
  

Super Symmetry 
Peter M. Maurer 

Dept. of Computer Science 
Baylor University 

Waco, Texas 76798-7356 
 Waco, Texas 76798 

Abstract – Super symmetry is a type of matrix-based 
symmetry that extends the concept of total symmetry. Super 
symmetric functions are “even more symmetric” than totally 
symmetric functions. Even if a function is not super symmetric, 
the super symmetric transpose matrices can be used to detect 
partial super symmetries. These partial symmetries can be mixed 
arbitrarily with ordinary symmetric variable pairs to create large 
sets of mutually symmetric variables. In addition, one can detect 
subsets of super symmetric inputs, which are distinct from 
partial super symmetries. Super symmetry allows many new 
types of Boolean function symmetry to be detected and exploited. 

1 Introduction 
A symmetric Boolean function is a function of n  variables, 

whose input variables can be rearranged in some fashion without 
changing the output of the function. An example is abc d , 
(multiplication is AND, and addition is OR) in which the variables a
, b  and c  can be rearranged arbitrarily. 

This concept can be made more precise using permutations [1, 
2]. Let f  be an n-input Boolean function and 1 2{ , ,..., }nX x x x  be 

its set of input variables. If p  is a permutation on the set X  that 

leaves f  unchanged, then f  is symmetric and is said to be 

invariant with respect to p . Also, f  and p  are said to be 
compatible. The set of all permutations of X  is called the symmetric 
group of X , and is designated XS . The symmetry group, fG , of an 

n-input Boolean function, f , is the set of all permutations Xp S  

that are compatible with f . Because the identity permutation, which 

leaves X  unchanged, is compatible with every function, fG  is 

always non-empty. A function, f , is said to be symmetric if fG  

contains more than one element. 
Symmetric Boolean functions were first studied by Shannon [3], 

who gave us Shannon’s theorem, the basis of most symmetry 
detection algorithms. Shannon’s theorem is based on the cofactors of 
a function. The cofactors of a Boolean function, f , are functions that 

are obtained by setting one or more input variables of f  to constant 

values. For example, bc d  is the cofactor obtained by setting a  to 
1 in the function abc d . 

Cofactors can be designated in several different ways. One can 
specify the variable and the value in a subscript, as in 1af  . If there is 

a natural ordering to the variables, one can specify a list of variable 
values such as 10xx xf , where the x  represents a variable that has not 

been replaced. Most often, when the variables in question are 
understood, we simply use lists of values as in 0f , 1f  or 101f . 

Shannon’s theorem states that two input variables, a  and b , of 
a function f  are symmetric variable pairs if and only if 01 10f f , 

where the cofactors are taken with respect to a  and b . A symmetric 
variable pair is a pair of variables that can be exchanged in arbitrary 

fashion without altering the output of the function. Symmetric 
variable pairs are transitive in the sense that if ( , )a b  is a symmetric 

variable pair, and ( , )b c , is a symmetric variable pair, then so is 

( , )a c . 
Since [3], there have been much more work on detecting and 

exploiting symmetric functions.[4-24]. Symmetries can be broken 
into three broad categories, total symmetry which allows the inputs of 
a function to be permuted arbitrarily, partial symmetry, which allows 
one or more subsets of inputs to be permuted arbitrarily, and strong 
symmetry, which includes everything else. Some subclasses of strong 
symmetry, such as hierarchical symmetry [16], and rotational 
symmetry [17] have been identified and studied. An algorithm for 
identifying any type of strong symmetry has been described in [25] 

2 Super Symmetry 
As pointed out in [26], permutation-based symmetry can be 

recast in terms of matrices over GF(2). If one views an n-input 
function as a function of a single n-element vector, then traditional 
symmetry can be defined in terms of permutation matrices on these 
vectors. Instead of permutations, one uses permutation matrices, 
which are matrices that have a single 1 in each row and in each 
column. A permutation matrix permutes the elements of a vector 
without changing them. Every permutation is a row-permutation of 
the identity matrix. That is, one can obtain any permutation matrix p  
by permuting the rows of the identity matrix, I . 

There is a one-to-one correspondence between permutations and 
permutations, in fact, the set of all permutations on a set of n  
elements, nS , and the set of all n n  permutation matrices, nSR , are 

mathematical groups that are isomorphic to one another. Since the 
class of n n  non-singular matrices is much larger than the class of 
permutations on n  input variables, matrices can be used to define a 
much larger class of symmetries than permutations. 

In particular, matrices can be used to define conjugate 
symmetry. Let nSR  be the set of all n n  permutation matrices, 

(those matrices that have a single 1 in each row and each column) 
and let M  be an arbitrary non-singular n n  matrix. Then the 

matrices in the set  1 | nG M NM M SR   define a new type of 

symmetry called conjugate symmetry. Conjugate symmetry cannot be 
defined directly in terms of permutations and is a type of matrix-
based symmetry. 

Super symmetry is another type of matrix-based symmetry that 
extends the concept of total symmetry. We start with nSR , the n n  

permutation matrices. Every matrix nM SR  is both a row-

permutation and a column-permutation of the identity matrix. For 
example, if 4n  , then every element of 4SR  can be constructed by 

arranging the rows (or columns) 0001, 0010, 0100, and 1000 in some 
order. We can expand nSR  by adding an 1stn   row containing all 

ones to the existing set of n rows. Let nHR  be the set of all matrices 



  

that can be formed from these 1n   rows, without choosing 
duplicates. nHR  is closed under matrix multiplication, and is 

isomorphic to the symmetric group 1nS  . Figure 1 shows an example 

with 3n  . By the same token, we can start with the columns 
containing a single 1, and add a column of all 1’s. The set of all 
matrices that can be formed from these columns, without choosing 
duplicate columns, is nVR . nVR  is also closed under matrix 

multiplication, and is isomorphic to 1nS  . If 2n   then n nHR VR . 

We call nHR  and nVR  the super symmetric groups of degree n. 

 

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

      
      
      
      
      
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

      
      
      
      
      
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

      
      
      
      
      
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

      
      
      
      
      
 

Figure 1. The Super Symmetric Group 3HR . 

 
Before we can establish the claims made above, we must first 

prove that the matrices of nHR  and nVR  are non-singular. If this is 

not true, then the preceding claims cannot be established. 
 
Theorem 1. Every element of nHR  and nVR  is non-singular. 

Proof. Let nM HR . If M  is singular then some subset of the 

rows of M  must sum to zero. If there is no row of all ones, then is a 
permutation and non-singular. Let us assume that row i  of M  is all 
ones. Other than row i , there are 1n   rows of M , each containing 
a single 1. These rows are part of some permutation matrix, and 
therefore, no subset of them can sum to zero. Other than the 1’s in 
row i , M  contains exactly 1n   1’s. Therefore, there must be one 
column of M  that contains a single 1, that in row i . No sum of rows 
that includes row i  can have a zero in column i , because every 
other row has a zero in this column. Therefore no subset of the rows 
of M  sums to zero, and M  is non-singular. Now consider nN VR
. By a similar argument, we can show that no subset of the columns 
of N  can sum to zero, therefore N  is nonsingular.■ 

 
Now we need to prove our claims. 
 
Theorem 2: nHR  and nVR  are closed under matrix 

multiplication, and are isomorphic to 1nS  . 

Proof: Let , nM N HR  and consider the form of K M N  . 

Because M  and N  are nonsingular, K  must be nonsingular. If no 
row of M  is all ones, then M  is a permutation matrix. In this case, 
K  is a row-permutation of N , and nK HR . So let us assume that 

row i  of M  is all 1’s. Now, suppose N  is a permutation matrix. 
Because every row of N  has a single 1, every row, except row i , of 
K  has a single 1. Row i  of K  is the sum of all rows of N , which 
is a row of all 1’s. Therefore nK HR . If N  is not a permutation 

matrix, then it must have a row, j  of all 1’s. In this case, the rows of 
K , except for row i  must be a permutation of the rows of N , not 
including row i . Row i  of K  must be the sum of the rows of N . 
Every column of N , except one, must have exactly 2 ones. The 
remaining column must have a single one. Therefore the sum of the 
rows of N  must contain a single one in some position, and zeros 
elsewhere. Thus nK HR , and nHR  is closed under multiplication. 

A similar argument shows that nVR  is also closed under 

multiplication. To show that nHR  is isomorphic to 1nS  , it suffices 

to show that nHR  is the set of permutations of a set of size 1n  . 

This follows from the fact that every matrix in nHR  is a permutation 

of the 1n   rows used to form the elements of nHR , each element, 

M , of nHR  has n  rows from the set of 1n   rows. The missing 

row is always unique, and we can imagine it as being appended as the 
1stn   row of M . Thus nHR  is isomorphic to 1nS  . A similar 

argument on the columns of the elements of nVR  shows that nVR  is 

also isomorphic to 1nS  .■ 

 
Any finite set of matrices that is closed under multiplication is a 

group. Because nHR  and nVR  are groups, they can serve as the 

symmetry group of certain functions. We say that a function f  is 

super symmetric if either nHR  or nVR  leaves f  invariant. If we 

wish to be more specific, we will call f  H-super symmetric or V-
super symmetric. 

3 Boolean Orbits 
Let G  be a group of n n  matrices. Two n-element vectors v  

and w  are said to be in the same Boolean orbit of G  if there is a 
matrix M G  such that v M w  . Being in the same Boolean orbit 
is an equivalence relation that breaks the set of all n-element vectors 
into a collection of disjoint subsets. The Boolean orbits of a group 
can be used to determine whether a group G  is the compatible with a 
function f , because f  is compatible with G  if and only if f  

maps every element of each Boolean orbit of G  to the same value. 
For example, the symmetric group 3S  has the Boolean orbits 

{(0,0,0)} , {(0,0,1),(0,1,0),(1,0,0)} , {(0,1,1),(1,0,1),(1,1,0)}  and 

{(1,1,1)} . A 3-input function f  is totally symmetric if and only if f  

maps the three vectors {(0,0,1),(0,1,0),(1,0,0)}  to the same value, 

and the three vectors {(0,1,1),(1,0,1),(1,1,0)}  to the same value. 
The Universal Symmetry Detection algorithm can detect any 

type of symmetry as long as the Boolean orbits of that symmetry are 
known. The Boolean orbits of V and H super symmetry are relatively 
easy to compute. Since every super symmetric function is also totally 
symmetric, all vectors of the same weight must be contained in a 
single orbit. The Boolean orbits of V and H symmetry can be 
obtained by combining the Boolean orbits of total symmetry. 

Let us first derive the Boolean orbits of H super symmetry. We 
will designate the set of all vectors of weight k  as kW . The sets kW  

are just the Boolean orbits of total symmetry. We will designate the 
Boolean orbits of H super symmetry as kO , where k  is the weight 



  

of the lightest vector in kO . Note that if an orbit iO  contains any 

vector of weight k , then k iW O . In particular, k kW O . Consider 

the orbit 0O . This orbit must contain a single vector, since every 

linear transformation maps the zero vector onto itself. The orbit 1O , 

contains all vectors of weight 1 and must also contain the vector of 
all 1’s. Let v  be an n-element vector of weight 1, and let nM HR . 

The vector v M  must be equal to some row of M , and must either 
be a vector of weight 1 or a vector of all 1’s. If v  is a vector of all 
1’s, and M  is a permutation matrix, then v M  is a vector of all 
1’s. If M  contains a row of all 1’s then v M  is the sum of the 
rows of M . Every column except one of M  contains exactly two 
ones. The other column contains exactly one 1. Thus the sum of the 
rows of M  is a vector of weight 1, and 1 1 nO W W  . Now consider 

the orbit 2O containing all vectors of weight 2. Let M  be any 

element of nHR . Any vector that can be formed by adding two rows 

i  and j  of M  must be an element of 2O . If rows i  and j  of M  

are both of weight 1, then their sum is of weight 2 and is already 
contained in 2O . Let us assume that one of the rows is all ones. Then 

the sum of rows i  and j  is of weight 1n   and 1 2nW O  . Now 

suppose that v  is of weight 1n  . If M  is a permutation matrix or if 
M  contains a row of all 1’s and this row corresponds to the zero 
position of v , then v M  is of weight 1n  . If M  contains a row 
of all 1’s and this row does not correspond to the zero element of v , 
then v M  is the sum of a vector of all 1’s and 2n   distinct 
vectors of weight 1. Thus v M  is a vector of weight 2, and 

2 2 1nO W W   . Continuing in this vein, we can show that any H 

super symmetry Boolean orbit, kO , is equal to 1k n kW W   , where 

k  runs from 1 through 
2

n 
  

. 

Now let us derive the Boolean orbits of V super symmetry. We 
will designate each orbit as iQ , where i  is the smallest weight of 

any element of iQ . Note that if j iW Q   then j iW Q . In 

particular, i iW Q . As before, 0Q  contains only the zero vector. 

When a vector 1( ,..., )nv a a  is multiplied by a matrix i nV VR , 

the result is 1 1 1( ,... , , ..., )i i nv a a p a a   , where p  is the parity of v . 

(i.e., p  is 1 if the number of bits in v  is odd.) If 0ia   and 0p  , 

or if 1ia   and 1p  , then v v . If 0ia   and 1p   then the 

weight of v  is one larger than that of v . If 1ia   and 0p   then 

the weight of v  is one smaller than that of v . Note that the weight 
of v  can increase only if it is odd, and can decrease only if it is even. 
Thus 1i i iQ W W   , where i  is odd, i  running from 1 to m  where 

m  is the largest odd number less than or equal to n . The other 
matrices of nVR  will not affect these orbits because they are either 

permutation matrices that do not change the weight of a vector, or 
they are permutation matrices with a single column set to ones. Such 
matrices combine a permutation of v  with parity insertion, and do 
not change the orbits described above. 

We have created a super symmetry detection module to the 
universal symmetry detector using the Boolean orbits describe above. 

4 Symmetric Variable Pairs 
Although the universal symmetry detection algorithm can detect 

super symmetry, super symmetric functions are comparatively rare. 
The same is true, of course, for totally symmetric functions. 

However, when a function is not totally symmetric, it may be 
partially symmetric, and using symmetric variable pairs, we can 
detect such partial symmetries. By the same token, we can detect 
super symmetric variable pairs and partial super symmetries. The 
super symmetric variable pairs can be mixed arbitrarily with ordinary 
symmetric variable pairs. 

Ordinary symmetric variable pairs correspond to a type of a 
permutation called a transposition. A transposition of a set, X , is a 
permutation that swaps two elements of X , leaving everything else 
fixed. In the matrix domain, a transposition corresponds to a 
transpose matrix. A transpose matrix swaps two elements of an input 
vector, leaving all other elements fixed. We designate a transpose 
matrix that swaps elements i  and j  of a vector as ,i jT . Every row, 

k , of ,i jT  except rows i  and j , is identical to row k  of the 

identity matrix. Row i  of ,i jT  has a 1 in column j  and zeros 

elsewhere. Row j  has a 1 in column i  and zeros elsewhere. Figure 
2 has several examples of transpose matrices. 

 

0 1 0

1 0 0

0 0 1

 
 
 
 
 

 

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 

 
0 0 1

0 1 0

1 0 0

 
 
 
 
 

 

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 
 
 
 
 
 

 0 1

1 0

 
 
 

 

Figure 2. Some transpose matrices. 
 
Super symmetry introduces 2n  new transpose matrices known 

as the super symmetric transpose matrices. Half of these matrices are 
taken from nHR  and half are taken from nVR . 

In permutation matrices, we consider a row containing a 1 in 
position i  and zeros elsewhere to represent the thi  input variable. 

Alternatively, we could consider a column containing a 1 in the thi  

position to represent the thi  input variable. In the super symmetric 
matrices, we consider the row of all 1’s or a column of all 1’s to 
represent an 1stn   “invisible” variable. In nHR  a super symmetric 

transpose matrix is a matrix that is identical to the identity matrix 
except for row i , which is a row of all 1’s. In nVR  a super 

symmetric transpose matrix is identical to the identity matrix except 
for column i  which is a column of all 1’s. We designate these 
matrices as iV  and iH  respectively. Figure 3 gives some examples 

of such matrices. 
 

1 0 0 0

0 1 0 0

1 1 1 1

0 0 0 1

 
 
 
 
 
 

  

1 1 1

0 1 0

0 0 1

 
 
 
 
 

  

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

 
 
 
 
 
 

  

1 1 0

0 1 0

0 1 1

 
 
 
 
 

  
1 1

0 1

 
 
 

 

Figure 3. Super Symmetric Transpose Matrices. 
 
For any ordinary transpose matrix ,i jT , the matrix is self-

inverting. That is, , ,i j i jT T I . As the Theorem 3 shows, the same is 

true for the matrices iV  and iH .  

 
Theorem 3. i iH H I  and i iVV I  for all 1 i n  . 

Proof: Since iH  is identical to the identity matrix, except for 

row i , every row of i iH H  is identical to the identity matrix, except 

for row i . Because row i  of iH  is all ones, row i  of i iH H  is the 



  

sum of the rows of iH . Every column of iH  contains exactly two 

1’s, except for column i  which contains exactly one 1. Thus the sum 
of the rows of iH  has a 1 in column i  and zeros elsewhere, and is 

equal to row i  of the identity matrix. 
Similarly, since every column k  of iV , except for column i , is 

identical to column k  of the identity matrix, every column k  of 

i iVV  is identical to column k  of the identity matrix. Because column 

i  of iV  is all ones, column i  of i iVV  is the sum of the columns of 

iV . Every row of iV , except row i  has exactly two 1’s. Row i  has 

exactly one 1. Therefore the sum of the columns of iV  has a 1 in row 

i  and zeros elsewhere, and column i  of i iVV  is identical to column 

i  of the identity matrix.■ 
 
It is convenient to think of the matrices iH  and iV  as being 

transpose matrices between ix  and the “invisible” 1stn   variable, 

1nx  . This makes the transitivity of the new matrices more obvious. 

For example, because of transitivity, a function is H super symmetric 
if it is compatible with 1,2T , 1,3T , …, 1,nT  and 1H . For V super 

symmetry, we substitute 1V  for 1H . 

Another important and useful property of the super symmetric 
transpose matrices is that the conjugate of any matrix iH  with 

another matrix jH  ( )i j  is an ordinary transpose matrix. The same 

is true for matrices iV  and jV , as the following theorem shows. 

 
Theorem 4. Suppose i j . Then 1

,j i j i jH H H T   and 
1

,j i j i jV VV T  . 

Proof: By Theorem 3, 1
j jH H   and 1

j jV V   , so 
1

j i j j i jH H H H H H   and 1
j i j j i jV VV V VV  . j iH H  has the following 

form. Since every row of jH , except row, is identical to the 

corresponding row of the identity matrix, every row, except row j  

of j iH H  is identical to the corresponding row of iH . Because row 

j  of jH  is all ones, row j  of j iH H is the sum of the rows of iH . 

Every column of iH  has exactly two 1’s, except for column i , 

which has exactly one 1. Thus row j  of j iH H  has a one in column 

i  and zeros elsewhere. Row i  of j iH H  contains all 1’s. We can use 

the structure of j iH H  to deduce the structure of j i jH H H . Because 

every row of j iH H  except rows i  and j  is identical to the 

corresponding row of the identity matrix, every row of j i jH H H , 

except rows i  and j  is identical to the corresponding row of the 
identity matrix. Because row j  has a 1 in column i  and zeros 

elsewhere, row j  of j i jH H H  is identical to row i  of jH , and has a 

1 in column i  and zeros elsewhere. Because row i  of j iH H  

contains all 1’s, row i  of j i jH H H  is the sum of the rows of jH . 

Every column of jH  has exactly two ones, except for column j  

which has exactly one 1. Therefore row i  of j i jH H H  has a 1 in 

column j  and zeros elsewhere. Therefore j i jH H H  is the transpose 

matrix ,i jT . 

Now consider the structure of i jVV . Because every column of 

jV  is identical to the corresponding column of the identity matrix, 

except for column j , every column of i jVV  is identical to the 

corresponding column of iV , except for column j . Because column 

j  of iV  is all ones, column j  of i jVV  is equal to the sum of the 

columns of iV . Every column of iV  contains exactly two 1’s, except 

for column i  which has exactly one 1. Thus column j  of i jVV  has a 

1 in row i  and zeros elsewhere. Column i  of i jVV  contains all ones. 

We can now deduce the structure of j i jV VV . Since every column of 

i jVV  except for columns i  and j , is identical to the corresponding 

column of the identity matrix, every column of j i jV VV , except for 

columns i  and j , is identical to the corresponding column of jV . 

But these columns are identical to the corresponding columns of the 
identity matrix, so every column of j i jV VV , except for columns i  and 

j , is identical to the corresponding column of the identity matrix. 

Column j  of j i jV VV  is equal to column i  of jV , which has a 1 in 

row i  and zeros elsewhere. Because column i  of i jVV  is all ones, 

column i  of j i jV VV  is the sum of the columns of jV . Every row of 

jV  has exactly two 1’s, except for row j , which has exactly one 1. 

Thus the sum of the columns of jV  has a 1 in row j  and zeros 

elsewhere. Thus j i jV VV  is the transpose matrix ,i jT .■ 

 
Let f  be an n-input function with input variables 1 2{ , ,..., }nx x x

. To determine whether f  is compatible with iH , we select some 

variable other than ix , say jx  with i j , and conditionally invert 

every variable except jx  itself with respect to jx . These conditional 

inversions can be done simultaneously using the matrix jH . We 

compute ( ) ( ( ))jf v f H v  . The function f  is compatible with iH  

if and only if ( , )i jx x  is a symmetric variable pair of f  . The 

correctness of this procedure stems from the fact that if i j  then 
1

,j i j i jH H H T  . Super symmetry can be viewed as a type of 

conjugate symmetry requiring multiple simultaneous conditional 
inversions. 

Given the same function, f , we can determine whether f  is 

compatible with iV  by selecting any input variable other than ix , say 

jx  with i j , and conditionally invert jx  with respect to every 

other variable other than jx  itself. This gives us the new function, 

( ) ( ( ))if v f V v  . The function f  is compatible with iV  if and only 

if ( , )i jx x  is a symmetric variable pair of f  . Again, the correctness 

of this procedure depends on the fact that 1
,j i j i jV VV T  . 

Because super symmetric transpose matrices can be equated 
with a type of conjugate symmetry, they can be detected and utilized 
by the hyperlinear algorithm for digital simulation [26, 27], and by 
other algorithms that detect symmetry using symmetric variable 
pairs. 

5 Sub-Symmetries 
For a Boolean function f  to possess X  symmetry in variables 

1 2{ , ,..., }kx x x  every cofactor of the form 
1... ...k nxx xa af


 must possess X  



  

symmetry. We usually do this by ensuring the symmetry relations 
exist between cofactors of the form 

1... ...ka a xx xf . It is possible for an n-

input function to be super symmetric in any proper subset of its input 
variables, and it is possible for a function to have several subsets of 
variables in which it is super symmetric. 

This is not the same as partial symmetry, because the super 
symmetric variable pairs involve all inputs of a function, while sub-
super symmetries involve only a subset of variables. It is possible to 
test a subset of variables for super symmetry, and to test the same 
subset for compatibility with the super symmetric transpose matrices 
of the sub-symmetry. This gives us many more opportunities to 
detect symmetries in a Boolean function, because there are 2 2n   

proper subsets of variables, and 
1

2

2

( 1)
2 2 1 2

2

n

i

n n
i n n





      
 

  

additional super symmetric transpose matrices. 

6 Experimental Data 
To determine the prevalence of super symmetry in real circuits, 

we tested the ISCAS 85 benchmarks for the presence of super 
symmetries. We tested for total super symmetry, for super symmetric 
variable pairs, and for sub symmetries. The results of our tests are 
given in Figure 4. These results show that super symmetries do 
indeed exist in real circuits, and are, in fact, quite numerous. The 
results for super symmetric variable pairs and for sub symmetries are 
especially encouraging. Because, in several cases, the number of 
symmetries exceeds the number of functions, it is clear that there are 
many functions that exhibit multiple sub-super symmetries and that 
there are functions that are compatible with many super symmetric 
variable pairs. 

 
Circuit Super Sym. Var. Pairs Sub-Sym. 
c432 78 213 1097 
c499 0 56 728 
c880 122 33 902 
c1355 288 44 704 
c1908 158 59 5326 
c2670 276 90 3145 
c3540 710 1310 2093 
c5315 830 2313 6206 
c6288 512 528 928 
c7552 582 1660 10093 

Figure 4. Experimental Results. 
 

7 Conclusion 
The various aspects of super symmetry allow many different 

types of Boolean function symmetry to be detected and exploited. In 
addition to super symmetry itself we have partial super symmetries 
which are generated by the super symmetric transposition matrices. 
These partial symmetries can be mixed and matched in an arbitrary 
fashion with ordinary symmetric variable pairs. In addition, there are 
sub-super symmetries and partial sub-super symmetries which greatly 
expand the opportunity for detecting and exploiting symmetries in a 
Boolean function. 

What is even more exciting, super symmetry allows us to exploit 
more of the full power of matrix-based symmetry. For example, for 
4-input functions, there are 24 permutations of the inputs, but 20160 
non-singular 4 4  matrices. There are obviously many more kinds 
of matrix-based symmetry than permutation-based symmetry, and 
super symmetry is only one of these. 

We expect this work to be the basis of much more extended 
work in the future. 

8 References 
[1] D. S. Passman, Permutation Groups. New York: W. A. Benjamin, 

1968. 
[2] D. Robinson, A Course in the Theory of Groups. New York: 

Springer, 1995. 
[3] C. E. Shannon, "The synthesis of two-terminal switching 

circuits,"  Bell System Technical Journal, vol. 28, pp. 59-98, 
1949.  

[4] A. Abdollahi and M. Pedram, "Symmetry detection and Boolean 
matching utilizing a signature-based canonical form of Boolean 
functions,"  IEEE Trans.   on Computer-Aided Design, vol. 27, 
pp. 1128-1137, June, 2008.  

[5] N. N. Biswas, "On Identification of Totally Symmetric Boolean 
Functions,"  Computers, IEEE Transactions On, vol. 19, pp. 645-
648, 1970.  

[6] R. C. Born and A. K. Scidmore, "Transformation of switching 
functions to completely symmetric switching functions,"  IEEE 
Transactions on Computers, vol. 17, pp. 596-599, 1968.  

[7] J. T. Butler, G. W. Dueck, V. P. Shmerko and S. Yanuskevich, 
"Comments on “Sympathy: fast exact minimization of fixed 
polarity Reed-Muller expansion for symmetric functions”,"  IEEE 
Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vol. 19, pp. 1386-1388, 2000.  

[8] M. Chrzanowska-Jeske, "Generalized symmetric variables," in 
The 8th IEEE International Conference on Electronics, Circuits 
and Systems, 2001, pp. 1147-1150. 

[9] K. S. Chung and C. L. Liu, "Local transformation techniques for 
multi-level logic circuits utilizing circuit symmetries for power 
reduction," in Proceedings of the 1998 International Symposium 
on Low Power Electronics and Design, 1998, pp. 215-220. 

[10] P. T. Darga, K. A. Sakallah and I. L. Markov, "Faster symmetry 
discovery using sparsity of symmetries," in Proceedings of the 
45th Annual Design Automation Conference, 2008, pp. 149-154. 

[11] R. Drechsler and B. Becker, "Sympathy: Fast exact 
minimization of fixed polarity reed-muller expressions for 
symmetric functions," in European Design and Test Conference, 
1995, pp. 91-97. 

[12] Y. Hu, V. Shih, R. Majumdar and L. He, "Exploiting 
Symmetries to Speed Up SAT-Based Boolean Matching for 
Logic Synthesis of FPGAs,"  IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, pp. 
1751-1760, 2008.  

[13] B. Hu and M. Marek-sadowska, "In-place delay constrained 
power optimization using functional symmetries," in Design 
Automation and Test in Europe, 2001, pp. 377-382. 

[14] W. Ke and P. R. Menon, "Delay-testable implementations of 
symmetric functions,"  IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems, vol. 14, pp. 772-775, 
1995.  

[15] N. Kettle and A. King, "An anytime algorithm for generalized 
symmetry detection in ROBDDs,"  IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 
27, pp. 764-777, 2008.  

[16] V. N. Kravets and K. A. Sakallah, "Generalized symmetries in 
boolean functions," Advanced Computer Architecture Laboratory 
Department of Electrical Engineering and Computer Science, The 
University of Michigan, Ann Arbor, MI 48109, 2002. 

[17] J. Mohnke, P. Molitor and S. Malik, "Limits of using signatures 
for permutation independent Boolean comparison,"  Formal 
Methods Syst.  Des., vol. 21, pp. 167-191, 2002.  

[18] D. Moller, J. Mohnke and M. Weber, "Detection of symmetry of 
boolean functions represented by ROBDDs," in IEEE 
International Conference on Computer-Aided Design, 1993, pp. 
680-684. 



  

[19] J. C. Muzio, D. M. Miller and S. L. Hurst, "Multivariable 
symmetries and their detection,"  IEE Proceedings on Computers 
and Digital Techniques, vol. 130, pp. 141-148, 2008.  

[20] S. Panda, F. Somenzi and B. F. Plessier, "Symmetry detection 
and dynamic variable ordering of decision diagrams," in IEEE 
International Conference on Computer-Aided Design, 1994, pp. 
628-631. 

[21] J. Rice and J. Muzio, "Antisymmetries in the realization of 
boolean functions," in IEEE International Symposium on Circuits 
and Systems, 2002, pp. 69-72. 

[22] C. Scholl, D. Moller, P. Molitor and R. Drechsler, "BDD 
minimization using symmetries,"  IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 
18, pp. 81-100, 1999.  

[23] C. C. Tsai and M. Marek-Sadowska, "Generalized Reed-Muller 
forms as a tool to detect symmetries,"  IEEE Transactions on 
Computers, vol. 45, pp. 33-40, 1996.  

[24] K. H. Wang and J. H. Chen, "Symmetry detection for 
incompletely specified functions," in Proceedings of the 41st 
Annual Design Automation Conference, 2004, pp. 434-437. 

[25] P. Maurer, "A universal symmetry detection algorithm," Baylor 
University, 2013. 

[26] P. M. Maurer, "Conjugate Symmetry,"  Formal Methods 
Syst.  Des., vol. 38, pp. 263-288, 2011.  

[27] P. M. Maurer. Efficient event-driven simulation by exploiting 
the output observability of gate clusters. Computer-Aided Design 
of Integrated Circuits and Systems, IEEE Transactions On 
22(11), pp. 1471-1486. 2003.  
 

 


