
ABSTRACT

Network Meta-analysis with Rare Events and Misclassified Response

Wenqi Wu, Ph.D.

Mentors: James D. Stamey, Ph.D., David Kahle, Ph.D.

Count data are subject to considerable sources of what is often referred to

as non-sampling error. Errors such as misclassification, measurement error, and

unmeasured confounding can lead to substantially biased estimators. It is strongly

recommended that epidemiologists not only acknowledge these sorts of errors in data

but also incorporate sensitivity analyses into part of the total data analysis. In this

dissertation, we extend previous work on Poisson regression models that allow for

misclassification by thoroughly discussing the basis for the models and allowing for

extra-Poisson variability in the form of random effects. Markov chain Monte Carlo

methods are applied to perform the computations needed to draw inferences and

make model assessments. Through simulation, we show the improvements in infer-

ence that are brought about by accounting for both misclassification and overdis-

persion.

Network meta-analysis is increasingly popular in clinical trials and provides

both direct and indirect treatment comparisons. One common issue in network

meta-analysis is zero outcomes, which will lead to biased estimates and low coverage

probabilities. We consider both the binomial distribution and the Poisson distri-

bution to model data. Four network patterns are considered, which are star, loop,

ladder, and one-closed loop geometry. The Bayesian approach is used as our method



of inference. Through simulation, we evaluate two contiunity correction methods for

different geometry patterns. The performance of continuity correction depends on

the geometry pattern and the underlying distribution assumption.

We also consider misclassification in the network meta-analysis for binary

outcomes. Sensitivity and specificity are introduced to adjust misclassified data.

Through simulation, we demonstrate the importance of accounting for misclassifica-

tion. We also assess the robustness of different values for sensitivity and specificity.

We find that the the posterior inferences are very sensitive to misclassification rates.
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CHAPTER ONE

Introduction

In this dissertation we discuss two topics. First, accounting for misclassifica-

tion in Poisson regression model and network meta-analysis. Second, comparisons of

continuity correction methods for the zero outcomes in the network meta-analysis.

1.1 Misclassification and Rare Event

In the epidemiologic studies, one major source of error is misclassification in

counted data due to misreporting by subjects or the use of imperfect measurement

devices in data collection. Misclassification in the counted data refers to the clas-

sification of an individual into a category other than that to which it should be

assigned. Without appropriate adjustment, misclassification could lead to substan-

tially biased estimates, and can therefore underestimate risk of certain disease. Tu,

Litvak, and Pagano 1994 discussed that the imperfect measurement of HIV led to

incorrectly estimation of prevalence in New York.

Rare event is one of the major concerns for binary data in clinical trial, for

example the adverse events associated with medical treatments. Even though meta-

analysis may be the only way to obtain reliable evidence of the effects of healthcare

interventions (Bradburn et al. 2006), there are still difficulties in estimating an effect

and standard error when no events occur in either arm. For example, if zero events

exist in one or more cells in a 2× 2 table, the commonly used Mantel-Haenszel and

Peto methods are inappropriate, espcially, the calculation of odds ratio, which is not

defined in this situation. Risk difference is an option when zero events exist in one

or both arms. However, risk difference may highly depend on the underlying risk of

events.
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1.2 Plan of the Dissertation

The purpose of this dissertaion is to adjust misclassification and zero events

in Poisson regression model and network meta-analysis. The performance of ad-

justment is assessed through simulation studies and Bayesian approach is used to

estimate the parameters of interest.

In Chapter Two, we adjust misclassification by incorporating specificity and

sensitivity in the Poisson regression. In addition, we consider adding random effects

in the Poisson regression models that allow for extra-Poisson variability, which is

commonly encountered in observational study. We use the more accessible graphical

models to illustrate the assumptions and the form of the models. Through simulation

studies, we demonstrate that our proposed model over performs the naive model that

ignores the misclassificaiton.

Chapter Three consists of comparisons of two continuity correction methods

for zero events in network meta-analysis for counted data. A small number (0.5 or

1) is added to both arms from a trial where either outcome is zero. We assume that

data follows binomial distribution and use odd ratio to measure the relative efficacy

between treatments. We also provide brief descriptions of network meta-analysis,

such as basic parameters and functional parameters, and consider four different

types of networks (star, loop, ladder, and one closed-loop geometry). Best rank

probability is introduced to assess the ability to detect the best treatment among all

the treatments. In the simulation studies, we vary the percentage of zero outcomes

in the data. The simulation results confirm that with more zero in the outcome ,

the bias of estimates increased. Continuity correction methods do reduce the bias

of esitmates, but there is no universal best method for all types of network, the

performance varies from case to case.

In Chapter Four, we compare the continuity correction methods for zero events

in network meta-analysis for Poisson data. We perform a very similar analysis as

2



what we do in Chapter Three, four types of network patterns and two continuity

corrections methods. Besides, we assume the underlying distribution for data is

Poisson distribution and use risk ratio to measure the efficacy between treatments.

In Chapter Five, we incorporate sensitivity and specificity in the network meta-

analysis for binary data when misclassification exists. In this chapter, only star ge-

ometry is considered, the other geometry can be easily extended. In the simulation

studies, we investigate the danger of ignoring misclassification, which understimates

the odds ratio between treatments. We also perform a sensitivity analysis of us-

ing imperfect misclassification parameters and simulation suggests that the use of

slightly overestimated misclassification paramters will provide better results than

that of using underestimated misclassification parameters.

Appendices are provided at the end of dissertation including the relative codes

through this dissertation.
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CHAPTER TWO

A Bayesian Method to Account for Misclassified and Overdispersed Data

This chapter published as: Wu, Wenqi, James Stamey, and David Kahle. 2015 “A
Bayesian Approach to Account for Misclassification and Overdispersion in Count

Data.” International Journal of Environmental Research and Public Health
12(9):10648-10661.

2.1 Introduction

Epidemiologic studies often have data that are subject to a wide array of dif-

ferent types of error. Measurement error, unmeasured confounding, and selection

bias are all examples of biased estimator sources and cause reduced power for hy-

pothesis tests (Edwards et al. 2013; Pierce and VanderWeele 2012). For continuous

covariates, the problem of imperfect assessment is referred to as measurement er-

ror. A thorough review of measurement error, including remedial measures, can be

found in Carroll et al. (2006). When considering discrete covariates, binary expo-

sure variables are often measured with error, and such error is known to yield biased

estimators (Batterman et al. 2014; Burstyn, Yang, and Schnatter 2014). Misclassi-

fication in ordinal covariates is also considered by Küchenhoff, Mwalili, and Lesaffre

(2006). In this binary setting, misclassification is communicated in the language of

diagnostic tests: sensitivities (se) and specificities (sp). On the response side of the

model, imperfect assessment for both binary/categorical variables (response misclas-

sification) and count variables are also taken into account (Sposto et al. 1992; Luta

et al. 2013).

In the case of Poisson regression, two approaches taken to correct for misclas-

sification error: one frequentist and one Bayesian. From the frequentist perspective,

Edwards et al. (2013) consider the problem using maximum likelihood (ML) tech-

niques assuming fixed and known se and sp. From the Bayesian perspective, Stamey,
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Young, and Seaman (2008) relax the assumption that the se and sp are known by

making use of validation data or informative priors. Both approaches have strengths

and weaknesses. Treating the se and sp as known, as done by Edwards et al. (2013),

is a strong assumption when these values are determined from small prior data sets

or expert opinion. However, the “fixed” se and sp approach is usually enhanced

by performing a sensitivity study, where a range of values for the se and sp are

plugged in and the impact to the estimated parameters of interest is noted. On the

other hand, the Bayesian model of Stamey et al. (2008), which fully accounts for

the uncertainty in estimation, may require considerable computational time for the

Markov chain Monte Carlo (MCMC) to converge and might also require a sensitivity

analysis. Assuming these parameters are fixed and known reintroduces identifiability

into the model so that the parameters are estimable from either the ML or Bayesian

perspectives.

In some cases, extra-variability beyond what is allowed for with a Poisson dis-

tribution is observed in the data; this effect is called overdispersion. Gorman et al.

(2014) consider the effect of non-response on the estimation of alcohol-related out-

comes using a Poisson model with overdispersion. Milner, Morrell, and LaMontagne

(2014) consider this problem in an analysis of how the 2007 recession impacted sui-

cide rates in Australia. Paulino, Silva, and Achcar (2005) considered a misclassified

binomial model with overdispersion and allowed for extra variability in their model

with a random effect. In this chapter, we focus on the cases where sampling is done

either in clusters or longitudinally, motivating the need for a random effects model.

Statisticians have done considerable research developing methods for correct-

ing biases in observational data due to misclassification, measurement error, unmea-

sured confounding, etc. In this chapter, we also focus on the important case of count

data with misclassification and provide a cohesive estimating procedure for inference

for a range of models of interest, specifically fixed and random effects models and
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the cases of known and unknown misclassification rates. Our goal is to demonstrate

and show the value of methods that account for bias in epidemiologic models with

the Bayesian approach.

In Section 2.2, we overview the Poisson model with misclassification for both

fixed and random effects. Then in Section 2.3, we discuss the prior distributions used

for all parameters in the models and methods used for posterior inference. Next, we

consider the analysis of a single synthetic dataset in Section 2.4. We then discuss the

results of the simulation studies in Section 2.5 and give some concluding comments

in Section 2.6.

Wenqi Wu and James Stamey conceptualized the simulation study. Wenqi

Wu performed the simulation. David Kahle conceptualized and constructed the

graphical models and other visuals. All authors wrote the paper.

2.2 The Model

In this section, we introduce the model of interest using an example from

Edwards et al. (2014). To aid in the description, we build the model with increas-

ing levels of complexity communicated through the language of directed graphical

models, also called Bayesian networks. In that language, fixed known quantities

are represented as dots and variables are represented as nodes (circles), which are

shaded if they are to be observed as data. The directed edges (arrows) represent de-

pendent relationships, with the defining property being that a node is conditionally

independent of any node that is not one of its descendants given its parents. Nodes

that have a double lining are considered deterministic/known given their parents.

For more background on graphical models, we find that Koller and Friedman (2009)

is an excellent, extensive treatment.
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2.2.1 The No-Misclassification Poisson Regression Model

The overarching question of interest in this chapter is to understand the rate

at which individuals succumb to diseases like lung cancer, and we are later inter-

ested in determinants of that rate. To begin modeling death due to lung cancer or

alternative causes, we temporarily overlook covariates. The data are based on death

certificate information, which consists of the number of deaths due to lung cancer

(y1i) and those due to other causes (y2i). Here, the index i runs from 1 to n and

represents a number of observations, e.g., counties where death certificate informa-

tion is obtained. Both of these are counts gathered over the same opportunity size

(ti). In these scenarios, it is standard practice to assume that each of these counts

follow a Poisson distribution with rate parameters λ and µ, respectively. The graph-

ical model corresponding to this situation is presented in Figure 2.1. Note that the

rectangle (plate notation) is graphical shorthand for iterated relationships so that

the same λ and µ are the rates in each location. This is a naive assumption that

will be relaxed shortly. This model yields the likelihood function,

p(y1,y2) ∝
n∏
i=1

(λy1iexp(−λ)× µy2iexp(−µ)) .

ti

λ µ

y1i y2i

i = 1, . . . , n

Figure 2.1: The naive baseline model: The number of deaths due to cancer (y1i) and
non-cancer (y2i) follow a Poisson distribution with constant parameters.

To make the model more realistic, we let the rates vary depending on various

covariates. In particular, we assume the rates are related to the covariates through

7



log-linear models:

log(λi) = β0 + β1Xi +

p∑
j=1

βjZij = β0 + β1Xi +Z ′iβ (2.1)

and

log(µi) = γ0 + γ1Xi +

p∑
j=1

γjZij = γ0 + γ1Xi +Z ′iγ. (2.2)

Here, Xi is the main exposure of interest for observation i, while Zij are other co-

variates associated with it; p is the number of non-treatment covariates. This model

is diagramed in Figure 2.2. Note that bolded symbols represent vector quantities.

The likelihood for the observed data is

p(y1i, y2i) ∝ λy1ii exp(−λi)× µy2ii exp(−µi)

β γ

ti

Xi Xi

Zi Zi

λi µi

y1i y2i

i = 1, . . . , n

Figure 2.2: The no-misclassification Poisson regression model.

2.2.2 The Misclassification Poisson Regression Model

Outcomes, such as lung cancer deaths, are based on death certificate informa-

tion, which is well known to be potentially misclassified (Sposto et al. 1992; Hinch-

liffe, Abrams, and Lambert 2013). In particular, we note that it may be naive to

consider the observed quantities to be the true cancer and non-cancer death counts,

as indicated in the two previous models. Instead, we add an additional layer of

complexity to the model by considering the observed data to be the counts of deaths

that are labeled as due to lung cancer (w1i) or other causes (w2i). The true number
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of deaths due to lung cancer y1i and non-lung cancer y2i are thus considered un-

observed. Since y1i and y2i are not observed, the error-prone data w1i and w2i are

used in the analysis instead. The misclassified counts w1i and w2i depend on the

true counts y1i and y2i and misclassified counts u1i and u2i (also unobserved) in the

following ways: the count u1i is the number of cancer deaths incorrectly labeled as

non-cancer, and u2i is the number of non-cancer deaths incorrectly labeled as due

to cancer. We then have

w1i = y1i − u1i + u2i,

w2i = y2i + u1i − u2i,

and

w1i + w2i = y1i + y2i.

The relationships between the observed variables w1i and w2i and the unobserved

variables are shown in diagram and table form in Figure 2.3. Note that CCi repre-

sents the true cancer deaths classified as cancer deaths (correct), CC̄i represents the

true cancer deaths classified as non-cancer deaths (incorrect), and the classifications

are similar for C̄Ci and C̄C̄i. Another way to describe the potential misclassification

is to use se and sp. Here, se is the probability that a lung cancer death is correctly

labeled as lung cancer; sp is the probability that a death due to all other causes are

correctly labeled as not being due to lung cancer. Therefore, the true rate parameter

for observed data for the counts of deaths that are labeled as due to lung cancer

(w1i) is

λise+ µi(1− sp),

and the true rate parameter for observed data for the counts of deaths that are

labeled as due to other causes (w2i) is

λi(1− se) + µisp,
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where λi and µi are the covariate specific death rates for the ith observational unit.

Thus, w1i and w2i are biased for the rates λi and µi. For instance, w1i only provides

information about the quantity λise+µi(1−sp), and without additional information,

there is no way to disentangle a direct estimate for λi. In other words, accounting for

misclassification with the two parameters of se and sp overparameterizes the model

in a way that demands to be addressed. A simple derivation reveals that like the

unobserved counts, the observed counts also follow Poisson distributions, but the

rates are functions of all the parameters. The likelihood for the observed data is

p(w1i, w2i) ∝ (λise+ µi(1− sp))w1i(λi(1− se) + µisp)
w2iexp{−(λi + µi)ni}. (2.3)

Edwards et al. (2014) consider se and sp known, and they provide a method to

obtain the maximum likelihood estimators (MLEs). Stamey et al. (2008) assume

information about se and sp exists, not as point estimates, but rather in the form of

probability distributions with which one can perform a Bayesian analysis, e.g., prior

distributions. Here, we investigate both the fixed and unknown approaches via the

Bayesian paradigm.

β γ

ti

Xi Xi

Zi Zi

λi µi

y1i y2i

se spCC̄iCCi C̄C̄iC̄Ci

w1i w2i

i = 1, . . . , n

(a) (b)

Figure 2.3: The Poisson regression model with misclassification

Figure 2.3 shows the Poisson regression model with misclassification. (a) is

the graphical representation of the model, se denotes the sensitivity of the classifier,
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and sp denotes its specificity. (b) is the contingency table representation of the data.

y1i (y2i) is the true number of deaths due to lung cancer (non-lung cancer). u1i (u2i)

is the true number of lung cancer (non-lung cancer) deaths misclassified. w1i (w2i)

is the observed number of deaths due to lung cancer (non-lung cancer). Note that

C and C̄ denote correctly classified and misclassified deaths, respectively.

2.2.3 The Misclassification Poisson Regression Model with Extra Variability

The model described above is the same one used in both Stamey et al. (2008)

and Edwards et al. (2014) and does not allow for extra Poisson variability. If the

sampling is done in clusters or if there are repeated measures, a random effects model

may be appropriate as an alternative to the fixed effects model already described.

When using random effects, the log-linear models in Equations 2.1 and 2.2 become

log(λi) = β0 + β1Xi +

p∑
j=1

βjZij + eλk[i] = β0 + β1Xi +Z ′iβ + eλk[i] (2.4)

and

log(µi) = γ0 + γ1Xi +

p∑
j=1

γjZij + eµk[i] = γ0 + γ1Xi +Z ′iγ + eµk[i] . (2.5)

Here, eλk[i] ∼ N (0, σ2) and eµk[i] ∼ N (0, σ2). This model is sometimes referred

to as a random intercept model. If a more complicated hierarchical structure is

desired, the slopes could also be modeled, but that is beyond what we are interested

in for this work.

Combining Equation 2.3 with Equations 2.4 and 2.5, the likelihood function

for the log normal structure in the product-Poisson setting for the data (w1i, w2i) is
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L(β,γ, eλ, eµ, σ
2|w1i, w2i) =

n∏
i=1

p(w1i, w2i)f(eλk[i] , eµk[i])

∝
n∏
i=1

(λise+ µi(1− sp))w1i(λi(1− se) + µisp)
w2i

× exp{−(λi + µi)ni}

× exp[−(e2λk[i] + e2µk[i])/(2σ
2)]/σ2,

where λi and µi are presented by Equations 2.4 and 2.5.

Here, we consider the usual representation of the prior information for a gen-

eralized linear mixed model (GLMM):

β ∼Np+2(bβ,Bβ), γ ∼Np+2(bγ,Bγ), σ2 ∼ IG(a0, a1).

That is to say, the fixed effects parameter with every hyperparameter pre-specified

has a normal distribution and an inverse gamma distribution for σ2, independent of

β. Furthermore, the misclassification probabilities are each given an independent

beta distribution with known hyperparameters:

se ∼ Beta(ase, bse), sp ∼ Beta(asp, bsp).

Previous studies have shown that for the purpose of MCMC application, it is

inconvenient to sample using only misclassified data. This issue can be addressed

by introducing latent variables. Let u1i and u2i be the number of lung cancer and

non-lung cancer deaths misclassified for the ith covariate pattern, and let v1i and

v2i be the number of lung cancer and non-lung cancer deaths correctly classified for

the ith covariate pattern, and let y1i and y2i be the true number of deaths due to

lung cancer and other cause. Note that w1i and w2i are the partial sums that are

observed. Therefore,

v1i = w1i − u2i, v2i = w1i + u2i,

and

y1i = w1i + u1i − u2i, y2i = w2i − u1i + u2i.
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The likelihood of the augmented data is

L(β,γ, se, sp, σ2|u,w) ∝
n∏
i=1

λy1ii e−λi×µy2ii e−µi×sev1i(1−se)u1ispv2i(1−sp)u2i . (2.6)

Hence, the augmented data are distributed conditionally upon the observed data w1i

and w2i as independent Poisson distributions.

If we combine Equation 2.6 with all prior distributions, the joint posterior

distribution given the augmented data is

q(β,γ, eλ, eµ, σ
2|w,u) ∝

n∏
i=1

exp[(w1i + u1i − u2i)(β0 + β1Xi +Z ′iβ + eλk[i])

− exp(β0 + β1Xi +Z ′iβ + eλk[i])]

× exp[−(β − bβ)′Bβ(β − bβ)/2]

×
n∏
i=1

exp[(w2i − u1i + u2i)(γ0 + γ1Xi +Z ′iγ + eµk[i])

− exp(γ0 + γ1Xi +Z ′iγ + eµk[i])]

× exp[−(γ − bγ)′Bγ(γ − bγ)/2]

×
n∏
i=1

sew1i−u2i+ase−1(1− se)u1i+bse−1

×
n∏
i=1

spu2i+asp−1(1− sp)w2i−u1i+bsp−1

× exp

[
− 1

σ2

(
a1 +

1

2

n∑
i=1

(e2λk[i] + e2µk[i])

)]
× σ−2(a0+n+1).

The posterior samples can be drawn by Gibbs sampling algorithm, and the

conditional parameter distributions are given as follows:

(1) q(β|eλ, σ2, w, u) ∝
∏n

i=1 exp[(w1i + u1i − u2i)(β0 + β1Xi + Z ′iβ + eλk[i]) −

exp(β0 + β1Xi +Z ′iβ + eλk[i])]× exp[−(β − bβ)′Bβ(β − bβ)/2],

(2) q(γ|eµ, σ2, w, u) ∝
∏n

i=1 exp[(w2i − u1i + u2i)(γ0 + γ1Xi + Z ′iγ + eµk[i]) −

exp(γ0 + γ1Xi +Z ′iγ + eµk[i])]× exp[−(γ − bγ)′Bγ(γ − bγ)/2],

(3) se|β,γ, eλ, eµ, σ2, w, u ∼ Beta(
∑n

i=1(w1i − u2i) + ase,
∑n

i=1 ui1 + bse),
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(4) sp|β,γ, eλ, eµ, σ2, w, u ∼ Beta(
∑n

i=1 u2i + asp,
∑n

i=1(w2i − u1i) + bse),

(5) σ2|eλ, eµ, w, u ∼ IG(a0 + n, a1 + 1
2

∑n
i=1(e

2
λk[i]

+ e2µk[i]),

(6) u1i ∼ Binomial(w1i, µi(1− se)/(λise+ µi(1− sp))),

(7) u2i ∼ Binomial(w2i, λi(1− sp)/(λi(1− se) + µisp)).

Simulating values from (3), (4), (5), (6), and (7) is straightforward; for sam-

pling from (1) and (2), we can use the Metropolis Hastings algorithm.

We initially assume the random effects come from a common distribution to

limit the number of parameters required to be estimated, and in general, these vari-

ances would unlikely be largely different. However, this is a very strong assumption,

so we also provide a more flexible model. For this more general model, we assume

eλk[i] and eµk[i] are bivariate normal,

e ∼ N2


0

0

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


 , (2.7)

where ρ is the Pearson’s correlation coefficient of the two groups.

2.3 Priors and Posterior Inference

We consider four different models. Model 1 is a Bayesian version of the model

in Edwards et al. (2014). That is, it is the fixed effects Poisson model, and the

diagnostic parameters se and sp are assumed to be known as it is in Figure 2.3, with

se and sp fixed. Model 2 is the model of Stamey et al. (2008), which is also a fixed

effects Poisson model, but it allows for uncertainty in se and sp by replacing the fixed

values with beta priors for those two parameters; this is seen in Figure 2.3. Model

3 extends Model 1 by adding a random effect to account for clustered sampling

designs, which is shown in Figure 2.4 with fixed se and sp , and Model 4 adds a

random effect to Model 2, which is also shown in Figure 2.4.
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For all models, we assume relatively diffuse independent normal priors for the

regression coefficients. Specifically, we have

βj ∼ N (0, 10), j = 0, 1, ..., p

and

γj ∼ N (0, 10), j = 0, 1, ..., p.

β γ

ti

Xi Xi

Zi Zi

σ2

eλk[i]
eµk[i]λi µi

y1i y2i

se spCC̄iCCi C̄C̄iC̄Ci

w1i w2i

i = 1, . . . , n

Figure 2.4: The random-intercept Poisson regression model with misclassification

For all the simulations we consider, a prior standard deviation of 10 for the

regression parameters leads to a very diffuse prior relative to the likelihood. In

practice, the user should consider likely values for these parameters when choosing

the standard deviation for these priors. For a Poisson regression, priors allowing

for values from –20 to 20 would almost always be sufficient; on the scale of the

Poisson rate, this would allow for multiplicative effects ranging from zero to about

500 million.

For the diagnostic parameters se and sp in Models 2 and 4 where they are

considered unknown, we assume independent beta priors,

se ∼ Beta(ase, bse) and sp ∼ Beta(asp, bsp).
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The beta is a flexible distribution allowing for a wide variety of shapes. Also, it

is the conjugate prior for a binomial likelihood, so if validation data for both the true

and fallible results are available, the values can be used to specify the a’s and b’s. For

instance, Sposto et al. (1992) consider the impact of misclassification on cancer rate

estimates in Hiroshima and Nagasaki. Most of their data is based on fallible death

certificate information, but for a subset of the deaths, autopsies were performed and

could be treated as a “gold standard” (e.g., infallible or perfectly classified data).

For instance, suppose that in the validation data, there are m autopsied subjects

known to have died from cancer, but the death certificates only correctly labeled w

of them. The likelihood for this data is thus binomial:m
w

 sew(1− se)m−w. (2.8)

This data leads directly to a Beta(w + 1,m− w + 1) prior for the se. In

combining the autopsy and death certificate information, the same sort of prior for

sp can be obtained. Alternatively, the beta priors can be viewed as a mechanism to

perform a sensitivity analysis. While Edwards et al. (2014) assumed the se and sp

are known, they considered a wide range of values as part of a sensitivity analysis.

Using similar logic, the prior parameters for se and sp can be selected so that the

priors reflect the range for the se and sp of interest.

The random effects standard deviation in Models 3 and 4 is the final parameter

requiring a prior distribution. The conjugate prior for a variance in this situation

is the inverse gamma, so an InvGamma(0.001, 0.001) is often used. Gelman (2006)

finds that both a half-Cauchy distribution and a uniform distribution perform better

as priors than the inverse gamma. Here, we use a Unif(0, D) prior where D is an

upper value for the support that is chosen to minimize influence on the posterior. A

value of 5 will often be large enough but should be checked in each unique situation.

If the correlated random effects model is used instead of the equal variance
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model, then priors for σ1, σ2, and ρ are required. In the absence of substantial prior

information, uniform priors for all three parameters would often be used. Specifically,

σ1 ∼ Unif(0, B1), σ2 ∼ Unif(0, B2), and ρ ∼ Unif(−1, 1).

We fit the models using MCMC methods via the free package OpenBUGS. The

OpenBUGS code used for fitting the models and the R code used to generate all the

data for simulations are in the appendix. As always when using MCMC methods,

care must be taken to ensure the validity of the results. For our simulated models

where the misclassification parameters are assumed unknown, there are times when

the chains did not mix sufficiently, indicating a lack of convergence clearly visible in

the trace plots of the MCMC. This is not unusual for overparameterized models such

as these. When chains illustrate a lack of convergence, remedial measures, includ-

ing increasing the number of burn-in iterations and thinning the chains, improved

convergence. Another important issue is starting values for the chains. The test

parameters se and sp must have a sum greater than 1, or the classifying technique

is actually worse than random guessing. Thus, starting values for se and sp should

be chosen so that se+ sp > 1.

2.4 Simulated Example

In this section, we consider a simulated example to illustrate the new random

effects model and how the models can be used for sensitivity analysis. We imagine

a scenario where interest is in the relationship between lung cancer deaths due to

a particular exposure. We suppose that the data are clustered, with each cluster

containing four observations. Thus, the random effects model is appropriate. We

generate the data using Equations 2.4 and 2.5 with three binary covariates, a total

sample size of N = 32 observations and K = 8 clusters. The parameter values

chosen result in models
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log(λi) = −1 + 0.5x1ij − 0.5x2ij + 0.1xij + eλk[i]

and

log(µi) = −2− 0.3x1ij + 0.2x2ij + 0.5xij + eµk[i] .

To generate the data, instead of assuming a common standard deviation for the

random effects, we assume (eλk[i] , eµk[i]) comes from a bivariate normal distribution

with means of 0, σ1 = 0.2, σ2 = 0.4, and ρ = 0.5. We assume 1000 person-months

for each observation. Finally, we assume the true se is 0.75 and the true sp is 0.8.

The counts for each observation range from a low of 148 to a high of 613, so this

classifies as a relatively large observational study.

Suppose an expert thinks the most likely value for the se is 0.7, and it could

(with a 5% chance) be as low as 0.6 and as high as 0.8. For the sp, the most likely

value is 0.8 with a 5% chance of being lower than 0.7 and as high as 0.9. These

beliefs could be roughly summarized into se ∼ Beta(35, 15) and sp ∼ Beta(40, 10).

Before discussing the overall results and illustrating how to use the methods

to perform a sensitivity analysis, we compare estimates for the correlated random

effects and single standard deviation models. Even though σ2 is twice σ1, the pos-

terior estimates for the regression parameters are almost identical. For instance,

the primary parameter of interest is β1. The posterior mean and 95% interval are

0.541 and (0.454, 0.646) for the correlated model and 0.540 and (0.452, 0.643) for the

single variance model. Due to the over-parameterization that is already in the model

because of misclassification, unless strong evidence against the equal standard devi-

ation model exists, we recommend using it instead of the correlated random effects

model.

One advantage of using informative priors on se and sp instead of using fixed

values is that the analysis of the data doubles as a sensitivity analysis. There is

essentially no information in the data on se and sp. Thus, the posterior distributions

are approximately the same as the prior distributions. If we desire to assure that
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the priors and posteriors for the misclassification parameters completely match, the

cut function in WinBUGS and OpenBUGS could be used so that the priors for se

and sp exactly match the posteriors. In this case, the Bayesian analysis is a version

of Monte Carlo sensitivity advocated for in Steenland and Greenland (2004). As

mentioned before, β1 is the primary parameter of interest.

●

●

●

●

●

0.4

0.5

0.6

0.7

 Naive UnknownKnown .6/.7 Known .7/.8 Known .8/.9

β

Figure 2.5: Posterior means and 95% credible sets for sensitivity analysis of β1 (with
true value 0.5)

In Figure 2.5, we plot the posterior means and the 95% intervals for β1 for the

naive model where the misclassification is ignored (Model 4), for when se and sp are

given prior distributions, and for several versions of Model 3. For Model 3, where

se and sp are fixed, we consider the following (se, sp) pairs: (0.8, 0.9), (0.7, 0.8),

and (0.6, 0.7). These pairs represent the most optimistic, the most likely, and the

most pessimistic values, according to the expert. The misclassification in the data

biases the estimates towards the null value of 0, which is why the naive model has

the lowest posterior mean. Note also that the interval for the naive model does not

contain the true value. For Model 3, the pessimistic choice of (0.6, 0.7) shifted β1

upwards the most. One approach to the sensitivity analysis would be to take the

upper limit of the interval for the (0.6, 0.7) posterior and the lower limit of the (0.8,
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0.9) posterior. This would yield an interval of (0.41, 0.69). Another option would

be to simply use the interval that corresponds to the most likely pair of (0.7, 0.8).

This would yield an interval of (0.48, 0.59). What is interesting is that the Monte

Carlo sensitivity analysis of Model 4 with a 95% interval of (0.45, 0.64) provides

a very nice intermediate step between these two extremes. In the next section, we

investigate the operating characteristics of these procedures via simulation.

2.5 Simulation Study

We conducted a series of simulations to illustrate the performance of the four

models under various situations. For these simulations, we focused on inference,

specifically the average of the posterior means, along with the width and coverage

of 95% intervals. The code we used could easily be modified to include hypothesis

testing and monitor quantities, such as Type I error rates and power. For the

simulation, we assumed three binary covariates, and for each covariate pattern, we

assumed the person-time ti = 1000. In anticipation of analyzing both fixed and

random effects models, we actually generated three counts for each covariate pattern.

For the fixed effects model, these counts were independent, but for the random effects

model, they were correlated. For each simulation configuration, we generated 1000

data sets with 32 observations each. The regression parameters were kept the same

throughout the simulations and are provided in the following equations:

log(λi) = −2− 0.3X1 + 0.2Z1 + 0.5Z2, (2.9)

and

log(µi) = −1 + 0.5X1 − 0.5Z1 + 0.1Z2. (2.10)

We considered various values of the se and sp and the random effect variance, σ2.

Previously, Edwards et al. (2014) and Stamey et al. (2008) performed fixed

effects model simulations for the situation of correctly-known misclassification and

prior information in the form of validation data that is centered on the true value.
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We repeated simulations similar to theirs and verified that the fixed effects models

perform very well in terms of bias and coverage when either of the correct values for

se and sp are used (Model 1) and when the priors are centered at the true values

(Model 2). That is, when the misclassification is correctly modeled, there is very

little bias, and coverage of the 95% intervals is close to nominal. We next considered

this same situation for the random effects model. Specifically, we generated three

correlated counts of each covariate pattern for the random effect variance values of

0.1, 0.25, 0.5, and 0.75. We did this for se = 0.9 and sp = 0.8 and for se = 0.9 and

sp = 0.6. We analyzed the data both with the naive model, where the misclassifica-

tion is ignored, and with the model where the misclassification is accounted for, with

priors for se of Beta(45, 5) and sp of Beta(40, 10) for both cases of misclassification

parameters. These priors had means of 0.9 and 0.8 with standard deviations of 0.042

and 0.056, respectively. We focused on the results for β1 and γ1, but the general

patterns were similar for all parameters.

Table 2.1: Average Posterior Means Across 1000 Simulations (Truth: β1 = −0.3,
γ1 = 0.5)

se = 0.9, sp = 0.8 σ2 β1 (Naive) β1 (Model 4) γ1 (Naive) γ1 (Model 4)

0.10 –0.11 –0.30 0.43 0.51

0.25 –0.11 –0.32 0.42 0.50

0.50 –0.10 –0.33 0.40 0.50

0.75 –0.08 –0.34 0.39 0.50

se = 0.9, sp = 0.6 σ2 β1 (Naive) β1 (Model 4) γ1 (Naive) γ1 (Model 4)

0.10 –0.07 –0.31 0.36 0.50

0.25 –0.06 –0.32 0.35 0.50

0.50 –0.05 –0.33 0.34 0.49

0.75 –0.05 –0.33 0.32 0.49
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Table 2.2: Average Width of 95% Intervals Across 1000 Simulations

se = 0.9, sp = 0.8 σ2 β1 (Naive) β1 (Model 4) γ1 (Naive) γ1 (Model 4)

0.10 0.52 0.66 0.46 0.53

0.25 0.70 0.88 0.66 0.80

0.50 0.93 1.15 0.89 1.06

0.75 1.09 1.37 1.02 1.28

se = 0.9, sp = 0.6 σ2 β1 (Naive) β1 (Model 4) γ1 (Naive) γ1 (Model 4)

0.10 0.53 0.76 0.44 0.56

0.25 0.70 0.95 0.63 0.78

0.50 0.91 1.21 0.86 1.08

0.75 1.07 1.44 1.02 1.31

Table 2.3: Average Coverage of 95% Intervals Across 1000 Simulations

se = 0.9, sp = 0.8 σ2 β1 (Naive) β1 (Model 4) γ1 (Naive) γ1 (Model 4)

0.10 0.72 0.95 0.90 0.96

0.25 0.81 0.95 0.91 0.94

0.50 0.88 0.96 0.91 0.95

0.75 0.90 0.96 0.93 0.95

se = 0.9, sp = 0.6 σ2 β1 (Naive) β1 (Model 4) γ1 (Naive) γ1 (Model 4)

0.10 0.59 0.96 0.74 0.95

0.25 0.74 0.94 0.86 0.95

0.50 0.81 0.96 0.86 0.94

0.75 0.85 0.96 0.87 0.94

In Table 2.1, we display the averages of the posterior means for both the

naive and “corrected” models for the se = 0.9 and sp = 0.8 and the se = 0.9 and

sp = 0.6 cases across the values for σ2. For the same scenarios, Tables 2.2 and 2.3
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report 95% interval widths and coverages, respectively. In both cases and for all

parameters, the naive model yielded biased estimators with an empirical coverage

probability below nominal, while the corrected model had posterior means close to

the truth and coverage close to 95%. It is also interesting that the naive model had

narrower intervals. Accounting for the misclassification increased the uncertainty

in the model, leading to wider intervals. The narrower intervals for the naive case

contributed to the below nominal coverage, as it leads to estimates being “precisely

wrong” ( biased and overly confident).

2.5.1 Robustness Considerations

We next investigated robustness. Specifically, we were interested in the impact

of imperfect estimation of se and sp. We focus on Models 3 and 4 here, but the

results were similar for Models 1 and 2. For Model 3, we assumed a value of 0.7

for se and of 0.8 for sp. For Model 4, we centered the priors on these same values,

with a Beta(35, 15) for se and a Beta(40, 10) for sp (with means of 0.7 and 0.8 and

standard deviations of 0.064 and 0.056, respectively). For the simulation, we fixed

se at 0.75, shifting it mildly from the true value. For the sp, we considered a range

of values: 0.9, 0.8, 0.7, and 0.6.
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Figure 2.6: Posterior means (a) and coverage rates (b) for γ; se = 0.75
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In Figures 2.6 and 2.7, we provided the average posterior means along with the

coverage of the nominal 95% intervals for both β1 and γ1. The most notable aspect

of the results is that while the posterior means were biased for both models, Model 4

was not nearly as biased and held the coverage close to nominal. Conversely, Model

3 seemed to be surprisingly sensitive. It is interesting to note that if we generated

the data from the exact distribution assumed (that is, a value of 0.7 for se and 0.8

for sp), then the estimation in Model 3 exhibited little bias and had a 95% coverage.

However, we see that the estimation of γ1 was quite poor in every case, and the

coverage for β1 dipped for lower values of sp.
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Figure 2.7: Posterior means (a) and coverage rates (b) for β; se = 0.75

We were also interested in the impact of ignoring overdispersion in observed

data. Specifically in the simulation study, we generated data with a random effect,

but we used a fixed effects Poisson model in the analysis. For simplicity, we assumed

both diagnostic parameters se and sp were known. This could easily be extended

to the case when both diagnostic parameters are unknown. For data generation,

we considered two values of the random effect variance, σ2 = 0.1, 0.25, and several

pairs of se and sp, (se, sp) = (0.9,0.9),(0.9,0.7),(0.8,0.8),(0.7,0.9). In Table 2.4, we

display the average of the posterior means and coverages for both β1 and γ1. In
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all cases, the estimators of both β1 and γ1 were close to true values. However, in

terms of coverage probability, they were all well below nominal. The cases with

σ2 = 0.1 provided better coverage probabilities than that with σ2 = 0.25. It is also

interesting that the smaller se and sp gave larger coverage probabilities for both β1

and γ1. Because smaller se and sp increased the uncertainty in the model leading

to wider intervals, the coverage probabilities increased.

Table 2.4: Posterior Summaries Across 1000 Simulations (Truth: β1 = −0.3,
γ1 = 0.5)

se = 0.9, sp = 0.9 σ2 β1 (Mean) β1(Coverage) γ1 (Mean) γ1 (Coverage)

0.10 –0.30 0.72 0.50 0.63

0.25 –0.26 0.37 0.50 0.20

se = 0.9, sp = 0.7 σ2 β1 (Mean) β1(Coverage) γ1 (Mean) γ1 (Coverage)

0.10 –0.29 0.77 0.5 0.70

0.25 –0.29 0.61 0.51 0.50

se = 0.8, sp = 0.8 σ2 β1 (Mean) β1(Coverage) γ1 (Mean) γ1 (Coverage)

0.10 –0.30 0.79 0.5 0.73

0.25 –0.29 0.65 0.51 0.52

se = 0.7, sp = 0.9 σ2 β1 (Mean) β1(Coverage) γ1 (Mean) γ1 (Coverage)

0.10 –0.30 0.82 0.51 0.75

0.25 –0.27 0.61 0.50 0.54

2.6 Conclusion

In this chapter, we have extended previous work on count regression mod-

els with misclassification by including a random effect to allow for overdispersion

commonly encountered in observational data. Using graphical models, we have at-

tempted to make the assumptions and form of the models more accessible to a general
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audience. Simulation results confirmed the performance of the model, demonstrat-

ing the improvement over the naive model, which could ignore the impacts of the

misclassification substantially. We hope this work motivates researchers to account

for misclassification, to consider the wide range of non-sampling bias that can be

found in their observational data, and to apply appropriate tools to fully address

the problems that can arise. Future work includes the development of software for

epidemiologists and public health researchers in order to address misclassification in

Poisson and related count models used for public health data.
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CHAPTER THREE

Bayesian Network Meta-analysis for Binary Outcomes with Rare Events

3.1 Introduction

Meta-analysis is a method for systematically combining results from several

studies in order to increase precision in estimating a parameter of interest. One

advantage of meta-analysis is that inferences often have greater statistical power

than tests based on any single study. Specifically, meta-analysis has more power

to detect a small but significant effect (Greco et al. 2013). For example, when

comparing drug A to drug B, there may be no significant difference in any single

study, but if we combine all the studies together, drug A may be significantly superior

than drug B.

One extension of standard meta-analysis is network meta-analysis. Standard

meta-analysis focuses on comparing only two treatments. Network meta-analysis is

an extension of standard meta-analysis that can handle the cases in which there are

more than two treatments and not all pairwise comparisons are available. Further-

more, if two particular treatments have never been compared against each other but

have been compared to a common comparator, then the treatment effect can be in-

directly estimated by the direct effects of the two treatments versus the comparator.

One common issue in both standard meta-analysis and network meta-analysis

is having zero outcomes when the response is a count. Difficulties arise when the

analysis is done, either at the patient level using individual patient data or at the

study level using only summary counts from each trial. Sankey et al. (1996) compare

the corrected method, in which one half was added to each cell. The authors find that

the uncorrected method performs better only when using the Mantel-Haenszel odds

ratio with very little heterogeneity present. For all other sparse data applications, the
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continuity correction performs better and is recommended for use in meta-analyses

of similar scope. Bradburn et al. (2007) evaluate the performance of 12 methods

for pooling rare events through simulation. They found that most of the commonly

used meta-analytical methods are biased when data are sparse. Bhaumik et al.

(2012) compare various methods for random effects meta-analysis. In the absence

of heterogeneity, the Mantel and Haenszel method with the empirical continuity

correction performs well, and it is to be recommended for moment-based fixed-effects

meta-analysis. The simple average method, which was introduced by Shuster (2010),

with a 0.5 continuity correction is recommended for sparse data with heterogeneity.

Compared to frequentist meta-analysis methods, Bayesian approaches have

several advantages. Sweeting, Sutton, and Lambert (2004) compare several meta-

analysis methods for combining odds ratios (using various classical and Bayesian

methods of estimation) on sparse event data, and they find that the Bayesian model

using vague priors (which does not require continuity correction factors) performs

consistently well irregardless of group size imbalance. This, however, is sometimes

outperformed by the Mantel-Haenszel method with a continuity correction. Sutton

and Abrams (2001) show that the advantages of Bayesian meta-analysis include full

allowance for all parameter uncertainty in the model, the ability to include other

pertinent information that would otherwise be excluded, and the ability to extend

the models to accommodate more complex situations.

In this chapter, we focus on dealing with rare events in network meta-analysis

for count data. Our goal is to compare continuity correction methods to adjust for

zero outcomes in a network meta-analysis. We use a Bayesian framework and focus

on binary outcomes. In Section 3.2, we overview four types of network patterns and

the common outcome measures in network meta-analysis. In addition, we provide

brief descriptions of network meta-analysis and the continuity correction. Section 3.3

presents simulation details, including simulation design, performance evaluation,
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and simulation results. We discuss the results of simulation studies and give some

concluding comments in Section 3.4.

3.2 Methods

3.2.1 Geometry of Network

Because there are more than two treatments in network meta-analysis, it is

important to understand the distribution of included studies. A network diagram is

very helpful to display the network configuration. It provides a visualized explana-

tion of all direct comparisons between treatments. Figure 3.2.1 is an example of a

network diagram, specifically (the configuration of the star geometry).

A

B

C

D

Figure 3.2.1: Star Geometry

The nodes in Figure 3.2.1 represent interventions or treatments, and the lines

linking the two interventions represent that these two interventions have a direct

comparison, such as A-B, A-C, and A-D. Because B, C, and D link with common

comparator A, we can obtain indirect treatment comparisons among them.

In the following simulation study, we consider four network patterns, namely

star, loop, one-closed loop, and ladder, given in Figures 3.2.1 to 3.2.4
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A

B C

D

Figure 3.2.2: Loop Geometry

A

B

C D

Figure 3.2.3: One-closed Loop Geometry

A

B

C

D

Figure 3.2.4: Ladder Geometry

In each figure, there are four nodes representing four treatments; there are

three direct treatment comparisons for both star geometry and ladder geometry and

four direct treatment comparisons for loop geometry and one-closed loop geometry.

3.2.2 Effect Measure

For binary outcomes, three outcome measures are commonly used in meta-

analysis: risk difference (RD), relative risk (RR), and odds ratio (OR). RD has an

easy interpretation and is most useful in decision making; however, the limitation of
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RD is that it is not as consistent as the other two measurements across all studies,

especially when the events are rare. RD is preferred when the incidence rates are

close through all studies. When the incidence rates vary widely across studies, RD

is not recommended. The limitations of RD can be overcome by using RR and OR.

Both of these provide a more consistent result than RD. Lane (2013) suggests to use

OR rather than RR because it is conceptually more appropriate for modeling risks

bound in the range [0,1]. It is also more common in statistical analysis. Therefore,

in the following simulation study, we use OR as the outcome measurement.

3.2.3 Statistical Details

Following the notation used in Greco et al. (2013), suppose we have N ran-

domized controlled trials making mixed comparisons among K treatments. Define

rik and nik as the number of events and the total observations on treatment k in the

ith trial, respectively. Furthermore, let pik be the probability of event occurrence.

For the binary outcomes, we assume the number of events, rik, has a binomial dis-

tribution,

rik ∼ binomial(pik, nik), i = 1, 2, . . . , N ; k = 1, 2, . . . , K.

It is common to use logistic regression to model the probability of event oc-

currence pik:

logit(pib) = log

(
pib

1− pib

)
= µi, i = 1, 2, . . . , N ; k = b = 1, 2, . . . , K − 1,

logit(pik) = log

(
pik

1− pik

)
= µi + δi,bk, i = 1, 2, . . . , N ; k = 2, . . . , K; b < k. (3.1)

µi are the trial-specific baselines and represent the log odds of events in the reference

treatment (k = b), while δi,bk are the trial-specific log odds ratios of event occurrence

of the treatment group k compared with the reference treatment.

The nature of the effect δi,bk depends on the underlying assumptions. Two

models that are commonly used in meta-analysis are the fixed effects and random
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effects models. The difference between these two models is in the way between-

study variations are accounted for. With the fixed effects model, the assumptions

are made that each observed individual study has a shared common treatment effect

and that differences between studies are caused by chance. Individual studies are

simply weighted by their precision. For the fixed effects model, Equation 3.1 can be

replaced as follows:

logit(pik) = µi + di,bk, i = 1, 2, . . . , N ; k = 2, . . . , K; b < k,

where µi are the trial-specific baselines and di,bk are fixed log odds ratios of the event

occurrence of the treatment group k compared with the reference treatment. In this

model, the between study variation is equal to zero.

The random effects model allows for the existence of between-study hetero-

geneity. In other words, the underlying effect for each study is different. In addition,

it is often assumed that these true effects are described by a normal distribution,

and our interest is in estimating the mean of this normal distribution. For a random

effects model, the trial-specific log odds ratio is assumed:

δi,bk ∼ N(dbk, σ
2).

Both the fixed and random effects models have limitations. For example,

the fixed effects estimator produces confidence intervals with poor coverage when

applied to the populations that may not be entirely identical. Random effects, on

the other hand, are highly sensitive to the accuracy of the estimate of the between-

study variance. Hunter and Schmidt (2000) also show that fixed effects models

yield confidence intervals for mean effect sizes that are narrower than their nominal

width, therefore overstating the degree of precision in meta-analysis findings. They

recommend that random effects methods routinely be employed in meta-analysis

in preference to fixed effects methods. In the following simulation study, we use a

random effects meta-analysis model. Some typical assumptions of random effects
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meta-analysis models are that individual study results are exchangeable and can be

described as a sample from a common distribution.

In terms of comparison between treatments, there are direct comparisons and

indirect comparisons. Direct comparisons are made between treatments having head-

to-head randomized studies. For example, in the star geometry of Figure 3.2.1, A-B,

A-C, and A-D directly compare with each other, so dAB, dAC , and dAD can be esti-

mated from these studies. In the language of network meta-analysis, these are called

basic parameters of the model. Indirect comparisons are made between treatments

in the absence of head-to-head randomized studies but have one common compara-

tor. For example, treatments B, C, and D are linked via a common comparator

A, so dBC , dBD, and dCD can be calculated based on the pooled estimates for the

basic parameters. Those parameters, like dBC , dBD, and dCD, are called functional

parameters.

The key assumption between direct and indirect comparisons is the consistency

assumption. It is important that the indirect estimate is unbiased and that there

are no discrepancies between the direct and indirect comparisons. For example, in

one-closed loop geometry, dBC can be directly estimated from studies B-C, but it

also can be indirectly calculated from dAB and dAC . The consistency assumption

requires that the following equation be satisfied: dBC = dAC − dAB. In general, for

the estimate of indirect treatment comparison dst, we have

dst = dbt − dbs, b = 1, 2, . . . , K; s = 2, 3, . . . , K; t = 3, 4, . . . , K; s < t.

In the Bayesian framework, we assume prior distributions for unknown pa-

rameters. It is common to set weakly-informative prior distributions to the basic

parameters. Usually µi, dbk ∼ N(0, 102). In terms of the standard deviation of δi,bk,

because the standard deviation has to be positive, we take the positive part of the

normal distribution. That is,

σ ∼ N(0, B2)+,
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where B is a large value so that the prior information for σ is vague. We set B = 10

in the following simulation.

3.2.4 Continuity Correction

When zero counts occur in a meta-analysis, a common strategy is to do a

continuity correction. One of the most popular methods is to add a small number c

to the zeros to make them non-zero. The number c is usually added to both arms

from a study where either outcome is zero in order to reduce bias. For example, if

we compare treatment b and treatment k and if either rib or rik is zero, we would

add c to both rib and rik and add 2c to both nib and nik. The most widespread

constant that is chosen is c = 0.5 because when using the odds ratio as the effect

measure, c = 0.5 provides the least biased estimator of the true log odds in a single

treatment group situation. We also consider c = 1 because it is assumed that the

number of events has a binomial distribution. Thus, the number of events is more

reasonable as an integer.

3.3 Simulation Study

3.3.1 Simulation Design

In the simulation study, we aimed to compare the performance of two conti-

nuity correction methods in four types of networks: star geometry, loop geometry,

one-closed loop geometry, and ladder geometry. We also investigated how the hi-

erarchical Bayesian model identifies the most effective treatment under different

network geometries. We considered four treatments and assumed one of them to be

the reference treatment and the others to be competing treatments.

We chose the random effects model in the network meta-analysis because the

fixed effects model could be treated as a special case of the random effects model

in which the between-study variance is zero. Let us denote the treatments under
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investigation by treatment A (T1), which we considered to be the reference treatment,

treatment B (T2), treatment C (T3), and treatment D (T4).

Table 3.3.1 describes the simulation scenarios. Within each network pattern,

we let µi vary from −3 to −7, where µi are the trial-specific baselines. We considered

two different sample sizes (nik): 100 and 200. It was more likely to have zero

outcomes in the study where nik was 100.

In terms of the number of studies, we set the studies for each comparison as

equal. For example, for the star geometry, we did five studies for all comparisons

(T1&T2), (T1&T3), and (T1&T4), thus the total number of studies for the star geom-

etry was 15. Similarly, the total number of studies for the ladder geometry, the loop

geometry, and the one-closed loop were 15, 20, and 20, respectively.

Table 3.3.1: Simulation Scenarios

Parameter Value

Network Patterns Star, Ladder, Loop, One-Closed Loop

Baseline, µi -3,-4,-4.5,-5,-5.5,-6,-6.4,-6.6,-7

Total Observations(nik) 100,200

Number of

Studies

Star, Ladder Loop, One-Closed Loop

15 20

Table 3.3.2 shows the true means of the odds ratios between treatments for

all network patterns. The trial-specific log odds ratios δi,bk were generated from a

N(log(dbk), σ
2), and we then used the inverse-logit transformation to get the corre-

sponding probability of event occurrence pik. The number of events, rik, was then

generated from a binomial(pik, nik).

35



Table 3.3.2: True Value of Odds Ratio

Study Star Ladder Loop One-Closed Loop

b21 1.5 1.5 2 1.5

b31 2 3 3 2

b41 3 9 4 4.5

b32 1.33 1.5 1.5 1.33

b42 2 6 2 3

b43 1.5 3 1.33 2.5

Based on the procedures we described above, we generated the number of

events for each of the simulation scenarios, then we fit the hierarchical Bayesian

random effects model on each data set and performed statistical inference. Inferences

were based on the posterior samples using MCMC. In each simulation, we drew 13000

posterior samples with a burn-in of 3000 samples to remove the impact of the initial

values on the posterior distribution. We repeated each scenario 100 times.

3.3.2 Performance Evaluation

The hierarchical Bayesian approach to mixed treatment comparisons provides

a straightforward way to calculate the probability that each treatment is best. In

each MCMC run, each treatment in the study can be ranked based on its estimated

magnitude. Then, the proportion of MCMC iterates in which the treatment k ranks

first gives the probability that the specific treatment is best among all competing

treatments in the study. Similarly, the other probabilities can be calculated for being

second best and the third best, as well as the 95% posterior interval for treatment

k’s rank.

Salanti et al. (2011) and Groce et al. (2013) propose another way to assess

the rank probability. They discuss graphical and numerical summary of cumulative

ranking and suggest surface under the cumulative rank curve (SUCRA) to show the
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cumulative rank probabilities for each treatment. For each treatment k in the K

treatments in the network, Cumk,w is the cumulative probabilities of the wth best

for the k treatment. Where w = 1, . . . , K, the SUCRA statistic will be

SUCRAk =

∑K−1
w=1 Cumk,w

K − 1
.

The SUCRA statistic goes to 1 if the treatment is the best and goes to 0 if it is the

worst.

Besides the best rank probabilities of each treatment and the 95% posterior

intervals of their ranks, we were also interested in the odds ratio of all treatment

comparisons, including direct treatment comparisons and indirect treatment com-

parisons in each scenario. In addition, the length of the 95% posterior intervals of

the odds ratios and coverage probability were also recorded. We also calculated the

bias of the estimates, which is the absolute difference between the true and estimated

values.

3.3.3 Simulation Results

Figure 3.3.1 shows the zero rates in our simulated data. The true value of the

odds ratio between treatments are listed in Table 3.3.2. As the baseline log odds

ratio decreased, the number of zero outcomes increased. when the baseline log odds

ratio was −7 and the number of total observations was 200, star and one-closed

loop geometry provided more than 70% of the zero outcomes, and ladder and loop

geometry provided more than 60% of the zero outcomes.
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Figure 3.3.1: The left plot is the zero rate when the total observation is 200, the
right plot is the zero rate when the total obervation is 100, and the horizontal axis
represents the baseline log odds ratio µ.

3.3.3.1 Star Geometry

Table 3.3.3: No Continuity Correction for Star Geometry

(µi, ni) Para. Prob. Length Bias (µi, ni) Prob. Length Bias

(-4.5,200)

b12 0.96 4.66 0.70

(-5,200)

0.91 11.47 1.85

b13 0.97 5.19 0.67 0.97 179.68 46.62

b14 0.96 6.82 0.74 0.97 11.89 1.57

b23 0.94 5.52 0.67 0.95 142.04 43.78

b24 0.94 7.75 0.87 0.93 13.80 1.74

b34 0.99 5.36 0.58 0.97 9.64 1.27

(-4,100)

b12 0.95 5.81 0.93

(-4.5,100)

0.94 15.92 2.41

b13 0.97 6.23 0.84 0.97 61.96 9.37

b14 0.96 9.52 1.26 0.93 14.57 1.95

b23 0.96 6.86 0.89 0.94 57.43 8.59

b24 0.94 10.00 1.22 0.93 17.33 2.26

b34 0.98 7.27 0.88 0.96 11.94 1.53
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Table 3.3.3 shows part of the simulation results for the star geometry without

any continuity correction. When the total number of observations was n = 200,

the µ ≥ −4.5 results were reasonable. However, as µ decreased, the results became

worse, especially for the estimates of b13 and b23. When the total number of obser-

vations was n = 100, µ = −4 still provided reasonable results, but when µ = −4.5,

the width of the 95% posterior interval and the bias increased dramatically.

Figure 3.3.2: The left plot is the length of the 95% posterior interval of star geometry
for c = 1, the right plot is the length of the 95% posterior interval of star geometry
for c = 0.5, and the horizontal axis represents the baseline log odds ratio µ.

Figures 3.3.2 and 3.3.3 provide the plots of the 95% posterior interval widths

and the bias of the estimates for the star geometry for both c = 0.5 and c = 1.

Both length and bias were reduced, compared to the no continuity correction cases.

In addition, the studies of indirect comparisons (T2&T3), (T2&T4), and (T3&T4)

provided larger 95% posterior interval lengths than those of direct comparison studies
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for both types of continuity correction. Across all of the studies, c = 0.5 gave a larger

length than c = 1.

Figure 3.3.3: The left plot is the bias of star geometry for c = 1, the right plot is the
bias of star geometry for c = 0.5, and the horizontal axis represents the baseline log
odds ratio µ.

For the case of c = 1, the study of (T1&T4) had relatively larger bias than

others, and all of the other studies’ biases were smaller than 0.8. For the case of

c = 0.5, the biases were larger than they were for c = 1, and indirect comparisons

(T2&T3), (T2&T4), and (T3&T4) performed worse than direct comparisons. For cov-

erage probability, adding c = 1 to zeros provided low coverage for study (T1&T4)

when there were several zeros in the generated data, while c = 0.5 performed well

in all studies.
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Figure 3.3.4: Best rank probabilities of star geometry for no continuity correction;
the horizontal axis represents the baseline log odds ratio µ.

Figure 3.3.5: The left plot is the best rank probabilities of star geometry for c = 1,
the right plot is the best rank probabilities of star geometry for c = 0.5, and the
horizontal axis represents the baseline log odds ratio µ.

In terms of the best rank probability, in the star geometry, T4 is the largest

and should have the highest probability. According to Figures 3.3.4 and 3.3.5, as µ

decreased, the first rank probability for T4 decreased, which means that as the num-
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ber of zeros increased, it was harder to correctly recognize T4 as the best treatment.

In addition, c = 1 with no continuity correction provided similar results, while the

case of c = 0.5 yielded the lowest best rank probabilities.

3.3.3.2 Ladder Geometry

Table 3.3.4 shows part of the simulation results for ladder geometry without

any continuity correction, and we had similar results as the star geometry pattern.

For n = 100, results became markedly worse when µ was less than −4. For n = 200,

values of µ less than −4.5 lead to particularly poor results.

Table 3.3.4: No Continuity Correction for Ladder Geometry

(µi, ni) Para. Prob. Length Bias (µi, ni) Prob. Length Bias

(-4.5,200)

b12 0.96 4.38 0.75

(-5,200)

0.92 9.96 1.65

b23 0.97 3.74 0.49 0.98 6.01 0.83

b34 0.98 3.99 0.29 0.99 5.39 0.51

b13 0.94 13.51 2.17 0.96 33.21 5.56

b24 0.96 16.08 2.00 0.97 27.55 4.07

b14 0.95 49.43 7.93 0.94 127.86 21.14

(-4,100)

b12 0.95 5.72 0.87

(-4.5,100)

0.94 12.98 2.69

b23 0.98 4.36 0.50 0.97 6.90 0.90

b34 0.99 4.48 0.38 0.97 6.60 0.75

b13 0.94 18.18 3.00 0.93 45.86 8.52

b24 0.97 19.19 2.54 0.95 34.84 5.09

b14 0.95 67.26 11.17 0.94 188.70 34.84

Figures 3.3.6 and 3.3.7 display the length of the 95% posterior intervals and

the bias of estimates for both c = 1 and c = 0.5.
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Figure 3.3.6: The left plot is the length of the 95% posterior interval of ladder
geometry for c = 1, the right plot is the length of the 95% posterior interval of
ladder geometry for c = 0.5, and the horizontal axis represents the baseline log odds
ratio µ.

In terms of length, the studies of indirect comparison (T2&T3) and (T2&T4)

provided a wider 95% posterior interval than those of the direct comparison studies

for both types of continuity correction. Also, c = 1 provided a narrower width than

c = 0.5. In terms of bias, c = 1 performed better than c = 0.5, and the direct

comparison had smaller biases than the indirect comparisons.

In terms of the best rank probability, in the ladder geometry, T4 is again largest

and should have the highest probability. According to Figures 3.3.8 and 3.3.9, as

µ decreased, the first rank probability for T4 decreased, which means that if we

have more zeros in our datasets, it is harder to recognize T4 as the best treatment.

Making a continuity correction increased the best rank probability, especially in the

situations where there were more zero outcomes.
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Figure 3.3.7: The left plot is the bias of ladder geometry for c = 1, the right plot
is the bias of ladder geometry for c = 0.5, and the horizontal axis represents the
baseline log odds ratio µ.

Figure 3.3.8: Best rank probabilities of ladder geometry for no continuity correction;
the horizontal axis represents the baseline log odds ratio µ.
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Figure 3.3.9: The left plot is the best rank probabilities of ladder geometry for c = 1,
the right plot is the best rank probabilities of ladder geometry for c = 0.5, and the
horizontal axis represents the baseline log odds ratio µ.

3.3.3.3 Loop Geometry

Table 3.3.5 shows part of the simulation results for the loop geometry without

any continuity correction. The coverage probabilities and bias were not as bad in

this network pattern. However, the length of the 95% posterior intervals increased

considerably when µ decreased from -5 to -5.5 in both of the situations where the

sample sizes were n = 100 and n = 200. It indicated that although the point

estimates were closed to the truth, the variation of them were very large.
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Table 3.3.5: No Continuity Correction for Loop Geometry

(µi, ni) Para. Prob. Length Bias (µi, ni) Prob. Length Bias

(-5,200)

b12 0.96 4.37 0.42

(-5.5,200)

0.92 7.72 1.04

b14 0.96 8.99 0.96 0.97 15.38 1.94

b23 0.97 2.68 0.27 0.96 3.91 0.45

b34 0.96 1.95 0.13 0.97 2.66 0.21

b13 0.98 7.28 0.80 0.94 12.19 1.55

b24 0.94 4.45 0.46 0.95 6.49 0.78

(-5,100)

b12 0.94 8.90 -1.11

(-5.5,100)

0.95 21.05 -3.12

b14 0.97 17.79 2.19 0.95 51.31 8.16

b23 0.96 4.79 0.60 0.94 9.01 1.19

b34 0.97 3.20 0.31 0.97 4.83 0.55

b13 0.95 14.33 1.83 0.94 35.75 5.41

b24 0.94 8.23 1.07 0.94 15.77 2.18

Figures 3.3.10 and 3.3.11 show the simulation results with the continuity cor-

rection. Both the length of the 95% posterior intervals and the bias were reduced,

compared to the results without the continuity correction. Generally speaking, c = 1

performed better in the length of the 95% posterior interval, while c = 0.5 provided

less biased estimates. The studies of (T1&T4), (T1&T3), and (T2&T4) had wider 95%

posterior intervals than the others. In terms of bias, (T1&T4) and (T1&T3) performed

worse than the others. As µ decreased, the coverage probabilities decreased consid-

erably for both continuity correction methods. The correction c = 1 provided even

worse coverage probabilities than c = 0.5, especially when µ was less than -5.5.
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Figure 3.3.10: The left plot is the length of the 95% posterior interval of loop geometry
for c = 1, the right plot is the length of the 95% posterior interval of loop geometry
for c = 0.5, and the horizontal axis represents the baseline log odds ratio µ.

Figure 3.3.11: The left plot is the bias of loop geometry for c = 1, the right plot is
the bias of loop geometry for c = 0.5, and the horizontal axis represents the baseline
log odds ratio µ.
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Figure 3.3.12: Best rank probabilities of loop geometry for no continuity correction;
the horizontal axis represents the baseline log odds ratio µ.

Figure 3.3.13: The left plot is the best rank probabilities of loop geometry for c = 1,
the right plot is the best rank probabilities of loop geometry for c = 0.5, and the
horizontal axis represents the baseline log odds ratio µ.

In terms of the best rank probability, Figures 3.3.12 and 3.3.13 show that

continuity correction did not provide better results than those with no continuity

correction, no matter whether we added 0.5 or 1 to zero outcomes.
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3.3.3.4 One Closed Loop Geometry

For the one-closed loop geometry pattern, Table 3.3.6 shows part of the re-

sults without the continuity correction. When the sample size was n = 200 and µ

decreased from -6 to -6.4, the bias did not change much; however, the length of the

95% posterior interval increased considerably. When the sample size was n = 100

and µ decreased from -5 to -5.5, both the width of the 95% posterior intervals and

the bias increased substantially.

Table 3.3.6: No Continuity Correction for One-closed Loop Geometry

(µi, ni) Para. Prob. Length Bias (µi, ni) Prob. Length Bias

(-6,200)

b12 0.93 9.65 1.28

(-6.4,200)

0.92 17.44 0.22

b13 0.93 10.20 1.06 0.95 15.57 0.94

b23 0.96 7.00 1.00 0.93 16.38 0.33

b34 0.95 13.12 1.64 0.94 41.61 0.86

b14 0.92 60.72 8.71 0.95 153.72 4.21

b24 0.95 61.01 5.56 0.96 153.85 1.73

(-5,100)

b12 0.94 7.12 0.93

(-5.5,100)

0.91 15.62 2.08

b13 0.94 7.91 0.84 0.93 18.21 2.41

b23 0.93 4.55 0.49 0.94 22.55 6.63

b34 0.97 9.71 1.25 0.96 17.39 2.31

b14 0.95 42.42 6.46 0.95 125.53 21.74

b24 0.99 42.83 2.81 0.94 125.78 17.06

Figures 3.3.14 and 3.3.15 show the simulation results when incorporating the

continuity correction. Generally speaking, c = 0.5 performed better in the length of

the 95% posterior intervals, while c = 1 provided less biased estimates. We found

that the estimates of indirect comparisons (T1&T4) and (T2&T4) had larger 95%

posterior interval lengths than those of the direct comparisons. In terms of bias,
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when c = 0.5, the study (T1&T4) had the worst performance. When c = 1, (T1&T4)

and (T2&T4) had relatively larger biases than others. For the coverage probabilities,

c = 1 gave low coverage probabilities for (T1&T4) when µ was small.

Figure 3.3.14: The left plot is the length of the 95% posterior interval of one-closed
loop geometry for c = 1, the right plot is the length of the 95% posterior interval of
one-closed loop geometry for c = 0.5, and the horizontal axis represents the baseline
log odds ratio µ.

In terms of the best rank probability, T4 was again the best among all of the

treatments. Figures 3.3.16 and 3.3.17 show that both with and without the conti-

nuity correction, it provided almost the same results for the best rank probability.

Incorporating the continuity correction increased the best rank probability by a

modest amount in the situations where µ was small.
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Figure 3.3.15: The left plot is the bias of one-closed loop geometry for c = 1, the
right plot is the bias of one-closed loop geometry for c = 0.5, and the horizontal axis
represents the baseline log odds ratio µ.

Figure 3.3.16: Best rank probabilities of one-closed loop geometry for no continuity
correction; the horizontal axis represents the baseline log odds ratio µ.
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Figure 3.3.17: The left plot is the best rank probabilities of one-closed loop geometry
for c = 1, the right plot is the best rank probabilities of one-closed loop geometry
for c = 0.5, and the horizontal axis represents the baseline log odds ratio µ.

3.4 Conclusion

In this chapter, we have extended previous work on standard meta-analysis

with rare events to network meta-analysis with rare events. The Bayesian approach

was used to get the estimates of odds ratios between treatments because of the

advantages of Bayesian methods in dealing with zero outcomes (Sutton and Abrams

2001; Sweeting et al. 2004). In addition, we implemented a continuity correction

to further reduce bias. Through simulation studies, we have shown that with more

zeros in the outcome, the bias of the odds ratio estimates increased regardless of

including the continuity correction or not. In general, indirect comparisons (e.g., T1

vs. T3 and T2 vs. T4 in ladder geometry) provided more biased estimates and wider

95% posterior intervals than direct comparisons (e.g., T1 vs. T2 and T2 vs. T3 in

ladder geometry).
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Making continuity corrections did reduce the bias of the estimated odds ratio

compared to no continuity correction. When comparing the performance of adding

0.5 with adding 1, the amount of improvement varied in different network patterns.

Adding 1 to zero outcomes provided less biased estimates of the odds ratio in star,

ladder, and one-closed loop geometry and narrower 95% posterior intervals in star,

ladder, and loop geometry. Adding 0.5 showed advantages in reducing bias for loop

geometry and a narrower 95% posterior interval in one-closed loop geometry.

When it comes to the best rank probability, the continuity correction helped

detect the most effective treatment, regardless of the network patterns. The network

meta-analysis model was able to identify the most effective treatment, especially

when there was a superior treatment among the competing treatments.

53



CHAPTER FOUR

Bayesian Network Meta-analysis for Poisson Outcomes with Rare Events

4.1 Introduction

In Chapter Three, we extended standard meta-analysis with rare events to net-

work meta-analysis with rare events. Bayesian approaches were used as our method

of inference because the Bayesian model using vague priors outperformed frequentist

meta-analysis methods. Zero events were adjusted with continuity corrections, which

can further reduce the estimates biases. Also in Chapter Three, we used binomial

likelihood and logit transformation to conduct our analysis, and the conclusions were

based on the estimates of odds ratios. In this chapter, we consider Poisson data.

In order to model count data, the Poisson distribution is widely used in clinical

trials and epidemiologic studies. In fact, the Poisson distribution can be obtained

by making use of the binomial limit. In the binomial distribution, if the sample

size goes to infinity and the event probability goes to zero in such a way that the

product of the sample size and the event probability goes to a certain rate, the

binomial distribution approaches the Poisson distribution.

Poisson models have already been considered in meta-analysis. Crowther et

al. (2012) use Poisson regression models in meta-analysis for individual patient sur-

vival data in both classical and Bayesian framework. Compared to the Cox model,

the Poisson model is computationally efficient and highly flexible. Also, Bayesian

methods perform better in estimating the heterogeneity in the treatment effect.

Poisson models also show some advantages in dealing with rare events. Böhning,

Mylona, and Kimber (2015) show that the mixed Poisson regression can handle the

occurrence of zero events in clinical trials, even if zeros occur in both arms. In

the meta-analysis, Bagos and Nikolopoulos (2009) show that in cases of rare events
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(event rate ≤5%) and when the number of studies is small (≤10), the Poisson re-

gression method is uniformly more powerful. Spittal, Pirkis, and Gurrin (2015) find

that Poisson regression with random intervention effects is a useful method for con-

ducting a meta-analysis of incidence rate data, especially when the data contains

structural zeros.

We extend the Poisson model in standard meta-analysis with rare events to

the network meta-analysis with rare events. We show the advantages of making

a continuity correction for zero events, and we also compare the different continu-

ity correction methods to adjust for zero outcomes in different geometry patterns.

Bayesian approach is used to obtain the estimates of parameters of interest. In Sec-

tion 4.2, we discuss the methodology of network meta-analysis and mixed models.

Section 4.3 presents simulation studies, including simulation design, performance

evaluation, and simulation results. We discuss the results of the simulation studies

and give some concluding comments in Section 4.4.

4.2 Methods

For the treatment network patterns, we consider the same types of network

as those considered in the binary outcome chapter: star, loop, one-closed loop, and

ladder geometry. Risk ratio is used frequently. In the Poisson model, the risk ratio

is the ratio of the event occurring rate in the treatment group to the event occurring

rate in the reference group. It measures the relative effect of the outcome in the

treatment group to that in the control group. To deal with zero outcomes in the

Poisson setting, the same strategy as in the binary cases is performed: we add a

small number c to both arms from a study where either outcome is zero. The choice

of the small number c is either 0.5 or 1.

Following the notion of the binary case, we have N randomized controlled trials

making mixed comparisons among K treatments. Define rik and nik as the number
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of events and the total person-time on treatment k in the ith trial, respectively.

Furthermore, let λik be the rate of event occurrence. For the Poisson outcomes, we

assume the number of events rik has a Poisson distribution,

rik ∼ Poisson(nikλik), i = 1, 2, . . . , N ; k = 1, 2, . . . , K.

In the Poisson model, it is common to model the rate of event occurrence λik

in log scale,

log(λib) = µi, i = 1, 2, . . . , N ; k = b = 1, 2, . . . , K,

log(λik) = µi + δi,bk, i = 1, 2, . . . , N ; k = 2, . . . , K; b < k, (4.1)

where µi are the trial-specific baselines and represent the log rate in the reference

treatment (k = b). Also, δi,bk are the trial-specific log risk ratios of the treatment

group k compared with the reference treatment.

The nature of the effect δi,bk depends on the underlying assumptions. Two

models that are commonly used in meta-analysis are the fixed effects and random

effects models. The difference between these two models is the way the between-

study variation is accounted for. For the fixed effects model, Equation 4.1 can be

replaced as follows:

log(λik) = µi + di,bk, i = 1, 2, . . . , N ; k = 2, . . . , K; b < k,

where µi are the trial-specific baselines and di,bk are the fixed log risk ratios of event

occurrence of the treatment group k compared with the reference treatment. In this

model, the between-study variation is equal to zero.

The random effects model allows for the existence of between-study heterogene-

ity. In other words, the underlying effect for each study is different. In addition, it is

often assumed that these true effects follow a normal distribution, and our interest

is in estimating the mean of this normal distribution. For a random effects model,

the trial-specific log risk ratio is assumed δi,bk,

δi,bk ∼ N(dbk, σ
2).
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As we discussed in Chapter Three, the random effects model is recommended,

and the assumptions of the random effects meta-analysis model is that the individual

study results are exchangeable and can be described as a sample from a common

distribution.

In terms of comparison between treatments, there are direct comparisons and

indirect comparisons. Similar to the binomial settings, in the network meta-analysis

for Poisson counts, there are basic parameters and functional parameters. Basic

parameters of the model can be estimated from direct comparisons, like dAB, dAC ,

and dAD in the star geometry in Figure 3.2.1. Functional parameters, which are

related to indirect comparisons, can be calculated based on the pooled estimates for

basic parameters.

The crucial assumption between direct and indirect comparisons is the con-

sistency assumption. Under this assumption, the indirect estimate is unbiased, and

there is no discrepancy between the direct and indirect comparisons. In general, for

the estimate of the indirect treatment comparison dst, we have

dst = dbt − dbs, b = 1, 2, . . . , K; s = 2, 3, . . . , K; t = 3, 4, . . . , K; s < t.

In the Bayesian framework, we assume prior distributions for unknown pa-

rameters. It is common to set weakly-informative prior distributions for the basic

parameters. Usually, µi, dbk ∼ N(0, 102). Because the standard deviation of δi,bk has

to be positive, we take the positive part of the normal distribution. That is,

σ ∼ N(0, B2)+,

where B is a large enough value so that the prior information for σ is vague. We set

B = 10 in the following simulation.
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4.3 Simulation Study

4.3.1 Simulation Design

In the simulation study, our goal was to compare the performance of two

continuity correction methods in four types of networks: star geometry, loop geom-

etry, one-closed loop geometry, and ladder geometry. We also investigated how the

hierarchical Bayesian model identifies the most effective treatment under different

network geometries. We considered four treatments and assumed one of them to be

the reference treatment and the others to be competing treatments.

We chose the random effects model in the network meta-analysis because the

fixed effects model could be treated as a special case of the random effects model,

in which the between-study variance was zero. We denote the treatments under

investigation by treatment A (T1), which we considered to be the reference treatment,

treatment B (T2), treatment C (T3), and treatment D (T4).

Table 4.3.1 describes the simulation scenarios. Within each network pattern,

we let µi vary from −3 to −6, where µi were the trial-specific baselines. We varied

µi to control the number of zeros in the outcomes; the smaller µi was, the higher

the probability of zeros. In this simulation, we fixed the sample size at nik = 100.

We set the number of studies for each comparison equal. For example, for the star

geometry, we had five studies for all comparisons (T1&T2), (T1&T3), and (T1&T4).

Then, the total number of studies was 15. Similarly, the total number of studies for

the ladder geometry, loop geometry, and one-closed loop geometry were 15, 20, and

20, respectively.
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Table 4.3.1: Simulation Scenarios

Parameter Value

Network Patterns Star, Ladder, Loop, One-Closed Loop

Baseline, µi -3,-3.5,-4,-4.5,-5,-5.5,-6

Total Observations(nik) 100

Number of

Studies

Star, Ladder Loop, One-Closed Loop

15 20

Table 4.3.2 shows the true mean of the risk ratio between treatments for all

network patterns. As long as we had bbk, the trial-specific log risk ratio δi,bk could

be generated from N(log(dbk), σ
2); we then used an exponential transformation to

get the corresponding rate of event occurrence λik. Finally, the number of events

(rik) could be generated from Poisson(λiknik).

Table 4.3.2: True Value of Risk Ratio

Study Star Ladder Loop One-Closed Loop

b21 1.5 1.5 2 1.5

b31 2 3 3 2

b41 3 9 4 4.5

b32 1.33 1.5 1.5 1.33

b42 2 6 2 3

b43 1.5 3 1.33 2.5

Based on the procedures we described above, we generated the number of

events for each of the simulation scenarios. Then, we fit the hierarchical Bayesian

random effects model to each data set and performed statistical inference. The

inference was based on the posterior samples by MCMC. In each simulation, we

drew 13000 posterior samples with a burn-in of 3000 samples to remove the impact
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of initial values on the posterior distribution. We repeated this 100 times for each

scenario.

4.3.2 Performance Evaluation

The hierarchical Bayesian approach to mixed treatment comparisons provides

a straightforward way to calculate the probability of each treatment being the best.

In each MCMC run, every treatment in the study could be ranked based on its

estimated magnitude. Then, the proportion of MCMC iterates in which the treat-

ment k ranks first gives the probability that the specific treatment was best among

all competing treatments in the study. Similarly, the 95% posterior interval of the

treatment k’s rank can also be calculated.

Besides the best rank probabilities of each treatment and the 95% posterior

interval of its rank, we were also interested in the risk ratio of all treatment compar-

isons, including direct treatment comparisons and indirect treatment comparisons in

each scenario. In addition, the length of the 95% posterior intervals of the risk ratio

and its coverage probability were also recorded. We also calculated the bias of the

estimates, which is the absolute difference between the true and estimated values.

4.3.3 Simulation Results

Figure 4.3.1 shows the zero rates in our simulated data. The true values of

the risk ratio between treatments are listed in Table 4.3.2. As the baseline log risk

ratio decreased, the number of zero outcomes increased. In the extreme case when

the baseline log risk ratio was −6, star geometry almost provided 70% of the zero

outcomes, one-closed loop geometry provided more than 60% of the zero outcomes,

and ladder and loop geometry provided around 55% of the zero outcomes.
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Figure 4.3.1: The zero rate in the simulated data; the horizontal axis represents the
baseline log risk ratio µ.

4.3.3.1 Star Geometry

Table 4.3.3 shows some of the simulation results for the star geometry without

any continuity correction. In our simulation study, the total number of observations

was n = 100, µ ≥ −4, and the results were reasonable. However, as µ decreased, all

of the estimates became worse.

Table 4.3.3: No Continuity Correction for Star Geometry

µi Para. Prob. Length Bias µi Prob. Length Bias

-4

b12 0.99 5.72 0.66

-4.5

0.97 166.54 93.32

b13 0.98 8.93 1.30 0.97 23.13 3.55

b14 0.93 13.25 2.14 0.94 781.61 352.27

b23 0.97 10.10 1.52 0.97 29.68 4.66

b24 0.97 15.47 2.43 0.94 1280.10 631.20

b34 0.95 9.93 1.43 0.95 454.53 189.06
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Figures 4.3.2 and 4.3.3 provide the plots of the 95% posterior interval widths

and the bias of the estimates for the star geometry for both c = 0.5 and c = 1.

Both length and bias were reduced compared to the no continuity correction cases.

In addition, the studies of indirect comparisons (T2&T3), (T2&T4), and (T3&T4)

provided larger 95% posterior interval lengths than those of the direct comparison

studies for both types of continuity correction.

Figure 4.3.2: The left plot is the length of the 95% posterior interval of star geometry
for c = 1, the right plot is the length of the 95% posterior interval of star geometry
for c = 0.5, and the horizontal axis represents the baseline log risk ratio µ.

Figure 4.3.3: The left plot is the bias of star geometry for c = 1, the right plot is the
bias of star geometry for c = 0.5, and the horizontal axis represents the baseline log
risk ratio µ.

Across all of the studies, c = 0.5 gave a wider interval than c = 1. For the

case of c = 1, biases were smaller than 0.8 for almost all of the studies. For the case
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of c = 0.5, the biases were larger than they were for c = 1. and indirect compar-

isons (T2&T3), (T2&T4), and (T3&T4) performed worse than direct comparisons. For

coverage probability, adding c = 1 and adding c = 0.5 to zeros both provided good

results.

Figure 4.3.4: Best rank probabilities of star geometry for no continuity correction;
the horizontal axis represents the baseline log risk ratio µ.

Figure 4.3.5: The left plot is the best rank probabilities of star geometry for c = 1,
the right plot is the best rank probabilities of star geometry for c = 0.5, and the
horizontal axis represents the baseline log risk ratio µ.
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In terms of the best rank probability, in the star geometry, T4 should be the

best among all the treatments. According to Figures 4.3.4 and 4.3.5, as µ decreased,

the first rank probability for T4 decreased, which means that as the number of zeros

increased, it was harder to correctly recognize T4 as the best treatment. In addition,

for continuity correction, neither c = 1 nor c = 0.5 showed any advantages in the

best rank probability.

4.3.3.2 Ladder Geometry

Table 4.3.4 shows some of the simulation results for ladder geometry without

any continuity correction. We received similar results as the star geometry pattern.

For n = 100, the results were markedly worse when µ was less than −4.

Table 4.3.4: No Continuity Correction for Ladder Geometry

µi Para. Prob. Length Bias µi Prob. Length Bias

-3.5

b12 0.97 2.80 0.19

-4

0.98 21.93 3.72

b13 0.92 3.19 0.34 0.97 4.26 0.37

b14 0.98 3.46 0.33 0.94 4.86 0.50

b23 0.94 8.61 0.95 0.97 33.15 5.33

b24 0.97 13.50 1.71 0.98 19.69 2.38

b34 0.97 32.72 4.26 0.98 127.29 20.95

Figures 4.3.6 and 4.3.7 display the length of the 95% posterior intervals and the

bias of estimates for both c = 1 and c = 0.5. In terms of length, the studies of indirect

comparison (T1&T4) provided a wider 95% posterior interval than those of the direct

comparison studies for both types of continuity correction. Also, c = 1 provided a

narrower width than c = 0.5. In terms of bias, c = 1 performed better than c = 0.5,

and the direct comparison had smaller biases than the indirect comparisons.
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Figure 4.3.6: The left plot is the length of the 95% posterior interval of ladder
geometry for c = 1, the right plot is the length of the 95% posterior interval of
ladder geometry for c = 0.5, and the horizontal axis represents the baseline log risk
ratio µ.

Figure 4.3.7: The left plot is the bias of ladder geometry for c = 1, the right plot
is the bias of ladder geometry for c = 0.5, and the horizontal axis represents the
baseline log risk ratio µ.

In terms of the best rank probability, in the ladder geometry, T4 should be

the best among all of the treatments. According to Figures 4.3.8 and 4.3.9, as µ

decreased, the first rank probability for T4 decreased, which means that if we had

more zeros in our datasets, it was harder to recognize T4 as the best treatment among

them. Making a continuity correction increased the best rank probability, especially

in the situations where there were more zero outcomes.
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Figure 4.3.8: Best rank probabilities of ladder geometry for no continuity correction;
the horizontal axis represents the baseline log risk ratio µ.

Figure 4.3.9: The left plot is the best rank probabilities of ladder geometry for c = 1,
the right plot is the best rank probabilities of ladder geometry for c = 0.5, and the
horizontal axis represents the baseline log risk ratio µ.

4.3.3.3 Loop Geometry

Table 4.3.5 shows part of the simulation results for the loop geometry without

any continuity correction. The coverage probabilities and bias were not as bad in

this network pattern. However, the length of the 95% posterior intervals increased
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almost twice as much when µ decreased from -4.5 to -5 in the situations where the

total number of observations was n = 100.

Table 4.3.5: No Continuity Correction for Loop Geometry

µi Para. Prob. Length Bias µi Prob. Length Bias

-4.5

b12 0.92 6.73 1.00

-5

0.92 12.41 1.90

b13 0.92 13.14 1.87 0.95 25.71 3.84

b14 1.00 3.30 0.30 0.95 5.91 0.71

b23 0.96 2.39 0.16 0.96 3.80 0.37

b24 0.94 11.40 1.75 0.93 23.21 3.62

b34 0.94 5.71 0.61 0.91 15.94 2.38

Figures 4.3.10 and 4.3.11 show the simulation results with the continuity cor-

rection. Both the length of the 95% posterior intervals and the bias were reduced

compared to the results without the continuity correction.

Figure 4.3.10: The left plot is the length of the 95% posterior interval of loop geometry
for c = 1, the right plot is the length of the 95% posterior interval of loop geometry
for c = 0.5, and the horizontal axis represents the baseline log risk ratio µ.

Generally speaking, c = 1 had better performance in the length of the 95%

posterior interval, while c = 0.5 provided less biased estimates. The studies of

(T1&T4), (T1&T3), and (T2&T4) had wider 95% posterior intervals than the others. In
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terms of bias, (T1&T4) performed worse than the others. As µ decreased, the coverage

probabilities decreased for both continuity correction methods, especially for the

study (T1&T4). The correction c = 1 provided even worse coverage probabilities

than c = 0.5, especially when µ was small.

Figure 4.3.11: The left plot is the bias of loop geometry for c = 1, the right plot is
the bias of loop geometry for c = 0.5, and the horizontal axis represents the baseline
log risk ratio µ.

Figure 4.3.12: Best rank probabilities of loop geometry for no continuity correction;
the horizontal axis represents the baseline log risk ratio µ.
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In terms of the best rank probability, T4 should once again be the best among

all of the treatments. Figures 4.3.12 and 4.3.13 show that continuity correction

did not provide better results than those with no continuity correction, no matter

whether we added 0.5 or 1 to zero outcomes.

Figure 4.3.13: The left plot is best rank probabilities of loop geometry for c = 1,
the right plot is the best rank probabilities of loop geometry for c = 0.5, and the
horizontal axis represents the baseline log risk ratio µ.

4.3.3.4 One Closed Loop Geometry

For the one-closed loop geometry pattern, Table 4.3.6 shows part of the results

without the continuity correction.

Table 4.3.6: No Continuity Correction for One-closed Loop Geometry

µi Para. Prob. Length Bias µi Prob. Length Bias

-4.5

b12 0.92 4.99 0.69

-5

0.95 7.90 0.82

b13 0.93 6.52 0.88 0.93 13.89 1.70

b14 0.93 4.15 0.43 0.96 11.02 1.72

b23 0.98 6.71 0.68 0.94 17.79 2.83

b24 0.93 29.23 4.71 0.89 99.23 15.91

b34 0.95 29.79 3.12 0.94 99.57 12.47
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When the number of total observations was 100, as µ decreased from -4.5 to

-5, both the 95% posterior intervals and the bias increased substantially. Also, when

µ = −5, the coverage probability for the study (T1&T4) was below nominal.

Figures 4.3.14 and 4.3.15 show the simulation results when incorporating con-

tinuity correction. Generally speaking, indirect comparisons had poor performance

in the width of the 95% posterior intervals and the biasness of estimates. Also, c = 1

had better performance in both the length of the 95% posterior intervals and the

bias of estimates.

Figure 4.3.14: The left plot is the length of the 95% posterior interval of one-closed
loop geometry for c = 1, the right plot is the length of the 95% posterior interval of
one-closed loop geometry for c = 0.5, and the horizontal axis represents the baseline
log risk ratio µ.

Figure 4.3.15: The left plot is the bias of one-closed loop geometry for c = 1, the
right plot is the bias of one-closed loop geometry for c = 0.5, and the horizontal axis
represents the baseline log risk ratio µ.
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We found that the studies of indirect comparison (T1&T4) and (T2&T4) had

larger 95% posterior interval lengths than those of the direct comparisons. In terms

of bias, the study (T1&T4) had the worst performance in both the situations of c = 1

and c = 0.5. For the coverage probabilities, c = 1 gave low coverage probabilities

for (T1&T4) when µ was small.

Figure 4.3.16: Best rank probabilities of one-closed loop geometry for no continuity
correction; the horizontal axis represents the baseline log risk ratio µ.

Figure 4.3.17: The left plot is the best rank probabilities of one-closed loop geometry
for c = 1, the right plot is the best rank probabilities of one-closed loop geometry
for c = 0.5, and the horizontal axis represents the baseline log risk ratio µ.
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In terms of the best rank probability, T4 was again the best among all of

the treatments. Figures 4.3.16 and 4.3.17 show that the two continuity correction

methods provided almost the same results in terms of the best rank probability. In

the situation of µ = −6, incorporating the continuity correction increased the best

rank probability compared to the results from no continuity correction.

4.4 Conclusion

In this chapter, we have extended previous work on standard meta-analysis

with rare events to network meta-analysis with rare events in the Poisson model.

The Bayesian approach was used to obtain the estimates of the risk ratio between

treatments. Continuity correction (adding a small number to both arms from a

study where either outcome is zero) was performed to further reduce bias. Through

simulation studies, we have shown that with more zeros in the outcome, the bias

increases regardless of whether the continuity correction is used or not. In general,

indirect comparisons (e.g., T2 vs. T3 & T2 vs. T4 in star geometry) have more

biased estimates and wider 95% posterior intervals than direct comparisons (e.g.,

T1 vs. T2 & T1 vs. T3 in star geometry).

For comparing the performance of the two continuity correction methods,

adding 1 to zero outcomes provides narrower 95% posterior intervals in all of the four

geometry patterns. It also gives less biased estimates of risk ratio in star, ladder,

and one-closed loop geometry. Adding 0.5 to zero outcomes only has advantages in

terms of reducing bias for the loop geometry. For the probability to detect the most

effective treatment, the continuity correction does not show improvements over no

correction, especially in the situation where there is a clear superior treatment.
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CHAPTER FIVE

Bayesian Network Meta-analysis for Binary Outcomes with Misclassification

5.1 Introduction

A generalization of meta-analysis is network meta-analysis, which allows for

mutiple treatment comparisons in a single analysis. Network meta-analysis can

not only provide head-to-head pairwise direct comparisons, but it also provides the

indirect comparisons of two treatments which have never been compared with each

other but have been compared to a common comparator. One standard assumption

in both meta-analysis and network meta-analysis is that the outcomes are measured

perfectly. Misclassification frequently occurs due to cost, convenience, misreporting

by subjects, or the use of imperfect measurement devices in data collection. For

example, a fallible diagnostic test can lead to a healthy subject being incorrectly

diagnosed as sick (false-positive) or a sick subject being incorrectly diagnosed as

healthy (false-negative). The use of misclassified data will lead to biased estimates

and wrong statistical inference. Copeland et al. (1977) demonstrate that when

misclassification is equal for the two compared groups, the estimate is biased toward

the null value; when differential misclassification occurs, the bias can be in either

direction.

There are at least two approaches used to adjust for misclassified data. First,

a gold-standard measure is available that always gives the correct classification, but

it is too expensive to be applied to everyone in the study. Prescott and Garthwaite

(2002) provide a two-stage Bayesian analysis of misclassified binary data. They

use the posterior distribution from the first stage as the prior distribution for the

second stage, thus transferring all relevant information between the stages. Second,

if no gold-standard measure is availiable, misclassification probabilities (e.g., se and
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sp) should be incorporated to adjust for misclassified outcomes. Edwards et al.

(2014) use fixed values of the se and sp to adjust misclassified counts and propose

modified maximum likelihood to estimate the rate ratio of lung cancer death for a

Poisson regression model. Paulino, Soares, and Neuhaus (2003) present a Bayesian

binomial regression analysis in which the response is subject to an unconstrained

misclassification process and informative priors were used.

Both Bayesian methods and likelihood methods are widely used to make mis-

classification adjustments. Chu (2007) shows that Bayesian methods can provide

more reasonable and stable inferences when the resulting data are sparse, which

is of particular relevance to small validation data sets in rare exposure contexts.

The inclusion of prior information offered by the Bayesian approach can be used

to effectively adjust for bias. Rather than committing to non-differential or “fully”

differential assumptions concerning the exposure misclassification, a prior can be

constructed to represent a “nearly non-differential” assumption.

In this chapter, we focus on adjusting for misclassified binary outcomes in net-

work meta-analysis. The Bayesian approach is used to perform statistical inference.

In Section 5.2, we overview the network meta-analysis and incorporate se and sp

in the model. Section 5.3 presents simulation details, including simulation design,

performance evaluation, and simulation results. We discuss the results of simulation

studies and give some concluding comments in Section 5.4.

5.2 Methods

5.2.1 Fixed and Random Effects Network Meta-analysis Models

Following the notation used in Greco et al. (2013), suppose we have N ran-

domized controlled trials making mixed comparisons among K treatments. Define

rik and nik as the number of events and the total observations on treatment k in

the ith trial, respectively. Furthermore, let pik be the probability of event occur-
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rence. For the binary outcomes, we assume the number of events rik has a binomial

distribution,

rik ∼ binomial(pik, nik), i = 1, 2, . . . , N ; k = 1, 2, . . . , K.

It is common to use logistic regression to model the probability of event oc-

currence pik:

logit(pib) = log

(
pib

1− pib

)
= µi, i = 1, 2, . . . , N ; k = b = 1, 2, . . . , K,

logit(pik) = log

(
pik

1− pik

)
= µi + δi,bk, i = 1, 2, . . . , N ; k = 2, . . . , K; b < k, (5.1)

where µi are the trial-specific baselines and represent the log odds ratio of events

in the referent treatment (k = b). Also, δi,bk are the trial-specific log odds ratios of

event occurrence of the treatment group k compared with the reference treatment.

The nature of the effect δi,bk depends on the underlying assumptions. Two

models that are commonly used in meta-analysis are the fixed effects and random

effects models. The difference between these two models is the way between-study

variation is accounted for. With the fixed effects model, the assumption is made

that each observed individual study has a shared common treatment effect and

that differences between studies are caused by chance. Individual studies are simply

weighted by their precision. For the fixed effects model, Equation 5.1 can be replaced

as follows:

logit(pik) = µi + di,bk, i = 1, 2, . . . , N ; k = 2, . . . , K; b < k,

where µi are the trial-specific baselines and di,bk are the fixed log odds ratios of event

occurrence of the treatment group k compared with the reference treatment. In this

model, the between-study variation is equal to zero.

The random effects model allows for the existence of between-study hetero-

geneity, meaning the underlying effect for each study is different. In addition, it is
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often assumed that these true effects are described by a normal distribution, and our

interest is in estimating the mean of this normal distribution. For a random effects

model, the trial-specific log odds ratio is assumed δi,bk:

δi,bk ∼ N(dbk, σ
2).

In terms of comparison between treatments, there are direct comparisons and

indirect comparisons. Direct comparisons are made between treatments having head-

to-head randomized studies. In the star geometry (Figure 3.2.1), A-B, A-C, and

A-D directly compare with each other, so in the language of network meta-analysis,

we call the parameters which can be estimated from direct comparisons the basic

parameters of the model, like dAB, dAC , and dAD. Indirect comparisons are made

between treatments in the absence of head-to-head randomized studies but have one

common comparator. For example, treatments B, C, and D are linked via a common

comparator A, and then dBC , dBD, and dCD can be calculated based on the pooled

estimates for the basic parameters. Those parameters, like dBC , dBD, and dCD, are

called functional parameters.

The key assumption in which we can estimate functional parameters (based on

the pooled estimates for basic parameters) is the consistency assumption. We assume

this because it is important that the indirect estimate is unbiased and that there

are no discrepancies between the direct and indirect comparisons. For example, in

one-closed loop geometry in Figure 3.2.3, dBC can be directly estimated from studies

B-C, but it also can be indirectly calculated from dAB and dAC . The consistency

assumption requires that the following equation be satisfied: dBC = dAC − dAB.

In general, for the estimate of indirect treatment comparison dst, we have

dst = dbt − dbs, b = 1, 2, . . . , K; s = 2, 3, . . . , K; t = 3, 4, . . . , K; s < t.

76



5.2.2 Network Meta-analysis with Misclassification

In some situations, the binary outcomes are not measured perfectly, meaning

the number of events observed is misclassified. Therefore, the observed number of

events may lead to biased estimation. We assume xik is the true number of successes

on the treatment k in the ith trial.

Because the xik are not observed, the observed misclassified counts rik depend

on the true counts xik and misclassified counts uik and vik. Let uik be the number

of successes incorrectly labeled as failures, and let vik be the number of failures

incorrectly labeled as successes on the kth treatment in the ith trial. Therefore, we

have the observed number of successes and failures:

rik = xik − uik + vik, qik = yik + uik − vik.

Similar to the unobserved counts, the observed counts follow binomial distri-

butions, but the success probabilities are functions of the prevelance, the se, and

the sp. That is,

rik ∼ binomial(nik, p
∗
ik),

and

p∗ik = pik × seik + (1− pik)× (1− spik),

where seik is the probability a success is correctly labeled as a success on the treat-

ment k in the ith trial. Also, spik is the probability a failure is correctly labeled as a

failure on the treatment k in the ith trial. Thus, the rik are biased for the pik, and

rik provides information only about the quantity pik × seik + (1− pik)× (1− spik).

5.2.3 Choice of Priors

In the Bayesian framework, network meta-analysis can be treated as a hierar-

chical model. Compared to frequestist methods, a Bayesian approach can incorpo-

rate prior information on the parameters, and the parameters are viewed as random
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variables that are constrained by a prior distribution. Gelman (2006) suggests to use

weakly informative priors on scale parameters, which are the trial-specific baselines

(µi) and the log odds ratios of the treatment group to the control group (dbk). The

normal distribution (with a large variance) is widely used as a weakly informative

prior. Therefore, the priors for those parameters are

µi, dbk ∼ N(0, 104).

In terms of priors for the between-study standard deviation, the inverse gamma

prior for the variance is often used because of the conjugacy. However, Gelman

(2006) show the serious problem of the inverse gamma prior for the variance pa-

rameter and suggest the use of a half-Cauchy distribution instead of the uniform

distribution. We use the half-normal distribution to approximate the half-Cauchy

distribution, so the prior distribution for the standard deviation is

σ ∼ N(0, 52)+,

which is the positive part of the normal distribution with mean 0 and standard

deviation 5.

If se and sp are unknown, a good choice is a beta prior. The beta distribution

is flexible, and it also is the conjugate prior for the binomial likelihood. However, for

our overparameterized model, the unknown se and sp leads to convergence issues,

especially in the situation with a limited number of observations. Therefore, instead

of assuming se and sp are unknown, we fix both of them and perform a sensitivity

analysis.

5.3 Simulation Study

5.3.1 Simulation Design

In the simulation study, we aimed to show the advantages of accounting for

misclassification in the network meta-analysis rather than ignoring it. We also inves-
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tigated the effect of heterogeneity on the estimation of the odds ratio. In addition,

we showed the impact of using imperfect se and sp in the analysis. For simplic-

ity, we only considered the star geometry with one common placebo (the reference

treatment) and three competing treatments. This method can easiliy be extended

to other geometries.

We chose the random effects model in the network meta-analysis, because

the fixed effects model could be treated as a special case of the random effects

model in which the between-study variance is zero. We denote the treatments under

investigation by treatment A (T1), which we considered to be the reference treatment,

treatment B (T2), treatment C (T3), and treatment D (T4).

Table 5.3.1: True Value of Odds Ratio

Study b21 b31 b41 b32 b42 b43

Star Geometry 1.5 2 2.5 1.33 1.67 1.25

Table 5.3.1 shows the true mean of the odds ratios between treatments for all

network patterns. For example, b21 = 1.5 means that the odds ratio of treatment B

to treatment A (reference treatment) was 1.5.

Table 5.3.2: Simulation Scenarios

Parameter Value

sensitivity 0.9,0.8

specificity 0.9,0.8,0.7,0.6

σ 0.1,0.25,0.5,0.75

In this simulation study, we assumed the study sample size was 200, and we

had five studies for each comparison, which brought the number of studies to 15.

Table 5.3.2 shows the values of se, sp, and the between-study standard deviation.
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We chose relatively higher se values, 0.9 and 0.8, and let sp vary from 0.9 to 0.6.

The between study standard deviation σ varied from 0.1 to 0.75

We randomly sampled 1000 data sets for each of the simulation scenarios.

Then, we fit the hierarchical Bayesian mixed treatment comparison model on each

data set and performed statistical inference. In our situation, we discarded the first

20000 iterations as a burn-in to reduce the effect of initial values on the inference.

Auto-correlation between posterior samples can lead to poor mixing or slow conver-

gence of the Markov chain. Also, we thinned the Markov chain by keeping every

twenty-fifth simulated draw from each MCMC sequence. Therefore, our inference

about the parameters of interest was based on 20000 interations after a burn-in first

discarded 20000.

5.3.2 Simulation Results

First, we show the advantages of incorporating the se and sp in the analysis.

Table 5.3.3 shows the average posterior means of two pairs of se and sp, which

were se = 0.9, sp = 0.9 and se = 0.9, sp = 0.7, with two between-study standard

deviations of σ = 0.1 and σ = 0.25.

Table 5.3.3: Average Posterior Means Across 1000 Simulations

se = 0.9, sp = 0.9 se = 0.9, sp = 0.7

σ 0.1 0.25 0.1 0.25

b̂21 1.53(1.39) 1.52(1.39) 1.56(1.30) 1.58(1.30)

b̂31 2.07(1.74) 2.05(1.74) 2.09(1.63) 2.13(1.57)

b̂41 2.58(2.05) 2.56(2.06) 2.67(1.80) 2.69(1.80)

b̂32 1.40(1.27) 1.40(1.28) 1.42(1.21) 1.45(1.23)

b̂42 1.74(1.50) 1.75(1.52) 1.80(1.40) 1.84(1.41)

b̂43 1.29(1.19) 1.30(1.22) 1.36(1.17) 1.37(1.17)
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The values in the parentheses are the average posterior means from the “naive”

models, which ignore the misclassification in the analysis, and the values out of

the parentheses are the average posterior means from the “correct” models, which

accounted for se and sp in the analysis.

It is clear from Table 5.3.3 that the models accounting for misclassification

provided better estimates of the odds ratios than that of the “naive” models in all

situations. In addition, for the odds ratios of direct comparisons (b21, b31, and b41),

the “correct” models had little bias. However, for the “naive” model, even in the

situations of se = 0.9, sp = 0.9, the estimates of odds ratios were very biased, and

their performance worsened when se and sp decreased. For the odds ratios of indirect

comparisons (b32, b42, and b43), both “navie” and “correct” models provided biased

estimates, but the “correct” model still provided better results than the “naive”

model.

Table 5.3.4: Average Coverage of the 95% Intervals Across 1000 Simulations

se = 0.9, sp = 0.9 se = 0.9, sp = 0.7

σ 0.1 0.25 0.1 0.25

b̂21 0.97(0.82) 0.95(0.87) 0.98(0.84) 0.96(0.68)

b̂31 0.98(0.53) 0.95(0.73) 0.97(0.06) 0.95(0.32)

b̂41 0.97(0.23) 0.95(0.59) 0.97(0.00) 0.95(0.08)

b̂32 0.98 (0.92) 0.94(0.93) 0.98(0.85) 0.96(0.89)

b̂42 0.97(0.82) 0.96(0.89) 0.97(0.60) 0.96(0.75)

b̂43 0.97 (0.94) 0.95(0.95) 0.97(0.92) 0.95(0.89)

Table 5.3.4 shows the average coverage of the 95% intervals across 1000 sim-

ulations in the same setting as Table 5.3.3. The “correct” model provided very

good coverage probabilities, which were all around 95%, while the “naive” model

performed poorly in terms of coverage probability, especially when the sp and the
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between-study standard deviation were both small. It is interesting that for the

“naive” model, the coverage probabilities of the 95% intervals of indirect compar-

isons were closer to 95% than those from the direct comparisons.

Table 5.3.5 shows the average width of the 95% intervals across 1000 simula-

tions, also in the same setting as Table 5.3.3. The “naive” models had a narrower

interval than the “correct” models. This is because accounting for misclassification

increases uncertainty, and the estimates should have wider posterior intervals. Al-

though the “naive” models provided narrower intervals, the average means of odds

ratios were very biased, and coverage probabilities were below nominal (Tables 5.3.3

and 5.3.4). Therefore, the “naive” models provided precise but biased estimates.

Table 5.3.5: Average Width of the 95% Intervals Across 1000 Simulations

se = 0.9, sp = 0.9 se = 0.9, sp = 0.7

σ 0.1 0.25 0.1 0.25

b̂21 0.86(0.41) 0.88(0.62) 1.13(0.39) 1.29(0.52)

b̂31 1.18(0.52) 1.19(0.77) 1.54(0.47) 1.76(0.62)

b̂41 1.51(0.62) 1.50(0.92) 2.02(0.55) 2.27(0.72)

b̂32 1.12 (0.54) 1.15(0.81) 1.47(0.51) 1.69(0.69)

b̂42 1.42(0.63) 1.45(0.96) 1.90(0.60) 2.16(0.79)

b̂43 1.06 (0.51) 1.08(0.77) 1.44(0.50) 1.63(0.66)

Table 5.3.6 shows the results when we fixed se and sp at 0.9 and 0.8, respec-

tively, and it also shows the results from when we varied between-study standard

deviation from 0.1 to 0.75. Each cell contains the average posterior and the average

width of the 95% intervals (in the parentheses). As the between-study standard

deviation increased, the estimates of the odds ratios were more biased. In addition,

it is not surprising that the width of the 95% interval increased as the variation

between studies increased.
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Table 5.3.6: Average Posterior Means and Average Widths of the 95% Intervals
Across 1000 Simulations

σ 0.1 0.25 0.5 0.75

b̂21 1.55(0.98) 1.54(0.92) 1.63(1.76) 1.73(2.51)

b̂31 2.08(1.35) 2.06(1.24) 2.16(2.36) 2.72(3.35)

b̂41 2.65(1.76) 2.57(1.57) 2.75(3.06) 2.85(4.24)

b̂32 1.41(1.28) 1.39(1.19) 1.53(2.38) 1.72(3.61)

b̂42 1.79(1.65) 1.73(1.49) 1.96(3.09) 2.15(4.53)

b̂43 1.33(1.24) 1.30(1.12) 1.48(2.32) 1.65(3.47)

5.3.3 Sensitivity Analysis

We next investigated robustness. Specifically, we were interested in the impact

from imperfect estimation of the se and sp. First, we assumed that se was known

and that sp was unknown. We assumed a value of 0.9 for both se and sp, and the

between-study standard deviation was 0.1. For the simulation, we fixed se at the

true value 0.9 and considered a range of values for sp (sp = 0.8, 0.7, 0.6).

Table 5.3.7: Posterior Results of Imperfect Specificity (se = 0.9)

Mean Coverage Width

sp 0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.7 0.6

b̂21 1.64 1.86 2.69 0.95 0.88 0.66 1.05 1.46 3.66

b̂31 2.24 2.66 4.34 0.94 0.76 0.34 1.45 2.09 5.94

b̂41 2.85 3.49 6.62 0.92 0.70 0.20 1.87 2.77 8.10

b̂32 1.43 1.54 1.95 0.97 0.97 0.96 1.30 1.71 3.65

b̂42 1.82 2.01 2.85 0.97 0.96 0.92 1.67 2.25 4.91

b̂43 1.34 1.40 1.86 0.97 0.97 0.96 1.23 1.56 3.01
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Table 5.3.7 shows the average posterior means, coverage rates, and widths of

the 95% posterior intervals for different values of sp. The results show that when

sp = 0.8, which is close to the true value, the average means of the odds ratios

showed little bias from the true value, and the coverage rates were close to nominal

rates. However, as sp decreased, the estimates of the odds ratios were more biased,

the coverage rates of the 95% posterior intervals decreased dramatically, and the

widths of the 95% intervals became wider. Therefore, the posterior results were quite

sensitive to the sp. It is interesting that the coverage rates of indirect comparisons

were close to nominal, even though sp was far away from the true value.

Next, we considered that both se and sp were imperfect, but neither of them

were far away from the true value. The between-study standard deviation was again

fixed at 0.1. In this situation, we assumed both se and sp were 0.1 away from the

true value. For example, if we assumed se = 0.9 and sp = 0.8, we used se = 0.8 and

sp = 0.7 for the simulation. We considered several pairs of se and sp in the setting:

se = 0.9, sp = 0.9; se = 0.9, sp = 0.8; and se = 0.9, sp = 0.7. Therefore, in this

simulation, we used se = 0.8, sp = 0.8; se = 0.8, sp = 0.7; and se = 0.8, sp = 0.6,

respectively, to do our analysis.

Table 5.3.8: Posterior Results with Imperfect Sensitivity and Specificity

se = 0.9, sp = 0.9 se = 0.9, sp = 0.8 se = 0.9, sp = 0.7

Mean Coverage Width Mean Coverage Width Mean Coverage Width

ˆb21 1.82 0.90 1.44 1.92 0.89 1.82 2.14 0.87 2.55

ˆb31 2.84 0.71 2.40 1.92 0.89 1.82 3.74 0.63 5.08

ˆb41 4.10 0.48 3.77 4.86 0.42 5.74 1.84E10 0.37 1.96E10

ˆb32 1.67 0.93 1.94 1.77 0.94 2.47 2.04 0.94 3.69

ˆb42 2.41 0.86 2.94 2.79 0.84 4.24 1.47E10 0.82 9.63E10

ˆb43 1.57 0.94 1.95 1.77 0.92 2.75 3.90E9 0.92 7.62E9
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Table 5.3.8 shows the posterior results of these three situations. It provides

the posterior means, coverage rates, and widths of the 95% posterior intervals of

the odds ratios. In the situation of se = 0.9 and sp = 0.9, using imperfect se and

sp led to slightly biased estimates, and the coverage rates of the 95% intervals were

below nominal. When se and sp decreased, the results became worse, posterior

estimates were more biased, coverage rates decreased, and the width of the 95%

intervals increased, especially in the situation of se = 0.9, sp = 0.7.

Table 5.3.9 shows the results after the se and sp used in the analysis were

larger than the true value by 0.1. In these three cases, the use of imperfect se and

sp provided very similar results. The posterior means of all the odds ratios were

moderately biased from the true value. Also, the coverage rates of b̂31 and b̂41 were

below nominal, but the rest were all close to 95%. Compared to Table 5.3.8, all of

the posterior means, coverage rates, and widths of the 95% posterior intervals had

considerable improvements, especially in the situations with low se and sp.

Table 5.3.9: Posterior Results with Imperfect Sensitivity and Specificity

se = 0.9, sp = 0.8 se = 0.9, sp = 0.7 se = 0.8, sp = 0.8

Mean Coverage Width Mean Coverage Width Mean Coverage Width

ˆb21 1.39 0.97 0.67 1.38 0.91 0.73 1.39 0.92 0.76

ˆb31 1.72 0.77 0.84 1.70 0.75 0.90 1.70 0.78 0.95

ˆb41 2.03 0.59 0.99 1.99 0.58 1.06 2.00 0.62 1.13

ˆb32 1.28 0.95 0.87 1.27 0.95 0.95 1.27 0.96 0.99

ˆb42 1.50 0.92 1.03 1.48 0.91 1.12 1.49 0.92 1.18

ˆb43 1.21 0.97 0.83 1.20 0.97 0.91 1.22 0.95 0.97

5.4 Conclusion

In this chapter, we extended previous work on network meta-analysis that

allows for misclassification. The Bayesian approach was used to get the estimates of
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odds ratios between treatments. The important advantage of the Bayesian method

in network meta-analysis is that there was an allowance to incorporate prior belief

about the parameters of interest in the analysis. In Section 5.2, we discussed the

network meta-analysis in both fixed and random effects models. In addition, we

adjusted misclassified counts by incorporating se and sp. In Section 5.3, we described

the design of our simulation and presented the simulation results.

In this simulation study, we have shown that under the fixed se and sp, the

increasing of the standard deviation for the between-study standard deviations lead

to more biased estimates and wider 95% posterior intervals. We also investigated

the danger of ignoring misclassification, which can lead to wrong conclusions as it

underestimated the odds ratio between treatments. Although ignoring misclassifi-

cation provided narrower 95% posterior intervals, the coverage of the 95% posterior

intervals was well below nominal.

In the situation where se and sp are unknown, the common strategy in the

Bayesian approach is to assume two independent beta prior distributions for se

and sp. However, for the network meta-analysis (the overparameterized model),

the unknown se and sp leads to convergence issues. Therefore, we investigated the

robustness. The simulation study shows that if either se or sp were perfect, the

other was imperfect. If the imperfect one slightly departed from the true value,

we still got good estimates and coverage probabilities. As it shifted more from the

true value, the estimates were more biased with low coverage probabilities. It is

surprising that the results of the indirect comparisons were better than those of the

direct comparisons, especially with the coverage probabilities.

It is very dangerous to use the imperfect se and sp, even though they are

slightly departed from the true value. The results are very sensitive to the misclas-

sification rates. Our simulation study showed that the use of slightly overestimated

se and sp will provide better estimates than that of using underestimated se and
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sp, especially when se and sp are low. Therefore, in a real world analysis, it is very

important to detect the true se and sp. We should at least find one of the true

values so that we can get correct or less biased estimates. In the case where both se

and sp are unknown, using slightly larger se and sp would provide more consistent

results.
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APPENDIX A

R and BUGS Programs for Misclassified and Overdispersed Poisson Data

The programs presented here were used for Bayesian analysis to account for

misclassification and overdispersion in the Poisson model, which was discribed in

Chapter Two. We generated data for the simulation using R, and we implemented

the Bayesian approach by WinBUGS.

#################parameters in the R function########################

##k: number of groups

##b0, b1, a0, a1: coefficients

##x: exposure

##n: person year

##sp, se: specificity and sensitivity

##err: random error

##lam: true death rate due to lung cancer

##mu: true death rate due to other cancer

##rate1: observed death rate due to lung cancer

##rate2: observed death rate due to other cancer

##w: observed death number due to lung cancer

##e: observed death number due to other cancer

##model: random or fixed model

##sesp: sp and se known or unknown

##a.se, b.se, a.sp, b.sp: prior parameters for se and sp

pmisc = function(a0, a1, a2, a3, b0, b1, b2, b3, sig, n, se, sp,

model, sesp, a.se=90, b.se=10, a.sp=90, b.sp=10, M)
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{

simout <- as.list(rep(NA, M))

##covariates in the Poisson model

a = c(0,1)

b = c(0,1)

d = c(0,1)

x = matrix(NA, ncol = 3, nrow = 8)

y = matrix(NA, ncol = 3, nrow = 8)

z = matrix(NA, ncol = 3, nrow = 8)

v = matrix(NA, ncol = 3, nrow = 8)

i = 1

for (j in 1:2)

{ for (k in 1:2)

{ for (h in 1:2) {

x[i,] <- c(a[j],b[k],d[h])

y[i,] <- c(a[j],b[k],d[h])

z[i,] <- c(a[j],b[k],d[h])

v[i,] <- c(a[j],b[k],d[h])

i = i + 1

} } }

x.4 = rbind(x,y,z,v)

k = dim(x.4)[1]

x1 = x.4[,1]

x2 = x.4[,2]

x3 = x.4[,3]
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################random effects model with known se and sp##############

if (model == ’random’)

{if (sesp == ’known’)

{for (i in 1:M) {

err.b = rnorm(k, 0, sig^0.5)

err.a = rnorm(k, 0, sig^0.5)

lam = exp(b0 + b1*x1 + b2*x2 + b3*x3 + err.b)

mu = exp(a0 + a1*x1 + a2*x2 + a3*x3 + err.a)

rate1 = lam*se + mu*(1-sp)

rate2 = lam*(1-se) + mu*sp

w = rpois(k, rate1*n)

e = rpois(k, rate2*n)

parameters = list(’a0’,’a1’,’a2’,’a3’,’b0’,’b1’,’b2’,’b3’,’sd’)

data = list(’w’, ’e’, ’x1’,’x2’,’x3’, ’k’,’n’, ’se’, ’sp’)

inits = list(a0 = 0,a1 = 0,a2 = 0,a3 = 0,b0 = 0,b1 = 0,b2 = 0,

b3 = 0,err.a = rep(0,k),err.b = rep(0,k),sd = 1)

inits = list(inits)

##call WinBUGS in R

sim = bugs(data, inits, parameters, ’code_rk.txt’,

n.chains = 1, n.burnin = 50000, n.iter = 500000,

n.thin = 25,bugs.directory="c:/WinBUGS/WinBUGS14/")

df <- as.data.frame(sim$summary)

df$should <- c(a0, a1, a2, a3, b0, b1, b2, b3, sig^0.5)

simout[[i]] <- t(apply(df, 1, function(row){ c(

est = unname( row["mean"] ),

cover = unname( row["2.5%"] <= row["should"]

&& row["should"] <= row["97.5%"] ),
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length = unname( row["97.5%"] - row["2.5%"] ) ) }))

}}

###############random effects model with unknown se and sp#############

if (sesp == ’unknown’)

{for (i in 1:M) {

err.b = rnorm(k, 0, sig^0.5)

err.a = rnorm(k, 0, sig^0.5)

lam = exp(b0 + b1*x1 + b2*x2 + b3*x3 + err.b)

mu = exp(a0 + a1*x1 + a2*x2 + a3*x3 + err.a)

rate1 = lam*se + mu*(1-sp)

rate2 = lam*(1-se) + mu*sp

w = rpois(k, rate1*n)

e = rpois(k, rate2*n)

parameters = list(’a0’,’a1’,’a2’,’a3’,’b0’,’b1’,’b2’,

’b3’, ’sd’, ’se’, ’sp’)

data = list(’w’,’e’,’x1’,’x2’,’x3’,’k’,’n’,’a.se’,

’b.se’,’a.sp’,’b.sp’)

inits = list(a0 = 0,a1 = 0,a2 = 0,a3 = 0,b0 = 0,b1 = 0,

b2 = 0,b3 = 0,err.a = rep(0,k),err.b = rep(0,k),

sd = 1,se=0.5,sp=0.5)

inits = list(inits)

sim = bugs(data, inits, parameters, ’code_ru.txt’,

n.chains = 1,n .burnin = 50000, n.iter = 500000,

n.thin = 25,bugs.directory="c:/WinBUGS/WinBUGS14/")

df <- as.data.frame(sim$summary)

df$should <- c(a0,a1,a2,a3,b0,b1,b2,b3,sig^0.5,se,sp)

simout[[i]] <- t(apply(df, 1, function(row){c(
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est = unname( row["mean"] ),

cover = unname( row["2.5%"] <= row["should"]

&& row["should"] <= row["97.5%"] ),

length = unname( row["97.5%"] - row["2.5%"] ) ) }))

} } }

################fixed effects model with known se and sp#############

if (model == ’fixed’)

{ if (sesp == ’known’)

{ for (i in 1:M) {

lam = exp(b0 + b1*x1 + b2*x2 + b3*x3)

mu = exp(a0 + a1*x1 + a2*x2 + a3*x3)

rate1 = lam*se + mu*(1-sp)

rate2 = lam*(1-se) + mu*sp

w = rpois(k, rate1*n)

e = rpois(k, rate2*n)

parameters = list(’a0’,’a1’,’a2’,’a3’,’b0’,’b1’,’b2’,’b3’)

data = list(’w’, ’e’, ’x1’,’x2’,’x3’, ’k’,’n’, ’se’, ’sp’)

inits = list(a0=0,a1=0,a2=0,a3=0,b0=0,b1=0,b2=0,b3=0)

inits = list(inits)

sim = bugs(data, inits, parameters, ’code_fk.txt’,

n.chains = 1, n.burnin = 50000, n.iter = 500000,

n.thin = 25,bugs.directory="c:/WinBUGS/WinBUGS14/")

df <- as.data.frame(sim$summary)

df$should <- c(a0, a1, a2, a3, b0, b1, b2, b3)

simout[[i]] <- t(apply(df, 1, function(row){c(

est = unname( row["mean"] ),

cover = unname( row["2.5%"] <= row["should"]
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&& row["should"] <= row["97.5%"] ),

length = unname( row["97.5%"] - row["2.5%"] ) ) }))

} }

#############fixed effects model with unknown se and sp##############

if (sesp == ’unknown’)

{ for (i in 1:M) {

lam = exp(b0 + b1*x1 + b2*x2 + b3*x3)

mu = exp(a0 + a1*x1 + a2*x2 + a3*x3)

rate1 = lam*se + mu*(1-sp)

rate2 = lam*(1-se) + mu*sp

w = rpois(k, rate1*n)

e = rpois(k, rate2*n)

parameters = list(’a0’,’a1’,’a2’,’a3’,’b0’,’b1’,’b2’,’b3’,

’se’,’sp’)

data = list(’w’,’e’,’x1’,’x2’,’x3’,’k’,’n’,’a.se’,’b.se’,

’a.sp’,’b.sp’)

inits = list(a0 = 0, a1 = 0, a2 = 0, a3 = 0, b0 = 0, b1 = 0,

b2 = 0, b3 = 0, se=0.5, sp=0.5)

inits = list(inits)

sim = bugs(data, inits, parameters, ’code_fu.txt’,

n.chains = 1, n.burnin = 50000, n.iter = 500000,

n.thin = 25,bugs.directory="c:/WinBUGS/WinBUGS14/")

df <- as.data.frame(sim$summary)

df$should <- c(a0, a1, a2, a3, b0, b1, b2, b3, se, sp)

simout[[i]] <- t(apply(df, 1, function(row){c(

est = unname( row["mean"] ),

cover = unname( row["2.5%"] <= row["should"]
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&& row["should"] <= row["97.5%"] ),

length = unname( row["97.5%"] - row["2.5%"] ) ) }))

} } }

## format and return

simTogether <- arrange(melt(simout), Var1, Var2)

simTogether <- ddply(simTogether, c("Var1", "Var2"), function(df){

mean(df$value) })

simTogether <- dcast(simTogether, Var1 ~ Var2 , value.var = "V1")

row.names(simTogether) <- simTogether$Var1

simTogether <- simTogether[,-1]

simTogether }

######WinBUGS code for random effects model with known se and sp#######

model {

for (i in 1:k) {

log(lam[i]) <- b0 + b1*x1[i] + b2*x2[i] + b3*x3[i] +err.b[i]

log(mu[i]) <- a0 + a1*x1[i] + a2*x2[i] + a3*x3[i] +err.a[i]

rate1[i] <- lam[i]*se + mu[i]*(1-sp)

rate2[i] <- lam[i]*(1-se) + mu[i]*sp

r1[i] <- rate1[i]*n

r2[i] <- rate2[i]*n

w[i] ~ dpois(r1[i])

e[i] ~ dpois(r2[i])

err.b[i] ~ dnorm(0, tau)

err.a[i] ~ dnorm(0, tau) }

a0 ~ dnorm(0, 0.1)
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b0 ~ dnorm(0, 0.1)

a1 ~ dnorm(0, 0.1)

b1 ~ dnorm(0, 0.1)

a2 ~ dnorm(0, 0.1)

b2 ~ dnorm(0, 0.1)

a3 ~ dnorm(0, 0.1)

b3 ~ dnorm(0, 0.1)

sd ~ dnorm(0,1)I(0.001,)

tau <- 1/pow(sd,2) }

#####WinBUGS code for random effects model with unknown se and sp######

model {

for (i in 1:k) {

log(lam[i]) <- b0 + b1*x1[i] + b2*x2[i] + b3*x3[i] +err.b[i]

log(mu[i]) <- a0 + a1*x1[i] + a2*x2[i] + a3*x3[i] +err.a[i]

rate1[i] <- lam[i]*se + mu[i]*(1-sp)

rate2[i] <- lam[i]*(1-se) + mu[i]*sp

r1[i] <- rate1[i]*n

r2[i] <- rate2[i]*n

w[i] ~ dpois(r1[i])

e[i] ~ dpois(r2[i])

err.b[i] ~ dnorm(0, tau)

err.a[i] ~ dnorm(0, tau) }

a0 ~ dnorm(0, 0.1)

b0 ~ dnorm(0, 0.1)

a1 ~ dnorm(0, 0.1)

b1 ~ dnorm(0, 0.1)

a2 ~ dnorm(0, 0.1)
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b2 ~ dnorm(0, 0.1)

a3 ~ dnorm(0, 0.1)

b3 ~ dnorm(0, 0.1)

se ~ dbeta(a.se, b.se)

sp ~ dbeta(a.sp, b.sp)

sd ~ dnorm(0,1)I(0.001,)

tau <- 1/pow(sd,2) }

#######WinBUGS code for fixed effects model with known se and sp#######

model {

for (i in 1:k) {

log(lam[i]) <- b0 + b1*x1[i] + b2*x2[i] + b3*x3[i]

log(mu[i]) <- a0 + a1*x1[i] + a2*x2[i] + a3*x3[i]

rate1[i] <- lam[i]*se + mu[i]*(1-sp)

rate2[i] <- lam[i]*(1-se) + mu[i]*sp

r1[i] <- rate1[i]*n

r2[i] <- rate2[i]*n

w[i] ~ dpois(r1[i])

e[i] ~ dpois(r2[i]) }

a0 ~ dnorm(0, 0.1)

b0 ~ dnorm(0, 0.1)

a1 ~ dnorm(0, 0.1)

b1 ~ dnorm(0, 0.1)

a2 ~ dnorm(0, 0.1)

b2 ~ dnorm(0, 0.1)

a3 ~ dnorm(0, 0.1)

b3 ~ dnorm(0, 0.1) }
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######WinBUGS code for fixed effects model with unknown se and sp######

model {

for (i in 1:k) {

log(lam[i]) <- b0 + b1*x1[i] + b2*x2[i] + b3*x3[i]

log(mu[i]) <- a0 + a1*x1[i] + a2*x2[i] + a3*x3[i]

rate1[i] <- lam[i]*se + mu[i]*(1-sp)

rate2[i] <- lam[i]*(1-se) + mu[i]*sp

r1[i] <- rate1[i]*n

r2[i] <- rate2[i]*n

w[i] ~ dpois(r1[i])

e[i] ~ dpois(r2[i]) }

a0 ~ dnorm(0, 0.1)

b0 ~ dnorm(0, 0.1)

a1 ~ dnorm(0, 0.1)

b1 ~ dnorm(0, 0.1)

a2 ~ dnorm(0, 0.1)

b2 ~ dnorm(0, 0.1)

a3 ~ dnorm(0, 0.1)

b3 ~ dnorm(0, 0.1)

se ~ dbeta(a.se, b.se)

sp ~ dbeta(a.sp, b.sp) }
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APPENDIX B

R and Stan Programs for Network Meta-analysis with Rare Events

In this appendix, we provide the R and Stan programs for the network meta-

analysis with rare events for both the binomial and Poisson models, which were

discussed in Chapter Three and Chapter Four. Star geometry in the binomial setting

and loop geometry in the Poisson setting were shown as examples, but the other

geometries could be easily extended through these programs.

B.1 Binomial Model

################parameters in the R function########################

##m: number of simulation

##mu: baseline log odds ratio

##N: number of outcomes

##NS: number of studies (N/2)

##NT: number of treatments

##n: sample size in each study

##d.AB, d.AC, d.AD: log odds ratio

##sig: standard deviation of study

##cc: continuity correction

star_rank<-function(m,mu,N,NS,NT,n,d.AB,d.AC,d.AD,sig,seed,cc)

{ set.seed(seed)

simout <- as.list(rep(NA, m))

simout.rank = as.list(rep(NA,m))

##design matrix for star geometry

x<-matrix(NA, N, NT)
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x[,1]=1

x[,2]=0

x[,3]=0

x[,4]=0

x[2,2]=1

x[4,2]=1

x[6,2]=1

x[8,2]=1

x[10,2]=1

x[12,3]=1

x[14,3]=1

x[16,3]=1

x[18,3]=1

x[20,3]=1

x[22,4]=1

x[24,4]=1

x[26,4]=1

x[28,4]=1

x[30,4]=1

n=rep(n, N)

r<-vector("numeric", N)

##odds ratio

OR.BC=exp(d.AC-d.AB)

OR.BD=exp(d.AD-d.AB)

OR.CD=exp(d.AD-d.AC)

OR.AB=exp(d.AB)

OR.AC=exp(d.AC)
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OR.AD=exp(d.AD)

##data generation

for (i in 1:m){

delta.AB=rnorm(NS, d.AB, sig)

delta.AC=rnorm(NS, d.AC, sig)

delta.AD=rnorm(NS, d.AD, sig)

s=c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10,

11,11,12,12,13,13,14,14,15,15)

t=c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3,

1,4,1,4,1,4,1,4,1,4)

b=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

teb = 1 - 1*(t==b)

for(j in 1:NS)

{ r[2*j-1] <- rbinom(1,n[2*j-1], 1/(1+exp(-(x[(2*j-1),] %*%

c(mu, delta.AB[s[2*j-1]],delta.AC[s[2*j-1]],delta.AD[s[2*j-1]])))))

r[2*j] <- rbinom(1,n[2*j], 1/(1+exp(-(x[2*j,] %*%

c(mu, delta.AB[s[2*j]],delta.AC[s[2*j]],delta.AD[s[2*j]])))))

##continuity correction

if(r[2*j-1]==0||r[2*j]==0)

{ r[2*j-1] = r[2*j-1]+cc

r[2*j] = r[2*j]+cc } }

##Stan code begins here

data = list(N=N, NS=NS, NT=NT, n=n, t=t, b=b, teb=teb, r=r, s=s)

code = "data {

int<lower=0> N;

int<lower=0> NS;
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int<lower=0> NT;

int<lower=0> n[N];

real<lower=0> r[N];

int<lower=0> s[N];

int<lower=0> t[N];

int<lower=0> b[N];

int<lower=0> teb[N]; }

parameters {

real mu[NS];

real da[NT];

real delta[N];

real<lower=0> sdp; }

transformed parameters {

real<lower=0> or12;

real<lower=0> or13;

real<lower=0> or14;

real<lower=0> or23;

real<lower=0> or24;

real<lower=0> or34;

real md[N];

real mus[N];

real d[NT];

real ra[NT];

for (g in 2:NT) d[g] <- da[g];

for (z in 1:NT) ra[z] <- inv_logit(d[z]+0.5);

d[1] <- 0;

or12 <- exp(d[2]-d[1]);
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or13 <- exp(d[3]-d[1]);

or14 <- exp(d[4]-d[1]);

or23 <- exp(d[3]-d[2]);

or24 <- exp(d[4]-d[2]);

or34 <- exp(d[4]-d[3]);

for (h in 1:N) {

md[h] <- d[t[h]] - d[b[h]];

mus[h] <- mu[s[h]]; } }

model {

for (i in 1:NS) mu[i] ~ normal(0,10);

for (j in 2:NT) da[j] ~ normal(0,10);

for (k in 1:N) delta[k] ~ normal(md[k],sdp);

sdp ~ normal(0, 1) T[0.00001,];

for (l in 1:N)

increment_log_prob(r[l]*log(inv_logit(mus[l] + delta[l]*teb[l]))

+(n[l] - r[l])*log(1 - inv_logit(mus[l] + delta[l]*teb[l])));}"

fit = stan(model_code = code, data=data,iter=13000,

chains=1, warmup = 3000, pars = c("or12","or13",

"or14","or23","or24","or34","ra"))

ss.sim = matrix(NA, 6, 4)

rank.matrix = matrix(NA,10000,NT)

best = matrix(NA,10000,NT)

##extract posterior samples

post = extract(fit)

or12 = post$or12

or13 = post$or13

or14 = post$or14
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or23 = post$or23

or24 = post$or24

or34 = post$or34

ra = post$ra

rank.re = matrix(NA,4,NT)

for (l in 1:10000)

{ rank.matrix[l,] = 5-rank(ra[l,])

best[l,] = (rank.matrix[l,]==1)*1 }

ss.sim[1,] = c(mean(or12),

quantile(or12,0.025),quantile(or12,0.975),OR.AB)

ss.sim[2,] = c(mean(or13),

quantile(or13,0.025),quantile(or13,0.975),OR.AC)

ss.sim[3,] = c(mean(or14),

quantile(or14,0.025),quantile(or14,0.975),OR.AD)

ss.sim[4,] = c(mean(or23),

quantile(or23,0.025),quantile(or23,0.975),OR.BC)

ss.sim[5,] = c(mean(or24),

quantile(or24,0.025),quantile(or24,0.975),OR.BD)

ss.sim[6,] = c(mean(or34),

quantile(or34,0.025),quantile(or34,0.975),OR.CD)

df = as.data.frame(ss.sim)

simout[[i]] <- t(apply(df, 1, function(row){ c(

est = unname( row[1] ),

cover = unname( row[2] <= row[4] && row[4] <= row[3] ),

length = unname( row[3] - row[2] ) ) }))

rank.re[1,] = colMeans(best)

rank.re[2,] = colMeans(rank.matrix)
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rank.re[3,] = c(quantile(rank.matrix[,1],0.025),

quantile(rank.matrix[,2],0.025),quantile(rank.matrix[,3],0.025),

quantile(rank.matrix[,4],0.025))

rank.re[4,] = c(quantile(rank.matrix[,1],0.975),

quantile(rank.matrix[,2],0.975),quantile(rank.matrix[,3],0.975),

quantile(rank.matrix[,4],0.975))

simout.rank[[i]] = rank.re }

simTogether <- arrange(melt(simout), Var1, Var2)

simTogether <- ddply(simTogether, c("Var1", "Var2"), function(df){

mean(df$value) })

## format and return

simTogether <- dcast(simTogether, Var1 ~ Var2 , value.var = "V1")

row.names(simTogether)<-c("1vs2","1vs3","1vs4","2vs3","2vs4","3vs4")

simTogether <- simTogether[,-1]

simTogether.rank <- arrange(melt(simout.rank), Var1, Var2)

simTogether.rank <- ddply(simTogether.rank, c("Var1", "Var2"),

function(df){ mean(df$value) })

simTogether.rank <- dcast(simTogether.rank,Var1~Var2,value.var="V1")

row.names(simTogether.rank) <- c("Best Prob","rank","lower rank",

"upper rank")

simTogether.rank <- simTogether.rank[,-1]

list(simTogether, simTogether.rank) }

B.2 Poisson Model

################parameters in the R function########################

##m: number of simulation

##mu: baseline log odds ratio

##N: number of outcomes
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##NS: number of studies (N/2)

##NT: number of treatments

##n1: sample size in each study

##d.AB, d.AC, d.AD: log odds ratio

##sig: standard deviation of study

##cc: continuity correction

loop_rank<-function(m, mu, N, NS, NT, n1, d.AB, d.AD,

d.BC, d.CD, sig, seed, cc)

{ set.seed(seed)

simout <- as.list(rep(NA, m))

simout.rank = as.list(rep(NA,m))

##design matrix for loop geometry

x<-matrix(NA, N, 4)

x[,1]=1

x[,2]=0

x[,3]=0

x[,4]=0

x[2,2]=1

x[4,2]=1

x[6,2]=1

x[8,2]=1

x[10,2]=1

x[12,4]=1

x[14,4]=1

x[16,4]=1

x[18,4]=1

x[20,4]=1
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x[21,2]=1

x[23,2]=1

x[25,2]=1

x[27,2]=1

x[29,2]=1

x[22,3]=1

x[24,3]=1

x[26,3]=1

x[28,3]=1

x[30,3]=1

x[31,3]=1

x[33,3]=1

x[35,3]=1

x[37,3]=1

x[39,3]=1

x[32,4]=1

x[34,4]=1

x[36,4]=1

x[38,4]=1

x[40,4]=1

n=rep(n1, N)

r = vector("numeric", N)

##risk rate for two treatments

R.AC=exp(d.BC+d.AB)

R.BD=exp(d.CD+d.BC)

R.AB=exp(d.AB)

R.AD=exp(d.AD)

107



R.BC=exp(d.BC)

R.CD=exp(d.CD)

##data generation

for (i in 1:m){

delta.AB=rnorm(NS, d.AB, sig)

delta.AD=rnorm(NS, d.AD, sig)

delta.AC=rnorm(NS, (d.BC+d.AB), sig)

s=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,

13,13,14,14,15,15,16,16,17,17,18,18,19,19,20,20)

t=c(1,2,1,2,1,2,1,2,1,2,1,4,1,4,1,4,1,4,1,4,2,3,2,3,

2,3,2,3,2,3,3,4,3,4,3,4,3,4,3,4)

b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,

2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3)

teb = 1 - 1*(t==b)

for(j in 1:NS)

{r[2*j-1] = rpois(1,n[2*j-1]*(exp((x[(2*j-1),] %*%

c(mu,delta.AB[s[2*j-1]],delta.AC[s[2*j-1]],delta.AD[s[2*j-1]])))))

r[2*j] = rpois(1,n[2*j]*(exp((x[2*j,] %*%

c(mu,delta.AB[s[2*j]],delta.AC[s[2*j]],delta.AD[s[2*j]])))))

##continuity correction

if(r[2*j-1]==0||r[2*j]==0)

{ r[2*j-1] = r[2*j-1]+cc

r[2*j] = r[2*j]+cc } }

##Stan code begins bere

data = list(N=N, NS=NS, NT=NT, n=n, t=t, b=b, teb=teb, r=r, s=s)

code = "data {

int<lower=0> N;
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int<lower=0> NS;

int<lower=0> NT;

int<lower=0> n[N];

real<lower=0> r[N];

int<lower=0> s[N];

int<lower=0> t[N];

int<lower=0> b[N];

int<lower=0> teb[N]; }

parameters {

real mu[NS];

real da[NT];

real delta[N];

real<lower=0> sdp; }

transformed parameters {

real<lower=0> r12;

real<lower=0> r14;

real<lower=0> r23;

real<lower=0> r34;

real<lower=0> r13;

real<lower=0> r24;

real md[N];

real mus[N];

real d[NT];

real ra[NT];

for (g in 2:NT) d[g] <- da[g];

for (z in 1:NT) ra[z] <- exp(d[z]+0.5);

d[1] <- 0;
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r12 <- exp(d[2]-d[1]);

r14 <- exp(d[4]-d[1]);

r23 <- exp(d[3]-d[2]);

r34 <- exp(d[4]-d[3]);

r13 <- exp(d[3]-d[1]);

r24 <- exp(d[4]-d[2]);

for (h in 1:N) {

md[h] <- d[t[h]] - d[b[h]];

mus[h] <- mu[s[h]]; } }

model {

for (i in 1:NS) mu[i] ~ normal(0,10);

for (j in 2:NT) da[j] ~ normal(0,10);

for (k in 1:N) delta[k] ~ normal(md[k],sdp);

sdp ~ normal(0, 1) T[0.00001,];

for (l in 1:N)

increment_log_prob(r[l] * log(n[l]*exp(mus[l] + delta[l] * teb[l]))

-n[l]*exp(mus[l] + delta[l] * teb[l])); } "

fit = stan(model_code = code, data=data,iter=20000, chains=4,

cores = getOption("mc.cores", 4),warmup = 10000,

pars = c("r12","r14","r23","r34","r13","r24","ra"))

ss.sim = matrix(NA, 6, 4)

rank.matrix = matrix(NA,10000,NT)

best = matrix(NA,10000,NT)

##extract posterior samples

post = extract(fit)

or12 = post$r12

or14 = post$r14
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or23 = post$r23

or34 = post$r34

or13 = post$r13

or24 = post$r24

ra = post$ra

rank.re = matrix(NA,4,NT)

for (l in 1:10000)

{ rank.matrix[l,] = 5-rank(ra[l,])

best[l,] = (rank.matrix[l,]==1)*1 }

ss.sim[1,] = c(mean(or12),

quantile(or12,0.025),quantile(or12,0.975),R.AB)

ss.sim[2,] = c(mean(or14),

quantile(or14,0.025),quantile(or14,0.975),R.AD)

ss.sim[3,] = c(mean(or23),

quantile(or23,0.025),quantile(or23,0.975),R.BC)

ss.sim[4,] = c(mean(or34),

quantile(or34,0.025),quantile(or34,0.975),R.CD)

ss.sim[5,] = c(mean(or13),

quantile(or13,0.025),quantile(or13,0.975),R.AC)

ss.sim[6,] = c(mean(or24),

quantile(or24,0.025),quantile(or24,0.975),R.BD)

df = as.data.frame(ss.sim)

simout[[i]] <- t(apply(df, 1, function(row){ c(

est = unname( row[1] ),

cover = unname( row[2] <= row[4] && row[4] <= row[3] ),

length = unname( row[3] - row[2] ) ) }))

rank.re[1,] = colMeans(best)
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rank.re[2,] = colMeans(rank.matrix)

rank.re[3,] = c(quantile(rank.matrix[,1],0.025),

quantile(rank.matrix[,2],0.025),quantile(rank.matrix[,3],0.025),

quantile(rank.matrix[,4],0.025))

rank.re[4,] = c(quantile(rank.matrix[,1],0.975),

quantile(rank.matrix[,2],0.975),quantile(rank.matrix[,3],0.975),

quantile(rank.matrix[,4],0.975))

simout.rank[[i]] = rank.re }

simTogether <- arrange(melt(simout), Var1, Var2)

simTogether <- ddply(simTogether, c("Var1", "Var2"), function(df){

mean(df$value) })

## format and return

simTogether <- dcast(simTogether, Var1 ~ Var2 , value.var = "V1")

row.names(simTogether)<-c("1vs2","1vs4","2vs3","3vs4","1vs3","2vs4")

simTogether <- simTogether[,-1]

simTogether.rank <- arrange(melt(simout.rank), Var1, Var2)

simTogether.rank <- ddply(simTogether.rank, c("Var1", "Var2"),

function(df){ mean(df$value) })

simTogether.rank <- dcast(simTogether.rank,Var1~Var2,value.var="V1")

row.names(simTogether.rank) <- c("Best Prob","rank",

"lower rank","upper rank")

simTogether.rank <- simTogether.rank[,-1]

list(simTogether, simTogether.rank) }
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APPENDIX C

R and BUGS Programs for Network Meta-analysis with Misclassification

In this appendix, we provide R and BUGS programs that implemented our

model in Chapter Four. As we discussed in Chapter Five, only star geometry was

considered here, but the other geometries could be extended by slightly modifying

these programs.

################parameters in the R function########################

##m: number of simulation

##mu: baseline log odds ratio

##N: number of outcomes

##NS: number of studies (N/2)

##NT: number of treatments

##n: sample size in each study

##d.AB, d.AC, d.AD: log odds ratio

##sig: standard deviation of study

##se, sp: sensitivity and specificity

metamisc = function(m,N,NS,NT,n,mu,d.AB,d.AC,d.AD,se,sp,seed,sig)

{ set.seed(seed)

simout <- as.list(rep(NA, m))

simout.rank = as.list(rep(NA,m))

##odds ratios

OR.BC=exp(d.AC-d.AB)

OR.BD=exp(d.AD-d.AB)

OR.CD=exp(d.AD-d.AC)

OR.AB=exp(d.AB)
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OR.AC=exp(d.AC)

OR.AD=exp(d.AD)

##design matrix for star geometry

x<-matrix(NA, N, NT)

x[,1]=1

x[,2]=0

x[,3]=0

x[,4]=0

x[2,2]=1

x[4,2]=1

x[6,2]=1

x[8,2]=1

x[10,2]=1

x[12,3]=1

x[14,3]=1

x[16,3]=1

x[18,3]=1

x[20,3]=1

x[22,4]=1

x[24,4]=1

x[26,4]=1

x[28,4]=1

x[30,4]=1

n=rep(n, N)

##data generation

for (i in 1:m)

{ delta.AB = rnorm(NS, d.AB, sig)
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delta.AC = rnorm(NS, d.AC, sig)

delta.AD = rnorm(NS, d.AD, sig)

s=c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,

11,11,12,12,13,13,14,14,15,15)

t=c(1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,

1,4,1,4,1,4,1,4,1,4)

b=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1)

teb = 1 - 1*(t==b)

r = vector("numeric", N)

p = vector("numeric", N)

p.t = vector("numeric", N)

for(j in 1:N)

{ p[j] = 1/(1+exp(-(x[j,] %*%

c(mu, delta.AB[s[j]], delta.AC[s[j]], delta.AD[s[j]]))))

##incorporate se and sp

p.t[j] = p[j]*se+(1-p[j])*(1-sp)

r[j] = rbinom(1,n[j],p.t[j]) }

parameters <- list("or", "sd")

data <- list("N", "NS", "NT", "n", "r", "s", "t", "b", "se", "sp")

inits <- list(d=c(NA,0,0,0),mu=rep(0,15), sd=.6)

## call WinBUGS in R

ss.sim <- bugs(

data = data, inits = list(inits),

parameters.to.save = parameters,

model.file = "binom misc.txt",

n.chains = 1, n.burnin = 20000, n.iter = 500000,

115



n.thin = 25, bugs.directory="c:/WinBUGS/WinBUGS14/")

## collect the results from the WinBUGS

df <- as.data.frame(ss.sim$summary)

df$should <- c(OR.AB, OR.AC, OR.AD, OR.BC,OR.BD, OR.CD, sig)

simout[[i]] <- t(apply(df, 1, function(row){ c(

est = unname( row["mean"] ),

cover = unname( row["2.5%"] <= row["should"]

&& row["should"] <= row["97.5%"] ),

length = unname( row["97.5%"] - row["2.5%"] ) ) })) }

##format and return

simTogether <- arrange(melt(simout), Var1, Var2)

simTogether <- ddply(simTogether, c("Var1", "Var2"),

function(df){mean(df$value) })

simTogether <- dcast(simTogether, Var1 ~ Var2 , value.var = "V1")

row.names(simTogether) <- simTogether$Var1

simTogether <- simTogether[,-1]

simTogether }

#####WinBUGS code for network meta-analysis with misclassification#####

model{

for(i in 1:N) {

logit(p.f[i])<-mu[s[i]]+ delta[i] * (1-equals(t[i],b[i]))

p[i] <- p.f[i]*se + (1-p.f[i])*(1-sp)

r[i]~dbin(p[i],n[i])

delta[i] ~ dnorm(md[i],tau)

md[i] <- d[t[i]] - d[b[i]]

rhat[i] <- p[i] * n[i]

dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i]))+
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(n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i]))) }

for(j in 1:NS){ mu[j]~dnorm(0,.01) }

totresdev <- sum(dev[])

d[1]<-0

for (k in 2:NT) {d[k] ~ dnorm(0,.01) }

sd~dnorm(0,4)I(0.001,)

tau<-1/pow(sd,2)

for (c in 1:(NT-1))

{for (k in (c+1):NT)

{ lor[c,k] <- d[k] - d[c]

log(or[c,k]) <- lor[c,k] } } }
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