigned long ioctl_param);

static struct file_operations des_fops = {
 .ioctl = des_ioctl
};

static int des_major = MAJOR_NUM;

static int des_init(void)
{
 int result;
 result = register_chrdev(des_major, "des", &des_fops);
 virt_add = (unsigned) ioremap(phy_add, remapSize);
 return result;
}

static void des_exit(void)
{
 iounmap((void *)virt_add);
 unregister_chrdev(des_major, "des");
}

static int des_ioctl(struct inode *inode, /* see include/linux/fs.h */
 struct file *file, /* ditto */
 unsigned int ioctl_num, /* number and param for
ioctl */

132

 unsigned long ioctl_param)
{
 u32 num32;
 u8 num8;
 u8 result;
 u32 err;

 /*
 * Switch according to the ioctl called
 */
 switch (ioctl_num) {
 case IOCTL_WRITE_CONFIG:
 // Write Encryption information to IP Core
 /*
 * Receive pointer to a u32 value
 */

 copy_from_user(&num32, (u32 *)ioctl_param, 4);
 (volatile u32) virt_add = num32;
 SYNCHRONIZE_IO;
 break;

 case IOCTL_CLOSE_CONFIG:
 // Tell Hardware we are done sending encryption information
 (volatile u32) (virt_add+8) = 0;
 break;
 case IOCTL_WRITE_BLOCK: // Write plaintext to hardware
 /*
 * Receive pointer to user buffer to hold u32 value
 */
 copy_from_user(&num8, (u8 *)ioctl_param, 1);
 (volatile u32) (virt_add+reg_off_1) = num8;
 SYNCHRONIZE_IO;
 break;
 case IOCTL_GET_INPUT: //Get the encrypted values from the hardware
 while((err=((*(volatile u32 *)(virt_add+reg_off_2+8))&0x03))==0);
 result=*(volatile u32 *)(virt_add+reg_off_2);
 err=(err!=0x01);
 copy_to_user((void *)ioctl_param, (void *)&result, sizeof(u8));
 SYNCHRONIZE_IO;

133

 break;

 }

 return 0;
}

module_init(des_init);
module_exit(des_exit);

des.h

#ifndef des_H
#define des_H

#include <linux/ioctl.h>

#define MAJOR_NUM 76

#define IOCTL_WRITE_CONFIG _IOW(MAJOR_NUM, 0, u32 *)
#define IOCTL_CLOSE_CONFIG _IOR(MAJOR_NUM, 1, u32 *)
#define IOCTL_WRITE_BLOCK _IOR(MAJOR_NUM, 2, u8 *)
#define IOCTL_GET_INPUT _IOR(MAJOR_NUM, 3, u8 *)

#endif

134

XPS APPLICATION CODE
The application code consists of three files: sp.c, main2.c, and des_def.h

main2.c

#include "des_def.h"

#include "sp.c"

//#include "xio.h"

#include <stdio.h>

#define XPAR_PLB_DES_0_BASEADDR 0xC9C00000 //can ignore xparameters.h

#define config_out_addr XPAR_PLB_DES_0_BASEADDR+0

#define blocks_out_addr XPAR_PLB_DES_0_BASEADDR+16

#define input_stream_addr XPAR_PLB_DES_0_BASEADDR+32

#if defined __GNUC__

define SYNCHRONIZE_IO __asm__ volatile ("eieio")

#elif defined __DCC__

define SYNCHRONIZE_IO __asm volatile(" eieio")

#else

define SYNCHRONIZE_IO

#endif

typedef unsigned long Xuint32; /**< unsigned 32-bit */

#define printf xil_printf

static unsigned char Blocks[]={0x6f,0x98,0x26,0x35,0x02,0xc9,0x83,0xd7};

void des_test()

{

 int i, k;

 unsigned char block[8];

 unsigned char blockElement;

 unsigned long data,err;

 for (k = 0; k < 2; k++) {

 for (i = 0; i < KS_DEPTH; i++) {

 data=Ks[i][k];

 *(volatile Xuint32 *)(config_out_addr) = data; SYNCHRONIZE_IO;

 }

 }

 for (i = 0; i < SPBOX_X; i++) {

135

 for (k = 0; k < SPBOX_Y; k++) {

 data=Spbox[i][k];

 *(volatile Xuint32 *)(config_out_addr) = data; SYNCHRONIZE_IO;

 }

 }

 *(volatile Xuint32 *)(config_out_addr+8) = 0; SYNCHRONIZE_IO;

 for (k = 0; k < BLOCKSIZE; k++) {

 blockElement = Blocks[k];

 *(volatile Xuint32 *)(blocks_out_addr) = blockElement; SYNCHRONIZE_IO;

 }

 for (k = 0; k < BLOCKSIZE; k++) {

 while((err=((*(volatile Xuint32 *)(input_stream_addr+8))&0x03))==0);

 blockElement=*(volatile Xuint32 *)(input_stream_addr);

 err=(err!=0x01);

 block[k]=blockElement;

 }

 *(volatile Xuint32 *)(blocks_out_addr+8) = 0; SYNCHRONIZE_IO;

 printf("FPGA block out:");

 for (i=0; i<BLOCKSIZE; i++) {

 printf(" %02x",block[i]);

 }

 printf("\n\r");

}

int main()

{

 unsigned char * key = (unsigned char *) "Gflk jqo40978J0dmm$%@878"; /* 24 bytes

*/

 des3key(Ks, key, 0); /* Create a keyschedule for encryption */

 printf("Running NEW encryption test on FPGA ...\n\r");

 des_test();

136

 return 0;

}

sp.c

#define SPBOX_X 8

#define SPBOX_Y 64

unsigned long Spbox[8][64] = {

0x01010400,0x00000000,0x00010000,0x01010404,

0x01010004,0x00010404,0x00000004,0x00010000,

0x00000400,0x01010400,0x01010404,0x00000400,

0x01000404,0x01010004,0x01000000,0x00000004,

0x00000404,0x01000400,0x01000400,0x00010400,

0x00010400,0x01010000,0x01010000,0x01000404,

0x00010004,0x01000004,0x01000004,0x00010004,

0x00000000,0x00000404,0x00010404,0x01000000,

0x00010000,0x01010404,0x00000004,0x01010000,

0x01010400,0x01000000,0x01000000,0x00000400,

0x01010004,0x00010000,0x00010400,0x01000004,

0x00000400,0x00000004,0x01000404,0x00010404,

0x01010404,0x00010004,0x01010000,0x01000404,

0x01000004,0x00000404,0x00010404,0x01010400,

0x00000404,0x01000400,0x01000400,0x00000000,

0x00010004,0x00010400,0x00000000,0x01010004,

0x80108020,0x80008000,0x00008000,0x00108020,

0x00100000,0x00000020,0x80100020,0x80008020,

0x80000020,0x80108020,0x80108000,0x80000000,

0x80008000,0x00100000,0x00000020,0x80100020,

0x00108000,0x00100020,0x80008020,0x00000000,

0x80000000,0x00008000,0x00108020,0x80100000,

0x00100020,0x80000020,0x00000000,0x00108000,

0x00008020,0x80108000,0x80100000,0x00008020,

0x00000000,0x00108020,0x80100020,0x00100000,

0x80008020,0x80100000,0x80108000,0x00008000,

0x80100000,0x80008000,0x00000020,0x80108020,

0x00108020,0x00000020,0x00008000,0x80000000,

0x00008020,0x80108000,0x00100000,0x80000020,

0x00100020,0x80008020,0x80000020,0x00100020,

0x00108000,0x00000000,0x80008000,0x00008020,

0x80000000,0x80100020,0x80108020,0x00108000,

137

0x00000208,0x08020200,0x00000000,0x08020008,

0x08000200,0x00000000,0x00020208,0x08000200,

0x00020008,0x08000008,0x08000008,0x00020000,

0x08020208,0x00020008,0x08020000,0x00000208,

0x08000000,0x00000008,0x08020200,0x00000200,

0x00020200,0x08020000,0x08020008,0x00020208,

0x08000208,0x00020200,0x00020000,0x08000208,

0x00000008,0x08020208,0x00000200,0x08000000,

0x08020200,0x08000000,0x00020008,0x00000208,

0x00020000,0x08020200,0x08000200,0x00000000,

0x00000200,0x00020008,0x08020208,0x08000200,

0x08000008,0x00000200,0x00000000,0x08020008,

0x08000208,0x00020000,0x08000000,0x08020208,

0x00000008,0x00020208,0x00020200,0x08000008,

0x08020000,0x08000208,0x00000208,0x08020000,

0x00020208,0x00000008,0x08020008,0x00020200,

0x00802001,0x00002081,0x00002081,0x00000080,

0x00802080,0x00800081,0x00800001,0x00002001,

0x00000000,0x00802000,0x00802000,0x00802081,

0x00000081,0x00000000,0x00800080,0x00800001,

0x00000001,0x00002000,0x00800000,0x00802001,

0x00000080,0x00800000,0x00002001,0x00002080,

0x00800081,0x00000001,0x00002080,0x00800080,

0x00002000,0x00802080,0x00802081,0x00000081,

0x00800080,0x00800001,0x00802000,0x00802081,

0x00000081,0x00000000,0x00000000,0x00802000,

0x00002080,0x00800080,0x00800081,0x00000001,

0x00802001,0x00002081,0x00002081,0x00000080,

0x00802081,0x00000081,0x00000001,0x00002000,

0x00800001,0x00002001,0x00802080,0x00800081,

0x00002001,0x00002080,0x00800000,0x00802001,

0x00000080,0x00800000,0x00002000,0x00802080,

0x00000100,0x02080100,0x02080000,0x42000100,

0x00080000,0x00000100,0x40000000,0x02080000,

0x40080100,0x00080000,0x02000100,0x40080100,

0x42000100,0x42080000,0x00080100,0x40000000,

0x02000000,0x40080000,0x40080000,0x00000000,

0x40000100,0x42080100,0x42080100,0x02000100,

0x42080000,0x40000100,0x00000000,0x42000000,

0x02080100,0x02000000,0x42000000,0x00080100,

138

0x00080000,0x42000100,0x00000100,0x02000000,

0x40000000,0x02080000,0x42000100,0x40080100,

0x02000100,0x40000000,0x42080000,0x02080100,

0x40080100,0x00000100,0x02000000,0x42080000,

0x42080100,0x00080100,0x42000000,0x42080100,

0x02080000,0x00000000,0x40080000,0x42000000,

0x00080100,0x02000100,0x40000100,0x00080000,

0x00000000,0x40080000,0x02080100,0x40000100,

0x20000010,0x20400000,0x00004000,0x20404010,

0x20400000,0x00000010,0x20404010,0x00400000,

0x20004000,0x00404010,0x00400000,0x20000010,

0x00400010,0x20004000,0x20000000,0x00004010,

0x00000000,0x00400010,0x20004010,0x00004000,

0x00404000,0x20004010,0x00000010,0x20400010,

0x20400010,0x00000000,0x00404010,0x20404000,

0x00004010,0x00404000,0x20404000,0x20000000,

0x20004000,0x00000010,0x20400010,0x00404000,

0x20404010,0x00400000,0x00004010,0x20000010,

0x00400000,0x20004000,0x20000000,0x00004010,

0x20000010,0x20404010,0x00404000,0x20400000,

0x00404010,0x20404000,0x00000000,0x20400010,

0x00000010,0x00004000,0x20400000,0x00404010,

0x00004000,0x00400010,0x20004010,0x00000000,

0x20404000,0x20000000,0x00400010,0x20004010,

0x00200000,0x04200002,0x04000802,0x00000000,

0x00000800,0x04000802,0x00200802,0x04200800,

0x04200802,0x00200000,0x00000000,0x04000002,

0x00000002,0x04000000,0x04200002,0x00000802,

0x04000800,0x00200802,0x00200002,0x04000800,

0x04000002,0x04200000,0x04200800,0x00200002,

0x04200000,0x00000800,0x00000802,0x04200802,

0x00200800,0x00000002,0x04000000,0x00200800,

0x04000000,0x00200800,0x00200000,0x04000802,

0x04000802,0x04200002,0x04200002,0x00000002,

0x00200002,0x04000000,0x04000800,0x00200000,

0x04200800,0x00000802,0x00200802,0x04200800,

0x00000802,0x04000002,0x04200802,0x04200000,

0x00200800,0x00000000,0x00000002,0x04200802,

0x00000000,0x00200802,0x04200000,0x00000800,

0x04000002,0x04000800,0x00000800,0x00200002,

139

0x10001040,0x00001000,0x00040000,0x10041040,

0x10000000,0x10001040,0x00000040,0x10000000,

0x00040040,0x10040000,0x10041040,0x00041000,

0x10041000,0x00041040,0x00001000,0x00000040,

0x10040000,0x10000040,0x10001000,0x00001040,

0x00041000,0x00040040,0x10040040,0x10041000,

0x00001040,0x00000000,0x00000000,0x10040040,

0x10000040,0x10001000,0x00041040,0x00040000,

0x00041040,0x00040000,0x10041000,0x00001000,

0x00000040,0x10040040,0x00001000,0x00041040,

0x10001000,0x00000040,0x10000040,0x10040000,

0x10040040,0x10000000,0x00040000,0x10001040,

0x00000000,0x10041040,0x00040040,0x10000040,

0x10040000,0x10001000,0x10001040,0x00000000,

0x10041040,0x00041000,0x00041000,0x00001040,

0x00001040,0x00040040,0x10000000,0x10041000,

};

140

Des_def.h

typedef unsigned long DES_KS[16][2]; /* Single-key DES key schedule */

typedef unsigned long DES3_KS[48][2]; /* Triple-DES key schedule */

/* In deskey.c: */

void deskey(DES_KS,unsigned char *,int);

void des3key(DES3_KS,unsigned char *,int);

/* In desport.c, desborl.cas or desgnu.s: */

void des(DES_KS,unsigned char *);

/* In des3port.c, des3borl.cas or des3gnu.s: */

void des3(DES3_KS,unsigned char *);

#define BLOCKSIZE 8 /* unsigned chars per block */

#define KS_DEPTH 48 /* key pairs */

/* Keyschedule */

DES3_KS Ks;

/* permuted choice table (key) */

static unsigned char pc1[] = {

 57, 49, 41, 33, 25, 17, 9,

 1, 58, 50, 42, 34, 26, 18,

 10, 2, 59, 51, 43, 35, 27,

 19, 11, 3, 60, 52, 44, 36,

 63, 55, 47, 39, 31, 23, 15,

 7, 62, 54, 46, 38, 30, 22,

 14, 6, 61, 53, 45, 37, 29,

 21, 13, 5, 28, 20, 12, 4

};

/* number left rotations of pc1 */

static unsigned char totrot[] = {

 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28

};

/* permuted choice key (table) */

static unsigned char pc2[] = {

 14, 17, 11, 24, 1, 5,

 3, 28, 15, 6, 21, 10,

141

 23, 19, 12, 4, 26, 8,

 16, 7, 27, 20, 13, 2,

 41, 52, 31, 37, 47, 55,

 30, 40, 51, 45, 33, 48,

 44, 49, 39, 56, 34, 53,

 46, 42, 50, 36, 29, 32

};

/* End of DES-defined tables */

/* bit 0 is left-most in byte */

static int bytebit[] = {

 0200,0100,040,020,010,04,02,01

};

/// Generate key schedule for encryption or decryption

// depending on the value of "decrypt"

//

void deskey(k,key,decrypt)

unsigned long k[16][2]; /* Key schedule array */

unsigned char *key; /* 64 bits (will use only 56) */

int decrypt; /* 0 = encrypt, 1 = decrypt */

{

 unsigned char pc1m[56]; /* place to modify pc1 into */

 unsigned char pcr[56]; /* place to rotate pc1 into */

 register int i,j,l;

 int m;

 unsigned char ks[8];

 for (j=0; j<56; j++) { /* convert pc1 to bits of key */

 l=pc1[j]-1; /* integer bit location */

 m = l & 07; /* find bit */

 pc1m[j]=(key[l>>3] & /* find which key byte l is in */

 bytebit[m]) /* and which bit of that byte */

 ? 1 : 0; /* and store 1-bit result */

 }

 for (i=0; i<16; i++) { /* key chunk for each iteration */

 memset(ks,0,sizeof(ks)); /* Clear key schedule */

 for (j=0; j<56; j++) /* rotate pc1 the right amount */

 pcr[j] = pc1m[(l=j+totrot[decrypt? 15-i : i])<(j<28? 28 : 56) ? l: l-28];

142

 /* rotate left and right halves independently */

 for (j=0; j<48; j++){ /* select bits individually */

 /* check bit that goes to ks[j] */

 if (pcr[pc2[j]-1]){

 /* mask it in if it's there */

 l= j % 6;

 ks[j/6] |= bytebit[l] >> 2;

 }

 }

 /* Now convert to packed odd/even interleaved form */

 k[i][0] = ((long)ks[0] << 24)

 | ((long)ks[2] << 16)

 | ((long)ks[4] << 8)

 | ((long)ks[6]);

 k[i][1] = ((long)ks[1] << 24)

 | ((long)ks[3] << 16)

 | ((long)ks[5] << 8)

 | ((long)ks[7]);

// if(Asmversion){

// /* The assembler versions pre-shift each subkey 2 bits

// * so the Spbox indexes are already computed

// */

// k[i][0] <<= 2;

// k[i][1] <<= 2;

// }

 }

}

// Generate key schedule for triple DES in E-D-E (or D-E-D) mode.

//

// The key argument is taken to be 24 bytes. The first 8 bytes are K1

// for the first stage, the second 8 bytes are K2 for the middle stage

// and the third 8 bytes are K3 for the last stage

//

void des3key(k,key,decrypt)

unsigned long k[48][2];

unsigned char *key; /* 192 bits (will use only 168) */

int decrypt; /* 0 = encrypt, 1 = decrypt */

{

 if(!decrypt){

143

 deskey(&k[0],&key[0],0);

 deskey(&k[16],&key[8],1);

 deskey(&k[32],&key[16],0);

 } else {

 deskey(&k[32],&key[0],1);

 deskey(&k[16],&key[8],0);

 deskey(&k[0],&key[16],1);

 }

}

#define F(l,r,key){\

 work = ((r >> 4) | (r << 28)) ^ key[0];\

 l ^= Spbox[6][work & 0x3f];\

 l ^= Spbox[4][(work >> 8) & 0x3f];\

 l ^= Spbox[2][(work >> 16) & 0x3f];\

 l ^= Spbox[0][(work >> 24) & 0x3f];\

 work = r ^ key[1];\

 l ^= Spbox[7][work & 0x3f];\

 l ^= Spbox[5][(work >> 8) & 0x3f];\

 l ^= Spbox[3][(work >> 16) & 0x3f];\

 l ^= Spbox[1][(work >> 24) & 0x3f];\

}

144

APPENDIX H

 Compiling and Loading the Device Driver

Compiling the Device Driver:

To compile the device driver you need to create a makefile in the directory of the device

driver code. The makefile below works for the device driver in Appendix G.

Makefile:

obj-m +=des.o

all:

 make -C ../linux-2.6-xlnx/ M=$(PWD) modules

clean:

 make -C ../linux-2.6-xlnx/ M=$(PWD) clean

From here you need to open a terminal and go to the directory of the device driver. Once

there all you need to do is type: ppcmake all

This will generate a file named ―des.ko‖, which is your device driver. You then need to

move this to your target machine – the command scp works just fine for this.

Loading the Device Driver

Once the device driver is on the target machine, all you need to do is get on the machine

and type:

Insmod des.ko

mknod /dev/des c 76 0

The two above commands insert the device driver into the system and notes that it is a

character device driver that has I/O capability via /dev/des.

145

APPENDIX I

 3DES Implementation That Uses the Hardware

This appendix contains the code that comprises our hardware implementation of 3DES.

The code is comprised of four files: mpi_hard.c, des2.h, sp.c, and des_def.h.

mpi_hard.c

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <errno.h>
#include <fcntl.h> /* open */
#include <unistd.h> /* exit */
#include <sys/ioctl.h> /* ioctl */
#include <vector>
#include <fstream>
#include <string>
#include <iostream>
#include <mpi.h>
int file_desc;
#include "des2.h"
#include "des_def.h"
#include "sp.c"

using namespace std;
int NumBlocks;
vector <unsigned char> Blocks;

/*
 * Functions for the ioctl calls
 */
void ioctl_write_config(int file_desc, uint32_t *param)
{
 int ret_val = ioctl(file_desc, IOCTL_WRITE_CONFIG, param);

146

 if (ret_val < 0) {
 printf("ioctl_write_config failed:%d\n", ret_val);
 exit(EXIT_FAILURE);
 }
}
void ioctl_close_config(int file_desc, uint32_t *param)
{
 ioctl(file_desc, IOCTL_CLOSE_CONFIG, param);
}

void ioctl_write_block(int file_desc, uint8_t *param)
{
 int ret_val = ioctl(file_desc, IOCTL_WRITE_BLOCK, param);
 if (ret_val < 0) {
 printf("ioctl_write_config failed:%d\n", ret_val);
 exit(EXIT_FAILURE);
 }
}

void ioctl_get_input(int file_desc, uint8_t *result)
{

 int ret_val = ioctl(file_desc, IOCTL_GET_INPUT, result);
 if (ret_val < 0) {
 printf("ioctl_get_values failed:%d\n", ret_val);
 exit(EXIT_FAILURE);
 }
}

void get_data(int rank, int size, string filename)
{
 vector <int> temp;
 int temp_size=0;
 MPI_Status status;
 /* have p0 get data at end to pick up extras */
 if(rank==0)
 {

 int start, end, total;
 int tBlocks;

147

 int current_rank=1;
 int p0_size=0;
 int c_size=0;
 ifstream infile;
 infile.open(filename.c_str());
 start=infile.tellg();
 infile.seekg(0, ios::end);
 end=infile.tellg();
 infile.seekg(0, ios::beg);
 total=end-start;
 /* take total and right shift by 3, eg divide by 8 */
 tBlocks=total/BLOCKSIZE;
 if(total % BLOCKSIZE)
 tBlocks++; /* tells total number of blocks */
 NumBlocks=tBlocks/size;
 MPI_Bcast(&NumBlocks, 1, MPI_INT,0, MPI_COMM_WORLD);

 temp_size=NumBlocks*BLOCKSIZE;
 NumBlocks=tBlocks-(size-1)*NumBlocks;
 /* Data on p0 will be zero padded to ensure that it
 contains a number of elements divisiable by 8 */
 p0_size=total-temp_size*(size-1);
 Blocks.resize(NumBlocks*BLOCKSIZE,0);
 cout<<"size is "<<NumBlocks*BLOCKSIZE<<endl;
 for(int i=1; i<=size; i++)
 {
 current_rank=i%size; /* gives correct rank to receive from */
 if(current_rank>0)
 c_size=temp_size;
 else
 {
 c_size=p0_size;
 }
 for(int j=0; j<c_size; j++)
 {
 Blocks[j]=infile.get();
 }
 if(current_rank!=0)
 MPI_Send(&Blocks.front(), temp_size, MPI_CHAR, current_rank, 0,
MPI_COMM_WORLD);

148

 }
 infile.close();
 }
 else
 {
 //cout<<rank<<" is receieving data "<<endl;
 MPI_Bcast(&NumBlocks, 1, MPI_INT, 0, MPI_COMM_WORLD);
 temp_size=NumBlocks*BLOCKSIZE; /* NumBlocks * 8, tells number of elements */
 Blocks.resize(temp_size);
 MPI_Recv(&Blocks.front(), temp_size,
MPI_CHAR,0,0,MPI_COMM_WORLD,&status);

 }
 //cout<<rank<<" is done "<<endl;
}
void prep_driver()
{
 int i, k;
 uint32_t zero=0;
 uint32_t data;
 for (k = 0; k < 2; k++) {
 for (i = 0; i < KS_DEPTH; i++) {
 data=Ks[i][k];
 ioctl_write_config(file_desc, &data);

 }
 }

 for (i = 0; i < SPBOX_X; i++) {
 for (k = 0; k < SPBOX_Y; k++) {
 data=Spbox[i][k];
 ioctl_write_config(file_desc, &data);

 }
 }
 ioctl_close_config(file_desc, &zero);
}
void des_test(int rank,int size, string filename2)
{
 int i, k;

149

 unsigned int blockCount = 0;
 unsigned char block[8];
 unsigned char blockElement;
 vector <unsigned char> solution;
 vector <unsigned char> temp;
 int current_rank;
 int write_id;
 MPI_Status status;

 while(blockCount<NumBlocks) {
 for (k = 0; k < BLOCKSIZE; k++) {
 blockElement = Blocks[blockCount * BLOCKSIZE + k];
 ioctl_write_block(file_desc,&blockElement);

 }

 for (k = 0; k < BLOCKSIZE; k++) {
 ioctl_get_input(file_desc, &blockElement);
 block[k]=blockElement;
 }

 for (i=0; i<BLOCKSIZE; i++) {
 solution.push_back(block[i]);
 }
 ++blockCount;
 }
 if(size>1)
 write_id=1;
 else
 write_id=0;

 if(rank==write_id)
 {
 int size_temp=0;
 ofstream outfile;
 outfile.open(filename2.c_str());

 for(int i=1; i<=size; i++)
 {
 current_rank=i%size; /* gives correct rank to receive from */

150

 if(current_rank==rank)
 {
 for(int j=0;j<solution.size();j++)
 {
 outfile.setf(ios::hex,ios::basefield);
 outfile<<solution[j];
 }
 }
 else
 {
 MPI_Recv(&size_temp,1, MPI_INT, current_rank, 0,
MPI_COMM_WORLD,&status);
 temp.resize(size_temp);
 MPI_Recv(&temp.front(),size_temp, MPI_CHAR, current_rank, 0,
MPI_COMM_WORLD, &status);
 for(int j=0; j<size_temp;j++)
 {
 outfile.setf(ios::hex,ios::basefield);
 outfile<<temp[j];
 }
 }
 }

 outfile.close();
 }
 else
 {
 /* send my solution to process 0 */
 int tSize=solution.size();
 MPI_Send(&tSize, 1, MPI_INT, write_id, 0, MPI_COMM_WORLD);
 MPI_Send(&solution.front(),tSize , MPI_CHAR, write_id, 0,
MPI_COMM_WORLD);
 }

}

int main(int argc, char *argv[])
{
 int npes, myrank;

151

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &npes);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 string filename, filename2;
 filename=argv[1];
 filename2=argv[2];
 file_desc=open("/dev/des",O_RDWR);
 unsigned char * key = (unsigned char *) "Gflk jqo40978J0dmm$%@878"; /* 24 bytes
*/
 des3key(Ks, key, 0); /* Create a keyschedule for encryption */
 /* Grab data and send out*/
 prep_driver(); // Send encryption information to device
 get_data(myrank, npes, filename);
 des_test(myrank, npes, filename2);
 close(file_desc);
 MPI_Finalize();
 exit(EXIT_SUCCESS);
}

des2.h

#ifndef des_H

#define des_H

#include <linux/ioctl.h>

#define MAJOR_NUM 76

/*

 * Set the values of parameters

 */

#define IOCTL_WRITE_CONFIG _IOW(MAJOR_NUM, 0, uint32_t *)

/*

 * Get the result value

 */

#define IOCTL_CLOSE_CONFIG _IOR(MAJOR_NUM, 1, uint32_t *)

#define IOCTL_WRITE_BLOCK _IOR(MAJOR_NUM, 2, uint8_t *)

#define IOCTL_GET_INPUT _IOR(MAJOR_NUM, 3, uint8_t *)

#endif

152

des_def.h

typedef unsigned long DES_KS[16][2]; /* Single-key DES key schedule */

typedef unsigned long DES3_KS[48][2]; /* Triple-DES key schedule */

/* In deskey.c: */

void deskey(DES_KS,unsigned char *,int);

void des3key(DES3_KS,unsigned char *,int);

/* In desport.c, desborl.cas or desgnu.s: */

void des(DES_KS,unsigned char *);

/* In des3port.c, des3borl.cas or des3gnu.s: */

void des3(DES3_KS,unsigned char *);

#define BLOCKSIZE 8 /* unsigned chars per block */

#define KS_DEPTH 48 /* key pairs */

/* Keyschedule */

DES3_KS Ks;

/* permuted choice table (key) */

static unsigned char pc1[] = {

 57, 49, 41, 33, 25, 17, 9,

 1, 58, 50, 42, 34, 26, 18,

 10, 2, 59, 51, 43, 35, 27,

 19, 11, 3, 60, 52, 44, 36,

 63, 55, 47, 39, 31, 23, 15,

 7, 62, 54, 46, 38, 30, 22,

 14, 6, 61, 53, 45, 37, 29,

 21, 13, 5, 28, 20, 12, 4

};

/* number left rotations of pc1 */

static unsigned char totrot[] = {

 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28

};

/* permuted choice key (table) */

static unsigned char pc2[] = {

 14, 17, 11, 24, 1, 5,

153

 3, 28, 15, 6, 21, 10,

 23, 19, 12, 4, 26, 8,

 16, 7, 27, 20, 13, 2,

 41, 52, 31, 37, 47, 55,

 30, 40, 51, 45, 33, 48,

 44, 49, 39, 56, 34, 53,

 46, 42, 50, 36, 29, 32

};

/* End of DES-defined tables */

/* bit 0 is left-most in byte */

static int bytebit[] = {

 0200,0100,040,020,010,04,02,01

};

/// Generate key schedule for encryption or decryption

// depending on the value of "decrypt"

//

void deskey(DES_KS k,unsigned char *key,int decrypt)

//unsigned long k[16][2]; /* Key schedule array */

//unsigned char *key; /* 64 bits (will use only 56) */

//int decrypt; /* 0 = encrypt, 1 = decrypt */

{

 unsigned char pc1m[56]; /* place to modify pc1 into */

 unsigned char pcr[56]; /* place to rotate pc1 into */

 register int i,j,l;

 int m;

 unsigned char ks[8];

 for (j=0; j<56; j++) { /* convert pc1 to bits of key */

 l=pc1[j]-1; /* integer bit location */

 m = l & 07; /* find bit */

 pc1m[j]=(key[l>>3] & /* find which key byte l is in */

 bytebit[m]) /* and which bit of that byte */

 ? 1 : 0; /* and store 1-bit result */

 }

 for (i=0; i<16; i++) { /* key chunk for each iteration */

 memset(ks,0,sizeof(ks)); /* Clear key schedule */

 for (j=0; j<56; j++) /* rotate pc1 the right amount */

154

 pcr[j] = pc1m[(l=j+totrot[decrypt? 15-i : i])<(j<28? 28 : 56) ? l: l-28];

 /* rotate left and right halves independently */

 for (j=0; j<48; j++){ /* select bits individually */

 /* check bit that goes to ks[j] */

 if (pcr[pc2[j]-1]){

 /* mask it in if it's there */

 l= j % 6;

 ks[j/6] |= bytebit[l] >> 2;

 }

 }

 /* Now convert to packed odd/even interleaved form */

 k[i][0] = ((long)ks[0] << 24)

 | ((long)ks[2] << 16)

 | ((long)ks[4] << 8)

 | ((long)ks[6]);

 k[i][1] = ((long)ks[1] << 24)

 | ((long)ks[3] << 16)

 | ((long)ks[5] << 8)

 | ((long)ks[7]);

// if(Asmversion){

// /* The assembler versions pre-shift each subkey 2 bits

// * so the Spbox indexes are already computed

// */

// k[i][0] <<= 2;

// k[i][1] <<= 2;

// }

 }

}

// Generate key schedule for triple DES in E-D-E (or D-E-D) mode.

//

// The key argument is taken to be 24 bytes. The first 8 bytes are K1

// for the first stage, the second 8 bytes are K2 for the middle stage

// and the third 8 bytes are K3 for the last stage

//

void des3key(DES3_KS k,unsigned char *key, int decrypt)

//unsigned long k[48][2];

//unsigned char *key; /* 192 bits (will use only 168) */

//int decrypt; /* 0 = encrypt, 1 = decrypt */

{

155

 if(!decrypt){

 deskey(&k[0],&key[0],0);

 deskey(&k[16],&key[8],1);

 deskey(&k[32],&key[16],0);

 } else {

 deskey(&k[32],&key[0],1);

 deskey(&k[16],&key[8],0);

 deskey(&k[0],&key[16],1);

 }

}

#define F(l,r,key){\

 work = ((r >> 4) | (r << 28)) ^ key[0];\

 l ^= Spbox[6][work & 0x3f];\

 l ^= Spbox[4][(work >> 8) & 0x3f];\

 l ^= Spbox[2][(work >> 16) & 0x3f];\

 l ^= Spbox[0][(work >> 24) & 0x3f];\

 work = r ^ key[1];\

 l ^= Spbox[7][work & 0x3f];\

 l ^= Spbox[5][(work >> 8) & 0x3f];\

 l ^= Spbox[3][(work >> 16) & 0x3f];\

 l ^= Spbox[1][(work >> 24) & 0x3f];\

}

156

sp.c

#define SPBOX_X 8

#define SPBOX_Y 64

unsigned long Spbox[8][64] = {

0x01010400,0x00000000,0x00010000,0x01010404,

0x01010004,0x00010404,0x00000004,0x00010000,

0x00000400,0x01010400,0x01010404,0x00000400,

0x01000404,0x01010004,0x01000000,0x00000004,

0x00000404,0x01000400,0x01000400,0x00010400,

0x00010400,0x01010000,0x01010000,0x01000404,

0x00010004,0x01000004,0x01000004,0x00010004,

0x00000000,0x00000404,0x00010404,0x01000000,

0x00010000,0x01010404,0x00000004,0x01010000,

0x01010400,0x01000000,0x01000000,0x00000400,

0x01010004,0x00010000,0x00010400,0x01000004,

0x00000400,0x00000004,0x01000404,0x00010404,

0x01010404,0x00010004,0x01010000,0x01000404,

0x01000004,0x00000404,0x00010404,0x01010400,

0x00000404,0x01000400,0x01000400,0x00000000,

0x00010004,0x00010400,0x00000000,0x01010004,

0x80108020,0x80008000,0x00008000,0x00108020,

0x00100000,0x00000020,0x80100020,0x80008020,

0x80000020,0x80108020,0x80108000,0x80000000,

0x80008000,0x00100000,0x00000020,0x80100020,

0x00108000,0x00100020,0x80008020,0x00000000,

0x80000000,0x00008000,0x00108020,0x80100000,

0x00100020,0x80000020,0x00000000,0x00108000,

0x00008020,0x80108000,0x80100000,0x00008020,

0x00000000,0x00108020,0x80100020,0x00100000,

0x80008020,0x80100000,0x80108000,0x00008000,

0x80100000,0x80008000,0x00000020,0x80108020,

0x00108020,0x00000020,0x00008000,0x80000000,

0x00008020,0x80108000,0x00100000,0x80000020,

0x00100020,0x80008020,0x80000020,0x00100020,

0x00108000,0x00000000,0x80008000,0x00008020,

0x80000000,0x80100020,0x80108020,0x00108000,

0x00000208,0x08020200,0x00000000,0x08020008,

0x08000200,0x00000000,0x00020208,0x08000200,

0x00020008,0x08000008,0x08000008,0x00020000,

0x08020208,0x00020008,0x08020000,0x00000208,

157

0x08000000,0x00000008,0x08020200,0x00000200,

0x00020200,0x08020000,0x08020008,0x00020208,

0x08000208,0x00020200,0x00020000,0x08000208,

0x00000008,0x08020208,0x00000200,0x08000000,

0x08020200,0x08000000,0x00020008,0x00000208,

0x00020000,0x08020200,0x08000200,0x00000000,

0x00000200,0x00020008,0x08020208,0x08000200,

0x08000008,0x00000200,0x00000000,0x08020008,

0x08000208,0x00020000,0x08000000,0x08020208,

0x00000008,0x00020208,0x00020200,0x08000008,

0x08020000,0x08000208,0x00000208,0x08020000,

0x00020208,0x00000008,0x08020008,0x00020200,

0x00802001,0x00002081,0x00002081,0x00000080,

0x00802080,0x00800081,0x00800001,0x00002001,

0x00000000,0x00802000,0x00802000,0x00802081,

0x00000081,0x00000000,0x00800080,0x00800001,

0x00000001,0x00002000,0x00800000,0x00802001,

0x00000080,0x00800000,0x00002001,0x00002080,

0x00800081,0x00000001,0x00002080,0x00800080,

0x00002000,0x00802080,0x00802081,0x00000081,

0x00800080,0x00800001,0x00802000,0x00802081,

0x00000081,0x00000000,0x00000000,0x00802000,

0x00002080,0x00800080,0x00800081,0x00000001,

0x00802001,0x00002081,0x00002081,0x00000080,

0x00802081,0x00000081,0x00000001,0x00002000,

0x00800001,0x00002001,0x00802080,0x00800081,

0x00002001,0x00002080,0x00800000,0x00802001,

0x00000080,0x00800000,0x00002000,0x00802080,

0x00000100,0x02080100,0x02080000,0x42000100,

0x00080000,0x00000100,0x40000000,0x02080000,

0x40080100,0x00080000,0x02000100,0x40080100,

0x42000100,0x42080000,0x00080100,0x40000000,

0x02000000,0x40080000,0x40080000,0x00000000,

0x40000100,0x42080100,0x42080100,0x02000100,

0x42080000,0x40000100,0x00000000,0x42000000,

0x02080100,0x02000000,0x42000000,0x00080100,

0x00080000,0x42000100,0x00000100,0x02000000,

0x40000000,0x02080000,0x42000100,0x40080100,

0x02000100,0x40000000,0x42080000,0x02080100,

0x40080100,0x00000100,0x02000000,0x42080000,

158

0x42080100,0x00080100,0x42000000,0x42080100,

0x02080000,0x00000000,0x40080000,0x42000000,

0x00080100,0x02000100,0x40000100,0x00080000,

0x00000000,0x40080000,0x02080100,0x40000100,

0x20000010,0x20400000,0x00004000,0x20404010,

0x20400000,0x00000010,0x20404010,0x00400000,

0x20004000,0x00404010,0x00400000,0x20000010,

0x00400010,0x20004000,0x20000000,0x00004010,

0x00000000,0x00400010,0x20004010,0x00004000,

0x00404000,0x20004010,0x00000010,0x20400010,

0x20400010,0x00000000,0x00404010,0x20404000,

0x00004010,0x00404000,0x20404000,0x20000000,

0x20004000,0x00000010,0x20400010,0x00404000,

0x20404010,0x00400000,0x00004010,0x20000010,

0x00400000,0x20004000,0x20000000,0x00004010,

0x20000010,0x20404010,0x00404000,0x20400000,

0x00404010,0x20404000,0x00000000,0x20400010,

0x00000010,0x00004000,0x20400000,0x00404010,

0x00004000,0x00400010,0x20004010,0x00000000,

0x20404000,0x20000000,0x00400010,0x20004010,

0x00200000,0x04200002,0x04000802,0x00000000,

0x00000800,0x04000802,0x00200802,0x04200800,

0x04200802,0x00200000,0x00000000,0x04000002,

0x00000002,0x04000000,0x04200002,0x00000802,

0x04000800,0x00200802,0x00200002,0x04000800,

0x04000002,0x04200000,0x04200800,0x00200002,

0x04200000,0x00000800,0x00000802,0x04200802,

0x00200800,0x00000002,0x04000000,0x00200800,

0x04000000,0x00200800,0x00200000,0x04000802,

0x04000802,0x04200002,0x04200002,0x00000002,

0x00200002,0x04000000,0x04000800,0x00200000,

0x04200800,0x00000802,0x00200802,0x04200800,

0x00000802,0x04000002,0x04200802,0x04200000,

0x00200800,0x00000000,0x00000002,0x04200802,

0x00000000,0x00200802,0x04200000,0x00000800,

0x04000002,0x04000800,0x00000800,0x00200002,

0x10001040,0x00001000,0x00040000,0x10041040,

0x10000000,0x10001040,0x00000040,0x10000000,

0x00040040,0x10040000,0x10041040,0x00041000,

0x10041000,0x00041040,0x00001000,0x00000040,

159

0x10040000,0x10000040,0x10001000,0x00001040,

0x00041000,0x00040040,0x10040040,0x10041000,

0x00001040,0x00000000,0x00000000,0x10040040,

0x10000040,0x10001000,0x00041040,0x00040000,

0x00041040,0x00040000,0x10041000,0x00001000,

0x00000040,0x10040040,0x00001000,0x00041040,

0x10001000,0x00000040,0x10000040,0x10040000,

0x10040040,0x10000000,0x00040000,0x10001040,

0x00000000,0x10041040,0x00040040,0x10000040,

0x10040000,0x10001000,0x10001040,0x00000000,

0x10041040,0x00041000,0x00041000,0x00001040,

0x00001040,0x00040040,0x10000000,0x10041000,

};

160

APPENDIX J

 Communication Overhead Code

This appendix contains the code I use to give an estimate of the communication

overhead. This appendix only contains 1 file: NOP.c

NOP.c

/*

 This program is used to estimate the overhead from communication alone.

 All computation for 3DES has been removed, so that a file is read in and

 split to multiple targets. The targets send the data back after receiving

 the data, and the data is then outputed- so the file is not altered.

*/

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <errno.h>

#include <fcntl.h> /* open */

#include <unistd.h> /* exit */

#include <sys/ioctl.h> /* ioctl */

#include <vector>

#include <fstream>

#include <string>

#include <iostream>

#include <mpi.h>

#define BLOCKSIZE 8 /* unsigned chars per block */

using namespace std;

int NumBlocks;

vector <unsigned char> Blocks;

void get_data(int rank, int size, string filename)

{

 vector <int> temp;

161

 int temp_size=0;

 MPI_Status status;

 /* have p0 get data at end to pick up extras */

 if(rank==0)

 {

 int start, end, total;

 int tBlocks;

 int current_rank=1;

 int p0_size=0;

 int c_size=0;

 ifstream infile;

 infile.open(filename.c_str());

 start=infile.tellg();

 infile.seekg(0, ios::end);

 end=infile.tellg();

 infile.seekg(0, ios::beg);

 total=end-start;

 /* take total and right shift by 3, eg divide by 8 */

 tBlocks=total/BLOCKSIZE;

 if(total % BLOCKSIZE)

 tBlocks++; /* tells total number of blocks */

 NumBlocks=tBlocks/size;

 MPI_Bcast(&NumBlocks, 1, MPI_INT,0, MPI_COMM_WORLD);

 temp_size=NumBlocks*BLOCKSIZE;

 NumBlocks=tBlocks-(size-1)*NumBlocks;

 p0_size=total-temp_size*(size-1);

 Blocks.resize(NumBlocks*BLOCKSIZE,0);

 for(int i=1; i<=size; i++)

 {

 current_rank=i%size; /* gives correct rank to send to */

 if(current_rank>0)

 c_size=temp_size;

 else

 {

 c_size=p0_size;

 }

 for(int j=0; j<c_size; j++)

 {

162

 Blocks[j]=infile.get();

 }

 if(current_rank!=0)

 MPI_Send(&Blocks.front(), temp_size, MPI_CHAR, current_rank, 0,

MPI_COMM_WORLD);

 }

 infile.close();

 }

 else

 {

 MPI_Bcast(&NumBlocks, 1, MPI_INT, 0, MPI_COMM_WORLD);

 temp_size=NumBlocks*BLOCKSIZE; /* NumBlocks * 8, tells number of elements */

 Blocks.resize(temp_size);

 MPI_Recv(&Blocks.front(), temp_size,

MPI_CHAR,0,0,MPI_COMM_WORLD,&status);

 }

}

void des_test(int rank,int size, string filename2)

{

 int i, k;

 unsigned int blockCount = 0;

 unsigned char block[8];

 unsigned char blockElement;

 vector <unsigned char> temp;

 int current_rank;

 int write_id;

 MPI_Status status;

 /* Calculations would normally go here */

 if(size>1)

 write_id=1;

 else

 write_id=0;

 if(rank==write_id)

 {

 int size_temp=0;

 ofstream outfile;

 outfile.open(filename2.c_str());

163

 for(int i=1; i<=size; i++)

 {

 current_rank=i%size; /* gives correct rank to receive from */

 if(current_rank==rank)

 {

 for(int j=0;j<Blocks.size();j++)

 {

 outfile<<Blocks[j];

 }

 }

 else

 {

 MPI_Recv(&size_temp,1, MPI_INT, current_rank, 0,

MPI_COMM_WORLD,&status);

 temp.resize(size_temp);

 MPI_Recv(&temp.front(),size_temp, MPI_CHAR, current_rank, 0,

MPI_COMM_WORLD, &status);

 for(int j=0; j<size_temp;j++)

 {

 outfile<<temp[j];

 }

 }

 }

 outfile.close();

 }

 else

 {

 /* send data to process write_id */

 int tSize=Blocks.size();

 MPI_Send(&tSize, 1, MPI_INT, write_id, 0, MPI_COMM_WORLD);

 MPI_Send(&Blocks.front(),tSize , MPI_CHAR, write_id, 0, MPI_COMM_WORLD);

 }

}

int main(int argc, char *argv[])

{

 int npes, myrank;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &npes);

164

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 string filename, filename2;

 filename=argv[1];

 filename2=argv[2];

 /* Grab data and send out*/

 get_data(myrank, npes, filename);

 des_test(myrank, npes, filename2);

 MPI_Finalize();

 exit(EXIT_SUCCESS);

}

165

APPENDIX K

Data

Test One:
Runtimes for 3DES implementation with Hardware

File Size 14 KB 27 KB 54 KB 108 KB 216 KB 433 KB 866 KB
Test 1 5.629 3.888 3.953 4.153 4.481 5.135 6.897
Test 2 4.211 3.868 4.033 4.122 4.444 5.318 6.749
Test 3 4.711 3.875 4.33 4.835 5.787 5.143 7.246
Test 4 4.202 5.014 3.966 4.122 5.974 10.331 7.379
Test 5 6.805 6.641 7.257 7.238 5.004 6.459 7.599
Test 6 4.376 3.999 4.203 4.644 4.66 5.202 9.317
Test 7 5.459 3.869 3.959 5.153 5.921 5.902 6.812
Test 8 4.886 3.904 4.347 4.805 7.673 6.409 8.038
Test 9 6.785 5.59 6.636 5.487 5.605 5.6 6.855
Test 10 3.888 3.892 3.947 5.8 7.144 6.586 7.849
Test 11 4.898 4.125 3.998 4.158 8.005 6.522 9.19
Test 12 3.821 4.853 5.773 4.714 4.74 5.296 6.83
Test 13 6.817 4.47 6.998 4.554 5.169 6.752 10.68
Test 14 4.521 5.713 4.125 4.883 4.697 7.29 7.117
Test 15 5.273 4.479 4.016 4.125 6.234 5.621 7.712
Test 16 3.824 4.36 3.945 5.23 5.027 6.778 6.7
Test 17 6.975 3.911 7.121 5.899 4.456 5.118 6.593
Test 18 3.815 6.437 3.958 4.121 7.373 5.134 9.585
Test 19 4.534 4.9711 4.501 4.117 6.518 6.61 6.907
Test 20 4.077 4.738 4.183 7.333 4.848 5.575 8.05

File Size 10 MB 20 MB 40 MB 80 MB
160
MB

Test 1 39.62 79.649 163.98 319.639 630.772
Test 2 43.809 81.612 158.467 316.463 640.241
Test 3 43.485 88.702 164.686 322.05 651.952
Test 4 43.816 83.655 163.153 321.159 630.918
Test 5 42.829 87.385 161.408 323.093 628.425
Test 6 45.562 83.025 162.032 318.015 632.511
Test 7 48.454 86.706 159.706 321.369 634.023
Test 8 41.935 79.43 164.831 320.736 630.623
Test 9 45.782 83.955 161.883 317.475 635.869
Test 10 46.887 79.244 157.831 320.081 623.05

166

Test 11 41.707 81.756 159.769 321.215 627.537
Test 12 47.15 79.677 167.118 321.791 628.31
Test 13 42.914 88.061 160.562 321.837 626.089
Test 14 50.583 89.54 157.834 325.82 633.869
Test 15 47.773 79.846 163.43 319.51 632.804
Test 16 42.981 83.107 164.693 318.896 650.389
Test 17 45.68 83.432 164.338 319.574 627.708
Test 18 47.849 83.874 162.66 319.682 623.1
Test 19 48.75 81.004 163.197 327.449 611.449
Test 20 46.983 82.817 160.434 318.722 618.281

Runtimes for 3DES implementation without Hardware
File Size 14 KB 27 KB 54 KB 108 KB 216 KB 433 KB 866 KB
Test 1 4.096 3.883 4.293 4.191 4.61 6.925 8.74
Test 2 6.043 3.885 4.385 5.516 4.595 5.42 7.062
Test 3 3.83 4.491 3.99 4.184 6.267 6.255 10.763
Test 4 5.345 3.883 4.948 7.3565 8.954 6.711 8.069
Test 5 4.112 5.959 4.88 4.715 5.062 5.425 11.341
Test 6 5.018 3.991 5.452 4.97 5.051 5.897 7.287
Test 7 4.034 4.091 4.25 4.762 6.774 9.813 7.366
Test 8 5.943 5.919 7.303 7.458 4.948 5.614 10.632
Test 9 3.841 7.368 4.966 4.284 6.389 6.377 8.95
Test 10 6.222 4.168 4.301 5.222 6.471 9.196 10.573
Test 11 4.157 3.898 4.241 4.327 6.147 6.289 8.342
Test 12 6.031 4.963 4.189 7.983 5.788 6.013 7.156
Test 13 3.828 7.429 6.456 4.582 4.621 9.484 10.618
Test 14 5.387 3.888 4.509 5.821 8.184 5.953 7.281
Test 15 3.821 5.667 6.23 4.201 7.319 5.746 11.975
Test 16 5.146 3.902 4.882 8.123 5.253 8.844 7.48
Test 17 3.834 5.928 5.218 6.704 6.196 5.915 11.563
Test 18 3.872 4.278 7.427 4.337 8.183 6.229 7.137
Test 19 4.124 4.809 4.55 5.202 4.821 10.068 11.736
Test 20 3.949 3.879 6.253 6.248 5.58 6.228 7.32

File Size 10 MB 20 MB 40 MB 80 MB 160 MB
Test 1 48.376 102.691 192.602 379.271 739.498
Test 2 52.33 105.101 192.815 373.728 741.361
Test 3 53.049 92.723 185.628 373.772 730.137
Test 4 51.421 98.673 193.034 372.583 750.383
Test 5 53.546 94.715 186.954 367.971 749.089
Test 6 51.761 95.59 194.985 379.8 743.541
Test 7 51.374 104.901 188.764 372.461 746.934
Test 8 51.788 99.727 188.951 373.366 741.073

167

Test 9 52.756 103.824 199.484 375.556 745.648
Test 10 51.9 98.451 193.603 374.733 747.481
Test 11 51.84 101.935 194.489 370.786 746.376
Test 12 57.247 96.22 185.606 376.436 746.647
Test 13 50.338 96.674 190.602 366.609 749.416
Test 14 50.128 99.036 195.148 376.976 745.484
Test 15 47.591 95.949 186.614 373.578 747.677
Test 16 59.282 105.88 192.761 373.659 745.642
Test 17 55.833 93.383 191.816 375.665 747.13
Test 18 47.354 100.247 186.541 369.351 754.232
Test 19 50.741 97.778 191.566 372.643 746.371
Test 20 49.673 95.922 192.023 373.2 747.157

Timing of communication overhead
File Size 14 KB 27 KB 54 KB 108 KB 216 KB 433 KB 866 KB
Test 1 3.819 6.302 5.061 4.053 5.531 5.21 13.767
Test 2 3.83 6.347 6.367 4.374 7.757 7.925 7.472
Test 3 4.295 5.192 3.91 4.007 4.448 5.707 5.527
Test 4 7.45 4.558 4.653 4.247 5.398 7.226 5.729
Test 5 3.888 3.848 5.914 4.234 6.529 6.809 6.657
Test 6 4.372 4.092 6.019 4.609 4.483 5.816 8.39
Test 7 3.929 3.827 4.557 4.571 4.581 7.582 10.369
Test 8 3.808 5.531 4.098 4.726 7.51 5.804 5.582
Test 9 4.453 6.729 6.654 6.774 7.577 5.059 5.684
Test 10 4.346 5.784 4.301 5.492 4.201 7.678 9.077
Test 11 5.121 3.837 3.883 3.992 6.61 5.18 6.067
Test 12 6.981 5.935 5.682 3.992 4.862 4.988 9.334
Test 13 3.807 3.833 7.228 5.249 4.234 7.113 5.843
Test 14 3.797 4.122 6.024 3.993 7.38 4.644 6.407
Test 15 4.068 3.828 5.434 5.701 6.604 5.569 7.865
Test 16 4.211 6.223 6.042 5.518 6.676 7.382 6.271
Test 17 3.801 6.987 4.136 7.031 6.148 6.767 8.242
Test 18 5.543 3.822 4.259 4.872 4.787 4.899 8.686
Test 19 7.909 3.847 3.869 4.248 4.625 6.078 7.301
Test 20 4.045 4.508 5.308 4.035 7.108 4.649 6.226

File Size 10 MB 20 MB 40 MB 80 MB 160 MB
Test 1 25.094 61.056 122.976 238.138 435.551
Test 2 30.096 52.025 110.363 219.721 434.942
Test 3 25.994 63.473 118.307 212.075 436.436
Test 4 26.424 63.372 114.524 217.808 429.201
Test 5 27.309 56.461 114.108 217.582 425.441
Test 6 30.865 58.054 113.832 217.496 425.005

168

Test 7 27.252 58.693 114.781 218.609 427.25
Test 8 28.601 57.888 114.386 221.067 426.819
Test 9 26.966 57.15 116.679 215.628 426.399
Test 10 28.272 58.066 115.123 216.648 431.126
Test 11 27.326 56.731 115.113 217.652 425.783
Test 12 29.258 60.325 113.582 217.193 435.754
Test 13 26.303 59.741 115.845 219.421 420.957
Test 14 27.425 59.401 116.552 220.254 430.444
Test 15 27.142 55.667 114.438 211.17 439.453
Test 16 28.975 58.552 109.755 218.995 424.632
Test 17 30.189 66.658 115.404 218.026 429.472
Test 18 26.854 59.623 113.114 219.615 434.517
Test 19 28.232 56.283 117.841 218.243 433.172
Test 20 28.113 58.284 112.336 215.765 423.779

Test Two:
Runtimes for 3DES implementation with Hardware
Boards Used 1 2 3 4 5 6 7 8
Test 1 436.764 237.669 213.722 214.028 200.193 189.639 186.394 176.775
Test 2 473.187 241.603 217.276 222.081 202.191 192.839 182.27 179.534
Test 3 430.188 238.589 218.544 204.91 204.685 192.292 188.232 179.415
Test 4 420.006 241.756 216.791 209.807 202.897 194.685 185.421 179.258
Test 5 420.138 244.061 214.881 202.628 203.543 190.156 188.253 181.089
Test 6 417.963 240.652 210.34 203.066 199.976 194.387 182.642 179.414
Test 7 420.623 241.793 217.155 210.962 204.077 193.9 185.404 177.973
Test 8 422.743 241.949 217.269 204.939 203.689 193.542 182.356 180.626
Test 9 417.958 238.075 218.07 205.598 203.328 189.961 181.091 179.55
Test 10 424.008 241.3 216.06 204.968 203.263 188.015 185.133 176.883
Test 11 421.946 237.953 218.665 209.149 195.037 193.97 189.084 184.138
Test 12 424.778 240.532 210.286 204.567 199.699 187.37 187.556 178.007
Test 13 424.884 241.084 214.706 206.598 202.458 194.394 182.445 177.467
Test 14 422.514 240.539 216.409 208.762 204.309 196.542 183.103 183.16
Test 15 420.118 239.938 216.8 204.566 199.76 187.983 181.135 173.84
Test 16 423.164 241.932 218.243 206.407 205.167 193.893 184.305 175.97
Test 17 423.898 241.397 218.364 202.978 201.626 195.34 184.33 181.852
Test 18 414.629 240.382 210.398 208.995 204.133 193.951 187.698 173.791
Test 19 427.383 240.033 216.257 202.884 202.623 189.51 183.052 182.029
Test 20 424.753 236.246 216.333 204.305 204.316 196.814 184.183 181.265

Boards Used 9 10 11 12 13 14 15
Test 1 176.515 169.683 174.073 164.475 164.363 164.055 163.98
Test 2 174.164 173.707 171.617 167.079 166.23 164.634 158.467
Test 3 176.348 167.766 169.028 164.386 167.78 161.363 164.686
Test 4 176.8 176.632 169.466 165.787 161.893 164.573 163.153

169

Test 5 170.188 167.598 169.465 168.183 163.979 161.023 161.408
Test 6 180.597 173.788 168.57 162.819 164.503 164.981 162.032
Test 7 179.281 171.788 167.656 168.685 161.673 161.826 159.706
Test 8 178.295 169.265 167.668 165.468 165.186 163.645 164.831
Test 9 172.818 174.127 169.395 165.533 159.396 164.952 161.883
Test 10 177.576 167.74 168.612 167.082 167.37 161.539 157.831
Test 11 173.749 177.777 171.678 169.305 164.916 161.744 159.769
Test 12 173.982 174.332 164.78 164.248 170.322 163.897 167.118
Test 13 181.25 169.765 169.453 167.549 164.341 160.982 160.562
Test 14 179.42 175.689 174.938 166.862 162.58 163.082 157.834
Test 15 174.997 174.161 167.231 163.773 163.299 160.654 163.43
Test 16 176.2 171.074 169.456 166.608 161.39 166.676 164.693
Test 17 175.172 174.71 166.03 165.748 163.836 162.957 164.338
Test 18 174.686 169.07 167.783 162.794 167.39 156.464 162.66
Test 19 177.748 178.219 171.955 166.988 161.593 167.023 163.197
Test 20 170.714 172.866 165.224 165.164 164.199 166.278 160.434

Runtimes for 3DES implementation without Hardware
Boards Used 1 2 3 4 5 6 7 8
Test 1 847.804 429.942 381.856 320.019 282.54 262.31 241.184 232.225
Test 2 851.153 430.632 378.3 321.318 283.359 261.395 247.383 232.962
Test 3 845.761 423.807 380.165 322.086 288.78 260.113 244.375 225.077
Test 4 852.386 422.27 381.168 318.845 285.636 260.425 240.935 228.802
Test 5 845.457 424.05 379.168 319.405 286.125 260.832 244.574 229.251
Test 6 842.858 427.58 374.827 318.084 285.847 264.393 242.268 233.232
Test 7 851.849 425.996 377.3 315.306 283.493 259.379 240.017 231.936
Test 8 846.48 426.073 379.345 323.769 282.499 256.644 242.503 232.253
Test 9 848.813 431.173 377.886 319.865 283.672 261.401 241.485 227.335
Test 10 849.488 423.139 383.011 319.749 283.187 257.7 240.33 233.385
Test 11 848.261 422.728 379.738 319.743 283.224 261.368 243.252 231.83
Test 12 845.639 429.3 377.699 320.615 282.268 261.145 243.737 231.813
Test 13 846.268 426.169 375.018 316.851 284.847 260.8 243.88 231.248
Test 14 840.914 422.694 377.969 317.988 283.222 259.254 244.55 233.562
Test 15 851.509 429.828 376.994 315.575 287.966 259.486 244.223 229.557
Test 16 843.438 424.583 370.823 323.284 282.12 257.746 246.705 233.222
Test 17 851.972 428.006 380.217 319.7 284.541 261.253 242.221 227.768
Test 18 844.493 426.014 379.847 318.633 284.716 259.859 243.887 226.186
Test 19 844.562 426.395 381.071 322.323 285.119 260.96 241.763 229.946
Test 20 846.516 424.973 378.38 314.843 284.925 262.395 243.235 228.748

170

Boards Used 9 10 11 12 13 14 15
Test 1 222.507 216.754 206.949 202.884 199.331 193.06 192.602
Test 2 223.474 210.775 206.943 204.339 193.159 191.735 192.815
Test 3 219.76 207.824 209.999 202.029 198.533 196.964 185.628
Test 4 217.676 216.091 205.337 195.51 202.492 194.544 193.034
Test 5 215.859 212.941 208.743 205.748 200.416 193.631 186.954
Test 6 223.025 215.411 206.879 201.814 196.777 193.238 194.985
Test 7 223.51 215.059 207.631 202.627 193.755 195.725 188.764
Test 8 219.555 214.552 205.013 197.836 197.955 193.014 188.951
Test 9 221.47 214.37 209.393 204.636 200.39 195.533 199.484
Test 10 220.225 210.864 209.946 204.06 192.629 191.345 193.603
Test 11 219.415 214.504 205.39 202.602 192.228 194.665 194.489
Test 12 221.812 213.115 204.914 195.683 217.991 196.28 185.606
Test 13 224.313 216.035 205.726 203.215 198.178 194.754 190.602
Test 14 219.875 205.312 207.943 204.97 196.986 186.566 195.148
Test 15 214.661 213.005 205.716 201.1 199.198 196.919 186.614
Test 16 224.908 214.458 208.663 197.656 193.21 195.793 192.761
Test 17 219.31 214.914 205.571 200.445 197.358 195.212 191.816
Test 18 221.502 206.995 207.989 201.372 225.123 190.378 186.541
Test 19 221.391 216.575 207.602 205.176 202.173 194.923 191.566
Test 20 221.093 213.026 201.832 202.683 195.587 194.448 192.023

Timing of communication overhead
Boards
Used 1 2 3 4 5 6 7 8
Test 1 131.359 128.399 120.819 117.876 113.261 114.004 114.777 115.999
Test 2 136.676 127.443 120.151 118.171 118.554 115.397 113.214 113.393
Test 3 136.202 125.628 124.661 123.729 111.431 114.423 115.802 114.083
Test 4 137.756 132.263 119.903 118.895 120.402 110.593 113.346 114.915
Test 5 139.062 126.294 113.593 122.492 117.782 118.164 118.656 115.438
Test 6 136.287 128.655 126.27 115.683 119.28 117.524 116.001 120.1
Test 7 138.886 126.809 116.099 122.344 115.548 117.607 110.373 115.108
Test 8 136.81 129.778 121.832 116.831 115.086 116.15 120.723 111.937
Test 9 130.892 125.665 118.99 119.788 116.074 116.83 114.499 115.916
Test 10 139.138 125.75 120.905 116.537 113.075 112.556 116.801 107.711
Test 11 135.771 127.221 118.896 118.352 117.819 116.781 114.738 119.924
Test 12 136.88 126.083 122.939 122.045 115.411 113.256 119.377 116.13
Test 13 138.24 128.02 118.712 120.565 119.728 108.866 114.104 117.33
Test 14 136.171 123.7 121.6 122.583 115.368 123.601 119.474 112.463
Test 15 133.949 126.098 120.413 117.835 116.51 108.244 113.274 115.738
Test 16 137.606 123.314 123.55 120.498 115.774 122.014 113.518 114.464
Test 17 134.84 131.139 117.377 118.752 111.706 117.005 115.288 116.815
Test 18 140.548 125.29 122.797 122.738 124.607 119.162 113.396 116.218

171

Test 19 135.378 128.955 117.715 117.317 115.101 115.038 110.732 110.08
Test 20 135.696 126.883 118.983 119.579 118.602 117.773 120.467 118.451

Boards
Used 9 10 11 12 13 14 15
Test 1 113.98 115.452 111.489 114.023 115.999 114.667 114.089
Test 2 116.585 119.939 116.899 111.873 115.152 116.218 112.61
Test 3 114.842 112.304 114.758 107.644 117.437 112.156 114.259
Test 4 114.953 113.752 113.322 113.871 113.758 114.158 113.754
Test 5 112.921 115.397 118.004 114.019 115.223 112.408 118.2
Test 6 117.222 114.24 109.46 116.437 116.672 108.947 110.532
Test 7 114.216 115.162 118.294 114.531 112.903 122.307 114.699
Test 8 113.228 114.161 112.659 114.4 107.838 108.285 118.416
Test 9 115.479 115.053 116.958 117.055 122.235 116.179 114.506
Test 10 115.248 112.58 114.479 113.594 114.1 105.579 114.287
Test 11 115.593 115.095 115.559 117.815 115.541 119.85 114.061
Test 12 114.062 113.016 115.1 113.951 115.949 113.441 114.733
Test 13 115.779 115.614 114.544 114.265 116.734 113.117 114.522
Test 14 113.149 114.325 115.492 113.104 114.228 115.919 115.324
Test 15 113.59 115.633 113.962 113.039 114.855 113.813 112.68
Test 16 118.43 115.133 113.391 112.827 115.936 116.703 108.802
Test 17 113.771 116.391 114.74 112.652 117.297 111.321 118.719
Test 18 129.525 117.371 108.915 115.791 112.78 115.289 115.694
Test 19 113.223 115.535 119.348 112.527 113.454 114.317 113.832
Test 20 116.104 113.789 112.28 113.554 115.587 115.427 112.847

172

BIBLIOGRAPHY

[1] The Stone Souper Computer, http://stonesoup.esd.ornl.gov/

[2] MPICH, http://www.mcs.anl.gov/research/projects/mpi/mpich1/

[3] LAM-MPI, http://www.lam-mpi.org/

[4] Open-MPI, http://www.open-mpi.org/

[5] CRAY, Inc., ―Cray XD1™ System Overview‖; October 2005.

[6] Impulse Accelerated Technologies, http://www.impulseaccelerated.com/

[7] Join Java, http://joinjava.unisa.edu.au/

[8] System C, http://www.systemc.org/home

[9] Li Shen, C. C., ―Evaluating Impulse C and Multiple Parallelism Partitions for a
Low-Cost Reconfigurable Computing System,‖ M.S. Thesis, Dept. Eng., Baylor

University, Waco, TX, December 2008.

[10] XUP V2P Documentation, http://www.xilinx.com/univ/xupv2p.html

[11] Digilent, Inc., http://www.digilentinc.com/

[12] QNX, http://www.qnx.com

[13] MonteVista, http://www.mvista.com/

[14] Donaldson, J.W., Porting MontaVista Linux to the XUP Virtex-II Pro
Development Board M.S. Project, Department of Computer Science, Rochester
Institute of Technology, Rochester, NY, August 22, 2006.

[15] Debian, http://www.debian.org/

[16] Crosstool, http://www.kegel.com/crosstool/

[17] D. Pellerin and S. Thibault, Practical FPGA Programming in C. Upper Saddle
River, NJ: Prentice Hall Professional Technical Reference, 2005.

http://stonesoup.esd.ornl.gov/
http://www.mcs.anl.gov/research/projects/mpi/mpich1/
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://www.impulseaccelerated.com/
http://joinjava.unisa.edu.au/
http://www.systemc.org/home
http://www.xilinx.com/univ/xupv2p.html
http://www.digilentinc.com/
http://www.qnx.com/
http://www.mvista.com/
http://www.debian.org/
http://www.kegel.com/crosstool/

