
ABSTRACT

Adaptive Methods for the Helmholtz Equation with Discontinuous
Coefficients at an Interface

James W. Rogers, Jr., Ph.D.

Advisor: Qin Sheng, Ph.D.

In this dissertation, we explore highly efficient and accurate finite difference

methods for the numerical solution of variable coefficient partial differential equations

arising in electromagnetic wave applications. We are particularly interested in the

Helmholtz equation due to its importance in laser beam propagation simulations.

The single lens environments we consider involve physical domains with subregions of

differing indices of refraction. Coefficient values possess jump discontinuities at the

interface between subregions. We construct novel numerical solution methods that

avoid computational instability and maintain high accuracy near the interface.

The first class of difference methods developed transforms the differential equa-

tion problem to a new boundary value problem for which a numerical solution can

be readily computed on rectangular subregions with constant wavenumbers. The

second class of numerical methods implemented combines adaptive domain transfor-

mation with coefficient smoothing to yield a boundary value problem well-suited for

numerical solution on a uniform grid in the computational space. The resulting finite

difference schemes do not have treat the grid points near the interface as a special

case. A novel matrix analysis technique is implemented to examine the stability of

these new methods. Computational verifications are carried out.
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CHAPTER ONE

Introduction

1.1 Interface Problems

Interface problems are boundary value problems where the partial differential

equation has one or more coefficients that are discontinuous at some internal curve

or surface, called an interface. These type of problems arise when modeling a wide

variety of physical processes, such as heat conduction through layers of materials

with differing thermal conductivities, magnetic imaging of tissue structures with re-

gions of differing magnetic permeability, geophysical electromagnetic surveying, and

multiphase fluid flow in petroleum or groundwater reservoirs with sediment layers of

differing porosity or permeability [22, 33, 38]. The problem on which we will focus

originates in the modeling of a laser beam propagating from air into and out of a single

curved lens, air and lens being layers of media with differing indices of refraction.

Since many existing strategies for the numerical solution of partial differential

equations were developed for equations with smooth or even constant coefficients,

interface problems may pose insurmountable difficulties for conventional numerical

methods. In particular, the accuracy of derivative approximations can suffer signifi-

cantly if they are based on a set of points that straddle an interface, and instability

can be introduced into the solution procedure if a coefficient of the equation varies

too greatly between sample points in a discretization.

1.2 Paraxial Wave Optics

In order to facilitate optical wave modeling, several approximations have tradi-

tionally been employed. The global properties of axially symmetric optical systems

are described in terms of paraxial or Gaussian optics, where only rays close to and

making small angles with the axis of symmetry are considered [73]. The focal point of

1
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these paraxial rays is referred to as the principle focus of the system, while deviations

from the Gaussian image point are classified as abberations. The paraxial approxima-

tion is obtained by replacing the trigonometric functions sine, cosine and tangent by

the first term of their Taylor expansions, i.e. sin θ = θ, cos θ = 1, and tan θ = θ. For

the equation of motion of electromagnetic waves in a linear homogeneous medium,

the substitution results in a wave equation approximation that is parabolic in form.

Parabolic wave equation approximations are employed in a number of applica-

tions, including acoustics, seismology, geophysical sensing, plasma physics and aero-

dynamics, microwave signal transmission, as well as optics [17]. Paraxial models are

also used extensively in microbeam optoelectronics applications. The approximation

is useful both in improving computational efficiency, and reducing the complexity of

the model to selectively eliminate certain wave properties, such as reflection [4].

While the paraxial wave approximation is primarily used for modeling waves

traveling at small angles to the direction of propagation of the system, several authors

have proposed extending it to larger fields and apertures by using higher order dif-

ferential equations, systems of differential equations, or a generalized set of extended

paraxial coordinates [4, 5, 35].

1.2.1 The Helmholtz Equation

Unlike conventional optical light, radiation from lasers is approximately monochro-

matic, with precise phase and amplitude variations in the first-order approximation,

and are thus described most accurately by Maxwell’s wave equations [16]. Maxwell’s

wave equations are derived from Maxwell’s four field equations,

∇ · E =
ρ

ε0

, (1.1)

∇ ·B = 0, (1.2)
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∇× E = −∂B

∂t
, (1.3)

∇×B = µ0J + µ0ε0
∂E

∂t
, (1.4)

where E is the electric field, B is the magnetic field, J is the current density, ρ

is the electric charge density, ε0 is the permittivity of free space, µ0 is the magnetic

permeability of free space, ∇· is the divergence operator, and ∇× is the curl operator.

Maxwell’s field equations are coupled first-order differential equations not well

suited for use in boundary value problems [56]. For this, we may observe that when

the first-order equations are decoupled, we obtain the wave equation, or the time-

dependent vector Helmholtz equation

∇2E − 1

c2

∂2E

∂t2
= 0,

where E = E(x, y, z) is the electric field intensity in volts/meter,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

is the Laplacian operator, and c is the phase velocity, or the speed of light in a

particular medium.

Monochromatic waves can be accurately described by a complex wavefunction

U satisfying

U(x, y, z, t), = U(x, y, z) exp(i2πνt) (1.5)

where |U(x, y, z)| and arg (U(x, y, z)) are the amplitude and phase of the wave re-

spectively, ν is the frequency in Hz, and U(x, y, z, t) satisfies the scalar wave equation

∇2U − 1

c2

∂2U

∂t2
= 0. (1.6)

By substituting (1.5) into (1.6), we obtain the Helmholtz equation

(∇2 + k2
)
U(x, y, z) = 0, (1.7)

where k =
2πν

c
=

2π

λ
is called the wavenumber. The value λ =

c

ν
is the wavelength.
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Let ϕ(x, y, z) represent the phase of the wavefunction at point (x, y, z). The sur-

faces of equal phase for the wavefunction, where ϕ(x, y, z) is constant, are called wave-

fronts. The wavefront normal at (x, y, z) is parallel to the gradient vector ∇ϕ(x, y, z)

and represents the direction at which the rate of change of the phase is maximum

[57].

We consider wavefunctions with complex amplitudes described by the equation

U(x, y, z) = u(x, y, z) exp (−ikz) (1.8)

where i =
√−1, the complex function u(x, y, z) is called the complex envelope, and

the z axis is taken to be in the direction of the first wavefront normal. If the variation

of u(x, y, z) is slow in the z-direction, then we have a wave such that the wavefront

normals make small angles with z, a so-called paraxial wave.

We substitute (1.8) into the Helmholtz equation (1.7) and factor out exp(−ikz)

to obtain

∇2
T u(x, y, z)− 2ik

∂u(x, y, z)

∂z
+

∂2u(x, y, z)

∂z2
= 0, (1.9)

where

∇2
T =

∂2

∂x2
+

∂2

∂y2

is the transverse Laplacian operator.

Because u(x, y, z) varies relatively slowly in the z-direction, for large wavenum-

bers k we can assume that within a wavelength of the propagation distance, the

change in u is small compared to |u| [54]. We have

∣∣∣∣
∂2u

∂z2

∣∣∣∣ ¿ |k2u|

thus

∂2u

∂z2
≈ 0.

We obtain an approximation of (1.9)

∇2
T u(x, y, z)− 2ik

∂u(x, y, z)

∂z
= 0, (1.10)
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which is called the slowly varying envelope approximation of the Helmholtz equation,

or simply the paraxial Helmholtz equation [6, 57].

Next we let

r = (x2 + y2)
1
2 ≥ 0, φ = arctan

y

x
.

Then (1.10) can be written in polar coordinates as

(
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂φ2
− 2ik

∂

∂z

)
u(x, y, z) = 0, (1.11)

Equation (1.11) is considered sufficiently accurate for laser propagation applications

in multi-layer media [30, 31, 66].

In our discussions, we consider the partial differential equation (1.11) in a spher-

ical lens environment. In the case of a cylindrically symmetric domain, we assume

∂2u

∂φ2
≡ 0

and simplify the polar paraxial equation (1.11) to yield

2ikuz(z, r) = urr(z, r) +
1

r
ur(z, r). (1.12)

Without loss of generality, we may assume that 0 ≤ r ≤ R1 ¿∞.

1.2.2 Initial and Boundary Conditions

We employ Neumann boundary conditions

ur(z, 0) = ur(z,R1) = 0, z > 0, (1.13)

at the bottom, r = 0 and top, r = R1 of the rectangular domain.

For the initial solution of boundary value problem (1.12), (1.13), we use the

following approximation of a Gaussian beam with point source [21]

u(z, r) =
1

1 + iZ
exp

(
ikz − r2

β2(1 + iZ)

)
, (1.14)
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Figure 1.1. The domain.

where β0 is the Gaussian beam width, while Z, β and A are parameters such that

Z =
2z

β2k
,

1

β2
=

1

β2
0

+
ik

2z0

, A = eikz0 .

We also need to know the boundary conditions of the wavefunction at the

interface. From Maxwell’s equations and the associated constitutive relations for

media, it is possible to show that as a monochromatic wave propagates through

media of different refractive indices, its frequency remains the same, but we have the

following relations for phase velocity c, wavelength λ and wavenumber k

c =
c0

n
, λ =

λ0

n
, k =

2π

λ
=

2πn

λ0

= nk0

where c0, λ0 and k0 are the phase velocity, wavelength and wavenumber in a vacuum

and n is the index of refraction of the medium.

For our single lens case simulations, we utilize the following high wavenumbers

k(z, r) =





k2 =
2πn1

λ
= 9.97543× 103, if (z, r) is inside lens area,

k1 =
2πn0

λ
=

2k1

3
=

2

3
× 9.97543× 103, otherwise,

(1.15)



7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

z

w
 =

 im
ag

in
ar

y(
u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

z

w
 =

 im
ag

in
ar

y(
u)

Figure 1.2: Discontinuous coefficients can cause inaccuracy and nonphysical oscillation.
Here we see the mid-lens behavior of the imaginary part of a computed solution of Eq.
(1.12) for the case of discontinuous and smoothed wavenumber k functions.

which is reasonably consistent with experimental laser beam wavelengths [30, 32].

Clearly, the coefficient function k(z, r) is discontinuous at the lens interface. Mathe-

matically, relation (1.15) introduces a discontinuity in the coefficient of uz along the

boundary between the different media. This adds considerable difficulty to the task

of computing the numerical solution of (1.12) [41].

From Maxwell’s equations we can deduce that u(z, r), ur(z, r) and uz(z, r) are

continuous across the curved lens boundary [56, 21]. Then examining (1.12), we

can see that urr(z, r) will have a jump discontinuity at the interface. These jump

conditions will be discussed in detail in Section 5.1.

Relation (1.15) represents a single lens situation. We could further consider

multiple lens scenarios with additional k values involved.

1.3 Adaptive Grids

There are a variety of well established techniques for the numerical solution of

boundary value problems, including the widely used finite difference and finite element

methods. The majority of these methods depend upon a discrete grid of points upon
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which an approximate solution of the boundary value problem is computed. The

grid must include a sufficient number of points in any local region of the domain to

accurately represent the solution. For certain problems, especially interface problems,

local regions of high variability, shocks or discontinuities will arise, requiring a very

fine grid spacing. If the fine resolution necessary in these regions were to be extended

over the entire domain of the problem, the amount of data storage and computational

cycles required to compute a solution would be far greater than modern computing

devices could provide. Practical considerations then, have driven the development of

adaptive grid methods.

For the most part, adaptive grid methods fall into two main categories: local

grid refinement and grid redistribution [76]. Important early work on local grid refine-

ment was done by Berger and Oliger, who developed the Adaptive Mesh Refinement

(AMR) method, a system of successively refined subgrids recursively imposed onto

regions of larger, coarser grids [8, 9].

In grid redistribution, often referred to as “moving mesh” methods, the number

of points in a grid is fixed, but the positions of these points in the physical space

are adjusted via dynamically adaptive transformations so that more points occur in

regions where greater accuracy is required. An additional set of differential equations

called mesh generators are often solved concurrently with the main problem in order

to determine efficient grid transformations [24, 39]. A moving mesh method for finite

differences was developed by Dorfi and Drury [19].

We will examine the properties of both types of adaptive grid methods in more

detail in later sections.

1.3.1 Uniform Cartesian Grids

We wish to employ finite difference methods to find a numerical solution to our

interface problem, and we would like to compute that solution on a uniform Cartesian

grid, i.e. a grid with uniform spacings in each spatial coordinate direction. For two-
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level schemes, uniform spacing is not required in the direction of wave propagation.

The advantages of operating on a uniform grid are numerous, with the fore-

most advantage being the accuracy and simplicity of derivative approximations in

such a domain. Examining the Taylor expansion formulas which are the basis for

most derivative approximations, we find that when grid spacings are not uniform, we

no longer get the cancelation of higher order terms which provides greater order of

accuracy for the resulting derivative approximation formulas while using the fewest

possible terms. Worse yet, standard difference formulas may not be valid approxima-

tions for higher derivatives at all when applied to a nonuniform grid [55, 58].

A uniform grid also facilitates the application of a wide array of well-developed

methods, such as fast Poisson solvers and Fast Fourier Transform algorithms, which

were originally formulated to use equally spaced sample points [11, 23, 48]. Further,

while nonuniform schemes can reduce data array size requirements, this typically

comes at the expense of computation time, as well as data space overhead which must

be devoted to grid housekeeping. In addition, uniform grid schemes are often much

better suited to the optimized vectorization hardware available in modern computer

processors, which can provide very significant speed increases for numerical method

implementations without the need for specialized programming.

1.3.2 Uniform Grid Numerical Methods

Considering the many advantages of uniform Cartesian grids, it is not surpris-

ing that several uniform grid methods have been developed for the numerical solution

of partial differential equations with singular or discontinuous coefficients. In 1961,

Tikhonov and Samarskii derived second order accurate finite difference approxima-

tions of elliptic equations with discontinuous coefficients using Green’s function tech-

niques [70, 72]. Mayo developed fast numerical solution methods for Laplace’s and

biharmonic equations with irregular domains by using integral equation formulations

to define discontinuous extensions of the equations to regular, embedding domains.
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The solution of the interface problem thus obtained is computed using fast Poisson

solvers on a uniform grid, with correction terms applied to the points adjacent to the

interface [48]. Mayo and Greenbaum further developed the technique using parallel

algorithms [49]. MacKinnon and Carey, and Fornberg and Meyer-Spasche have also

utilized the correction term approach to numerically solve interface problems [47, 25].

One of the most significant and widely utilized uniform grid methods for in-

terface problems is the immersed interface method of Li and LeVeque, which is an

extension of the earlier immersed boundary method of Peskin [46, 53]. The central

idea of the immersed interface method is to employ a conventional finite difference

scheme everywhere on a uniform grid except on “irregular” points, i.e. points which

are adjacent to the interface. For the irregular points, modified finite difference equa-

tions are derived using the so-called jump relations, which are the relations of the

limits of the solution, its derivatives and the coefficient functions as they approach

the interface from opposite sides. These jump relations may be obtained from the

partial differential equation itself, or by referring to the known behavior of the phys-

ical processes being modeled. In the case of an implicit scheme, the modified finite

difference equations replace the standard finite difference equations corresponding to

the irregular points in the system of equations to be solved.

Various authors have adapted and extended the immersed interface method to

additional problems. Zhang applied the method to acoustic wave equations across

an interface, [78] while Kreiss and Petersson recently proposed a modified version of

the immersed interface method to simplify the derivation of the difference equation

coefficients at irregular points for two dimensional second order wave equations [40].

While the immersed interface method retains the advantages of a uniform grid

and is particularly effective at forcing the computed solution to behave exactly as we

want it to near the interface, there are some drawbacks. With the modification of

some of the difference equations, a system of equations may lose certain properties,
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such as diagonal dominance or banded structure, becoming considerably more difficult

to solve. For example, a tridiagonal system might lose that structure, and thus no

longer be solvable using the simple, efficient Thomas algorithm. Perhaps the biggest

disadvantage, however, from an implementation standpoint, is the fact that for each

interface problem new difference equations must be derived analytically, depending

upon the partial differential equation and jump conditions, as well as the properties,

position and orientation of the interface. While this process produces excellent results,

it is unlikely that it could ever be automated in software.

1.3.3 Goals of an Adaptive Method

We will use domain transformation to map discretization points that are nonuni-

form in the physical space onto a uniform grid in the computational space. A simple

example of this technique is used by Shibayama et. al. [66] and is referred to by the

authors as a computational space method. In the aforementioned paper, the physical

coordinate space (x, z) is mapped onto coordinate space (u, z) by the mapping

x = α tan(u)

where α is a scaling constant. Here the mapping does not depend on z, the direction

of propagation coordinate. In contrast, our moving mesh method will use a transverse

direction transformation that is dynamically generated at each propagation step.

Our motivation is to produce a numerical method which is flexible enough to

adjust to varying interface properties or jump conditions without the need to derive

new difference schemes for grid points near the interface. We should not have to

determine jump conditions analytically, as long as they are inherent in the partial

differential equation and boundary conditions. Ideally, the method should be able to

make domain transformation adjustments at a propagation step based solely on the

partial differential equation and boundary conditions, the current numerical solution

values, and the current dynamically generated transformation function. However, our
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current study will focus on methods in which domain transformation is based on the

shape of the lens domain segment, or on the location of the interface at the grid lines.



CHAPTER TWO

A Six-Point, Two-Level Finite Difference Scheme

2.1 Derivation

We consider a second-order partial differential equation defined on a domain Ω

in the following general form:

c4urr + c3ur + c2uz + c1u + c0 = 0, (2.1)

where the coefficients ci, 0 ≤ i ≤ 4, are functions of r and z, and the rectangular,

two-dimensional domain

Ω = {(z, r) | 0 ≤ r ≤ R, 0 ≤ z ≤ Z}

for constants R > 0 and Z > 0. Let M, N ∈ Z+, h =
R

M
and τ =

Z

N
. We define a

uniform grid of points

Ωτ,h = {(mh, nτ) | 0 ≤ m ≤ M, 0 ≤ n ≤ N} ⊂ Ω.

r
m−2

 

r
m−1

 

r
m

 

r
m+1

 

r
m+2

 

z
n−2

z
n−1

z
n

z
n+1

z
n+2

(z
n−½

,r
m
)

Figure 2.1: Neighborhood of reference point
(
zn− 1

2
, rm

)
in a uniform (regularly spaced)

grid.

13
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Thus M, N are the number of grid points and h, τ are the discretization parameters

or step sizes, in the r and z directions respectively. We will use the notation rm = mh

and zn = nτ to represent grid line positions in the r and z directions respectively.

We write zn− 1
2

to specify the non-grid point halfway between zn−1 and zn.

Definition 2.1. Points in Ω at which partial differential equations and finite difference

schemes are evaluated and compared may not be in the set Ωτ,h We call such points

reference points.

We use the following Taylor expansions to derive approximations for ur, urr, and uz

at reference point
(
zn− 1

2
, rm

)
=

((
n− 1

2

)
τ,mh

)
:

um+1,n = um,n− 1
2

+ h
∂u

∂r
+

τ

2

∂u

∂z
+

h2

2

∂2u

∂r2
+

τ 2

8

∂2u

∂z2
+

hτ

2

∂2u

∂r∂z
+

h3

6

∂3u

∂r3

+
h2τ

4

∂3u

∂r2∂z
+

hτ 2

8

∂3u

∂r∂z2
+

τ 3

48

∂3u

∂z3
+

h4

24

∂4u

∂r4
+

h3τ

12

∂4u

∂r3∂z

+
h2τ 2

16

∂4u

∂r2∂z2
+

hτ 3

48

∂4u

∂r∂z3
+

τ 4

384

∂4u

∂z4
+ O(τ 5) + O

(
hτ 4

)

+ O
(
h2τ 3

)
+ O

(
h3τ 2

)
+ O

(
h4τ

)
+ O

(
h5

)
, (2.2)

um,n = um,n− 1
2

+
τ

2

∂u

∂z
+

τ 2

8

∂2u

∂z2
+

τ 3

48

∂3u

∂z3
+

τ 4

384

∂4u

∂z4
+ O(τ 5), (2.3)

um−1,n = um,n− 1
2
− h

∂u

∂r
+

τ

2

∂u

∂z
+

h2

2

∂2u

∂r2
+

τ 2

8

∂2u

∂z2
− hτ

2

∂2u

∂r∂z
− h3

6

∂3u

∂r3

+
h2τ

4

∂3u

∂r2∂z
− hτ 2

8

∂3u

∂r∂z2
+

τ 3

48

∂3u

∂z3
+

h4

24

∂4u

∂r4
− h3τ

12

∂4u

∂r3∂z

+
h2τ 2

16

∂4u

∂r2∂z2
− hτ 3

48

∂4u

∂r∂z3
+

τ 4

384

∂4u

∂z4
+ O(τ 5) + O

(
hτ 4

)

+ O
(
h2τ 3

)
+ O

(
h3τ 2

)
+ O

(
h4τ

)
+ O

(
h5

)
, (2.4)

um+1,n−1 = um,n− 1
2

+ h
∂u

∂r
− τ

2

∂u

∂z
+

h2

2

∂2u

∂r2
+

τ 2

8

∂2u

∂z2
− hτ

2

∂2u

∂r∂z
+

h3

6

∂3u

∂r3

− h2τ

4

∂3u

∂r2∂z
+

hτ 2

8

∂3u

∂r∂z2
− τ 3

48

∂3u

∂z3
+

h4

24

∂4u

∂r4
− h3τ

12

∂4u

∂r3∂z

+
h2τ 2

16

∂4u

∂r2∂z2
− hτ 3

48

∂4u

∂r∂z3
+

τ 4

384

∂4u

∂z4
+ O(τ 5) + O

(
hτ 4

)

+ O
(
h2τ 3

)
+ O

(
h3τ 2

)
+ O

(
h4τ

)
+ O

(
h5

)
, (2.5)

um,n−1 = um,n− 1
2
− τ

2

∂u

∂z
+

τ 2

8

∂2u

∂z2
− τ 3

48

∂3u

∂z3
+

τ 4

384

∂4u

∂z4
+ O(τ 5) (2.6)



15

um−1,n−1 = um,n− 1
2
− h

∂u

∂r
− τ

2

∂u

∂z
+

h2

2

∂2u

∂r2
+

τ 2

8

∂2u

∂z2
+

hτ

2

∂2u

∂r∂z
− h3

6

∂3u

∂r3

− h2τ

4

∂3u

∂r2∂z
− hτ 2

8

∂3u

∂r∂z2
− τ 3

48

∂3u

∂z3
+

h4

24

∂4u

∂r4
+

h3τ

12

∂4u

∂r3∂z

+
h2τ 2

16

∂4u

∂r2∂z2
+

hτ 3

48

∂4u

∂r∂z3
+

τ 4

384

∂4u

∂z4
+ O(τ 5) + O

(
hτ 4

)

+ O
(
h2τ 3

)
+ O

(
h3τ 2

)
+ O

(
h4τ

)
+ O

(
h5

)
. (2.7)

It follows that

1

2

{
um+1,n − um−1,n

2h
+

um+1,n−1 − um−1,n−1

2h

}

=
1

4h

{
4h

∂u

∂r
+

2h3

3

∂3u

∂r3
+

hτ 2

2

∂3u

∂r∂z2
+ O

(
h5

)
+ O

(
h3τ 2

)
+ O

(
hτ 4

)}

=
∂u

∂r
+

h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)

=
∂u

∂r
+ O

(
h2

)
+ O

(
h2τ 2

)
+ O

(
τ 2

)
,

1

2

{
um+1,n − 2um,n + um−1,n

h2
+

um+1,n−1 − 2um,n−1 + um−1,n−1

h2

}

=
1

2h2

{
2h2∂2u

∂r2
+

h4

6

∂4u

∂r4
+

h2τ 2

4

∂4u

∂r2∂z2
+ O

(
h6

)
+ O

(
h2τ 4

)
+ O

(
h4τ 2

)}

=
∂2u

∂r2
+ O

(
h2

)
+ O

(
h2τ 2

)
+ O

(
τ 2

)
,

um,n − um,n−1

τ
=

1

τ

{
τ
∂u

∂z
+

τ 3

24

∂3u

∂z3
+ O

(
τ 5

)}
=

∂u

∂z
+ O

(
τ 2

)

and

1

2
{um,n + um,n−1} =

1

2

{
2um,n− 1

2
+

τ 2

4

∂2u

∂z2
+

τ 4

192

∂4u

∂z4
+ O

(
τ 6

)}
= um,n− 1

2
+ O

(
τ 2

)
.

Thus we have

ur(zn− 1
2
, rm) =

1

2

{
um+1,n − um−1,n

2h
+

um+1,n−1 − um−1,n−1

2h

}

+ O
(
h2

)
+ O

(
h2τ 2

)
+ O

(
τ 2

)
, (2.8)

urr(zn− 1
2
, rm) =

1

2

{
um+1,n − 2um,n + um−1,n

h2
+

um+1,n−1 − 2um,n−1 + um−1,n−1

h2

}

+ O
(
h2

)
+ O

(
h2τ 2

)
+ O

(
τ 2

)
, (2.9)
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uz(zn− 1
2
, rm) =

um,n − um,n−1

τ
+ O

(
τ 2

)
, (2.10)

u(zn− 1
2
, rm) =

1

2
{um,n + um,n−1}+ O

(
τ 2

)
, (2.11)

where all derivatives are evaluated at non-grid point
(
zn− 1

2
, rm

)
. When τ ≤ Ch for

some constant C, we have

ur(zn− 1
2
, rm) =

1

2

{
um+1,n − um−1,n

2h
+

um+1,n−1 − um−1,n−1

2h

}
+ O

(
h2

)
, (2.12)

urr(zn− 1
2
, rm) =

1

2

{
um+1,n − 2um,n + um−1,n

h2
+

um+1,n−1 − 2um,n−1 + um−1,n−1

h2

}

+ O
(
h2

)
. (2.13)

Substituting the approximations (2.8)-(2.11) into Equation (2.1) yields a six-point,

two-level, Crank-Nicholson type scheme

c4

2h2
[um+1,n − 2um,n + um−1,n + um+1,n−1 − 2um,n−1 + um−1,n−1]

+
c3

4h
[um+1,n − um−1,n + um+1,n−1 − um−1,n−1]

+
c2

τ
[um,n − um,n−1] +

c1

2
[um,n + um,n−1] + c0 = 0. (2.14)

To facilitate stability and consistency analysis, we rewrite (2.14) in the following

implicit form

( c4

2h2
+

c3

4h

)
um+1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
um,n +

( c4

2h2
− c3

4h

)
um−1,n

= −
( c4

2h2
+

c3

4h

)
um+1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
um,n−1 −

( c4

2h2
− c3

4h

)
um−1,n−1 + c0.

(2.15)

Next, we will derive additional finite difference approximations for the Neumann

boundary conditions ur (z, 0) = 0 and ur (z, R1) = 0. We have

ur(z, 0) =
u1,n − u−1,n

2h
+ O

(
h2

)
= 0.

Then

u−1,n = u1,n + O (h) . (2.16)
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We consider the finite difference scheme (2.15) at the boundary r = 0

( c4

2h2
+

c3

4h

)
u1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
u0,n +

( c4

2h2
− c3

4h

)
u−1,n

= −
( c4

2h2
+

c3

4h

)
u1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
u0,n−1 −

( c4

2h2
− c3

4h

)
u−1,n−1 + c0.

Substituting (2.16) into the above, we obtain

c4

h2
u1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
u0,n

= − c4

h2
u1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
u0,n−1 + c0. (2.17)

Similarly, at r = R1 we have

ur(z,R1) =
uM+1,n − uM−1,n

2h
+ O

(
h2

)
= 0,

thus

uM+1,n = uM−1,n + O (h) . (2.18)

We consider the finite difference scheme (2.15) at the boundary r = R1

( c4

2h2
+

c3

4h

)
uM+1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
uM,n +

( c4

2h2
− c3

4h

)
uM−1,n

= −
( c4

2h2
+

c3

4h

)
uM+1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
uM,n−1 −

( c4

2h2
− c3

4h

)
uM−1,n−1 + c0.

Substituting (2.18) into the above, we obtain

c4

h2
uM+1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
uM,n

= − c4

h2
uM+1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
uM,n−1 + c0. (2.19)

2.2 Consistency

Definition 2.2. We say that the finite difference equation Pτ,hv = f is consistent with

the partial differential equation Pu = f if for any smooth function φ(z, r)

Pτ,hφ− Pφ → 0 as τ, h → 0,

the convergence being pointwise at each reference point (z, r).
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Usage of the term “truncation error” can vary somewhat according to source material.

The fundamental idea is to provide a measure of the extent to which an exact solution

of a differential equation fails to satisfy a difference equation. In this dissertation we

will utilize definitions convenient for a Crank-Nicholson type scheme.

Definition 2.3. Let φ(z, r) be a smooth function. Then the difference Pτ,hφ−Pφ, where

Pτ,hφ and Pφ are evaluated on reference point (z, r), is called the local truncation

error of finite difference scheme Pτ,hv = 0 with respect to partial differential equation

Pu = 0.

Definition 2.4. A scheme Pτ,hv = 0 is accurate of order p in the z direction and q in

the r direction if for any smooth function φ(z, r),

Pτ,hφ− Pφ = O (τ p) + O (hq) , (2.20)

where Pτ,hφ and differential equation Pφ are evaluated at reference point (z, r). We

say that the scheme has local order of accuracy (p, q).

Recall (2.1). For the theorems and remarks to follow, let P be the linear

differential operator such that

Pu = c4urr + c3ur + c2uz + c1u + c0 (2.21)

where ci, 0 ≤ i ≤ 4, are functions of r and z. Further, let Pτ,h be the difference

operator

Pτ,hu =
( c4

2h2
+

c3

4h

)
um+1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
um,n +

( c4

2h2
− c3

4h

)
um−1,n

+
( c4

2h2
+

c3

4h

)
um+1,n−1 +

(
− c4

h2
− c2

τ
+

c1

2

)
um,n−1 +

( c4

2h2
− c3

4h

)
um−1,n−1

+ c0, (2.22)

where h and τ are the grid step-sizes, m and n the grid indices for the r and z

directions, respectively.
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Theorem 2.1. The finite difference equation Pτ,hv = 0 has a local truncation error of

order O (τ 2) + O (h2) with respect to Pu = 0.

Proof. Let u(z, r) be a smooth function. By substituting the Taylor expansions (2.2)-

(2.7) into (2.22) and gathering terms, we see that

Pτ,hu = c4

[
∂2u

∂r2
+

h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)]

+ c3

[
∂u

∂r
+

h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)]

+ c2

[
∂u

∂z
+

τ 2

24

∂3u

∂z3
+ O

(
τ 4

)]
+ c1

[
um,n− 1

2
+

τ 2

8

∂2u

∂z2
+

τ 4

384

∂4u

∂z4
+ O

(
τ 6

)]
+ c0

= c4
∂2u

∂r2
+ c3

∂u

∂r
+ c2

∂u

∂z
+ c1um,n− 1

2
+ c0 + c4

[
h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2

]

+ c3

[
h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2

]
+ c2

[
τ 2

24

∂3u

∂z3

]
+ c1

[
τ 2

8

∂2u

∂z2

]
+ O

(
h4

)

+ O
(
h2τ 2

)
+ O

(
τ 4

)

= Pu + c4

[
h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2

]
+ c3

[
h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2

]
+ c2

[
τ 2

24

∂3u

∂z3

]

+ c1

[
τ 2

8

∂2u

∂z2

]
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)
.

Thus the truncation error

Pτ,hu− Pu = c4

[
h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2

]
+ c3

[
h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2

]
+ c2

[
τ 2

24

∂3u

∂z3

]

+ c1

[
τ 2

8

∂2u

∂z2

]
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)

= O
(
τ 2

)
+ O

(
h2

)
.

This completes our proof.

Corollary 2.1. The scheme Pτ,hv = 0 has local order of accuracy (2, 2).

Proof. By Theorem 2.1,

Pτ,hu− Pu = O
(
τ 2

)
+ O

(
h2

)
.

Thus Pτ,hv = 0 has local order of accuracy (2, 2) with respect to Pu = O.
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Theorem 2.2. The scheme Pτ,hv = 0 is consistent with differential equation Pu = 0.

Proof. By Theorem 2.1

Pτ,hu− Pu = O
(
τ 2

)
+ O

(
h2

) → 0

as τ, h → 0. Thus the scheme Pτ,hv = 0 is consistent with differential equation

Pu = 0.

Now let Qτ,h be the difference operator such that

Qτ,hu =
(ch,4

2h2
+

ch,3

4h

)
um+1,n +

(
−ch,4

h2
+

ch,2

τ
+

ch,1

2

)
um,n +

(ch,4

2h2
− ch,3

4h

)
um−1,n

+
(ch,4

2h2
+

ch,3

4h

)
um+1,n−1 +

(
−ch,4

h2
− ch,2

τ
+

ch,1

2

)
um,n−1

+
(ch,4

2h2
− ch,3

4h

)
um−1,n−1 + ch,0,

where ch,i, 0 ≤ i ≤ 4, are functions of r, z and h such that ch,i → ci as h → 0, and

h and τ are the grid intervals, m and n the grid indices for the r and z directions

respectively.

Theorem 2.3. The scheme Qτ,hv = 0 has a truncation error of

(ch,4 − c4)
∂2u

∂r2
+ (ch,3 − c3)

∂u

∂r
+ (ch,2 − c2)

∂u

∂z

+ (ch,1 − c1) um,n− 1
2

+ ch,0 − c0 + O
(
τ 2

)
+ O

(
h2

)

with respect to Pu = 0.

Proof. Let u(z, r) be a smooth function. By Theorem 2.1,

Pτ,hu− Pu = O
(
τ 2

)
+ O

(
h2

)
.

Thus we have

Qτ,hu− Pu = Qτ,hu− Pτ,hu + Pτ,hu− Pu

= (ch,4 − c4)
∂2u

∂r2
+ (ch,3 − c3)

∂u

∂r
+ (ch,2 − c2)

∂u

∂z

+ (ch,1 − c1) um,n− 1
2

+ ch,0 − c0 + O
(
τ 2

)
+ O

(
h2

)
.

This completes our proof.
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Theorem 2.4. The scheme Qτ,hv = 0 is consistent with Pu = 0.

Proof. Let u(z, r) be a smooth function. By Theorem 2.3,

Qτ,hu− Pu = (ch,4 − c4)
∂2u

∂r2
+ (ch,3 − c3)

∂u

∂r
+ (ch,2 − c2)

∂u

∂z

+ (ch,1 − c1) um,n− 1
2

+ ch,0 − c0 + O
(
τ 2

)
+ O

(
h2

)
.

Since

|ch,i − ci| → 0, 0 ≤ i ≤ 4, as h → 0,

we have

Qτ,hu− Pu → 0 as τ, h → 0.

We conclude that Qτ,hv = 0 is consistent with Pu = 0.

2.3 A Stability Analysis Method

While we were able to demonstrate consistency for the general form of our

scheme when the coefficients are taken from any partial differential equation of the

form (2.1), stability of the scheme when applied to a specific problem will have to be

established for each case.

Definition 2.5. A finite difference scheme may be written as a system of linear equa-

tions:

Bun = Cun−1,

or

un = B−1Cun−1,

where vector un = {uk,n}M
k=0 and the difference operators B, C ∈ CM×M are coefficient

matrices. Let E = B−1C. If there exists a constant K > 0 independent of n, h and

τ such that ‖En‖ ≤ K for some norm ‖ · ‖, we say that the scheme is stable in the

Lax-Richtmyer sense [42, 51].
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In the above definition and in much of the literature, the matrix B−1C is as-

sumed to be constant with respect to the direction of propagation, in other words,

B−1C is the same at each z-step. However, in several schemes we wish to explore,

B−1C is dependent on z. We must return to the fundamental concepts of stability

of an iterative finite difference scheme and formulate a definition of stability suitable

for our purposes.

Consider a finite difference scheme written in the form

un = Anun−1 + fn−1

where the right-hand side matrix An can vary with each propagation step. The

solution at propagation level n can be obtained by applying the relation recursively

to the initial solution u0, i.e.

un =

(
n∏

k=1

Ak

)
u0 +

(
n∏

k=2

Ak

)
f0 +

(
n∏

k=3

Ak

)
f1 + . . . + Anfn−2 + fn−1. (2.23)

If we perturb the vector u0 of initial values to ũ0, the solution at propagation

step n will be

ũn =

(
n∏

k=1

Ak

)
ũ0 +

(
n∏

k=2

Ak

)
f0 +

(
n∏

k=3

Ak

)
f1 + . . . + Anfn−2 + fn−1. (2.24)

Let en be the error vector at propagation step n defined as en = ũn−un. Then

by (2.23) and (2.24),

en = ũn − un =

(
n∏

k=1

Ak

)
(ũ0 − u0) =

(
n∏

k=1

Ak

)
e0. (2.25)

Let ρ(A) be the spectral radius of matrix A. If

ρ(An) ≤ 1

for all 0 < nτ < Z and any transverse direction step size 0 < h < ε for some ε > 0,

then ‖∏n
k=1 Ak‖ ≤ 1.
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By (2.25), this stability condition will guarantee that the perturbations will not

increase exponentially with n. However, it does not always guarantee convergence.

Additional parameter constraints may need to be determined.

To facilitate our analysis of the stability of our schemes, some preliminary results

concerning matrices must be established.

Definition 2.6. An n× n Hermitian matrix A is said to be positive definite if

x∗Ax > 0 , for all nonzero x ∈ Cn.

Definition 2.7. An n× n Hermitian matrix A is said to be positive semidefinite if

x∗Ax ≥ 0 , for all nonzero x ∈ Cn.

Note: While the definitions of positive definite and positive semidefinite are sometimes

extended to include non-Hermitian matrices, we will limit our usage to the Hermitian

case, as do Horn and Johnson [36, 37].

Definition 2.8. A matrix A ∈ Cn×n is said to be positive semistable if the real part of

every eigenvalue of A is nonnegative.

Lemma 2.1. Let A, B, C ∈ Cn×n be such that

B = dI + A, C = dI − A,

where d ∈ R, d > 0. Then every eigenvector v ∈ Cn of any of the three matrices is

also an eigenvector of the other two, i.e. Av = λAv, Bv = λBv and Cv = λCv, for

λA, λB, λC ∈ C with the following relationship between the corresponding eigenvalues:

λB = d + λA = 2d− λC ,

λC = d− λA = 2d− λB.



24

Proof. LetA,B,C ∈ Cn×n as above. Clearly, each of the matrices commutes with the

other two, and thus by a well known result in matrix theory, they share a common

basis of eigenvectors. To show the eigenvalue relations, let v ∈ Cn be an eigenvector

of A with corresponding eigenvalue λA, i.e, Av = λAv. Then

Cv = (dI − A)v = dIv − Av = dv − λAv = (d− λA)v

and thus λC = d− λA. Also,

Bv = (dI + A)v = dIv + Av = dv + λAv = (d + λA)v

and we have λB = d + λA.

Theorem 2.5. Let A,B, C ∈ Cn×n be such that

B = dI + A, C = dI − A,

where d ∈ R, d > 0. Then the difference scheme defined by

Bun = Cun−1

is stable if and only if matrix A is positive semistable.

Proof. Let A, B, C ∈ Cn×n be such that

B = dI + A, C = dI − A,

where d ∈ R, d > 0. Then by Lemma 2.1, any eigenvalue λ of the matrix B−1C is of

the form

λ =
d− λA

d + λA

,

where λA is an eigenvalue of A. It follows that

|λ| = |d− λA|
|d + λA| =

(d− Re(λA))2 + Im2(λA)

(d + Re(λA))2 + Im2(λA)
= 1− 4dRe(λA)

(d + Re(λA))2 + Im2(λA)
.
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Case 1: Re(λA) < 0

|λ| = 1 +

∣∣∣∣
4dRe(λA)

(d + Re(λA))2 + Im2(λA)

∣∣∣∣ > 1.

Case 2: Re(λA) = 0

|λ| = 1 +
4d · 0

(d + Re(λA))2 + Im2(λA)
= 1 + 0 = 1.

Case 3: Re(λA) > 0

|λ| = 1−
∣∣∣∣

4dRe(λA)

(d + Re(λA))2 + Im2(λA)

∣∣∣∣ < 1.

Thus we see that for an arbitrary eigenvalue λ of B−1C, |λ| ≤ 1 if and only if the real

parts of the eigenvalues of A are nonnegative. Therefore ρ(B−1C) ≤ 1 if and only if

the real parts of all eigenvalues of A are nonnegative. We conclude that our scheme

is stable if and only if A is positive semistable.

Consider the general form of our six-point, two-level Crank-Nicholson type scheme

(2.15) with c0 = 0. We multiply through by
2τ

c2

to obtain

τ

c2

( c4

h2
+

c3

2h

)
um+1,n +

(
2− τ

c2

(
2c4

h2
− c1

))
um,n +

τ

c2

( c4

2h2
− c3

4h

)
um−1,n

= − τ

c2

( c4

h2
+

c3

2h

)
um+1,n−1 +

(
2 +

τ

c2

(
2c4

h2
− c1

))
um,n−1 − τ

c2

( c4

h2
− c3

2h

)
um−1,n−1.

This can be expressed in matrix form

Bun = Cun−1

with

B = 2I + A, C = 2I − A,
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and

A =




a1 q1 0 · · · 0

b2 a2 q2 0 · · ·
0 b3 a3 q3 0

· · ·
· · ·

· · ·
· · · 0 bN−1 aN−1 qN−1

0 · · · 0 bN aN




where

am = − τ

c2(z, mh)

(
2c4(z,mh)

h2
− c1(z, mh)

)
,

bm =
c4(z,mh)

2h2
− c3(z, mh)

4h
, qm =

c4(z, mh)

2h2
+

c3(z, mh)

4h
.

Theorem 2.6. Our six-point, two-level Crank-Nicholson type scheme is stable for a

partial differential equation of form (2.1) if and only if the corresponding matrix A as

defined above is positive semistable.

Proof. It follows immediately from Theorem 2.5.

2.4 Homogeneous Paraxial Helmholtz Scheme

We derive a Crank-Nicholson scheme for the paraxial Helmholtz equation for the

case of homogeneous media. Recall Equation (1.12), the paraxial Helmholtz equation

in a radially symmetric polar domain

2ikuz(z, r) = urr(z, r) +
1

r
ur(z, r).

First, we identify the coefficients of the paraxial Helmholtz equation which correspond

to the coefficients c0 through c4 of equation (2.1) given in Section 2.1

c4 = 1, c3 =
1

r
, c2 = −2ik, , c1 = 0, c0 = 0.
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Then we substitute these specific coefficients into the implicit form general finite

difference scheme (2.15) to obtain

−
(

1

2h2
+

1

4rh

)
um+1,n +

(
1

h2
+

2ik

τ

)
um,n −

(
1

2h2
− 1

4rh

)
um−1,n

=

(
1

2h2
+

1

4rh

)
um+1,n−1 +

(
− 1

h2
+

2ik

τ

)
um,n−1 +

(
1

2h2
− 1

4rh

)
um−1,n−1. (2.26)

By substituting the relation r = mh and α =
−τi

2kh2
, we can rewrite this as

− α

(
1 +

1

2m

)
um+1,n + (2 + 2α) um,n − α

(
1− 1

2m

)
um−1,n

=α

(
1 +

1

2m

)
um+1,n−1 + (2− 2α) um,n−1 + α

(
1− 1

2m

)
um−1,n−1. (2.27)

Using the same method as above, we use (2.17) and (2.19) to derive finite

difference equations associated with the boundary conditions of our scheme.

−2αu1,n + (2 + 2α) u0,n = 2αu1,n−1 + (2− 2α) u0,n−1

and

(2 + 2α) uM,n − 2αuM−1,n = (2− 2α) uM,n−1 + 2αuM−1,n−1.

2.5 Stability of Homogeneous Paraxial Helmholtz Scheme

Lemma 2.2. Let A ∈ Rn×n be tridiagonal with all sub and super-diagonal elements

positive, or all sub and super-diagonal elements negative. Then there exists a diagonal

matrix D such that D−1AD is a real symmetric matrix.
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Proof. We proceed as in Smith [67]. Let A ∈ RN×N such that

A =




a1 c1 0 · · · 0

b2 a2 c2 0 · · ·
0 b3 a3 c3 0

· · ·
· · ·

· · ·
· · · 0 bN−1 aN−1 cN−1

0 · · · 0 bN aN




where bi > 0, 2 ≤ i ≤ N and ci > 0, 1 ≤ i ≤ N−1. Let D ∈ CN×N be a real diagonal

matrix with diagonal elements d1, d2, ..., dN . Then

DAD−1 =




a1
c1d1

d2
0 · · · 0

b2d2

d1
a2

c2d2

d3
0 · · ·

0 b3d3

d2
a3

c3d3

d4
0

· · ·
· · ·

· · ·
· · · 0 bN−1dN−1

dN−2
aN−1

cN−1dN−1

dN

0 · · · 0 bNdN

dN−1
aN




Set d1 = 1 and di =
√

ci−1

bi
di−1 for 2 ≤ i ≤ N . Since ci−1 and bi have the same sign,

all di will be positive. Then

ci−1di−1

di

=
bidi

di−1

, 2 ≤ i ≤ N.

We see that D−1AD is a real symmetric matrix. For the case of negative off-diagonal

elements, substitute −A for A above.
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Lemma 2.3. Let A ∈ Rn×n be tridiagonal with all sub and super-diagonal elements

positive, or all sub and super-diagonal elements negative. Then all eigenvalues of A

are real.

Proof. Let A be as above. By Lemma 2.2 there exists a diagonal matrix D such that

D−1AD is a real symmetric matrix. Then A is similar to a real symmetric matrix,

which has only real eigenvalues. Thus A has only real eigenvalues.

Theorem 2.7. Let the wavenumber k be a constant. Then the homogeneous paraxial

Helmholtz finite difference scheme is stable.

Proof. Let the wavenumber k be a constant. Consider the finite difference scheme

(2.27) in matrix form

Bun = Cun−1.

We have B = 2I + A, C = 2I − A, and A = αH, where

H =




2 −2 0 · · · 0

−
(
1− 1

2(1)

)
2 −

(
1 + 1

2(1)

)
0 · · ·

· · ·
· · ·

· · ·
· · · 0 −

(
1− 1

2(M−1)

)
2 −

(
1 + 1

2(M−1)

)

0 · · · 0 −2 2




.

Observe that α is purely imaginary and that matrix H is a real tridiagonal matrix

with all off-diagonal elements negative. Then by Lemma 2.3, H has real eigenvalues.

Thus A has purely imaginary eigenvalues and is therefore positive semistable. By

Theorem 2.5, we can conclude that homogeneous paraxial Helmholtz finite difference

scheme is stable.
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Figure 2.2: Simulation using the two-level, six-point scheme with discontinuous coefficient:
intensity of the computed solution near the z-axis. No focusing is observed.

2.6 Coefficient Smoothing

To facilitate the use of conventional numerical techniques for partial differential

equations with discontinuous coefficients at an interface, several methods have been

proposed that replace the discontinuous coefficient functions with continuous func-

tions derived through harmonic averaging of the coefficient function values near the

interface [2, 14, 72]. We shall explore a somewhat different approach to coefficient

function smoothing.

The consistency result of Theorem 2.4 implies that we may replace a discon-

tinuous coefficient function ci in a partial differential equation of form (2.1) with a

continuous function ch,i of h that approaches ci as h → 0 to derive our scheme and still

maintain consistency. However, the truncation error will no longer be O(h2), but will

now be proportional to max
0≤i≤4

|ch,i−ci| near the interface. Brown demonstrated that for

a piecewise continuous wave equation with coefficient functions approximated by con-

tinuous functions, the accuracy with which the amplitude is computed is dependent

on the accuracy with which the interface conditions are approximated [14].
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We once again consider Equation (1.12), the paraxial Helmholtz equation in a

radially symmetric polar domain

2ikuz(z, r) = urr(z, r) +
1

r
ur(z, r).

Let η(z) =
√

R2 − (z −R)2 be the function which gives the position of the interface

(the point of discontinuity of the wavenumber, k) with respect to the r axis. The k

parameter can be expressed as

k(z, r) =





k2, r < η(z),

k1, r ≥ η(z).
(2.28)

We construct a continuous function kh that approximates k,

k(z, r) ≈ kh(z, r) = k2 + (k1 − k2) σh(z, r), (2.29)

where σh(z, r) is monotonically increasing with respect to r, σh(z, 0) = 0, σh(z,R1) =

1 for 0 ≤ z ≤ Z, and

σh(z, r) ≈





0, r < η(z),

1, r > η(z).

A candidate for our σh function is

σh(z, r) =
tanh

(
r−η(z)

h

)
− tanh

(
−η(z)

h

)

tanh
(

R1−η(z)
h

)
− tanh

(
−η(z)

h

) ,

which is the hyperbolic tangent function with a steepness factor of 1
h
, centered at

η(z), and normalized so that σ(z, 0) = 0, σ(z, R1) = 1 for 0 ≤ z ≤ Z.

Then

σlim(z, r) = lim
h→0

σh(z, r) =





0, r < η(z),

1
2
, r = η(z),

1, r > η(z).

(2.30)

and
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klim(z, r) = lim
h→0

kh(z, r) =





k1, r < η(z),

k1 + 1
2
(k2 − k1) , r = η(z),

k2, r > η(z).

(2.31)

We see that klim(z, r) = k(z, r) except at r = η(z). For convenience, we modify our

model by replacing k with klim to obtain

2iklimuz(z, r) = urr(z, r) +
1

r
ur(z, r) (2.32)

and further replace klim with kh, to obtain a smoothed-coefficient model from which

we will derive a finite difference scheme consistent with (2.32).

2ikhuz(z, r) = urr(z, r) +
1

r
ur(z, r). (2.33)

We form the six-point, two-level finite difference scheme with

ch,0 = 0, ch,1 = 0, ch,2 = 2ikh, ch,3 = −1

r
and ch,4 = −1

in implicit form

−
(

1

2h2
+

1

4rh

)
um+1,n +

(
1

h2
+

2ikh

τ

)
um,n −

(
1

2h2
− 1

4rh

)
um−1,n

=

(
1

2h2
+

1

4rh

)
um+1,n−1 +

(
− 1

h2
+

2ikh

τ

)
um,n−1 +

(
1

2h2
− 1

4rh

)
um−1,n−1

(2.34)

or on the grid lines r = mh

− α

kh

(
1 +

1

2m

)
um+1,n +

(
2 + 2

α

kh

)
um,n − α

kh

(
1− 1

2m

)
um−1,n

=
α

kh

(
1 +

1

2m

)
um+1,n−1 +

(
2− 2

α

kh

)
um,n−1 +

α

kh

(
1− 1

2m

)
um−1,n−1 (2.35)

where α =
−τi

2h2
.

As in the homogeneous case, we substitute the specific coefficient ci values into (2.17)

and (2.19) to obtain difference equations for the boundary conditions. At r = 0 we

have

−2
α

kh

u1,n +

(
2 + 2

α

kh

)
u0,n = 2

α

kh

u1,n−1 +

(
2− 2

α

kh

)
u0,n−1 (2.36)
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and at r = R1

(
2 + 2

α

kh

)
uM,n − 2

α

kh

uM−1,n =

(
2− 2

α

kh

)
uM,n−1 + 2

α

kh

uM−1,n−1. (2.37)

2.7 Stability of Smoothed Case

We need further results concerning matrix properties, especially the eigenvalues

of tridiagonal matrices.

Definition 2.9. Let A ∈ CN×N . We define the functions ι+ : CN×N → Z, ι− : CN×N →
Z and ι0 : CN×N → Z as follows

ι+(A) : the number of eigenvalues of A, including multiplicities,

with positive real part.

ι−(A) : the number of eigenvalues of A, including multiplicities,

with negative real part.

ι0(A) : the number of eigenvalues of A, including multiplicities,

with zero real part.

The row vector ι(A) := [ι+(A), ι−(A), ι0(A)] is called the inertia of A.

Lemma 2.4 (Horn [37]). Let A,B ∈ CN×N with B Hermitian and A + A∗ positive

definite. Then ι(AB) = ι(B).

Theorem 2.8. Let A,B ∈ CN×N with B Hermitian, A diagonal and A + A∗ positive

semidefinite. Then ι−(AB) ≤ ι−(B).

Proof. Let A,B ∈ CN×N with B Hermitian, A diagonal and A+A∗ positive semidef-

inite. We have

A + A∗ = diag {2Re(a11), 2Re(a22), . . . , 2Re(aNN)} ,

with Re(amm) ≥ 0, 1 ≤ m ≤ N . Choose real ε > 0. Then Re(amm) + ε > 0, 1 ≤
m ≤ N and

(A + εI) + (A + εI)∗ = diag {2Re(a11) + 2ε, 2Re(a22) + 2ε, . . . , 2Re(aNN) + 2ε} .
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Thus, (A + εI) + (A + εI)∗ is positive definite. By Lemma 2.4, it follows that

i ((A + εI)B) = ι(B) for all ε > 0. (2.38)

Assume ι−(AB) > ι−(B). Since lim
ε→0

(A + εI)B = AB and eigenvalues are a contin-

uous function of the elements of a matrix, there must exist some ε0 > 0 such that

ι− ((A + εI)B) = ι− (AB) > ι−(B) for all ε < ε0. This contradicts (2.38). Thus

ι−(AB) ≤ ι−(B).

Theorem 2.9. Let S ∈ CN×N and H ∈ RN×N . If

(i) S is diagonal;

(ii) S + S∗ is positive semidefinite;

(iii) H is tridiagonal with all off-diagonal elements positive or all off-diagonal

elements negative,

then ι−(SH) ≤ ι−(H).

Proof. Let S and H be as above. Then by Theorem 2.2, there exists a diagonal matrix

D such that D−1HD is a real symmetric matrix, thus Hermitian. By Lemma 2.8,

ι−(SD−1HD) ≤ ι−(D−1HD). Since D−1 and S are diagonal, they commute. Then

SD−1HD = D−1SHD. Then

ι−(SH) = ι−(D−1SHD) = ι−(SD−1HD) ≤ ι−(D−1HD) = ι−(H).

Theorem 2.10. The finite difference scheme (2.35), (2.36), (2.37) is stable.

Proof. Consider the finite difference scheme (2.35) in the form of a matrix equation:

Bun = Cun−1
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with B = 2I + A, C = 2I − A, and A = αH, where

H =




2
k0

− 2
k0

0 · · · 0

− 1
k1

(
1− 1

2(1)

)
2
k1

− 1
k1

(
1 + 1

2(1)

)
0 · · ·

· · ·
· · ·

· · ·
· · · 0 − 1

kM−1

(
1− 1

2(M−1)

)
2

kM−1
− 1

kM−1

(
1 + 1

2(M−1)

)

0 · · · 0 − 2
kM

2
kM




with km = kh(mh), for 0 ≤ m ≤ M .

As in the case of the homogeneous scheme, α is purely imaginary, and since km > 0 for

all 0 ≤ m ≤ M , matrix H is a real tridiagonal matrix with all off-diagonal elements

negative. Then by Lemma 2.3, H has real eigenvalues. Thus A has purely imaginary

eigenvalues, and is therefore positive semistable. Then by Theorem 2.5, the smoothed

coefficient scheme is stable.



CHAPTER THREE

z-Stretching Domain Transformation

In this chapter we explore domain segmentation and transformation. We first

use properties of the solution consistent with the slowly varying envelope approxi-

mation to derive an efficient approximation method for our model boundary value

problem. Then we examine further applications.

3.1 Stretching in the z direction

If the pre-lens, lens and post-lens segments of the domain were successive rect-

angular areas along the direction of propagation, we would be able to use conventional

finite difference techniques to solve the paraxial Helmholtz equation for a constant k

on each segment. We could achieve this scenario by ”stretching” each segment by a

1-1 coordinate transformation onto a rectangular area and transforming the partial

differential equation for the new coordinate system.

By shifting the z-coordinate (propagation direction) values for the points of a

domain segment, while keeping the transverse r-coordinate values constant, we can

obtain rectangular subdomains such that the solution computed at the rightmost edge

of each segment would become the initial condition of the next segment. We will call

this type of transformation z-stretching.

We are looking for a solution of the form

u(x(z, r), y(z, r))

which satisfies the boundary value problem

2ikuz(x(z, r), y(z, r)) = urr(x(z, r), y(z, r)) +
1

r
ur(x(z, r), y(z, r)),

ur(x(z, 0), y(z, 0)) = 0,

ur(x(z,R1), y(z,R1)) = 0.

36
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We find the derivatives with respect to the transformed coordinates

∂u

∂r
=

∂u

∂y

∂y

∂r
+

∂u

∂x

∂x

∂r
,

∂u

∂z
=

∂u

∂y

∂y

∂z
+

∂u

∂x

∂x

∂z
,

∂2u

∂r2
=

∂u

∂y

∂2y

∂r2
+

∂2u

∂y2

(
∂y

∂r

)2

+ 2
∂2u

∂y∂x

∂y

∂r

∂x

∂r
+

∂u

∂x

∂2x

∂r2
+

∂2u

∂x2

(
∂x

∂r

)2

.

Our transformed partial differential equation is

2ik

(
∂u

∂y

∂y

∂z
+

∂u

∂x

∂x

∂z

)
=

∂u

∂y

∂2y

∂r2
+

∂2u

∂y2

(
∂y

∂r

)2

+ 2
∂2u

∂y∂x

∂y

∂r

∂x

∂r

+
∂u

∂x

∂2x

∂r2
+

∂2u

∂x2

(
∂x

∂r

)2

+
1

r

(
∂u

∂y

∂y

∂r
+

∂u

∂x

∂x

∂r

)
.

Collecting terms we can write the above as

(
2ik

∂x

∂z
− ∂2x

∂r2
− 1

r

∂x

∂r

)
ux =

(
−2ik

∂y

∂z
+

∂2y

∂r2
+

1

r

∂y

∂r

)
uy

+

(
∂y

∂r

)2

uyy + 2

(
∂y

∂r

∂x

∂r

)
uyx +

(
∂x

∂r

)2

uxx. (3.1)

In this method, rather than derive a difference scheme for the pre-lens segment we

will evaluate the input beam equation at the lens surface and use this as the initial

solution for the simulation of the lens segment. The solution at the right edge of the

lens segment becomes the initial solution of the post-lens segment, which we simulate

using the homogeneous scheme described earlier.

We wish to map the lens area Ω : 0 ≤ z ≤ Z, (z − R)2 + r2 ≤ R2, r ≥ 0, onto

the rectangular area Ω1 : 0 ≤ x ≤ Z, 0 ≤ y ≤ R1 using z-stretching. A natural choice

is the following one-to-one transformation

x(z, r) =
z − (

R−√R2 − r2
)

Z − (
R−√R2 − r2

)Z, y(z, r) = r,

with inverse transformation

z(x, y) = R−
√

R2 − y2 +
x

Z

[
Z −

(
R−

√
R2 − y2

)]
, r(x, y) = y.
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We have

∂y

∂r
= 1,

∂2y

∂r2
= 0,

∂y

∂z
= 0,

∂x

∂r
=

rZ (z − Z)√
R2 − r2

(
Z − (

R−√R2 − r2
))2 ,

∂2x

∂r2
= −Z

(−R3 +
(
Z +

√
R2 − r2

)
R2 + 2r2

√
R2 − r2

)
(Z − z)

(R2 − r2)3/2 (
Z − (

R−√R2 − r2
))3 ,

and

∂x

∂z
=

Z

Z − (
R−√R2 − r2

) ,
∂z

∂y
=

y√
R2 − r2

(
1− x

Z

)
.

We define functions

φ(x, y) :=
∂x

∂r
(r (x, y) , z (x, y)) =

(x− Z) y√
R2 − y2

[
Z −

(
R−

√
R2 − y2

)] ,

ψ(x, y) :=
∂2x

∂r2
(r (x, y) , z (x, y)) =

(x− Z)
[
R3 −

√
R2 − y2 (R2 + 2y2)− Z

]

(R2 − y2)
3
2

[
Z −

(
R−

√
R2 − y2

)]2 ,

θ(x, y) :=
∂x

∂z
(r (x, y) , z (x, y)) =

Z

Z −
(
R−

√
R2 − y2

) .

Equation (3.1) becomes

(
2ikθ − ψ − 1

y
φ

)
ux =

1

y
uy + uyy + 2φuxy + φ2uxx. (3.2)

Theorem 3.1. The slowly varying envelope approximation implies that the term φ2uxx

in (3.2) is negligible.

Proof. For a fixed value of y in the transformed lens segment, |uxx| is bounded by

the value of |uxx| at x = 0. Equivalently in the physical space, for a fixed value of r,

|uxx| is bounded by the value of |uxx| at the lens surface z = R−√R2 − r2. Clearly,

|uxx| is monotonically increasing with respect to y. Because we are stretching along

the direction of propagation, we have the relation

uxx =

(
Z − (

R−√R2 − r2
))

Z
uzz,
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where the derivative term on the left is evaluated at a point in the computational

space, and the derivative term on the right is evaluated at the corresponding point in

the physical space. We find that

φ2|uxx| ≤ R2
1Z

(R2 −R2
1)

(
Z −

(
R−

√
R2 −R2

1

)) |uzz|

for all points in the lens segment.

Thus in a typical lens where the slowly varying envelope approximation is ap-

plicable, neglecting φ2uxx, the last term on the righthand side of equation (3.2), will

not decrease the accuracy of the approximation.

Solely for the purpose of analysis, we will first assume that the cross derivative

uzr is also negligible. With this assumption, by a similar argument to above we can

demonstrate that the term 2φuxy is negligible as well.

Within the lens segment, our transformed equation can be simplified to

(
2ikθ − ψ − 1

y
φ

)
ux =

1

y
uy + uyy. (3.3)

The coefficients of our simplified equation are

c4 = 1, c3 =
1

y
, c2 = −

(
2ikθ − ψ − 1

y
φ

)
, c1 = 0, c0 = 0.

Substituting the specific coefficient ci values into (2.15) we obtain the scheme

(
1

2h2
+

1

4hy

)
um+1,n +

(
− 1

h2
− 1

τ

[
2ikθ − ψ − 1

y
φ

])
um,n

+

(
1

2h2
− 1

4hy

)
um−1,n = −

(
1

2h2
+

1

4hy

)
um+1,n−1

+

(
1

h2
− 1

τ

[
2ikθ − ψ − 1

y
φ

])
um,n−1 −

(
1

2h2
− 1

4hy

)
um−1,n−1.

On the grid lines y = mh, we can write the above as

−αγ

(
1 +

1

2m

)
um+1,n + (2 + 2αγ) um,n − αγ

(
1− 1

2m

)
um−1,n
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= αγ

(
1 +

1

2m

)
um+1,n−1 + (2− 2αγ) um,n−1 + αγ

(
1− 1

2m

)
um−1,n−1

where

α =
τ

h2
, γ(x, y) =

1

2ikθ − ψ − 1
y
φ

.

For the boundary condition at y = 0 and y = R1 we have

uy(x, 0) = uzzy(x, 0) + urry(x, 0) = uz · 0 + ur(x, 0) = 0,

and

uy(x,R1) = uzzy(x,R1) + urry(x,R1) = uz · 0 + ur(x,R1) = 0.

Substituting the specific coefficient values into the general form for the boundary

value difference equations, we obtain

−2αγu1,n + (2 + 2αγ) u0,n = 2αγu1,n−1 + (2− 2αγ) u0,n−1,

and

(2 + 2αγ) uM,n − 2αγuM−1,n = (2− 2αγ) uM,n−1 + 2αγuM−1,n−1.

It is interesting to note that for a lens that tapers to a point at the top, the ge-

ometric interpretation of this new boundary condition is that the single point (Z, R1)

has been stretched into the upper edge of our transformed rectangular domain, i.e. the

upper boundary in the computational space corresponds to the single point (Z, R1)

in the physical space.

Expressing the scheme in matrix form

Bun = Cun−1,

we have

B = 2I + A, C = 2I − A,
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x
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1
 

Figure 3.1: LEFT: An in-lens domain before z-stretching. RIGHT: The in-lens domain
after z-stretching.

where

A =




2αγ0 −2αγ0 0 ··· 0

−αγ1(1+ 1
2(1)) 2αγ1 −αγ1(1− 1

2(1)) 0 ···
··· ··· ···

··· 0 −αγM−1(1+ 1
2(M−1)) 2αγM−1 −αγM−1(1− 1

2(M−1))
0 ··· 0 −2αγM 2αγM


 .

3.2 z-Stretching Stability

Theorem 3.2. Let xzr ≈ 0. Then the z-stretched scheme is stable

Proof. For the z-stretched scheme, we have A = αSH, where α > 0,

H =




2 −2 0 ··· 0

−(1+ 1
2(1)) 2 −(1− 1

2(1)) 0 ···
··· ··· ···

··· 0 −(1+ 1
2(M−1)) 2 −(1− 1

2(M−1))
0 ··· 0 −2 2


 , S =




γ0 0 ··· 0
0 γ1 0 ···
··· ···

··· 0 γM−1 0
0 ··· 0 γM




Looking at H row-wise, we see that the Gershgorin circles are centered at 2, and

have radius 2. Thus the eigenvalues of H are located on the closed right half of the

complex plane, i.e. the real parts of the eigenvalues are non-negative. Subsequently,
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we have

γ(x, y) =
1

2ikθ(x, y)−
(
ψ(x, y) + 1

y
φ(x, y)

)

=
−

(
ψ(x, y) + 1

y
φ(x, y)

)
− 2ikθ(x, y)

(
ψ(x, y) + 1

y
φ(x, y)

)2

+ (2kθ(x, y))2
.

Now we examine the terms of the γ function, beginning with

ψ(x, 0) =





−Z(Z−x)
RZ2 < 0, 0 ≤ x < Z,

0, x = Z
.

With respect to y, ψ(x, y) changes sign at asymptote y =
√

R2 − (R− Z)2 = R1.

We find that ψ(x, y) < 0 for 0 ≤ y < R1, 0 ≤ x < Z. Next, we have

1

y
φ(x, 0) =





−(Z−x)
RZ

< 0, 0 ≤ x < Z,

0, x = Z
.

Examining φ, we find that φ(x, y) < 0 for 0 ≤ y < R1, 0 ≤ x < Z. Thus we can see

that

Re (γ(x, y)) =
−

(
ψ(x, y) + 1

y
φ(x, y)

)

(
ψ(x, y) + 1

y
φ(x, y)

)2

+ (2kθ(x, y))2
≥ 0, for 0 ≤ y < R1, 0 ≤ x < Z.

Thus matrix S is positive semidefinite.

Consequently by Theorem 2.9, ι−(αHS) = ι−(HS) ≤ ι−(H) = 0. Thus A is

positive semistable and we can conclude that the z-stretched scheme is stable.

3.3 z-Stretching Scheme with Cross Derivative Term

We now discard the assumption that the cross derivative term in the trans-

formed equation (3.2) is negligible. It will be necessary therefore to establish a few

results concerning partial differential equations of the form

c5uzr + c4urr + c3ur + c2uz + c1u + c0 = 0, (3.4)



43

where ci, 0 ≤ i ≤ 5 are functions of r and z. For the theorems and remarks to follow,

let P be the differential operator such that

Pu = c5uzr + c4urr + c3ur + c2uz + c1u + c0. (3.5)

We use the Taylor expansions (2.2)-(2.7) around reference point
(
zn− 1

2
, rm

)
to derive

uzr =
1

τ

{
um+1,n − um−1,n

2h
− um+1,n−1 − um−1,n−1

2h

}
+ O(h2). (3.6)

We substitute the approximations (2.8)-(2.11) and (3.6) into equation (3.4) to form

a six-point, two-level difference scheme as follows

c5

2τh
[um+1,n − um−1,n − um+1,n−1 + um−1,n−1]

+
c4

2h2
[um+1,n − 2um,n + um−1,n + um+1,n−1 − 2um,n−1 + um−1,n−1]

+
c3

4h
[um+1,n − um−1,n + um+1,n−1 − um−1,n−1]

+
c2

τ
[um,n − um,n−1] +

c1

2
[um,n + um,n−1] + c0 = 0.

The above can be expressed as a difference operator in implicit form

Pτ,hu =
( c5

2hτ
+

c4

2h2
+

c3

4h

)
um+1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
um,n

+
(
− c5

2hτ
+

c4

2h2
− c3

4h

)
um−1,n

= −
(
− c5

2hτ
+

c4

2h2
+

c3

4h

)
um+1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
um,n−1

−
( c5

2hτ
+

c4

2h2
− c3

4h

)
um−1,n−1 + c0 (3.7)

where h and τ are the grid step-sizes, m and n the grid indices for the r and z

directions respectively.

For the Neumann boundary conditions

ur(0) = 0, ur (R1) = 0

as in Section 2.1 we derive difference equations in general form

c4

h2
u1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
u0,n

= − c4

h2
u1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
u0,n−1 + c0 (3.8)



44

and

c4

h2
uM−1,n +

(
− c4

h2
+

c2

τ
+

c1

2

)
uM,n

= − c4

h2
uM−1,n−1 +

( c4

h2
+

c2

τ
− c1

2

)
uM,n−1 + c0. (3.9)

Theorem 3.3. The scheme Pτ,hv = 0 has a local truncation error of order O (τ 2) +

O (h2) with respect to Pu = 0.

Proof. Let u(z, r) be a smooth function. By substituting the Taylor expansions (2.2)-

(2.7) into (3.7) and gathering terms, we see that

Pτ,hu = c5

[
∂2u

∂z∂r
+

h2

6

∂4u

∂z∂r3
+

τ 2

24

∂4u

∂z3∂r
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)]

+ c4

[
∂2u

∂r2
+

h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)]

+ c3

[
∂u

∂r
+

h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2
+ O

(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)]

+ c2

[
∂u

∂z
+

τ 2

24

∂3u

∂z3
+ O

(
τ 4

)]
+ c1

[
um,n− 1

2
+

τ 2

8

∂2u

∂z2
+

τ 4

384

∂4u

∂z4
+ O

(
τ 6

)]
+ c0

= c5
∂2u

∂z∂r
+ c4

∂2u

∂r2
+ c3

∂u

∂r
+ c2

∂u

∂z
+ c1um,n− 1

2
+ c0

+ c5

[
h2

6

∂4u

∂z∂r3
+

τ 2

24

∂4u

∂z3∂r

]
+ c4

[
h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2

]

+ c3

[
h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2

]
+ c2

[
τ 2

24

∂3u

∂z3

]
+ c1

[
τ 2

8

∂2u

∂z2

]
+ O

(
h4

)

+ O
(
h2τ 2

)
+ O

(
τ 4

)

= Pu + c5

[
h2

6

∂4u

∂z∂r3
+

τ 2

24

∂4u

∂z3∂r

]
+ c4

[
h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2

]

+ c3

[
h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2

]
+ c2

[
τ 2

24

∂3u

∂z3

]
+ c1

[
τ 2

8

∂2u

∂z2

]
+ O

(
h4

)

+ O
(
h2τ 2

)
+ O

(
τ 4

)
.
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Thus the truncation error

Pτ,h − Pu = c5

[
h2

6

∂4u

∂z∂r3
+

τ 2

24

∂4u

∂z3∂r

]
+ c4

[
h2

12

∂4u

∂r4
+

τ 2

8

∂4u

∂r2∂z2

]

+ c3

[
h2

6

∂3u

∂r3
+

τ 2

8

∂3u

∂r∂z2

]
+ c2

[
τ 2

24

∂3u

∂z3

]
+ c1

[
τ 2

8

∂2u

∂z2

]

+ O
(
h4

)
+ O

(
h2τ 2

)
+ O

(
τ 4

)
= O

(
τ 2

)
+ O

(
h2

)
.

This completes our proof.

Corollary 3.1. The scheme Pτ,hv = 0 has local order of accuracy (2, 2).

Proof. By Theorem 3.3,

Pτ,h − Pu = O
(
τ 2

)
+ O

(
h2

)
.

Thus Pτ,hv = 0 has local order of accuracy (2, 2) with respect to Pu = O.

Theorem 3.4. The scheme Pτ,hv = 0 is consistent with differential equation Pu = 0.

Proof. By Theorem 3.3

Pτ,h − Pu = O
(
τ 2

)
+ O

(
h2

) → 0

as τ, h → 0. Thus the scheme Pτ,hv = 0 is consistent with differential equation

Pu = 0.

With a non-negligible cross derivative term, our transformed equation (3.2)

becomes (
2ikθ − ψ − 1

y
φ

)
ux =

1

y
uy + uyy + 2φuxy. (3.10)

The coefficients of our simplified equation with cross derivative term are

c5 = 2φ, c4 = 1, c3 =
1

y
, c2 = −

(
2ikθ − ψ − 1

y
φ

)
, c1 = 0, c0 = 0.

Substituting the specific coefficient ci values into (3.7) we obtain the scheme

(
2φ

2hτ
+

1

2h2
+

1

4hy

)
um+1,n +

(
− 1

h2
− 1

τ

[
2ikθ − ψ − 1

y
φ

])
um,n
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+

(
− 2φ

2hτ
+

1

2h2
− 1

4hy

)
um−1,n = −

(
− 2φ

2hτ
+

1

2h2
+

1

4hy

)
um+1,n−1

+

(
1

h2
− 1

τ

[
2ikθ − ψ − 1

y
φ

])
um,n−1 −

(
2φ

2hτ
+

1

2h2
− 1

4hy

)
um−1,n−1.

On the grid lines y = mh, we can write the above as

− γ

[
2φ

h
+ α

(
1 +

1

2m

)]
um+1,n + (2 + 2αγ)um,n − γ

[
−2φ

h
+ α

(
1− 1

2m

)]
um−1,n

= γ

[
−2φ

h
+ α

(
1 +

1

2m

)]
um+1,n−1 + (2− 2αγ)um,n−1

+ γ

[
2φ

h
+ α

(
1− 1

2m

)]
um−1,n−1 (3.11)

where

α =
τ

h2
, γ(x, y) =

1

2ikθ − ψ − 1
y
φ

.

Substituting the specific coefficient values into the general form for the boundary

value difference equations, we obtain

−2αγu1,n + (2 + 2αγ) u0,n = 2αγu1,n−1 + (2− 2αγ) u0,n−1,

and

(2 + 2αγ) uM,n − 2αγuM−1,n = (2− 2αγ) uM,n−1 + 2αγuM−1,n−1.

3.4 Stability of z-Stretching scheme with Cross Derivative Term

To determine the stability of the z-stretching scheme with the cross derivative

term, we will need to establish additional lemmas concerning matrices.

Lemma 3.1. Let A ∈ Cn×n be nonsingular. Then A + A∗ is positive definite if and

only if A−1 + (A−1)
∗

is positive definite.

Proof. Let A ∈ Cn×n such that A is nonsingular and A+A∗ is positive definite. Then

x∗ (A + A∗)x > 0 , for all nonzero x ∈ Cn.



47

Let x ∈ Cn. Since A is nonsingular, ∃y ∈ Cn such that x = Ay. Then

x∗
(
A−1 +

(
A−1

)∗)
x = x∗A−1x + x∗

(
A−1

)∗
x

= (Ay)∗ A−1Ay + (Ay)∗
(
A−1

)∗
Ay

= y∗A∗y + y∗A∗ (A∗)−1 Ay

= y∗A∗y + y∗Ay

= y∗ (A + A∗)y > 0.

Lemma 3.2. Let A,B ∈ Cn×n with A positive semistable and B nonsingular. Further

assume B + B∗ is positive definite. Then AB−1 is positive semistable.

Proof. Let A,B ∈ Cn×n with A positive semistable, B nonsingular, and B + B∗

positive definite. By Lemma 3.1, B−1 + (B−1)
∗

is positive definite. By Lemma 2.4,

ι (AB−1) = ι (A) . Thus AB−1 is positive semistable.

Theorem 3.5. Let A,B, C, G ∈ Cn×n be such that G is nonsingular and

B = G + A, C = G− A.

Then the difference scheme defined by

Bun = Cun−1

is stable if and only if AG−1 is positive semistable.

Proof. Let A, B, C, B̃, C̃, G ∈ Cn×n be such that G is nonsingular and

B = G + A, C = G− A, B̃ = I + AG−1, C̃ = I − AG−1

We note that the matrix B−1C is similar to the matrix B̃−1C̃. Specifically

G
(
B−1C

)
G−1 = G (G + A)−1 (G− A) G−1

=
(
(G + A)G−1

)−1
(G− A) G−1

=
(
I + AG−1

)−1 (
I − AG−1

)
= B̃−1C̃.
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Then ρ(B−1C) = ρ(B̃−1C̃), and we see that the difference scheme defined by

Bun = Cun−1

is stable if and only if the scheme

B̃un = C̃un−1

is stable. Thus the conclusion follows from Theorem 2.5.

Theorem 3.6. Let Re (γ (x, y)) ≥ 0 for 0 ≤ y < R1 and

∣∣∣∣
2γ (x, y) φ (x, y)

h

∣∣∣∣ < 1 for 0 ≤ y < R1, 0 ≤ x < Z.

Then scheme (3.11) is stable.

Proof. Let Re (γ (x, y)) ≥ 0 for 0 ≤ y < R1 and

∣∣∣∣
2γ (x, y) φ (x, y)

h

∣∣∣∣ < 1 for 0 ≤ y < R1, 0 ≤ x < Z.

Expressing scheme (3.11) in matrix form

Bun = Cun−1

we have

B = (G + A) , C = (G− A)

where matrix A is the same as in the z-stretching with no cross derivative scheme,

and

G =




2 0 0 · · · 0

−γ1φ1

h
2 γ1φ1

h
0 · · ·

· · ·
· · ·

· · ·
· · · 0 −γM−1φM−1

h
2 γM−1φM−1

h

0 · · · 0 0 2
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where γm = γ(x,mh) and φm = γ(x,mh).

Then

G + G∗ =




2 −γ1φ1

h
0 · · · 0

−γ1φ1

h
2 γ1φ1

h
− γ2φ2

h
0 · · ·

· · ·
· · ·

· · ·
· · · 0 γM−2φM−2

h
− γM−1φM−1

h
2 γM−1φM−1

h

0 · · · 0 γM−1φM−1

h
2

.




We will apply Sylvester’s Criterion, which states that a Hermitian matrix A is positive

definite if and only if all principal minors of A have a positive determinate [26]. For

a tridiagonal matrix, we observe that the determinates of the principle minors can be

expressed in recursive form as so

det [A]{k,...,n} = an,n det [A]{k,...,n−1} − an,n−1an−1,n det [A]{k,...,n−2} .

With our assumptions it is straightforward to demonstrate via induction that all

principal minors have positive determinate. Thus G + G∗ is positive definite. We

demonstrated in the previous case that A is positive semistable, thus by Lemma

3.2, AG−1 is positive semistable. Then by Theorem 3.5, we see that our scheme is

stable.

3.5 Numerical Results

Simulation results were obtained using the z-stretching method with cross-

derivative term included. Within the lens segment, the grid utilized 5,000 points

in the transverse y-direction and 32,000 points in the x-direction of propagation. The

function (1.14) approximating a Gaussian beam with point source was used as the

initial value, with point source located at z0 = 10 cm., and beam width β0 = 1.5 cm.
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Figure 3.2: z-stretch simulation: intensity of the computed solution near the z-axis, at
r = h.

The post-peak oscillation in the graph of the solution intensity near the z-axis

matches behavior observed in experimental data.

Figure 3.3. Normalized intensity graph of experimental data.
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Figure 3.4: z-stretch simulation: real part of the computed solution at the focal point z =
2.74 cm.
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Figure 3.5: z-stretch simulation: amplitude of the real part of the computed solution near
the z-axis, at r = h.
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Figure 3.6: z-stretch simulation: amplitude of the imaginary part of the computed solution
near the z-axis, at r = h.



CHAPTER FOUR

Moving Mesh Methods

4.1 Stretching in the r Direction

We next consider stretching only in the transverse r direction. It will be con-

venient in this case to formulate our transformation in terms of the mappings from

the computational space to the physical space, r = r(x, y) and z = x. We see that

∂z

∂x
= 1,

∂2z

∂x2
= 0,

∂z

∂y
= 0,

∂2z

∂y2
= 0.

We first derive the transformed derivatives

∂u

∂x
=

∂u

∂z

∂z

∂x
+

∂u

∂r

∂r

∂x
=

∂u

∂z
+

∂u

∂r

∂r

∂x
,

∂u

∂y
=

∂u

∂z

∂z

∂y
+

∂u

∂r

∂r

∂y
=

∂u

∂r

∂r

∂y
,

∂2u

∂y2
=

(
∂u

∂r

∂r

∂y

)

y

=

(
∂2u

∂z∂r

∂z

∂y
+

∂2u

∂r2

∂r

∂y

)
∂r

∂y
+

∂u

∂r

∂2r

∂y2

=

(
∂2u

∂r2

∂r

∂y

)
∂r

∂y
+

∂u

∂r

∂2r

∂y2
=

∂2u

∂r2

(
∂r

∂y

)2

+
∂u

∂r

∂2r

∂y2
.

Isolating the derivatives in the physical space, we find

uz = ux − uy

(
rx

ry

)
, ur =

1

ry

uy, urr =
uyyry − uyryy

r3
y

.

Substituting the above into Equation (3.1), we obtain the transformed partial differ-

ential equation

2ik

[
ux − uy

(
rx

ry

)]
=

uyyry − uyryy

r3
y

+
1

rry

uy.

Collecting derivative terms we can rewrite this as

2ikryux =
1

ry

uyy +

(
2ikrx − ryy

r2
y

+
1

r

)
uy. (4.1)

The transformation function r has the properties that

r(0) = 0, r(R1) = R1, ry(0) > 0, ry (R1) > 0.

53
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Then the relation

∂u

∂y
=

∂u

∂z

∂z

∂y
+

∂u

∂r

∂r

∂y
=

∂u

∂r

∂r

∂y

implies the transformed boundary conditions

∂u

∂y
(0) = 0,

∂u

∂y
(R1) = 0.

Next, we define a finite difference scheme by the method described in Section 2.1.

Our coefficients are

ch,0 = 0, ch,1 = 0, ch,2 = −2ikhry, ch,3 = 2ikhrx − ryy

r2
y

+
1

r
, ch,4 =

1

ry

. (4.2)

Substituting these coefficients into (2.15), we obtain the scheme

(
1

2h2ry

+
1

4h

[
2ikhrx − ryy

r2
y

+
1

r

])
um+1,n +

(
− 1

h2ry

− 2ikhry

τ

)
um,n

+

(
1

2h2ry

− 1

4h

[
2ikhrx − ryy

r2
y

+
1

r

])
um−1,n

= −
(

1

2h2ry

+
1

4h

[
2ikhrx − ryy

r2
y

+
1

r

])
um+1,n−1 +

(
1

h2ry

− 2ikhry

τ

)
um,n−1

−
(

1

2h2ry

− 1

4h

[
2ikhrx − ryy

r2
y

+
1

r

])
um−1,n−1.

Setting α =
τ

2h2
, we rewrite the above as

iα

khr2
y

(
1 +

hry

2

[
2ikhrx − ryy

r2
y

+
1

r

])
um+1,n +

(
− 2iα

khr2
y

+ 2

)
um,n

+
iα

khr2
y

(
1− hry

2

[
2ikhrx − ryy

r2
y

+
1

r

])
um−1,n

= − iα

khr2
y

(
1 +

hry

2

[
2ikhrx − ryy

r2
y

+
1

r

])
um+1,n−1 +

(
2iα

khr2
y

+ 2

)
um,n−1

− iα

khr2
y

(
1− hry

2

[
2ikrx − ryy

r2
y

+
1

r

])
um−1,n−1. (4.3)

We likewise substitute the specific coefficient ci values into (2.17) and (2.19) to form

the difference equations for the boundary conditions.

2iα

khr2
y

u1,n +

(
− 2iα

khr2
y

+ 2

)
u0,n = − 2iα

khr2
y

u1,n−1 +

(
2iα

khr2
y

+ 2

)
u0,n−1 (4.4)
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and

(
− 2iα

khr2
y

+ 2

)
uM,n +

2iα

khr2
y

uM−1,n =

(
2iα

khr2
y

+ 2

)
uM,n−1 − 2iα

khr2
y

uM−1,n−1. (4.5)

Theorem 4.1. The scheme (4.3) has truncation error

2i (kh − k) (ryux − rxuy) + O
(
τ 2

)
+ O

(
h2

)
.

with respect to the transformed equation (4.1).

Proof. By Theorem 2.3, the truncation error is

(ch,4 − c4)
∂2u

∂y2
+ (ch,3 − c3)

∂u

∂y
+ (ch,2 − c2)

∂u

∂x

+ (ch,1 − c1) um,n− 1
2

+ ch,0 − c0 + O
(
τ 2

)
+ O

(
h2

)

Substituting the specific coefficients (4.2) into the above, we obtain a truncation error

of

2i (kh − k) (ryux − rxuy) + O
(
τ 2

)
+ O

(
h2

)
.

4.2 Stability in the Transformed Space

Theorem 4.2. Let H ∈ CM×M be such that

H =




−2 2 0 · · · 0

1− θ1 −2 1 + θ1 0 · · ·
· · ·

· · ·
· · ·

· · · 0 1− θM−1 −2 1 + θM−1

0 · · · 0 2 −2




,
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where

θm =
hry(mh)

2

[
2ikh(mh)rx(mh)− ryy(mh)

r2
y(mh)

+
1

r(mh)

]

and r is the r-stretching transformation r = r(x, y). Then the difference scheme (4.3),

(4.4), (4.5) is stable if and only if the matrix iH is positive semistable.

Proof. We can express the scheme (4.3), (4.4), (4.5) in matrix form

Bun = Cun−1

with

B = 2I + A, C = 2I − A, A = iαSH,

α =
τ

h2
, S =




ϕ0 0 · · · 0

0 ϕ1 0 · · ·
· · ·

· · ·
· · · 0 ϕM−1 0

0 · · · 0 ϕM




, ϕm =
1

kh(mh)r2
y(mh)

,

and H is as above. By Theorem 2.5, the scheme is stable if and only if A is positive

semistable. Since kh(y) > 0, ry(y) > 0, for all 0 ≤ y ≤ R1, S is positive definite. Also,

α > 0, therefore αS is positive definite. Thus A = (αS)(iH) is positive semistable if

and only if iH is positive semistable.

Definition 4.1. A refinement path is a sequence of mesh sizes τ and h, both of which

tend to zero. We typically specify a relationship between τ and h, for example,

τ ≤ Ch

for some constant C, as a constraint on the refinement path.

For the r-stretching method, as h → 0, the transform function and derivatives

are dependent on h. To evaluate stability, we have the following theorem.
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Theorem 4.3. We assume a constraint on the refinement path of

τ ≤ Ch

for some constant C. Let the transform function, r(x, y, h), and derivatives of the

r-stretching method be such that

|θm| → 0, as h → 0, for all 0 ≤ m ≤ M − 1.

Then the eigenvalues of iH approach pure imaginary as h → 0.

Proof. As h → 0, H → H0 where

H0 =




−2 2 0 · · · 0

1 −2 1 0 · · ·
· · ·

· · ·
· · ·

· · · 0 1 −2 1

0 · · · 0 2 −2




.

Since the subdiagonal and superdiagonal entries of H0 are all positive reals, by Lemma

2.3, the eigenvalues of H0 are real. Eigenvalues are a continuous function of the

coefficients of a matrix, thus the eigenvalues of iH approach pure imaginary as h →
0.

4.3 Adaptive Grid Methods

We will examine previous adaptive grid methods in greater detail, to determine

what ideas and methods we can apply to our adaptive techniques.

4.3.1 Adaptive Mesh Refinement

Berger and Oliger introduced the Adaptive Mesh Refinement (AMR) method in

1984, originally applied to hyperbolic partial differential equations [8]. The technique
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proceeds as follows: A base grid consisting of one or more component meshes of points

with uniform spacing in each coordinate direction and with sufficient resolution for

those regions of least variability in the solution is constructed for the entire domain.

During computation, smaller subgrids are placed in regions of greater variability.

These subgrids are rectangular, possibly rotated with respect to the base grid, and

have a finer mesh with uniform grid spacings in each coordinate direction that have

the same relative ratios as the grid spacings in the base grid.

The points of the mesh of a subgrid do not have to line up with the points of

the base grid in any way. Initial and boundary values for the subgrid are obtained

through interpolation from the values calculated on the coarser grid, and a separate

solution is then computed for the grid with these boundary values. If the subgrid is

rotated with respect to the base grid, the difference equations are transformed onto

the rotated coordinates. Successively finer subgrids may be placed on top subgrids

recursively.

To generate subgrids, truncation error for points on a coarse grid are estimated

using a Richardson extrapolation and a finer subgrid is placed to cover each region

where the error estimate is greater than a determined tolerance. Refinement is by an

arbitrary even integer ratio, which in numerical examples is typically chosen to be

four [10]. Rotation is used if it is desirable that a feature of the solution should be

normal or tangent to a coordinate direction. If for some area within a subgrid, error

estimates are still too high, finer subgrids are applied in a nested hierarchy.

The Adaptive Mesh Refinement method was applied to several one and two

dimensional shock problems and compared to simulations using uniform meshes with

the resolution of the finest subgrid. Considerable savings were achieved in computa-

tion time and storage requirement, with error estimates being comparable, or in some

cases better due to rotation of the subgrids [8].
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4.3.2 Grid Redistribution

Grid redistribution or “moving mesh” methods utilize a fixed number of spatial

grid points. These grid points are “moved” within the physical space so that a higher

concentration of them occur in regions where, because of some local solution feature

such as greater variability, more points are needed to represent the solution accurately.

The repositioning of the grid points is achieved via coordinate transformation.

Beginning with a uniform grid in a rectangular computational space, a 1-1 mapping

is defined from the computational space to the physical space. As the simulation

proceeds, the mapping is dynamically adapted to reposition grid points where needed

in the physical space at each propagation step.

The study of how to define useful mappings is a well-developed field referred to

as grid generation or mesh generation [24, 39, 71]. An example mapping would be the

widely used transformation of cartesian coordinates into polar, cylindrical or spherical

coordinates. Such a transformation from a uniform coordinate system onto a general

space corresponds directly to the concept of a general curvilinear coordinate system

for the physical space, as used in differential geometry and other fields. Typically, the

boundary of the computational space corresponds to the boundary of physical space.

Magnifying a particular subregion in a physical domain via coordinate transformation

is functionally equivalent to decreasing the grid spacings in that region.

The numerical computation occurs on the uniform grid in the computational

space, sometimes called the logical space. The partial differential equations to be

solved in the physical space must be transformed into the uniform coordinate system.

The mapping must possess certain properties for the transformed equations to be

valid.

Definition 4.2. For a coordinate transformation

z = z(x, y), r = r(x, y),
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the matrix

J =




∂z
∂x

∂z
∂y

∂r
∂x

∂r
∂y




is called the Jacobian matrix of the transformation, while the determinate J = |J| is

referred to as the Jacobian.

The quality of the transformation can be determined by properties of the Jacobian.

For instance, for the transformation to be 1-1, the Jacobian must have full rank.

Transformations are often designed to distribute some function, called a monitor

function evenly throughout the physical domain. Most such techniques are based on

the equidistribution principle of de Boor [18].

The calculus of variations is commonly employed to obtain a mesh generating

equation. The minimizer of a functional can be used to obtain a partial differential

equation which is solved by numerical means to generate transformed grid coordinates.

We will use this technique to obtain a mesh generator for our r-stretching method.

4.4 A Mesh Generator

We choose the monitor function

g(y) = [r(y) + σr(r(y))]2 = ([1 + σr(r(y))] ry)
2 .

Our object is to produce a mesh generator that will concentrate up to half of the grid

points in the region of the interface, without increasing the spacing by more than a

factor of 2 between points away from the interface.

Theorem 4.4. For a continuous sigma function σ(r), a unique solution of the initial

value problem

[1 + R1σr (r(y))] ry = 2, (4.6)

r(0) = 0 (4.7)

exists and has the following properties:
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(i) r(R1) = R1

(ii) max(ry) < 2, 0 ≤ y ≤ R1

(iii) max(R1σ(y)) = max(R1σr (r(y)) ry) < 2, 0 ≤ y ≤ R1

Proof. Let f(r) = y = 1
2
(r + R1σ(r)) . Our sigma functions are monotonically in-

creasing and

σ(0) = 0, σ(R1) = 1.

Thus f(r) is monotonically increasing, and

f(0) = 0, f(R1) =
1

2
(R1 + R1σ(R1)) = R1.

Then we have the inverse function r(y) = f−1(y), which is monotonically increasing,

and

ry =
1

f ′ (f−1(y))
=

2

1 + R1σr (r(y))
.

Substituting f−1(y) into (4.6), we see that it is a solution.

(i) We have r(R1) = f−1(R1) = R1.

(ii) Assume ry ≥ 2. Then 1 + R1σr(r(y)) ≤ 1 and therefore R1σr(r(y)) ≤ 0.

Contradicts R1 > 0 and σ(r) monotonically increasing. Thus ry < 2.

(iii) Assume R1σr (r(y)) ry ≥ 2. Then r(y) ≤ 0, which contradicts r(y) monotoni-

cally increasing. Thus R1σr (r(y)) ry < 2.

Theorem 4.5. The solution of (4.6), (4.7) minimizes the functional

I(r) =

∫ R1

0

(σr(r(y))ry + ry)
2 dy

=

∫ R1

0

{[σr(r(y)) + 1] ry}2 dy

over the set of admissible functions r(y), such that

r(y) ∈ C2[0, R1], r(0) = 0, r(R1) = R1.
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Proof. Let I(r) be the functional defined above and c(y) ∈ C2[0, R1] be a function

such that

c(0) = c(R1) = 0.

Then for any ε > 0, the function t(y, ε) = r(y) + εc(y) is admissible. We define a

function of ε,

F (ε) =

∫ R1

0

[(σt(t(y, ε)) + 1) (ry + εcy)]
2 dy

If r(y) minimizes the functional I(r), we must have a minimum of F (ε) at ε = 0.

We examine the derivative

F ′(ε) =

∫ R1

0

2 {[(σt(t(y, ε)) + 1) ty] [c(y)σtt(t(y, ε))ty + cy (σt(t(y, ε)) + 1)]} dy

at ε = 0,

F ′(0) =

∫ R1

0

2 {[(σr(r(y)) + 1) ry] [c(y)σrr(r(y))ry + cy (σr(r(y)) + 1)]} dy

= 2

{∫ R1

0

c(y) [σr(r(y)) + 1] σrr(r(y))r2
ydy +

∫ R1

0

cy [σr(r(y)) + 1]2 ry

}

= 2

∫ R1

0

c(y) [σr(r(y)) + 1] σrr(r(y))r2
ydy

−2

∫ R1

0

c(y)
(
2 [σr(r(y)) + 1] r2

yσrr(r(y)) + [σr(r(y)) + 1]2
)

= 2

∫ R1

0

c(y)
{− [σr(r(y)) + 1] r2

yσrr(r(y)) + [σr(r(y)) + 1]2 ryy

}
dy = 0.

Since the equation holds for arbitrary c(y), we must have

− [σr(r(y)) + 1] r2
yσrr(r(y)) + [σr(r(y)) + 1]2 ryy = 0.

We can divide through by [σr(r(y)) + 1] to simply this equation to

−r2
yσrr(r(y)) + [σr(r(y)) + 1] ryy = 0.

But this is

[[1 + σr(r(y))] ry]y = 0
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which is satisfied by the solution of (4.6). Theorem 4.4 tells us that the solution r(y)

of (4.6), (4.7) is admissible. Thus r(y) minimizes the functional I(r) over the set of

admissible functions.

4.5 A Moving Mesh Method

In the z-stretching example, domain ”stretching” was employed simply to put

our domain in a convenient rectangular shape. However, we would like to utilize

domain transformation to provide computational flexibility. Specifically, we would

like to use coefficient smoothing to avoid difficulties at the interface, and employ

r-stretching domain transformation to reduce the resulting region of poor accuracy

near the interface to an arbitrarily small size.

We could make our sigma functions as steep as we like to make the region of

significant truncation error Pτ,hφ−Pφ as small as we like. However, when discretized,

sigma functions that are too steep are indistinguishable from the purely discontinuous

functions they are approximating and will likewise cause nonphysical oscillation in

the computed solution. Our strategy will be to choose transformations that make the

slopes of all coefficient functions less steep in the computational space.

Our moving mesh method proceeds as follows: Begin with the boundary value

problem to be solved in (z, r) coordinate space. For each discontinuous coefficient

function, substitute a continuous function of sigma, as described in Section 2.6, that

approximates the coefficient function. Let the sigma function be sufficiently steep to

achieve a desired accuracy in the numerical solution. We then transform the boundary

value problem into a uniform (x, y) coordinate space by the mapping

z = x, r = r(x, y).

The specific transformation r(x, y) will be determined dynamically at each propaga-

tion step by our algorithm.
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Figure 4.1: Here we see the sigma function in LEFT: r coordinates, and in RIGHT: y
coordinates.

Next, formulate a finite difference scheme for the transformed boundary value

problem by substituting the specific coefficient functions into the general formula for

the six-point, two-level scheme (2.15) described in Chapter 2. We have shown that the

r-stretching transformation will not change the general form of the equation. Thus

changing the specific transformation will not change the form of the equation or the

scheme. In the computational space, the problem is discretized on a uniform grid.

During simulation, our algorithm uses a nonlinear ordinary differential equation

to generate a transformation function for the r direction at each propagation step.

Based on the relation

σy = σrry

we determine an expression for ry such that ry ≤ 2 and R1σy ≤ 2. Specifically, we use

the generator derived in the previous section

ry =
2

1 + σr (r(y))
.

We use an explicit fourth order Runge-Katta method to solve the generator equation

quickly at each time step. It is neither necessary nor desirable to use the generator

function to determine the values of ry or ryy. Rather we employ the central difference
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Figure 4.2: LEFT: The r transformation function. RIGHT: The derivative of r with
respect to y

formulas

ry(xn, ym) =
r(xn, ym+1)− r(xn, ym−1)

2h
,

and

ryy(xn, ym) =
r(xn, ym+1)− 2r(xn, ym) + 2r(xn, ym−1)

h2
.

For our scheme, we actually need the derivative values at the reference points
(
xn− 1

2
, ym

)
, which are halfway between the grid points along the direction of prop-

agation. We define the values of the transformation function r(x, y) between two

tranverse grid lines to be a linear combination of the functions at those lines, i.e.,

r(xn−θ, y) = (1− θ) r(xn, y) + θr(xn−1, y), 0 ≤ θ ≤ 1.

Then we have

∂r

∂y

(
xn− 1

2
, ym

)
=

1

2

(
∂r

∂y
(xn, ym) +

∂r

∂y
(xn−1, ym)

)
,

∂2r

∂y2

(
xn− 1

2
, ym

)
=

1

2

(
∂2r

∂y2
(xn, ym) +

∂2r

∂y2
(xn−1, ym)

)
,

r
(
xn− 1

2
, ym

)
=

1

2
(r (xn, ym) + r (xn−1, ym)) ,

∂r

∂x

(
xn− 1

2
, ym

)
=

r (xn, ym)− r (xn−1, ym)

τ
.
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Using the central difference formulas to approximate the derivatives of the r transform

at the reference point can result in better overall accuracy, since we do not want to

have to solve our generating equation to extremely high precision. The transform

and derivative values obtained for each reference point can be considered a local

coordinate transformation.

Once the solution is computed in the lens region, the solution at the right edge

of the lens can be interpolated back onto physical coordinates, or the stretching can

be slowly relaxed, and the scheme for the homogeneous case can be used to simulate

the behavior of the beam in the post lens segment.

4.6 A Simple Example

In order to illustrate the benefits of r-stretching in combination with coefficient

smoothing, we present a very simple example problem. We will solve the equation

∂u

∂r
= α(r)

where

α(r) =





4
π
, 0 ≥ r < π

4
,

− 4
4−π

, π
4
≤ r ≤ 1
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Figure 4.3: LEFT: Analytic, piecewise linear solution. RIGHT: Smoothed coefficient solu-
tion, steepness factor β = 1

10 .
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Figure 4.4: LEFT: Solution in r-stretched coordinates, β = 1
2 . RIGHT: Solution with

β = 1
2 , translated back to original coordinates.

with Dirichlet boundary conditions

u(0) = 0, u(1) = 0.

The analytic solution is piecewise linear. We use the sigma function

σh(r) =
tanh

(
β r−η(z)

h

)
− tanh

(
β−η(z)

βh

)

tanh
(
β 1−η(z)

h

)
− tanh

(
β−η(z)

βh

) ,

where η =
π

4
and β is a steepness parameter, to create the following continuous
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Figure 4.5: LEFT: Error of solution using smoothed, β = 1
10 , no r-stretching. RIGHT:

Error of solution using smoothing plus r-stretching with β = 2.
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Figure 4.6: LEFT: Solution with steep σ, β = 2, no r-stretching. RIGHT: Significant error
in the solution due to instability.

approximation to α

αh =
4

π
− 16

π(4− π)
σh(r)

and solve the corresponding boundary value problem

∂u

∂r
= αh(r),

u(0) = 0, u(1) = 0.

We first look at a smoothed solution with less steep approximated coefficient function,

with steepness factor β =
1

10
. We see the that the sharp corner of the solution is

rounded near the interface, resulting in high inaccuracy in a neighborhood of the

interface. Next we use a much steeper σ function, with β = 2. The solution looks

better, but examining the error compared to the analytic solution, we see significant

error caused by instability. Finally, we use the same steepness factor β = 2, but this

time with r-stretching to avoid instability. We obtain a solution that is very accurate,

with a much smaller region of inaccuracy near the interface.



CHAPTER FIVE

The Immersed Interface Method

We extend the immersed interface method of Li to the numerical solution of the

paraxial approximation of the Helmholtz equation as a comparison [43, 44, 45, 46].

From Maxwell’s equations, the interface conditions are the continuity of the solution

and the normal derivative of the solution [16].

As before, let η(z) be the function which provides the position of the interface

(the point of discontinuity of k(z, r)) with respect to the r axis. We will denote the

z-position at propagation step k as zk, and the r-position at r = jh by rj. At zk, we

have

k(r) =





k1, r ≤ η(zk),

k2, r > η(zk).

We will utilize our two-level, six-point Crank-Nicholson scheme for regular

points, which are points away from the interface. Here a point at (zk, rj) is deter-

mined to be regular if all of the points in our six-point stencil centered at
(
zk− 1

2
, rj

)

are on the same side of the interface. Grid points where the corresponding stencil

points straddle the interface are irregular, and schemes for those grid points must be

derived according to how the stencil points are separated.

At any grid point (zk, rj) for which the corresponding stencil points on the

right, i.e. at zk lie on the same side of the interface, we simply substitute a four-point

stencil consisting of a point (zk−1, rj) at the previous propagation level, and the three

grid points (zk, rj−1), (zk, rj) and (zk, rj+1) on the right. We may do this because the

interface conditions obtained from Maxwell’s equations tell us that the derivative of

the solution in the z-direction must be continuous, and therefore we may use points

on opposite sides of the interface to approximate it, and also because the resulting

four-point implicit scheme will be first-order accurate in both r and z, as are the

69
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schemes derived using the immersed interface method.

Let η = η(zk). For grid points where the interface separates points of the

corresponding stencil at the current propagation level zk and the previous propagation

level zk−1, we employ the immersed interface method. First we derive our jump

conditions. From Maxwell’s equations (1.1)-(1.4), the first derivatives in both the r

and z direction are continuous. Thus by examining the partial differential equation,

we see that the second derivative in the r direction must have a jump discontinuity.

5.1 Jump Conditions

For a function f(z, r) we will use the notation

f+ = lim
r→η+

f(z, r), f− = lim
r→η−

f(z, r), [f ] = f+ − f−.

We now derive the jump conditions. We consider the interface as a function of z,

η(z). The solution is continuous across the interface, i.e. u− (z, η(z)) = u+ (z, η(z)).

Taking the derivative with respect to z gives us

u−z + u−r η′ = u+
z + u+

r η′

[uz] = −[ur]η
′.

Consider the interface as a function of r, χ(r) and taking the derivative with respect

to r gives us

u−z χ′ + u−r = u+
z χ′ + u+

r

[ur] = −[uz]χ
′.

We have

[ur] = 0 ⇔ [uz] = 0.

We see that the interface conditions implied by Maxwell’s equations,

u− = u+, u−r = u+
r , u−z = u+

z ,



71

remain applicable in the slowly varying approximation case. With the first derivative

relations, we derive the jump relations for the second derivatives. We have

u−r (z, η(z)) = u+
r (z, η(z)) ,

u−rz + u−rrη
′ = u+

rz + u+
rrη

′,

u−rz = u+
rz + [urr]η

′,

thus we obtain

[urz] = −[urr]η
′.

Next, we have

u−z (z, η(z)) = u+
z (z, η(z)) ,

u−zz + u−zrη
′ = u+

zz + u+
zrη

′,

u−zz = u+
zz + [uzr]η

′,

thus we obtain

u−zz = u+
zz − [urr](η

′)2.

To obtain the second derivative with respect to r jump relation, we use the one-sided

version of the partial differential equation. At η(z) we have

u+
rr + (

1

r
ur)

+ = 2ik1u
−
z ,

u−rr + (
1

r
ur)

− = 2ik2u
+
z ,

u+
rr = 2ik1u

+
z −

(
1

r
ur

)+

= 2ik1u
−
z − 2ik2u

−
z +

[
2ik2u

−
z −

(
1

r
ur

)−]

= 2i(k1 − k2)u
−
z + u−rr

u−rr = 2i(k2 − k1)u
+
z + u+

rr.
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We now have jump conditions for all second order derivatives

u−rr = u+
rr + 2i(k2 − k1)uz,

u−rz = u+
rz + 2i(k1 − k2)η

′uz,

u−zz = u+
zz + 2i(k2 − k1)(η

′)2uz,

where

η(z) =
√

R2 − (z −R)2, η′(z) =
R− z

η(z)
.

5.2 Difference Schemes for Irregular Points

We next apply the techniques of the immersed interface method to derive dif-

ference schemes for irregular points depending upon how the stencil corresponding to

the irregular point is divided by the interface.

Case 1: η ≥ rj+1

In this case the interface divides points in the six-point stencil, but it does

not divide points in the right column, at z = zk. Since uz is continuous across the

interface, we may substitute a four-point implicit scheme here which is first order

accurate.

−uk−1,j = α(1 +
1

2j
)uj,j+1 − (2α + 1)uk,j + α(1− 1

2j
)uk,j−1

where

α =
−τi

2k2h2

Case 2: j < M − 1 and rj−1 < η(zk) ≤ rj.

Let η = η(zk). We consider the Taylor expansions at (zk, η), plugging in the

jump relations across the interface. We have

u(zk, rj+2) = u+(zk, η) + (rj+2 − η)u+
r (zk, η) +

1

2
(rj+2 − η)2u+

rr(zk, η) + O
(
h3

)
,

u(zk, rj+1) = u+(zk, η) + (rj+1 − η)u+
r (zk, η) +

1

2
(rj+1 − η)2u+

rr(zk, η) + O
(
h3

)
,
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Figure 5.1: Case 1. The interface does not divide points on the right. An implicit four-point
stencil will be used.

u(zk, rj) = u+(zk, η) + (rj − η)u+
r (zk, η) +

1

2
(rj − η)2u+

rr(zk, η) + O
(
h3

)
,

u(zk, rj−1) = u−(zk, η) + (rj−1 − η)u−r (zk, η) +
1

2
(rj−1 − η)2u−rr(zk, η) + O

(
h3

)
,

= u+(zk, η) + (rj−1 − η)u+
r (zk, η)

+
1

2
(rj−1 − η)2

[
2i(k2 − k1)u

+
z (zk, η) + u+

rr(zk, η)
]
+ O

(
h3

)
.

We would like to derive a difference equation of the form

ρj,1u(zk, rj−1) + ρj,2u(zk, rj) + ρj,3u(zk, rj+1) + ρj,4u(zk, rj+2) = 0

that is consistent with the paraxial Helmhotz equation in a radially symmetric do-

main, and is at least first order accurate. We examine the truncation error

Tj = ρj,1u(zk, rj−1) + ρj,2u(zk, rj) + ρj,3u(zk, rj+1) + ρj,4u(zk, rj+2)

− 2ik1u
+
z + u+

rr +
1

η
u+

r

= (ρj,1 + ρj,2 + ρj,3 + ρj,4) u+(zk, η)

+

[
ρj,1(rj−1 − η) + ρj,2(rj − η) + ρj,3(rj+1 − η) + ρj,4(rj+2 − η) +

1

η

]
u+

r

+
1

2

[
ρj,1(rj−1 − η)2 + ρj,2(rj − η)2 + ρj,3(rj+1 − η)2 + ρj,4(rj+2 − η)2 + 2

]
u+

rr,

+
[
ρj,1(rj−1 − η)2i(k2 − k1)− 2ik1

]
u+

z

+ O
(
ρj,1h

2
)

+ O
(
ρj,2h

2
)

+ O
(
ρj,3h

2
)

+ O
(
ρj,4h

2
)
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Figure 5.2. Case 2. Points on right column of stencil divided, with rj−1 < η < rj .

We want the coefficients of u+(zk, η) and each of the derivative terms in the

truncation formula above to be zero. This gives us a system of four equations with

four unknowns.

ρj,1 + ρj,2 + ρj,3 + ρj,4 = 0,

ρj,1(rj−1 − η) + ρj,2(rj − η) + ρj,3(rj+1 − η) + ρj,4(rj+2 − η) +
1

η
= 0,

ρj,1(rj−1 − η)2 + ρj,2(rj − η)2 + ρj,3(rj+1 − η)2 + ρj,4(rj+2 − η)2 + 2 = 0,

ρj,1(rj−1 − η)2i(k2 − k1)− 2ik1 = 0

Solving for the ρj,k, 1 ≤ k ≤ 4 values, we obtain the coefficients of the difference

equation

ρj,1 = −α, ρj,2 = 3α− 2

h2
+

3 + 2j

2hη
,

ρj,3 = −3α +
4

h2
− 2(j + 1)

hη
, ρj,4 = α +

h + 2hj − 4η

2h2η
,

where

α =
2k1

[k](jh− h− η)2
.

Since the coefficients ρj,k, 1 ≤ k ≤ 4 are of order O(h−2), the truncation error

of the scheme will be O(h).
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Figure 5.3. Case 3. Points on right column of stencil divided, with rj < η < rj+1.

Case 3: j > 2 and rj−1 < η(zk) ≤ rj.

u(zk, rj+1) = u+(zk, η) + (rj+1 − η)u+
r (zk, η) +

1

2
(rj+1 − η)2u+

rr(zk, η) + O
(
h3

)

= u−(zk, η) + (rj+1 − η)u−r (zk, η)

+
1

2
(rj+1 − η)2

[
2i(k1 − k2)u

−
z (zk, η) + u−rr(zk, η)

]
+ O

(
h3

)

u(zk, rj) = u−(zk, η) + (rj − η)u−r (zk, η) +
1

2
(rj − η)2u−rr(zk, η) + O

(
h3

)

u(zk, rj−1) = u−(zk, η) + (rj−1 − η)u−r (zk, η) +
1

2
(rj−1 − η)2u−rr(zk, η) + O

(
h3

)

u(zk, rj−2) = u−(zk, η) + (rj−2 − η)u−r (zk, η) +
1

2
(rj−2 − η)2u−rr(zk, η) + O

(
h3

)

We examine the truncation error

Tj = ρj,1u(zk, rj−2) + ρj,2u(zk, rj−1) + ρj,3u(zk, rj) + ρj,4u(zk, rj+1)

− 2ik1u
+
z + u+

rr +
1

η
u+

r

= (ρj,1 + ρj,2 + ρj,3 + ρj,4) u+(zk, η)

+

[
ρj,1(rj−2 − η) + ρj,2(rj−1 − η) + ρj,3(rj − η) + ρj,4(rj+1 − η) +

1

η

]
u+

r

+
1

2

[
ρj,1(rj−2 − η)2 + ρj,2(rj−1 − η)2 + ρj,3(rj − η)2 + ρj,4(rj+1 − η)2 + 2

]
u+

rr,

+
[
ρj,4(rj+1 − η)2i(k2 − k1)− 2ik1

]
u+

z

+ O
(
ρj,1h

2
)

+ O
(
ρj,2h

2
)

+ O
(
ρj,3h

2
)

+ O
(
ρj,4h

2
)
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Figure 5.4. Case 4. Interface exactly divides right column of stencil, η = rj .

As above, we solve a system of equations to obtain

ρj,1 = −α− h− 2hj + 4η

2h2η
, ρj,2 = 3α +

4

h2
− 2(j − 1)

hη

ρj,3 = −3α− 2

h2
+
−3 + 2j

2hη
, ρj,4 = α

where

α =
2k2

[k](jh + h− η)2

Case 4: η(zk) = rj.

Let η = η(zk). We examine the Taylor expansions at (zk, η).

u(zk, rj+1) = u+(zk, η) + hu+
r (zk, η) +

1

2
h2u+

rr(zk, η) + O
(
h3

)

u(zk, rj) = u+(zk, η)

u(zk, rj−1) = u−(zk, η)− hu−r (zk, η) +
1

2
h2u−rr(zk, η) + O

(
h3

)

= u+(zk, η)− hu+
r (zk, η) +

1

2
h2

[
2i(k2 − k1)u

+
z + u+

rr

]
(zk, η) + O

(
h3

)
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We can use two points above the interface:

ρj,1 =
2k1

[k]h2
, ρj,2 =

−2j[k] + 3[k] + 12jk1

2[k]h2j
, ρj,3 =

2(j[k]− [k]− 3jk1)

[k]h2j

ρj,4 =
−2j[k] + [k] + 4jk1

2[k]h2j

or two points below the interface when necessary

ρj,1 =
−2j[k]− [k]− 4jk2

2[k]h2j
, ρj,2 =

2(j[k] + [k] + 3jk2)

[k]h2j

ρj,3 =
−2j[k]− 3[k]− 12jk2

2[k]h2j
, ρj,4 =

2k2

[k]h2

Case 5: j = M − 1 and η(zk−1) ≤ rj−1 and rj−1 < η(zk) ≤ rj.

Let η = η(zk). We consider the Taylor expansions at (zk, η).

u(zk, rj+1) = u+(zk, η) + (rj+1 − η)u+
r +

1

2
(rj+1 − η)2u+

rr + O
(
h3

)

u(zk, rj) = u+(zk, η) + (rj − η)u+
r +

1

2
(rj − η)2u+

rr + O
(
h3

)

u(zk, rj−1) = u−(zk, η) + (rj−1 − η)u−r +
1

2
(rj−1 − η)2u−rr + O

(
h3

)

= u+(zk, η) + (rj−1 − η)u+
r

+
1

2
(rj−1 − η)2

[
2i(k2 − k1)u

+
z + u+

rr

]
+ O

(
h3

)

u(zk−1, rj+1) = u+(zk, η) + (rj+1 − η)u+
r − τu+

z +
1

2
(rj+1 − η)2u+

rr +
1

2
τ 2u+

zz

− τ(rj+1 − η)u+
rz + O

(
h3

)

u(zk−1, rj) = u+(zk, η) + (rj − η)u+
r − τu+

z +
1

2
(rj − η)2u+

rr +
1

2
τ 2u+

zz

− τ(rj − η)u+
rz + O

(
h3

)

u(zk−1, rj−1) = u+(zk, η) + (rj−1 − η)u+
r − τu+

z +
1

2
(rj−1 − η)2u+

rr +
1

2
τ 2u+

zz

− τ(rj−1 − η)u+
rz + O

(
h3

)
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and examine the truncation error

Tj = ρj,1u(zk, rj−1) + ρj,2u(zk, rj) + ρj,3u(zk, rj+1)− ρj,4u(zk−1, rj−1)− ρj,5u(zk−1, rj

− ρj,6u(zk−1, rj+1)− 2ik1u
−
z + u+

rr +
1

η
u+

r + O(h)

= (ρj,1 + ρj,2 + ρj,3 − ρj,4 − ρj,5 − ρj,6) u+(zk, η)

+

[
(ρj,1 − ρj,4) (rj−1 − η) + (ρj,2 − ρj,5) (rj − η) + (ρj,3 − ρj,6) (rj+1 − η) +

1

η

]
u+

r

+
1

2

[
(ρj,1 − ρj,4) (rj−1 − η)2 + (ρj,2 − ρj,5) (rj − η)2 + (ρj,3 − ρj,6) (rj+1 − η)2 + 2

]
u+

rr

+
[
ρj,1(rj−1 − η)2i(k2 − k1) + (ρj,4 + ρj,5 + ρj,6) τ − 2ik1

]
u+

z

− 1

2
τ 2 (ρj,4 + ρj,5 + ρj,6) u+

zz

+ τ [ρj,4(rj−1 − η) + ρj,5(rj − η) + ρj,6(rj+1 − η)] u+
rz.

We solve for the scheme coefficients

ρj,1 = −α, ρj,2 = 2α +
1

hη
, ρj,3 = −α− 1

hη

ρj,4 = −α− 1

2
β, ρj,5 = 2α + β, ρj,6 = −α− 1

2
β,

where

α =
2k1

(k1 − k2)(h− hj + η)2
, β =

h + 2hj − 4η

h2η
.

Case 6: j = M − 1 and rj−1 ≤ η(zk) < rj, or j = 1 and rj ≤ η(zk) < rj+1.

We solve for the scheme coefficients

ρj,1 =
α1

β
, ρj,2 =

α2

β
, ρj,3 =

α3

β
, ρj,4 =

α4

β
,

where

α1 = −2[k]j3h3 − 3[k]j2h3 + 8[k]j2ηh2 + 6[k]jηh2 − 4k2ηh2 − 3[k]η2h− 10[k]jn2h

+ 4[k]η3,
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α2 = −2[k]j3h3 + [k]j2h3 − 3[k]h3 + 4[k]jh3 + 8[k]j2ηh2 − 2[k]ηh2 − 6[k]jηh2

− 12k2ηh2 + 5[k]η2h− 10[k]jη2h + 4[k]η3,

α3 = −2[k]j3h3 − 7[k]j2h3 + 4[k]h3 − 4[k]jh3 + 8[k]j2ηh2 + 22[k]jηh2 + 12k2ηh2

− 15[k]η2h− 10[k]jη2h + 4[k]η3,

α4 = 2[k]j3h3 + 3[k]j2h3 − [k]h3 − 8[k]j2ηh2 + 2[k]ηh2 − 10[k]jηh2 − 4k2ηh2

+ 7[k]η2h + 10[k]jη2h− 4[k]η3,

β = 2[k]h2η(−h2 + 2h2j + 2h2j2 − 2hη − 4hjη + 2η2),

[k] = k1 − k2.

We now have difference equations for all grid points. We proceed to simulate

beam propagation within the rectangular domain segment consisting of the pre-lens

and lens regions. Grid points with corresponding stencils completely within the pre-

lens region use the homogeneous scheme with wavenumber k = k1, while grid points

with corresponding stencils completely within the lens segment use the homogeneous

scheme with wavenumber k = k2, and irregular points use the difference schemes

derived above according to how the corresponding stencil is divided by the interface.

The computed solution at the right edge of the combined pre-lens/lens region becomes

the initial solution for the post-lens region, again using the homogeneous scheme with

wavenumber k = k1.



CHAPTER SIX

Summary

6.1 Thesis Contribution

In this dissertation we proposed and examined several new methods for the

Helmholtz equation with coefficients that are discontinuous at an interface. In Chap-

ter Two we derived a general formula by which a six-point, two-level difference scheme

can be derived for any partial differential equation of the form

c4urr + c3ur + c2uz + c1u + c0 = 0,

simply by plugging in the specific coefficient values. Further, we established consis-

tency of a scheme so derived for any equation of the above form, eliminating the need

for a new consistency proof for each specific scheme and demonstrating the potential

usefulness of our results beyond our model problem. In addition, we demonstrated

that if we replace the discontinuous coefficient functions with continuous functions

that are dependent on the grid spacing, h, and which approach the discontinuous

function as h → 0, we maintain consistency.

Also in Chapter Two, we introduced a matrix method for stability analysis

which is applicable to a broad class of schemes, and particularly effective for schemes

which employ stencils that are symmetric around a reference point, such as Crank-

Nicholson type two-level schemes. Using that matrix method, we established the

stability of our six-point, two-level scheme both in the homogeneous case, and in the

“smoothed coefficient” case, where we approximate the discontinuous wavenumber

function with a continuous function.

In Chapter Three, we derived and implemented the z-stretching method. Here

we decompose the domain into pre-lens, lens and post-lens regions, and stretch the

coordinates in the direction of propagation to obtain a rectangular lens domain, in
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which we can apply finite difference methods for a homogeneous wavenumber coef-

ficient value. Using the principles of the slow-varying envelope approximation, we

demonstrated that a useful approximation could be obtained for the paraxial case

using a two-level difference scheme. Our matrix method was applied to demonstrate

stability of the scheme. The scheme was efficiently implemented with less than 50

lines of Matlab code in the simulation loops.

In Chapter Four, we introduced the r-stretching method, which uses domain

transformation to minimize the region of inaccuracy resulting from coefficient smooth-

ing. This allowed us to solve the equation numerically without treating grid points

near the interface as a special case. Also, while the position of the interface must be

known, the method can be applied to an interface of arbitrary shape and smoothness.

The mesh generator we derived for the r-stretching method is highly efficient,

and provides an excellent distribution of grid points in the physical space. We demon-

strated the technique for several simple cases, and implemented the method in Matlab

for the paraxial Helmholtz equation in a radially symmetric domain.

In Chapter Five, we derived the precise jump conditions for the solution and

first and second solution derivatives for the paraxial Helmholtz equation in a radially

symmetric domain in the case of a smooth interface. We utilized the immersed inter-

face method to derive specialized difference equations for “irregular points,” which

are points adjacent to the interface.

6.2 Future Research

6.2.1 The Matrix Analysis Method

The matrix analysis method we introduced relies on examining tridiagonal ma-

trices to determine positive semistability. The method would benefit greatly from

improved techniques for determining semistability. A constructive technique utilizing

the generalized Lyapunov Theorem below, should be possible.
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Theorem 6.1 (Generalized Lyapunov). Let A ∈ CN×N be given. Then A is positive

semistable if there is a positive definite matrix G and a positive semidefinite matrix

H satisfying the equation

GA + A∗G = H.

We will give an example on one such constructive approach. As a special case of the

above, we have the following lemma.

Lemma 6.1. Let A ∈ CN×N be given. Then the eigenvalues of A are pure imaginary

if there is a positive definite matrix G satisfying the equation

GA = −A∗G.

Proof. Let A ∈ CN×N be given. Assume G ∈ CN×N is positive definite with GA =

−A∗G, and let x ∈ Cn be an eigenvector of A with corresponding eigenvalue λ. Then

−λx∗Gx = x∗ (−A∗G) x = x∗GAx = λx∗Gx.

Since x∗GAx > 0 for all x ∈ Cn, we have λ = −λ. Thus λ is pure imaginary.

We seek to construct appropriate matrices H and G that will satisfy the conditions

of Lemma (6.1). We first assume the G is diagonal, and see what constraints are

induced upon A.

For the theorems to follow, matrix A ∈ CN×N is of the form

A =




a1 c1 0 · · · 0

b2 a2 c2 0 · · ·
0 b3 a3 c3 0

· · ·
· · ·

· · ·
· · · 0 bN−1 aN−1 cN−1

0 · · · 0 bN aN






83

Theorem 6.2. If A ∈ CN×N is a tridiagonal matrix such that

Re(ai) = 0, 1 ≤ i ≤ N

and

ci−1

bi

= −di for some real di > 0, 2 ≤ i ≤ N

then A has pure imaginary eigenvalues.

Proof. Let matrix G ∈ CN×N be diagonal, i.e.,

G = diag {g1, g2, ..., gN}

then

GA + A∗G =




a1g1+a1g1 c1g1+b2g2 0 ··· 0

c1g1+b2g2 a2g2+a2g2 c2g2+b3g3 0 ···
0 c2g2+b3g3 a3g3+a3g3 c3g3+b4g4 0

··· ··· ···
··· 0 cN−2gN−2+bN−1gN−1 aN−1gN−1+aN−1gN−1 cN−1gN−1+bNgN

0 ··· 0 cN−1gN−1+bNgN aNgN+aNgN




We assume Re(ai) = 0, 1 ≤ i ≤ N . We then have

GA + A∗G =




0 c1g1+b2g2 0 ··· 0

c1g1+b2g2 0 c2g2+b3g3 0 ···
0 c2g2+b3g3 0 c3g3+b4g4 0

··· ··· ···
··· 0 cN−2gN−2+bN−1gN−1 0 cN−1gN−1+bNgN

0 ··· 0 cN−1gN−1+bNgN 0




Set g1 = 1 and

gi = −ci−1

bi

gi−1 = digi−1.

Then G is positive definite and GA = −A∗G. By Lemma (6.1), A has only pure

imaginary eigenvalues.

More powerful constructive techniques appear possible.

6.2.2 A Moving Mesh Method for Higher Spatial Dimensions

Our stretching functions are defined only along the grid lines, and we only need

to know the position of the interface at each grid. We do not need the interface to be
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smooth, or even to be defined by a parameterized function. Therefore, it should be

straightforward to extend the method to higher spatial dimensions, with stretching

along grid lines in each coordinate direction occurring at alternating time steps. The

computational expense should scale proportionately with the dimension.

6.2.3 A Solution Adaptive Moving Mesh Method

A solution adaptive version of our method would allow us to apply it to general

interface problems regardless of the properties of the interface, even if the location

of the interface is unknown. An iterative method would likely need to be utilized to

determine the transformation at the initial propagation step. However, this should

add only a fixed amount of time to the simulation.

Unlike the stretching mesh generator based on a smooth sigma function, the

mesh generator for a solution adaptive method will be based on the current computed

solution, of which we will have only discrete sample points. We will have to formulate

systems of difference equations that ensure sufficient smoothness and orthogonality

of the transformed coordinates, rather than using numerical ODE methods.
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APPENDIX A

Derivative and Antiderivative Approximations on Nonuniform Grids

An advantage of the adaptive methods we have discussed is the use of grids that

are nonuniform in the physical space. A grid that is nonuniform, even if some of

the local regions of the grid become “dense”, that is, a significantly large number of

points are concentrated in a particular region as compared to the other local regions,

can be considered a so-called hybrid grid, or time scale in the physical space[12, 20].

The novel theory of time scales has been established for the study and analysis of

generalized “dynamic equations,” on hybrid grids [3, 13, 63]. In this Appendix, we

wish to answer certain fundamental questions before an application: does the theory

of timescales give us a tool by which we can approximate dynamic equations on

hybrid grids without transformation to a uniform grid in computational space? Is it

possible to derive a dynamic derivative on timescales that is accurate as an derivative

approximation and has an antiderivative such that a calculus may be formed? By

investigating these questions we seek insight as to whether or not boundary value

problems such as our optical wave equations be solved accurately via a hybrid grid

using time scales generalization techniques.

Much of the development of time scales theory has focused on the unification

of continuous and discrete analytical methods. Recent discussions have suggested

that the theory and methods of time scales might also provide a means of integrating

difference and differential methods for modeling nonlinear systems of dynamic equa-

tions on domains that are arbitrary nonempty closed subsets of the reals. To this

end, the usefulness of various dynamic derivative formulae, including the standard ∆

and ∇ derivatives, in approximating functions and solutions of nonlinear differential

equations has been explored [12, 13, 20, 63]. It has been demonstrated in several

recent papers [58, 59, 60, 63] that a proposed dynamic derivative formula, called the
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♦α derivative and defined as a linear combination, or the Broyden’s formula [15, 68],

of the ∆ and the ∇ dynamic derivatives, provides a more accurate approximation

to the conventional derivative. The question remains, however, as to whether the

♦α derivative is a well-defined dynamic derivative upon which a calculus on time

scales can be built. Many recent discussions can be found, for instance, see [52] and

references there in.

This study redefines the ♦α derivative independently of the standard ∆ and ∇
dynamic derivatives, and further examines its properties and relationship with the ∆

and the ∇ formulae. In addition, we examine the feasibility of formulating a corre-

sponding ♦α integral. Finally, we implement several computational experiments and

compare the performance of various dynamic derivatives as approximation formulae.

Our discussions are be organized as follows: Section A.1 contains basic defini-

tions and theorems of time scales theory and of the ∆ and ∇ dynamic derivatives. In

Section A.2, we define the ♦α derivative without reference to the ∆ and ∇ derivatives,

and show that this new function is well-defined and equivalent to a linear combina-

tion of the ∆ and ∇ derivatives at points where those derivatives exist. We present

several theorems concerning the properties of the ♦α derivative. In Section A.3, we

consider two counterexamples that demonstrate that a ♦α antiderivative does not

exist for some continuous functions on a time scale in the case of a fixed α value

strictly between 0 and 1.

Finally, in Section A.4, we discuss computational experiments where nonuni-

form time scales resulting from adaptive computations of the numerical solution of

a solitary wave equation are employed [64, 65]. Numerical errors will be computed

and compared between different first order dynamic derivative approximates over an

interval which includes a singularity in the conventional derivative. The simulation

results confirm the computational superiority of the diamond-α as an approximation

formula. The combined dynamic derivatives can be used in various nonlinear dynamic
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equations generated via adaptive or hybrid approximations [20, 65].

A.1 The Delta and Nabla Derivatives

An one-dimensional time scale T is an arbitrary nonempty closed subset of R and has

the inherited topology. Let a = inf T and b = supT. For t ∈ T such that a < t < b,

we define the forward-jump operator , σ, and backward-jump operator , ρ, as

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

respectively, and

σ(b) = b, ρ(a) = a,

if T is bounded. The corresponding forward-step and backward-step functions µ, η

are defined as as

µ(t) = σ(t)− t, η(t) = t− ρ(t),

respectively. For a function f defined on T, to provide a shorthand notation we let

fσ(t) = f(σ(t)), fρ(t) = f(ρ(t)).

We say that a point t ∈ T is right-scattered if σ(t) > t and left-scattered if ρ(t) < t.

A point t ∈ T that is both right-scattered and left-scattered is called scattered . Also,

we say that a point t ∈ T is right-dense if σ(t) = t, left-dense if ρ(t) = t, and dense

if it is both right-dense and left-dense.

We define Tκ = T \ {b} if T is bounded above and b is left-scattered; otherwise

Tκ = T. Similarly, we define Tκ = T \ {a} if T is bounded below and a is right-

scattered; otherwise Tκ = T. We denote Tκ ∩ Tκ by Tκ
κ. We say a time scale T is

uniform if for all t ∈ Tκ
κ, µ(t) = η(t). A uniform time scale is an interval if µ(t) = 0,

and is a uniform difference grid if µ(t) > 0.

We say a function f defined on T is right continuous at t ∈ T if for all ε > 0

there is some δ > 0 such that for all s ∈ [t, t + δ), |f(t)− f(s)| < ε. Similarly, we say
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that f is left continuous at t ∈ T if for all ε > 0 there is some δ > 0 such that for all

s ∈ (t− δ, t], |f(t)− f(s)| < ε. The function f(t) is said to be continuous if it is both

right and left continuous.

For the sake of readability of subsequent formulas, we introduce the following

notation. Let t, s ∈ T and define

µts = σ(t)− s, ηts = ρ(t)− s.

Let f : T → R be a function on a timescale. Then for t ∈ Tκ we define f∆(t)

to be the value, if one exists, such that for all ε > 0 there is a neighborhood U of t

(i.e. U = (t− δ, t + δ) ∩ T for some δ > 0) such that for all s ∈ U

∣∣[fσ(t)− f(s)]− f∆(t)(σ(t)− s)
∣∣ < ε|σ(t)− s|.

We say that f is delta differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ.

Similarly, for t ∈ Tκ we define f∇(t) to be the number, if one exists, such that for all

ε > 0 there is a neighborhood V of t such that for all s ∈ V

∣∣[fρ(t)− f(s)]− f∇(t)(ρ(t)− s)
∣∣ < ε|ρ(t)− s|.

We say that f is nabla differentiable on Tκ provided f∇(t) exists for all t ∈ Tκ.

In subsequent proofs, we will wish to make use of the following theorem due

to Hilger [34], and the analogous theorem for the nabla case, which can be found in

[3, 12]:

Theorem A.1.1. Assume f : T → R is a function and let t ∈ Tκ. Then we have the

following:

(i) If f is delta differentiable at t, then f is continuous at t.

(ii) If f is left continuous at t and t is right-scattered, then f is delta differentiable
at t with

f∆(t) =
fσ(t)− f(t)

σ(t)− t
.
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(iii) If t is right-dense, then f is delta differentiable at t iff the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

Theorem A.1.2. Assume f : T → R is a function and let t ∈ Tκ. Then we have the

following:

(i) If f is nabla differentiable at t, then f is continuous at t.

(ii) If f is right continuous at t and t is left-scattered, then f is nabla differentiable
at t with

f∇(t) =
f(t)− fρ(t)

t− ρ(t)
.

(iii) If t is left-dense, then f is nabla differentiable at t iff the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case

f∇(t) = lim
s→t

f(t)− f(s)

t− s
.

With the above theorems in hand we can establish the following

Corollary A.1.3. Assume f : T → R is a function and let t ∈ Tκ
κ. The existence of

the delta derivative of f at t does not imply the existence of the nabla derivative at t,

and visa-versa.

Proof. Consider the function

f(t) =





t sin(1/t), x 6= 0

0, x = 0

on a timescale T = [−2,−1]∪ [0, 1]. The function f is continuous at 0, and the point

0 ∈ T is right-dense, left-scattered. By A.1.2(ii), f is nabla differentiable at 0. But a

finite limit

lim
s→t

f(t)− f(s)

t− s
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does not exist at 0. Thus by Theorem A.1.1 (iii), f is not delta differentiable at

0. To show the existence of the delta derivative does not imply the existence nabla

derivative, we may consider the same function f at point 0 on a timescale T =

[−1, 0] ∪ [1, 2].

A.2 The Diamond-α Dynamic Derivative

Definition A.2.1. Let T be a time scale. We define f♦α(t) to be the value, if one

exists, such that for all ε > 0 there is a neighborhood U of t (i.e. U = (t− δ, t+ δ)∩T
for some δ > 0) such that for all s ∈ U

∣∣α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − f♦α(t)µtsηts

∣∣ < ε|µtsηts|.

We say that f is diamond-α differentiable on Tκ
κ provided f♦α(t) exists for all t ∈ Tκ.

Remark. It is clear that f♦α(t) reduces to f∆(t) for α = 1 and f∇(t) for α = 0. The

idea of such a formula can be traced back to Broyden’s method in which combinations

of different formulae are utilized. The new formula takes advantage of each individual

method and provides a far more effective formula [15].

We show that the function described above is well-defined. Let each of Φ1(t) and

Φ2(t) be values such that ∀ε > 0 there exist neighborhoods U1 and U2 of t such that

∀s ∈ U1

|α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − Φ1(t)µtsηts| < ε|µtsηts|

and ∀s ∈ U2

|α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − Φ2(t)µtsηts| < ε|µtsηts|.
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Let ε > 0 be given and set ε∗ = ε/2. Then ∀s ∈ U = U1 ∩ U2 and

|Φ1(t)− Φ2(t)||µtsηts|

= |Φ1(t)µtsηts − Φ2(t)µtsηts|

=
∣∣−α[fσ(t)− f(s)]ηts − (1− α)[fρ(t)− f(s)]µts + Φ1(t)µtsηts

+ α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − Φ2(t)µtsηts

∣∣

<
∣∣α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − Φ1(t)µtsηts

∣∣

+
∣∣α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − Φ2(t)µtsηts

∣∣

<ε∗|µtsηts|+ ε∗|µtsηts|

=ε|µtsηts|.

Thus |Φ1(t)− Φ2(t)| < ε and letting ε go to zero, we see Φ1(t) = Φ2(t).

Theorem A.2.2. Let 0 ≤ α ≤ 1. If f is both ∆ and ∇ differentiable at t ∈ T, then f

is ♦α differentiable at t and f♦α(t) = αf∆(t) + (1− α)f∇(t).

Proof. Assume f∆(t) and f∇(t) exist. Then ∀ε > 0, ∃ neighborhoods U1 and U2 such

that ∀s ∈ U1

∣∣[fσ(t)− f(s)]− f∆(t)µts

∣∣ < ε|µts|

and ∀s ∈ U2

∣∣[fρ(t)− f(s)]− f∇(t)ηts

∣∣ < ε|ηts|.

Then ∀s ∈ U1

∣∣α[fσ(t)− f(s)]η(ts)− αf∆(t)µtsηts

∣∣ < αε|µtsηts|

and ∀s ∈ U2

∣∣(1− α)[fρ(t)− f(s)]µts − (1− α)f∇(t)µtsηts

∣∣ < (1− α)ε|µtsηts|.

Thus ∀s ∈ U = U1 ∩ U2 we have

∣∣α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − [αf∆(t) + (1− α)f∇(t)]µtsηts

∣∣
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≤
∣∣α[fσ(t)− f(s)]ηts − αf∆(t)µtsηts

∣∣+
∣∣(1− α)[fρ(t)− f(s)]µts − (1− α)f∇(t)µtsηts

∣∣

< αε|µtsηts|+ (1− α)ε|µtsηts| = ε|µtsηts|.

Thus f♦α(t) exists and f♦α(t) = αf∆(t) + (1− α)f∇(t).

Corollary A.2.3. Let t ∈ T be dense. Then if f ′(t) exists we have

f♦α(t) = f∆(t) = f∇(t) = f ′(t).

Proof. Let the point t be dense and f ′(t) = lim
h→0

f(t + h)− f(t)
h

exist as a finite value.

For a sufficiently small neighborhood U of t, ∀s, t ∈ U we may substitute h = s − t

to see f ′(t) = lim
h→0

f(t + h)− f(t)
h

= lim
s→t

f(t)− f(s)
t− s . Then by Theorem A.1.1 (iii),

f∆(t) = f ′(t), and by Theorem A.1.2 (iii), f∇(t) = f ′(t). Thus by Theorem A.2.6,

f♦α(t) = αf∆(t) + (1− α)f∇(t) = αf ′(t) + (1− α)f ′(t) = f ′(t).

Lemma A.2.4. Let t ∈ T be scattered. Then f is continuous at t.

Proof. Assume t ∈ T is scattered. Then µ(t) > 0 and η(t) > 0. Let 0 < δ <

min(µ(t), η(t)). Then ∀ε > 0 there is a neighborhood U = (t− δ, t + δ) ∩ T of t such

that ∀s ∈ U , s = t and thus |f(t)− f(s)| = 0 < ε.

Corollary A.2.5. Let t ∈ T be scattered. Then

(i) f∆(t) exists and

f∆(t) =
fσ(t)− f(t)

σ(t)− t
;

(ii) f∇(t) exists and

f∇(t) =
fρ(t)− f(t)

ρ(t)− t
;
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(iii) f♦α(t) exists and

f♦α(t) = α
fσ(t)− f(t)

σ(t)− t
+ (1− α)

fρ(t)− f(t)

ρ(t)− t

Proof. By Lemma A.2.4, f is continuous at t. Then (ii) follows from Theorem

A.1.1(ii), and (iii) follows from Theorem A.1.2(ii). Then by Theorem A.2.2,

f♦α(t) = αf∆(t) + (1− α)f∇(t) = α
fσ(t)− f(t)

σ(t)− t
+ (1− α)

fρ(t)− f(t)

ρ(t)− t
.

Corollary A.2.6. Let t ∈ T ⊂ R be left-scattered, right-dense, and assume

f ′(t+) = lim
h→0+

f(t + h)− f(t)

h

exists. Then

(i) f∆(t) = f ′(t+);

(ii) f∇(t) =
fρ(t)− f(t)

ρ(t)− t
;

(iii) f♦α(t) = αf ′(t+) + (1− α)
fρ(t)− f(t)

ρ(t)− t

Proof. For all neighborhoods U = (t − δ, t + δ) of t such that δ < t − ρ(t), we have

s − t > 0. Thus ∀s, t ∈ U we can substitute h = s − t in the limit from the right to

see

lim
h→0+

f(t + h)− f(t)

h
= lim

s→t

f(t)− f(s)

t− s

Then by Theorem A.1.1(iii),

f∆(t) = lim
s→t

f(t)− f(s)

t− s
= f ′(t+).

Since f ′(t+) exists, (ii) follows from Theorem A.1.2(ii). Then by Theorem A.2.2,

f♦α(t) = αf∆(t) + (1− α)f∇(t) = αf ′(t+) + (1− α)
fρ(t)− f(t)

ρ(t)− t
.

The proof of the following corollary is similar.
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Corollary A.2.7. Let t ∈ T ⊂ R be left-dense, right-scattered, and assume

f ′(t−) = lim
h→0−

f(t + h)− f(t)

h

exists. Then

(i) f∆(t) =
fσ(t)− f(t)

σ(t)− t
;

(ii) f∇(t) = f ′(t−);

(iii) f♦α(t) = α
fσ(t)− f(t)

σ(t)− t
+ (1− α)f ′(t−).

Theorem A.2.8. Let T be a time scale and 0 ≤ α ≤ 1. If f is ♦α differentiable at t,

then f is continuous at t.

Proof. Assume f is ♦α differentiable at t ∈ T. If t is a dense or scattered point,

the result follows from Corollary A.2.3 and A.2.5 respectively. It remains to consider

the two cases where t is right-dense and left-scattered, or t is right-scattered and

left-dense.

Assume t right-dense and left-scattered. Thus σ(t) = t and ρ(t) < t.

Let ε ∈ (0, 1) and

ε∗ =
εα|ρ(t)− t|

(1− α)
∣∣[fρ(t)− f(t)]− f♦α(t)[α(ρ(t)− t)− 1]

∣∣ + |ρ(t)− t|+ 1
.

Thus 0 < ε∗ < 1. Then there is a neighborhood U1 of t such that for all s ∈ U1

∣∣α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − f♦α(t)µtsηts

∣∣

=
∣∣α[f(t)− f(s)][(ρ(t)− t) + (t− s)]

+ (1− α)[(fρ(t)− f(t)) + (f(t)− f(s))](t− s)

− f♦α(t)(t− s)[(ρ(t)− t) + (t− s)]
∣∣
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=
∣∣α[f(t)− f(s)](ρ(t)− t) + (1− α)[fρ(t)− f(t)](t− s)

+ [f(t)− f(s)](t− s)− f♦α(t)(t− s)[(ρ(t)− t) + (t− s)]
∣∣

=
∣∣[f(t)− f(s)][α(ρ(t)− t) + (t− s)]

+ [(1− α)[fρ(t)− f(t)]− f♦α(t)[α(ρ(t)− t) + (t− s)]](t− s)
∣∣

< ε∗|µtsηts|

= ε∗|(t− s)||[(ρ(t)− t) + (t− s)]|

Thus

∣∣|[f(t)− f(s)]ω| − |[(1− α)[fρ(t)− f(t)]− f♦α(t)ω](t− s)|
∣∣

< ε∗|(t− s)||[(ρ(t)− t) + (t− s)]|

where ω = α(ρ(t) − t) + (t − s). Since t is left-scattered, right-dense we have for all

s ∈ U1, ρ(t) < t ≤ s. Thus for all s ∈ U = U1 ∩ (t− ε∗, t + ε∗)

|[f(t)− f(s)]α(ρ(t)− t)| < |[f(t)− f(s)][α(ρ(t)− t) + (t− s)]|

<
∣∣(1− α)[fρ(t)− f(t)]− f♦α(t)[α(ρ(t)− t) + (t− s)]

∣∣ |t−s|+ε∗|t−s||(ρ(t)−t)+(t−s)|

< ε∗
∣∣(1− α)[fρ(t)− f(t)]− f♦α(t)[α(ρ(t)− t)− 1]

∣∣ + ε∗[|ρ(t)− t|+ 1]

Thus

|f(t)− f(s)| < ε∗
[∣∣(1− α)[fρ(t)− f(t)]− f♦α(t)[α(ρ(t)− t)− 1]

∣∣ + |ρ(t)− t|+ 1
]

α|ρ(t)− t|

= ε.

Theorem A.2.9. Let T be a time scale and 0 < α < 1. If f is ♦α differentiable at t,

then f is both ∆ and ∇ differentiable at t.

Proof. Let T be a time scale and 0 < α < 1. Let ε > 0 be given, and set ε∗ = ε1−α
1+α

> 0.

Assume f is ♦α differentiable at t ∈ T. Thus by Theorem A.2.8, f is continuous at
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t. If t is a dense or scattered point, the result follows from Corollaries A.2.3 and

A.2.5 respectively. It remains to consider the two cases where t is right-dense and

left-scattered, or t is right-scattered and left-dense.

Assume t right-scattered and left-dense. Thus σ(t) > t and ρ(t) = t. Also,

since f is continuous at t, by Theorem A.1.1(ii), f is ∆ differentiable at t. Then for

all ε∗ > 0 there is a neighborhood U1 of t such that for all s ∈ U1

|α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − f♦α(t)µtsηts| < ε∗|µtsηts|

and neighborhood U2 of t such that for all s ∈ U2

∣∣[fσ(t)− f(s)]− f∆(t)µts

∣∣ < ε∗|µts|.

Choose γ such that f♦α(t) = αf∆(t) + (1 − α)γ. Then there exists neighborhood

U = U1 ∩ U2 of t such that for all s ∈ U

∣∣α[fσ(t)− f(s)]ηts + (1− α)[fρ(t)− f(s)]µts − [αf∆(t) + (1− α)γ]µtsηts

∣∣

=
∣∣α[fσ(t)− f(s)− f∆(t)µts]ηts + (1− α)[fρ(t)− f(s)− γηts]µts

∣∣

< ε∗|µtsηts|.

Thus

|(1− α)[fρ(t)− f(s)− γηts]µts| ≤ ε|µtsηts|+
∣∣α[fσ(t)− f(s)− f∆(t)µts]ηts

∣∣

< ε∗|µtsηts|+ αε∗|µtsηts| = (1 + α)ε∗|µtsηts|

Then
∣∣[fρ(t)− f(s)]− γηts

∣∣ < ε∗
1 + α

1− α
|ηts| = ε|ηts|.

Thus f∇(t) = γ exists.

The case t right-dense, left-scattered is similar.

Remark. Note that the strict inequalities in 0 < α < 1 are necessary for the results

above. In the case α = 1, the ♦α derivative reduces to the ∆ derivative, which by

Corollary A.1.3, does not imply the existence of the ∇. Similarly for α = 0.
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A.3 A Diamond-α Integral

We present two problematic cases that arise when we attempt to determine a corre-

sponding ♦α integral.

First, let α = 1
2

and T be the set {0, 1, 2, 3}. Then the ♦α derivative for a

function on T is defined on the set Tκ
κ which is {1, 2}. Define the function f(t) ≡ 0.

Next define functions F and G as follows:

F (0) = 0, G(0) = 1;

F (1) = 5, G(1) = −3;

F (2) = 0, G(2) = 1;

F (3) = 5, G(3) = −3.

Then

F♦α(1) =
1

2

F (2)− F (1)

2− 1
+

1

2

F (1)− F (0)

1− 0
=

1

2
(0− 5) +

1

2
(5− 0) = 0 = f(1)

and

F♦α(2) =
1

2

F (3)− F (2)

3− 2
+

1

2

F (2)− F (1)

2− 1
=

1

2
(5− 0) +

1

2
(0− 5) = 0 = f(2).

Also

G♦α(1) =
1

2

G(2)−G(1)

2− 1
+

1

2

G(1)−G(0)

1− 0
=

1

2
(1− (−3)) +

1

2
(−3− 1) = 0 = f(1)

and

G♦α(2) =
1

2

G(3)−G(2)

3− 2
+

1

2

G(2)−G(1)

2− 1
=

1

2
(−3− 1) +

1

2
(1− (−3)) = 0 = f(2).

Thus F♦α(t) = G♦α(t) = f(t) on Tκ
κ. We see that both F and G are♦α antiderivatives

of f on Tκ
κ. However,

∫ 2

1

f(t)♦αt = F (2)− F (1) = −5 6= 4 = G(2)−G(1) =

∫ 2

1

f(t)♦αt

and we have arrived at a contradiction.
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The above counterexample can be generalized for any fixed α strictly between 0 and

1, and for any purely discrete time scale, such as T = Z.

Next, we present an example where no ♦α antiderivative exists. Again let α = 1
2
. Let

T be (−∞, 1] ∪ [2,∞). Set

f(t) =




−1 x ≤ 1

5 x ≥ 2.

Assume a ♦α antiderivative F of f exists on Tκ
κ. On (−∞, 1], F must be of the form

−t + C1 where C1 is a constant. On [2,∞), F must be of the form 5t + C2

We have

F♦α(1) =
1

2
F∆(1) +

1

2
F∇(1) = f(1).

Thus

1

2
[(5(2) + C2)− (−1(1) + C1)] +

1

2
(−1) = −1. (A.1)

Also,

F♦α(2) =
1

2
F∆(2) +

1

2
F∇(2) = f(2).

Thus

1

2
(5) +

1

2
[(5(2) + C2)− (−1(1) + C1)] = 5. (A.2)

From (A.1) and (A.2) we obtain a system of equations

C1 − C2 = 12,

C1 − C2 = 6

with no solution. Thus for function f , which is continuous on T, no ♦α antiderivative

exists on Tκ
κ. Therefore it cannot be used for solving the optical wave equations,

including the Helmholtz equation, on hybrid grids.
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A.4 Numerical Examples

We consider adaptive approximations of the kink function,

u(x, y) = α arctan exp
{

β −
√

x2 + y2
}

, (A.3)

for initializing a sequence of circular ring solitons from the sine-Gordon equation,

wrr = wxx + wyy − φ(x, y) sin w, r > 0,

in the spacial domain Ω = {(x, y)| − a < x < a, − b < y < b}, where the function φ

is often interpreted as a Josephson current density of the solitary wave [1, 65].

For the sake of simplicity in our one-dimensional experiments, we set α = β =

π, a = 14 and y ≡ 0. Replace the notation x by t, from (A.3) we have

u(t) = π arctan exp {π − |t|} , − 14 ≤ t ≤ 14.

The function value changes rapidly while −7 < t < 7, and u is not smooth throughout

the interval [-14, 14] due to the fact that

u′(t) =





π/ [1 + (π + t)2] , t < 0,

−π/ [1 + (π − t)2] , t > 0,

and u′(0) does not exist. The change of the derivative function value is more violent

throughout the domain, and introduces substantial difficulties in approximating u′

over the interval [-14, 14] using one formula. This motivates our numerical investiga-

tions targeted at the approximations of u′.
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Figure A.4.1. The kink function u (top-left); its sine mode representation
sin(u/2) (top-right); derivative u′ (bottom-left); and distribution of the adaptive
step sizes based on the derivative function (bottom-right).

In Figure A.4.1, we show the solitary kink function, its sine mode representation

s = sin(u/2), the velocity of the kink, that is, v = u′, and an arc-length adaptive

step (equivalent to µ or η) distribution generated based on the derivative function

[64, 65]. Note that the sudden decrease of the step sizes as t approaches 0 is due

to the singularity involved. The adaptive mechanism established offers a nonuniform

time scale T superimposed over the interval [-14, 14] for a possibly more accurate

approximation to the derivative function u′ from the data u. The number of grids

used, n, is 280, with the minimal step size hmin ≈ 0.03473491 and maximal step

size hmax ≈ 0.10497856. Since the nonuniform grids obtained are symmetric about

t = 0, anti-symmetric properties of the ∆ and ∇ dynamic derivatives are expected

[20, 58, 59].
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Figure A.4.2. Numerical errors of the different approximations of u′ on the dis-
crete time scale T. TOP-LEFT: ε∆ (dotted curve) and ε∇ (solid curve); TOP-
RIGHT: ε♦1/6

(dotted curve) and ε♦5/6
(solid curve); CENTER-LEFT: ε♦1/3

(dotted curve) and ε♦2/3
(solid curve); CENTER-RIGHT: ε♦1/2

; BOTTOM-
LEFT: εD; BOTTOM-RIGHT: relative errors of the ♦1/2 (solid curve) and
modified central difference formula (A.4) (dotted curve). Logarithmic y-scale
is used to show details of the error distributions.



103

Numerical errors of approximations of u′ on T via different dynamic derivative

ε∆ = u∆ − u′,

ε∇ = u∇ − u′,

ε♦α = u♦α − u′

are presented in Figure A.4.2. A modified finite difference formula,

uD = 2
u∆(t)− u∇(t)

µ(t) + η(t)
, (A.4)

is introduced for comparison purposes on the nonuniform discrete time scale T. For

it, we denote uD− u′ = εD, t ∈ T. Further, to see more precisely the superior quality

of the ♦1/2 approximation, we also plot the point-wise relative errors,

E♦1/2
=

{ |ε♦1/2
|i

|u′|i

}n

i=1

, ED =

{ |εD|i
|u′|i

}n

i=1

,

in Figure A.4.2. Logarithmic y-scale is used to give a better view of the details. All

computations are implemented based on the u on the nonuniform discrete time scale

T.

It is observed in Figure A.4.2 that the ♦α dynamic derivative provides better

overall approximation results than traditional ∆ and ∇ dynamic derivatives with the

α values used. When α = 1/2, the ♦α derivative not only indicates a comparable

quality as compared with the modified finite difference formula which is used in most

adaptive algorithms, but also demonstrates a superior tolerance around the singular

point. The latter property implies that the ♦α dynamic derivative is perhaps a better

approximation formula to be used in numerical problems involving possible singular-

ities. This is important in many adaptive and hybrid computational applications.

For each point t, it is possible to calculate a value of α that minimizes |ε♦α|.
When t is scattered, we have

ε♦α = u♦α(t)− u′(t) = u♦α(t) = α
uσ(t)− u(t)

σ(t)− t
+ (1− α)

uρ(t)− u(t)

ρ(t)− t
− u′(t).
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We find that the error is minimized when

α =
µ(t)[η(t)u′(t)− u(t) + uρ(t)]

η(t)[uσ − u(t)]− µ(t)[u(t)− uρ(t)]
.

Figure A.4.3 below presents the best α values for the grid points used in the domain

of our kink function example.
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Figure A.4.3. Alpha values minimizing |ε♦α|

Numerical experiments were carried out using MatLab and SimuLink subroutines

on dual-processor Dell Precision workstations.



APPENDIX B

Matlab Code

B.1 Example r-Stretching Transformations

% toy problem fo r r−s t r e t c h i n g proo f o f p r i n c i p l e
function f = example ( )

clear ;
R1 = 1 ;

M = 500 ; % number o f s t e p s in y d i r e c t i o n
h = R1/M; % s p a t i a l s t ep s i z e

eta = pi /4 ; % in t e r f a c e p o s i t i o n
bta = 1 ; % ste epne s s f a c t o r

%−− Ca l cu l a t e i n i t i a l r transform

xfrm (1) = 0 ;
q = h/2 ;
for j = 2 :2∗M+1

p1 = q∗ s t r e t c h f a c t o r ( xfrm ( j −1) , eta , bta ,R1 , h ) ;
p2 = q∗( s t r e t c h f a c t o r ( xfrm ( j−1) + (p1 /2) , eta , bta ,R1 , h ) ) ;
p3 = q∗( s t r e t c h f a c t o r ( xfrm ( j−1) + (p2 /2) , eta , bta ,R1 , h ) ) ;
p4 = q∗( s t r e t c h f a c t o r ( xfrm ( j−1) + p3 , eta , bta ,R1 , h ) ) ;
xfrm ( j ) = xfrm ( j−1) + p1/6 + p2/3 + p3/3 + p4 /6 ;

end

%−− Ca l cu l a t e r transform d e r i v a t i v e s

r v a l (1 ) = xfrm ( 1 ) ;
h a l f r (1 ) = xfrm ( 2 ) ;
for j = 2 :M

r v a l ( j ) = xfrm (2∗ j − 1 ) ;
h a l f r ( j ) = xfrm (2∗ j ) ;
r y ( j−1) = ( xfrm (2∗ j−1) − xfrm (2∗ j −3))/h ;
r yy ( j ) = ( xfrm (2∗ j ) − 2∗xfrm (2∗ j−1) + xfrm (2∗ j −2))/(q ˆ2 ) ;

end
r v a l (M+1) = xfrm (2∗M + 1) ;
r yy (1 ) = 0 ;
r y (M) = ( xfrm (2∗M+1) − xfrm (2∗M−1))/h ;
r y (M+1) = r y (M) ;
r yy (M+1) = 0 ;

105
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% se t c o e f f i c i e n t matrix

lhs mtx ( 1 , 1 :M+1) = −1;
lhs mtx ( 2 , 1 :M+1) = 1 ;
lhs mtx ( 3 , 1 :M+1) = 0 ;

lhs mtx (3 , 1 ) = 0 ;
lhs mtx (3 ,M+1) = 0 ;
lhs mtx (2 , 1 ) = 1 ;
lhs mtx (2 ,M+1) = 1 ;
lhs mtx (1 , 1 ) = 0 ;
lhs mtx (1 ,M+1) = −1;

u1 (1 ) = 0 ;
u1 ( 2 :M+1) = h∗ r y ( 1 :M) . ∗ ( f f u n c ( h a l f r ( 1 :M) , eta , bta ,R1 , h ) ) ;

% so l v e system of l i n e a r equa t ions wi th Thomas a l gor i thm
d (1) = lhs mtx (3 ,1 )/ lhs mtx ( 2 , 1 ) ;
v (1 ) = u1 (1)/ lhs mtx ( 2 , 1 ) ;
for k=2:M+1

c1 = lhs mtx (1 , k ) ;
p = lhs mtx (2 , k ) − c1∗d(k−1);
d(k ) = lhs mtx (3 , k )/p ;
v (k ) = (u1 (k ) − c1∗v (k−1))/p ;

end
u1 (M+1) = v(M+1);
for k=M:−1:1

u1 (k ) = v(k)−d(k )∗u1 (k+1);
end

ygr id = 0 : h :M∗h ;
r g r i d = 0 : h :M∗h ;

%% p l o t t i n g f i g u r e s <===========

f igure (1 )
plot ( ygr id , r y , ’b ’ )
xlabel ( ’ y ’ ) ;
ylabel ( ’ r y ’ ) ;
grid on
axis ( [ 0 R1 −0.05 2 . 0 5 ] ) ;
t i t l e ( ’ r d e r i v a t i v e ’ )

f igure (2 )
plot ( ygr id , r va l , ’ b ’ )
xlabel ( ’ y ’ ) ;
ylabel ( ’ r v a l ’ ) ;
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grid on
axis ( [ 0 R1 0 R1+0 . 0 1 ] ) ;
t i t l e ( ’ r trans form ’ )

f igure (3 )
plot ( ygr id , u1 , ’b ’ )
xlabel ( ’ y ’ ) ;
ylabel ( ’u ’ ) ;
grid on
axis ( [ 0 R1 0 R1+0 . 0 5 ] ) ;
t i t l e ( ’ s t r e t ched s o l u t i o n ’ )

v = interp1 ( r va l , u1 , rg r id , ’ s p l i n e ’ ) ;

f igure (4 )
plot ( rg r id , v , ’ r ’ )
xlabel ( ’ r ’ ) ;
ylabel ( ’ v ’ ) ;
grid on
axis ( [ 0 R1 0 R1+0 . 0 5 ] ) ;
t i t l e ( ’ s o l u t i o n in r ’ )

% ana l y t i c p i e c ew i s e l i n e a r s o l u t i o n
for k=1:M+1

r = (k−1)∗h ;
i f ( r < pi /4)

a u (k ) = (4/ pi )∗ r ;
else

a u (k ) = 1 − (4/(4−pi ) )∗ ( r−(pi / 4 ) ) ;
end

end

figure (5 )
plot ( rg r id , a u , ’b ’ )
xlabel ( ’ r ’ ) ;
ylabel ( ’ e r r o r ’ ) ;
grid on
axis ( [ 0 R1 0 1 . 0 5 ] ) ;
t i t l e ( ’ a n a l y t i c s o l u t i o n ’ )

f igure (6 )
plot ( rg r id , abs (v−a u ) , ’b ’ )
xlabel ( ’ r ’ ) ;
ylabel ( ’ e r r o r ’ ) ;
grid on
axis ( [ 0 R1 0 0 . 0 0 3 ] ) ;
t i t l e ( ’ e r r o r o f s o l u t i o n post trans form ’ )
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% the sigma func t i on
function a1 = sigma func ( r , eta , bta ,R1 , h)

a1 = (tanh ( bta ∗( r−eta )/h ) . . .
− tanh ( bta∗(− eta )/h ) ) / ( tanh ( bta ∗(R1−eta )/h ) . . .
− tanh ( bta∗(− eta )/h ) ) ;

% sigma func t i on f i r s t d e r i v a t i v e w/ r e s p e c t to r
function a2 = sigma r ( r , eta , bta ,R1 , h)

a2 = bta ∗ ( ( sech ( bta ∗( r−eta )/h ) ) . ˆ 2 ) . / ( h∗(tanh ( bta ∗(R1−eta )/h ) . . .
− tanh ( bta∗(− eta )/h ) ) ) ;

% simple mesh genera tor dr/dy = s t r e t c h f a c t o r (y , r )
function a4 = s t r e t c h f a c t o r ( r , eta , bta ,R1 , h)

s r = s igma r ( r , eta , bta ,R1 , h ) ;
a4 = 2 . / ( 1 + R1∗ s r ) ;

% the d i f f e r e n t i a l equat ion : du/dr = f f un c ( r , eta , bta ,R1, h )
function a5 = f f un c ( r , eta , bta ,R1 , h)

a5 = 4/pi − (16/((4−pi )∗pi ) )∗ s igma func ( r , eta , bta ,R1 , h ) ;

B.2 Moving Mesh Method

%% Helmhol tz parax ia l , r a d i a l l y symmetric domain
function f = movmesh ( )

clear ;
R = 1 . 9 6 9 ;
l e n s = 0 . 7643 ;
Z1 = l en s ;
R1 = 1 . 5574 ;

N = 32000 ; % number o f s t e p s in x d i r e c t i o n
M = 5000 ; % number o f s t e p s in y d i r e c t i o n

tau = Z1/N; % propagat ion s t ep s i z e
h = R1/M % s p a t i a l s t e p s i z e

z = 0 ;
eta = i n t e r f a c e r p o s i t i o n ( z ,R) ;
etam = max( eta , h ) ;
etam = min( etam ,R1−h ) ;
bta = 1/20 ;
alph = tau /(2∗ ( h ˆ 2 ) ) ;

t ic
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%−− Ca l cu l a t e i n i t i a l r transform
f i n e r (1 ) = 0 ;
omega = h/2 ;
for j = 2 :2∗M+1

p1 = omega∗ s t r e t c h f a c t r ( f i n e r ( j −1) ,etam , bta ,R1 , h ) ;
p2 = omega∗( s t r e t c h f a c t r ( f i n e r ( j−1) + (p1 /2) , etam , bta ,R1 , h ) ) ;
p3 = omega∗( s t r e t c h f a c t r ( f i n e r ( j−1) + (p2 /2) , etam , bta ,R1 , h ) ) ;
p4 = omega∗( s t r e t c h f a c t r ( f i n e r ( j−1) + p3 , etam , bta ,R1 , h ) ) ;
f i n e r ( j ) = f i n e r ( j−1) + p1/6 + p2/3 + p3/3 + p4 /6 ;

end

%−− Ca l cu l a t e r transform d e r i v a t i v e s

new r ( 1 :M+1) = f i n e r ( 1 : 2 : 2 ∗M+1);
new r y ( 2 :M) = ( new r ( 3 :M+1) − new r ( 1 :M−1))/(2∗h ) ;
new r y (1 ) = new r y ( 2 ) ;
new r y (M+1) = new r y (M) ;
new r yy ( 2 :M) = ( new r ( 3 :M+1)−2∗new r ( 2 :M)+new r ( 1 :M−1))/(h∗h ) ;
new r yy (1 ) = 0 ;
new r yy (M+1) = 0 ;

i n i t r = new r ;
o l d r = new r ;
o l d r y = new r y ;
o l d r yy = new r yy ;

k2 = 9.97 e+03;
k1 = (2/3)∗ k2 ;

m cnt ( 1 :M+1) = 0 : 1 :M;
r g r i d = 0 : h :M∗h ;

i n i t s o l n = gauss ian (0 , o ld r , k1 ) ;
u0 = i n i t s o l n ;
s o l n n e a r a x i s (1 ) = i n i t s o l n ( 2 ) ;

ygr id = 0 : h :M∗h ;
f igure (1 )
plot ( ygr id , o ld r , ’ y ’ )
axis ( [ 0 R1 0 R1 ] ) ;
xlabel ( ’ y ’ ) ;
ylabel ( ’ r ( y ) ’ ) ;
grid on ;
t i t l e ( ’ i n i t i a l r trans form ’ )

for kk=1:N

%% we need to r e s e t matr ices f o r each z
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z = z + tau ;
eta = i n t e r f a c e r p o s i t i o n ( z ,R) ;
etam = max( eta , h ) ;
etam = min( etam ,R1−h ) ;

%−− Ca l cu l a t e r transform fo r curren t propagat ion s t ep
f i n e r (1 ) = 0 ;
omega = h/2 ;
for j = 2 :2∗M+1

p1 = omega∗ s t r e t c h f a c t r ( f i n e r ( j −1) ,etam , bta ,R1 , h ) ;
p2 = omega∗( s t r e t c h f a c t r ( f i n e r ( j−1) + (p1 /2) , etam , bta ,R1 , h ) ) ;
p3 = omega∗( s t r e t c h f a c t r ( f i n e r ( j−1) + (p2 /2) , etam , bta ,R1 , h ) ) ;
p4 = omega∗( s t r e t c h f a c t r ( f i n e r ( j−1) + p3 , etam , bta ,R1 , h ) ) ;
f i n e r ( j ) = f i n e r ( j−1) + p1/6 + p2/3 + p3/3 + p4 /6 ;

end

%−− Ca l cu l a t e r transform d e r i v a t i v e s

new r ( 1 :M+1) = f i n e r ( 1 : 2 : 2 ∗M+1);
new r y ( 2 :M) = ( new r ( 3 :M+1) − new r ( 1 :M−1))/(2∗h ) ;
new r y (1 ) = new r y ( 2 ) ;
new r y (M+1) = new r y (M) ;
new r yy ( 2 :M) = ( new r ( 3 :M+1)−2∗new r ( 2 :M)+new r ( 1 :M−1))/(h∗h ) ;
new r yy (1 ) = 0 ;
new r yy (M+1) = 0 ;

%−− Ca l cu l a t e the mid−s t ep transform , d e r i v a t i v e
%−− and c o e f f i c i e n t va l u e s
r v a l = ( o l d r + new r ) /2 ;
r x = ( new r − o l d r )/ tau ;
r y = ( o l d r y + new r y ) / 2 ;
r yy = ( o l d r yy + new r yy ) / 2 ;
eta = i n t e r f a c e r p o s i t i o n ( z−(tau /2) ,R) ;
k va l = wave number ( r va l , eta , bta ,R1 , h ) ;

%% mtx (1 ,∗ ) i s the l e f t subd iagona l l i n e ; index s t a r t s a t 2
%% mtx (2 ,∗ ) i s the main d iagona l l i n e ; index s t a r t s a t 1
%% mtx (3 ,∗ ) i s the r i g h t subd iagona l l i n e ; index s t a r t s a t 1

gam( 1 :M+1) = i ∗ alph . / ( k va l . ∗ ( r y . ˆ 2 ) ) ;
phi ( 2 :M) = (h∗ r y ( 2 :M)/2 ) .∗ ( 2∗ i ∗ k va l ( 2 :M) . ∗ r x ( 2 :M) . . .
− r yy ( 2 :M) . / ( r y ( 2 :M) . ˆ 2 ) + 1 ./ r v a l ( 2 :M) ) ;

phi (1 ) = 1 ;
phi (M+1) = 1 ;

lhs mtx ( 1 , : ) = gam.∗(1− phi ) ;
lhs mtx ( 2 , : ) = 2 − 2∗gam ;
lhs mtx ( 3 , : ) = gam.∗(1+ phi ) ;
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lhs mtx (3 , 1 ) = 2∗gam ( 1 ) ;
lhs mtx (3 ,M+1) = 0 ;
lhs mtx (1 , 1 ) = 0 ;
lhs mtx (1 ,M+1) = 2∗gam(M+1);

rhs mtx ( 1 , : ) = −gam.∗(1− phi ) ;
rhs mtx ( 2 , : ) = 2 + 2∗gam ;
rhs mtx ( 3 , : ) = −gam.∗(1+ phi ) ;

rhs mtx (3 , 1 ) = −2∗gam ( 1 ) ;
rhs mtx (3 ,M+1) = 0 ;
rhs mtx (1 , 1 ) = 0 ;
rhs mtx (1 ,M+1) = −2∗gam(M+1);

%% so l u t i o n o f the system :
%% r i gh t−hand−s i d e o f the system :

u1 (1 ) = rhs mtx (2 ,1 )∗ u0 (1 ) + rhs mtx (3 ,1 )∗ u0 ( 2 ) ;
u1 ( 2 :M) = rhs mtx ( 1 , 2 :M) . ∗ u0 ( 1 :M−1) + rhs mtx ( 2 , 2 :M) . ∗ u0 ( 2 :M) . . .

+ rhs mtx ( 3 , 2 :M) . ∗ u0 ( 3 :M+1) ;
u1 (M+1) = rhs mtx (1 ,M+1)∗u0 (M) + rhs mtx (2 ,M+1)∗u0 (M+1);

% so l u t i o n o f the t r i d i a g o n a l system :
% Thomas a l gor i thm

u1 = thomas so lve (u1 , lhs mtx ,M) ;
u0 = u1 ;

o l d r = new r ;
o l d r y = new r y ;
o l d r yy = new r yy ;

s o l n n e a r a x i s ( kk+1) = u1 ( 2 ) ;
end

toc

% boundary va l u e s f o r next domain segment
u0 = u1 ;
l a s t r = new r ;

%% p l o t t i n g f i g u r e s <===========

r e a l n e a r a x i s = real ( s o l n n e a r a x i s ) ;
imag near ax i s = imag( s o l n n e a r a x i s ) ;
i n t e n s i t y n e a r a x i s = ( r e a l n e a r a x i s .ˆ2)+( imag near ax i s . ˆ 2 ) ;
max r ea l n ea r ax i s = max( r e a l n e a r a x i s ) ;
m i n r e a l n e a r ax i s = min( r e a l n e a r a x i s ) ;
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max imag near axis = max( imag near ax i s ) ;
min imag near ax i s = min( imag near ax i s ) ;
max in t en s i t y n ea r ax i s = max( i n t e n s i t y n e a r a x i s ) ;
m i n i n t e n s i t y n e a r a x i s = min( i n t e n s i t y n e a r a x i s ) ;

x = 0 : tau :N∗ tau ;

u r e a l = real ( i n i t s o l n ) ;
u imag = imag( i n i t s o l n ) ;
u i n t e n s i t y = u r e a l . ˆ2 + u imag . ˆ 2 ;

v = interp1 ( i n i t r , i n i t s o l n , rg r id , ’ s p l i n e ’ ) ;
u r e a l = real ( v ) ;
u imag = imag( v ) ;
u i n t e n s i t y = u r e a l . ˆ2 + u imag . ˆ 2 ;

f igure (3 )
plot ( rg r id , u r ea l , ’ r ’ )
axis ( [ 0 R1 −1.02 1 . 0 5 ] ) ;
xlabel ( ’ r ’ ) ;
ylabel ( ’u ’ ) ;
grid on ;
hold on ;
plot ( rg r id , u imag , ’ k ’ )
plot ( rg r id , u i n t en s i t y , ’−−b ’ , ’ l i n ew id th ’ , 2 )
t i t l e ( ’ i n i t i a l va lue : r−r ea l , k−imaginary , b−i n t e n s i t y ’ )
hold o f f

u r e a l = real ( u0 ) ;
u imag = imag( u0 ) ;
u i n t e n s i t y = u r e a l . ˆ2 + u imag . ˆ 2 ;
max rea l u = max( u r e a l ) ;
m in rea l u = min( u r e a l ) ;
max imag u = max( u imag ) ;
min imag u = min( u imag ) ;
max intens i ty u = max( u i n t e n s i t y ) ;
m in in t en s i t y u = min( u i n t e n s i t y ) ;
u max = max( [ max real u , max imag u , max intens i ty u ] ) ;
u min = min ( [ min rea l u , min imag u , m in in t en s i t y u ] ) ;

f igure (7 )
plot ( rg r id , u r ea l , ’ r ’ )
axis ( [ 0 R1 u min u max ] ) ;
xlabel ( ’ r ’ ) ;
ylabel ( ’u ’ ) ;
grid on ;
hold on ;
plot ( rg r id , u imag , ’ k ’ )
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plot ( rg r id , u i n t en s i t y , ’−−b ’ , ’ l i n ew id th ’ , 2 )
t i t l e ( ’ s o ln e x i t i n g l e n s : r−r ea l , k−imaginary , b−i n t e n s i t y ’ )
hold o f f

%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% domain segment pas t l en s
%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Z2 = 6∗Z1 ;
lensN = N;
N = 5∗N;

tau = (Z2−Z1)/N;
h = R1/M;
courant = tau /(h∗h)
lam = tau /(2∗ i ∗h∗h∗k1 )

%% −−−−−−−−−−−−−−−−−−−−−−−−

lhs mtx ( 1 , 2 :M) = −lam ∗(1−(1./(2∗m cnt ( 2 :M) ) ) ) ;
lhs mtx ( 2 , : ) = 2 + 2∗ lam ;
lhs mtx ( 3 , 2 :M) = −lam ∗(1+(1./(2∗m cnt ( 2 :M) ) ) ) ;

lhs mtx (3 , 1 ) = −2∗lam ;
lhs mtx (3 ,M+1) = 0 ;
lhs mtx (1 , 1 ) = 0 ;
lhs mtx (1 ,M+1) = −2∗lam ;

rhs mtx ( 1 , 2 :M) = lam ∗(1−(1./(2∗m cnt ( 2 :M) ) ) ) ;
rhs mtx ( 2 , : ) = 2 − 2∗ lam ;
rhs mtx ( 3 , 2 :M) = lam ∗(1+(1./(2∗m cnt ( 2 :M) ) ) ) ;

rhs mtx (3 , 1 ) = 2∗ lam ;
rhs mtx (3 ,M+1) = 0 ;
rhs mtx (1 , 1 ) = 0 ;
rhs mtx (1 ,M+1) = 2∗ lam ;

%% now , advancement in z−d i r e c t i o n :

%% we w i l l save the s o l u t i o n at max i n t e n s i t y
u max = u0 ;
i n t e n s i t y = 0 . 0 ;
max intens i ty = 0 . 0 ;
max intense index = 0 ;
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for kk=1:N

%% so l u t i o n o f the system :
%% r i gh t−hand−s i d e o f the system :

u1 (1 ) = rhs mtx (2 ,1 )∗ u0 (1 ) + rhs mtx (3 ,1 )∗ u0 ( 2 ) ;
u1 ( 2 :M) = rhs mtx ( 1 , 2 :M) . ∗ u0 ( 1 :M−1) + rhs mtx ( 2 , 2 :M) . ∗ u0 ( 2 :M) . . .

+ rhs mtx ( 3 , 2 :M) . ∗ u0 ( 3 :M+1) ;
u1 (M+1) = rhs mtx (1 ,M+1)∗u0 (M) + rhs mtx (2 ,M+1)∗u0 (M+1);

u0=u1 ;

u1 = thomas so lve (u1 , lhs mtx ,M) ;
u0 = u1 ;

i f ( i n t e n s i t y > max intens i ty )
max intens i ty = i n t e n s i t y ;
max intense index = N+kk ;
u max = u1 ;

end ;
s o l n n e a r a x i s ( lensN+kk+1) = u1 ( 2 ) ;

end

%% p l o t t i n g f i g u r e s <===========

r e a l n e a r a x i s = real ( s o l n n e a r a x i s ) ;
imag near ax i s = imag( s o l n n e a r a x i s ) ;
i n t e n s i t y n e a r a x i s = ( r e a l n e a r a x i s . ˆ 2 ) + ( imag near ax i s . ˆ 2 ) ;
max r ea l n ea r ax i s = max( r e a l n e a r a x i s ) ;
m i n r e a l n e a r ax i s = min( r e a l n e a r a x i s ) ;
max imag near axis = max( imag near ax i s ) ;
min imag near ax i s = min( imag near ax i s ) ;
max in t en s i t y n ea r ax i s = max( i n t e n s i t y n e a r a x i s ) ;
m i n i n t e n s i t y n e a r a x i s = min( i n t e n s i t y n e a r a x i s ) ;

x = 0 : tau : ( lensN + N)∗ tau ;

u r e a l = real ( u max ) ;
u imag = imag( u max ) ;
u i n t e n s i t y = u r e a l . ˆ2 + u imag . ˆ 2 ;
max rea l u = max( u r e a l ) ;
m in rea l u = min( u r e a l ) ;
max imag u = max( u imag ) ;
min imag u = min( u imag ) ;
max intens i ty u = max( u i n t e n s i t y ) ;
m in in t en s i t y u = min( u i n t e n s i t y ) ;
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u max = max( [ max real u , max imag u , max intens i ty u ] ) ;
u min = min ( [ max real u , max imag u , max intens i ty u ] ) ;
max t = max( [ max rea l u max imag u max intens i ty u ] ) ;
min t = min ( [ m in rea l u min imag u min in t en s i t y u ] ) ;

f igure (8 )
plot ( rg r id , u r ea l , ’ r ’ )
axis ( [ 0 R1 min t max t ] ) ;
xlabel ( ’ r ’ ) ;
ylabel ( ’u ’ ) ;
grid on ;
hold on ;
plot ( rg r id , u imag , ’ k ’ )
plot ( rg r id , u i n t en s i t y , ’−−b ’ , ’ l i n ew id th ’ , 2 )
t i t l e ( ’ s o ln at f o cus : r−r ea l , k−imaginary , b−i n t e n s i t y ’ )
hold o f f

f igure (9 )
plot (x , r e a l n e a r a x i s , ’ r ’ )
xlabel ( ’ z ’ ) ;
ylabel ( ’ r e a l (u) ’ ) ;
grid on
axis ( [ 0 Z2 m in r e a l n e a r ax i s max r ea l n ea r ax i s ] ) ;
t i t l e ( ’ r e a l component o f s o l u t i o n near z−ax i s ’ )

f igure (10)
plot (x , imag near ax i s , ’ r ’ )
xlabel ( ’ z ’ ) ;
ylabel ( ’ imag (u) ’ ) ;
grid on
axis ( [ 0 Z2 min imag near ax i s max imag near axis ] ) ;
t i t l e ( ’ imag component o f s o l u t i o n near z−ax i s ’ )

f igure (11)
plot (x , i n t e n s i t y n e a r a x i s , ’ r ’ )
xlabel ( ’ z ’ ) ;
ylabel ( ’ r e a l (u)∗ r e a l (u)+imag (u)∗ imag (u) ’ ) ;
grid on
axis ( [ 0 Z2 m in i n t e n s i t y n e a r a x i s max in t en s i t y n ea r ax i s ] ) ;
t i t l e ( ’ i n t e n s i t y o f s o l u t i o n near z−ax i s ’ )

% the sigma func t i on
function a1 = sigma func ( r , eta , bta ,R1 , h)

a1 = (tanh ( bta ∗( r−eta )/h ) . . .
− tanh ( bta∗(− eta )/h ) ) / ( tanh ( bta ∗(R1−eta )/h ) . . .
− tanh ( bta∗(− eta )/h ) ) ;
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% sigma func t i on f i r s t d e r i v a t i v e w/ r e s p e c t to r
function a2 = sigma r ( r , eta , bta ,R1 , h)

a2 = bta ∗ ( ( sech ( bta ∗( r−eta )/h ) ) . ˆ 2 ) . / ( h∗(tanh ( bta ∗(R1−eta )/h ) . . .
− tanh ( bta∗(− eta )/h ) ) ) ;

% simple mesh genera tor dr/dy = s t r e t c h f a c t r (y , r )
function a4 = s t r e t c h f a c t r ( r , eta , bta ,R1 , h)

s r = s igma r ( r , eta , bta ,R1 , h ) ;
a4 = 2 . / ( 1 + R1∗ s r ) ;

function a5 = wave number ( r , eta , bta ,R1 , h)
k = 9.97 e+03;
a5 = k∗(1 − (1/3)∗ s igma func ( r , eta , 0 . 5 ,R1 , h ) ) ;

function a6 = i n t e r f a c e r p o s i t i o n ( z ,R)
a6 = sqrt (Rˆ2 − ( z−R) . ˆ 2 ) ;

function a7 = thomas so lve (u , lhs mtx ,M)

w = u ;
d (1 ) = lhs mtx (3 ,1 )/ lhs mtx ( 2 , 1 ) ;
v (1 ) = w(1)/ lhs mtx ( 2 , 1 ) ;
for k=2:M+1

c1 = lhs mtx (1 , k ) ;
p = lhs mtx (2 , k ) − c1∗d(k−1);
d(k ) = lhs mtx (3 , k )/p ;
v (k ) = (w(k ) − c1∗v (k−1))/p ;

end
w(M+1) = v(M+1);
for k=M:−1:1

w(k ) = v(k)−d(k )∗w(k+1);
end
a7 = w;

function a8 = gauss ian ( z , r , k )

B0 = 0 . 5 ;
z0 = 100 ;
A = exp( i ∗k∗ z0 ) ;
B = sqrt ( 1/ ( ( 1/ (B0ˆ2))+( i ∗k/(2∗ z0 ) ) ) ) ;
Z = 2∗ z / ( (Bˆ2)∗k ) ;
a8 = (A./(1+ i ∗Z ) ) . ∗ exp( i ∗k∗z − ( ( r . ˆ 2 ) . / ( (Bˆ2).∗(1+ i ∗Z ) ) ) ) ;
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