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CHAPTER ONE

Introduction

The contents of this thesis are situated in the mathematical theory of topological

dynamics. This field originated in the work of Henri Poincaré on the 3-body problem

in physics, which asks to describe the motion of three celestial objects from various

initial conditions [2]. While differential equations that model the forces acting on

each of the bodies are known, giving an explicit solution is a devilishly hard prob-

lem. Indeed, while the 1-body and 2-body problems have exact solutions given by

elementary functions, Poincaré proved no such solution exists for the 3-body prob-

lem. Poincaré’s attention therefore turned away from finding the exact motion of the

bodies and instead focused on the general shape that the system took as time went

on. Under this new consideration, Poincaré answered questions on the periodicity

and asymoptotic behavior of a system in general.

Poincaré’s approach was further developed in the late 1800s and into the early

1900s by French mathematician Jacques Hadamard and American mathematician

George Birkoff. Hadamard’s study of geodesics on surfaces with negative curvature

led to the creation of symbolic dynamics, a subfield of mathematics with applications

in computer science and information theory [9]. On the other hand, Birkoff brought

a rigorous topological framework to the study of dynamics. Birkoff introduced the

notion of a system’s recurrent states: states a system returns arbitrarily close to

infinitely many times [2].

This present work draws upon the influence of these two mathematicians. Here,

we consider the structure of several limit sets for systems consisting of a free group or

monoid action on a compact metric space. These limit sets are reminiscent of Birkoff’s
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recurrent states, as limit sets are exactly the points to which a system approaches

arbitrarily close and infinitely often. Additionally, most of the examples given of these

sorts of systems are generalizations of the symbolic dynamics instituted by Hadamard.

The structure of the thesis is as follows:

In the second chapter, we develop the principles of symbolic dynamics in their

classical context of shift spaces over the integers. Definitions of subshifts and shifts

of finite type are introduced, and shifts of finite type are first characterized by a

special ability to concatenate words. After this, we move to notions of internal chain

transitivity, pseudo-orbits and shadowing on shift spaces, and shifts of finite type

are this time characterized by their ability to shadow certain pseudo-orbits. Finally,

we study the most basic limit sets that arise in shift spaces and characterize their

structure in the context of shifts of finite type.

In the third chapter, we generalize the ideas found in the second. In particular,

we expand the definitions of pseudo-orbits, shadowing, and limit sets to the case of

a dynamical system (X, f) consisting of a compact space X and a single continuous

function f . After this, we generalize shift spaces over the integers to shift spaces over

any group or monoid. Continuing in this direction, we import the properties of these

shift spaces to any compact metric space by way of group and monoid actions. In

this context, we redevelop our definition of a limit set. Finally, we present previous

results in describing certain limit sets for Zd actions.

In the final chapter, we present new results describing the structure of certain limit

sets for finitely-generated free group and monoid actions. After defining four different

limit sets, we introduce analogs of internal chain transitivity and shadowing. Finally,

in the context of systems with a certain shadowing property, we characterize two of

these limit sets in terms of types of internal transitivity.
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CHAPTER TWO

General Results on Shift Spaces over Z

A topological dynamical system is a pair (X, f) consisting of a compact (metric)

space X and a continuous function f : X → X. Some examples of dynamical systems

are shift spaces over the integers. These systems can be useful in simplifying other

dynamical systems while still preserving essential information. Suppose we have a

dynamical system (X, f) and we partition X into 5 distinct pieces, labeling them 1

through 5. We can look at a point x of X and keep track of which regions x, f(x),

f 2(x), . . . are in by recording an infinite word x0x1x2x3 . . . where xi corresponds to

the region that f i(x) is in. This word is called the itinerary of x. If we create the

same record for f(x), the resulting word will be x1x2x3 . . . , which is the word obtained

from x shifted over one space. Let A be the set of these itineraries for x ∈ X and

σ : A → A be the map that shifts a word over one space. If φ : X → A maps a

point x to its associated itinerary, then by the discussion above, σ ◦ φ = φ ◦ f . In

the case that φ is a continuous function, φ is a semi-conjugacy of dynamical systems,

and φ respects the action of the continuous functions in both systems. If φ is a

homeomorphism, then (X, f) and (A, σ) are said to be conjugate. For all intents

and purposes, these dynamical systems are viewed as the same. Even if φ is not a

homeomorphism, it will still often preserve some attributes of (X, f) in the system

(A, σ). Thus, we can approximate a dynamical system by discretizing the phase space

(breaking it into regions) and tracking which regions a point’s orbit visits. This is a

fundamental motivation for shift spaces.

In this chapter, we introduce shift spaces over the integers and introduce the notions

of pseudo-orbits, shadowing, and omega-limit sets in this context. The final chapter
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expands these notions to a more complicated, yet related, context. Much of what

follows about shift spaces can be found in Lind and Marcus’s seminal book on symbolic

dynamics [5]. The subjects of shadowing and omega-limit sets can be found in [3, 4,

6].

Suppose that A is a finite set of symbols (these symbols can be anything, but

integers are most commonly used). We call this our alphabet, from which we construct

bi-infinite words

. . . x−3x−2x−1x0x1x2x3 . . . where every “letter” xi comes from the alphabet A. The

set of all of these bi-infinite words is denoted AZ. For notation purposes, the nth

letter of a word x is represented as xn. We denote the consecutive string of letters

xkxk+1 . . . xn−1xn as x[k,n] where k < n. In the case that k = −n, this is called the

central 2n + 1-block of x.

We can place a metric on AZ by specifying that two bi-infinite words are close

together if they match on their central blocks. More formally, the distance between

x, y ∈ AZ is

d(x, y) = inf
{

1 ∪
{

2−n : x[−n,n] = y[−n,n]

}}
. This says that if the longest central block

that x and y agree on is from index −n to n, then the distance between x and y is

2−n. This satisfies all three requirements for a metric: d(x, y) ≥ 0 with equality

exactly when x = y, d(x, y) = d(y, x) for all x, y, and d(x, z) ≤ d(x, y) + d(y, z) for

all x, y, z. The first two properties are obviously satisfied. Suppose that the largest

central block x and y agree on is from −n to n and the largest central block y and

z agree on is from −m to m. We can assume without loss of generality that n ≥ m.

This implies x and z must agree on the central block from −m to m. Therefore

d(x, y) ≤ 2−m < 2−n + 2−m = d(x, y) + d(y, z).

For the shift space to be a dynamical system, it must comprise of a compact metric

space (which will be the set AZ) and a continuous function from and into that metric

space. We reserve the proof that the shift space is compact for when we prove the
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same for subshifts. The continuous function we use in this situation is called the shift

map σ. As the name suggests, this function works by “shifting” a bi-infinite word

over one space. For example, if x = . . . x−3x−2x−1x0x1x2x3 . . . , σ shifts the center of

the word from x0 to x1. Thus, σ(x)i = xi+1. The shift map is continuous because

if two words x, y are close, then they remain close after the shift map is applied. In

fact, we know that if d(x, y) = 2−n, then d(σ(x), σ(y)) ≤ 2−n+1. This is because if

x[−n,n] = y[−n,n], then σ(x)[−n−1,n−1] = σ(y)[−n−1,n−1].

Thus, the pair (AZ, σ) is a dynamical system. If A has n symbols, this dynamical

system is called the full shift on n letters. This system is not the most interesting sys-

tem to study, however. Returning to the motivation of modeling a dynamical system

by way of a shift space, if the model is the full shift, this implies that a point can go

from any one region to any other region; there are no restrictions. However, consider

the following dynamical system ([0, 1], f) where f(t) = 1
2

+ t
2
. We can model this

with a shift space by dividing [0, 1] into 5 even pieces, [0, 1
5
], (1

5
, 2

5
], (2

5
, 3

5
], (3

5
, 4

5
], (4

5
, 1]

labeling them 1 through 5 respectively. However, if we look at all the possible infinite

words in the shift space, we see that there is never a word with a 1 followed by a 1.

In fact every 1 must be followed by a 3 as f([0, 1
5
]) = [ 5

10
, 6

10
] ⊂ (2

5
, 3

5
]. Therefore, to

represent a dynamical system by way of shift spaces, we must define a way to forbid

certain sequences of letters from appearing in a bi-infinite word of the shift space.

One way to do this is by having a list of forbidden blocks. A block is any x[k,n] of a

bi-infinite word x where k < n. If a block w is m letters long, it is called an m-block

and we write |w| = m. Now suppose we have a collection of forbidden blocks F . We

can use this to define a shift space that is a subsystem of (AZ, σ) by first restricting

to a subset of AZ. This subset we denote XF and define as the set of all bi-infinite

words in AZ that do not contain a forbidden block (i.e. a block w ∈ F). In this case,

we see that σ is still a map from XF to XF , as if x ∈ XF , x must not contain any

forbidden block, so shifting x still means it contains no forbidden block. Therefore,
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σ(x) ∈ XF .

It remains to see that XF is compact. We show this by proving every infinite

sequence in XF converges to a point in XF . The conventional way to do this is

through a diagonal argument. Suppose that {xn}∞n=1 is a sequence of XF . As the

alphabet A is finite, there must be a letter a0 such that infinitely many of the xn

have a0 as a central letter. We then pass to a subsequence {x0
n}
∞
n=1 consisting of

all points with a0 as the central letter. There are only finitely many blocks of three

letters, so there must be a block a−1a0a1 that is the central 3-block of infinitely many

x0
n. Again, we pass to a subsequence {x1

n}
∞
n=1 of all elements with a−1a0a1 as the

central 3-block. We continue this process inductively, finding a central 2n+1-block

that appears infinitely often in a subsequence and then passing to the subsequence

of all points with this as the central 2n+1-block and repeating the process for larger

central blocks. In the end, we have arbitrarily long central 2n+1-blocks that all appear

in XF . These blocks are also nested inside of each other. If we define y ∈ AZ so that

y[−n,n] is the 2n+1-block we obtained, we see that the sequence {xn}∞n=1 converges to

y and that every block in y appears in a central block of some x ∈ XF and thus as a

non-forbidden block of XF . This implies that y ∈ XF and therefore XF is compact.

Hence, we have a dynamical system (XF , σ) that allows us to forbid certain patterns

of letters from appearing. We call this a subshift of AZ.

Shifts of Finite Type

If the set of forbidden blocks F is finite, the shift space exhibits some nice properties

that allow us to easily construct words that are in the shift space. In this case, the shift

space is said to be a shift of finite type (SFT). We should note that even if two sets of

forbidden words F ,F ′ are different, their respective shift spaces XF and XF ′ may be

equal. Consider for example A = {1, 2, 3}, F = {12}, and F ′ = {12, 121, 122, 123}.

In this case, F 6= F ′ but XF = XF ′ , the reason being that forbidding words 121, 122,
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and 123 does not forbid any more words than forbidding 12. Thus, we ought to say

that a subshift XF is an SFT if XF = XF ′ where F ′ is some finite set of forbidden

blocks.

Perhaps the most important thing about an SFT is that it can be viewed as having

a maximum size of minimal forbidden blocks. Therefore, in order to check if a bi-

infinite word contains a forbidden block, it suffices to check only blocks of a certain

length. We call an SFT with the largest forbidden block of size m an m-step SFT.

This fact gives us the following property of shifts of finite type.

Theorem 2.1. If X is an m-step SFT and uw,wv appear as blocks in some (not

necessarily the same) element of X with |w| ≥ m, then uwv appears as a block in

some element of X.

Proof. We prove this by constructing an element of X that contains the block uwv.

As uw = y[n,n+m+k−1] for some y ∈ X we can assume without loss of generality that

uw = y[0,m+k−1]. We can also assume that wv = z[k,l] for some z ∈ X. The result

comes down to gluing the left part of y and the right part of z together at the block

w. Thus, define x by xi = yi for i < k and xi = zi for i ≥ k. Note that for

k ≤ i ≤ l = k +m− 1 yi = zi, as this is the block at which w occurs.

We claim that x ∈ X, and we prove this by showing that x contains no forbidden

blocks. As X is by assumption an m-step SFT, we do this by showing that each

m-block x[i,i+m−1] is not a forbidden block. By our definition of x, for i < k the block

x[i,i+m−1] is the block y[i,i+m−1]. As y ∈ X, this block is not forbidden. For i ≥ k the

block x[i,i+m−1] is the block z[i,i+m−1]. As z ∈ X this block is not forbidden. Therefore

no block of x is forbidden, so x ∈ X. As uwv is a block of x ∈ X, the theorem is

proven.

We can also get the converse of this statement: any subshift with this property is

an SFT. This allows us to completely characterize SFTs by this constructive property.
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In order to prove the converse, it is first necessary to consider what it means for a

subshift to not be an SFT. For this we use the contrapositive of our definition of

an SFT. Thus, if X is not an SFT, then for every F with X = XF , F is infinite.

This is equivalent to: If X is not an SFT, then for every positive integer n there is a

forbidden block w of X with |w| > n such that every subblock of w is not forbidden.

We explain this fact by the following informal argument. Suppose X is not an SFT

and XF = X. F is infinite, so it must contain arbitrarily long forbidden words,

as there are only finitely many words with length less than n. Choose an arbitrary

positive integer n and look at all blocks w ∈ F with |w| > n. If w already contains

a forbidden word u, it does not forbid any new blocks of the shift space. Therefore

we can remove w from F , and the resulting set F ′ will still yield the same subshift.

If this is true for all w ∈ F with |w| > n, then we reduce F to a finite set F ′ with

XF = XF ′ . However, this is not the case, so there must be some block w ∈ F with

|w| > n that contains no forbidden word except itself. We use this fact to prove the

following result which will get us a nice characterization of shifts of finite type.

Theorem 2.2. If there is a positive integer m such that whenever uw,wv appear

as blocks in some (not necessarily the same) element of X with |w| ≥ m, then uwv

appears as a block in some element of X, then X is a SFT.

Proof. We prove the contrapostive. Suppose that X is not an SFT. By our discussion

above, this means that for every integer m there is some forbidden block of X such

that each of its subwords is not forbidden. Now suppose for contradiction that there is

some positive integer m such that if uw,wv appear as blocks in some (not necessarily

the same) element of X with |w| ≥ m then uwv appears as a block in some element

of X. By the fact that X is not an SFT we can choose a forbidden block b of X such

that every subword of b is not forbidden and |b| = k > m+ 2.

Let u = b0, w = b[1,k−2], and v = bk−1. Then |w| = k − 2 > m, and as uw and

wv are subwords of b, they by assumption appear as blocks in X. However, uwv
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is forbidden, so it never appears as a block in X. This contradicts our assumption,

proving the theorem.

Corollary 2.3. A shift space X is a shift of finite type if and only if there is some

positive integer m such that if uw and wv are blocks appearing in X with |w| ≥ m,

then uwv is a block appearing in X.

This characterization of SFTs is important in proving another characterization of

these subshifts involving shadowing.

Shadowing in Shift Spaces

Two related and notable notions in dynamical systems are pseudo-orbits and shad-

owing. Pseudo-orbits relate to how an orbit of a point appears when calculating with

finite precision. Thus there is some error occurring between each iteration of the

orbit. If the measure of the error is always bounded by some number (call it δ), the

pseudo-orbit is called a δ-pseudo-orbit. Shadowing refers to how closely we can find

an actual point of the space to follow the pseudo-orbit. If the distance between the

orbit of a point and a pseudo-orbit are always within some length ε, we say that the

point ε-shadows the pseudo-orbit. A dynamical system has the shadowing property

if for every ε > 0 there is a δ > 0 such that every δ-pseudo-orbit can be ε-shadowed by

a point in the system. This is a very nice property for a dynamical system to have. In

some sense, the shadowing property means that a computer approximation modeling

the orbit of a point of the system actually models the orbit of a point (though perhaps

not the intended point) in the system to some degree of precision. After formalizing

these ideas in shift spaces, we will show that the subshifts that have the shadowing

property are exactly the shifts of finite type.

Definition 2.4. Given δ > 0, a δ-pseudo-orbit of a shift space X is a function

O : N→ X such that for every i ∈ N, d(σ(O(i)),O(i+ 1)) < δ.
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Definition 2.5. Given ε > 0 and a pseudo-orbit O, a point x ∈ X ε-shadows O if

for every n ∈ N d(σn(x),O(n)) < ε.

Definition 2.6. A shift space X has the shadowing property if for every ε > 0 there

is a δ > 0 such that every δ-pseudo-orbit can be ε-shadowed by an element of X.

In the case of shift spaces over Z there is a nice way to visualize ε-shadowing

(although this method breaks down in the last chapter when we generalize to shift

spaces over free groups). Based on the way we defined the metric in a shift space, we

can rephrase any requirement on the distance between two elements as a requirement

on how big of a central block they have in common. Namely, specifying that x, y

be distance less than δ apart is the same as requiring x[−m,m] = y[−m,m] where m is

the smallest integer so that 2−m < δ. We will use this method of specifying distance

throughout the rest of this section for simplicity. Suppose that we have a pseudo-orbit

and have a point x that shadows the pseudo-orbit so that σn(x) and O(n) have the

same central 5-block.

. . . 01002101 001̄02 1212020012 . . .

. . . 21102010 010̄21 2121020120 . . .

. . . 00200000 102̄12 1012121111 . . .

. . . 12122020 021̄21 0100102012 . . .

. . . 02001022 212̄10 1021110121 . . .

In this diagram, each line represents an element of the pseudo-orbit, starting with

O(0) at the top and ending withO(4) at the bottom. The overlined number represents

the central letter of each infinite word, and the boxed numbers represent the blocks
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with which σn(x) must match. In this case, if x were to shadow this pseudo-orbit,

x[−2,6] must be 001021210.

We note two things with this diagram. First, each pair of boxed blocks must agree

on their overlap. If not, there would be no way a point could shadow the pseudo-orbit

with this degree of precision; it would need two different symbols in the same location.

Second, we note that the central block of the shadowing point is entirely determined

by the central block of O(0), and each consecutive element of the pseudo-orbit defines

the next letter that follows. Therefore, we know that if x ε-shadows a δ-pseudo-orbit

with δ ≤ ε and ε is equivalent to necessitating that σn(x)[−m,m] = O(n)[−m,m], then

x[−m,∞] must be defined by x[−m,m] = O(n)−m,m and for k > m, xm+k = O(k)m. The

left side x[−∞,−m−1] does not matter in shadowing; however, it is usually easiest to

define the left side so as to match that of O(0). We will follow this convention.

It seems at first glance that every shift space has the shadowing property. For

every ε > 0 choose δ < ε, and then every δ-pseudo-orbit can be ε-shadowed. We

even defined what that shadowing point must be. However, this misses a subtlety in

the definition of the shadowing property for a shift space X: the shadowing point

must itself be a point of the shift space X. Therefore, even though we know what

the shadowing point must be, we do not know a priori if it contains any forbidden

blocks of X. It is possible that the δ-pseudo-orbit necessitates the shadowing point

to contain such a forbidden block. However, in the case of the full shift, there are no

forbidden blocks, so this system does have the shadowing property.

In what follows, we will show that for shifts of finite type, we can show that the

shadowing point will never contain a forbidden word, so long as we choose δ wisely.

Furthermore, we can show that if X is not a shift of finite type, no matter what δ

we choose, we can find a δ-pseudo-orbit that forces the shadowing point to contain

a forbidden word. Therefore, we can completely characterize shifts of finite type as

those which have the shadowing property.
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Theorem 2.7. A shift space X is a shift of finite type if and only if X has the

shadowing property.

Proof. Let ε > 0 be given. We must find a δ > 0 such that every δ-pseudo-orbit

of X can be ε-shadowed by a point x ∈ X. Importantly, we must also choose δ so

that x contains no forbidden words. We know that if X is a shift of finite type, we

can choose a finite set of forbidden words for X, and thus there is a maximum size

of a forbidden word, say m. The crux of the problem lies in noticing that if ε is

such that σn(x)[−m,m] must be O(n)[−m,m], then every 2m + 1-block of x is a block

in O(n) ∈ X, and thus contains no forbidden words. Therefore, if ε is small enough

to require that σn(x)[−m,m] must be O(n)[−m,m], then we can choose any arbitrary

0 < δ ≤ ε and any δ-pseudo-orbit can be ε-shadowed. If ε is not small enough, we

can find an ε′ < 2−m < ε that is and a 0 < δ < ε′. Then any δ-pseudo-orbit can be

ε′-shadowed, and if it is ε′-shadowed, it is also ε-shadowed.

To prove the other direction, we recall the fact that if X is not an SFT we can

find an arbitrarily long forbidden word with every subword not forbidden. Let ε = 1.

This means that if x ε-shadows a pseudo-orbit O then σn(x)0 = O(n)0. Let δ > 0 be

given and say this requires that σ(O(i))[−m,m] = O(i+ 1)[−m,m]. This is equivalent to

O(i)[−m+1,m+1] = O(i+ 1)[−m,m]. We want to construct a δ-pseudo-orbit that forces a

forbidden word in any point that shadows.

First, note that for 0 ≤ k ≤ m, O(n)k = O(n+k)0. This can be seen by repeatedly

using that fact that O(n)[−m+1,m+1] = O(n+1)[−m,m], so O(n)k = O(n−1)k−1 = · · · =

O(n + k − 1)1 = O(n + k)0. Therefore O(n)[0,m] = O(n)0O(n + 1)0 . . .O(n + m)0 =

x[n,n+m]. Hence, every m-block in the shadowing point is an m-block of an element in

X. This means that if we want to force the shadowing to contain a forbidden word,

it must contain one that is larger than m.

Choose w to be a forbidden word of X so that |w| = k > 2m+ 3 and so that every

subword of w is not forbidden. In order to force the shadowing point x to contain
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w, say at the block x[0,k−1], we need to define wi = O(i)0 for 0 ≤ i < k. We also

need to make sure there is sufficient overlap between O(i) and O(i+ 1). One way to

achieve the overlap is just to let O(i+ 1) = σ(O(i)). However, this will imply that w

is a word in some element of X. Thus, at some point we must change O(i+ 1) more

drastically while still having overlap. One idea is to break w into three parts uw′v so

that |w′| ≥ 2m+ 1 and u and v are single letters. Then uw′ is a valid word, as is w′v.

Therefore we can find words of X, y, z so that y[0,k−2] = uw′ and z[1,k−1] = w′z. We

index in this way so that y[1,k−2] = w′ = z[1,k−2]; this constitutes enough overlap for

us to use. Now define O(i) = σi(y) for 0 ≤ i ≤ bk
2
c and O(i) = σi(z) for i > bk

2
c. We

claim that this constitutes a δ-pseudo-orbit and thus that d(σ(O(i)),O(i+1)) < δ. For

i 6= bk
2
c, this true as d(σ(O(i)),O(i + 1)) = 0. For i = bk

2
c = n, σ(O(i))[−n,k−n−2] =

σn+1(y)[−n,k−n−2] = y[1,k−1] = z[1,k−1] = σn+1(z)[−n,k−n−2] = O(i + 1)[−n,k−n−2]. As

k > 2m + 3, this means O is a δ-pseudo-orbit. Finally, we see that for 0 ≤ i ≤ k,

O(i)0 = yi = wi and for k + 1 ≤ i ≤ 2k + 2, O(i)0 = σi(z)0 = zi = wi. Therefore any

point the ε-shadows O must contain the forbidden word w. Hence X does not have

the shadowing property.

An interesting variant of the shadowing property is the asymptotic shadowing prop-

erty. Whereas pseudo-orbits and shadowing are expressed in terms of fixed δ and ε,

the aysmptotic variation considers the case when the pseudo-orbits and shadowing

get more precise as time goes on.

Definition 2.8. An asymptotic pseudo-orbit of a shift space X is a function O : N→

X such that for every δ > 0 there is an m ∈ N such that d(σ(O(k)),O(k + 1)) < δ

for every k > m.

Definition 2.9. A psuedo-orbit O is asymptotically shadowed by x if for every ε > 0

there is an m ∈ N such that d(σi(x),O(i)) < ε for every i > m.

Definition 2.10. A shift space X has the asymptotic shadowing property if every
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asymptotic pseudo-orbit of X is asymptotically shadowed by a point of X.

Theorem 2.11. If X is a shift of finite type, then X has the asymptotic shadowing

property.

Proof. Let X be an m-step SFT and O be an asymptotic pseudo-orbit. Therefore,

there is an N ∈ N such that for n > N , d(σ(O(n)),O(n+ 1)) < 2−m. We can define

a new asymptotic pseudo-orbit P by P(i) = O(i+N). This makes P an asymptotic

pseudo-orbit that is also an 2−m pseudo-orbit. As X is an m-step SFT, there is a

point x ∈ X that 2−1-shadows P . We claim that x actually asymptotically shadows

P . Let 2−m > ε > 0 be given. There is thus an M ∈ N such that P is a ε-pseudo-orbit

after index M . By the properties of shadowing that we demonstrated before, x will

ε-shadow P after this index. Therefore x does indeed asymptotically shadow P , so

σ−N(x) asymptotically shadows O and the theorem is proved.

Omega-Limit Sets and Chain Transitivity

When looking at a point in a dynamical system, one useful thing to consider is the

recurrent behavior of the point: places to which a point continues to draw near after

arbitrarily many applications of the continuous function. These places constitute the

omega-limit set of a point x. We write this as ω(x) and define it in the case of shift

spaces as follows.

Definition 2.12. For x in some shift space X, the omega-limit set of x, ω(x) =⋂
n∈N {σk(x) : k > n}

One of the consequences of any shift space X being compact is that the infinite

intersection of nested closed sets of X is necessarily non-empty. Therefore, for any

x ∈ X, ω(x) is non-empty. Moreover, ω(x) is also compact, as it is the intersection

of closed sets in a compact space.
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To see what kinds of points are in ω(x), recall that in a shift space, two points

are close if they agree on a large central block. Therefore, if y ∈ {σk(x) : k > n},

for every η > 0 there must be z ∈
{
σk(x) : k > n

}
with d(x, z) ≤ η. In other

words, the arbitrarily long central blocks of y must appear as central blocks of points

in
{
σk(x) : k > n

}
. Central blocks in this set are simply blocks in x, as points in

the set are all shifts of x. Therefore, points of ω(x) are those points of X whose

(arbitrarily long) central blocks appear in x[0,∞]. We formalize this idea with the

following theorem.

Theorem 2.13. A point y ∈ ω(x) if and only if for every n ∈ N there is an i > n

such that σi(x)[−n,n] = y[−n,n].

Proof. Suppose that y ∈ ω(x). Then for n ∈ N, y ∈ {σk(x) : k > n}. Therefore,

there is an i > n such that y[−n,n] = σi(x)[−n,n].

Now suppose that for every n ∈ N there is an i > n such that σi(x)[−n,n] = y[−n,n].

It is immediate that y ∈ {σk(x) : k > n} for all n ∈ N. Hence y ∈ ω(x).

This characterization of ω(x) is useful for proving the following.

Theorem 2.14. The set ω(x) is invariant; that is, σ(ω(x)) ⊆ ω(x).

Proof. We must show that if y ∈ ω(x), then σ(y) ∈ ω(x). Let y ∈ ω(x). By Theorem

2.13, for every n ∈ N there is an i > n + 1 such that y[−n−1,n+1] = σi(x)[−n−1,n+1].

Applying the continuous shift map yields σ(y)[−n,n] = σi+1(x)[−n,n]. Therefore, for

every n ∈ N there is an i > n such that σi(x)[−n,n] = σ(y)[−n,n], and so σ(y) ∈

ω(x).

Because ω(x) is compact and invariant under the shift map, (ω(x), σ) is a dynamical

system. In fact, as a subset of the full shift, it is a subshift.

Another interesting characteristic of omega-limit sets is that we can get from one

point of the omega-limit set to another using a finite portion of a δ-pseudo-orbit
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(called a δ-chain) of ω(x), no matter how small δ is. This property is called internal

chain transitivity (ICT).

Definition 2.15. A subshift A ⊆ X is internally chain transitive (ICT) if for every

δ > 0 and x, y ∈ A there is a sequence of elements {ai}ni=0 ⊆ A such that a0 = x,

an = y, and d(σ(ai), ai+1) < δ for 0 ≤ i < n. We call this sequence of elements a

δ-chain.

It makes some intuitive sense that omega-limit sets have this property. Omega-

limit sets are comprised of points that some point x gets arbitrarily close to during

its orbit infinitely many times. Say that y, z ∈ ω(x) for some x. Then x gets close

to y at σi(x), and x gets close to z at σi+k(x). Then the portion of the orbit of x,

σi(x), σi+1(x), . . . , σi+k(x) connects y and z. However, we do not necessarily know if

these shifts of x are elements of the omega-limit set. What we do know is that these

shifts of x get close enough to ω(x) to connect y and z in a δ-chain. The following

lemma shows a condition for which these elements of the δ-chain are suitably close

to elements of the omega-limit set.

Lemma 2.16. For ε > 0 there is an n > 0 such that d(σk(x), ω(x)) < ε for all k > m.

Proof. First, what we mean by d(σk(x), ω(x)) < ε is that we can find a point y ∈ ω(x)

with d(σk(x), y) < ε.

Suppose that the theorem does not hold. Then we can find an infinite sequence

of integers {nk} such that d(σnk(x), ω(x)) > ε. However, this sequence converges

to a point y ∈ X as X is compact. This also implies that y ∈ {σk(x) : k > n}

for all n. Hence y ∈ ω(x). However, this means there must be some nk0 with

d(σnk0 (x), ω(x)) < ε, which is a contradiction.

One way to think about this result in the context of shift spaces is that after a

certain number of letters to the right of the central letter, x no longer contains blocks

of a certain size which are not central blocks of points in ω(x). If this were not the
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case, we would be able to construct a point in ω(x) that has such a block as its central

block using a diagonal argument similar to the one proving shift spaces are compact.

With this lemma, we can now show omega-limit sets are ICT.

Theorem 2.17. For x ∈ X, ω(x) is ICT.

Proof. Let y, z ∈ ω(x) and choose δ > 0. By Lemma 2.16, there is some m ∈ N

such that d(σk(x), ω(x)) < δ
6

for all k > m. As y ∈ {σk(x) : k > m} there is some

i > m so that d(σi(x), y) < δ
2
. As z ∈ {σk(x) : k > i} there is some k > 0 with

d(σi+k(x), z) < δ.

Now define a0 = y, ak = z and for 0 < j < k choose aj ∈ ω(x) with d(aj, σ
i+j(x)) <

δ
6
. Such an element exists by Lemma 2.16 and the choice of m. We claim that this is

a δ-chain. By the continuity of the shift map, the requirement that d(σi+j(x), aj) <

δ
6

means d(σi+j+1(x), σ(aj)) <
δ
3
. Therefore d(σ(aj), aj+1) < d(σ(aj), σ

i+j+1(x)) +

d(σi+j+1(x), aj+1) < δ. This is a δ-chain, implying ω(x) is ICT.

Thus, we have that every omega-limit set is ICT, but do we also have the converse?

Is every ICT subset of a shift space X an omega-limit point of some x ∈ X? Sur-

prisingly, this is true for shifts of finite type. Hence, we can characterize omega-limit

sets as internally chain transitive sets in these subshifts.

Theorem 2.18. Let X be a shift of finite type. If A ⊆ X is ICT, then A = ω(x) for

some x ∈ X.

Proof. The idea here is to construct x so that the blocks that appear infinitely often

in x are central blocks of elements of A and every central block of an element of A

appears infinitely often. The only question is how to connect these central blocks

together, but we can do this by way of the δ-chains guaranteed by ICT.

Suppose that X is an m-step shift of finite type. For i > m, let Ui =
{
xij
}ki
j=0

be

a collection of elements of A such that every central 2i + 1-block of A appears as a

central 2i + 1-block of an element of Ui. As the alphabet of the shift space is finite,
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each Ui can be chosen to be finite as there are only finitely many possibilities for

different 2i+ 1-blocks.

Between each xij and xij+1 there is a 2−i chain cij. We can concatenate these chains

to get another 2i chain di = ci0c
i
1 . . . c

i
ki

. Then we can find a 2−i chain ei between

xiki and xi+1
0 . Finally, by concatenating dmemdm+1em+1 . . . we obtain an asymptotic

2−1-pseudo-orbit in A.

As X is an m-step SFT, there is some x̄ ∈ X that shadows this pseudo-orbit. By

the construction of the pseudo-orbit, every central block of an element of A appears

infinitely often in x̄. Furthermore, these central blocks are the only ones that appear

in x̄. Therefore, ω(x̄) = A.

Another historically important result about omega-limit sets is that they are weakly

incompressible. This means that for any proper, closed A ⊆ ω(x), A∩σ(ω(x)\A) 6= ∅.

Theorem 2.19. ω(x) is weakly incompressible.

Proof. Let A ⊆ ω(x) be closed. Choose x0 ∈ ω(x)\A and y ∈ A. As ω(x) is ICT,

for every integer n there is a 1
n
-chain in ω(x) from x0 to y. As x0 ∈ ω(x)\A and

y ∈ A, this implies there is an xn ∈ ω(x)\A in the 1
n
-chain with xn+1 ∈ A. Thus

d(σ(xn), xn+1) < 1
n
. Thus {xn}∞n=1 is a sequence of points of ω(x)\A such that the

sequence {f(xn)}∞n=1 converges to a point of A. This point is also in σ(ω(x)\A) and

therefore A ∩ σ(ω(x)\A) 6= ∅.
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CHAPTER THREE

Group Actions and Dynamical Systems

In the last chapter, we developed the foundations of the study of shift spaces,

specifically shifts of finite type, and the link between omega-limit sets and internal

chain transitivity in these contexts. While this is a good basis for the study of limit

sets in dynamical systems, there is still much room for generalization.

In this chapter, we provide the framework for many avenues of generalization in

this area of study. Particularly, we begin by extending the results of shift spaces from

the previous chapter into the context of a general dynamical system (X, f) where

X is a compact metric space and f is a continuous function. After this, we expand

the notion of a shift space from the classical example, which is shift spaces over Z,

to more exotic shift spaces over arbitrary groups. To extend these shift spaces into

more general dynamical systems, we must then introduce group and monoid actions

on a compact metric space. In this context, we give a general definition for limit sets.

Finally, we summarize previous work which explores certain limit sets in the context

of Zd actions.

From Shift Spaces to Dynamical Systems

The categories of dynamical systems of the form (XF , σ) and (X, f) share many

similarities. For one, the former is a specific instance of the latter. Both of the ambient

spaces are compact metric spaces, and there is one continuous function acting on the

space (either σ or f). Because of the similarities of these dynamical systems, it is

an easy task to transfer the definitions of omega-limit sets and shadowing from one

category to the other. Indeed, most of the previous definitions and proofs can be
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emended simply by replacing instances of σ with f and converting statements of two

points in the shift space sharing the same central n-block to statements of points

being close with respect to the given metric. However, one serious difference between

these contexts is present in this endeavor. For shift spaces, especially shifts of finite

type, we can explicitly construct points of the space that shadow or asymptotically

shadow pseduo-orbits; this is because the structure of shift spaces is explicitly given.

When generalizing to more abstract dynamical systems, these known structures are

lost in the generality. As such, instead of explicitly constructing points in the ambient

space, we often must recourse to non-constructive existence proofs.

For the sake of completeness, we give the following generalizations of the results of

the previous chapter in the context of general dynamical systems.

Definition 3.1. Given δ > 0, a δ-pseudo-orbit is a function O : N → X such that

for every i ∈ N, d(f(O(i)),O(i+ 1)) < δ.

Definition 3.2. Given ε > 0 and a pseudo-orbit O, a point x ∈ X ε-shadows O if

for every n ∈ N d(fn(x),O(n)) < ε.

Definition 3.3. A dynamical system (X, f) has the shadowing property provided for

every ε > 0 there is a δ > 0 such that every δ-pseudo-orbit can be ε-shadowed by an

element of X.

Definition 3.4. An asymptotic pseudo-orbit is a function O : N → X such that for

every δ > 0 there is an m ∈ N such that d(f(O(k)),O(k + 1)) < δ for every k > m.

Definition 3.5. A pseudo-orbit O is asymptotically shadowed by x if for every ε > 0

there is an m ∈ N such that d(f i(x),O(i)) < ε for every i > m.

Definition 3.6. A shift space X has the asymptotic shadowing property if every

asymptotic pseudo-orbit of X is asymptotically shadowed by a point of X.

Definition 3.7. For x ∈ X, the omega-limit set of x, ω(x) =
⋂
n∈N {fk(x) : k > n}
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Theorem 3.8. A point y ∈ ω(x) if and only if for every n ∈ N there is an i > n

such that d(f i(x), y) < 1
n

.

Proof. Suppose that y ∈ ω(x). Then for n ∈ N, y ∈ {fk(x) : k > n}. Therefore,

there is an i > n such that d(f i(x), y) < 1
n
.

Now suppose that for every n ∈ N there is an i > n such that d(f i(x), y) < 1
n
. It

is immediate that y ∈ {fk(x) : k > n} for all n ∈ N. Hence y ∈ ω(x).

Theorem 3.9. The set ω(x) is invariant; that is, f(ω(x)) ⊆ ω(x).

Proof. We must show that if y ∈ ω(x) then f(y) ∈ ω(x). Let y ∈ ω(x). By Theorem

3.8, for every n ∈ N there is an i > n + 1 such that d(f i(x), y) < 1
n
. Applying the

function f yields d(f i+1(x), y) < 1
n
. Therefore, for every n ∈ N there is an i > n such

that d(f i(x), y) < 1
n
, and so f(y) ∈ ω(x).

Definition 3.10. A closed subset A ⊆ X is internally chain transitive (ICT) if for

every δ > 0 and x, y ∈ A there is a sequence of elements {ai}ni=0 ⊆ A such that

a0 = x, an = y and d(f(ai), ai+1) < δ for 0 ≤ i < n. We call this sequence of elements

a δ-chain.

Lemma 3.11. For ε > 0 there is an n > 0 such that d(fk(x), ω(x)) < ε for all k > m.

Proof. Suppose that the theorem does not hold. Then we can find an infinite sequence

of integers {nk} such that d(fnk(x), ω(x)) > ε. However, this sequence converges

to a point y ∈ X as X is compact. This also implies that y ∈ {fk(x) : k > n}

for all n. Hence y ∈ ω(x). However, this means there must be some nk0 with

d(fnk0 (x), ω(x)) < ε, which is a contradiction.

Theorem 3.12. For x ∈ X, ω(x) is ICT.

Proof. Fix y, z ∈ ω(x) and ε > 0. By the uniform continuity of f we have δ > 0

and δ < ε
3

with d(f(p), f(q)) < ε
3

whenever d(p, q) < δ. By Lemma 3.11 we have a

positive integer N with d(fk(x), ω(x)) < δ for k > N .
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Choose m > N with d(fm(x), y) < δ and k > m with d(fk(x), z) < δ. Construct

{xi}k−mi=0 in ω(x) by x0 = y, xk−m = z, and choosing xi so d(xi, f
m+i(x)) < δ oth-

erwise. For i < w − k, d(xi, f
m+i(x)) < δ so d(f(xi), f

m+i+1(x)) < ε
3
. Therefore

d(f(xi), xi+1) < ε.

Theorem 3.13. For (X, f) with the asymptotic shadowing property, if A ⊆ X is

ICT, then A = ω(x) for some x ∈ X.

Proof. As in the proof for the shift space case, we will construct an asymptotic psuedo-

orbit such that any point x which asymptotically shadows it will have ω(x) = A.

To construct such a pseudo-orbit, for n ∈ N, let {ani }
kn
i=1 ⊆ A be a 1

n
cover of A.

As A is ICT, we can find a 1
n
-chain between ani and ani+1 for every i and a 1

n+1
-chain

between ankn and an+1
1 for every n. If we concatenate all these chains in the obvious

way, then we get an asymptotic pseudo-orbit O.

By the asymptotic shadowing property, there is some x ∈ X that asymptotically

shadows O. We claim that ω(x) = A. If y ∈ ω(x), then for every m ∈ N there is

some l > m with d(f l(x), y) < 1
m

. Finding l large enough, as O is an asymptotic

pseudo-orbit, we have d(f l(x),O(l)) < 1
m

. Thus we have d(O(l), y) < 2
m

. As we can

do this with arbitrary m, y then must converge to a point in A. Hence, ω(x) ⊆ A.

Now suppose y ∈ A. By the construction, for every m ∈ N there is a km such that

d(y,O(km) < 1
m

. We can also assume without loss of generality that km > m. As x

asymptotically shadows O there is an Nm such that for all i > Nm, d(fki(x),O(ki)) <

1
m

. Choosing n large so that kn > N2m and n > 2m, we have d(fkn(x), y) < 1
m

. This

then implies y ∈ ω(x). Hence A = ω(x).

Theorem 3.14. ω(x) is weakly incompressible.

Proof. Let A ⊆ ω(x) be closed. Choose x0 ∈ ω(x)\A and y ∈ A. As ω(x) is ICT,

for every integer n there a 1
n
-chain in ω(x) from x0 to y. As x0 ∈ ω(x)\A and

y ∈ A, this implies there is an xn ∈ ω(x)\A in the 1
n
-chain with xn+1 ∈ A. Thus
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d(f(xn), xn+1) < 1
n
. Thus {xn}∞n=1 is a sequence of points of ω(x)\A such that the

sequence {f(xn)}∞n=1 converges to a point of A. This point is also in f(ω(x)\A) and

therefore A ∩ f(ω(x)\A) 6= ∅.

Shift Spaces over Groups

Another avenue to extend the results of Chapter 2 is to consider different kinds

of shift spaces. To this point, the shift spaces we have considered consist of a set of

points which are constrained by some rules. These rules dictate that the words be

formed of symbols from some fixed, finite alphabet; the rules also determine which

finite pattens of symbols can or cannot appear in an infinite word. There is also

a continuous shift map, σ, acting on this space which takes a word and shifts all

the symbols over one spot. It was easy to make this shift space into a metric space

by calling infinite words close if they shared a large central block. Specifically, for

any infinite words x or y, if the largest central block they shared was size n, then

d(x, y) = 2−n (or if they do not share any central block d(x, y) = 1).

Suppose instead of arranging the symbols of the word in an infinite line, we arranged

symbols in a finite circle:

1
2

2

1
31

2

3

1

Again, we can create a set of forbidden patterns of symbols and then create a space

of all these circular words which do not contain these patterns. Define the central

n-block of a word to be the n symbols beginning at the top of the circle and going

clockwise. We can make this set of circular words into a metric space by again calling

points close if they agree on a set block of symbols. More specifically, if two words

x, y agree on an n-block, but not an n+1-block, then d(x, y) = 1
2n

, and if the words
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do not agree on any n-block, d(x, y) = 1.

1
2

2

1
31

2

3

1
1

2

2

3
21

2

1

2

Figure 3.1: Two words with their central 3-blocks outlined. The distance between
these words is 1

8
.

There is also a natural shift map σ on this space. Instead of shifting the word

linearly as in the classic case of a shift space, we can instead rotate the word one letter

counter-clockwise. It is easy to see that this function is continuous. Furthermore, by

the same diagonal argument used in the classic shift space case, for any collection of

forbidden block F , the associated subshift XF consisting of all words not containing

a block of F is compact. Hence, (XF , σ) is a dynamical system.

Another natural way to extend the idea of a shift space is to arrange the symbols

into an infinite grid.

Just as previously, if we define a set of forbidden patterns of symbols F , we get a

set of allowed “square” words XF . We can then define a central n-block by associating

the position of letter in a word to the set of lattice points Z× Z and then define the

n-block to consist of all symbols whose maximal coordinate is less than or equal to n.

We define a metric on XF by d(x, y) = 2−n where n is the largest integer for which

x and y have the same central n-block. If x, y do not share a central n-block for any

n, then d(x, y) = 1. This makes XF a metric space. In fact, by a similar argument

1
2

2

1
31

2

3

1
σ

2
2

1

3
12

3

1

1

Figure 3.2: The shift map for circular words
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2
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3

3

Figure 3.3: An example of a square word with its central 1-block outlined

to the other two shift spaces, XF is compact.

In this shift space, there are two obvious shift maps, and each is continuous. One of

the maps, σx, shifts the word one letter to the left. The other map, σy shifts the word

one letter down. An important observation to make about these two maps is that

they commute with each other. Thus, given a word z ∈ XF , σx(σy(z)) = σy(σx(z))

(see Figure 3.4).

To this point, we have given three examples of shift spaces. In order to reach a

generalization of shift spaces, it is helpful to take a step back and see what these

examples have in common. Each shift space primarily consists of a set of “words”

whose symbols are arranged in a particular pattern and some functions which shift

the symbols of a word. On top of this, we defined a metric on the shift space based

on a sort of geometric center of the configuration of the symbols. The metric was

defined in such a way that the shift maps were continuous.

What then is the best way to generalize this? We can think of each word in the

shift space as a set of symbols in a specific configuration. If we place each point of

the configuration in a set X, we can think of a word as a function from the base

configuration X into a finite alphabet A. Thus, every point in the configuration is

assigned a letter. For the examples, we can view the configurations as Z for the classic
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Figure 3.4: The commuting shift maps

shift space case, Zn for the circular shift space case (where n is the number of symbols

in the word), and Z× Z for the infinite grid case. Note that these configurations are

all groups. The reason for this will be seen shortly when considering shift maps.

Thus, the set of words of a shift space consists of a set of function from some fixed

group G to some fixed, finite alphabet A.

Having established the general nature of the words in a shift space, it is time to

turn our attention to the shift maps. If f : G → A is a word in the shift space, a

shift map σ must take f to another function σ(f) : G→ A by means of shifting the

symbols in the configuration. Because of this, it seems like σ must act on the symbols

themselves. However, there is no apparent way for this to be defined. Another option

is to view σ as shifting the underlying group G. For the classic shift space over Z,

consisting of words of the form x : Z→ A, the shift map worked by σ(x(n)) = x(n+1)

for all n ∈ N. The shift map worked in the same way for the circular word case, and

26



for the infinite grid case, σx(x)(m,n) = x(m+ 1, n) and σy(x)(m,n) = x(m,n+ 1).

At this point, it is still difficult to understand what is happening in the abstract. In

order to assuage this problem, we recourse to a common technique in algebra. Let G

be a group and Y a finite set. We denote the set of all functions from G to Y by F(G).

Then for every g ∈ G, there is a function hg : F(G) → F(G) by hg(f)(g′) = f(gg′)

for all g′. It turns out, this is the exact way shift maps act on words of a shift space.

For the classic and the circular word case, σ acts like h1, and for the infinite grid case,

σx acts like h(1,0) and σy acts like h(0,1).

There is, however, one crucial difference between the example from algebra and the

shift maps: in the example from algebra, there was a map defined from every element

of the underlying group, while there are only a few shift maps in each case. This

difference is easily dismissed when one considers the composition of the shift maps

and their inverses. For the classical case, any hn is equivalent to σn for any n ∈ Z.

Hence it suffices to just consider the composition of the one shift map and its inverse.

The same is true for the other cases. This leads us to the formal definition of a shift

space over any arbitrary group over any arbitrary group.

Definition 3.15. Given a group G and a finite alphabet A, the full shift over G to

A consists of X, the set of all functions from G→ A, and a set of shift maps {σg}g∈G
where σg(x)(h) = x(gh) for all x ∈ X and h ∈ G.

If the group G is countable, the full shift over G is a metric space. To construct

the metric, fix an ordering {gk}k∈N of the elements of G, and define d(x, y) = 2−n

where n = inf {{1} ∪ {k : x(gk) 6= y(gk)}}. By the same diagonal argument used in

the classic case, this metric makes the full shift compact. Moreover, every shift map

σg is continuous. To see this, let x be an element of the full shift and ε > 0. We must

find a δ > 0 so that if d(x, y) < δ, then d(σg(x), σg(y)) < ε. Find k large so that

2−k < ε. Hence, we need σg(x)(gn) = σg(y)(gn) for every n ≤ k. This is equivalent to

saying x(ggn) = y(ggn) for n ≤ k. Finding the maximum m such that ggn = gm for
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n ≤ k, this condition is satisfied when d(x, y) < 2−m. Thus, whenever d(x, y) < 2−m,

d(σg(x), σg(y)) < ε. Thus σg is continuous.

In the cases we have seen before, we can also define a subshift by forbidding a

certain set of patterns. Just as before, these subshifts will be invariant under the

shift maps and will be compact.

Definition 3.16. For a group G and alphabet A, a pattern is a finite subset {(gi, ai)}

of G×A such that gi 6= gj for i 6= j. A word x does not contain a pattern {(gi, ai)}

if for every g ∈ G there is an i such that x(ggi) 6= ai.

Given a set of forbidden patterns F , the subshift XF consists of all words of X

which do not contain a pattern in F . In the case that F is finite, XF is a shift of

finite type.

With this definition, it is possible to study a shift space over any group, even those

not as easily visualized like the previous examples. Moreover, because none of the

definitions rely on the existence of inverses, simply replacing the word “group” with

“monoid” leads to the definition of shift spaces over monoids.

Group Actions and Dynamical Systems

Having defined shift spaces over arbitrary groups and monoids, our goal now turns

to placing these spaces into the context of more general dynamical systems. At the

beginning of the chapter, we noted how many of the definitions and results of limit

sets in shift spaces over Z carried over directly to a dynamical system (X, f). This is

because there was a direct analogue between the dynamics of the shift maps in shift

spaces over Z and iterates of the continuous map f in an arbitrary dynamical system.

As noted in the previous chapter, shift spaces over Z are examples of dynamical

systems. While we to this point have no results about limit sets in shift spaces over

arbitrary groups, our goal is to find what sort of system over a general, compact

metric space is analogous to these shift spaces.
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Because we know the ambient space of the analogous system ought to be a compact

metric space, the only question is how to generalize the functions acting on the

space. For any group G, there are |G| many functions acting on the space, where

|G| represents the size of the group G. The group structure also importantly defines

how these functions interact with one another. Given two elements g, h ∈ G and an

element x in a shift space overG, the compostion of shift maps σg◦σh is the same as the

shift map σhg, as for any g′ ∈ G, σg(σh(x))(g′) = σh(x)(gg′) = x(hgg′) = σhg(x)(g′).

Thus, our generalized system must have a set of continuous functions that interact

similarly, according to the group structure. In order to formalize this, we need the

definition of a group action.

Definition 3.17. Given a group G and a set X, a left group action is a function

φ : G×X → X such that

1. φ(e, x) = x for all x ∈ X

2. φ(g, φ(h, x)) = φ(gh, x) for all g, h ∈ G and x ∈ X

A right group action is a function ψ : X ×G→ X such that

1. ψ(x, e) = x for all x ∈ X

2. ψ(ψ(x, g), h) = ψ(x, gh) for all x ∈ X and g, h ∈ G

Often, we write g ·x and x·g for φ(g, x) and ψ(x, g) respectively. Also, the functions

φ|{g}×X and ψ|X×{g} are written φg and ψg where φg = φ(g, ·) and ψg = ψ(·, g).

In the case that X is a topological space, and G is endowed with the discrete

topology, a continuous left (resp. right) group action is a left (resp. right) group

action φ (resp. ψ ) such that φ (resp. ψ ) is continuous. This is equivalent to

φg : X → X (resp. ψg) being continuous for every g ∈ G.
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For the most part, we will not be particular about the difference between left and

right group actions. In fact, we can easily convert between a left and right group

action by simply defining φg = ψg−1 for all g ∈ G.

We have already seen an example of a continuous right group action, namely the

shift maps in a shift space over any group G. Therefore, continuous group actions

acting on a compact metric space is the desired generalization of shift spaces over

groups. We can further extend this to generalize shift spaces over monoids by defining

a monoid action in the same way as a group action but replacing the word “group”

with the word “monoid.” It is important to note that in group actions, the continuous

functions are necessarily homeomorphisms because of the existence of a continuous

inverse. This further implication is not present in monoid actions.

For the rest of the paper, we will use fg instead of φg or ψg. This is in order to be

more congruent with normal function notation.

Limit Sets in Group and Monoid Actions

In the case of shift spaces over Z, the definition of a limit set was a simple one,

as there was essentially only one function. Therefore, the only “future” of a point

was the point under iterations of the single function. However, when considering a

general G action, there is more than one function to consider. Thus, there is no way

to define a single limit set for a general group or monoid action. This being the case,

there is a general form a limit set ought to take. This form was first defined by Souza

in [8].

Definition 3.18. Given a group or monoid G, a family of subsets F of G, and a G

action on a (compact metric) topological space X, the ω-limit set for the family F is

the intersection

ω(x) =
⋂
A∈F

{fg(x) : g ∈ A}
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As the intersection of closed sets, ω(x) is closed. Furthermore, in the case that

X is compact and F is a filter basis (i.e. ∅ /∈ F and for every A,B ∈ F there

is a C ∈ F with C ⊆ A ∩ B) then ω(x) is non-empty. Importantly, the limit set

defined in the classical case of a Z action is of this form. Taking F = {An}n∈N where

An = N \ {1, . . . , n}, the ω-limit set for the family F is exactly the omega-limit set

previously defined.

In the case that G is finite, the limit sets are largely uninteresting. The ω-limit

sets are exactly the sets {fg(x) : g ∈ A and A ⊆ G}. This is because for every family

of subsets F of G and every A ∈ F , {fg(x) : g ∈ A} is finite, so {fg(x) : g ∈ A} =

{fg(x) : g ∈ A}. Therefore, ω(x) is the intersection of shifts of x.

On the other hand, these limit sets become more interesting when G is infinite.

In these instances, limit sets may consist of more than shifts of a point. This is

because the closures {fg(x) : g ∈ A} may not be trivial. The complexity of studying

ω-limit sets therefore increases when G is infinite. In general, the internal structure of

arbitrary ω-limit sets is not well-known. In the previous section, we saw ω-limit sets

in Z actions are characterized by the property of internal chain transitivity. Whether

there is an analogous internal property which characterizes arbitrary ω-limit set is

still an open question. However, characterizations have been given for certain ω-limit

sets in certain G actions.

Limit Sets in Zd actions

In [7], the authors consider four limit sets for Zd actions and, in the case of shifts

of finite type or systems with a type of shadowing property, characterize these limit

sets by a generalization of internal chain transitivity called internal mesh transitivity.

Each of the limit sets have an underlying geometric interpretation for the shift space

case. Points in these limit sets have their central blocks occuring in some defined

region of Zd lying arbitrarily far away from the origin. The four limit sets are defined
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formally as follows:

Let Dd =
{
η ∈ Zd : gcd {ηi} = 1

}
.

Definition 3.19. For η ∈ Dd and x ∈ X,

Lη(x) =
{
y ∈ X : ∀M ∈ N, ε > 0 ∃ t ∈ Zd such that t · η > M and d(y, σt(x)) < ε

}
y

x

t · η1 = Mη

Figure 3.5: The underlying geometry for Lη(x)

Figure 3.5 captures the “futures” of the group action considered by Lη(x)-limit

sets. In paticular, the futures following the direction of the vector η. It is also

easy to see that this limit set is also a limit set in the sense of Souza. Taking

AM =
{
t ∈ Zd : t · η > M

}
and F = {AM}M∈N, then Lη(x) =

⋂
A∈F

{fg(x) : g ∈ A}.

Finally, there is an explicit geometric interpretation of this limit set in the case of

shift spaces: Lη(x) consists of all points whose middle M -block appears in the shaded

region of Figure 3.5 for every M ∈ N.

Definition 3.20. For E ⊆ Dd and x ∈ X,

L+
E(x) =

{
y ∈ X : ∀M ∈ N, ε > 0 ∃t ∈ Zd s.t. minη∈E {t · η} > M, d(y, σt(x)) < ε

}
L−E(x) =

{
y ∈ X : ∀M ∈ N, ε > 0 ∃t ∈ Zd s.t. maxη∈E {t · η} > M, d(y, σt(x)) < ε

}
Given a subset E ⊆ Dd, L+

E considers the intersection of the regions consid-

ered in Lη for η ∈ E, and L−E considers the union of such regions. Again, these

are limit sets in the sense of Souza. For L+
E take F = {BM}M∈N where BM ={

t ∈ Zd : minη∈E {t · η} > M
}

. Similarly, for L−E, take F = {CM}M∈N where CM =
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{
t ∈ Zd : maxη∈E {t · η} > M

}
. Once again there is a geometric interpretation for the

shift space case: both L+
E and L−E consist of points whose middle M -block appears in

the corresponding shaded regions for every M ∈ N.

y

x

t · η1 = M

t · η
2

=
M

η1

η2

y

x

t · η1 = M

t · η
2

=
M

η1

η2

Figure 3.6: The associated regions for L−E and L+
E respectively

Definition 3.21. For x ∈ X,

ω(x) =
{
y ∈ X : ∀M ∈ N, ε > 0 ∃t ∈ Zd s.t. max1≤i≤d {|ti|} > M, d(y, σt(x)) < ε

}
This limit set captures all “futures” of a point occuring arbitrarily far away from

the origin. Because this limit set does not consider any particular direction, it is the

most general of the considered limit sets. By taking F = {DM}M∈Z with DM ={
t ∈ Zd : max1≤i≤d |ti| > M

}
, this is a limit set in the sense of Souza. In the 2-

dimensional shift case, there is an explicit geometric interpretation: points in ω(x)

are exactly those whose middle M -blocks appear in the shaded region of the below

figure for every M ∈ N. Finally, it is important to note that ω(x) = L−E(x) when E

is the set of all canonical basis vectors and their inverses.

Because of the strong interelations between the geometries of the corresponding

described regions of the definitions, it is easy to get the following relation of limit

sets:
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y

x

Figure 3.7: The underlying geometry for ω(x)

Theorem 3.22. For E ⊆ Dd finite and x ∈ X, for any η ∈ E we have

L+
E(x) ⊆

⋂
β∈E

Lβ(x) ⊆ Lη(x) ⊆
⋃
β∈E

Lη(x) = L−E(x) ⊆ ω(x)

To characterize these limit sets, the authors of [7] define an analog of internal

chain transitivity for higher dimensions. Recall that for ε > 0 an ε-chain is a subset

{x1, . . . , xn} ⊆ X such that d(σ(xk), xk+1) < ε. For the higher dimensional analog,

we need to consider relations between points under the shift maps in any dimension,

and we would like the underlying geometry of the collection of points to mimic the

underlying geometry of the limit sets.

For E ⊆ Dd, let F denote either E+ or E−. Also, let ‖t‖ denote the respective

norms for these limit sets, that is, minη∈E {t · η} for E+ and maxη∈E {t · η} for E−.

Definition 3.23. For ε > 0, an ε − F -mesh is a collection {pt}M≤‖t‖≤K ⊆ X for

some M ≤ K ∈ Z such that for every |s| = 1 and M ≤ ‖t‖ ≤ ‖t + s‖ ≤ K,

d(σs(pt), ps+t) < ε.

In the case that M = K, this is called an ε− F -band.

The idea behind this definition can be easily visualized. Suppose we have M ≤
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K ∈ Z and corresponding shaded regions for these two integers as in Figure 3.6.

The set {pt}M≤‖t‖≤K corresponds to choosing an element for every lattice point in

the symmetric difference of the two regions. Furthermore, these elements must be

chosen such that whenever we move within this region from one point to another in

a direction away from the origin and of distance 1 (i.e. movement along a canonical

basis vector away from the origin) the shift maps the starting point close to the ending

point.

Unlike chains in one dimenion, meshes are more difficult to concatenate. The

primary reason for this difficulty is that there is a much greater overlap required in

order to concatenate. Particularly, to concatenate two ε-chains, only the final point

and the initial point of the chains need to correspond. For meshes to concatenate,

it is not even enough that the outer and inner bands of the two meshes correspond.

Some meshes simply cannot be extended.

However, the following definitions give sufficient conditions for when meshes can

be expanded to form a situation analogous to internal chain transitivity.

Definition 3.24. For ε > 0, an ε − F -band C and y ∈ X, an ε − F -mesh from C

to y is an ε − F -mesh P = {pt}K≤‖t‖≤M such that {pt}‖t‖=K = C and there exists

‖t‖ = M with d(pt, y) < ε.

Definition 3.25. A set Λ ⊆ X is internally mesh transitive with respect to F if there

exist collections {CN} of F -bands in Λ such that for every ε > 0 there is Nε such that

for every C ∈ CNε and y ∈ X there exists an ε−F -mesh {pt}K≤‖t‖≤M in Λ from C to

y and C ′ = {pt}‖t‖=M ∈ CN ε
2
.

This definition clearly lends itself to the construction of a sort of asymptotic pseudo-

orbit in which one can specify that certain points appear arbitrarily often. Indeed, by

this method of construction, it is shown that in cases with an asymptotic shadowing

property, closed sets which are internally mesh transitive with respect to F are exactly

those LF limit sets.
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Conclusion

In the final chapter, we present results in a similar fashion to those in [7], looking

at a few specific limit sets and providing a characterization for such sets within a

context of asymptotic shadowing. However, instead of considering Zd actions, we

consider actions of finitely generated free groups and monoids.
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CHAPTER FOUR

Limit Sets in Free Group and Monoid Actions

Introduction

In the previous chapter, we mentioned a generalized notion of limit sets in any

monoid action. In this understanding, limit sets are defined by first choosing a family

F of subsets of the monoid H and a point x; then the limit set is the intersection

∩S∈F{fu(x) : u ∈ S}. While this definition has the benefit of being defined in every

context of a monoid action, it also creates an astounding number of limit sets for

any system. Furthermore, without knowing any structure of the monoid acting on

the topological space, it is difficult to investigate any properties of the limit sets. To

alleviate these hindrances, we will fix the monoids in our investigation to be finitely-

generated free groups and monoids. Also, we will constrain ourselves to looking at

only four different families of subsets of these monoids.

There is good reason to choose finitely-generated free groups and monoids as the

groups acting on a space. For one, the structure of these monoids is easily understood:

they can be viewed as the set of finite words over a finite alphabet (which includes

inverses in the free group case), and multiplication is concatenation of these words

(with cancellation of inverses for the free groups). Thus, multiplication can be done

iteratively by multiplying by single letters of the alphabet. Also, these monoids are

non-abelian, and there is not much interaction between elements. In particular, this

means it is not difficult to extend a finite portion of an element of a shift space over

a free monoid to a complete element in the shift space. This is a crucial fact for some

of the constructions.

The general goal of this chapter is to generalize some of the properties of limit
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sets in Z actions to the context of free group and monoid actions. The structure

of the chapter is as follows. First, preliminary definitions and notations are given.

Then, four different limit sets are defined, and general properties like compactness

and invariance are proven. Next, different types of internal transitivity of sets are

defined. Finally, we prove that these types of internal transivity can characterize two

of the limit sets.

Preliminaries

Let G be a group or monoid and X a compact metric space. As we’ve seen before, a

continuous left G action on X is a function f : G×X → X that satisfies the following

conditions: for each g ∈ G, the function fg defined by fg(x) = f(g, x) is continuous,

for the identity e ∈ G, fe is the identity on X, and for g, h ∈ G, fgh = fh ◦ fg.

For n ∈ N, let F denote the free group on n generators {s0, . . . sn−1} and S =

{s0, . . . sn−1, . . . s
−1
n−1} be the set of all generators and their inverses. The set of reduced

words of F is the set W = {e} ∪ {w0w1 · · ·wk ∈ Sω : wi 6= w−1
i+1 for i < k} with e

denoting the empty word. Each element of F has a unique representative in W , and

the group operation of F is realized in W by concatenation followed by cancellation.

We define the length of an element u ∈ F to be the number of letters in its reduced

representation. We denote this by |u|. The identity of F is associated with the empty

word e and has length 0. Finally, we will say for two elements of F with reduced

representations u = u0 . . . un and v = v0 . . . vn+k, that u is a prefix of v if ui = vi for

0 ≤ i ≤ n. Additionally, we will take the identity e to be a prefix of every element of

F .

It will also be necessary to consider the infinite words of F . In particular, we define

the set W∞ = {〈wi〉i∈ω : wi 6= w−1
i+1 for i ∈ ω}. Let u,w be two words (either finite or

infinite) with length at least n. We say u|n = w|n if ui = wi for 0 ≤ i < n.

For n ∈ N, let H denote the free monoid on the n generators P = {s0, . . . sn−1}.
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In this case, H coincides with the set of words of {e} ∪ {w0w1 · · ·wk ∈ P ω} with e

denoting the empty word, as every element of H has a unique representation, and the

binary operation is simply concatenation. The collection of infinite words of H is the

set H∞ = {〈wi〉i∈ω : wi ∈ P}. The length of elements, prefixes, and restrictions w|n

are defined the same as in the free group case.

For the sake of generality, we take G as either a free group or monoid with W the

set of words, W∞ the set of infinite words, and S the set of generators (with inverses

in the group case).

For a finite alphabet A, the full shift of A over G (denoted AG) is the set of all

functions x : G → A. There is a natural G action σ on AG defined as follows. For

every s ∈ S there is an associated shift map σs : AG → AG defined by σs(x)(u) =

x(su). For v = v0 . . . vn ∈ G, we define σv(x) = σvn ◦ · · · ◦ σv0(x). Thus σv(x)(u) =

x(vu).

For fixed G, define Σn = {u ∈ G : |u| < n}. We place a metric on AG defined by

d(x, y) = inf ({2−n : x|Σn = y|Σn} ∪ {1}). It is easy to see that under the topology

induced by this metric, AG is compact and the action σ is continuous. In particular,

if d(x, y) = 2−n then d(σi(x), σi(y)) ≤ 2−n+1. Furthermore, for u ∈ G, if d(x, y) = 2−n

then d(σu(x), σu(y)) ≤ min
{

2−m+|u|, 1
}

.

An n-block is a function Bn : Σn → A. An element x ∈ AG is said to contain Bn

if there exists a u ∈ G such that σu(x)|Σn = Bn. Let F be a collection of m-blocks

where m is allowed to range over the integers. We create a subspace of AG defined as

XF =
{
x ∈ AG : x contains no B ∈ F

}
. XF is compact and invariant under the shift

maps. In this case, F is called a set of forbidden blocks. Any invariant and compact

subspace of AG can be expressed as XF for some set F . This is called a shift space.

In the case that F is finite, the shift space is a shift of finite type (SFT). If M is the

maximal integer such that some B ∈ F is an M-block, Y is called an M-step shift of

finite type. In this case, we can assume without loss of generality that every element
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Figure 4.1: A representation of an element of {0, 1}F2 with the middle 3-block filled
in.

of F is an M-block.

In a metric space X, the distance between a point x ∈ X and closed subset A ⊆ X

we define as d(x,A) = infa∈A d(x, a). This gives rise to the Hausdorff distance between

two closed subsets A,B ⊆ X defined as

dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Limit Sets for Free Group and Monoid Actions

Here, we define four different limit sets in this context. Importantly, each limit

set is a limit set in the sense of Souza. Moreover, each limit set has an underlying

geometric interpretation.

The first limit set we consider is perhaps the most general in that there is no

inherent “direction” or “future” involved.

Definition 4.1. For x ∈ X, ω(x) =
⋂
n∈N {fu(x) : |u| > n}.
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This can be seen to be a limit set under Souza’s definition by taking F = {An}n∈N

where An = {u ∈ F : |u| > n}. From the definition, it is immediate to see ω(x) is

compact and non-empty, as it is the intersection of nested, closed subsets of a compact

space. An equivalent metric interpretation of the set is given in the following lemma.

Lemma 4.2. ω(x) =
{
y ∈ X : ∀n ∈ N ∃ |un| > n s.t. d(fun(x), y) < 1

n

}
.

Proof. Let y ∈ ω(x). For n ∈ N there exists a sequence {ui}i∈N ⊆ G with ui > n such

that {fui(x)} converges to y, as y ∈ {fu(x) : |u| > n}. Thus we can choose |un| > n

with d(fun(x), y) < 1
n
.

Now let y ∈
{
y ∈ X : ∀n ∈ N ∃ |un| > n s.t. d(fun(x), y) < 1

n

}
. For n ∈ N choose

|un| > n with d(fun(x), y) < 1
n
. Thus, for m ≥ n, fum(x) ∈ {fu(x) : |u| > n}, and

{fui(x)}∞i=m converges to y. Therefore y ∈ {fu(x) : |u| > n}.

Lemma 4.3. The set ω(x) is invariant.

Proof. Let y ∈ ω(x) and i ∈ S. By the uniform continuity of fi, there exists δn > 0

such that d(fi(x), fi(y)) < 1
n

if d(x, y) < δn. As y ∈ ω(x), there is a sequence {uj}

increasing in length such that d(y, fuj(x)) < δj. Hence, d(fi(y), fuji(x)) < 1
j

for all j

so y ∈ ω(x).

Compared to the first limit set, the following limit set has a strong directionality,

consisting of all points that occur along one particular trajectory of a point’s orbit.

Definition 4.4. For x ∈ X and w ∈ W∞, ωw(x) =
⋂
n∈N {fw0...wk(x) : k > n}.

Defining An =
{
u : u = w|m for some m > n

}
and F = {An}n∈N, this is a limit

set in the sense of Souza. Again, ωw(x) is automatically compact and non-empty.

However, in gaining directionality, we also lose general invariance, although a remnant

is still present.

Theorem 4.5. In the case of a free group action, for y ∈ ωw(x) there exists i 6= j ∈ S

such that fi(y), fj(y) ∈ ωw(x).
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Proof. Let y ∈ ωw(x) be given. By the uniform continuity of the maps fi, for

every n ∈ N there is kn such that if d(x, z) < 1
kn

, then d(fi(x), fi(z)) < 1
n

for

all i ∈ S. For n ∈ N choose mn > n + 1 such that d(fw0...wmn (x), y) < 1
km

.

Choose i ∈ S such that i = wmn+1 for infinitely many n. We can then choose j

so j = w−1
mn for infinitely many n with wmn+1 = i. Thus i 6= j. By passing to a

subsequence if necessary, we can assume wmn = i−1 and wmn+1 = j. Notice then that

d(fw0...wmn (x), y) < 1
kn

. Thus d(fj(fw0...wmn (x)), fj(y)) = d(fw0...wmn−1(x), fj(y)) < 1
n
.

Similarly, d(fw0...wmn+1(x), fi(y)) < 1
n
. As mn − 1 > n, fi(y), fj(y) ∈ ωw(x).

Because free monoids do not have inverses, the same formulation of invariance does

not hold. Indeed, each point in the free monoid context may only have one direction

of invariance. However, there is a direction in which the pre-image of a point remains

in the limit set.

Corollary 4.6. In the case of a free monoid action, for y ∈ ωw(x) there exists i ∈ S

such that fi(y) ∈ ωw(x), and there exists z ∈ ωw(x) and j ∈ S with y = fj(z).

Proof. The proof is essentially the same as the preceeding. Let y ∈ ωw(x). By

the uniform continuity of the maps fi, for every n ∈ N there is kn such that if

d(x, z) < 1
kn

, then d(fi(x), fi(z)) < 1
n

for all i ∈ S. For n ∈ N choose mn > n+ 1 such

that d(fw0...wmn (x), y) < 1
km

. Choose i ∈ S such that i = wmn+1 for infinitely many

n. Likewise, choose j such that wmn = j for infinitely many mn. By passing to a

subsequence if necessary, we can assume this is the case for every mn. Note then that

d(fw0 . . . fwm(x), y) < 1
kn

. Hence, d(fw0 . . . fwm+1(x), fi(y)) < 1
n
, and fi(y) ∈ ωw(x).

Now the set
{
fw0 . . . fwmn−1(x)

}
⊆ X converges to some z ∈ X as X is compact. This

implies z ∈ ωw(x) as we can find mn′ > n with d(z, fw0 . . . fwmn′−1(x)) < 1
n
. Then,

fj(z) = fj(limn→∞ fw0 . . . fwmn−1(x)) = limn→∞ fw0 . . . fwmn−1fj(x) = y.

In the third limit set we consider, there is still a strong sense of direction. Instead

of looking at the orbit of a point under one trajectory, we look at the trajectories that
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follow one direction for the first n steps. Even though this loses some directionality

compared to the previous limit sets, it does recover general invariance.

Definition 4.7. For x ∈ X and w ∈ W∞, ωFw(x) =
⋂
n∈N {fu(x) : u|n = w|n}

By taking F = {An}n∈N where An =
{
u ∈ F : u|n = w|n

}
, this is considered a limit

set under Souza’s definition.

Lemma 4.8. ωFw(x) =
{
y ∈ X : ∀ m ∃ u ∈ G s.t. d(fu(x), y)) < 1

m
and u|m = w|m

}
.

Theorem 4.9. ωFw(x) is invariant.

Proof. For m ∈ N choose km > m such that for i ∈ S, if d(y, z) < 1
km

then

d(fi(y), fi(z)) < 1
m

. Find u ∈ G such that d(fu(x), y) < 1
km

. Thus d(fui(x), fi(y)) <

1
m

. As km > m, ui|m = w|m. Therefore fi(y) ∈ ωFw(x).

The final limit set we consider is the most restrictive and consists of points that

occur in a point’s orbit in every direction. Because of this strict requirement, not

much structure is apparent. Even more, it is not guaranteed the limit set is non-

empty.

To formalize the idea of occurence along every trajectory of an orbit, we define the

following.

Definition 4.10. A prefix set P is a collection of words in F such that no word is

a prefix of another. The size of P is |P | = sup {|x| : x ∈ P}. The minimum size of

P is bP c = min {|x| : x ∈ P} A finite prefix set P is a complete prefix set (CPS) if

every x ∈ X with |x| ≥ |P | has a prefix in P .

Definition 4.11. Let x ∈ X.

ωCPS(x) =
{
y ∈ X : ∀n ∃ CPS Pn with bPnc ≥ n s.t. ∀w ∈ Pn d(fw(x), y) < 1

n

}
.

Although difficult to see at this moment, this is a limit set under Sousa’s definition

when we take F = ∪w∈W∞Fw where Fw is the family taken to define ωw(x). Once we

prove that ωCPS(x) =
⋂
w∈W∞ ωw(x), this will easily follow.
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Lemma 4.12. The set ωCPS(x) is compact.

Proof. Suppose ωCPS(x) 6= ∅ and y ∈ ωCPS(x). For n ∈ N choose yn ∈ ωCPS(x) with

d(y, yn) < 1
2n

. Choose a CPS Pn with bPnc > n so that for w ∈ Pn d(yn, fw(x)) < 1
2n

.

Then d(y, fw(x)) < 1
n
. Hence, y ∈ ωCPS(x), and ωCPS(x) is closed. As X is compact,

ωCPS(x) is compact.

It is not necessary that ωCPS(x) is non-empty. Consider x ∈ {0, 1}F where for some

fixed i ∈ S x(iu) = 0 = x(1) for u ∈ F , and x(v) = 1 otherwise. However, under the

condition of mixing in a shift space, the set of all x ∈ X with non-empty ωCPS(x) is

dense in X when in the context of free monoid actions. The following definition is

the natural generalization of mixing in tree-shifts explored by Ban and Chang [1].

Definition 4.13. A shift space X over H is mixing if for every i ∈ S there exists

CPS Pi such that for any n-block A and m-block B there is an x ∈ X such that

the central n-block of x is A and for every word u = u1 . . . un−1 ∈ H and for every

v = v1 . . . vk ∈ Pun−1 with v1 6= u−1
n−1, the m-block centered at uv is B.

Theorem 4.14. If X is mixing, the set {x ∈ X : ωCPS(x) 6= ∅} is dense in X.

Proof. Fix n > 1 and x ∈ X. Let A1 = x|Σn . We will construct y ∈ X with

d(x, y) = 2−n and y ∈ ωCPS(y). Let Pi be given by the definition of mixing, and let

M = max {|Pi|}i∈S and m = min {bPic}i∈S. By mixing, choose y1 ∈ X with y1|Σn =

A1 and for for every word u = u1 . . . un−1 ∈ H and for every v = v1 . . . vm ∈ Pun−1 , the

n-block centered at uv is A1. We claim that P1 =
{
uv : |u| = n− 1 and v ∈ Pun−1

}
is a CPS. First, note that |P1| = M + n− 1 and bP1c > 1. Suppose for contradiction

that P1 is not a CPS. Then for some |t| > |P1| every prefix of t is not in P1. Write

t = t1 . . . tn . . . tm and look at the word tn . . . tm. The length of this subword is greater

thanM so there exists r ∈ Ptn−1 that is a prefix of tn . . . tm. Therefore, t1 . . . tn−1r ∈ P1

and is a prefix of t. Hence P1 is a CPS. Now set n1 = M + 2n.
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For the inductive step of the construction, suppose we have sequences y1, . . . , yk ∈

X, integers n1, . . . , nk, and CPS P1, . . . , Pk such that

1. ni+1 = M + 2ni > |Pi+1|.

2. d(yi, yi+1) ≤ 2−(ni).

3. For t ∈ Pi, d(σt(yi+1), yi) ≤ 2−(ni).

4. bPic > i.

Let Ai = yi|Σni . Set Pi+1 =
{
uv : |u| = ni − 1 and v ∈ Puni−1

}
. By the same

argumentation as above, this is a CPS. Setting ni+1 = M + 2ni we see |Pi+1| =

ni−1+M < ni+1 Furthermore, bPic = ni+m > i. Finally, mixing gives the existence

of a yi+1 ∈ X such that for t ∈ Pk, d(σt(yi+1), yi) ≤ 2−(ni) and d(yi, yi+1) ≤ 2−(ni).

Therefore our inductive hypotheses are correct.

By induction we have sequences y1, y2, · · · ∈ X, integers n1, n2, . . . , and CPS

P1, P2, . . . matching our inductive hypothesis. As X is compact, {yi} converges to

some y ∈ X. By nature of the inductive hypothesis, we get the following properties

of y:

1. d(yi, y) ≤ 2−(ni).

2. For t ∈ Pi, d(σt(y), yi) ≤ 2−(ni).

We claim that y ∈ ωCPS(y). Note that for i > 0, 1
n
< 2−(n−1). Properties (1)

and (2) yield for t ∈ Pi, d(σt(y), y) ≤ 2−(ni−1). As bPic > i, y ∈ ωCPS(y). Finally,

d(y, y1) ≤ 2−n1 = 2−(M+2n) so d(x, y) ≤ 2−n.

Lemma 4.15.
⋃
w∈W∞ ωw(x) ⊆ ω(x).

Proof. Suppose y ∈ ωw(x) for some w = w0 · · · ∈ W∞. For all n > m, |w0 · · ·wn−1| >

m. Hence {fw1...wn(x) : n > m} ⊆ {fu(x) : |u| > m} and ωw(x) ⊆ ω(x).
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Theorem 4.16. ωCPS(x) =
⋂
w∈W∞ ωw(x).

Proof. Choose w = w0w1 · · · ∈ Winfty. Suppose y ∈ ωCPS(x). For n ∈ N there is

an un ∈ Pn that is a prefix of w. Hence un = w0 . . . wkn and d(fw1...wkn
(x), y) =

d(fun(x), y) < 1
n
. As kn > n, y ∈ ωw(x). So ωCPS(x) ⊆

⋂
w∈W∞ ωw(x).

Now suppose that y ∈
⋂
w∈W∞ ωw(x). Let n ∈ N. For each w = w1w2 · · · ∈ W∞, let

nw > n be the minimal integer with d(fw1...wnw (x), y) < 1
n
. Under the same metric used

for words in a shift space over Z (more specifically, N), for each w, U = B2−(nw−1)(w)

satisfies nw = nw′ for w′ ∈ U . W∞ is compact so finitely many of these balls cover

w. We can assume without loss of generality that these open sets are disjoint, as

if not, one set will contain the other. For each open set in the finite subcover, the

common central block of each open set forms a CPS with minimal length greater than

n. Hence, y ∈ ωCPS(x).

Recall these defined limit sets were based on a sort of underlying directionality

based on the orbit of a point under certain trajectories: ωCPS under each trajectory,

ωw under a specific trajectory, ωFw under trajectories agreeing on the first few steps,

and ω under any trajectory. Unsurprisingly, because of the underlying similarities of

these trajectories, there are significant relationships between the limit sets.

Lemma 4.17. ωFw(x) ⊆ ω(x)

Proof. Let y ∈ ωFw(x). Thus there is a sequence of finite words wn with wn|n = w|n

and d(fwn(x), y) < 2−n. Note then that |wn| ≥ n. Therefore y ∈ ω(x).

Lemma 4.18. ωw(x) ⊆ ωFw(x)

Proof. This is immediate after noting {fw0...wk(x) : k > n} ⊆
{
fu(x) : u|n = w|n

}
.

Theorem 4.19. ωCPS(x) ⊆
⋂
w∈W∞ ωFw(x).

Proof. This follows immediately from the previous lemma.
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For an instance in which equality does not hold, consider x ∈ {0, 1}F2 where for

some fixed i ∈ S, x(ik) = 0 for all k ∈ Z, and x(v) = 1 elsewhere. Along wi = iω,

ωwi(x) = x1 the constant element of all 1s. On the other hand, for wj = jω for

j 6= i, i−1, ωwj(x) = x0 the constant element of all 0s. Therefore ωCPS(x) = ∅.

However, it is easily seen that x1 ∈ ωFw(x) for any w ∈ W∞.

These relationships are summarized in the following.

Theorem 4.20. ωCPS(x) ⊆ ωw(x) ⊆ ωFw(x) ⊆ ω(x) for all w ∈ W∞.

Analogues of Internal Chain Transitivity

We have shown before that in the case of Z actions, there is a notion of a set of

points being chain transitive. In these chain transitive sets, we can get from one

point to another by way of a finite section of an ε-pseudo orbit, for any ε > 0. In the

context of Z actions, there is a definite direction the chain travels from one point to

another, and it is the forward direction under the shift map. However, in the case

of free group actions, there are many ways to go “forward.” Thus, there are many

directions a chain can go and needs to be specified.

Furthermore, an important property of chain transitivity in Z actions with the

shadowing property is that they are precisely the limit sets of the action. A reasonable

question to ask is whether there is a definition of internal transitivity which also

characterizes limit sets in free group actions. The answer to this question, as we

will see towards the end of the chapter, is yes for some of the limit sets we defined

previously. However, due to the variety of limit sets defined, it is only natural there

must also be a variety of types of internal transitivity. In what follows, we define these

types of internal transitivity, prove properties of the collection of sets exhibiting these

transitivities, and demonstrate limits sets display these transitivities. For notation,

let Ww denote all ωw-limit sets and WFw the set of all ωFw-limit sets in X.

The first internal transitivity we define is like in the context of Z actions in that
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a chain between two points follows a “linear” path, but the direction of the path

depends on the end points and the precision of the path.

Definition 4.21. Given ε > 0 and an element u = u1 . . . un ∈ W , an ε-chain indexed

by u is a sequence {x1, . . . , xn+1} of X such that d(fui(xi), xi+1) < ε.

Definition 4.22. A closed subset Y of X is internally chain transitive (Y ∈ ICT ) if

for every x, y ∈ Y and ε > 0 there is a u ∈ W and ε-chain indexed by u with x1 = x

and xn+1 = y.

Theorem 4.23. ICT is closed.

Proof. Let Y ∈ ICT , x, y ∈ Y , and ε > 0. By the uniform continuity of fi there is

a ε
3
> δ > 0 such that d(a, b) < δ implies d(fi(a), fi(b)) <

ε
3
. Choose B ∈ ICT with

dH(A,B) < δ and x′, y′ ∈ B with d(x, x′) < δ and d(y, y′) < δ. There is a δ-chain

indexed by u from x′ to y′ in B. Say this chain is {x1, . . . , xn+1}. For 2 ≤ i ≤ n choose

zi ∈ Y with d(zi, xi) < δ, and let z1 = x, zn+1 = y. It follows that {z1, . . . , zn+1}

is an ε-chain from x to y, as d(fui(zi), zi+1) ≤ d(fui(zi), fui(xi)) + d(fui(xi), xi+1) +

d(xi+1, zi+1) < ε. Therefore Y ∈ ICT .

In order to show that ωw-limit sets are ICT, we utilize the following lemma.

Lemma 4.24. For every ε > 0, w = w1w2 · · · ∈ W∞, and x ∈ X there exists Nε ∈ N

such that for n > Nε d(fw1...wn(x), ωw(x)) < ε.

Proof. Suppose to the contrary. Then we have an increasing sequence of integers

{mn} with d(fw1...wmn (x), ωw(x)) > ε. By passing to a subsequence if necessary,{
fw1...wmn (x)

}
converges to a point y ∈ ωw(x). However, d(y, ωw(x)) ≥ ε, a contra-

diction.

Theorem 4.25. Ww ⊆ ICT .
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Proof. Let ωw(x) ∈ Ww, y, z ∈ ωw(x), and ε > 0. By the uniform continuity of fi,

there is a ε
3
> δ > 0 such that if d(p, q) < δ then d(fu(p), fu(q)) <

ε
3

for u ∈ S. Let

Nδ be given by the previous lemma. Find n > m > Nδ such that d(fw1...wm(x), y) < δ

and d(fw1...wn(x), z) < δ.

Let k = n − m and fix t1 . . . tk = wm+1 . . . wn. Set x0 = y, xk = z. For

1 < i < k choose xi so d(xi, σw1...wn+i−1
(x)) < δ. We claim that d(fti(xi), xi+1) <

ε. d(xi, fw1...wn+i−1
(x)) < δ so d(fti(xi), fw1...wn+i(x)) < ε

3
. Thus d(fti(xi), xi+1) <

d(fti(xi), fw1...wn+i(x)) + d(xi+1, fw1...wn+i(x)) < ε. Therefore ωw(x) is internally chain

transitive.

Likewise, we use the following lemma to show WFw ⊆ ICT in the case of free group

actions.

Lemma 4.26. Given x ∈ X and w ∈ W , for every ε > 0 there exists Nε ∈ N such

that for all u ∈ G with u|n = w|n for n > Nε, d(σu(x), ωFw(x)) < ε.

Proof. Suppose not. Then for every n > N there is a un ∈ G with un|n = w|n such

that d(fun(x), ωFw(x)) > ε. By passing to a subsequence if necessary, these fun(x)

converge to a point y ∈ ωFw(x). However, d(y, ωFw(x)) > ε, a contradiction.

Theorem 4.27. For free group actions, WFw ⊆ ICT .

Proof. Let ωFw(x) ∈ WFw , y, z ∈ ωFw(x), and ε > 0. By the uniform continuity of

the fi, there is a ε
3
> δ > 0 such that if d(p, q) < δ then d(fi(p), fi(q)) <

ε
3

for i ∈ S.

Let Nδ be given by the previous lemma. We can then find u, v ∈ F such that for

n > m > Nδ u|m = w|m, v|n = w|n,u|n 6= w|n, d(fu(x), y) < δ, and d(fv(x), z) < δ.

Fix t1 . . . tk = u−1v. Set x0 = y and xk = z. Note then that for any l ≤ k,

ut1 . . . tl|Nδ = w|Nδ . Therefore, we can find xi ∈ ωFw(x) such that d(xi, fut1 . . . ti(x)) <

δ. This choice then makes an ε chain from y to z in ωFw(x). Therefore, ωFw(x) ∈

ICT .
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Note that the previous proof relies heavily on the existence of inverses in the free

group. Therefore, the proof does not hold in the strictly free monoid case, and is

indeed false for some cases.

Even though ICT seems to be the most natural generalization of internal chain

transitivity from Z actions, it is deficient in that it cannot characterize Ww.

Example 4.28. Let X be the full-shift on the alphabet {0, 1, 2} over F2. Let Y ⊂

X = {x0, x1, . . . } where x0 is 1 for elements of the form ambn (n > 0) and 0 elsewhere,

x1 = σb−1(x0), and finally we define x2 the same as x0 except replacing each 1 with

2. For i > 2, x2+i = σai(x2). It is not hard to see that this is ICT. Getting to and

from x0 and x1 is just a shift as is x2 to x2+i. To get from x1 to x2 we just need to

get i sufficiently large so that d(σa(x1), x2+i) < ε and then shift to get to x2.

However, Y cannot be expressed as ωw(x) for any w, x. Note that for ε < 2−2 any

ε-chain ending at x0 must be indexed by a word ending in b and any ε-chain beginning

at x0 and going to xi (i > 0) must begin with b−1. However, we claim this can never

be the case for an element in ωw(x).

Let x ∈ X, 2−2 > ε > 0, w = w1w2 · · · ∈ W∞ be given, and choose Nε ∈ N such

that for m > Nε, d(σw1...wm(x), ωw(x)) < ε. Let ε
3
> δ > 0 so that if d(x, y) < δ,

d(σi(x), σi(y)) < ε
3
. Find k > Nε such that d(σw1...wk(x), x1) < δ, m > k with

d(σw1...wm(x), x0) < δ, and l > m with d(σw1...wl(x), x1) < δ. As in the proof that

ωw(x) is ICT, we can get an ε-chain between x1 and x0 indexed by the word wm+1 . . . sk

and a ε-chain between x0 and x1 indexed by wk+1 . . . wl. As wk, wk+1 are in a reduced

word, wk 6= w−1
k+1. This then shows that our example cannot be expressed as an

ωw-limit set.

In a sense, the failure of ICT to characterize Ww is due to the lack of consistent

structure or direction in the ε-chain between two points. In particular, if there is an

ε-chain between x and y, and an ε-chain between y and z, it is not necessarily the

case we can concatenate these chains to get an ε-chain between x and z. For instance,
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the ε-chain between y and z could backtrack on the direction of the chain from x to

y and not agree on the overlap.

Thus, our goals necessitate a definition of internal transitivity that has sufficient

structure and consistency in the ε-chain between points. This leads to the following

definitions.

Definition 4.29. Let Y be a closed subset ot X. Y is consistently internally chain

transitive (Y ∈ CICT ) if for every x ∈ Y there are i(x), t(x) ∈ S with i(x) 6= t(x)−1

such that for every ε > 0 and x, y ∈ Y there is an ε-chain between x and y indexed

by a word starting with i(x) and ending with t(y).

It is easy to see that because monoids have no inverses, CICT is exactly the same

as ICT for free monoid actions.

In the case of ICT , it was relatively easy to show the set is closed. However, the

analogous result for CICT has an added subtlety. Not only must there be δ-chains,

but also each point x has an associated initial and terminal index i(x) and t(x). For

Y ∈ CICT and x ∈ Y , it is intuitive to define i(x), j(x) to match those of points in

CICT sets that converge to x. However, defining i(x), j(x) for all x in this manner

may not imply i(x), t(y) interact in the necessary way for any pair x, y. In order to

properly choose i(x), t(x), we must appeal to properties of X being a compact metric

space, namely that X is separable, viz., that X has a countable, dense subset.

Theorem 4.30. CICT is closed.

Proof. Let A ∈ CICT , and choose a countable, dense subset of A, Λ = {x1, x2, . . . }.

Choose a sequence {Bi}i∈N ⊆ CICT so that dH(A,Bn) < 1
n
. For each xn and k ∈ N

choose xkn ∈ Bk with d(xn, x
k
n) < 1

k
. For x1 we can choose i(x1), j(x1) such that

i(x1) = i(xk1) and j(x1) = j(xk1) for infinitely many k. By passing to a subsequence

{km(1)} of N, we can assume i(x1) = i(x
km(1)
1 ) and j(x1) = j(x

km(1)
1 ) for all km(1) in

the sequence. By induction, we can choose i(xn), t(xn) and a subsequence {km(n)} of
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{km(n− 1)} so that i(xn) = i(x
km(n)
n ) and j(xn) = j(x

km(n)
n ). For x ∈ A\Λ, choose a

sequence {xnk} ⊆ Λ that converges to x. Choose i(x), j(x) so that i(x) = i(xnk) and

j(x) = j(xnk) for infinitely many k.

Let x, y ∈ A and ε > 0 be given. By the uniform continuity of the maps fi there

is a ε
3
> δ > 0 such that d(p, q) < δ implies d(fi(p), fi(q)) <

ε
3
. Choose xn, xl ∈ Λ

with d(x, xn), d(y, xl) <
δ
2
, and i(xn) = i(x), j(xk) = j(y). Without loss of generality,

assume l > n. Choose km(l) > 2
δ
. By our choice, i(xn) = i(x

km(l)
n ), j(xl) = j(x

km(l)
l ),

d(x, x
km(l)
n ), d(y, x

km(l)
l ) < δ, and there is a δ-chain in Bkm(l) from x

km(l)
n to x

km(l)
l

indexed by a word beginning with i(x
km(l)
n ) and ending with j(x

km(l)
l ). Replacing the

first x
km(l)
n with x and the last x

km(l)
l with y, and every other element of the chain with

an element of A within δ, gives an ε-chain from x to y indexed by a word beginning

with i(x) and ending with t(y). Thus A ∈ CICT .

The following gives one direction of the characterization of Ww = CICT .

Lemma 4.31. Ww ⊆ CICT .

Proof. Fix w ∈ W∞ and x ∈ X. Choose 1
3n

> δn > 0 so that for d(y, z) < δn,

d(fi(y), fi(z)) < 1
3n

and an increasing sequence of integers {Nn} so that if m > Nn

d(fw1...wm(x), ωw(x)) < δn.

For y ∈ ωw(x), choose an increasing sequence of integers {kn(y)} with

d(fw1...wkn(y)
(x), y) < δn. By passing to a subsequence if necessary, we can assume

wki(y) = wki+1(y) and w1+ki(y) = w1+ki+1(y) for i ∈ N. Set t(y) = wki(y) and i(y) =

w1+ki(y). Note that i(y) 6= t(y)−1, as both are consecutive letters in a reduced word.

For given y, z ∈ ωw(x) and ε > 0, find 1
n
< ε. Choose Nn < kl(y) < km(z). Just

as in the proof that ωw(x) is ICT we can find a ε-chain in ωw(x) between y and z

indexed by w1+kl(y) . . . wkm(z).

In the case of X being a shift of finite type over a free group or monoid, we have

the necessary machinary in place to prove the other direction of the characterization
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of Ww. The following lemma helps to verify our construction is indeed correct.

Lemma 4.32. Let X be a shift space and fix a function O : G→ X. Suppose u ∈ G

and m ∈ N with the property that for v ∈ Σm−1 and i ∈ S, we have

d(σi(O(uv)),O(uvi)) < 2−m.

Then O(u)(v) = O(uv)(e).

Proof. Fix v = v0 . . . vn ∈ Σm−1. As d(σv0(O(u)),O(uv0)) < 2−m, the uniform

continuity of the shift maps gives d(σv0v1(O(u)), σv1(O(uv0))) < 2−m+1. Because

d(σv1(O(uv0)),O(uv0v1)) < 2−m we have d(σv0v1(O(u)),O(uv0v1)) < 2−m+1. By in-

duction we see d(σv0...vi(O(u)),O(uv0 . . . vi)) < 2−m+i.

Hence d(σv0...vn(O(u)),O(uv0 . . . vn)) < 2−m+n ≤ 2−1. This implies σv(O(u))(e) =

O(uv)(e). The left-hand side of this equation is equal to O(u)(v), so our lemma

holds.

Theorem 4.33. If X is a shift of finite type and Y ∈ CICT , then Y = ωw(x) for

some x ∈ X and w ∈ W∞.

Proof. Let X be M -step. For k ≥ M + 1, let
{
xki
}nk
i=0
⊆ Y be sequence that 2−k

covers Y . As Y ∈ CICT , there is a 2−k-chain from xki to xki+1 indexed by ui where

ui begins with i(xki ) and ends with t(xki+1). By concatenating these chains, we can

get a 2−k-chain
{
yk0 , . . . , y

k
nk

}
from xk0 to xknk indexed by wk = vk1 . . . v

k
mk

such that

vk1 = i(xk0), vkmk = t(xknk), and for every i there is an n such that xki = ykn. We also

have a 2−k−1-chain
{
zk0 , . . . , z

k
lk

}
from xknk to xk+1

0 indexed by w′k = v′1 . . . v
′
lk

with

v′1 = i(xknk) and v′lk = i(xk+1
0 ).

Concatenating both the words w = wM+1w
′
M+1wM+2w

′
M+2 . . . and the chain{

yM+1
0 , . . . , yM+1

nM+1
, zM+1

1 , . . . , zM+1
lM+1

, yM+2
1 , . . . , yM+2

nM+2
, . . .

}
yields a sequence of points

{z0, z1, . . . } ⊆ Y and w = t1t2 · · · ∈ W∞ such that for all i ∈ N d(σti+1
(zi), zi+1) <

2−M−1 and for n > M+1 there is kn such that for m > kn, d(σtm+1(zm), zm+1) < 2−n.
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In order to keep track of these points and their interrelations, we define a function

O : G → Y . Set O(t1 . . . tm) = zm and O(e) = z0. For notation, let t0 = e. For all

other v ∈ G let nv be the largest integer such that t0 . . . tnv is a prefix of v = t0 . . . tnvv
′.

Then let O(v) = σv′(znv).

By our construction, O has the properties that:

1. For u ∈ G, v ∈ ΣM , and i ∈ S, d(σi(O(uv)),O(uvi)) < 2−M−1.

2. For every n ∈ N there is kn ∈ N such that for |u| > kn, v ∈ Σn, and i ∈ R,

d(σi(O(uv)),O(uvi)) < 2−n−1.

Define x : G → A by x(u) = O(u)(e). We claim that x ∈ X and that ωw(x) = A.

By property (1) and Lemma 4.32, every M -block in x is the central M -block for

some O(v). As every O(v) ∈ X, this implies x ∈ X. Property (2) implies that

d(σ(x),O(v)) < 2−n for |v| > kn.

Let y ∈ Y and n > N. Find k, i,m such that d(y, xki ) < 2−n−1, O(u1 . . . um) = xki ,

with m > kn+1. Therefore d(y, σu1...um(x)) < 2−n, so y ∈ ωw(x).

Now suppose y ∈ ωw(x). For n ∈ N find m > kn+1 so that d(y, σu1...um(x)) < 2−n−1

and d(σu1...um(x),O(u1 . . . um)) < 2−n−1. Therefore d(y,O(u1 . . . um)) < 2−n. As

O(u1 . . . um) ∈ Y by construction and Y is closed, y ∈ Y .

Therefore Y = ωw(x).

Corollary 4.34. Let X be a shift of finite type over G. Then Ww = CICT . If G is

a free monoid, then Ww = ICT .

It seems at this point we have found the correct notion of internal transitivity to

characterize Ww. The internal transitivity also seems to mimic the trajectory of the

orbit of a point used in defining ωw in that both the chain transitivity and the limit

set consider one “linear” direction. However, this is not the case for WFw . These

limit sets consider multiple directions of a point’s orbit; as such, the corresponding
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internal transitivity should depend on more than just a line connecting points. For

this we use block instead of chains.

Definition 4.35. Given a metric space X and δ > 0, a δ-G-pseudo-orbit is a function

O : G→ X such that for u ∈ G and i ∈ S we have d(fi(O(u)),O(ui)) < δ.

Definition 4.36. Let Y be a closed subset of X. Y is internally block transitive

(Y ∈ IBT ) if for every δ > 0 x1, . . . , xn ∈ Y there is a δ-G-pseudo-orbit O of Y

containing each xi.

It seems strange we are calling this property block transitive, which implies a finite

block, even though we use an infinite pseudo-orbit to define it. We are, however,

entirely justified in this notation. For one, we are only concerned with the finte

content of the pseudo-orbit; thus, we can restrict it to a finite block. Furthermore,

any finite block can easily be extended in a full pseudo-orbit, so long as the underlying

space is invariant (which we will prove is the case). The existence of this extension is

a crucial property related to the lack of interference between elements of free groups

and monoids.

Theorem 4.37. For any X, IBT is closed.

Proof. Suppose that Y ∈ IBT and ε > 0. By uniform continuity, choose ε
3
> δ > 0

so the d(p, q) < δ implies d(fi(p), fi(q)) <
ε
3
. Choose x1, . . . , xn ∈ Y and B ∈ IBT

with dH(Y,B) < δ. Find yi ∈ B with d(xi, yi) < δ and let O be a δ-G-pseudo-orbit of

B containing y1, . . . , yn. We create a pseudo-orbit O′ in A by replacing every yi in O

with xi and replacing any other y ∈ B with x ∈ A so that d(x, y) < δ. By the choice

of δ, it is easy to see that O′ is an ε-G-pseudo-orbit containing x0, . . . , xn. Therefore

A ∈ IBT and IBT is closed.

Theorem 4.38. If Y ∈ IBT , Y is invariant.
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Proof. Let y ∈ Y and consider fi(y). For n ∈ N there is a 1
n
-G-pseudo-orbit On

containing y. Say On(un) = y for all n. Then d(fi(On(un)),On(uni)) <
1
n
. Hence

d(fi(y),On(uni)) <
1
n
. As On(uni) ∈ Y and Y is closed, fi(y) ∈ Y .

As in the case for ICT, the existence of these pseudo-orbits does not mean we

can concatenate them in any meaningful way. Thus, we must also necessitate extra

structure: points at which we can concatenate two blocks together. The following

definition will be used for the free group context.

Definition 4.39. If Y ∈ IBT , an element y ∈ Y is i,j final if for every δ > 0, and

x1, . . . , xn ∈ Y , there is a δ-G-pseudo-orbit O of Y , indexes uk such that O(uk) = xk

and uk 6= um for k 6= m, and indexes ui, uj with O(ui) = O(uj) = y such that ui, uj

end in i 6= j respectively and ui, uj are not prefixes of each other or any uk.

Definition 4.40. Let Y be a closed subset of X. Y ∈ IBT ∗ if and only if Y ∈ IBT

and there exists y ∈ Y that is i, j-final.

The following is a simplifed analogue for the free monoid case.

Definition 4.41. If Y ∈ IBT , an element y ∈ Y is final if for every δ > 0,

x1, . . . , xn ∈ Y there is a δ-G-pseudo-orbit O of Y and indexes uk and uy such that

O(uk) = xk, O(e) = O(uy) = y with uy not a prefix of any uk.

Definition 4.42. Let Y be a closed subset of X. Y ∈ IBT ◦ if and only if Y ∈ IBT

and there exists y ∈ Y that is final.

Theorem 4.43. IBT ∗ is closed.

Proof. Let Y ∈ IBT ∗ and let {Bn}n∈N ⊆ IBT ∗ converge to Y . In each Bn, there is

a point xn that is in, jn final. Choose i, j so that i = in, j = jn infinitely often. By

passing to a subsequence if necessary, we can assume i = in, j = jn for all n. Choose

x ∈ X so {xn}n∈N converges to x. By a similar technique to Theorem 4.37, it is not

hard to see Y ∈ IBT ∗ with x being i, j final.
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Theorem 4.44. IBT ◦ is closed.

Proof. This follows from the technique used in Theorem 4.37.

Here, we prove one direction of the characterization of WFw = IBT ∗.

Lemma 4.45. Let w ∈ W∞, x ∈ X be given. For a free group action, ωFw(x) ∈ IBT ∗

with y ∈ ωw(x) i,j-final for some i, j.

Proof. Let x1, . . . , xn ∈ ωFw(x), y ∈ ωFw(x), and δ > 0 be given. By the uniform

continuity of the maps fi, find δ
3
> η > 0 such that if d(x, y) < η then d(fi(x), fi(y)) <

δ
3

for i ∈ S. As y ∈ ωw(x) and ωw(x) is CICT, let i = i(y)−1 and j = t(y), so i 6= j.

Now we can find w1 . . . wkiwki+1 ∈ F with i = w−1
ki+1, d(y, fw1...wki

(x)) < η and

ki > Nη given in Lemma 4.26. For x1 we can find w1 . . . wk1vx1 ∈ F with k1 > ki + 1

such that d(x1, fw1...wk1vx1
(x)) < η and vx1 does not begin with wk1+1. By induction

we can find km+1 > km, vxm+1 ∈ F such that d(xm+1, fw1...wkm+1
vxm+1

(x)) < η and

vxm+1 does not begin with wkm+1+1. Then we can get kj > kn with wkj = j and

d(y, fw1...wkj
(x).

Now define O : F → ωFw(x) with O(wki+2 . . . wkmvxm) = xm and O(w−1
ki+1) =

O(wki+2 . . . wkj) = y. For u = w−1
ki+1v, define O(u) = fv(y) and for all other u that

has not yet been defined, we can choose z ∈ ωw(x) with d(z, fw1...wki+1u(x)) < η and

let O(u) = z. By construction O is an δ-pseudo-orbit.

For the indexes, let ui = w−1
ki+1, uj = wki+2 . . . wkj , and um = wki+2 . . . wkmvxm . By

construction O(um) = xm and uk 6= um for k 6= m, O(ui) = O(uj) = y, ui, uj end in

i, j respectively and ui, uj are not prefixes of each other or any um.

The same holds for the free monoid context.

Lemma 4.46. Let w ∈ W∞, x ∈ X be given. For a free monoid action, ωFw(x) ∈

IBT ◦ with y ∈ ωw(x) final.
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Proof. Let x1, . . . , xn ∈ ωFw(x), y ∈ ωFw(x), and δ > 0 be given. By the uniform

continuity of the maps fi, find δ
3
> η > 0 such that if d(x, y) < η then d(fi(x), fi(y)) <

δ
3

for i ∈ S.

Now we can find w1 . . . wk such that d(y, fw1...wk(x)) < η. Find k1 > k > Nη from

Lemma 4.26 and u1 = u1 . . . um with u1 6= wk1+1 and d(x1, fw1...wk1u
1(x)) < η. Induc-

tively find ki > ki−1 and uk = u1 . . . um with u1 6= wki+1 and d(xi, fw1...wkiu
k(x)) < η.

Finally, find ky > kn and uy = u1 . . . um with u1 6= wkn+1 and d(y, fw1...wkyu
y , y) < η.

Define O : H → ωw(x) by O(e) = O(uy) = y, O(uk) = xk and for all other u choose

z ∈ ωw(x) so that d(fw1...wku(x), z) < η. This satisfies the requirements for IBT ◦.

Again, we have the machinery in place to prove the full characterization for the

case of a shift of finite type over a free group and free monoid.

Theorem 4.47. Suppose X ∈ AF is an SFT with largest forbidden block size M,

and let Y ⊆ X be IBT, invariant, and compact with some y ∈ Y i,j-final. Then

Y = ωFw(x̄) for some w ∈ W and x̄ ∈ X.

Proof. For n > M , choose
{
xn1 , . . . , x

n
kn

}
⊆ Y a 2−n cover of Y . By assumption,

we can find a 2−n-pseudo-orbit On with indexes uni , u
n
j ∈ Σkn ending in i and j

respectively such that On(uni ) = On(unj ) = y and indexes unm such that On(unm) = xnm

and uni , u
n
j are not prefixes of unm for all m.

We will inductively construct a function O : F → Y and a word w ∈ W∞.

First we construct w. Define w1 = uM+1
j and for n > 1, wn = wn−1(uM+n

i )−1uM+n
j .

By induction we will prove wn ends with j and begins with wn−1. Note uM+1
j ends

with j so w1 ends with j. Suppose for our inductive step that wn−1 ends with j. As uni

ends with i and is not a prefix of unj and unj ends with j we have (uni )−1unj beginning

with i−1 and ending with j. Therefore wn ends with j. Finally, because i 6= j, wn

begins with wn−1. Define w = limn→∞wn.

For ease in constructing O, define O′n to be On restricted to elements of Σkn which
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do not have uni , u
n
j as a proper prefix. Let Dn be the domain of O′n. For u ∈ DM+1

define O(u) = O′M+1(u). Then for u ∈ DM+n define O(wn−1(uM+n
i )−1u) = O′M+n(u).

We will show that this step is well-defined. Suppose for some n < m there is v, v′

in Dn,Dm respectively such that wn−1(uM+n
i )−1v = wm−1(uM+m

i )−1v′. Write wm−1 =

wn−1(uM+n
i )−1uM+n

j · · · (uM+m−1
i )−1uM+m−1

j .

Thus (uM+n
i )−1v = (uM+n

i )−1uM+n
j · · · (uM+m−1

i )−1uM+m−1
j (uM+m

i )−1v′.

Therefore v = uM+n
j · · · (uM+m−1

i )−1uM+m−1
j (uM+m

i )−1v′. As v does not contain uM+n
j

as a proper prefix, v = uM+n
j , m = n + 1 and v′ = uM+n+1

i . In this instance, we

have O(wn−1(uM+n
i )−1uM+n

j ) = O′M+n(v) = y and also O(wn(uM+n+1
i )−1uM+n+1

i ) =

O′M+n+1(uM+n+1
i ) = y. Thus O, so far as it has been defined, is well-defined.

To complete the construction of O, for u ∈ F with O(u) not already defined, let

u′ be the largest prefix of u with O(u′) already defined. Such u′ always exists as

O(e) is already defined. Then define O(u) = σu′−1u(O(u′)). Thus we have defined

O : F → Y .

From the construction, O has the properties that:

1. For u ∈ F , v ∈ ΣM , and i ∈ S, d(σi(O(uv)),O(uvi)) < 2−M−1.

2. For n ∈ N there is kn ∈ N such that for |u| > kn, v ∈ Σn, and i ∈ S,

d(σi(O(uv)),O(uvi)) < 2−n−1.

Just as in Theorem 4.33, by defining x̄ by x̄(v) = O(v)(e) these properties imply that

x̄ ∈ X and d(σ(x̄),O(v)) < 2−n for |v| > kn.

Finally, we show that Y = ωFw(x̄). First ωFw(x̄) ⊆ Y as every N-block in x̄

is an N-block of an element of A. Now let z ∈ Y and n ∈ N. We must find a

u ∈ F with u|n = w|n and d(σu(x̄), z) < 1
n
. Note |wn| ≥ n. Find xM+n+1

m such

that d(xM+n
m , z) < 2−(M+n+1). Let u = wn(uM+n

i )−1uM+n+1
m . Thus u|n = w|n and

d(σu(x̄), xM+n+1
m ) < 2−(M+n+1). Therefore d(σu(x̄), z) < 2−(M+n+1) < 1

n
. Thus Y =

ωFw(x̄).
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Note that this construction depends only upon the properties of A ∈ IBT ∗. There-

fore, as long as one replaces the shift maps σ with a general function f , the construc-

tion works in all other IBT ∗ sets with F actions.

Corollary 4.48. Let X be a shift of finite type over a free group G. Then WFw =

IBT ∗.

Using a slightly varied construction, we can get a similar result for free monoid

actions.

Theorem 4.49. Suppose X ∈ AH is an SFT with largest forbidden block size M, and

let Y ⊆ X be IBT, invariant, and compact with some y ∈ Y final. Then Y = ωFw(x̄)

for some w ∈ W∞ and x̄ ∈ X.

Proof. For n > M , choose
{
xn1 , . . . , x

n
kn

}
⊆ Y a 2−n cover of Y . By assumption, we

can find a 2−n-pseudo-orbit On with indexes uny , u
n
m such that O(e) = O(uny ) = y,

On(unm) = xnm and uny is not a prefix of unm for all m.

Define w = uM+1
y uM+2

y . . . . For notation, define u0
y = e. For u ∈ H, find the

maximal m such that u = u0
y . . . u

m
y u
′ and define O(u) = Om+1(u′). Letting x̄(v) =

O(v)(e), the same reasoning as above gives ωFw(x̄) = Y .

Again, this construction also works for any A ∈ IBT ◦, so long as one replaces the

maps σ with f .

Corollary 4.50. Let X be an SFT over a free monoid H. Then WFw = IBT ◦.

Shadowing in Group Actions

We now will develop the machinery to prove the characterizations Ww = CICT

and WFw = IBT ∗ for more general contexts. As in the case of Z actions, these

contexts depend on a notion of shadowing.

60



Definition 4.51. For ε > 0, a function O : G → X is ε-shadowed by x ∈ X if

d(fu(x),O(u)) < ε for all u ∈ G.

Definition 4.52. A G action on a compact metric space X has the G-shadowing

property if for every ε > 0 there exists δ > 0 such that every δ-G-pseudo-orbit is

ε-shadowed by a point in X.

Lemma 4.53. If X is not an SFT, then for every n ∈ N there is m > n such that

there is a forbidden m-block of X such that every sub-block is not forbidden.

Proof. We will prove the contrapositive. Write X = XF for some set of forbidden

blocks F . Let m be the largest integer such that there is an m-block B ∈ F such

that every sub-block of B is not in F . Let F ′ = {B ∈ F : B is a k-block for k ≤ m}.

Note that F ′ is finite as there only finitely many k-blocks for k ≤ m. We claim that

XF = XF ′ . As F ′ ⊆ F , XF ′ ⊇ XF . Now suppose x /∈ XF . Thus x contains a

forbidden k-block B in F . If k ≤ m, B ∈ F ′ so x /∈ XF ′ . If k > m, then B contains

a forbidden l-block for l < k. By induction, B contains a forbidden l-block for l ≤ m.

In either case, x contains a block forbidden in F ′ so x /∈ XF ′ . As X = XF = XF ′ , X

is an SFT.

Lemma 4.54. Suppose O is a 2−m-pseudo-orbit. Then for u ∈ F and v ∈ Σm−1,

O(u)(v) = O(uv)(e).

Proof. This result follows from the same argument as Lemma 4.32.

Theorem 4.55. A shift space X is an SFT if and only if X has the shadowing

property.

Proof. Suppose X is an M-step SFT and let ε > 0 be given. Choose k > M so

2−k < ε. We claim every 2−k−1-pseudo-orbit can be ε-shadowed. Let O be such a

pseudo-orbit. Construct x ∈ AF by x(u) = O(u)(e). Let u ∈ F and v ∈ Σk. By

definition, σu(x)(v) = x(uv) = O(uv)(1). By the previous lemma, the right-hand
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term equals O(u)(v). Thus σu(x)|Σk = O(u)|Σk so d(σu(x),O(u)) < 2−k. This implies

x ε-shadows O. Furthermore, x ∈ X as every M-block in x is an M-block in an

element of X. Thus x contains no forbidden blocks.

Now suppose X is not an SFT. Let ε = 2−1 and suppose X has the shadowing

property. Thus there is a δ > 0 such that every δ-pseudo-orbit can be ε-shadowed.

Choose m with 2−m < δ. By a previous lemma, there is a k > m + 2 such that X

has a forbidden k-block B with all sub-blocks of B not forbidden. For i ∈ S let Bi be

the (k-1)-block of B centered at i. As these are not forbidden, there exists an xi ∈ X

such that xi|Σk−1 = Bi. Let B1 = B|Σk−1 and x1 ∈ X such that x1|Σk−1 = B1. For

u ∈ F , define O(iu) = σu(xi) and O(e) = x1. For i ∈ S, d(σi−1(xi), x1) < 2−k+2 as

Bi and B0 overlap on a (k-2)-block. For i, j ∈ S and u ∈ F with iuj 6= 1, O(iuj) =

σuj(xi) = σj(σu(xi)) = σj(O(iu)). Therefore O is a δ-pseudo-orbit. Suppose that

x ∈ X ε-shadows O. Then for u ∈ F , d(σu(x),O(u)) < ε. Particularly, this implies

x(u) = O(u)(e). We claim that x contains B. Clearly, x(e) = B(e). For i ∈ S and

u ∈ Σk−1, x(iu) = σiu(x)(e) = O(iu)(e) = σu(xi)(e) = xi(u) = O(i)(u) = Bi(u) =

B(iu). Therefore our claim is correct, hence O cannot be ε-shadowed, contradicting

the assumption of X having the shadowing property.

Theorem 4.56. For an G action on X with G-shadowing, then CICT = Ww.

Proof. Let Y ∈ CICT . For n ∈ N, find δn such that any δn-pseudo-orbit can 1
n

shadowed. Define O as follows. Fix k0 >
1
δn

. For k > k0 let
{
xki
}nk
i=0
⊆ Y be sequence

that 1
k

covers Y . As Y is CICT, there is a 1
k
-chain from xki to xki+1 indexed by ui

where ui begins with i(xki ) and ends with t(xki+1). By concatenating these chains,

we can get a 1
k
-chain

{
yk0 , . . . , y

k
nk

}
from xk0 to xknk indexed by wk = vk1 . . . v

k
mk

such

that vk1 = i(xk0), vkmk = t(xknk), and for every i there is an n such that xki = ykn. We

also have a 1
k+1

-chain
{
zk0 , . . . , z

k
lk

}
from xknk to xk+1

0 indexed by w′k = v′1 . . . v
′
lk

with

v′1 = i(xknk) and v′lk = i(xk+1
0 ).

Concatenating w = wk0w
′
k0
wk0+1w

′
k0+1 . . . and
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Figure 4.2: One step of the construction.

{
yk00 , . . . , y

k0
nk0
, zk01 , . . . , z

k0
lk0
, yk0+1

1 , . . . , yk0+1
nk0+1

, . . .
}

yields a sequence {z0, z1, . . . } ⊆ Y

and w = t1t2 · · · ∈ W∞ such that for all i ∈ N d(fti+1
(zi), zi+1) < δn and for n > 1

δn

there is kn such that for m > kn, d(ftm+1(zm), zm+1) < 1
n
.

To construct the psuedo orbit, set O(t1 . . . tm) = zm and O(e) = z0. For notation,

let t0 = 1. For all other v ∈ F , let nv be the largest integer such that t0 . . . tnv is a

prefix of v = t0 . . . tnvv
′. Then let O(v) = fv′(zm).

Let x be a point that shadows this pseudo-orbit. We show that dH(ωw(x), Y ) < 1
n
.

For any element of y ∈ ωw(x), d(y, Y ) < 1
n

by the nature of the construction. If

a ∈ Y , then there is a prefix vm of wn with d(a, (O)(vm)) < 1
m

. By definition, {fvm(x)}

converges to a point z ∈ ωw(x). Thus d(a, z) < 1
n
. Therefore dH(ωw(xn), Y ) < 1

n
.

As n was arbitrary, Y ∈ Ww and CICT ⊆ Ww. We have already shown that

Ww ⊆ CICT and CICT is closed; thus Ww ⊆ CICT .

With a similar construction, we arrive at an analagous result for IBT sets.

Theorem 4.57. For an F action on X with F -shadowing, IBT ∗ = WFw .

Proof. Let Y ∈ IBT ∗. For k ∈ N, find δk such that any δk-pseudo-orbit can 1
k

shadowed. Define O as follows. Fix k0 >
1
δk

. For k ≥ k0 choose
{
xn1 , . . . , x

n
kn

}
⊆ Y
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a 1
n

cover of Y . By assumption, we can find a 1
n
-pseudo-orbit On with indexes

uni , u
n
j ∈ Σkn ending in i and j respectively such that On(uni ) = On(unj ) = y and

indexes unm such that On(unm) = xnm and uni , u
n
j are not prefixes of unm for all m.

We will inductively construct O : F → Y and a word w ∈ W∞.

First we construct w. Define w0 = uk0j and for n > 0, wn = wn−1(uk0+n
i )−1uk0+n

j .

By induction we will prove wn ends with j and begins with wn−1. Note uk0j ends with

j so w0 ends with j. Suppose for our inductive step that wn−1 ends with j. As uni

ends with i and is not a prefix of unj and unj ends with j we have (uni )−1unj beginning

with i−1 and ending with j. Therefore wn ends with j. Finally, because i 6= j, wn

begins with wn−1. Define w = limn→∞wn.

For ease in constructing O, define O′n to be On restricted to elements of Σkn which

do not have uni , u
n
j as a proper prefix. Let Dn be the domain of O′n. For u ∈ Dk0

define O(u) = O′M(u). Then for u ∈ Dk−0+n define Ok0(wn−1(uk0+n
i )−1u) = O′k0+n(u).

We will show that this step is well-defined. Suppose for some n < m there is v, v′

in Dn,Dm respectively such that wn−1(uk0+n
i )−1v = wm−1(uk0+m

i )−1v′. Write wm−1 =

wn−1(uk0+n
i )−1uk0+n

j · · · (uk0+m−1
i )−1uk0+m−1

j .

Thus (uk0+n
i )−1v = (uk0+n

i )−1uk0+n
j · · · (uk0+m−1

i )−1uk0+m−1
j (uk0+m

i )−1v′.

Therefore v = uk0+n
j · · · (uk0+m−1

i )−1uk0+m−1
j (uk0+m

i )−1v′. As v does not contain uk0+n
j

as a proper prefix, v = uk0+n
j , m = n + 1 and v′ = uk0+n+1

i . In this instance, we

have that O(wn−1(uk0+n
i )−1uk0+n

j ) = O′k0+n(v) = y and O(wn(uk0+n+1
i )−1uk0+n+1

i ) =

O′k0+n+1(uk0+n+1
i ) = y. Thus O, so far as it has been defined is well-defined.

To complete the construction of O, for u ∈ F with O(u) not already defined, let

u′ be the largest prefix of u with O(u′) already defined. Such u′ always exists as

O(e) is already defined. Then define O(u) = σu′−1u(O(u′)). Thus we have defined

O : F → Y .

From the construction, we can see that O is a δk-pseudo-orbit. Let x ∈ X 1
k

shadow

O. By an analagous argument to 4.56, dH(ωFw(x), Y ) < 1
k
. Thus Y ∈ IBT ∗.
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Theorem 4.58. For an H action on X with H-shadowing, IBT ◦ = WFw .

Proof. Let Y ∈ IBT ◦. For k ∈ N, find δk such that any δk-pseudo-orbit can 1
k
-

shadowed. Define O as follows.

Fix k0 >
1
δk

. For n ≥ k0 choose
{
xn1 , . . . , x

n
kn

}
⊆ Y a 1

n
cover of Y . By assumption,

we can find a 1
n
-pseudo-orbit On with indexes uny , u

n
m such that On(e) = On(uny ) = y,

On(unm) = xnm and uny is not a prefix of unm for all m.

Define w = uk0y u
k0
y . . . . For notation, define uk0−1

y = e. For u ∈ H, find the

maximal m such that u = uk0−1
y . . . umy u

′ and define O(u) = Om+1(u′). Clearly, O is

a δk-H-pseudo-orbit.

By the same argument above, choosing x to 1
k
-shadowO implies dH(ωFw(x), Y ) < 1

k
.

Thus Y ∈ IBT ◦.

In the previous results, we were able to get the desired characterization of Ww and

WFw up to the closure of the internal transitive sets. In order to remove these closures

from the characterization, it is necessary to have a strong form of shadowing.

Definition 4.59. An asymptotic F-pseudo-orbit is a function O : F → X such

that for every δ > 0 there is an integer n such that for |w| > n and u ∈ S,

d(fu(O(w)),O(wu)) < δ.

Definition 4.60. A function O : F → X is asymptotically shadowed if there is

an x ∈ X such that for every ε > 0 there is an integer n such that for |w| > n

d(fw(x),O(w)) < ε.

It is not the case that in a shift of finite type every asymptotic pseudo-orbit can

be asymptotically shadowed. Consider for instance the shift of finite type of {0, 1}F

given by forbidding any 0 adjacent to a 1. This shift of finite type has two elements:

x0 and x1, the constant maps of 0 and 1 respectively. We can construct an asymptotic

pseudo-orbit by first choosing j ∈ S, then defining O(ju) = x0 for u ∈ F , O(iu) = x1

for i 6= j ∈ S and u ∈ F , and O(1) = x1. Suppose that some y in the subshift
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asymptotically shadows O. Then y must contain both 0 and 1, meaning it contains a

0 adjacent to a 1, so y is not in the subshift. This contradicts O being asymptotically

shadowed.

Theorem 4.61. If X is an m-step SFT, every asymptotic, 2−m−1-pseudo-orbit can

be asymptotically shadowed.

Proof. Let O be such a pseudo-orbit. Construct x by x(u) = O(u)(1). By the

previous theorem, x ∈ X.

For k > m+ 1 find lk such that for |u| > lk, d(σi(O(u)),O(ui)) < 2−k for all i ∈ S.

We claim that for |u| > lk+1 + k, d(σu(x),O(u)) < 2−k. Notice by the choice of u

that O|uΣk is a finite portion of a 2−k−1 pseudo-orbit. Hence by a previous lemma,

O(u)(v) = O(uv)(e) for v ∈ Σk. Thus σu(x)(v) = x(uv) = O(uv)(1) = O(u)(v).

Hence d(σu(x),O(u)) < 2−k, so our claim is correct. Therefore x asymptotically

shadows O.

Definition 4.62. A G action on a compact metric spaces has the weak G-asymptotic

shadowing property if there exists δ > 0 such that every asymptotic G-pseudo-orbit

which is also a δ-G-pseudo-orbit is asymptotically shadowed.

With this definition, we are finally able to give the full characterizations we were

after.

Theorem 4.63. For an G action on X with the weak G-asymptotic shadowing prop-

erty, Ww(X) = CICT .

Proof. It remains to show that CICT ⊆Ww(X). Let A ∈ CICT and find δ > 0 that

witnesses the asymptotic shadowing property. Choose k > 1
δ

and let O and w be as

defined in Theorem 4.56. By construction, O is an asymptotic δ-F-pseudo-orbit. If

x ∈ X asymptotically shadows O, it is not difficult to see that A = ωw(x).

We can also use the constructions given in Theorems 4.57 and 4.58 to obtain the

following results.
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Theorem 4.64. For a G action on X with the weak G-asymptotic shadowing prop-

erty, WFw(X) = IBT ∗.

Theorem 4.65. For an H action on X with the weak H-asymptotic shadowing prop-

erty, WFw(X) = IBT ◦.

Conclusion

In this chapter, we have defined certain limit sets for free group and monoid actions,

defined types of internal transitivites in these actions, and showed these definitions

are equivalent under certain types of these actions. In this way, we generalized many

of the notions of Z actions to this setting.

However, there remains work to be done still. For one, we considered only four types

of limit sets. There are certainly other interesting sets to consider that also can be

characterized by a kind of internal transitivity. In this way, the work on characterizing

limit sets is in no way comprehensive. Also, while the definition of CICT does seem

to be the correct definition of internal transitivity to chracterize Ww, this may not

be the case for IBT ∗ or IBT ◦. While these conditions are certainly necessary and

sufficient, they are not elegant with the many conditions. As formulated in the

following questions, it is not known how they may be simplified.

Problem 4.66. For an F action, if Y is IBT, compact, and invariant, does there

necessarily exist some y ∈ Y which is i, j-final? For an H action, if Y is IBT,

compact, and invariant, does there necessarily exist some y ∈ Y which is final?

Thus, the work done in this chapter can be improved and simplified. Finally, this

thesis only considers the interaction of limit sets and chain transitivity in the specific

context of the four limit sets defined for free group and monoid actions. The general

case for any limit set in any group or monoid action is still an open question, and

it would be interesting to consider how the structure of the family of subsets used
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to define the limit set relates to the structure of the internal transitivity used to

characterize the limit set, if such a characterization exists. The results of this thesis

seem to suggest there is some relation.
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