

Super Symmetry
Peter M. Maurer

Dept. of Computer Science
Baylor University

Waco, Texas 76798-7356
 Waco, Texas 76798

Abstract – Super symmetry is a type of matrix-based
symmetry that extends the concept of total symmetry. Super
symmetric functions are “even more symmetric” than totally
symmetric functions. Even if a function is not super symmetric,
the super symmetric transpose matrices can be used to detect
partial super symmetries. These partial symmetries can be mixed
arbitrarily with ordinary symmetric variable pairs to create large
sets of mutually symmetric variables. In addition, one can detect
subsets of super symmetric inputs, which are distinct from
partial super symmetries. Super symmetry allows many new
types of Boolean function symmetry to be detected and exploited.

1 Introduction
A symmetric Boolean function is a function of n variables,

whose input variables can be rearranged in some fashion without
changing the output of the function. An example is abc d ,
(multiplication is AND, and addition is OR) in which the variables a
, b and c can be rearranged arbitrarily.

This concept can be made more precise using permutations [1,
2]. Let f be an n-input Boolean function and 1 2{ , ,..., }nX x x x be

its set of input variables. If p is a permutation on the set X that

leaves f unchanged, then f is symmetric and is said to be

invariant with respect to p . Also, f and p are said to be
compatible. The set of all permutations of X is called the symmetric
group of X , and is designated XS . The symmetry group, fG , of an

n-input Boolean function, f , is the set of all permutations Xp S

that are compatible with f . Because the identity permutation, which

leaves X unchanged, is compatible with every function, fG is

always non-empty. A function, f , is said to be symmetric if fG

contains more than one element.
Symmetric Boolean functions were first studied by Shannon [3],

who gave us Shannon’s theorem, the basis of most symmetry
detection algorithms. Shannon’s theorem is based on the cofactors of
a function. The cofactors of a Boolean function, f , are functions that

are obtained by setting one or more input variables of f to constant

values. For example, bc d is the cofactor obtained by setting a to
1 in the function abc d .

Cofactors can be designated in several different ways. One can
specify the variable and the value in a subscript, as in 1af  . If there is

a natural ordering to the variables, one can specify a list of variable
values such as 10xx xf , where the x represents a variable that has not

been replaced. Most often, when the variables in question are
understood, we simply use lists of values as in 0f , 1f or 101f .

Shannon’s theorem states that two input variables, a and b , of
a function f are symmetric variable pairs if and only if 01 10f f ,

where the cofactors are taken with respect to a and b . A symmetric
variable pair is a pair of variables that can be exchanged in arbitrary

fashion without altering the output of the function. Symmetric
variable pairs are transitive in the sense that if (,)a b is a symmetric

variable pair, and (,)b c , is a symmetric variable pair, then so is

(,)a c .
Since [3], there have been much more work on detecting and

exploiting symmetric functions.[4-24]. Symmetries can be broken
into three broad categories, total symmetry which allows the inputs of
a function to be permuted arbitrarily, partial symmetry, which allows
one or more subsets of inputs to be permuted arbitrarily, and strong
symmetry, which includes everything else. Some subclasses of strong
symmetry, such as hierarchical symmetry [16], and rotational
symmetry [17] have been identified and studied. An algorithm for
identifying any type of strong symmetry has been described in [25]

2 Super Symmetry
As pointed out in [26], permutation-based symmetry can be

recast in terms of matrices over GF(2). If one views an n-input
function as a function of a single n-element vector, then traditional
symmetry can be defined in terms of permutation matrices on these
vectors. Instead of permutations, one uses permutation matrices,
which are matrices that have a single 1 in each row and in each
column. A permutation matrix permutes the elements of a vector
without changing them. Every permutation is a row-permutation of
the identity matrix. That is, one can obtain any permutation matrix p
by permuting the rows of the identity matrix, I .

There is a one-to-one correspondence between permutations and
permutations, in fact, the set of all permutations on a set of n
elements, nS , and the set of all n n permutation matrices, nSR , are

mathematical groups that are isomorphic to one another. Since the
class of n n non-singular matrices is much larger than the class of
permutations on n input variables, matrices can be used to define a
much larger class of symmetries than permutations.

In particular, matrices can be used to define conjugate
symmetry. Let nSR be the set of all n n permutation matrices,

(those matrices that have a single 1 in each row and each column)
and let M be an arbitrary non-singular n n matrix. Then the

matrices in the set  1 | nG M NM M SR  define a new type of

symmetry called conjugate symmetry. Conjugate symmetry cannot be
defined directly in terms of permutations and is a type of matrix-
based symmetry.

Super symmetry is another type of matrix-based symmetry that
extends the concept of total symmetry. We start with nSR , the n n

permutation matrices. Every matrix nM SR is both a row-

permutation and a column-permutation of the identity matrix. For
example, if 4n  , then every element of 4SR can be constructed by

arranging the rows (or columns) 0001, 0010, 0100, and 1000 in some
order. We can expand nSR by adding an 1stn  row containing all

ones to the existing set of n rows. Let nHR be the set of all matrices

that can be formed from these 1n  rows, without choosing
duplicates. nHR is closed under matrix multiplication, and is

isomorphic to the symmetric group 1nS  . Figure 1 shows an example

with 3n  . By the same token, we can start with the columns
containing a single 1, and add a column of all 1’s. The set of all
matrices that can be formed from these columns, without choosing
duplicate columns, is nVR . nVR is also closed under matrix

multiplication, and is isomorphic to 1nS  . If 2n  then n nHR VR .

We call nHR and nVR the super symmetric groups of degree n.

1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

      
      
      
      
      
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

      
      
      
      
      
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

      
      
      
      
      
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

      
      
      
      
      

Figure 1. The Super Symmetric Group 3HR .

Before we can establish the claims made above, we must first

prove that the matrices of nHR and nVR are non-singular. If this is

not true, then the preceding claims cannot be established.

Theorem 1. Every element of nHR and nVR is non-singular.

Proof. Let nM HR . If M is singular then some subset of the

rows of M must sum to zero. If there is no row of all ones, then is a
permutation and non-singular. Let us assume that row i of M is all
ones. Other than row i , there are 1n  rows of M , each containing
a single 1. These rows are part of some permutation matrix, and
therefore, no subset of them can sum to zero. Other than the 1’s in
row i , M contains exactly 1n  1’s. Therefore, there must be one
column of M that contains a single 1, that in row i . No sum of rows
that includes row i can have a zero in column i , because every
other row has a zero in this column. Therefore no subset of the rows
of M sums to zero, and M is non-singular. Now consider nN VR
. By a similar argument, we can show that no subset of the columns
of N can sum to zero, therefore N is nonsingular.■

Now we need to prove our claims.

Theorem 2: nHR and nVR are closed under matrix

multiplication, and are isomorphic to 1nS  .

Proof: Let , nM N HR and consider the form of K M N  .

Because M and N are nonsingular, K must be nonsingular. If no
row of M is all ones, then M is a permutation matrix. In this case,
K is a row-permutation of N , and nK HR . So let us assume that

row i of M is all 1’s. Now, suppose N is a permutation matrix.
Because every row of N has a single 1, every row, except row i , of
K has a single 1. Row i of K is the sum of all rows of N , which
is a row of all 1’s. Therefore nK HR . If N is not a permutation

matrix, then it must have a row, j of all 1’s. In this case, the rows of
K , except for row i must be a permutation of the rows of N , not
including row i . Row i of K must be the sum of the rows of N .
Every column of N , except one, must have exactly 2 ones. The
remaining column must have a single one. Therefore the sum of the
rows of N must contain a single one in some position, and zeros
elsewhere. Thus nK HR , and nHR is closed under multiplication.

A similar argument shows that nVR is also closed under

multiplication. To show that nHR is isomorphic to 1nS  , it suffices

to show that nHR is the set of permutations of a set of size 1n  .

This follows from the fact that every matrix in nHR is a permutation

of the 1n  rows used to form the elements of nHR , each element,

M , of nHR has n rows from the set of 1n  rows. The missing

row is always unique, and we can imagine it as being appended as the
1stn  row of M . Thus nHR is isomorphic to 1nS  . A similar

argument on the columns of the elements of nVR shows that nVR is

also isomorphic to 1nS  .■

Any finite set of matrices that is closed under multiplication is a

group. Because nHR and nVR are groups, they can serve as the

symmetry group of certain functions. We say that a function f is

super symmetric if either nHR or nVR leaves f invariant. If we

wish to be more specific, we will call f H-super symmetric or V-
super symmetric.

3 Boolean Orbits
Let G be a group of n n matrices. Two n-element vectors v

and w are said to be in the same Boolean orbit of G if there is a
matrix M G such that v M w  . Being in the same Boolean orbit
is an equivalence relation that breaks the set of all n-element vectors
into a collection of disjoint subsets. The Boolean orbits of a group
can be used to determine whether a group G is the compatible with a
function f , because f is compatible with G if and only if f

maps every element of each Boolean orbit of G to the same value.
For example, the symmetric group 3S has the Boolean orbits

{(0,0,0)} , {(0,0,1),(0,1,0),(1,0,0)} , {(0,1,1),(1,0,1),(1,1,0)} and

{(1,1,1)} . A 3-input function f is totally symmetric if and only if f

maps the three vectors {(0,0,1),(0,1,0),(1,0,0)} to the same value,

and the three vectors {(0,1,1),(1,0,1),(1,1,0)} to the same value.
The Universal Symmetry Detection algorithm can detect any

type of symmetry as long as the Boolean orbits of that symmetry are
known. The Boolean orbits of V and H super symmetry are relatively
easy to compute. Since every super symmetric function is also totally
symmetric, all vectors of the same weight must be contained in a
single orbit. The Boolean orbits of V and H symmetry can be
obtained by combining the Boolean orbits of total symmetry.

Let us first derive the Boolean orbits of H super symmetry. We
will designate the set of all vectors of weight k as kW . The sets kW

are just the Boolean orbits of total symmetry. We will designate the
Boolean orbits of H super symmetry as kO , where k is the weight

of the lightest vector in kO . Note that if an orbit iO contains any

vector of weight k , then k iW O . In particular, k kW O . Consider

the orbit 0O . This orbit must contain a single vector, since every

linear transformation maps the zero vector onto itself. The orbit 1O ,

contains all vectors of weight 1 and must also contain the vector of
all 1’s. Let v be an n-element vector of weight 1, and let nM HR .

The vector v M must be equal to some row of M , and must either
be a vector of weight 1 or a vector of all 1’s. If v is a vector of all
1’s, and M is a permutation matrix, then v M is a vector of all
1’s. If M contains a row of all 1’s then v M is the sum of the
rows of M . Every column except one of M contains exactly two
ones. The other column contains exactly one 1. Thus the sum of the
rows of M is a vector of weight 1, and 1 1 nO W W  . Now consider

the orbit 2O containing all vectors of weight 2. Let M be any

element of nHR . Any vector that can be formed by adding two rows

i and j of M must be an element of 2O . If rows i and j of M

are both of weight 1, then their sum is of weight 2 and is already
contained in 2O . Let us assume that one of the rows is all ones. Then

the sum of rows i and j is of weight 1n  and 1 2nW O  . Now

suppose that v is of weight 1n  . If M is a permutation matrix or if
M contains a row of all 1’s and this row corresponds to the zero
position of v , then v M is of weight 1n  . If M contains a row
of all 1’s and this row does not correspond to the zero element of v ,
then v M is the sum of a vector of all 1’s and 2n  distinct
vectors of weight 1. Thus v M is a vector of weight 2, and

2 2 1nO W W   . Continuing in this vein, we can show that any H

super symmetry Boolean orbit, kO , is equal to 1k n kW W   , where

k runs from 1 through
2

n 
  

.

Now let us derive the Boolean orbits of V super symmetry. We
will designate each orbit as iQ , where i is the smallest weight of

any element of iQ . Note that if j iW Q  then j iW Q . In

particular, i iW Q . As before, 0Q contains only the zero vector.

When a vector 1(,...,)nv a a is multiplied by a matrix i nV VR ,

the result is 1 1 1(,... , , ...,)i i nv a a p a a   , where p is the parity of v .

(i.e., p is 1 if the number of bits in v is odd.) If 0ia  and 0p  ,

or if 1ia  and 1p  , then v v . If 0ia  and 1p  then the

weight of v is one larger than that of v . If 1ia  and 0p  then

the weight of v is one smaller than that of v . Note that the weight
of v can increase only if it is odd, and can decrease only if it is even.
Thus 1i i iQ W W   , where i is odd, i running from 1 to m where

m is the largest odd number less than or equal to n . The other
matrices of nVR will not affect these orbits because they are either

permutation matrices that do not change the weight of a vector, or
they are permutation matrices with a single column set to ones. Such
matrices combine a permutation of v with parity insertion, and do
not change the orbits described above.

We have created a super symmetry detection module to the
universal symmetry detector using the Boolean orbits describe above.

4 Symmetric Variable Pairs
Although the universal symmetry detection algorithm can detect

super symmetry, super symmetric functions are comparatively rare.
The same is true, of course, for totally symmetric functions.

However, when a function is not totally symmetric, it may be
partially symmetric, and using symmetric variable pairs, we can
detect such partial symmetries. By the same token, we can detect
super symmetric variable pairs and partial super symmetries. The
super symmetric variable pairs can be mixed arbitrarily with ordinary
symmetric variable pairs.

Ordinary symmetric variable pairs correspond to a type of a
permutation called a transposition. A transposition of a set, X , is a
permutation that swaps two elements of X , leaving everything else
fixed. In the matrix domain, a transposition corresponds to a
transpose matrix. A transpose matrix swaps two elements of an input
vector, leaving all other elements fixed. We designate a transpose
matrix that swaps elements i and j of a vector as ,i jT . Every row,

k , of ,i jT except rows i and j , is identical to row k of the

identity matrix. Row i of ,i jT has a 1 in column j and zeros

elsewhere. Row j has a 1 in column i and zeros elsewhere. Figure
2 has several examples of transpose matrices.

0 1 0

1 0 0

0 0 1

 
 
 
 
 

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 
 

0 0 1

0 1 0

1 0 0

 
 
 
 
 

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 
 
 
 
 
 

 0 1

1 0

 
 
 

Figure 2. Some transpose matrices.

Super symmetry introduces 2n new transpose matrices known

as the super symmetric transpose matrices. Half of these matrices are
taken from nHR and half are taken from nVR .

In permutation matrices, we consider a row containing a 1 in
position i and zeros elsewhere to represent the thi input variable.

Alternatively, we could consider a column containing a 1 in the thi

position to represent the thi input variable. In the super symmetric
matrices, we consider the row of all 1’s or a column of all 1’s to
represent an 1stn  “invisible” variable. In nHR a super symmetric

transpose matrix is a matrix that is identical to the identity matrix
except for row i , which is a row of all 1’s. In nVR a super

symmetric transpose matrix is identical to the identity matrix except
for column i which is a column of all 1’s. We designate these
matrices as iV and iH respectively. Figure 3 gives some examples

of such matrices.

1 0 0 0

0 1 0 0

1 1 1 1

0 0 0 1

 
 
 
 
 
 

1 1 1

0 1 0

0 0 1

 
 
 
 
 

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

 
 
 
 
 
 

1 1 0

0 1 0

0 1 1

 
 
 
 
 

1 1

0 1

 
 
 

Figure 3. Super Symmetric Transpose Matrices.

For any ordinary transpose matrix ,i jT , the matrix is self-

inverting. That is, , ,i j i jT T I . As the Theorem 3 shows, the same is

true for the matrices iV and iH .

Theorem 3. i iH H I and i iVV I for all 1 i n  .

Proof: Since iH is identical to the identity matrix, except for

row i , every row of i iH H is identical to the identity matrix, except

for row i . Because row i of iH is all ones, row i of i iH H is the

sum of the rows of iH . Every column of iH contains exactly two

1’s, except for column i which contains exactly one 1. Thus the sum
of the rows of iH has a 1 in column i and zeros elsewhere, and is

equal to row i of the identity matrix.
Similarly, since every column k of iV , except for column i , is

identical to column k of the identity matrix, every column k of

i iVV is identical to column k of the identity matrix. Because column

i of iV is all ones, column i of i iVV is the sum of the columns of

iV . Every row of iV , except row i has exactly two 1’s. Row i has

exactly one 1. Therefore the sum of the columns of iV has a 1 in row

i and zeros elsewhere, and column i of i iVV is identical to column

i of the identity matrix.■

It is convenient to think of the matrices iH and iV as being

transpose matrices between ix and the “invisible” 1stn  variable,

1nx  . This makes the transitivity of the new matrices more obvious.

For example, because of transitivity, a function is H super symmetric
if it is compatible with 1,2T , 1,3T , …, 1,nT and 1H . For V super

symmetry, we substitute 1V for 1H .

Another important and useful property of the super symmetric
transpose matrices is that the conjugate of any matrix iH with

another matrix jH ()i j is an ordinary transpose matrix. The same

is true for matrices iV and jV , as the following theorem shows.

Theorem 4. Suppose i j . Then 1

,j i j i jH H H T  and
1

,j i j i jV VV T  .

Proof: By Theorem 3, 1
j jH H  and 1

j jV V  , so
1

j i j j i jH H H H H H  and 1
j i j j i jV VV V VV  . j iH H has the following

form. Since every row of jH , except row, is identical to the

corresponding row of the identity matrix, every row, except row j

of j iH H is identical to the corresponding row of iH . Because row

j of jH is all ones, row j of j iH H is the sum of the rows of iH .

Every column of iH has exactly two 1’s, except for column i ,

which has exactly one 1. Thus row j of j iH H has a one in column

i and zeros elsewhere. Row i of j iH H contains all 1’s. We can use

the structure of j iH H to deduce the structure of j i jH H H . Because

every row of j iH H except rows i and j is identical to the

corresponding row of the identity matrix, every row of j i jH H H ,

except rows i and j is identical to the corresponding row of the
identity matrix. Because row j has a 1 in column i and zeros

elsewhere, row j of j i jH H H is identical to row i of jH , and has a

1 in column i and zeros elsewhere. Because row i of j iH H

contains all 1’s, row i of j i jH H H is the sum of the rows of jH .

Every column of jH has exactly two ones, except for column j

which has exactly one 1. Therefore row i of j i jH H H has a 1 in

column j and zeros elsewhere. Therefore j i jH H H is the transpose

matrix ,i jT .

Now consider the structure of i jVV . Because every column of

jV is identical to the corresponding column of the identity matrix,

except for column j , every column of i jVV is identical to the

corresponding column of iV , except for column j . Because column

j of iV is all ones, column j of i jVV is equal to the sum of the

columns of iV . Every column of iV contains exactly two 1’s, except

for column i which has exactly one 1. Thus column j of i jVV has a

1 in row i and zeros elsewhere. Column i of i jVV contains all ones.

We can now deduce the structure of j i jV VV . Since every column of

i jVV except for columns i and j , is identical to the corresponding

column of the identity matrix, every column of j i jV VV , except for

columns i and j , is identical to the corresponding column of jV .

But these columns are identical to the corresponding columns of the
identity matrix, so every column of j i jV VV , except for columns i and

j , is identical to the corresponding column of the identity matrix.

Column j of j i jV VV is equal to column i of jV , which has a 1 in

row i and zeros elsewhere. Because column i of i jVV is all ones,

column i of j i jV VV is the sum of the columns of jV . Every row of

jV has exactly two 1’s, except for row j , which has exactly one 1.

Thus the sum of the columns of jV has a 1 in row j and zeros

elsewhere. Thus j i jV VV is the transpose matrix ,i jT .■

Let f be an n-input function with input variables 1 2{ , ,..., }nx x x

. To determine whether f is compatible with iH , we select some

variable other than ix , say jx with i j , and conditionally invert

every variable except jx itself with respect to jx . These conditional

inversions can be done simultaneously using the matrix jH . We

compute () (())jf v f H v  . The function f is compatible with iH

if and only if (,)i jx x is a symmetric variable pair of f  . The

correctness of this procedure stems from the fact that if i j then
1

,j i j i jH H H T  . Super symmetry can be viewed as a type of

conjugate symmetry requiring multiple simultaneous conditional
inversions.

Given the same function, f , we can determine whether f is

compatible with iV by selecting any input variable other than ix , say

jx with i j , and conditionally invert jx with respect to every

other variable other than jx itself. This gives us the new function,

() (())if v f V v  . The function f is compatible with iV if and only

if (,)i jx x is a symmetric variable pair of f  . Again, the correctness

of this procedure depends on the fact that 1
,j i j i jV VV T  .

Because super symmetric transpose matrices can be equated
with a type of conjugate symmetry, they can be detected and utilized
by the hyperlinear algorithm for digital simulation [26, 27], and by
other algorithms that detect symmetry using symmetric variable
pairs.

5 Sub-Symmetries
For a Boolean function f to possess X symmetry in variables

1 2{ , ,..., }kx x x every cofactor of the form
1... ...k nxx xa af


 must possess X

symmetry. We usually do this by ensuring the symmetry relations
exist between cofactors of the form

1... ...ka a xx xf . It is possible for an n-

input function to be super symmetric in any proper subset of its input
variables, and it is possible for a function to have several subsets of
variables in which it is super symmetric.

This is not the same as partial symmetry, because the super
symmetric variable pairs involve all inputs of a function, while sub-
super symmetries involve only a subset of variables. It is possible to
test a subset of variables for super symmetry, and to test the same
subset for compatibility with the super symmetric transpose matrices
of the sub-symmetry. This gives us many more opportunities to
detect symmetries in a Boolean function, because there are 2 2n 

proper subsets of variables, and
1

2

2

(1)
2 2 1 2

2

n

i

n n
i n n





      
 



additional super symmetric transpose matrices.

6 Experimental Data
To determine the prevalence of super symmetry in real circuits,

we tested the ISCAS 85 benchmarks for the presence of super
symmetries. We tested for total super symmetry, for super symmetric
variable pairs, and for sub symmetries. The results of our tests are
given in Figure 4. These results show that super symmetries do
indeed exist in real circuits, and are, in fact, quite numerous. The
results for super symmetric variable pairs and for sub symmetries are
especially encouraging. Because, in several cases, the number of
symmetries exceeds the number of functions, it is clear that there are
many functions that exhibit multiple sub-super symmetries and that
there are functions that are compatible with many super symmetric
variable pairs.

Circuit Super Sym. Var. Pairs Sub-Sym.
c432 78 213 1097
c499 0 56 728
c880 122 33 902
c1355 288 44 704
c1908 158 59 5326
c2670 276 90 3145
c3540 710 1310 2093
c5315 830 2313 6206
c6288 512 528 928
c7552 582 1660 10093

Figure 4. Experimental Results.

7 Conclusion
The various aspects of super symmetry allow many different

types of Boolean function symmetry to be detected and exploited. In
addition to super symmetry itself we have partial super symmetries
which are generated by the super symmetric transposition matrices.
These partial symmetries can be mixed and matched in an arbitrary
fashion with ordinary symmetric variable pairs. In addition, there are
sub-super symmetries and partial sub-super symmetries which greatly
expand the opportunity for detecting and exploiting symmetries in a
Boolean function.

What is even more exciting, super symmetry allows us to exploit
more of the full power of matrix-based symmetry. For example, for
4-input functions, there are 24 permutations of the inputs, but 20160
non-singular 4 4 matrices. There are obviously many more kinds
of matrix-based symmetry than permutation-based symmetry, and
super symmetry is only one of these.

We expect this work to be the basis of much more extended
work in the future.

8 References
[1] D. S. Passman, Permutation Groups. New York: W. A. Benjamin,

1968.
[2] D. Robinson, A Course in the Theory of Groups. New York:

Springer, 1995.
[3] C. E. Shannon, "The synthesis of two-terminal switching

circuits," Bell System Technical Journal, vol. 28, pp. 59-98,
1949.

[4] A. Abdollahi and M. Pedram, "Symmetry detection and Boolean
matching utilizing a signature-based canonical form of Boolean
functions," IEEE Trans. on Computer-Aided Design, vol. 27,
pp. 1128-1137, June, 2008.

[5] N. N. Biswas, "On Identification of Totally Symmetric Boolean
Functions," Computers, IEEE Transactions On, vol. 19, pp. 645-
648, 1970.

[6] R. C. Born and A. K. Scidmore, "Transformation of switching
functions to completely symmetric switching functions," IEEE
Transactions on Computers, vol. 17, pp. 596-599, 1968.

[7] J. T. Butler, G. W. Dueck, V. P. Shmerko and S. Yanuskevich,
"Comments on “Sympathy: fast exact minimization of fixed
polarity Reed-Muller expansion for symmetric functions”," IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, pp. 1386-1388, 2000.

[8] M. Chrzanowska-Jeske, "Generalized symmetric variables," in
The 8th IEEE International Conference on Electronics, Circuits
and Systems, 2001, pp. 1147-1150.

[9] K. S. Chung and C. L. Liu, "Local transformation techniques for
multi-level logic circuits utilizing circuit symmetries for power
reduction," in Proceedings of the 1998 International Symposium
on Low Power Electronics and Design, 1998, pp. 215-220.

[10] P. T. Darga, K. A. Sakallah and I. L. Markov, "Faster symmetry
discovery using sparsity of symmetries," in Proceedings of the
45th Annual Design Automation Conference, 2008, pp. 149-154.

[11] R. Drechsler and B. Becker, "Sympathy: Fast exact
minimization of fixed polarity reed-muller expressions for
symmetric functions," in European Design and Test Conference,
1995, pp. 91-97.

[12] Y. Hu, V. Shih, R. Majumdar and L. He, "Exploiting
Symmetries to Speed Up SAT-Based Boolean Matching for
Logic Synthesis of FPGAs," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, pp.
1751-1760, 2008.

[13] B. Hu and M. Marek-sadowska, "In-place delay constrained
power optimization using functional symmetries," in Design
Automation and Test in Europe, 2001, pp. 377-382.

[14] W. Ke and P. R. Menon, "Delay-testable implementations of
symmetric functions," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, pp. 772-775,
1995.

[15] N. Kettle and A. King, "An anytime algorithm for generalized
symmetry detection in ROBDDs," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
27, pp. 764-777, 2008.

[16] V. N. Kravets and K. A. Sakallah, "Generalized symmetries in
boolean functions," Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor, MI 48109, 2002.

[17] J. Mohnke, P. Molitor and S. Malik, "Limits of using signatures
for permutation independent Boolean comparison," Formal
Methods Syst. Des., vol. 21, pp. 167-191, 2002.

[18] D. Moller, J. Mohnke and M. Weber, "Detection of symmetry of
boolean functions represented by ROBDDs," in IEEE
International Conference on Computer-Aided Design, 1993, pp.
680-684.

[19] J. C. Muzio, D. M. Miller and S. L. Hurst, "Multivariable
symmetries and their detection," IEE Proceedings on Computers
and Digital Techniques, vol. 130, pp. 141-148, 2008.

[20] S. Panda, F. Somenzi and B. F. Plessier, "Symmetry detection
and dynamic variable ordering of decision diagrams," in IEEE
International Conference on Computer-Aided Design, 1994, pp.
628-631.

[21] J. Rice and J. Muzio, "Antisymmetries in the realization of
boolean functions," in IEEE International Symposium on Circuits
and Systems, 2002, pp. 69-72.

[22] C. Scholl, D. Moller, P. Molitor and R. Drechsler, "BDD
minimization using symmetries," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
18, pp. 81-100, 1999.

[23] C. C. Tsai and M. Marek-Sadowska, "Generalized Reed-Muller
forms as a tool to detect symmetries," IEEE Transactions on
Computers, vol. 45, pp. 33-40, 1996.

[24] K. H. Wang and J. H. Chen, "Symmetry detection for
incompletely specified functions," in Proceedings of the 41st
Annual Design Automation Conference, 2004, pp. 434-437.

[25] P. Maurer, "A universal symmetry detection algorithm," Baylor
University, 2013.

[26] P. M. Maurer, "Conjugate Symmetry," Formal Methods
Syst. Des., vol. 38, pp. 263-288, 2011.

[27] P. M. Maurer. Efficient event-driven simulation by exploiting
the output observability of gate clusters. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions On
22(11), pp. 1471-1486. 2003.

