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On a Ring Associated to F[x]
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For a field F and the polynomial ring F [x] in a single indeterminate, we define

F̂ [x] = {α ∈ EndF (F [x]) : α(f) ∈ fF [x] for all f ∈ F [x]}. Then F̂ [x] is naturally

isomorphic to F [x] if and only if F is infinite. If F is finite, then F̂ [x] has cardinality

continuum. We study the ring F̂ [x] for finite fields F . For the case that F is finite,

we discuss many properties and the structure of F̂ [x].
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CHAPTER ONE

History and Introduction

In this dissertation, we focus on the ring F̂ [x] when our field F is finite. The

ring F̂ [x] was first studied by Dr. Joshua Buckner and Dr. Manfred Dugas. In the

Israel Journal of Mathematics, vol 160 from 2007 [3], Buckner and Dugas presented

their findings on this ring when F was infinite. They found that in this case, F̂ [x] =

F [x] ·. In other words, they found that the α’s in F̂ [x] were multiplications with

some polynomial within the given polynomial ring.

The question of the structure of F̂ [x] when F is finite stayed open until Dr.

Dugas and I started working on it in Spring 2012. This dissertation will contain all

of our findings, most of which come from using the Chinese Remainder Theorem.

The inclusion of the Chinese Remainder Theorem into our research is due

to a suggestion by Dr. Lindsay Childs [6]. After hearing a presentation given by

Dr. Dugas during an Algebra conference in 2010, Dr. Childs sent an email to Dr.

Dugas mentioning that the problem might be more approachable using the Chinese

Remainder Theorem. Thanks to this suggestion, we now know much more about

the ring F̂ [x].

The dissertation starts with an introduction to the Chinese Remainder Theo-

rem and the various forms of it that we used throughout our research. From there we

discuss how to construct the ring F̂ [x] as well as some of our preliminary findings.

We end with our main theorem which is part of the sister theorem of Buckner and

Dugas’s result and a few corollaries we mention as results of our findings.
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CHAPTER TWO

Chinese Remainder Theorem

2.1 Introduction

There have been many different versions of the Chinese Remainder Theorem.

Although it originated with the work of the 3rd-century-AD Chinese mathematician

Sun Zi, the first statement of the whole theorem was in 1247 by Qin Jiushao [7].

In our research we use two specific variations. Before discussing the two types, we

state the general version.

Theorem 2.1. [4] Let n1, n2, . . . , nr be positive integers such that gcd (ni, nj) = 1, for

i 6= j. Then the system of linear congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

has a simultaneous solution, which is unique modulo the integer n1n2 · · ·nr.

2.2 The Chinese Remainder Theorem with Respect to Abelian Groups

We next need to approach the Chinese Remainder Theorem (CRT) with re-

spect to abelian groups. The following proposition is equivalent to stating the CRT.

However, to use this proposition, we need the following definition:

Definition 2.1. Let A be an abelian group and {N1, N2, . . . , Nk} be a list of subgroups

of A. We call this list distributive if for all 1 ≤ ` ≤ k we have

⋂
1≤j≤k,j 6=`

(Nj +N`) = (
⋂

1≤j 6=`≤k,j 6=`

Nj) +N`.
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Proposition 2.1. Let A be an abelian group, k ∈ N, ai ∈ A for each i = 1, . . . , k, and

{N1, N2, . . . , Nk} a distributive list of subgroups of A. The following are equivalent:

(1)
⋂

1≤j≤k

(aj +Nj) 6= ∅

(2) ai − aj ∈ Ni +Nj for all 1 ≤ i < j ≤ k.

Proof. Suppose there exists some x ∈
⋂

1≤j≤k

(aj + Nj). Then x = aj + nj for some

nj ∈ Nj, and it follows that 0 = ai + ni − (aj + nj) for all 1 ≤ i < j ≤ k. We infer

that ai − aj = −ni + nj ∈ Ni +Nj.

We prove the converse by induction over k. If k = 1, there is nothing to show,

and for k = 2, we have a1 − a2 ∈ N1 + N2 and so a1 − a2 = n1 + n2 with ni ∈ Ni.

Thus, x = a1 − n1 = a2 + n2 ∈ (a1 +N1) ∩ (a2 +N2), and the proposition holds for

k = 2. Assume the proposition holds for k and consider ai + Ni for 1 ≤ i ≤ k + 1

such that ai − aj ∈ Ni +Nj for all 1 ≤ i < j ≤ k + 1. By the induction hypothesis,

there exists some x0 ∈
⋂

1≤j≤k

(aj + Nj). Let N =
⋂

1≤j≤k

Nj, and consider the cosets

x0 +N and ak+1 +Nk+1.

Note that x0 − ak+1 ∈ aj − ak+1 + Nj ⊆ Nj + Nk+1 for all 1 ≤ j ≤ k. Thus,

x0 − ak+1 ∈
⋂

1≤j≤k

(Nj + Nk+1) = N + Nk+1 by distributivity. By the case k = 2, we

have some x ∈ (x0 +N)∩ (ak+1 +Nk+1). Note that x0 +N ⊆
⋂

1≤j≤k

(aj +Nj) and so

x ∈
⋂

1≤j≤k+1

(aj +Nj) as desired.

2.3 The Chinese Remainder Theorem with Respect to Principle Ideal Domains

Now that we have a version that works with abelian groups, we want to take

it a step farther and look at a version for principle ideal domains (PIDs). This takes

us to Ore’s version of the CRT. Although this result is from Ore [11], we will prove

the theorem a little differently. Our version of the proof requires a few claims to be

made in order to get our desired result.

3



Theorem 2.2. [11] R is a PID, ai ∈ R, 0 6= mi ∈ R, 1 ≤ i ≤ k. Then the system

of congruences x ≡ ai (mod mi), 1 ≤ i ≤ k with ai ≡ aj (mod dij), where dij =

gcd(mi,mj), has a unique solution modulo M , where M = lcm{mi : 1 ≤ i ≤ k}.

Proof. Let Bi = M
mi
∈ R, 1 ≤ i ≤ k. Our first claim is that the gcd{Bi : 1 ≤

i ≤ k} = 1. To prove this, assume there is some irreducible g ∈ R that divides all

Bi, 1 ≤ i ≤ k, which implies that g|M . This shows that there exists an mi with

g|mi. We may assume i = 1 and ge|m1 where e is the maximum such exponent.

This implies that ge is the highest power of g dividing M , and this in turn implies

that g - M
m1

= B1. This is a contradiction; therefore, gcd{Bi : 1 ≤ i ≤ k} = 1.

By the Extended Euclidian Algorithm we know that there exists some ci ∈ R

with
k∑
i=1

ciBi = 1. Now let x =
k∑
i=1

aiciBi. We need to show that it solves the

system of congruences. Fix j. By the hypothesis, ai ≡ aj (mod dij) implies that

Biai ≡ Biaj (mod Bidij) and Bidij = M
mi

gcd(mi,mj).

Our second claim is that mj|(Mmi
gcd(mi,mj)). Recall that Bi = M

mi
. So, we

havemiBi = M = mjBj. Letmi = m′i gcd(mi,mj). This impliesm′i gcd(mi,mj)Bi =

m′j gcd(mi,mj)Bj which in turn gives us m′iBi = m′jBj. As a result, m′j|m′iBi, and

since gcd(m′i,m
′
j) = 1, we have m′j|Bi. Hence, mj = m′j gcd(mi,mj)|Bi gcd(mi,mj).

Now, we have that Biai ≡ Biaj (mod mj), so Biaici = Biajci (mod mj).

This leads to the equivalences
k∑
i=1

Biajci (mod mj) ≡
k∑
i=1

Biaici = x ≡ (
k∑
i=1

Bici︸ ︷︷ ︸
=1

)aj

(mod mj). Therefore, x ≡ aj (mod mj).

To see the uniqueness of x up to moduloM , suppose that x ≡ aj (mod mj) and

y ≡ aj (mod mj) for 1 ≤ j ≤ k. This implies that y − x ≡ 0 (mod mj), 1 ≤ j ≤ k

which in turn gives us that y − x ≡ 0 (mod M). So, x ≡ y (mod M). Therefore, x

is unique modulo M . Conversely, if x is a solution and y ≡ x (mod M), then y is a

solution as well.

4



CHAPTER THREE

Construction of F̂ [x]

3.1 Introduction

In this chapter we discuss the construction of our ring, F̂ [x]. We start simply

by defining our ring then showing such a ring exists. We use our variant of the

Chinese Remainder Theorem with respect to abelian groups (Proposition 2.1) as

the basis for how we know that such a ring can and does exist.

3.2 The Elements of F̂ [x]

In the case we discuss throughout this dissertation, we let F be a finite field

with q elements where q is a power of a prime p. We represent the polynomial ring

with its coefficients in F as F [x]. We define

F̂ [x] = {α ∈ EndF (F [x]) : α(I) ⊆ I for all I E F [x]},

or more simply F̂ [x] = {α ∈ EndF (F [x]) : α(f) ∈ fF [x] for all f ∈ F [x]}.

If α, β ∈ EndFF [x], then αβ means α goes first. However, occasionally we let α(f)

denote the image of f under α. This definition means that α ∈ EndF (F [x]) belongs

to F̂ [x] if and only if f divides α(f) for all (monic) polynomials f ∈ F [x].

Definition 3.1. Define Pn = {f ∈ F [x] : deg(f) ≤ n} and P 1
n = {f ∈ F [x] :

deg(f) = n and f is monic}. Note that for any f ∈ P 1
n , we have f = xn + f− for

some unique f− ∈ Pn−1. Moreover, |Pn| = qn+1 and |P 1
n | = qn.

Before the next lemma, we need to clarify some notation. We will let T =

{t0, t1, t2, . . . } represent a countable sequence of elements of F [x]. Note that with

this definition, there exists a unique α = αT ∈ EndF (F [x]) such that α(xi) = ti for

all i ≥ 0. Let f =
n∑
i=0

fix
i ∈ F [x], where fi represent the coefficients in the field F

of the i-th term of the polynomial.

5



Lemma 3.1. The following are equivalent:

(1) α = αT ∈ F̂ [x].

(2) For each n ∈ N and each monic polynomial f =
n∑
i=0

fix
i ∈ P 1

n of degree n,

we have tn ≡ −
n−1∑
i=0

fiti (mod f).

Proof. Let α = αT ∈ F̂ [x]. This implies that f divides α(f) for each f ∈ F [x]

which is true if and only if f divides α(f) for each monic f ∈ F [x] if and only if f

divides α(f) = tn +
n−1∑
i=0

fiti for each monic polynomial f of degree n if and only if

tn ≡ −
n−1∑
i=0

fiti (mod f).

Remark 3.1. In other words, Lemma 3.1 shows that α = (ti)i ∈ F̂ [x] if and only if

α(xn) ≡ α(f−) (mod f) for all f ∈ P 1
n .

Lemma 3.2. Let n ∈ N and β ∈ HomF (Pn−1, F [x]) such that f divides β(f) for all

f ∈ Pn−1. Let β(xi) = ti for all 0 ≤ i ≤ n − 1. Then there are infinitely many

elements tn ∈ F [x] such that the map γ ∈ Hom(Pn, F [x]) defined by γ(xi) = ti

for all 0 ≤ i ≤ n has the property that f divides γ(f) for all f ∈ Pn. Morever,

β = γ|Pn−1.

Proof. For each of the qn monic polynomials f in P 1
n , consider the system of con-

gruences:

t ≡ −
n−1∑
j=0

fiti (mod f) for all f ∈ P 1
n (3.1)

and note that
n−1∑
i=0

fiti =
n−1∑
i=0

fiβ(xi) = β(
n−1∑
i=0

fix
i) = β(f−) where f = xn + f− and

f− ∈ Pn−1. Let f, g be monic polynomials in P 1
n . Then,

−
n−1∑
i=0

fiti −

(
−

n−1∑
i=0

giti

)
= −β(f−) + β(g−) = β(g− − f−) = β(g − f)

6



and g − f = −f− + g− divides β(−f− + g−) = β(g − f).

It follows that gcd(f, g) divides −f + g = −f−+ g− which divides −β(f−) + β(g−).

Now we apply the general Chinese Remainder Theorem and conclude that the

system of congruences (3.1) has a solution for t, and in fact, it has infinitely many

solutions. Let t = tn be one of these solutions and define γ(xn) = tn and γ|Pn−1 = β.

Let f be a monic polynomial of degree n. Then f divides γ(f) = tn+
n−1∑
j=0

fiti because

of the set of congruences. If g ∈ Pn−Pn−1, then there is a monic f ∈ Pn and k ∈ F

such that g = kf and g divides γ(g) = kγ(f). Note that the choice of xn ∈ P 1
n

implies tn = ρnx
n for some ρn ∈ F [x].

Lemma 3.3. The F -algebra F̂ [x] has cardinality 2ℵ0.

Proof. We get that F̂ [x] has at least cardinality continuum by Lemma 3.2. This is

because in the inductive construction you have at least two choices of what the next

one in the sequence will be. This, paired with the fact

F̂ [x] ⊆ P := {α ∈ EndF (F [x]) : α(xi) ∈ xiF [x]} ∼=
∏
ω

F [x]

giving the inequality |F̂ [x]| ≤ |
∏
ω

F [x] | = |F [x] |ℵ0 = ℵℵ00 = 2ℵ0 , yields the desired

result.

Remark 3.2. Let Γn = lcm{f : f ∈ P 1
n}. If α = (ti)i ∈ F̂ [x], then tn is determined

by the initial sequence (ti)0≤i<n only modulo Γn. You can pick any t0, then by

induction using Lemma 3.2, you can come up with a sequence ti, so that you have

a sequence in F̂ [x].

Now that we have that F̂ [x] exists and know its cardinality, when looking at

α ∈ F̂ [x], we have α(xi) = xiαi for some αi ∈ F [x]. Since the map α is uniquely

determined by the αi, we henceforth write α = (αi)i. For example, idF [x] = (1)i.

7



When studying a new ring, it is frequently important to understand how the el-

ements of the ring interact with each other. First, we look at the additive properties.

Addition in F̂ [x] is such that if

α = (αi)i, β = (βi)i ∈ F̂ [x], αi =
∑

αijx
j, and βi =

∑
βijx

j,

then α + β = (αi + βi)i.

However, the multiplication is much more complicated. Let ai = deg(αi) and

αi =

ai∑
t=0

αitx
t. Let bi = deg(βi) and βi =

bi∑
s=0

βisx
s. We will find a formula for

αβ = (ui)i. Note that

(xi)(αβ) = (xiαi)β =

(
ai∑
t=0

αitx
t+i

)
β =

ai∑
t=0

αitβi+tx
t+i

=

ai∑
t=0

αit

(
bi+t∑
s=0

βi+t,sx
s

)
xt+i =

∑
t,s

αitβi+t,sx
s+t+i.

Let k = s+ t. We infer that (xi)(αβ) =

(∑
k

(∑
t

αitβi+t,k−t

)
xk

)
xi = uix

i

where ui =
∑
t

uitx
t =

∑
t

(∑
j

αijβi+j,t−j

)
xt and thus uit =

ai∑
j=0

αijβi+j,t−j. We

will do more with the degrees of these elements in Chapter 5.

Although the next lemma is not one of the main result, we are mentioning it

here so that we have it for future reference.

Lemma 3.4. Let σ : F [x]→ F [x] be an automorphism. Then if F is finite, the order

of σ is finite.

Proof. Let σ be the substitution map defined by σ : x 7−→ ax + b, where a and b

are fixed, a 6= 0 and a, b ∈ F . We want to know the order of σ; in other words, we

want to know the least n with σn = idF [x]. That means we need to find a formula

xσn = anx + b, where σn = idF [x] if and only if xσn = x, with n least. We do this

by induction.

8



For i = 1, 2, and 3, we have the following formulas:

xσ = ax+ b,

xσ2 = a(ax+ b) + b = a2x+ ab+ b, and

xσ3 = a2(ax+ b) + ab+ b

= a3x+ a2b+ ab+ b.

Now, supposing that this pattern holds for i = n, we have

xσn = anx+ b

n−1∑
j=0

aj = anx+
b(an − 1)

a− 1
= x if and only if an = 1, (a 6= 1).

This gives us that for i = n+ 1,

xσn+1 = (xσn)σ = (anx+ b
n−1∑
j=0

aj)σ

= an(ax+ b) + b
n−1∑
j=0

aj

= an+1x+ anb+ b
n−1∑
j=0

aj

= an+1x+ b
n∑
j=0

aj.

Therefore, we have that O(σ) = O(a) in F −{0}. Hence, when F is finite, the order

of σ is finite.

One of the many things that makes the study of the ring F̂ [x] so interesting

is that we can look at how elements react to one another, study elements in detail,

show that it has cardinality continuum, yet we cannot look at specific elements of

the ring. For this reason, we might call the study of the ring “endoscopic.”
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CHAPTER FOUR

Basic Properties of F̂ [x]

4.1 Introduction

We dedicate this chapter to discussing basic properties of the ring F̂ [x]. We

cover properties such as units, zero divisors, and many other things that one would

typically want to know about a ring. These properties serve as a strong basis on

which to build the lemmas that we require for reaching our main result.

Throughout this chapter, we assume that |F | = q, and we define ψ as the

Frobenius map, where ψ : F [x]→ F [x] is defined by fψ = f q = f(f q−1). Therefore,

ψ|F = idF . Thus, ψ ∈ F̂ [x] and ψ = (xi(q−1))i.

4.2 Basic Properties

Lemma 4.1. Z(F̂ [x]) = F ·. In other words, the center of the ring F̂ [x] consists only

of the scalar multiplication by the field elements of F .

Proof. (⇒) Let α = (αi)i ∈ Z(F̂ [x]). Then (xαi+1)i = (x·)α = α(x·) = (αix)i.

This implies that αi = αi+1 for all i. Thus, α = f · for some f ∈ F [x]. Now,

let g ∈ F [x]. Then we have g(ψα) = gqα = gq · f , but since α and ψ commute,

g(ψα) = (gα)ψ = (gf)q = gqf q. Thus, gq · f = gqf q, and this implies that f = f q.

However, this only holds if the degree of f is zero. So, f ∈ F · .

(⇐) Let f ∈ F · and α ∈ F̂ [x]. Then, f(αi)i = f(
∑
αijx

j) =
∑
fαijx

j =

(
∑
αijx

j)f = (αi)if ; hence, f ∈ Z(F̂ [x]).

Lemma 4.2. The group of units of F̂ [x], represented by U(F̂ [x]), are equal to F−{0}.

Proof. (⇒) Let α ∈ U(F̂ [x]) and α = (αi)i. Then, there exists a β = (βi)i ∈ F̂ [x]

with αβ = idF [x]. For all g ∈ F [x], there exists a ug ∈ F [x] with gα = gug. In the

same way, gβ = gvg. It follows that g = g(αβ) = (gα)β = (gug)β = (gug)vgug =
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g(ugvgug). This implies 1 = ugvgug , and that means ug ∈ F−{0}. Thus, αi ∈ F−{0}

for all i. It follows that

(1 + xi)α = α0 + xiαi ≡ 0 (mod (1 + xi))

α0 + xiαi − αi(1 + xi) ≡ 0 (mod (1 + xi))

α0 − αi ≡ 0 (mod (1 + xi))

Thus, α0 = αi for all i ≥ 1. So, α = α0· ∈ F − {0}.

(⇐) Let α ∈ F − {0}. We know that F is a field, so for any α ∈ F − {0},

there is a mulitplicative inverse β also in F − {0}. Since F − {0} ∈ F̂ [x], we are

done.

Lemma 4.3. The Jacobson radical of F̂ [x], J(F̂ [x]), is zero.

Proof. Let α ∈ J(F̂ [x]). Since 1 ∈ F̂ [x], we have that 1+α ∈ U(F̂ [x]) = (F −{0})·

by Hungerford. Thus, α ∈ F · is not a unit because J(F̂ [x]) $ F̂ [x]. It follows that

J(F̂ [x]) = {0}.

Lemma 4.4. If 0 6= α ∈ F̂ [x], then dimF (ker(α)) is finite.

Proof. Assume dimF (ker(α)) is infinite. Then, {deg(f) : f ∈ ker(α)} is unbounded.

Assume f ∈ F [x]− ker(α). For all g ∈ F [x], there exists ug ∈ F [x] with gα = gug

by the definition of F̂ [x]. There exists k ∈ ker(α) with deg(k) > deg(f) + deg(uf ).

Now (f+k)uf+k = (f+k)α = fα = fuf , and this implies that kuf+k = f(uf−uf+k).

(Note that uf+k 6= 0 because f + k /∈ ker(α), since f /∈ ker(α).) Thus, deg(k) +

deg(uf+k) ≤ deg(f) + max{deg(uf ), deg(uf+k)}.

If max{deg(uf ), deg(uf+k)} = deg(uf+k), then deg(k) + deg(uf+k) ≤ deg(f) +

deg(uf+k). This implies that deg(k) ≤ deg(f). This is a contradiction to the choice

of k. Thus, max{deg(uf ), deg(uf+k)} = deg(uf ). This leads to the conclusion that

deg(k) + deg(uf+k) ≤ deg(f) + deg(uf ). This, too, is a contradiction to the choice

of k. Thus, no such f exists. In other words, F [x] = ker(α) which implies that

α = 0.
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Lemma 4.5. Let α, β ∈ F̂ [x]. If αβ = 0, then α = 0 or β = 0.

Proof. We break this proof up into two cases. In the first case, let αβ = 0 and

α 6= 0. Then, im(α) ⊆ ker(β). By the first isomorphism theorem, im(α) ∼= F [x]
ker(α)

,

and dimF (ker(α)) is finite by Lemma 4.4. Thus, dimF (im(α)) is infinite, and this

implies dimF (kerβ) is infinite. Therefore, β = 0 by Lemma 4.4.

In the second case, let αβ = 0 with β 6= 0. Then, im(α) ⊆ ker(β). By Lemma

4.4, dimF (ker(β)) is finite, and that implies dimF (im(α)) is finite. However, the

first isomorphism theorem gives that im(α) ∼= F [x]
ker(α)

has finite dimension. Thus,

dimF (ker(α)) is infinite. By Lemma 4.4, α = 0.

Lemma 4.6. Let α = (αi)i ∈ F̂ [x] such that there is some N ∈ N such that deg(αi) <

N for all i ∈ ω. Then, α ∈ F [x] ·.

Proof. Let n ≥ N and f ∈ P 1
n . So, xnαn + α(f−) ≡ 0 (mod f). Pick f = xn + 1.

Then, xn + 1 divides xnαn + α0 = (xn + 1)αn + α0 − αn. Since deg(α0 − αn) < N ,

we infer that α0 = αn for all n ≥ N . Subtracting α0· from α, we may assume

that αn = 0 for all n ≥ N . Fix some j with 0 ≤ j < N , and let f = xn + xj

where n > N + j. Then, α(f) = xjαj ≡ 0 (mod f), and αj = 0 follows since

deg(xjαj) < n = deg(f). This shows that α = α0·.

Lemma 4.7. Let f ∈ F [x] with deg(f) ≥ 1. Then, the centralizer, C
F̂ [x]

(f ·), is

F [x] ·.

Proof. Let f =
n∑
j=0

fjx
j with fn 6= 0 and n ≥ 1. Let α = (αi)i ∈ CF̂ [x]

(f ·). Then,

α(f ·) = (
n∑
j=0

fjx
jαi)i, but (f ·)α = (

n∑
j=0

fjx
jαi+j)i, and it follows that

n∑
j=0

fjx
jαi =

n∑
j=0

fjx
jαi+j for all i ≥ 0. Without loss of generality, we may assume that fn = 1.

Then, xnαi+n =
n∑
j=0

fjx
jαi−

n−1∑
j=0

fjx
jαi+j. It follows that n+ deg(αi+n) ≤ max{n+
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deg(αi), n− 1 + deg(αi+j), 0 ≤ j ≤ n− 1} for all i ≥ 0. In other words,

deg(αi+n) ≤ max{deg(αi), deg(αi+j)− 1, 0 ≤ j ≤ n− 1} for all i ≥ 0. (4.1)

There exists some natural number N such that deg(α`) ≤ N for all 0 ≤ ` ≤ n − 1.

Inequality (4.1) implies that for i = 0, that deg(αn) ≤ N as well. Now, using

induction, assume that deg(αj) ≤ N for all 0 ≤ j < k. Write k = mn + i for some

0 ≤ i < n. We may assume that m ≥ 1. By inequality (4.1), we get

deg(αk) = deg(α(m−1)n+i+n)

≤ max{deg(α(m−1)n+i), deg(α(m−1)n+i+j)− 1, 0 ≤ j ≤ n− 1}.

Note that (m− 1)n+ i+ j − 1 ≤ (m− 1)n+ i+ n− 1 = mn+ i− 1 = k− 1 < k for

all 0 ≤ j ≤ n− 1.

By the induction hypothesis, we get that all these degrees are no bigger than

N , and so deg(αk) ≤ N as well. Because of Lemma 4.6, we are done.
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CHAPTER FIVE

Main Results about F̂ [x]

5.1 Introduction

In this chapter, we present the results that follow from basic properties covered

in Chapter Four. We first cover our preliminary lemmas that deal with elements in

F̂ [x] and how they interact with polynomials, what their degree will be under certain

circumstances, and much more. In section 5.3, we introduce our two main lemmas

that lead to our main result, the main theorem itself, and some corollaries that

follow. Lastly, we conclude Chapter Five with the only result we have for
̂̂
F [x]

r

.

5.2 Preliminary Lemmas

Lemma 5.1. If α ∈ P and n ∈ N such that α(xn·) ∈ F̂ [x], then α ∈ F̂ [x].

Proof. Let f =
k∑
j=s

fjx
j, fs 6= 0 6= fk. There exists wf ∈ F [x] such that fwf =

f((xn·)α) =
k∑
j=s

fj(x
j((xn·)α)) =

k∑
j=s

fj(x
n+jα) =

k∑
j=s

fjx
n+jαn+j, where fj ∈

xn+sF [x]. Since xs is the highest x-power dividing f , xn|wf and this implies that

there exists a uf ∈ F [x] with wf = xnuf . This gives fxnuf = xn(
k∑
j=s

fjx
jαn+j) =

xn(fβ), where β = (αn, αn+1, αn+2, . . . ) = (αn+i)i and fuf = fβ for all f ∈ F [x].

Therefore, α ∈ F̂ [x].

Lemma 5.2. Let n ∈ N and αj ∈ F [x] for all j ≥ n such that (xn·)α = (xnαn+i)i =

(xnαn, x
nαn+1, x

nαn+2, . . . ) = γ ∈ F̂ [x]. Let β = (βi)i where βi = αn+i for all i ≥ 0.

Then, β ∈ F̂ [x].

Proof. Let f =
k∑
j=s

fjx
j with fs 6= 0. Then, fwf = fγ =

k∑
j=s

fjx
jxnαn+j =

xn+s
k∑
j=s

fjx
j−sαn+j ∈ xn+sF [x] for some wf ∈ F [x]. This implies that wf = xnuf
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for some uf ∈ F [x]. As a result, fxnuf = xn
k∑
j=s

fjx
jαn+j = xn(fβ) and fuf = fβ

follows. Hence, β ∈ F̂ [x].

Remark 5.1. Lemma 5.2 shows that if α = (αi)i ∈ F̂ [x], then for any n ∈ N, we have

α←n := (αn, αn+1, αn+2, . . . ) ∈ F̂ [x] as well. It also shows that if α = (αi)i ∈ F̂ [x]

and α←n = (αi+1)i, then (x·)α = α←n(x·). This implies that F̂ [x]α∩F̂ [x](x·) 6= {0}.

Lemma 5.3. Let f ∈ F [x] − {0} and β ∈ F̂ [x]. Then, there exists some unique

γ ∈ F̂ [x] such that (f ·)β = γ(f ·).

Proof. Let β ∈ F̂ [x] and (f ·)β = (ui)i, so there exists γi ∈ F [x] with (xif)β = xifγi.

Thus, we have

xi(f ·)β =

(
n∑
j=0

fjx
i+j

)
β

=

(
n∑
j=0

fjx
i+j

)
γi

=
n∑
j=0

fjx
i+jγi

= xi
(∑n

j=0 fjx
jγi

)
.

This gives f · β = (
n∑
j=0

fjx
jγi)i = (γi · f)i. Let γ = (γi)i. This gives fβ = γf .

We need to show γ ∈ F̂ [x], so let g ∈ F [x]. Then, g((f ·)β) = (gγ) · f =

(gf)β = gfwgf for some wgf ∈ F [x] since β ∈ F̂ [x]. Thus, we have (gf)wgf =

g(f ·)β = g(γ(f ·)) = (gγ)f. Now, we may cancel f and get gγ = gwgf for all

g ∈ F [x]. This shows that γ ∈ F̂ [x]. The uniqueness of γ follows from Lemma

4.5.

Remark 5.2. Note that this shows that (f ·)F̂ [x] ⊆ F̂ [x](f ·) for all f ∈ F [x].

Now, let 0 6= f ∈ F [x]. By Lemma 5.3, we have a map η(f) : F̂ [x]→ F̂ [x] defined

by (f ·)α = αη(f)(f ·) where αη(f) = β denotes the image of α under the map η(f).
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Lemma 5.4. Let 0 6= f ∈ F [x]. Then, η(f) is an injective ring endomorphism of

F̂ [x]. In other words, η(f) ∈ End(F̂ [x]).

Proof. We will repeatedly use the fact that F̂ [x] has no zero divisors (Lemma 4.5).

Let α, β ∈ F̂ [x]. Then, (α + β)η(f)(f ·) = (f ·)(α + β) = (f ·)α + (f ·)β = αη(f)(f ·) +

βη(f)(f ·) = (αη(f) + βη(f))(f ·), and the map η(f) is additive. Also, (αβ)η(f)(f ·) =

(f ·)(αβ) = ((f ·)α)β = (αη(f)(f ·))β = αη(f)((f ·)β) = αη(f)βη(f)(f ·) and this shows

that η(f) preserves multiplication as well. If αη(f) = 0, then α(f ·) = 0, and it follows

that α = 0.

Lemma 5.5. Given f ∈ F [x] , deg(f) = d, and n ∈ N, there exists q ∈ F [x] such

that qf = xn+d + g, deg(g) < d.

Proof. Divide xn+d with remainder by f , in order to get xn+d = qf + r, degr < d.

This implies qf = −r + xn+d, deg(−r) < d.

Lemma 5.6. Let F [x]1 be the monoid of all monic polynomials in F [x]. Then,

η : F [x]1 → End(F̂ [x]) is an injective homomorphism of monoids.

Proof. Let f, g ∈ F [x]1 and α ∈ F̂ [x]. Then, (fg·)α = αη(fg)(fg·) = (f ·)((g·)α) =

((g·)α)η(f)(f ·) = (g·)αη(f)(f ·) = (αη(f))η(g)(g·)(f ·). It follows that η(fg) = η(gf) =

η(f)η(g), and this shows that η is a monoid homomorphism. Now, suppose that

η(f) = η(g) for some f, g ∈ F [x]1. This means that for all α ∈ F̂ [x], we have

fαg = αη(f)gf = αη(g)fg = gαf for all α ∈ F̂ [x]. Let f =
n∑
j=0

fjx
j have degree n

and g =
m∑
j=0

gjx
j have degree m. We need to construct an element α = (αi)i ∈ F̂ [x]

that defeats the equation fαg = gαf in the case where f 6= g. This equation means

that (
n∑
j=0

fjαi+jx
j

)
i

g =

(
m∑
j=0

gjαi+jx
j

)
i

f. (5.1)
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Assume m 6= n. Then, we may also assume that m > n. Now, construct

α = (αi)i such that n + m + deg(αi+m) > max{n + m + deg(α`) : 0 ≤ ` < i + m}.

We infer that the polynomial on the right hand side of (5.1) has a degree larger than

the one on the left hand side. Thus, we may assume that m = n. Let Γn = lcm(P 1
n)

and Ln = deg(Γn) =
∑

1≤j≤n

qj = q
qn − 1

q − 1
≥ qn−1 [5]. We construct αi = βi+ qiΓix

−i

where deg(βi) < Li − i and deg(qi) = mi is such that αi+n = xei + γi+n and

ei − n > max{deg(γi+n), j + deg(αi+j) : 0 ≤ j ≤ n}, where ei = deg(αi+n). This

implies that fgnx
n+ei = gfnx

n+ei and so f = g since fn = 1 = gn.

Definition 5.1. [10] A subset S of a ring R is called a left denominator set if it satisfies

the following three conditions for every a, b in R, and s, t in S:

(1) st in S; i.e., S is multiplicatively closed.

(2) Sa ∩Rs is not empty.

(3) If as = 0, then there is some u in S with ua = 0.

This definition is a left version modification of Lam’s definition of a right denomi-

nator set. It is also helpful to note that if S is a left denominator set, then one can

construct the ring of left fractions S−1R similarly to the commutative case. If S is

taken to be the set of regular elements (those elements a in R such that if b in R

is nonzero, then ab and ba are nonzero), then the left Ore condition is simply the

requirement that S be a left denominator set [10].

Lemma 5.7. Let S = (F [x]− {0})·. Then, S is a left denominator set for F̂ [x].

Proof. S is closed with respect to multiplication. By Lemma 5.3, we know that for

all a ∈ F̂ [x] and all s ∈ S, aS∩sF̂ [x] 6= ∅. Lastly, if as = 0, this implies that a = 0,

and property (3) from Definition 5.1 follows.

In order to see that S is not a right denominator set, we need to develop several

more results. In the process, we introduce a new topic, slowness.
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Definition 5.2. β ∈ F̂ [x] is called slow if there exists an i0 such that for all i ≥ i0,

degβi < Li − i.

Lemma 5.8. The set T = {β ∈ F̂ [x] : β slow} is countable.

Proof. Assume β is slow. Then, there exists an i0 with deg βi < Li− i for all i > i0.

We can write β = (β0, β1, . . . , βi0 , βi0+1, βi0+2, . . . ), and there are only countably

many choices for i0 and β0, . . . , βi0 . Each βj for j > i0 is uniquely determined by

β0, . . . , βi0 , . . . , βj−1 because xjβj = −
j−1∑
i=0

gix
iβi (mod g), g ∈ P 1

j and βj is the

unique solution of this system of congruences with least degree < Lj − j.

Lemma 5.9. Given t, f ∈ F [x] , α = (αi)i, β = (βi)i ∈ F̂ [x], and deg(f) =

n ≥ 1 such that αt = fβ, there exists some κ ∈ N such that deg(xnβn+i) ≤

max{κ, deg(αjt), 0 ≤ j ≤ i} for all i ≥ 0.

Proof. We prove this by induction. When i = 0, we have α0t =
n∑
j=0

fjx
jβj and this

implies xnβn = α0t −
n−1∑
j=0

fjx
jβj. Let κ = max{deg(xnβj) : 0 ≤ j ≤ n − 1}. Then,

deg(xnβn) ≤ max{deg(α0t), κ}.

Our induction hypothesis is deg(xnβn+j) ≤ max{κ, deg(α0t), . . . , deg(αjt)} for

all 0 ≤ j < i. Then, we have xnβn+i = αit−
n−1∑
j=0

fjx
jβi+j, as a result,

deg(xnβn+i) ≤ max{deg(αit), deg(xjβi+j), 0 ≤ j ≤ n− 1}

≤ max{deg(αit), deg(xnβi+j), 0 ≤ j ≤ n− 1}

= max{deg(αit), deg(xnβi+j), 0 ≤ i+ j < n, deg(xnβi+j), i+ j ≥ n}

≤ max{deg(αit), deg(xnβa), 0 ≤ a < n, deg(xnβn+b), 0 ≤ b ≤ i− 1}

≤ max{deg(αit), κ, deg(xnβn+b), 0 ≤ b ≤ i− 1}

≤ max{deg(αit), κ, deg(α0t), . . . , deg(αi−1t)}

= max{κ, deg(αbt), 0 ≤ b ≤ i}.
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Lemma 5.10. Given f ∈ F [x] and deg f = n ≥ 1, there exists an uncountable subset

W (f) ⊆ Wn where Wn = {α = (αi) ∈ F̂ [x] : ∀N ∃i0 ∀i > i0, (deg(αi) + N <

Li+n − (i+ n))} such that αS ∩ fF̂ [x] = ∅ for all α ∈ W (f).

Proof. By way of contradiction, assume that for each α ∈ Wn there exists t(α) ∈ S

with the property

αt(α) ∈ fF̂ [x]. (5.2)

Pick t(α) = t of the least degree that satisfies Property (5.2). We know that t is

unique, for if t′ is another such polynomial, then α(t− t′) ∈ fF̂ [x] and deg(t− t′) <

deg(t). Thus, t = t′ because otherwise we could make t − t′ monic and contradict

the minimality of degt. Therefore, t(α) = t is unique. This implies that α 7→ t(α)

is a function from Wn into the countable set S. Thus, there exists t ∈ S such

that W#
n = {α ∈ Wn : t(α) = t} is uncountable. By Property (5.2), there exists

β(α) ∈ F̂ [x] with αt = fβ(α) for all α ∈ W#
n . This implies that α 7→ β(α) is a map.

Let β′ be such that fβ(α) = fβ′(α). Then, f(β(α)−β′(α)) = 0 and so β(α) = β′(α).

If β(α1) = β(α2), then α1t = α2t, giving (α1−α2)t = 0 and thus α1 = α2. This implies

that α 7→ β(α) is an injective map.

We have from Lemma 5.9 that β(α) is slow. However, this is a contradiction.

Now, W1 is uncountable. Let α(i) be a set of representatives for the equivalence class

of ∼, i < 2ℵ0 , where ∼ is defined by α ∼ β if there exists f, g ∈ F [x] − {0} with

αf = gβ. The equation α(i)t(i) = fβ(i), where t(i) is of minimum degree, defines a

function i 7→ β(i). This function is injective because α(i) | α̃(i) for i 6= j < 2ℵ0 . Thus,

we have a contradiction. Therefore, there exist many α ∈ W1 with αS ∩ fF̂ [x] =

∅.

Remark 5.3. Note that by Lemma 5.10, it has now been shown that S is not a right

denominator set of F̂ [x].
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Lemma 5.11. Let f ∈ F [x]1 with f(0) = 0. Then, η(f) is an injective but not

surjective ring endomorphism of F̂ [x].

Proof. Let α = (αi)i ∈ F̂ [x]. By Lemma 5.3, we have (x·)α = α←(x·) where α← =

(αi+1)i ∈ F̂ [x] is the “left shift” of α. Now, assume that deg(αi) < Li+1 − (i + 1).

There are uncountably many such elements. Then, if there exist some γ0 ∈ F [x] such

that β = (γ0, α0, α1, α2, . . . ) ∈ F̂ [x] is a “right shift” of α, then β is slow and there

are only countably many of those elements. This implies that the ring endomorphism

η(x) =← is not surjective. Now, let f =
n∑
j=1

fjx
j ∈ F [x]1 be a polynomial without

a constant term. Then, η(f) =
n∑
j=1

fjη(x)j = η(x)(
n∑
j=1

fjη(x)j−1) is not surjective

because η(x) is not.

Lemma 5.12. If f ∈ F [x], then the left ideal F̂ [x](·f) is also an ideal of F̂ [x].

Proof. F̂ [x](·f) is a left ideal. Let α, β ∈ F̂ [x]. Then, αfβ = αβη(f)f ∈ F̂ [x](·f).

Therefore, F̂ [x](·f) E F̂ [x].

Lemma 5.13. The right ideal xnF̂ [x] is only a right ideal.

Proof. If xnF̂ [x] E` F̂ [x], then F̂ [x]xn ⊆ xnF̂ [x]. This means that for all α ∈ F̂ [x],

we have αxn = xnβ so α = β←n. This would imply that ←n is surjective, but ←1

is not surjective. However, this implies that Im(←n) ⊆ Im(←1) $ F̂ [x]. This is a

contradiction.

5.3 Main Result

Before stating our main result, we state and prove two lemmas. When used

together along with a slight substitution, Lemmas 5.14 and 5.15 directly give the

proof of our main result, Theorem 5.1. These two lemmas give us a result about

whether F̂ [x] is an Ore domain as well. This result is stated after our main result

in order not to break the line of thought that leads to the theorem itself.
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Lemma 5.14. Given α = (αi)i ∈ F̂ [x] and a(i) = deg(αi) such that the a(i+1) ≥ a(i)

for all i, β = (βi)i ∈ F̂ [x] with bi = deg(βi). Then, βα = (ui)i and deg(ui) =

bi + a(i+ bi) unless βi = 0. If βi = 0, then ui = 0.

Proof. Recall that uit =
t∑

j=0

βijαi+j,t−j. Also, a(i + bi) ≥ a(i + j) for all 0 ≤ j ≤ bi

and for all i. This implies that bi + a(i + bi) ≥ j + a(i + j) for all 0 ≤ j ≤ bi. So,

if t > bi + a(i + bi), we have t > j + a(i + j) for all 0 ≤ j ≤ bi. This implies that

uit =

bi∑
j=0

βijαi+j,t−j and αi+j,t−j = 0 for t−j > a(i+j) if and only if t > j+a(i+j).

However, t > bi + a(i + bi) ≥ j + a(i + j). Therefore, deg(ui) ≤ bi + a(i + bi). So,

ui,bi+a(i+bi) =

bi∑
j=0

βijαi+j,bi+a(i+bi)−j.

Let 0 ≤ j < bi. Then, bi + a(i + bi) − j > bi + a(i + bi) − bi = a(i +

bi) ≥ a(i + j) = deg(αi+j). As a result, ui,bi+a(i+bi) = βi,bi︸︷︷︸
6=0

·αi+bi,a(i+bi)︸ ︷︷ ︸
6=0

. Therefore,

deg(ui) = bi + a(i+ bi).

Definition 5.3. Define (̂F̂ [x])
`

= {ϕ ∈ EndF (F̂ [x]) : ϕ(J) ⊆ J all J E` F̂ [x]}.

Lemma 5.15. Let a(n), n ≥ 0, be a strictly increasing sequence of natural numbers

such that a(n) ≥ δn = Ln − n for all n ≥ 0. Let α = (αi)i, α
′ = (α′i)i ∈ F̂ [x] such

that deg(αi) = a(i), and deg(α′i) = a(i) + 1. Then, F̂ [x]α ∩ F̂ [x]α′ = {0}.

Proof. Assume that there exists β = (βi)i and β′ = (β′i)i in F̂ [x] with αβ = α′β′ =

(ui)i. Let bi = deg(βi) and b′i = deg(β′i) for all i > 0. Then, by Lemma 5.14, we have

deg(ui)i = bi + a(i+ bi) = b′i + a′(i+ b′i) = b′i + a(i+ b′i) + 1. Assume bi > b′i. Then,

a(i+bi)−a(i+b′i) = b′i−bi+1 ≤ 0, but this is not possible since the a(n)’s are strictly

increasing. On the other hand, if b′i > bi, then a(i+ b′i)− a(i+ bi) = bi − b′i − 1 < 0.

This is another contradiction and we infer bi = b′i for all i ≥ 0 for which βi 6= 0. This

implies that a(i+ bi) = a(i+ bi) + 1, and this is clearly impossible, so we infer that

β = 0.
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Theorem 5.1. (̂F̂ [x])
`

= (F̂ [x])·.

Proof. Let ψ ∈ (̂F̂ [x])
`

and γ = (γi)i ∈ F̂ [x]. Pick elements α = (αi)i, α
′ =

(α′i)i ∈ F̂ [x] as in Lemma 5.15 such that deg(γi) < deg(αi) for all i > 0. Then,

deg(αi) = deg(αi + γi), and by the lemma, we have that F̂ [x]α ∩ F̂ [x]α′ = {0}

and F̂ [x](α + γ) ∩ F̂ [x]α′ = {0}. There exist elements uα, uα′ , uα+α′ ∈ F̂ [x] such

that ψ(α) = uαα, ψ(α′) = uα′α
′, and ψ(α + α′) = uα+α′(α + α′) = ψ(α) + ψ(α′) =

uαα + uα′α
′, and we infer (uα+α′ − uα)α = (uα′ − uα+α′)α′ ∈ F̂ [x]α ∩ F̂ [x]α′ = {0}

by the lemma. Since F̂ [x] has no zero divisors, we get uα = uα+α′ = uα′ =: u.

Now, replace α by α̃ = α + γ. Then, F̂ [x]α̃ ∩ F̂ [x]α′ = {0} as well. The same

argument shows that ψ(α̃) = uα̃α̃ = uα′α̃ = uαα̃ = uαα + uαγ, and this is the same

as ψ(α + γ) = uαα + ψ(γ); thus ψ(γ) = uαγ. Now, consider 1 = (1)i, the identity

element of F̂ [x]. Letting 1 play the role of γ, we get that ψ(1) = uα1 = uα, and so

ψ(γ) = uγγ = ψ(1) · γ. This shows that ψ = ψ(1)· ∈ (F̂ [x])·.

Before stating our result on whether F̂ [x] is an Ore domain, we should define

what an Ore domain is.

Definition 5.4. A ring R is a left Ore domain if and only the set S of nonzero divisors

is mulitplicative and has the property that for a ∈ R and s ∈ S, Sa ∩Rs 6= ∅.

Lemma 5.16. F̂ [x] is not a left Ore domain.

Proof. Let S = F̂ [x]− {0}. Suppose that Sβ ∩ Sβ′ 6= ∅, where β, β′ ∈ F̂ [x]. Since

S is not equal to 0, we know Sβ 6= 0. By Lemma 5.15, we know Sβ ∩Sβ′ = 0. This

gives us that F̂ [x]β∩ F̂ [x]β′ = {0}. Since we know 0 /∈ Sβ, Sβ∩ F̂ [x]β′ = ∅. Thus,

F̂ [x] is not a left Ore domain.

Although we have not been able to prove that (̂F̂ [x])
r

= (F̂ [x])·, we have

come to a conclusion about (̂F̂ [x])
r

which we include below.
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The algebra EndF (F [x]) carries the finite topology which induces a topology

on F̂ [x], which we call the finite topology of F̂ [x]. Let Jn = {α ∈ F̂ [x] : α(xi) =

0 for all 0 ≤ i ≤ n} and O = {Jn : n ≥ 0}. Then O is a basis of the finite topology

and Jn = {α ∈ F̂ [x] : α(Pn) = 0}.

Lemma 5.17. (1) F̂ [x] is complete in the finite topology.

(2) The countable, additive group T = {α ∈ F̂ [x] : α slow} is dense in F̂ [x].

(3) (F [x] ·) is a closed, nowhere dense subalgebra of F̂ [x].

(4) Let Λ ∈ (̂F̂ [x])
r

. Then, Λ is a continuous function with respect to the finite

topology of F̂ [x].

Proof. Let {γn}n be a Cauchy sequence in F̂ [x]. We may assume that γn+1−γn ∈ Jn

for all n ≥ 1. It follows that γm − γk ∈ Jn for all m, k ≥ n. Define α ∈ EndF (F [x])

by (f)α = (f)γn whenever f ∈ Pn. Since γn ∈ F̂ [x], assertion (1) follows. (2) follows

from Lemma 3.2 and Lemma 4.1. Since each Jn is uncountable, (F [x] ·) contains no

open subset. If γn = gn· is a Cauchy sequence with gn ∈ F [x], then γn−γm ∈ J1 for

all n,m ≥ 1, and we have gn = gn1 = γn(1) = γm(1) = gm1 = gm. This shows that

the sequence is constant and (3) follows. Let α ∈ Jn. Then, Λ(α) ∈ αF̂ [x] ⊆ Jn

since Jn is a right ideal of F̂ [x]. This implies (4).

5.4 Corollaries

Corollary 5.1. Let ψ : F̂ [x]→ F̂ [x] be the map ψ(α) = αq. Then, ψ is not additive.

Proof. By way of contradiction, assume that ψ is additive. Then, ψ ∈ ̂̂
F [x]

`

= F̂ [x]·

by Theorem 5.1. This implies that there exists a γ ∈ F̂ [x] with αψ = γα for all

α ∈ F̂ [x]. Consider α = x·. Then, xq· = (x·)ψ = γ(x·) =⇒ ((xq−1) · −γ)(x·) = 0,

thus γ = xq−1·. We then have that (1 + x·)ψ = xq−1(1 + x) = xq−1 + xq. However,

(1 + x·)ψ = 1ψ + xψ = 1q + xq = 1 + xq. This implies that 1 = xq−1. This is a

contradiction to q ≥ 2.
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Corollary 5.2. Consider the map θ : F̂ [x] → F̂ [x] with αθ = αp, p = charF . Then,

θ is not additive.

Proof. Assume θ is additive and q = pm. Then, θm = ψ and compositions of additive

maps are additive. By Corollary 5.1, ψ is not additive, a contradiction.
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CHAPTER SIX

Conclusion

6.1 Introduction

In conclusion, we have learned many things about the ring F̂ [x]. With the

properties that we learned about the ring as well as the behavior of its elements,

there is much more that can now be pursued on the topic.

6.2 Further Results

At the end of working on these results, we were able to tie some of our research

into other topics in Algebra. The results that we found are included below. We felt

that the way our research tied into these concepts was too beautiful to be left out.

For this section, let F be any field and A some F -algebra. We define Â` =

{ϕ ∈ EndF (A) : ϕ(x) ∈ Ax for all x ∈ A} and Âr = {ϕ ∈ EndF (A) : ϕ(x) ∈

xA for all x ∈ A}. Then Â` and Âr are F -algebras with A· ⊆ Â` and ·A ⊆ Âr. Of

course, if A is commutative, then Â` = Âr.

Definition 6.1. Let C be a commutative ring and A some C-algebra. Let 〈 | 〉 :

A×A→ X be any bilinear map into some C-module X. The bilinear map 〈 | 〉 is

called zero-preserving if 〈x|y〉 = 0 whenever x, y ∈ A with xy = 0.

To get to our results, we used a result from a paper by Bres̆ar, et al [1] which

we will include here for convenient reference.

Lemma 6.1. [1] Let C be a commutative ring and A some C-algebra with 1 ∈ A.

The following are equivalent:

(1) If 〈 | 〉 : A×A→ X is a zero preserving C-bilinear map, then there exists

some T ∈ HomC(A,X) with T (xy) = 〈x|y〉 for all x, y ∈ A.
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(2) If 〈 | 〉 : A × A → X is a zero preserving C-bilinear map and xi, yi ∈ A,

for 1 ≤ i ≤ m, with
∑

1≤i≤m

xiyi = 0, then
∑

1≤i≤m

〈xi|yi〉 = 0.

(3) Same as (2), but with m restricted to m = 2.

Proof. We start by showing that (1) implies (2). If
∑

1≤i≤m

xiyi = 0, then
∑

1≤i≤m

〈xi|yi〉 =∑
1≤i≤m

T (xiyi) = T (
∑

1≤i≤m

xiyi) = T (0) = 0. Note that (2) trivially implies (3). Now,

we show that (3) implies (1). Consider the equation xy + (xy)(−1) = 0. By (3), we

have 〈x|y〉+ 〈xy| − 1〉 = 0. Now, define T (z) = 〈z|1〉 for all z ∈ A and observe that

〈x|y〉 = T (xy) for all x, y ∈ A.

Definition 6.2. [1] Let C be a commutative ring and A some C-algebra with 1 ∈ A.

The algebra A is called zero product determined if A satisfies one and thus all of

the conditions of Lemma 6.1.

Remark 6.1. Note that if A has no zero divisors, then all bilinear maps preserve zero.

Lemma 6.2. The following hold for any field F :

(1) F [x] is not zero product determined and

(2) F̂ [x] is not zero product determined.

Proof. (1) Assume that F [x] is zero product determined. Let the bilinear map

〈 | 〉 : F [x] × F [x] → F [x] be defined by 〈f |g〉 = f ′g, where f ′ = d
dx
f . Note

that fg + g(−f) = 0, and since F [x] is zero product determined, we get 0 =

〈f |g〉+ 〈g| − f〉 = 〈f |g〉 − 〈g|f〉. This implies that 〈f |g〉 = 〈g|f〉 for all f, g, i.e., all

bilinear maps are symmetric. To see that this is not possible, look at x2 = 〈x|x2〉 =

〈x2|x〉 = 2x · x = 2x2, which implies that x2 = 0. This is a contradiction.

(2) If F is infinite, then F̂ [x] = F [x] · by Bucker and Dugas’s result [3]. Then,

we are done by repeating part (1).
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Assume F is finite. Now define 〈 | 〉 : F [x]× F [x]→ F [x] by 〈α|β〉 = α←β.

Again, assume that F̂ [x] is zero product determined. Let α ∈ F̂ [x]− F [x]. Recall

the identity xα = α←x for all α ∈ F̂ [x]. Then, xα + α←(−x) = 0 implies that

〈x|α〉 + 〈α←| − x〉 = 0. By the fact that F̂ [x] is zero product determined, we get

that 〈x|α〉+ 〈α←| − x〉 = 0, but this gives 0 = 〈x|α〉+ 〈α←| − x〉 = x←α− α←←x =

xα − α←←x = α←x − α←←x = (α← − α←←)x, and this leads to α← = α←←. This

means that αi+1 = αi+2 for all i ≥ 0. This implies that α ∈ F [x] · by Lemma 4.6, a

contradiction to the choice of α.

Lemma 6.3. Let A be a zero product determined ring with identity. Then, Â` = A·

and Âr = ·A.

Proof. Let α ∈ Â`, and let 〈 | 〉 : A×A→ A be defined by 〈x|y〉 = α(x)y. Then, if

xy = 0, we have that 〈x|y〉 = α(x)y = uxxy = 0. So, 〈 | 〉 preserves zero. Note that

1 · y+ y(−1) = 0 implies that 〈1|y〉+ 〈y| − 1〉 = 0. This gives α(1)y+α(y)(−1) = 0.

In other words, αy = α(1)y for all y ∈ A, and that means α = α(1)·. The proof for

Âr = ·A is done similarly with defining 〈x|y〉 = xβ(y) = xyvy, and so we exclude it

from this epilogue.

Lemma 6.4. Let A be an F -algebra. The following are equivalent:

(1) Â` = Âr.

(2) αA = Aα for all α ∈ A.

(3) A is a duo ring, i.e., all one-sided ideals of A are two-sided ideals of A.

Proof. Assume (1) holds. Let a ∈ A. Then, the left multiplication a· ∈ Â` = Âr,

and for each a ∈ A, there exists some βα ∈ A with aα = αβα. It follows that

Aα ⊆ αA for all α ∈ A. By symmetry, we get the other inclusion and we have (2).
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Clause (2) trivially implies (3). Finally, assume that (3) holds. Note that

Â` = {ϕ ∈ EndF (A) : ϕ(J) ⊆ J for all right ideals J of A}. Thus, both sets are

equal to {ϕ ∈ EndF (A) : ϕ(J) ⊆ J for all ideals J of A}.

Corollary 6.1. Let A be a zero product determined duo ring with identity. Then, A

is commutative.

Proof. By Lemmas 6.2 and 6.3, we have A· = Â` = Âr = ·A. We infer that for all

a ∈ A there exists some b ∈ A such that at = tb for all t ∈ A. For t = 1, we get

a = b, and so at = ta for all a, t ∈ A.

This concludes our extra findings. We now have an easy way to test what Â

is when dealing with zero product determined rings. Hopefully these results will

further other mathematicians’s studies about rings in general.

6.3 Future Work

I would love to attempt to work on the right side of the proof for Theorem

5.1. We have a hunch that it works, but despite much effort and many methods of

approach, we keep getting stuck on the right side. I would love to be able to fully

show that
̂̂
F [x]

r

= F̂ [x].

It would also be quite interesting to see what other characteristics can help

determine R̂ as easily as the characteristic of being zero product determined. The

way the proofs worked so beautifully makes one wonder what else might work in

such a way with the concept of R̂.
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