
ABSTRACT

Misclassification Errors Informed by Response Time in Item Factor Analysis

R. Noah Padgett, Ph.D.

Chairperson: Grant B. Morgan, Ph.D.

The measurement process necessarily leads to observations measured with error

to a degree. In education, researchers often want to obtain measurements of difficult-

to-measure constructs such as content knowledge, motivation, affect, and personality.

A scale is created using multiple items to triangulate the measurement of the construct

of interest using the common information across items. One source of error that is not

often accounted for is measurement error in the item response itself. In this study,

I propose an approach for measuring latent traits while accounting for item-level

measurement error. The proposed approach differentially weighs responses by how

long an individual takes to respond to the item, i.e., response time as an absolute

measure of time taken on each item−weighing responses by response time discounts

the information provided by individuals responding rapidly to items. The result is

that individuals with longer response times more heavily inform the estimation of the

model, and more highly weighted responses are theorized to more accurately reflect

the construct of interest. Utilizing more reliable information provides a foundational

step in finding validity evidence for inferences made using scales.

The purpose of this study was two-fold. First, simulation studies were conducted

to show how the proposed measurement can be estimated and demonstrate the ef-

fects of estimating traditional item-factor models when data are prone to item-level



measurement error. In these studies, I show that the parameter estimates (e.g., factor

loadings, residual variances, etc.) may be severely upwardly or downwardly biased.

The coverage rates for interval estimates of the parameters were also highly variable

across conditions studied and parameters. The results showed that researchers’ abil-

ity to make valid inferences about the underlying model is limited by how item-level

measurement error is modeled. Secondly, the applied studies used data from the Na-

tional Assessment of Educational Progress (NAEP) 2017 math assessment and an

open-source dataset on extroversion. The results from these applied studies demon-

strate the applicability of the proposed model and how inferences about reliability

may be highly dependent on how item-level measurement error is modeled. Finally,

implications and applications to educational research using the proposed methods are

discussed.
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CHAPTER ONE

Introduction

Measurement error occurs in all scientific fields. The use of increasingly sophis-

ticated statistical methods allows researchers to parse the error from the signal of

interest. Measurement in educational and psychological investigations is especially

prone to measurement error because of the reliance on self-report measures. Mod-

els for measurement error include classical test theory in psychometrics (Crocker &

Algina, 1986; Lord & Novick, 1968), Berkson measurement error model used in epi-

demiology (Berkson, 1950), and errors in variables in applied statistics (Fuller, 1987).

Understanding the processes that give rise to measurement has been well studied in

a wide range of fields. The conceptualization differences across fields yield different

underlying assumptions in how measurement error is modeled (Kroc & Zumbo, 2020).

The modeling approach used can significantly impact the inferences one makes from

available data, as shown in Rigdon et al. (2019) concerning differences in modeling a

latent variable approach to modeling measurement error. In light of the differences in

inferences that can occur solely due to modeling measurement error, the development

of robust methods for accounting for measurement error is crucial to further scientific

inquiry.

Typical areas of inquiry in educational and psychological research are based

on modeling the interdependence of latent constructs. Attitudinal surveys commonly

measure latent constructs. Surveys often operationalize measures into discrete state-

ments with fixed response options (e.g., “Disagree” versus “Agree”). This approach’s

simple nature to create, implement, and score has led to many measurement tools

developed using this format. However, the simple selected-response format may also

lead to difficulties appropriately mapping the observed responses onto the latent con-
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struct. Latent constructs have been connected to observed responses using classical

test theory (Crocker & Algina, 1986), the Rasch model (Rasch, 1960), factor analysis

(Brown, 2015), item response theory (de Ayala, 2009), and structural equation models

(Bollen, 1989).

The modeling frameworks described above give researchers an approach for de-

scribing the measurement process of the construct of primary interest. Measurement

error is commonly described as the imperfect relationship between the latent con-

struct and observed response. However, measurement error is often overlooked in the

observed responses. The item-level response may not be conceptualized as containing

measurement error. For example, classical test theory focuses on the total (observed)

score and true score relationship in terms of error, which does not address item-level

measurement errors. Item level measurement error is similarly not addressed in com-

monly used measurement models for categorical outcomes such as the graded response

model (Samejima, 1969), item factor analysis (Wirth & Edwards, 2007), and partial

credit model (Masters, 1982). Such models do not directly incorporate measurement

error for a particular item. The models above conceptualize measurement error post

hoc by evaluating the difference between the observed response and an expected score.

The expected score is also not required to be on the metric of the original measure-

ment. Having expected scores on a different metric than the original items has the

benefit of allowing for a nuanced investigation of the model adequacy. However, the

measurement error in the original metric is not captured as part of the model. Not

accounting for measurement error may lead to a false belief about the precision of

our inferences because the uncertainty in the item-level measurement is ignored.

Models that account for measurement errors have been well documented (Fuller,

1987). A vast literature has grown on measurement error models for continuous out-

comes (Bollen, 1989; Jöreskog, 1969), and there is a growing literature on generalized

linear models (Carroll et al., 2006; Skrondal & Rabe-Hesketh, 2004). Of particular
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interest in this study are methods for modeling measurement error in categorical

variables. Measurement error in categorical variables is also called a misclassification

error. A misclassification error, or error in measuring a discrete outcome, occurs when

the observed categorical response is not the true value. The terms measurement error

and misclassification error are used synonymously throughout this work. The errors

represent when the observed categorical response is not the true response under ideal

conditions.

Misclassification errors have been the focus of methodological research for many

decades (Chen et al., 1984; Hochberg, 1977; Naranjo et al., 2019; Press, S. James,

1968; Sposto et al., 1992; Tenenbein, 1970; Yiu & Poon, 2008). However, models

that directly account for misclassification are rare in psychological or educational

measurement research. Goldstein et al. (2008) illustrated one of the few educational

applications of measurement error models incorporated into a two-level linear model

of mathematics achievement. Goldstein et al. (2008) demonstrated that, even with

a relatively simple two-level model, inferences about model parameters (fixed and

random effects) might change when misclassification errors are modeled. With mis-

classification errors, in particular, they found that incorporating misclassification “will

often have little effect on the size of the coefficient but may be expected to increases

its standard error.” (Goldstein et al., 2008, p. 257).

The effects of misclassification are well demonstrated across contexts, with

methods of accounting for such errors being advocated for decades (Goldstein et al.,

2008; McGlothlin et al., 2008; Naranjo et al., 2019; Sposto et al., 1992). Advocates of

misclassification methods have used expert opinion (Naranjo et al., 2019), historical

data (Sposto et al., 1992), double sampling methods (Hochberg, 1977), or assumed

known parameters (Roy et al., 2005) to identify misclassification rates or create in-

formative priors for misclassification. Unfortunately, identifying the misclassification

rate is one of the prevailing limitations of methods to account for misclassification.
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Overcoming the limitation of identifying misclassification rates is the major aim

of this work. I aim to show how informative priors of misclassification can be created

at the individual response level in the context of computer-based test (CBT) from a

single instance of administration.

The remainder of this work is outlined as follows. In Chapter 2, I provide a

literature review of measurement models in educational research, misclassification

methods in educational research, and joint models of item responses and response time

in educational research. In Chapter 3, I introduce the proposed modeling framework

for misclassification in item factor analysis. At the end of Chapter 3, I outline my

proposed research questions related to the methods developed and hypotheses about

these questions. In Chapter 4, I discuss the methods for studying the proposed models.

In Chapter 5, I present the results from the two simulation studies and two applied

studies. Lastly, in Chapter 6, I discuss the results and implications for using the

methods developed in this project for modeling item-level measurement error.
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CHAPTER TWO

Literature Review

This chapter thoroughly reviews the literature relevant to a joint modeling

paradigm of item responses and response time in the educational and psychological

assessment. The topics range in scope from the fundamentals of measurement models

to methods for incorporating misclassification into analyses. I have broken this chap-

ter into three notable sections: Measurement Models of Latent Constructs, Misclassi-

fication Methods in Educational Research, and Measurement Models that Incorporate

Response Time.

Measurement Models of Latent Constructs

Education and social scientists have studied not directly measurable constructs

for over a century. For example, Spearman (1904) worked on the measurement of

general intelligence, a construct that is theorized to exist but cannot be directly mea-

sured. Factor analysis is the method for relating observed indicators to continuous

latent variables, such as intelligence. Factor analysis is based on the common fac-

tor model, a general model for how the relationships among observed variables are

explained by unobserved, latent variables (i.e., factors).

Factors are triangulated by investigating how responses to items covary. When

items covary, we aim to explain why they covary by their relationship with the un-

derlying construct (i.e., the factor of interest). When responses covary, the responses

to one item are related to responses to another item. Based on how the items are the-

orized to group together, we then can form an expectation of the level of covariance

among the items. We hypothesize that the factor model is then tested to see if we

can explain the covariance among the set of items. Aiming to explain the item covari-
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ance matrix is why factor analysis, specifically confirmatory factor analysis (CFA),

is sometimes called covariance structure analysis (Bollen, 1989; Brown, 2015; Kline,

2016).

Over the years, vast methodological literature has amassed on CFA. Much of

this literature is out of scope for this review. However, some seminal pieces are high-

lighted. In the development of CFA, Jöreskog (1967) helped progress the estimation of

CFA under maximum likelihood. Later, Jöreskog (1969) helped build the groundwork

for hypothesis testing in CFA and SEM more generally. Possibly the most significant

contribution to the CFA literature was the development of the software program

LISREL by Jöreskog and Sörbom, where they provided the technical capabilities to

estimate a wide range of latent variable models (Jöreskog & Sörbom, 2015). The en-

tirety of the work of Jöreskog and colleagues is out of scope for this review, but much

of the future work on CFA rests on the shoulders of these giants.

Much of the work on CFA and SEM was brought together by Bollen (1989),

whose text contains the synopsis of much of this early work on latent variable model-

ing. The general modeling framework of CFA is encapsulated in the following concise

model, known as the common factor model:

Yp = τ + Ληp + εp, (2.1)

where Yp is the vector of observed item responses of person p. τ is the vector of inter-

cepts that is typically fixed to a zero vector because of the use of standardized scores

in the estimation. Λ is the factor loading matrix. ηp is the vector of factor scores for

person p, and εp is the residual error. Equation 2.1 relates the model parameters to

the observed responses. However, CFA is a method for modeling how theorized vari-

ables can explain patterns of responses. The theorized relationship among variables is

often expressed through a path model. An example of a one-factor CFA path model

is shown in Figure 2.1.
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Y1 Y2 Y3 Y4 Y5

ε1 ε2 ε3 ε4 ε5

ηφ

λ1 λ2 λ3 λ4 λ5

ψ1 ψ2 ψ3 ψ4 ψ5

Figure 2.1. Example path diagram of a confirmatory factor analysis model.
Note. The error terms (εp) and corresponding residual variances (ψp) are typically
excluded for simplicity.

Along with relating the observed responses to the latent variables, we need to

specify how the variables relate to each other. Our expectation for the relationships

among items is formulated as

V ar(Y) = Σ = ΛΨΛT + Θ, (2.2)

where V ar(Y) is the model implied covariance matrix which is often shortened to Σ.

And, where Λ is the estimated factor loading matrix which is sometimes called the

pattern matrix, Ψ is the estimated covariance/correlation matrix among the latent

variables, ΛT is the transpose of the factor loading matrix, and Θ is the residual

covariance matrix among the observed variables. The residual covariance matrix is

typically assumed to be a diagonal matrix, which means that once the factor structure

imposed on these data is accounted for, no other relationship among items exists

(Brown, 2015). The interested reader is referred to Bollen, 1989; Brown, 2015; Kline,

2016 for more information on CFA.
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Categorical CFA - Item Factor Analysis

Traditional confirmatory factory analysis assumes that factor indicators are

continuous measures and that these indicators are linearly related to the underlying

factors. A continuous measure can (usually) be sufficiently described by its mean and

variance, whereas data with discrete categories typically are not appropriately de-

scribed by its mean and variance. Furthermore, categorical data are unlikely to have

a linear relationship with the underlying factor(s). Social scientists rarely obtain con-

tinuous data as surveys often use ordered response scales (e.g., Likert-type responses).

CFA models that fit with these data types are sometimes called item factor analysis

and are closely related to some item response theory models (Bollen et al., 2010).

The use of traditional CFA, particularly in conjunction with maximum likelihood

methods, may not be valid given the restrictions of categorical data.

In educational and psychological research, a common approach to modeling

the response to a survey is factor analysis or item response theory (Brown, 2015;

de Ayala, 2009; Wirth & Edwards, 2007). In particular, in surveys and educational

measurement, truly continuous data are rare. Instead, data are commonly collected

using discrete categories to capture information about a respondent, for example,

using a Likert-type response format to assess attitudes towards a topic. A commonly

used method for analyzing such data is to treat the observed data as representing

a discretized underlying continuous response. The process by which this discretizing

occurs is described in (Mislevy, 1986; Muthén, 1984).

Let an ordinal response variable (y) take on values c = 1, 2, · · · , C, where C is

the total number of response options. The responses to I such items are hypothesized

to reflect m latent traits (η). We would like to relate η to y linearly; however, this

is not possible due to the discrete nature of y. Instead, we presume that y is the

observed manifestation of the categorization process

yi = c, if τc−1 < y∗i ≤ τc, (2.3)
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where τ0 = −∞, τc = ∞, and y∗ is the continuous latent response variable for

item i. The threshold parameters (τc) may vary in magnitude and number across

items/observed indicators. The linear relationship between y∗i and η is now possible.

The relationship between the trait of interest, η, and the latent response vari-

able, y∗i , is modeled by the common factor model. The model for the vector of latent

response y∗ is

y∗ = α+ Λη + ε (2.4)

Σ(y∗) = ΛΦΛ′ + Θ, (2.5)

where α is the vector of latent response intercepts (typically assumed to be 0 within

a factor analytic framework), Λ is the factor loading matrix, η is the latent trait (typ-

ically assumed that η ∼ MVN(0,Φ)), ε is the vector of residual (typically assumed

ε ∼ MVN(0,Θ)), and Σ(y∗) is the model implied covariance matrix among the latent

response variables. In applications, a common assumption is that the item responses

are locally or conditionally independent given the latent trait η, which results in a

diagonal error-covariance matrix, and each item is conditionally independent.

The above model is indeterminate regarding location, scale, and orientation

arising from η and y∗ being unobserved. The indeterminacy of scale and location can

be resolved by restricting the parameter space of η and y∗ to

η ∼ MVN(0, Im)

diag [Σ(y∗)] = 1⇒ θ2
i = 1−

m∑
k=1

λ2
ik.

Other restrictions can be made that allow for different interpretations of the model

parameters. For example, the factor covariance matrix need not be diagonal or as-

sume unit variances for the factors if the scale and orientation are set by restricting

a factor loading to one for each factor. Kamata and Bauer (2008, Table 1, p. 139)

described a several approaches to resolving the indeterminacy of the item factor anal-

ysis model. The approaches to resolving the indeterminacy are summarized in Table
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Table 2.1

Parameterizing latent response formulation of factor analysis with
categorical data

Factor Scale
LRV Scale Reference Indicator Standardized Factor
Marginal λ1 = 1, τ1 = 0, V (y∗) = 1 E(η) = 0, V (η) = 1, V (y∗) = 1
Conditional λ1 = 1, τ1 = 0, V (ε) = 1 E(η) = 0, V (η) = 1, V (ε) = 1

Note. Marginal = latent response variable has fixed unit variance (total variance,
i.e., V (y∗) = 1); Conditional = latent response variable has fixed unit residual
variance (total variance of latent response variable changes, i.e., V (ε) = 1); λ
= factor loading; τ = item threshold; E(η) = factor mean; and V (η) = factor
variance. This table was adapted from Kamata and Bauer (2008) for ease of
discussion.

2.1. The labels of marginal versus conditional come from whether the scale of the

latent response variable is set directly (marginal) or whether the scale of the latent

response variable is achieved through fixing the residual variance (conditional). From

testing these approaches, I’ve found that the setting the scale by fixing the factor

variance (V (η) = 1) and residual variance (V (ε) = 1) tends to result in more efficient

sampling when estimating the model using JAGS (Just Another Gibbs Sampler;

Plummer et al., 2003) resulting in less time needed to achieve posterior convergence.

The orientation indeterminacy can also be resolved by restricting all factor loadings

to be positive. Restricting the range of estimates of a parameter is commonly em-

ployed in item response theory to estimate item discrimination parameters (Levy &

Mislevy, 2016, p. 256).

Once indeterminacy is resolved, the probability of the observed response can be

obtained using Equation 2.3. The use of the threshold scheme in Equation 2.3 implies

that the observed response for a single item is

Pr(yi = c | η) = Pr(y∗i ≥ τc−1 | η)− Pr(y∗i ≥ τc | η)

= F

(
λiη − τc−1

θi

)
− F

(
λiη − τc

θi

)
. (2.6)
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Figure 2.2. Latent response curve and response probabilities for three ordered cate-
gories model

The link function (F ) is commonly chosen to be the probit (Φ(·)) or logit (Ψ(·))

link. An example of this with three response categories is shown in Figure 2.2. The

category probabilities can then be computed as the difference between the inequalities

Pr(y = 2) = Pr(y∗ ≥ τ2), Pr(y = 1) = Pr(y∗ ≥ τ1) − Pr(y∗ ≥ τ2), and Pr(y =

0) = 1− Pr(y∗ ≥ τ1). This process is commonly used in item factor analysis (Wirth

& Edwards, 2007) and is similar to an ordinal regression model (Agresti, 2010).

The latent response formulation provides a useful framework for developing

factor models with nonnormal data. The observed indicators’ measurement error is

implicitly modeled where item-level measurement error is the difference between the

observed categorical response and the continuous latent response. Conceptually, this

approach is appealing, especially for scales that use degrees of agreement as to the

response anchors. However, this approach does not account for the measurement

error in the original metric of the data. Measurement error of discrete outcomes, such

as survey item responses, is commonly referred to as a misclassification error. The

following section focuses on accounting for misclassification errors in educational data.

Misclassification Methods in Educational Research

The discrete outcomes common in educational contexts are prone to measure-

ment error, and the measurement error of a discrete outcome is commonly known as

a misclassification error (Fuller, 1987). Misclassification is an error in measuring a
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variable with a small number of discrete possible values. For example, a child may be

identified as eligible for the free and reduced lunch program (national school lunch

program; NSLP) when they do not qualify. Measurement error in NSLP status was

cited as a prevalent issue in educational research by Goldstein et al. (2008). Therefore,

the error in identification may be described as a misclassification error.

A misclassification error can be expressed as a probability that an observed

discrete measure, y, is not equal to the actual discrete value if measured without

measurement error, Y . Suppose that Y is dichotomous, then

Pr(x = a|X = b) = pab. (2.7)

Misclassification in the context of educational data can occur when attempting to

diagnose a disorder (Falley et al., 2018). Falley and colleagues (2018) investigated

how misclassification can be accounted for in the analysis of diagnosing a mathemat-

ics disorder (a dichotomous outcome) using a set of covariates that are also possibly

measured with error. The methods for accounting for misclassification were found to

shift the coefficient estimates to a large degree. They will substantially increase the

uncertainty in the estimates (i.e., wider credible intervals) compared to an analysis

that ignored potential misclassification. Misclassification changing the parameter co-

efficients contrasts the finding of Goldstein et al. (2008). Goldstein and colleagues

(2008) found that the coefficient will negligibly change magnitude in either direc-

tion when misclassification is accounted for, but that uncertainty will increase (larger

standard errors). The analyses from the two teams of researchers used different model

estimation methods-Bayesian methods (Falley et al., 2018) and maximum likelihood

(Goldstein et al., 2008)-which may account for a small degree of the difference in

findings of the change in coefficient estimates.

Despite minor differences in conclusions between studies, the impact of misclas-

sification on conclusions has been repeatedly demonstrated (McInturff et al., 2004;

Roy et al., 2005; Roy et al., 2013). For example, Burstyn et al. (2014) demonstrated
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how a relatively small degree of misclassification of a covariate (5-10%) might change

the expected Type II errors rates by at much as 10-15%, on average. Furthermore,

authors have demonstrated that misclassification can severely impact parameter esti-

mates. However, disagreements exist regarding the specific effects of misclassification.

The dependent factor is the specific analysis conducted and the misclassification rates’

assumptions. Researchers have tested the effects of misclassification on results in lo-

gistic regression (McGlothlin et al., 2008; Roy et al., 2005; Roy et al., 2013), multilevel

linear models (Goldstein et al., 2008), multilevel count models (Nelson et al., 2018),

or ordered logistic regression for polytomous outcomes (Eickhoff & Amemiya, 2005;

Naranjo et al., 2019). In general, the effects of misclassification appear to be a poten-

tial biased estimate of regression coefficients (upwardly or downwardly depending on

the analysis) and smaller estimates of uncertainty (standard errors or credible interval

widths). Failing to develop approaches to account for such potential sources of bias

in results can lead to a false belief about the certainty in one’s results.

One understudied context is the effects of misclassification on attitudinal sur-

veys commonly used in educational and psychological research. Measurement error is

a common concern, and methods to help model and account for measurement error in

the assessed trait are widely used. However, many of the measurement error models in

educational research are concerned with measuring the trait. One potential limitation

in focusing on trait-level measurement error is that item-level measurement error is

not addressed. Addressing item-level measurement error was partially addressed by

Yiu and Poon (2008) and Roy and Banerjee (2009). Yiu and Poon (2008) developed an

approach to estimating polychoric correlations under misclassification, and Roy and

Banerjee (2009) developed a multivariate probit model under misclassification. Poly-

choric correlations are commonly used in factor analysis as the observed information

in a limited information estimation method such as diagonally weighted least squares

for estimating CFA models with categorical indicators (Bandalos, 2014; DiStefano &
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Morgan, 2014). Probit models are also closely linked to IRT models. However, neither

approach is meant to help measure an underlying trait being measured by the set of

indicators.

In the next section, measurement models that incorporate response time are

introduced. In the following chapter, response time is used to indicate the misclas-

sification rate. The proposed approach for using response time relies on the psycho-

logical theory underlying the response process to attitudinal survey items. A class of

measurement models has been developed that incorporates response time (Molenaar,

Tuerlinckx, & van der Maas, 2015b). Those methods are introduced next.

Measurement Models that Incorporate Response Time

Various methods have been proposed to incorporate response time into an ed-

ucational and psychological measurement. The methods for modeling response time,

especially reaction time, have a long history in psychology. Much of the literature on

how researchers have modeled response time directly is the scope for this work, but

Luce (1986) provided a comprehensive work on the subject through the ’80s. Schnipke

and Scrams (2002) and De Boeck and Jeon (2019) provide more recent overviews of

this area of research. However, this study is focused on methods that use response time

in conjunction with responses to a primary stimulus (e.g., an item on a psychological

assessment). Response time for measuring non-cognitive traits such as personality is

a less understood domain and is the focus of this work.

Measurement models that use response time in conjunction with responding to

test items, in particular, are well documented in educational assessment (Thissen,

1983). Such joint models have been applied to detecting cheating (Boughton et al.,

2017) and accounting for insufficient effort responding to surveys (Bowling et al., 2021;

Curran, 2016; Dunn et al., 2018; Huang et al., 2012). For these uses, a wide range

of statistical models has been developed. A hierarchical model that jointly models
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both is recommended to analyze test items using item responses and response times

(Becker et al., 2021; De Boeck & Jeon, 2019; Entink et al., 2009; Fox & Marianti,

2016; van der Linden, 2007). The hierarchical approach to jointly modeling responses

and response times can be seen as a bivariate generalized linear model using item re-

sponse and response time as the two outcomes to model. The individual responses are

assumed to be locally independent, given the person’s abilities. Local, or conditional,

independence is a common assumption in IRT models to help build the model that

describes the response process for the individual items. The same local independence

assumption is expanded to include the response times. The items and response time

are assumed independent after conditioning on the trait ability and a random effect

interpreted as the person’s speed. A multivariate normal distribution has been used

to model the latent ability and latent speed factors(van der Linden, 2007). Assum-

ing normality of latent variables is common in IRT, CFA, and other latent variable

modeling traditions (Bollen, 1989; de Ayala, 2009; Kline, 2016).

Latent variables describe individual differences among respondents on item and

response times. Individual differences are modeled by the joint distribution of the

latent variables. van der Linden (2007) modeled the joint distribution of trait (η1p)

and speed (η2p) latent variables by a multivariate normal distribution. That is, the

joint distribution is

ηp ∼ f(ηp;µP ,ΣP), (2.8)

f(ηp;µP ,ΣP) = |Σ
−1
P |

1/2

2π exp
[
−1

2 (ηp − µP )T Σ−1
P (ηp − µP)

]
, (2.9)

µP = (µη1 , µη2), (2.10)

ΣP =

 σ2
η1 ση1η2

ση1η2 σ2
η2

 , (2.11)

where p = 1, · · · , N observations are drawn the hypothetical population P in the

form of draws from the bivariate normal distribution f(ηp;µP ,ΣP) is the density
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function with mean vector µP and covariance matrix ΣP . The above model captures

the individual differences among respondents by capturing a random effect for ability

and a random effect for speed of responding to items. The abilities can be thought

of as level-2 of the hierarchical model. The level-1 part of the hierarchical model

describes how the person parameters connect to item parameters to describe the

observed responses to items and response times.

For responses to items, any number of IRT, IFA, or CFA models can be con-

structed to describe how a person’s ability (ηp) is related to observed responses.

Within the IRT tradition for dichotomous items, a 3-parameter normal-ogive (3PNO)

or logistic (3PL) is a common choice of model as described by van der Linden (2007)

when he illustrated the hierarchical approach. For my purposes, the measurement

model for an item response is yp ∼ f(yp; ηp,ψ), where ψ denotes the vector of item

parameters for item i.

For item response times, a variety of different models have been proposed. van

der Linden (2007) used a lognormal model for the response times (tpi), that is

tpi ∼ f(tpi; η2p,ψi), (2.12)

ψi = (αi, βi), (2.13)

f(tpi;αi, βi) = αi

tpi
√

2π
exp

[
−1

2 [αi (log(tpi)− (βi − η1p))]2
]
. (2.14)

The response time parameters, αi ∈ R+ and βi ∈ R, represent the discrimination

(factor loading) and time-intensity (location) parameters for the measurement model

of response time, respectively. However, a variety of other models exist for describing

the response time information (Molenaar, Tuerlinckx, & van der Maas, 2015a; Ranger

& Kuhn, 2018; Roskam, 1987; Rouder et al., 2003; Thissen, 1983; van der Maas et al.,

2011; Verhelst et al., 1997). In addition, many developed approaches are special cases

of the bivariate generalized linear IRT (B-GLIRT) discussed by Molenaar, Tuerlinckx,

and van der Maas (2015b).
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The B-GLIRT generalization of methods for jointly modeling item responses

and response times by Molenaar and colleagues (2015) provided a framework encom-

passing many previously developed methods. The general model for item responses

ypi and response times tpi for person p on item i is described by

E(Zpi) = gY
[
E
(
X ′pi

)]
= λiη1p + τi

with var(Zpi) = σ2
εi (2.15)

E(Wpi) = gT
[
E
(
T ′pi
)]

= αiη2p + βi + f(η1p;ρ)

with var(Wpi) = σ2
ωi. (2.16)

The linear function of item and person parameters for the item response may differ

depending on the parameterization, scale of the item responses and latent variables

(binary, ordinal, nominal, continuous), and type of link function used. gY (.) is the link

function between expected item response and the latent variable (η1p) (e.g., gY (.) may

be the normal ogive model for dichotomous item responses); λi item discrimination

parameter; τi item location/difficulty parameters; η1p is the latent ability/level of

construct for person p; Zpi is the response variable after applying the link function.

We can think of this as the underlying latent response variable that is linearly related

to the construct(Mislevy, 1986; Muthén, 1984; Wirth & Edwards, 2007); σ2
εi is the

residual variance of Zpi that is not explained by the latent trait. gT (.) is the link

function between the expected response time and the linear combination of response

time parameters. The gT (.) link will commonly be an identity link function. αi is a

time discrimination parameter akin to a factor loading of the item to the underlying

latent speed parameter. βi is a time-intensity parameter that helps measure how long

the item takes on average to account for differences in response time per item due

to item length or other characteristics not related to the person. η2p is the person

speed parameter to capture individual differences in speed across all items Wpi is

the response time variable after applying a link function which is commonly the log
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response time but may vary depending on how response time is measured. σ2
ωi is the

residual variable associated with the response time regression function for item i.

f(.) is the cross-relation function with parameters ρ = [ρ1, ρ2, ...], which will depend

on the theory used to inform the relationship between ability/latent construct and

the response time. More information about the model parameters can be found in

Molenaar, Tuerlinckx, and van der Maas (2015b, p. 58-59).

Additionally, the choice of link functions determines the specific B-GLIRT

model. For example, choosing gT (.) to be the identity function when analyzing the

log response time and gY (.) to be a probit link for dichotomous responses results

in the models described by van der Linden (2007) and Fox et al. (2007). Molenaar,

Tuerlinckx, and van der Maas (2015b) described other possible link functions and

connections to previous models.

Another innovative approach to incorporating response was proposed by Wise

and Demars (2006), who described an “effort-moderated” IRT model for dichotomous

items on cognitive tests. The effort-moderated IRT model describes the response

process as a two-component mixture model where each response is classified as either

a solution behavior (SB) or rapid guess. SB is a fixed value of 1 if the item response

time exceeds a specified threshold or 0 otherwise. Wise and Demars (2006) chose the

threshold variable for each item after looking at the response time distribution and

selecting what appears to be a logical cut-off between SB and a rapid guess. Another

approach would be to use a mixture model directly to estimate the threshold as

done by (Schnipke & Scrams, 1997). The effort moderated IRT model provides one

approach researchers have used to incorporate response as a source of error among

respondents.

Utilizing all available information about the response process is necessary for

achieving more confidence in research findings. In this study, response time is used in

non-cognitive measurement as a source of information on the amount of measurement
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error. In the next chapter, the methods for modeling misclassification as a source of

error in measurement are discussed. The measurement models discuss how response

time can be modeled and incorporated into an item factor analysis framework of

modeling while accounting for item-level misclassification.
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CHAPTER THREE

Modeling Misclassification in Item Factor Analysis

In this chapter, the methods developed for this study are developed. The meth-

ods of item factor analysis, introduced in chapter 2, are expanded to incorporate

item-level misclassification. The response time is then described as incorporated into

the full misclassi- fication model. Finally, the proposed research questions to evaluate

the model are described, and hypotheses are given.

Misclassification in Item Factor Analysis

Observations using categorical responses may be prone to measurement error.

Measurement error for categorical responses is also known as a misclassification error

because of the discrete nature of the data collected. A response would be considered

misclassified if the observed response does not match what response would occur

under ideal conditions. Uncertainty about the relationship between the observed and

true categorical response can be incorporated by developing a model to explain how

the observed response is likely related to the unobserved “true” response. The “true”

response is not known so a natural choice would be to assume that the observed

response is the true response. This is assumption is commonly use in educational

and psychological measurement. However, suppose this assumption is not tenable,

then an approached is needed for mapping an observed response to the unknown true

response. In a general measurement model, this relationship between the observed

response, true response, and latent variable can be described as shown in Figure 3.1.

The latent response variable is then related to the unknown true categorical response

instead of the observed response. Adding this layer to the measurement model provides

a direct approach for incorporating item-level misclassification into the measurement
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Misclassification Error
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Observed categorical response

Figure 3.1. Measurement error components

of the latent trait. Mapping the unknown true response to the observed response is

accomplished using a conditional probability statement; namely, the probability of the

observed response depends on the unknown response (i.e., Pr(Y | ν), where Y is the

observe response and ν is the unknown but true response). The conditional probability

statement for the observed response can then be combined with the probability model

for the true response (i.e., Pr(ν)) to develop the probability model for the observed

data.

The probability model for the observed response is defined to be composed of (1)

the conditional probability of the observed data given the unknown true response, and

(2) the probability model for the true response. The laws of probability can combine

both pieces of information to arrive at the overall probability of the observed data.

Suppose the observed categorical variable Y takes on values a = 1, 2, · · · , C, and

the unobserved categorical variable ν similarly takes on values b = 1, 2, · · · , C. Using

(1) and (2) above requires marginalizing over all possible values of the unobserved

variable ν. Because ν is categorical, marginalizing means summing over the values of

21



ν to obtain the resulting probability distribution for the observed data Y , which is

Pr(Y = a) =
C∑
b=1

Pr(Y = a | ν = b)Pr(ν = b). (3.1)

The set of all possible Pr(Y = a | ν = b) creates a misclassification matrix. This

misclassification matrix is denoted as Γ.

Using prior knowledge about how likely misclassified responses are to likely

occur, the matrix of probabilities can be built to relate the observed response to

the unknown, true item response. The elements of the misclassification matrix will

represent a full set of conditional probabilities (e.g., γ12 = Pr(Y = 1 | ν = 2)). For

example, an item with three response options would generally be

Γ =


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

 . (3.2)

The rows represent the observed response, and the columns represent the unknown

true categorical response. The rows of Γ sum to one because the response has to be

one of the three options unless a response is missing. The above representation of the

misclassification probabilities can form hypotheses about the unknown true response

νpi. That is, elements of Γ can be constrained to equality or specific values based

on how misclassification of responses is theorized occur. The focus of modeling then

shifts from the observed data to the unobserved data, which is theorized to underlie

the observed data.

Measurement Model with Misclassification

Next, the measurement model for the unobserved true response is defined. The

measurement model incorporates how misclassification relates the unobserved true re-

sponse to the observed response. The misclassification parameters are defined through

a single prior assumed applicable to all respondents and items. Extending the model
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with informed misclassification rates is the focus of the next section after the model

is defined.

Suppose a researcher obtains Y responses from p = 1, · · · , N individuals that

responded to i = 1, · · · , I items. All I items are ordinal with C response cate-

gories. The I items are theorized to measure a single trait. An individual is the-

orized to require more of the trait to endorse a higher response category for each

item. The item responses are also prone to misclassification. Prior information is

not available to hypothesize how misclassification rates may vary across items or

respondents. Therefore, a single misclassification rate is assumed plausible (this as-

sumption will be relaxed later). Let the probability of the observed category c be

ωpic = p(ypi = c). The set of ωpi = (ωpi1, ωpi2, · · · , ωpiC) is the collection of cate-

gory response probabilities. The observed responses are assumed to follow a cate-

gorical distribution: ypi ∼ Categorical (ωpi). The Categorical distribution is a multi-

category generalization of the Bernoulli distribution. This distribution is defined as

p(y = a | ω) = ωa∑C
c=1 ωc

.

The observed category response probabilities are defined by using Equation 3.1

with the item factor analysis model to describe the unobserved categorical response

probabilities. That is, the observed and unobserved categorical responses are modeled

by

ypi | ωpi ∼ Categorical (ωpi) for p = 1, . . . , N, i = 1, . . . , I

ωpi = (ωpi1, ωpi2, . . . , ωpic)

p(ypi = c | Γi, νpi) =
C∑
b=1

γibcPr(νpi = b)

γibc = Pr(ypi = c | νpi = b)

Pr(νpi = b | ηp, λi, τi, θi) = Φ
(
(ν∗pi − τi,b−1)θ−1

i

)
− Φ

(
(ν∗pi − τi,b−1)θ−1

i

)
,

ν∗pi | ηp, λi, θi ∼ N
(
λiηp, θ

2
i

)
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where Γi represents the misclassification parameters for item i. νpi represents the

unobserved true response. ν∗pi represents the latent response variable on item i by

individual p. ηp represents the latent variable value for person p. The item parameters

λi, τi, and θ2
i represent the factor loadings, item thresholds, and residual variance of

latent response variables, respectively.

The priors for the parameters were specified based on the recommendations of

Levy and Mislevy (2016, p. 292-295) for Bayesian psychometric modeling. Levy and

Mislevy (2016) consider the set of priors described below to be to be relatively unin-

formative compared to priors using content knowledge to inform these distributions.

ν∗ip ∼ N(λiηp, θ2
i ) for p = 1, ..., N, i = 1, ..., I

λi ∼ N+(0, 4) for i = 1, ..., I

ηp ∼ N(0, 1) for p = 1, ..., N

θ2
i = 1 for i = 1, ..., I

τib ∼


N(0, 10) for b = 1

N(0, 10)I(τi,b−1 < τb) for b > 1

γib ∼ Dirichlet(αb1, αb2, · · · , αbC)

The above set of priors are considered relatively uninformative because the distribu-

tions cover the full range of commonly observed magnitudes for all parameters. For

example, unstandardized factor loadings are commonly between zero and four. Addi-

tionally, some prior distributions were specified with certainty to values that conform

with common practice of how the scale is established for the latent factor and latent

response variables. For the latent factor, the location and variability are set to 0 and

1, respectively. The location is a function of the latent variable and factor loadings

for the latent response variables, while the variability is fixed to 1. This specification

of the latent variables allows the latent factor to be interpreted as standardized and

the latent response variables to be conditional on the values of the latent factor (see
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Table 2.1 for more details). Other approaches to resolving the indeterminacy of the

location of scale or the latent variables can be adopted. The indeterminacy of the

orientation is the last component of the latent variable specification that is resolved

by restricting the factor loadings to all be positive.

Alternatively, other prior structures have been proposed. For example, van der

Linden (2007) used a multivariate normal distribution to specify a prior on the item

parameters jointly. The draws from the unrestricted multivariate normal distribution

were then transformed to the scale of the variable (e.g., exponential to discrimination

and inverse-logit transformation for guessing). This alternative prior structure will be

discussed again in the methods and results as part of a prior-to-posterior sensitivity

analysis of selected parameters.

The likelihood function under the proposed model is

p(Y | Γ,ν∗,η,Λ, τ ) =
N∏
p=1

I∏
i=1

ωpic =
N∏
p=1

I∏
i=1

p(ypi = c | γc, ν∗pi, ηp, λi, τib). (3.3)

The observations are assumed to be independent, and the item responses are modeled

as conditionally independent given the latent variable. The corresponding posterior

is

p(Γ,ν∗,η, τ ,Λ | Y ) ∝
N∏
p=1

p(yp | Γ,ν∗p ,ηp,Λ, τ )p(Γ)p(ν∗p)p(ηp)p(Λ)p(τ )

∝
N∏
p=1

I∏
i=1

p(ypi = c | γc, ν∗pi,ηp,λi, τi)×

p(γc)p(ν∗pi)p(ηp)p(λi)
C−1∏
b=1

p(τi,b) (3.4)

The model described in Equation 3.4 is similarly depicted in Figure 3.2. Again, the

model specification diagram clearly defines how the observed category response prob-

abilities function the misclassification parameters (Γ) and the response probabilities

informed by the item factor analysis model (π).
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ypi ∼ Categorical(ωpi)

ωpi = (ωpi1, ωpi2, · · · , ωpiC)︸ ︷︷ ︸

ωpic =
∑C

b=1 γicbπpib

πpib = Φ
[
(ν∗pi − τi,b−1)θ−1

i

]
− Φ

[
(ν∗pi − τi,b)θ

−1
i

]

τi ∼
{

N(0, 102)

N(0, 102)I(τi,b−1 < τi,b)
ν∗ip ∼ N(λiηp, θ

2
i )

θi = 1

ηp ∼ N(0, 1)

λi ∼ N+(0, 22)

γic ∼ Dirichlet(αic1, αic2, · · · , αicC)

Figure 3.2. Item factor analysis with misclassification

Calibrating Misclassification Error Rates

Misclassification error is directly incorporated into the analysis through the

matrix γ. The elements of γ are unidentified in the sense that data from a single

test administration are unlikely to update the prior distribution. Defining what the

elements could defensibly be is then the challenge. I propose that information about

the misclassification matrix may be contained in the item response time. Response

time data has been shown to increase the precision of estimation of trait scores when

incorporated as auxiliary variables in an IRT model (Bolsinova & Tijmstra, 2018).

Researchers have developed hypotheses about how response time connects to the

underlying latent trait of interest in the modeling item responses in personality as-

sessment. One such hypothesis is the “distance-difficulty hypothesis” (Ferrando &

Lorenzo-Seva, 2007a, 2007b; Meng et al., 2014; Molenaar et al., 2021), also known as

the inverted-U effect (Kuiper, 1981). The inverted-U effect states that as the distance

between a person’s ability and the location of an item decreases, the respondent needs

more time to respond. This hypothesis implies that individuals may respond rather

quickly if they do not perceive that the item is meaningful, introducing construct

irrelevant variance into the measurement process. Specifically,
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In personality and attitude testing, if [ability/level of latent trait] is
just below [item location] and the subject has to respond quickly, the
noise factor in the decision process will play a large role. However,
the longer a subject thinks about his or her position, the more likely
it becomes that he or she will select the answer option that best fits
his or her latent state(van der Maas et al., 2011, p. 342).

A very low response time may then inform the amount of noise introduced into the

measurement process. In summary, a longer response time will be treated as indicative

of more precision in measuring an individual response. The relationship between re-

sponse time and measurement error is theorized to be monotonically increasing where

response time is measured absolutely on each item for all respondents.

Additionally, the degree of measurement error may also be determined by the

distance between a person and item (i.e., the inverted-U effect). So, if we can combine

the information about response time and the distance between item-person would give

us a more informative measure of the potential degree of measurement error. I propose

using the measurement model of response time and the item-person distance as an

informative source of measurement error in the observed item response in

ELRTpi = exp (βi − η2p)
f(η1p; ρ) = Response T ime

Person Item Distance
. (3.5)

ELRTpi is the effective latent response time for person p on item i. The use of βi−η2p

(latent response time) aims to account for the measurement error of response time

across items. Next, the latent response time is exponentiated to scale the response

time to the positive reals. Then, dividing by the distance function, f(ηp; ρ), weights

each item response by the individual varying inverted-U effect. Weighting by the

inverted-U effect will increase the effective item response time if the distance is small

but decrease if the distance is large. Based on the inverted-U hypothesis, a high

response time corresponds to a low measurement error, whereas a low response time

corresponds to a high measurement error. A link function, denoted gE(.), is then

constructed to map ELRTpi to the item response.
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The response time is linked the item response by the misclassification matrix.

The misclassification probabilities, P (ypi = c | νpi = b), are informed by the response

time. Informing the elements of the misclassification matrix could then be done by

P (ypi = c | νpi = c) = 1
1 + exp [−ELRTpi]

(3.6)

P (ypi = c | νpi = b) =
( 1
C − 1

)(
1− 1

1 + exp [−ELRTpi]

)
, (3.7)

where C is the number of response categories, equation 3.6 says the link function

between the ELRT and probability that the observed response is the “true” response

is the inverse logit transformation. Whereas equation 3.7 is the probability of that the

observed response is not the “true” response equally divided among the remaining

categories. This relatively simple approach would create a symmetric and unique

matrix for each participant on each item that can inform the degree of measurement

error. The diagonal elements of this matrix would represent the probability that

the observed response is the true response. The off-diagonal elements would be the

probability of misclassification. As described in equation 3.7, this probability would

be equal for all off-diagonal elements of this matrix. However, this can certainly be

modified such that elements closer to the diagonal are higher than elements farther

out.

Additionally, the probabilities defined in equations 3.6 and 3.7 can be informa-

tive priors for the misclassification rates. Misclassificaiton rates are specified using a

Dirichlet prior (Naranjo et al., 2019). The relative informativeness of the probabilities

defined above can be controlled using a tuning parameter, ξ. Based on informal tests

on estimating these models, setting the tuning parameter to 10 or more often results

in a relatively stable posterior for the misclassification rates. Other approaches to

defining an appropriate magnitude for the tuning parameter can also be used. For

example, if a researcher can collect data on a subsample of respondents twice, the

tuning parameter can be calibrated. The calibration across repeated sampling could
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be conducted by estimating the strength of the relationship between the response

time at time 1 to whether the respondents’ response changed between timepoints.

Additionally, the information gained by using response time to calibrate mis-

classification has the benefit of being readily available by researchers using digital

assessment. Another benefit of the approach described here is obtaining more ac-

curate parameter estimates and more reliable estimates of uncertainty of the trait

measurement model and person parameters. I hypothesize that by controlling for

measurement error in the observed response using the response time data, we can ob-

tain more reliable measures of the trait ηp. The use of more reliable trait measures will

result in the proposed approach yielding a more comprehensive measurement model

to account for uncertainty in item responses when investigating relationships among

latent traits/personality constructs. The push to develop approaches that account for

the uncertainty in our inferences is a growing concern (Rigdon et al., 2019; Rigdon

et al., 2020). And the approach described here aims to describe the response process

to account for this uncertainty more accurately.

Full Misclassification Item Factor Analysis with Response Time

The method developed here may be more concisely conveyed, as shown in 3.3.

The more concise nature makes it a little clearer how the resulting item response

is hypothesized to be influenced by the response time and where misclassification

plays a role. The diagram also conveys how the observed yi are responses that in-

accurately reflect the respondents’ views/opinions/ability/etc. The response without

error νi comes together with how misclassification function gE(.) to form the observed

responses. The rest of the model is analogous to previous models that merge responses

and response time (e.g., Ferrando et al., 2013; Ferrando & Lorenzo-Seva, 2007a, 2007b;

Meng et al., 2014; Molenaar, Tuerlinckx, & van der Maas, 2015b; Ranger, 2013)
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ν1 νi· · ·
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lnT1 · · · lnTi

η2p

f(η1p; ρ)

gE(η2p;γ)

Figure 3.3. Path diagram representation of the proposed joint model of item response,
response time, and item misclassification error. Note. Residual variances and specific
item parameters are omitted from the diagram for ease of discussion.

A path diagram of the full misclassification item factor analysis model with

response time is shown in Figure 3.3. Next, the model estimated is described using

the model specification diagram previously described for the misclassification in the

item factor analysis model. Finally, the full model specification is shown in Figure

3.4.

Prior Justification in Full Model

The priors for the full model are shown in Figure 3.4. The priors for the measure-

ment model portion were the same as the prior models (see Measurement Model with

Misclassification section for more details). The major changes arise from the inclusion

of the model for the log of response time and the hyper-priors for the misclassification

rates.

In the response time component, the priors were selected based on the rec-

ommendations of Bolsinova and Tijmstra (2018), Merkle and Rosseel (2018), and

Molenaar et al. (2021). Specifically, the priors for the response time intercepts and
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ypi ∼ Categorical(ωpi)

ωpi = (ωpi1, ωpi2, · · · , ωpiC)︸ ︷︷ ︸

ωpic =
∑C
b=1 γicbπpib

πpib = Φ
[
(ν∗pi − τi,b−1)θ−1

i

]
− Φ

[
(ν∗pi − τi,b)θ−1

i

]

τi,b ∼
{

N(0, 102)

N(0, 102)I(τi,b−1 < τi,b)ν∗ip ∼ N(λiη1p, θ
−1)

θi = 1

ηp ∼ N(0, 1)

λi ∼ N+(0, 22)

γic ∼ Dirichlet(αic1, αic2, · · · , αicC︸ ︷︷ ︸)

αic =





1

1 + exp [−(ELRTpi)]
, if c = b,

1
C−1

(
1− 1

1 + exp [−(ELRTpi)]

)
, if c 6= b,

ELRTpi =
exp(βi−η2p)
f(η1p;ρ)

log(t)pi ∼ N(βi − η2p − f(η1p; ρ), σ−1
ti )

σ−1
i ∼ Gamma(0.1, 0.1)

f(η1p; ρ) = ρ
∣∣∣λiη1p − 1

C−1

∑C−1
c=1 τi,c

∣∣∣
η2p ∼ N(σtsη1p, σ

−1
s )

σ−1
s ∼ Gamma(0.1, 0.1)

σts ∼ N(0, 102)

βi ∼ N(0, 102)

Figure 3.4. Model specification diagram of the proposed joint model of item response,
response time, and item misclassification error.

precision have been shown negligibly impact posteriors (Bolsinova & Tijmstra, 2018).

Therefore, the choice of the diffuse prior of βlrt ∼ N(0, 102) for the intercepts and

σlrt ∼ Gamma(0.1, 0.1) for the precision are expected to be sufficient without af-

fecting the rest of the model. The prior for the person-item-distance relationship

parameter ρ was chosen based on the work of Molenaar et al. (2021). The authors

recommended the prior be ρ ∼ N(0, 102). The prior for the covariance between the

factor σts was specified based on the recommendation of Merkle and Rosseel (2018),

which specifies σts ∼ N(0, 102).

For the hyper-priors of the misclassification rates, the priors are individually

varying based on the effective latent response time (see Equation 3.5). The specifica-

tion of the link between response time and misclassification is a major contribution of

this work. More information regarding the theoretical foundation of this specification

is found in section Calibrating Misclassification Error Rates.

Research Questions and Hypotheses

The methods described in this chapter provide an approach for modeling item-

level misclassification in item factor analysis. The methods need to be tested to dis-

cover whether further use can be justified. I will test the hypothesis that modeling
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item-level misclassification and response time can provide researchers with a useful

inferential tool. The following research questions guide the investigation:

(1) Does modeling item-level misclassification change the inference about scale

reliability?

(2) What is the parameter bias and coverage rate of credible intervals in the

proposed joint model of item response, response times, and misclassification

errors?

(3) Does the use of response time as information of item-level misclassification

change inferences about the measurement models for

(a) NAEP math identity data, or

(b) extroversion data?

For (1), a simulated dataset will be generated and reduced models estimated

(more on this in the methods chapter). The goal is to give a high-level description

of how key model summary statistics (i.e., estimates of reliability) can differ among

estimated models. For example, the reliability estimates are expected to be noticeably

lower when item-level misclassification errors are not modeled.

For (2), bias and coverage are expected to be adequate. No evidence could be

found to suggest that the full model cannot be recovered well when the model is

correctly and fully specified. However, the number of response categories may in-

fluence this expectation because the model requires estimating a misclassification

matrix (number of categories by number of categories) for each item and respondent.

As the number of categories increases, the sizes quickly expand, resulting in many

potentially “unidentified” parameters in the posteriors. The proposed models aim to

overcome this potential issue by using response time to inform the misclassification

priors. However, this design factor could still be an important aspect of recovering

the model parameters adequately.
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For (3), applying the proposed model on two separate data sources allows for

differences in data peculiarities to test the boundaries of the appropriateness of the

proposed methods. Applying the proposed framework to the NAEP math identify

data provides a novel application of NAEP’s process data of student questionnaire

responses. This application shows how item response time can be used with a national

dataset to help provide inferences about students. The extroversion data come from

the open-source R package diffIRT (Molenaar, Tuerlinckx, & van der Maas, 2015a),

and all items are dichotomously scored. Applying the proposed modeling framework

to this simple scenario allows for comparison to existing methods in an open way for

others to replicate. Similar to the first simulation study, the results are expected to

show that the full model will provide the highest reliability estimates. The reduced

models are expected to show that modeling misclassification can provide a useful

approach to gaining more information from one’s data.
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CHAPTER FOUR

Methods

The methods to help address the three research questions are addressed in

the following four sections. First, I describe my proposed approach to an applied

literature review. Secondly, methods are described for simulating a small dataset

with generated with item-level misclassification based on the full model. Using this

simulated dataset, I show how inference about the scale reliability may change if

misclassification is ignored. Third, I describe the Monte Carlo simulation study to

investigate the estimation performance under realistic conditions. Next, I describe

the methods and data used in an example using data from the National Assessment

of Educational Progress (NAEP) on student mathematics identity/motivation. Lastly,

I describe the methods and data used in an example analysis of an extroversion scale

with openly available data.

Applied Literature Review

The proposed focused literature review of applied work provides evidence for

simulation conditions.

A small subset of education and psychology journals were used in this review

where researchers commonly use latent variable models to help answer their research

questions. The journals selected for this review are: Assessment, Journal of Psychoed-

ucational Assessment, Psychological Assessment, and Individual Differences. The ap-

plied literature review was kept focused to allow for an in-depth search of targeted

journals. The search was be limited to a five-year range from January 2016 to Decem-

ber 2020. Because of the limited scope of the review, all articles were reviewed that

were published within this range that match the key phrase of “("item factor anal-

34



Table 4.1

Example of information extracted from literature review
Study Sample

Size
Number
Obs. Var.

Indicators
per F.

Indicator
Dist.

Avg. Std.
Loading

Cress, Lambert,
& Epstein (2016)

909 42 7-13 4-pt .74

O’Conner &
Fitzgerald (2020)

215 28 13-15 5-pt .66

Note. Var. = Variables; Obs. = Observed; Avg. = Average; Std. = Standardized. Other
information to be extracted include, but is not limited to, journal, number of latent vari-
ables, minimum factor loading, maximum factor loading, reliability estimate, how reliabil-
ity was computed, etc.

ysis" OR "confirmatory factor analysis" OR "item response theory" OR "structural

equation modeling" OR "covariance structure" OR "Rasch" OR "factor structure" OR

"psychometric properties).”

The review focused on extracting the data characteristics. Specifically, the ex-

tracted characteristics were the journal and author information, sample size, the num-

ber of latent variables, the minimum factor loading magnitude, maximum factor load-

ing magnitude, an average of reported factor loadings, reliability estimate(s), and how

reliability was computed. In addition, characteristics of the observed indicators in-

clude the number of indicators per latent factor, the scale of the indicators (number

of response options or continuous), and the distribution of the indicators. Table 4.1

provides an example of the type of information extracted.

Once the data were extracted, the data helped provide additional validity evi-

dence for the conditions chosen for the simulation studies. First, the extracted infor-

mation were collated by providing the mean, standard deviation, minimum, median,

and maximum values observed. Next, the distribution for the extracted data were

plotted to show how the chosen data characteristics for both simulation studies fall

within the range of many applied studies. Finally, the chosen simulation and applied
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ηp

· · ·y∗1 y∗i

y1 yi· · ·

(a) Model 1: Item response only

η1p

· · ·ν∗1 ν∗i

y1 yi· · ·

lnT1 · · · lnTi

η2p

f(ηp; ρ)

(b) Model 2: Joint item response and re-
sponse time

ηp

· · ·ν∗1 ν∗i

ν1 νi· · ·

y1 yi· · ·

lnT1 · · · lnTi

gE(lnTi;γ)

(c) Model 3: Item response only with mis-
classification

η1p

· · ·ν∗1 ν∗i

ν1 νi· · ·

y1 yi· · ·

lnT1 · · · lnTi

τp

f(ηp; ρ)

gE(ηp;γ)

(d) Model 4: Joint model with misclassi-
fication

Figure 4.1. Path diagram representation of proposed joint model of item response,
response time, and item misclassification error. Note. Residual variances and specific
item parameters are omitted from the diagram for ease of discussion.

conditions were shown by overlapping the observed distribution and the chosen points

in a density plot.

Simulation Study 1: Model Results under Simulated Data

A focused simulation illustrates the use of the proposed joint measurement

model for item response and response times with misclassification. The purpose of

this study was to demonstrate how item parameter estimates differ when the misclas-

sification is purposefully ignored. A series of four models were estimated to compare

results. The models estimated are shown in Figure 4.1.
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The results from estimating the four models shown in Figure 4.1 are presented

separately. The individual results will demonstrate how the major model parameters

differ from true values. Then, the estimates of reliability were compared across models.

Reliability was estimated using McDonald’s ω (McDonald, 1999, p. 89), which is

estimated using

ω =

(∑Ni
i=1 λi

)2

(∑Ni
i=1 λi

)2
+∑Ni

i=1 θ
2
i

, (4.1)

where,Ni = number of items, λi = factor loading for item i, and θ2
i = residual variance

of latent response variable i. Because all models were estimated within a Bayesian

framework, ω was computed for each posterior draw resulting in a distribution of ω for

each model. The resulting distributions were compared graphically and empirically

using a simple one-way ANOVA model. The primary outcome of the ANOVA was

the effect size estimates η2 (Maxwell & Delaney, 2004, p. 295-296).

Along with the reliability estimates, the item parameter estimates for the mea-

surement model were compared among models. The parameters to be compared are

the factor loadings and item location parameters (e.g., an average of item category

thresholds to create a single item location parameter). The estimates were visually

compared in a series of scatterplots to illustrate how the estimates differ across the

models. Similar to the reliability estimates, the differences among the parameter esti-

mates were evaluated using ANOVA. A two-way ANOVA model was used here where

item and model are the two factors. The primary outcome from this analysis will

be estimates η2 effect size for the effect of the model on parameter estimates after

partially out the effect of item differences.

Simulation Conditions

Only a single dataset was used in this simulation study. Data characteris-

tics for this simulation study are as follows. The sample size was set to 500. The

number of indicators was set to five. The number of response categories was set
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to three. The parameter values used to simulate the data are λ = 0.7, σi = 1,

V[η1] = 1, McDonald’s-ω = 0.83, β = 1.5, σlrt = 0.25, σs = 0.1, ρ = 0.1, and

τ =

−0.82 −0.75 −0.62 −0.39 −0.78

0.78 0.88 0.83 1.03 0.88


′

. The item threshold parameters were

randomly generated using the code shown in Appendix B. The parameter values are

included in each table for each of reference when evaluating the results from each

model.

Simulation Study 2: Parameter Recovery

The purpose of this study is to investigate whether the inclusion of misclassi-

fication informed by response time in item factor analysis can be used without the

need to estimate the complex latent structure of response time. he full model will be

estimated under a narrow set of conditions to check if parameter recovery is possible

with the full model.

Simulation Conditions

Data characteristics that varied across simulation conditions are the sample size

(500, 2500), the number of items (5, 10, 20), and the number of response categories

(2, 5) for a total of 18 cells in the design. The exact conditions proposed are subject to

change based on the results of the applied literature review. However, the conditions

are roughly based on the two applied datasets utilized in this study and conditions

used in methodological literature. The parameter values for the measurement and

response time models are the same as in simulation study 1.

The number of replications per cell is set to 100. The full model is estimated

to take approximately 2 hours (tested on my laptop) but may take longer for some

replications, especially for the conditions with a large sample size. To help speed up

the simulation, I am looking into how to use the Kodiak server.
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The convergence of the posteriors was checked using the criteria of R̂ within 0.1

of 1 (Gelman et al., 2013, p. 288). One replication from each condition was extracted

for a more in-depth posterior convergence check. This step was conducted before

running the full simulation to ensure adequate posterior convergence is likely achieved

in most conditions with the selected number of posterior samples, burn-in, and chains.

Sample size. Two sample size conditions were tested. The conditions initially

proposed are 500 and 2500. The smaller sample size of 500 approximates a sample

size commonly used in primary data collection by individual researchers. For example,

the extroversion dataset contains only 143 represents (Molenaar, Tuerlinckx, & van

der Maas, 2015a). For example, in a dataset I collected with colleagues for developing

the Perceptions of Online Learning Scale (Padgett et al., 2022), the final sample

contained approximately 650 respondents. A literature review by DiStefano and Hess

(2005) of construct validation papers found that researchers commonly can gain access

to approximately 375 (median of 101 studies). Therefore, the lower bound of 500 was

selected to represent a typical sample size that is aimed for in construct validation

studies.

The larger sample size of 2500 represents the number of cases researchers may

use from a large-scale national survey (such as NAEP). The full NAEP data was

well over 100,000 respondents, but taking a small random sample (5-10%) is not

uncommon when testing the fit more complex latent variable models. The use of

a subsample helps reduce the computational burden. Additionally, using the larger

sample size allows testing the proposed model under many respondents available in

larger studies.

Number of items. The number of items varies across survey scales in practice.

The number of items necessarily impacts the estimates of scale reliability as the more
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items used leads to a greater amount of information used to triangular the location

of each person on the trait of interest. Three conditions were proposed containing 5,

10, and 20 items, respectively. The NAEP math identity scale contains five items,

and DiStefano and Hess (2005) found that researchers typically utilized between 3-6

items per unidimensional construct. However, DiStefano and Hess (2005) reported

that some researchers have reported using up to 21 indicators for a single construct.

The extroversion data used in this dissertation contains ten items. Therefore, the three

conditions were selected to capture the realistic conditions of applied researchers.

Number of response categories. The number of response categories determines

the size of the misclassification matrix that needs to be estimated. For dichotomous

items, the misclassification matrix contains four elements. For items with five response

options, the misclassification matrix contains 25 elements. In the full model, the

matrices are specified at an individual level, so the number of parameters increases

rapidly as the number of categories and respondents increases.

The conditions of two and five response options are representative of the two

applied settings. These conditions also generalize to the conditions used by other

researchers using attitudinal assessments. The number of conditions for the number

of response categories was limited to five. Researchers commonly assume continuity

with greater than five response categories (Rhemtulla et al., 2012).

Two additional conditions were added to expand the investigation of the effect of

the number of response categories. First, a three-category and seven-category model

were added to investigate the effects of this condition more finely. This addition will

be described in detail if the results depart significantly from the use of two or five

response categories. Otherwise, the results will be included in the appendices and

references briefly. The seven-category model took a long time to estimate (almost a

week per model), so only 50 replications of these cells were attempted.
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Simulation Outcomes

The outcomes from this simulation study were the average relative bias, the

coverage rates of 95% credible intervals, and a summary of interval widths. I plan to

use the middle 95%-tile of posterior samples for the credible intervals.

The relative bias of parameter estimates will give a high-level summary of the

estimation performance. Relative bias was computed across replications within con-

ditions using the posterior median as the point estimate of each parameter. Let θ be

the population parameter value, and the replication estimates are denoted by θ̂r. The

condition summary statistics to be reported are the average relative bias, in percent,

of the parameter estimates is

RB(θ) = 1
Nr

Nr∑
r=1

θ̂r − θ
θ
× 100. (4.2)

We evaluated the extent of RB as negligible for RB < |5%|, as mild for | 5% |≤ RB

<| 10% |, and unacceptable for RB >| 10% | (Hoogland & Boomsma, 1998; Muthén

& Kaplan, 1985).

The coverage rates are an indicator of the repeated sampling performance of

the model under known conditions. For example, a 95% credible interval would be

expected to contain the population parameter values 95% of repeated samples un-

der identical conditions. If estimation conditions are appropriate for the proposed

model, the coverage rates should be 95% or negligibly different. The coverage rates

of the credible intervals were calculated using an indicator function of the poste-

rior summaries across replications. An indicator is created to compute whether the

95% credible interval contains the population parameter values used to simulate the

data. The reported coverage rates are the proportion of replications that contain the

population parameter values.

The summary of interval widths, especially average interval width, is closely

related to the coverage rate as the width of the intervals indicates how precisely the

posterior distributions are approximated. If the interval widths vary widely across
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replications, then there is evidence that the estimation procedures may be inadequate

for the proposed model. Therefore, identifying whether the posteriors are consistent

across replications is essential information about the utility of the proposed methods.

We may mitigate such issues by altering the parameterization or prior structure if

the intervals vary substantially across replications.

Applied Study 1: NAEP Math Identity and Process Data

The National Assessment of Educational Progress (NAEP) is a congressionally

mandated assessment of our nation’s students across mathematics, reading, science,

writing, among other subjects for grades 4, 8, and 12. NAEP is organized by the

National Center for Education Statistics (NCES). NAEP transitioned to a digital-

based assessment in 2017. The NAEP digital assessment includes a log of all actions

taken by students while completing the assessment. The log data are also known as

“process data.” One of the most commonly used forms of process data is response

time. Response time has a long history in educational assessment for cognitive traits

(e.g., math ability). However, one of the unique features of the NAEP data is that

students also complete a set of background questionnaire items ranging from questions

about their family environment to questions about their affective state. Process data

are also collected for the non-cognitive component of NAEP.

The NAEP non-cognitive items related to student math identity are used in

this study. More broadly, math identity and math motivation are highly related to

performance on mathematics assessment (Marsh et al., 1988), including the NAEP

math assessment (Zhang et al., 2021). After accounting for all relevant covariates,

the differences among students on the non-cognitive trait of motivation/identity ac-

counted for approximately 9% of the variability in NAEP mathematics scores (Zhang

et al., 2021). The significant impact of identity on performance determines whether
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such claims have sufficient evidence. Probing whether methods can be developed to

help shed light on this issue may prove fruitful.

Accounting for the measurement error is the purpose of this application. Addi-

tionally, I evaluate how the reliability of the mathematics identity changes depending

on how measurement error is incorporated into the model. Measurement error is in-

corporated using the misclassification approach described in the previous chapter.

Misclassification rates are informed by the NAEP process data (response time).

The full model described in the section Full Misclassification and Measurement

Model is expected to yield the largest increase in estimates of scale reliability. For

comparison, the series of reduced models are estimated. The four models shown in

Figure 4.1 will be estimated. Model (4) is expected to yield the highest estimated

of scale reliability on average. However, an interest also lies in whether the results

from Model (3) substantially differ. Suppose we can identify that the response time

can be used directly without loss of inferential gains that will tremendously increase

the applicability of the proposed methods. The applicability will increase between far

fewer parameters that need to be estimated, and results can be obtained quicker.

TThe four models describe the posterior distributions for reliability, estimated

using McDonald’s ω, under the four models are described. One of the major aims of

this application is to demonstrate how inference about scale reliability may depend

heavily on how the model incorporates misclassification.

For the NAEP process data example, models were estimated within a Bayesian

framework using JAGS (Plummer et al., 2003). Estimation was conducted using the

R2jags package (Su & Yajima, 2020) in R. Models were initially estimated using

10000 iterations across four chains. The first 5000 samples from each chain were dis-

carded as burn-in and chains were thinned by a factor of five. The resulting posterior

distributions for model parameters were evaluated for convergence using the pos-

terior predictive distribution of item category response proportions, potential scale
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reduction factor (R̂) being less than 1.1 (Gelman et al., 2013, p. 288), normality/s-

moothness of posterior density, negligible autocorrelation among samples, mixing of

samples between samples, and convergence of Gelman-Rubin-Brook criteria towards

1. A summary of the main model parameters for each model will be available in

Appendix D.

Applied Study 2: Extroversion Data

The applied example comes from an open-source personality assessment dataset

published as part of the diffIRT package (Molenaar, Tuerlinckx, & van der Maas,

2015a) for R. The data contain ten dichotomously scored items measuring aspects

of extroversion. The ten items were statements about habits, and respondents were

asked whether the habit applied to their personality (i.e., yes/no). The response time,

in seconds, was simultaneously recorded.

For items measured dichotomously, the proposed joint model for item response

and response time may be seen as a special case of a four-parameter IRT model. The

major difference is between a traditional four-parameter IRT model. The proposed

model is that the lower and upper asymptotes of the logistic/normal ogive function

are informed by the response time weighted by person-item distance

Similar to the NAEP data application, the four models shown in Figure 4.1 will

be estimated to these data. Among the estimated model, the posterior distributions of

item parameters and ω will be compared. The posterior distributions will initially be

compared graphically. Suppose a noticeable difference among models is not achieved.

In that case, the posteriors will be compared statistically using a one-way ANOVA

model to test whether there is a significant difference among the distributions.

Posterior Sensitivity Analysis

The proposed model is complex and has a necessarily complex corresponding

prior structure. An outstanding question from the previous studies is how influential
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the prior structure is on these results. A prior-to-posterior sensitivity analysis is con-

ducted using the Extroversion data. The use of the Extroversion dataset allows for

an open and rigorous exploration of the sensitivity of these results that others can

run, modify, or poke holes in.

The model for the Extroversion dataset is the simplest of the models examined

in this project. The model is the simplest because all ten items were dichotomously

scored. The measurement and response time model components have 33 parameters

in total (10 factor loadings, 10 item thresholds, 10 response time intercepts, 1 person-

item distance parameter, 1 speed factor variance, 1 factor covariance). Additionally,

there are many more person-specific parameters in the model. The person-specific

parameters are the values for each latent variable (2 latent factors, 10 latent response

variables, 10 item misclassification matrices [2 × 2]). Therefore, a total of 7,417 pa-

rameters are variable in the estimation of the full model for this Extroversion dataset.

Aside from the posterior dimension, the major inferential goals are to under-

stand how reliably we can measure Extroversion. As reliability is a function of the

factor loadings, the prior specified for the factoring loadings can significantly influence

the induced prior on reliability. Additionally, item-level misclassification is hypothe-

sized. Item-level misclassification rates are informed through individual-varying priors

generated as a function of the effective latent response time (ELRT). The informa-

tiveness of priors for the misclassification rates approximated by the ELRT can be

tuned. The tuning parameter on the prior for the misclassification rates was initially

set to one (ξ = 1) in all analyses. When ξ = 1, the priors for misclassification rates

were set to the direct transformation of ELRT, as shown in Figure 3.4; however, the

tuning parameter can be altered to change how informative ELRT is as a prior. The

sensitivity of the model results to changes in the magnitude of the tuning parameter

are testable.
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Table 4.2

Posterior sensitivity analyses prior
selection

Prior λ ξa

Baseb N+(0, 0.44) 1
A N+(0, 0.01) 0.1
B N+(0, 1) 10
C N+(0, 10) Uniform(0.5, 1.5)
D N(0, 0.44) Gamma(1, 1)
E N(0, 0.01)
F N(0, 1)
G N(0, 10)

Note. The normal distribution priors are
precision-parameterized; therefore, a uncer-
tainty parameter of 0.44 ≡ 1.5 standard
deviation. aξ is a parameter controlling the
certainty of the individual varying misclassi-
fication parameters. bBase prior was used in
the Monte Carlo simulation study.

Testing the sensitivity of the posterior of reliability (ω) to decisions of priors for

factor loadings and the misclassification tuning parameter is done by re-estimating

the full model with different choices for these parameters. The eight prior specifi-

cations for the factor loadings and the five specifications for the tuning parameter

are shown in Table 4.2. The priors for the factor loading are chosen to have varying

degrees of informativeness. The truncated nature of the first four priors aligns with

the recommended (Levy & Mislevy, 2016) approach for resolving the indeterminacy

of orientation of the latent response variables. The last four priors for the factor load-

ings remove this restriction. Removing the positive restriction on the factor loadings

aligns with priors selected for Bayesian linear factor analysis using continuous indi-

cators (Merkle & Rosseel, 2018). The priors for the tuning parameter were similarly

varied to change the relative informativeness of the prior. The last two priors for the

tuning parameter were chosen to center the value around one but allow for variabil-
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ity across iterations. A graphical summary of the posteriors with the relevant priors

layered on the plot is used to help identify posterior sensitivity to the prior structure.
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CHAPTER FIVE

Results

Applied Literature Review

The applied literature review provided a valuable source of information that pro-

vides evidence for the measurement models of interest in this research. The complete

list of extracted information is compiled and freely available on the accompanying

supplemental website. In this section, I describe the information extracted, which is

summarized in Table 5.1.

Table 5.1

Information extracted from studies reviewed
Characteristic Average SD Min Median Max

Sample Size 4575.1 24451.4 36 603 263683
Number of latent variables 5.7 7.2 1.0 4.0 60.0
Number of observed variablesa 52.42 83.5 5 24 442
Number of indicators per factor

Min 7.1 6.6 1 5 40
Avg 9.3 7.2 2.7 6.7 40
Max 13.5 15.8 3 9 135b

Factor Loadings (Standardized)
Min 0.41 0.20 0.00 0.41 0.86
Avg 0.64 0.13 0.23 0.65 0.93
Max 0.85 0.10 0.49 0.87 1.08

Reliability
Min .73 .13 .40 .71 .95
Avg .81 .09 .62 .83 .95
Max .88 .08 .67 .90 .98
Proportion using McDonald’s ωc .16

Note. a Number of variables reportedly collected and analyzed in a measurement
model. Many of the reported studies used the collected items to form sum-scores ef-
fectively reducing the number of “observed variables” to a small number of construct-
specific scores to use in a CFA of those sum-scores. b The paper reporting the use
of a latent variable with 135 indicators used the Coding subtest of Wechsler Adult
Intelligence Scale (WAIS-IV). c Proportion using McDonald’s ω is conditional on
whether reliability was reported.
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Figure 5.1. Distribution of measurement model characteristics and chosen conditions
for simulations. Note. Vertical lines in each plot represent the chosen value(s) as
conditions in the simulation.

The data conditions described in Table 5.1 focus on the measurement model

of the latent trait. The measurement models for simulation studies 1 and 2 were

restricted to a single construct to limit model complexity. However, applied studies

commonly use four (median) to six (average of 5.7) latent variables in their studies. As

a result, the sample size was highly variable, as shown in Figure 5.1(a). In addition, the

number of indicators per factor varied greatly from 1-135 in the studies examined.

The distribution of the number of indicators per factor is shown in Figure 5.1(b),

demonstrating how the conditions simulated fall within the range many researchers

encounter when using latent variable models. Similar conclusions about the factor

loadings and reported reliability estimates could be drawn from Figure 5.1(c) and

5.1(d), respectively.

Additionally, the scale of the indicators was also extracted for each study.

Twenty-two percent of reviewed studies reported using more than one survey where

the observed indicators had a different response scale (i.e., dichotomous and five re-

sponse options). Studies reporting collecting data using dichotomous indicators (15%),

three-(6%), four-(28%), five-(47%), six-(5%), and seven-point (17%) Likert-type re-

sponse scales. Researchers reported using the total-scores in 10% of studies instead of

the item-level responses as part of their unit of analyses. The frequency of use of the

response scales observed in applied studies shows that focusing the simulation study
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on dichotomous and five-point response scales aligns with over half of the applied

studies reviewed.

Simulation Study 1: Simulated Data Analysis

Model 1 Results

Model 1 is similar to traditional factor analyses with categorical indicators.

The posterior distributions for the measurement model are summarized in Table 5.2.

The estimates of reliability are described in more detail in the Comparing Posterior

Distribution of Reliability section. The posterior distributions for these parameters

converged well in most conditions. The R̂ values for all relevant parameters were

below 1.10 (see Table 5.2). A more in-depth description of the posterior distributions

and convergence criteria (e.g., traceplots, Gelman-Rubin-Brooks convergence criteria

plots, and autocorrelation) are reported in Appendix B.

The posterior distributions reveal that the factor loadings were underestimated

in this analysis. The underestimation is possibly due to the additional uncertainty

with respect to the misclassification not being accounted for in the analysis. The item

threshold parameters (τs) were estimated relatively close to the simulated values.

Therefore, modeling misclassification likely does not influence the individual item

characteristics but may influence how strongly we expect the items to relate to each

other, as evident by the underestimated factor loadings.

Model 2 Results

Model 2 is a joint model of item responses and response time as Molenaar,

Tuerlinckx, and van der Maas (2015b) recommended. Models that jointly estimate

the item responses and response time are expected to yield higher reliability estimates

as more information is used to estimate the model. The posterior distributions for

the measurement model and response time model are summarized in Table 5.3. The
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Table 5.2

Posterior distributions of model 1 summary
Parameter TV Mean SD 2.5% 25% 50% 75% 97.5% R̂

λ1 0.70 0.48 0.14 0.21 0.39 0.48 0.57 0.74 1.01
λ2 0.70 0.38 0.13 0.12 0.29 0.38 0.46 0.63 1.00
λ3 0.70 0.35 0.13 0.10 0.27 0.35 0.43 0.61 1.02
λ4 0.70 0.47 0.13 0.20 0.38 0.47 0.55 0.71 1.01
λ5 0.70 0.35 0.12 0.11 0.27 0.35 0.44 0.59 1.01
τ1,1 -0.82 −0.77 0.10 −0.98 −0.83 −0.77 −0.70 −0.58 1.01
τ2,1 −0.75 −0.73 0.09 −0.92 −0.80 −0.73 −0.67 −0.56 1.00
τ3,1 −0.62 −0.62 0.09 −0.80 −0.68 −0.61 −0.56 −0.45 1.00
τ4,1 −0.39 −0.54 0.09 −0.73 −0.60 −0.54 −0.48 −0.36 1.01
τ5,1 −0.87 −0.81 0.09 −0.98 −0.87 −0.81 −0.75 −0.63 1.00
τ1,2 0.78 0.86 0.11 0.67 0.79 0.85 0.93 1.09 1.01
τ2,2 0.88 0.88 0.10 0.70 0.82 0.88 0.95 1.08 1.00
τ3,2 0.83 0.88 0.09 0.71 0.82 0.88 0.94 1.06 1.00
τ4,2 1.03 1.01 0.11 0.81 0.94 1.01 1.07 1.24 1.00
τ5,2 0.88 0.83 0.09 0.66 0.77 0.83 0.89 1.01 1.00
ω 0.83 0.52 0.06 0.38 0.48 0.52 0.56 0.62 1.01

Note. Reported factor loadings are standardized. TV = True Value.

posterior distributions for these parameters converged pretty well. The R̂ values for all

relevant parameters were below 1.10 (see Table 5.3). A more in-depth description of

the posterior distributions and convergence criteria (e.g., traceplots, Gelman-Rubin-

Brooks convergence criteria plots, and autocorrelation) are reported in Appendix B.

Similar to the results of Model 1, the estimated posterior distributions for factor

loadings were below the simulated values. The posterior distributions reveal that the

factor loadings were underestimated and similar to Model 1. The item threshold

parameters (τs) were also similarly estimated relatively close to the simulated values.

For the response time portion of the model, the posterior distributions were rela-

tively close to the simulated values except for ρ. The person-item distance relationship

contributes to the response time for each item. In this case, the estimates of ρ were

above what we would expect given the simulated value. When ρ is over-estimated, we

may incorrectly conclude that the person-item distance has more impact on response
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Table 5.3

Posterior distributions of model 2 summary
Parameter TV Mean SD 2.5% 25% 50% 75% 97.5% R̂

λ1 0.70 0.40 0.09 0.21 0.34 0.40 0.45 0.58 1.01
λ2 0.70 0.30 0.09 0.09 0.24 0.30 0.36 0.47 1.04
λ3 0.70 0.51 0.10 0.30 0.45 0.51 0.58 0.69 1.01
λ4 0.70 0.40 0.09 0.23 0.34 0.40 0.46 0.58 1.01
λ5 0.70 0.48 0.09 0.30 0.43 0.49 0.55 0.64 1.01
τ1,1 −0.82 −0.75 0.09 −0.93 −0.81 −0.75 −0.69 −0.58 1.00
τ2,1 −0.75 −0.73 0.08 −0.90 −0.79 −0.73 −0.68 −0.57 1.00
τ3,1 −0.62 −0.67 0.09 −0.86 −0.74 −0.67 −0.61 −0.50 1.01
τ4,1 −0.39 −0.50 0.08 −0.66 −0.55 −0.50 −0.44 −0.33 1.00
τ5,1 −0.87 −0.83 0.09 −1.00 −0.89 −0.83 −0.76 −0.66 1.00
τ1,2 0.78 0.82 0.09 0.65 0.76 0.82 0.88 1.00 1.00
τ2,2 0.88 0.85 0.08 0.69 0.80 0.85 0.91 1.02 1.00
τ3,2 0.83 0.88 0.09 0.70 0.82 0.88 0.95 1.06 1.00
τ4,2 1.03 1.02 0.09 0.84 0.95 1.01 1.08 1.20 1.00
τ5,2 0.88 0.87 0.09 0.69 0.81 0.87 0.93 1.06 1.00
βlrt1 1.50 1.54 0.06 1.43 1.50 1.54 1.58 1.67 1.01
βlrt2 1.50 1.55 0.06 1.44 1.51 1.55 1.59 1.69 1.03
βlrt3 1.50 1.65 0.08 1.49 1.60 1.66 1.71 1.81 1.01
βlrt4 1.50 1.57 0.06 1.46 1.53 1.57 1.61 1.70 1.01
βlrt5 1.50 1.57 0.08 1.42 1.52 1.57 1.62 1.72 1.02
σlrt1 4.00 3.98 0.30 3.43 3.78 3.97 4.18 4.59 1.00
σlrt2 4.00 3.96 0.29 3.42 3.75 3.94 4.14 4.57 1.00
σlrt3 4.00 4.17 0.35 3.55 3.93 4.15 4.39 4.93 1.00
σlrt4 4.00 4.12 0.31 3.56 3.91 4.11 4.32 4.76 1.00
σlrt5 4.00 4.71 0.39 4.01 4.43 4.69 4.95 5.54 1.00
σs 10.0 10.39 1.47 8.06 9.36 10.21 11.20 13.80 1.02
σts 0.07 0.08 0.03 0.02 0.06 0.08 0.10 0.13 1.00
ρ 0.10 0.47 0.14 0.20 0.37 0.46 0.55 0.77 1.04
ω 0.83 0.53 0.06 0.40 0.49 0.53 0.57 0.62 1.01

Note. Reported factor loadings are standardized. TV = True Value.

time than truly exists. In this case, this would mean that a larger distance implies

lower response time (positive ρ implies lower response time while negative ρ implies

higher response time).
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Model 3 Results

Model 3 is the first model to incorporate item-level misclassification into the

analysis. The model is similar to traditional factor analyses with categorical indica-

tors but adds the misclassification component. The misclassification rates are directly

informed by the observed response time. The posterior distributions for the mea-

surement model are summarized in Table 5.4. The posterior distributions for these

parameters converged pretty well. The R̂ values for all relevant parameters were be-

low 1.10 (see Table 5.4). A more in-depth description of the posterior distributions

and convergence criteria (e.g., traceplots, Gelman-Rubin-Brooks convergence criteria

plots, and autocorrelation) are reported in Appendix B.

The resulting posteriors for the factor loadings were closer to the simulated

values than the two previous models. The posterior distributions are also, however,

more diffuse. The greater uncertainty in the posterior distributions for the measure-

Table 5.4

Posterior distributions of model 3 summary
Parameter TV Mean SD 2.5% 25% 50% 75% 97.5% R̂

λ1 0.70 0.62 0.16 0.27 0.52 0.64 0.73 0.89 1.07
λ2 0.70 0.61 0.16 0.28 0.50 0.62 0.73 0.87 1.01
λ3 0.70 0.40 0.16 0.08 0.30 0.41 0.51 0.69 1.04
λ4 0.70 0.63 0.15 0.31 0.53 0.64 0.74 0.87 1.04
λ5 0.70 0.38 0.17 0.06 0.25 0.38 0.50 0.69 1.01
τ1,1 −0.82 −0.89 0.21 −1.41 −0.99 −0.86 −0.75 −0.58 1.13
τ2,1 −0.75 −0.89 0.18 −1.30 −0.99 −0.87 −0.76 −0.59 1.01
τ3,1 −0.62 −0.63 0.12 −0.87 −0.71 −0.63 −0.54 −0.40 1.01
τ4,1 −0.39 −0.54 0.15 −0.88 −0.63 −0.53 −0.44 −0.27 1.01
τ5,1 −0.87 −0.87 0.14 −1.16 −0.96 −0.87 −0.78 −0.62 1.00
τ1,2 0.78 1.08 0.22 0.76 0.94 1.06 1.18 1.65 1.09
τ2,2 0.88 1.16 0.21 0.83 1.01 1.13 1.27 1.65 1.01
τ3,2 0.83 1.04 0.14 0.78 0.95 1.04 1.13 1.32 1.00
τ4,2 1.03 1.31 0.24 0.94 1.15 1.28 1.43 1.87 1.06
τ5,2 0.88 0.96 0.13 0.70 0.87 0.96 1.05 1.22 1.00
ω 0.83 0.71 0.06 0.57 0.67 0.72 0.75 0.80 1.01
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ment model parameters aligns with the increased source of error on the model (i.e.,

misclassification of responses) and with more parameters in the model.

Model 4 Results

Model 4 is the full model of interest and incorporates item-level misclassifica-

tion into the analysis informed by the effective latent response time. The posterior

distributions for the measurement model are summarized in Table 5.5. The posterior

distributions for these parameters converged pretty well. The R̂ values for all relevant

parameters were below 1.10 (see Table 5.5). A more in-depth description of the pos-

terior distributions and convergence criteria (e.g., traceplots, Gelman-Rubin-Brooks

convergence criteria plots, and autocorrelation) are reported in Appendix B.

The factor loadings were closest to the simulated values out of the four estimated

four models. The underestimation is not too severe as all five posterior distributions

contain the true values within the 95% credible intervals. Similar to Model 3, the

posteriors for the item thresholds were more off than the Models 1 and 2. This could

indicate that item location parameter estimates shift towards zero when misclassifi-

cation is incorporated into the model. Although, how the estimates of item location

are shifted is yet to be determined.

Similar to the results of Model 2, the estimates for the response time portion of

the model were estimated well. All posteriors except for ρ contained the true values.

The estimated posterior for ρ was closer to the true value; however, the parameter

was still overestimated.

Comparing Posterior Reliability Distributions

In the ANOVA comparing the posterior distribution of ω across the four mod-

els, the effect size estimate (η2) was .76. The large proportion of variability in omega

values across models gives evidence that inferences about reliability can be signifi-

cantly different depending on how these data are modeled. All pairwise comparisons
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Table 5.5

Posterior distributions of model 4 summary
Parameter TV Mean SD 2.5% 25% 50% 75% 97.5% R̂

λ1 0.70 0.61 0.11 0.37 0.54 0.61 0.69 0.79 1.04
λ2 0.70 0.55 0.13 0.26 0.48 0.57 0.64 0.75 1.09
λ3 0.70 0.66 0.11 0.39 0.60 0.67 0.74 0.82 1.05
λ4 0.70 0.59 0.10 0.38 0.52 0.59 0.66 0.79 1.02
λ5 0.70 0.58 0.11 0.34 0.51 0.59 0.65 0.77 1.10
τ1,1 −0.82 −0.88 0.14 −1.18 −0.98 −0.88 −0.78 −0.62 1.02
τ2,1 −0.75 −0.88 0.14 −1.16 −0.97 −0.88 −0.78 −0.61 1.01
τ3,1 −0.62 −0.75 0.15 −1.07 −0.85 −0.74 −0.65 −0.48 1.04
τ4,1 −0.39 −0.50 0.12 −0.75 −0.58 −0.49 −0.41 −0.26 1.00
τ5,1 −0.87 −0.92 0.14 −1.21 −1.01 −0.92 −0.83 −0.66 1.00
τ1,2 0.78 0.98 0.15 0.70 0.88 0.98 1.08 1.29 1.01
τ2,2 0.88 1.03 0.14 0.76 0.93 1.03 1.12 1.31 1.00
τ3,2 0.83 1.08 0.15 0.80 0.98 1.07 1.17 1.39 1.01
τ4,2 1.03 1.24 0.17 0.94 1.13 1.23 1.34 1.59 1.05
τ5,2 0.88 1.03 0.15 0.75 0.93 1.02 1.12 1.32 1.02
βlrt1 1.50 1.56 0.07 1.44 1.52 1.56 1.61 1.70 1.02
βlrt2 1.50 1.60 0.08 1.45 1.54 1.59 1.65 1.77 1.08
βlrt3 1.50 1.65 0.10 1.47 1.58 1.65 1.72 1.84 1.06
βlrt4 1.50 1.59 0.07 1.46 1.54 1.59 1.63 1.72 1.05
βlrt5 1.50 1.53 0.08 1.40 1.48 1.53 1.59 1.70 1.08
σlrt1 4.00 4.01 0.30 3.45 3.80 4.00 4.21 4.64 1.00
σlrt2 4.00 4.01 0.30 3.44 3.80 4.00 4.20 4.65 1.00
σlrt3 4.00 4.17 0.37 3.51 3.91 4.13 4.39 4.95 1.01
σlrt4 4.00 4.13 0.31 3.56 3.92 4.12 4.33 4.76 1.00
σlrt5 4.00 4.61 0.37 3.93 4.36 4.59 4.85 5.35 1.00
σs 10.0 10.68 1.72 8.08 9.49 10.40 11.60 14.67 1.06
σts 0.07 0.09 0.03 0.03 0.07 0.09 0.11 0.15 1.00
ρ 0.10 0.29 0.10 0.11 0.22 0.28 0.36 0.49 1.07
ω 0.83 0.75 0.05 0.63 0.71 0.75 0.78 0.83 1.02
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Table 5.6

Summary of posterior distribution of reliability
Model Mean SD 2.5% 25% 50% 75% 97.5%
Model 1 0.52 0.06 0.38 0.48 0.52 0.56 0.62
Model 2 0.53 0.06 0.40 0.49 0.53 0.57 0.62
Model 3 0.71 0.06 0.57 0.67 0.72 0.75 0.80
Model 4 0.75 0.05 0.63 0.71 0.75 0.78 0.83

were also significantly different, although the differences among estimates for Mod-

els 1 and 2 were negligible, and the differences among estimates for Models 3 and 4

were negligible. These results suggest that Model 3 and Model 4 provide practically

equivalent interpretations about the reliability estimates of McDonald’s ω for a single

factor as measured by these items. In general, incorporating misclassification into the

item factor analysis can substantially increase estimates of reliability of the factor of

interest by bringing the estimates closer to the underlying truth.

Population
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Figure 5.2. Simulation study 1 posterior distribution of reliability across models. Note.
The posterior distributions presented above are 5000 draws from each posterior, re-
spectively.
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Simulation Study 2: Parameter Recovery

Posterior Convergence

The convergence of the posterior distributions was assessed separately for the

different parameter groups in the model. For instance, the convergence of the posterior

distributions for the factor loadings was aggregated to a single summary statistic. As

a result, a posterior was determined to “converge” in this Monte Carlo simulation

study by whether the average R̂ value for the group of parameters (i.e., average R̂ for

factor loadings) was below 1.10. Next, the results are described for the dichotomous

and polytomous (five-category) results.

The convergence results for models estimated using dichotomous indicators are

summarized in Table 5.7. The posteriors converged fairly well for nearly all parameters

when the indicators were dichotomous where the average R̂ were below 1.10 for most

parameters and sample size conditions. Exceptions occurred in conditions where the

number of items was five for factor loadings (λ), the total variance of latent response

variables (θ), and reliability (ω). Adding more items to the model resulted in higher

convergence rates of the posteriors. Convergence rates were above 90% when the

number of items was 20 but fell as the number of items decreased depending on the

parameter. For instance, the convergence rate for factor loadings fell to 85-90% for

models with ten items and 65-68% for models with five items. The convergence of

the posterior for reliability fell to 63% in models with five items and a sample size of

500. Still, additional items and a larger sample size increased the convergence rate.

The convergence rates tended to be better in conditions with larger sample sizes. A

potentially useful aspect of these results is that the variability in R̂ across replications

became negligible as the sample size and number of items increased, suggesting that

convergence becomes more consistent.
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Table 5.7

Posterior convergence by R̂ of dichotomous items
Avg R̂ SD R̂ % Converge

Parameter N 5 10 20 5 10 20 5 10 20
λ 500 1.09 1.06 1.04 0.05 0.02 0.01 68 85 95

2500 1.10 1.05 1.03 0.05 0.01 0.01 65 90 98
τ 500 1.03 1.02 1.01 0.02 0.01 0.00 96 98 100

2500 1.02 1.01 1.01 0.01 0.00 0.00 98 100 100
θ 500 1.14 1.08 1.05 0.07 0.03 0.01 50 76 92

2500 1.11 1.05 1.03 0.05 0.01 0.01 62 89 98
βlrt 500 1.07 1.04 1.02 0.04 0.02 0.01 80 93 99

2500 1.07 1.03 1.02 0.04 0.01 0.01 80 97 100
σlrt 500 1.01 1.00 1.00 0.01 0.01 0.00 97 100 100

2500 1.01 1.00 1.00 0.01 0.00 0.00 99 100 100
σs 500 1.02 1.01 1.00 0.02 0.01 0.00 99 100 100

2500 1.02 1.01 1.00 0.02 0.01 0.00 97 100 100
σst 500 1.04 1.02 1.01 0.04 0.02 0.01 95 100 100

2500 1.03 1.02 1.01 0.03 0.01 0.01 98 100 100
ρ 500 1.07 1.06 1.04 0.08 0.05 0.02 82 85 97

2500 1.07 1.03 1.02 0.07 0.03 0.01 80 97 100
ω 500 1.10 1.05 1.03 0.07 0.04 0.03 63 88 96

2500 1.08 1.03 1.02 0.08 0.02 0.02 78 97 100
Note. Number of items 5, 10, 20 are represented along the columns of this table. Avg
R̂ = Average R̂ across replications; SD R̂ = standard deviation of R̂ estimates across
replications; % Converge = percent of replications with R̂ < 1.10; λ = factor loading; τ
= item threshold; θ = total variance of latent response variable; βlrt = response time
model intercept; σlrt = response time model item residual variance; σs = speed latent
variable variance; σts = covariance between latent variables; ρ = person-item distance
relationship; ω = McDonald’s ω reliability estimate.
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Table 5.8

Posterior convergence by R̂ of polytomous (five-category) items
Avg R̂ SD R̂ Prop. Converge

Parameter N 5 10 20 5 10 20 5 10 20
λ 500 1.07 1.04 1.04 0.03 0.01 0.01 79 93 95

2500 1.04 1.03 1.03 0.02 0.01 0.01 92 97 97
τ 500 1.02 1.02 1.02 0.01 0.00 0.00 97 100 100

2500 1.02 1.02 1.02 0.00 0.00 0.00 100 100 100
θ 500 1.08 1.05 1.04 0.04 0.01 0.01 75 92 95

2500 1.05 1.03 1.03 0.02 0.01 0.01 92 97 97
βlrt 500 1.03 1.02 1.01 0.02 0.02 0.01 93 98 100

2500 1.03 1.02 1.01 0.02 0.01 0.01 98 100 100
σlrt 500 1.00 1.00 1.00 0.00 0.00 0.00 100 100 100

2500 1.00 1.00 1.00 0.00 0.00 0.00 100 100 100
σs 500 1.01 1.00 1.00 0.01 0.01 0.00 100 100 100

2500 1.01 1.00 1.00 0.01 0.00 0.00 100 100 100
σst 500 1.02 1.01 1.01 0.02 0.01 0.01 99 100 100

2500 1.02 1.01 1.01 0.01 0.01 0.00 100 100 100
ρ 500 1.04 1.03 1.03 0.04 0.03 0.02 91 95 98

2500 1.03 1.02 1.02 0.02 0.02 0.02 98 100 100
ω 500 1.05 1.04 1.03 0.04 0.03 0.03 88 97 98

2500 1.03 1.03 1.02 0.03 0.02 0.02 99 98 99
Note. Number of items 5, 10, 20 are represented along the columns of this table. Avg
R̂ = Average R̂ across replications; SD R̂ = standard deviation of R̂ estimates across
replications; % Converge = percent of replications with R̂ < 1.10.

The posterior converge results for models estimated with polytomous (five-

category) indicators are reported in Table 5.8. The posteriors converged well for all

parameters when the indicators had five categories where the average R̂ value was

below 1.10 for all parameters, number of items, and sample size conditions. The

convergence rate of the posterior distributions did fall below 90% for factor loadings

(79%), the total variance of latent response (75%), and reliability (88%). The below

90% convergence rates occurred in conditions using five items and a sample size of 500.

Similar patterns of convergence were found in models estimated with three categories

C.1 and seven categories C.3.
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Posterior Median Bias

Relative bias was assessed using the posterior median to estimate the parameter

value. This section evaluates how biased the estimates are on average. First, the overall

effect of the three design factors (number of categories, number of items, and sample

size) was evaluated The effects are summarized for each parameter in Table 5.9 as the

η2 effect size measure. The number of response categories accounted for 1.5% of the

variability in relative bias estimates for factor loadings, and 2.5% of the variability

in estimates of reliability. Number of items is known to be a major influence on the

reliability estimates. Our results captured this finding with sample size accounting

for the highest percentage of differences in the relative bias of reliability estimates.

Finally, the design factor chosen were found to influence estimates of relative bias for

different parameters, and how these factors influenced the results is the remaining

focus of this section.

First, models using dichotomous items showed a preponderance of negatively

biased estimates for most parameters except the response time model parameters (βlrt,

Table 5.9

Effect of design factors on relative bias estimates
λ τ θ βlrt σlrt σs σts ρ ω

C .015 .563 .006 .010 .005 .000 .018 .020 .025
I .031 .000 .003 .051 .010 .026 .002 .047 .133
N .001 .006 .035 .065 .006 .001 .001 .116 .049
C:I .039 .003 .011 .003 .005 .004 .007 .003 .003
C:I .008 .005 .003 .002 .002 .001 .001 .001 .002
I:N .014 .000 .002 .001 .003 .003 .002 .002 .008
C:I:N .012 .001 .004 .005 .001 .004 .004 .012 .010

Note. C = number of categories; I = number of items; N = sample size; λ
= factor loading; τ = item threshold; θ = total variance of latent response
variable; βlrt = response time model intercept; σlrt = response time model
item residual variance; σs = speed latent variable variance; σts = covariance
between latent variables; ρ = person-item distance relationship; ω = McDon-
ald’s ω reliability estimate.
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Table 5.10

Posterior bias of dichotomous items
Average Relative Bias Average Bias

Parameter N 5 10 20 5 10 20
λ 500 −25.57 −13.95 −10.25 −0.23 −0.13 −0.09

2500 −16.49 −13.87 −13.83 −0.15 −0.12 −0.12
τ 500 −8.28 −2.85 6.40 −0.00 0.01 −0.01

2500 −2.28 −3.30 −15.94 −0.00 −0.00 −0.00
θ 500 −9.86 −5.68 −4.72 −0.18 −0.10 −0.09

2500 −11.40 −10.66 −10.84 −0.21 −0.19 −0.20
βlrt 500 0.09 −1.07 −1.31 0.00 −0.02 −0.02

2500 0.55 0.56 0.30 0.01 0.01 0.00
σlrt 500 1.29 0.66 0.17 0.05 0.03 0.01

2500 0.42 0.14 0.08 0.02 0.01 0.00
σs 500 11.64 6.25 4.35 1.16 0.63 0.44

2500 7.68 6.77 5.76 0.77 0.68 0.58
σst 500 −9.70 −6.54 −4.40 0.01 0.00 0.00

2500 −7.76 −2.67 −6.57 0.01 0.00 0.00
ρ 500 33.04 −1.20 −7.13 0.03 −0.00 −0.01

2500 37.40 43.85 36.33 0.04 0.04 0.04
ω 500 −3.94 −1.53 −0.93 −0.03 −0.01 −0.01

2500 −4.31 −3.34 −1.92 −0.03 −0.03 −0.02
Note. λ = factor loading; τ = item threshold; θ = total variance of latent response vari-
able; βlrt = response time model intercept; σlrt = response time model item residual
variance; σs = speed latent variable variance; σts = covariance between latent vari-
ables; ρ = person-item distance relationship; ω = McDonald’s ω reliability estimate.

σlrt, σs). Summaries of the average relative bias and average bias on the scale of the

parameter are given in Table 5.10. The measurement model parameters for the factor

were more severely negatively biased in conditions with five items and a lower sample

size. The negative bias observed for the reliability estimates was negligible on average

under all conditions with dichotomous items. The persistent negative aspect of the

estimates of relative bias could indicate that the priors chosen for this simulation study

were more influential than originally thought. The parameters for the model’s response

time portion were estimated with negligible bias on average. However, the estimates of

the speed factor variance were mildly positively biased indicating the results tended to

61



Table 5.11

Posterior bias of polytomous (five categories) items
Average Relative Bias Average Bias

Parameter N 5 10 20 5 10 20
λ 500 −14.66 −13.48 −12.76 −0.13 −0.12 −0.11

2500 −14.93 −14.61 −14.40 −0.13 −0.13 −0.13
τ 500 −3.81 −6.67 −22.63 0.00 −0.00 0.01

2500 −8.11 −9.11 −16.54 −0.02 −0.01 −0.01
θ 500 −9.39 −9.83 −9.50 −0.17 −0.18 −0.17

2500 −11.81 −11.84 −11.76 −0.21 −0.21 −0.21
βlrt 500 0.53 −0.30 −0.82 0.01 −0.00 −0.01

2500 1.42 0.57 0.39 0.02 0.01 0.01
σlrt 500 1.00 0.33 0.31 0.04 0.01 0.01

2500 0.15 0.08 0.13 0.01 0.00 0.01
σs 500 10.07 7.25 6.22 1.01 0.73 0.62

2500 8.09 6.86 5.71 0.81 0.69 0.57
σst 500 −6.78 −6.13 −4.97 −0.00 −0.00 −0.00

2500 −1.90 −3.69 −1.87 −0.00 −0.00 −0.00
ρ 500 35.60 21.37 10.46 0.04 0.02 0.01

2500 65.98 46.40 40.98 0.07 0.05 0.04
ω 500 −4.44 −3.17 −1.69 −0.04 −0.03 −0.02

2500 −6.57 −3.85 −2.08 −0.05 −0.03 −0.02

estimate more variability in speed than exists. The unacceptable bias observed for the

person-item-distance parameter (ρ) is more concerning. The sample size was found

to have the largest effect of the estimates of ρ (η2 =11.6%), which can be seen in the

drastically different estimate of relative bias for the conditions with 10 and 20 items

for sample sizes 500 versus 2500. The somewhat confusing part of this result is that the

lower sample size conditions tended to be less biased on average for this parameter.

Similar to the results of the measurement model, this parameter could be highly

influenced by the prior in an unforeseen way. When using dichotomous indicators,

the overall conclusion is measurement model parameters tend to be negatively biased,

response time parameters tend to be unbiased, and reliability estimates tend to be

negligibly negatively biased. Next, for models estimated using indicators with five
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Figure 5.3. Bias of posterior median estimate of factor reliability. (A) relative bias
estimates where dashed lines represent ±10% relative bias, (B) average bias of pos-
terior median. ARB = average relative bias.

categories (see Table 5.11), the results were similar to the dichotomous item results

but with notable differences. Similar to the previous results, a persistent negative bias

was found for most parameters in the latent factor portion. The parameter estimates

for the response time portion of the model were also similarly mostly unbiased on

average. The variance of the speed factor was mildly biased in conditions with 5-10

items but otherwise acceptable.

The distributions of estimates of relative bias for reliability estimates are shown

in more detail in Figure 5.3. On average, the least biased estimates of reliability

occurred in the condition with dichotomous items, 20 indicators, and a sample size

of 500. The differences between the population values of reliability and the posterior

median are plotted in Figure 5.3B. The results show that the reliability estimates

are typically within 0.05 of the population value on the scale of reliability. So even

though, on average, the estimates are mildly biased, the estimates are still pretty

close from a substantive point of view.
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Posterior Credible Interval Coverage

Bayesian inference is central to the models discussed in this project, and credible

intervals are a key component of interpreting results. The performance of 95% credible

intervals to capture the population values of the model parameter is evaluated in

this section. Across conditions and parameters, the credible intervals are expected to

contain the population value for 95% of replications. Additionally, credible intervals

that are narrower on average (i.e., smaller widths) are preferred as this indicates

the posterior is more precisely estimating the population values. In this section, the

coverage rate and interval widths are evaluated.

First, the coverage rates for the credible intervals across conditions are reported

in Table 5.12. Coverage rates of credible intervals for factor loadings (λ) were below

the nominal value of 95% in all conditions ranging from 42-92%. Coverage rates of

factor loadings tended to be higher for dichotomous indicators and lower sample

size conditions. The coverage rates for the item thresholds (τ) were excellent for

dichotomous indicators (93-96%). However, the five-category conditions fell slightly

Table 5.12

Credible interval coverage rate
Dichotomous Polytomous

N 500 2500 500 2500
N Items 5 10 20 5 10 20 5 10 20 5 10 20

λ 88 91 92 83 85 78 88 86 84 68 56 42
τ 93 95 95 96 95 95 92 93 92 79 79 77
θ 88 90 92 83 84 78 89 86 84 68 56 42
βlrt 98 95 93 94 93 94 96 95 91 88 94 94
σlrt 96 95 95 96 94 95 94 93 95 93 94 95
σs 87 95 89 75 64 68 88 89 86 71 62 62
σst 97 93 96 95 98 94 97 90 94 93 96 96
ρ 100 95 98 86 56 37 92 95 93 62 51 25
ω 94 97 92 79 24 1 89 46 33 5 0 0
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Table 5.13

Summary of credible interval widths across conditions and replications
Avg. Width Width SD

Dichotomous Polytomous Dichotomous Polytomous

N 5 10 20 5 10 20 5 10 20 5 10 20

λ 500 1.50 1.28 1.05 0.89 0.65 0.54 0.56 0.38 0.22 0.28 0.09 0.05
2500 0.73 0.54 0.42 0.36 0.28 0.23 0.14 0.07 0.04 0.04 0.02 0.01

τ 500 0.65 0.63 0.60 0.53 0.49 0.48 0.11 0.09 0.05 0.11 0.05 0.04
2500 0.28 0.26 0.25 0.22 0.21 0.21 0.03 0.01 0.01 0.02 0.01 0.01

θ 500 3.01 2.53 1.97 1.58 1.06 0.88 2.52 1.80 1.09 1.15 0.37 0.25
2500 1.20 0.87 0.67 0.57 0.43 0.36 0.51 0.25 0.15 0.13 0.06 0.04

βlrt 500 0.25 0.19 0.15 0.22 0.17 0.14 0.07 0.04 0.02 0.05 0.02 0.01
2500 0.14 0.10 0.08 0.12 0.08 0.07 0.03 0.01 0.01 0.01 0.01 0.01

σlrt 500 1.32 1.12 1.05 1.20 1.09 1.04 0.38 0.11 0.08 0.13 0.09 0.07
2500 0.54 0.49 0.47 0.52 0.48 0.46 0.05 0.02 0.02 0.02 0.02 0.02

σs 500 6.41 3.90 3.18 5.09 3.66 3.10 2.05 0.66 0.38 1.08 0.41 0.27
2500 2.54 1.79 1.46 2.22 1.63 1.38 0.45 0.15 0.08 0.28 0.10 0.06

σst 500 0.16 0.11 0.09 0.12 0.09 0.07 0.02 0.01 0.01 0.01 0.00 0.00
2500 0.07 0.05 0.04 0.05 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00

ρ 500 0.32 0.16 0.11 0.25 0.17 0.12 0.12 0.04 0.02 0.06 0.03 0.01
2500 0.17 0.10 0.07 0.15 0.09 0.06 0.03 0.01 0.00 0.02 0.01 0.00

ω 500 0.31 0.10 0.04 0.15 0.06 0.03 0.10 0.03 0.01 0.03 0.01 0.00
2500 0.13 0.05 0.02 0.07 0.03 0.01 0.03 0.01 0.00 0.01 0.00 0.00

Note. Average width is computed using the average difference of upper 97.5%-tile and
lower 2.5%-tile of the probability interval. Width standard deviation (SD) is computed
similarly.

for the lower sample size conditions (92-93%) and fell drastically in the larger sample

size conditions (77-79%).

A similar pattern was of good coverage for dichotomous indicators. Still, poor

coverage in polytomous indicators at a large sample size was observed for the variance

of the latent response variable (θ) and speed factor variance (σs). Coverage rates were

not perfect but acceptable for the response time intercepts (88-98%), response time

residual variance (93-96%), and factor covariance (90-97%) across all conditions. The

coverage was acceptable for the person-item distance relationship parameter ρ when

the sample size was 500 (92-100%), but coverage fell drastically when the sample size

increased (25-86%). Lastly, the coverage of the credible intervals for the reliability

estimates were acceptable for at the sample size of 500 for dichotomous indicators
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(92-94%) but not for polytomous indicators (33-89%). At the higher sample size

conditions, the posterior distributions for reliability did not cover the population

value (0-79%).

The last component of the credible intervals evaluated in this project was the

interval widths. The average width and the variability in width size across replications

are reported in Table 5.13. For average width, an indication of the certainty of the

posterior distribution, the widths varied substantially across conditions. For the fac-

tor loadings, the average width ranged from 0.23-1.50, where the narrowest intervals

occurred for the polytomous items and larger sample size. This pattern occurred for

all parameters. However, for the item threshold parameters (τ), the average widths re-

mained fairly consistent across sample size conditions. The variability in width length

across replications was not substantial for item thresholds (SD ranged from 0.00-0.11),

response time intercepts (0.01-0.05), response time residual variance (0.02-0.13) fac-

tor covariance (0.00-0.01), person-item distance parameter (0.00-0.06), and reliability

(0.00-0.03). More substantial variability in interval widths was observed for factor

loadings (0.01-0.28), latent response variance (0.04-1.15), and speed factor variance

(0.06-1.08). More consistent interval widths are preferred, giving more confidence in

the repeatability of results across repeated samples.

Applied Study 1: NAEP Math Identity and Process Data

NAEP Response Time for Math Identity Items

The response time distribution for each of the NAEP math motivation items is

shown in Figure 5.4. The response time distributions for the full NAEP sample are

shown in Figure 5.4A. The response time distributions for the analytic sample are

shown in Figure 5.4B. The response time distributions show the potentially bimodal

distribution for items 2-5, and item 1 does not show substantial evidence of more

than one mode. The computation of response times used the time from entering the
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item to responding to the first statement as the response time for item 1. Responding

to item 1, therefore, includes reading the item stem and the first statement. Reading

both components lead to the necessarily higher response time for item 1 for most

respondents.

NAEP Math Identity Scale Reliability Estimates

The posterior distributions for estimates of scale reliability (ω) across the four

estimated models are shown in Figure 5.5. The results show how differentially weight-

ing item responses using response time can drastically shift the posterior distribution

for ω to higher values. The differences between using the observed response time versus

the ELRT as informative of the misclassification rates were negligible. However, the

model using the observed response time as informative the misclassification rates was

Figure 5.4. NAEP math identity item response times. (A) response time distributions
for all eligible NAEP data, (B) response time distribution for analytic sample (1%
random sample of full NAEP data).
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Figure 5.5. NAEP math identity scale reliability estimates.

estimated more quickly as this model appears to sample the posterior distributions

more efficiently.

Applied Study 2: Extroversion Data

In this section, the extroversion data and full model results will be more rigor-

ously tested to demonstrate the prior-to-posterior sensitivity of the full model. First,

the results across the four models are described. Then, the prior-to-posterior sensi-

tivity analyses are discussed.

Model Results

The full results of the four estimated models are given in Appendix E. Models

1-3 did not differ substantially from the results of the full model. Of major interest at

this point is how reliability estimates differ across models. The posterior distributions

of ω across the four models are shown in Figure 5.6. The models all had posterior

means and medians above 0.90, which indicates that the differences in responses to
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Figure 5.6. Extroversion scale reliability estimates.

the items may be attributable to a single latent factor because McDonald McDonald

(1999, p. 89) described how ω can be interpreted as the the “Omega is the square of

the correlation between the [total score] and a [factor] (Property 1).” Based on these

results, the conclusion is that these items may be used to estimate a single latent

factor with a high degree of reliability. However, how defensible is this conclusion is

the purpose of the sensitivity analysis that is to follow.

Prior-Posterior Sensitivity Analyses

The estimates of ω for the extroversion data were heavily dependent on the prior

structure specified. In the first part of the sensitivity analysis, the prior distribution

for the factor loadings was varied across the six prior specifications outlined in Table

4.2. The posteriors and prior distributions are shown in Figure 5.7. Changing the

priors from the theoretically needed positive truncated normal distributions to the

more relaxed priors used in Bayesian factor analysis with continuous indicators did

not appear to influence most posteriors substantially An exception occurred when

the prior precision was 10 and the posteriors were heavily pulled towards zero. Too

much precision (10) or too diffuse (0.01) resulted in the posteriors pulled towards zero
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Figure 5.7. Reliability posterior sensitivity across varying factor loading priors. Note.
The normal priors are precision parameterized.

or one, respectively. Additionally, the value chosen for the tuning pattern ξ did not

seem to influence the posterior distribution of ω in most cases. For example, when

the priors for the factor loadings were N(0, 1), the tuning parameter was influential

only when ξ = 0.1. Most cases’ lack of influence of the tuning parameter suggests

that the chosen value of ξ = 1 for the rest of this project is likely defensible and did

not influence the results meaningfully. A more detailed numerical summary of the

posterior distributions shown in Figure 5.7 is given in the appendix in Table E.5.
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CHAPTER SIX

Discussion

The discussion for this dissertation is broken up into three major sections. The

first general comments on the dissertation are discussed. The general discussion in-

cludes comments on the utility of the proposed methods. Next, two sections are

devoted to the simulation results and real data analyses. These sections include a

component focused on recommendations for analysts. Lastly, directions for future

research are discussed and I end with a few concluding remarks.

General Discussion

A major aim of psychometric modeling is to explain the response process that

gave rise to the observed data. The modeling goal is to develop methods represent-

ing the data generating process, leading to factor analysis, item response theory, and

Rasch models. These methods can be grouped as measurement models for an under-

lying construct of interest. To measure this underlying construct, a set of items, or

indicators, are used to reflect the construct. The observed response is caused by the

level of trait of a respondent in a structured way. Depending on the measurement

model, the structured relationship between observed responses and latent traits may

be constant across all levels of the trait (linear factor analysis) or depend on the level

of the trait (nonlinear factor analysis, IRT, or Rasch models). Any variability in the

observed response after the trait has been accounted for is measurement error. The

measurement error component is then used to help assess how well the data conform

to the hypothesized measurement model.

The hypothesized measurement model forms the basis of the more general latent

variable modeling framework for modeling complex systems. The complex systems can

71



be viewed as representing the data generating process. The data generating process

is a far too often overlooked modeling opportunity in educational and psychological

research. In this project, I aimed to develop an approach to modeling the data gen-

erating process underlying responses to self-report items that incorporates external

information about the respondents. Information about responses (i.e., response time)

was incorporated to explain the measurement error component of the model. Decom-

posing the error sources is the spirit of generalizability theory (G-Theory; Brennan,

2005, 2010; Webb & Shavelson, 2005). The connection to G-Theory is utilized in a

modeling perspective instead of a design perspective. The models for decomposing

measurement error can be flexibly defined within a general latent variable modeling

framework.

The latent variable modeling perspective can provide a useful framework for

formally testing hypotheses about difficult-to-measure constructs. Such investigations

may arise from data collected from individuals through surveys can be analyzed in

various ways depending on the type of data and the analyst’s goal. However, the

data collected are prone to confounding factors out of the researchers’ control. And

one unavoidable part of any measurement process is the issue of measurement error.

Evaluating the impact of measurement error on inferences is about evaluating the

validity of inferences.

The methods developed in this project were found to benefit the evaluation

of reliability in simulated and real data analyses. Single estimates of reliability for

a measurement tool are limited in information but provide a useful summary point

for understanding the strength of the relationship between the observed scores and

the unobserved trait (p. 89, property 1 McDonald, 1999) or the potential consistency

of scores across similar conditions (p. 89, property 2 McDonald, 1999). The limited

information provided by ω may be overcome if an IRT approach to reliability through

the information function is taken (see Wise & Demars, 2006). Evaluating the infor-
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mation provided across the range of trait scores may yield different inferences about

measuring different parts of the latent dimension. A limitation of ω or information

approach is the lack of ability to probe for potential issues in the results based on

theory-driven hypotheses about measurement error.

In this work, measurement error modeled as misclassified responses was shown

to provide a flexible approach for evaluating the sensitivity of reliability evidence to

different schemes of incorporating response time as information in the model evalu-

ation process. However, these methods are not limited to evaluating reliability esti-

mates. The proposed measurement model for non-cognitive assessments is a unique

approach for modeling and accounting for potentially invalid participant responses.

Developing approaches to account for potential threats to the validity of inferences

gained from assessments is an active area of research for educational and psychologi-

cal assessment (Bowling et al., 2021; Curran, 2016; Huang et al., 2012; Huang et al.,

2015; Ulitzsch et al., 2021). The growing literature has identified a variety of response

styles that are prototypical of careless or insufficient effort (C/IE) responding (Cur-

ran, 2016). The literature on response effort has been seen as a special case of the

literature for identifying and modeling response styles (Alessandri et al., 2010; Horan

et al., 2003) and method effects more generally (Bradburn et al., 1978; Campbell &

Fiske, 1959; Podsakoff et al., 2003).

A major difference between those methods and the misclassification-based ap-

proach proposed in this project is how the analysis accounts for the responses. This

project focused on differentially weighting responses that show low effort through a

low response time. The specification of the relationship between response time and

measurement error is discussed in more detail in the following section. Directly weight-

ing responses contrast with the methods for identifying response styles using mixture

models (Cernat & Vandenplas, 2020)), which can be difficult to estimate. The benefit

of the methods proposed in this project is the need to estimate a complex mixture
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model is traded-off to estimate misclassification parameters that may not be “identi-

fied” from the survey responses alone. The trade-off in complexity may be defensible

when the purpose is to evaluate the reliability of validity evidence associated with

a measurement tool. But, the mixture modeling approach may be more useful when

researchers need a way to identify respondents that do not demonstrate effort.

Expanding the flexibility to incorporate a wide range of measurement scenarios

will be useful for a variety of psychometric applications such as scale construction,

fraud detection, construct evaluation, etc. When constructing a measurement tool

is of primary interest, researchers have many analytic choices concerning the combi-

nation of models to use. The models may utilize response time which has a growing

component to understanding the measurement of personality constructs (Molenaar et

al., 2021; Ranger, 2013). Investigating how the personality or psychosocial construct

relates to response time can aid item development and evaluation (De Boeck & Jeon,

2019; Ranger & Kuhn, 2012) and develop flexible approaches for combining models.

For example, the bivariate generalized linear IRT (B-GLIRT) framework provides

researchers with a flexible approach to jointly model responses and response time

(Molenaar, Tuerlinckx, & van der Maas, 2015b). The misclassification approach com-

plements the B-GLIRT approach by providing researchers a mechanism for modeling

item-level measurement error using external sources of information (e.g., response

time). However, researchers are not limited to using response time but can utilize any

information they theorize to be relevant. Additional information on measurement er-

ror may be gathered from expert judgment about the construct under investigation

(Groves, 2004). For example, error may increase when items ask respondents to recall

past events, judge or evaluate opinions, attitudes or “nonattitude” towards the topic,

motivation, or response tendency (e.g., socially desirable responses, nah-saying, etc.)

which all are threats to the validity of the data we obtain (Groves, 2004, p.407-441).
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Accounting for potential threats to the validity of inferences drawn from surveys are

major benefit of the methods developed in this work.

Response Time and Measurement Error

A point of contention in the methods developed in this project is construct-

ing the relationship between response time and measurement error. In this project, I

limited the scope to the measurement of psychosocial constructs such as personality

where theory suggests that response time is related to the latent trait through a dis-

tance function (Ferrando, 2006; Ferrando & Lorenzo-Seva, 2007b; Holden & Kroner,

1992; Kuncel, 1973; Meng et al., 2014; Molenaar et al., 2021; Ranger, 2013; Ranger

& Ortner, 2011). Additionally, van der Maas et al. (2011) discussed how measure-

ment error increases as response time decreases on items as an individual’s distance

to item changes. Therefore, developing a modeling approach for specifying how the

response time relates to measurement error is part of the novelty of this project. Due

to the novelty, the relationship was specified such that a shorter response time implies

more measurement error which is similar to how methods for identifying low-effort

responses uses a low response time as an indicator (Meade & Craig, 2012; Rios &

Soland, 2021; Wise & Demars, 2006). However, other specifications are possible. For

example, response time could be non-monotonically related to measurement error

where the functional form of the relationship could take on a parabolic structure,

similar to ideal-point IRT models. Four possible representations of how response time

could relate to measurement error are shown in Figure 6.1.

The model developed as part of this project can incorporate one’s hypothesis

of the relationship between response time and measurement error. The relationship

is modeled as part of the link function gE(ηp; γ) (see Equations 3.6 and 3.7). De-

ciding among different representations of this relationship is possible by estimating

the model under each hypothesis and deciding which model best fits the data using
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Figure 6.1. Functional form of response time-measurement error relationship. (a) Mea-
surement error linearly decreases as response time increases; (b) Measurement error
monotonically decreases as response time increases−similar to form theorized in this
study; (c) measurement error monotonically increases and response time increases;
and (d) measurement error is lowest at a particular “point” of response time leading
to a parabolic relationship. Note. The scale is omitted for simplicity of discussion.

information criteria such as the deviance information criteria (DIC; Spiegelhalter

et al., 2002); and this procedure was done by Molenaar, Tuerlinckx, and van der

Maas (2015b) to test different representations of the person-item distance function

the joint measurement model with response time. The choice of how the trait relates

to response time is potentially non-trivial. The choice may influence how one should

model the relationship between response time and measurement error. For example, if

the person-item distance is strongly related to response time, then correctly specifying

that relationship is needed to compute the effective latent response time accurately.

However, if there is no strong relationship, the difference between weighting using the

effective latent response time versus the observed response time may be negligible.

The importance of this decision is likely application-specific.

The application-specific nature of joint models for response and response time is

a feature and a limitation. As a feature, the unique nature of individual applications

allows for a great breadth of utility. For example, the models allow for evaluation of

cheating and fraud detection (Becker et al., 2021; Holden & Kroner, 1992; van der Lin-

den, 2009), increased precision of estimation (Ranger & Kuhn, 2012; van der Linden

et al., 2010; Wise & Demars, 2006), and unique insights into the trait (Molenaar et al.,
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2021). However, due to the uniqueness of the models to each application, researchers

may find deciding among many potential modeling decisions to be intractable. For

example, Molenaar et al. (2021) discussed how modeling the person-item distance

relationship (or “inverted-U effect”) depends in part on the type of trait. The authors

described how the trait might be bipolar (e.g., dependent-independent), leading to in-

dividuals having separate prototypes underlying their representation. A bipolar trait

may then be expected to yield different relationships between response time and the

trait depending on the pole an individual falls near. The authors made a similar argu-

ment for traits and decisions made under a diffusion process (Tuerlinckx et al., 2016;

Tuerlinckx & De Boeck, 2005). However, a researcher may not believe their subject

of study aligns well under either representation, and they then need to develop their

hypothesis for how to relate the construct and response time. These decisions make

nuanced assumptions about the response process, and may be difficult to conceptual-

ize how these decisions are represented in the model specified. The methods developed

in this project may help researchers find a way to model their hypothesis by providing

a mechanism for relating the construct, response time, and measurement error.

Model Evaluation

In the previous section, I discussed how evaluating among models is possible

for helping decide among a set of competing hypotheses of the person-item distance

relationship and the link between response time and measurement error. Previous

researchers in this context have used information criteria such as the DIC to help

decide which representation best fits their data (Molenaar et al., 2021; Molenaar,

Tuerlinckx, & van der Maas, 2015b). Molenaar et al. (2021) found in a simulation

study that DIC can differentiate between correctly and incorrectly specified models.

However, the conditions were limited to two separate models, and additional simu-

lation studies would help to clarify if the DIC can differentiate among the various
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different distance functions and measurement error link functions. Additional model

selection methods may be useful as well, such as the widely applicable information

criteria (WAIC), leave-one-out cross-validation (LOO), and Pareto-smoothed impor-

tant sampling (PSIS) (Linde & van der Linde, 2012; Vehtari et al., 2017; Watanabe

& Opper, 2010). An evaluation of these approaches to model selection would provide

additional evidence for which model(s) researchers should focus their attention.

Related to model selection is evaluating the fit of an individual model. Within

the framework developed in this project, the measurement error link function works

to inform the misclassification matrices. The misclassification matrix posits that the

observed data are inherently biased. The inherent bias is what the models try to

model through the misclassification matrix; however, this poses a dilemma when eval-

uating the model-data fit. One approach to checking the fit is evaluating where an

observed summary statistic (mean, item category proportions, etc.) is captured by

the posterior-predictive distribution (Gelman et al., 2013; Gelman et al., 1996). A

dilemma occurs when we believe the observed summary statistic is biased. Does cap-

turing the biased observed summary statistics in the posterior predictive distribution

mean our model predicts the bias, or would that imply that the model is not account-

ing for the bias? Evaluating the fit of the model under such circumstances is an open

area, but I have yet to identify literature explicitly addressing this issue.

Despite the limitations of evaluating model fit, progress is being made. For ex-

ample, Garnier-Villarreal and Jorgensen (2020) discussed how the commonly utilized

fit measures (CFI, RMSEA, etc.) can be adapted and estimated within a Bayesian

framework. Yet, they caution that these indices descriptively evaluate “the degree to

which their model fails to reproduce the observed data; they were not developed to

be test statistics.” (Garnier-Villarreal & Jorgensen, 2020, p. 67). Additionally, other

authors have been working to help develop and describe how to evaluate the fit of

models within a Bayesian context (Ariyo et al., 2021; Levy, 2011; Zhang et al., 2022).
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Levy (2011) discussed a variety of approaches to evaluate the data-model globally

using familiar indices such as SRMR and fit for components of a model using residu-

als (i.e., local model fit). Adapting these model evaluation approaches to the scenario

when the observed data are theorized to be biased would be directly useful for the

methods developed in this study.

Discussion of Simulation Results

The results from the two simulation studies point to different aspects for how

the results can be influenced depending on the analytic approach taken. In simulation

study 1, factor loadings were consistently underestimated across all models. However,

the degree of underestimation depended on whether item-level misclassification was

modeled. Modeling item-level misclassification allows researchers to investigate how

sensitive model results are to measurement error. In particular, modeling individual

measurement error becomes possible to test whether inferences about a specific aspect

of a model depend highly on the modeling approach. The results of simulation study

1 suggested that the proposed approach can provide a useful sensitivity analysis of

results to effects of item-level measurement error.

The results of simulation study 2 suggested that the results of the sensitivity

analyses should be taken with a grain of salt. Evaluation of the estimation of the full

model found that the proposed approach to estimate the model may not be adequate

for the system hypothesized. Estimating Bayesian item factor models is complex and

only recently available in open source software (Merkle & Rosseel, 2018). I utilized a

“latent response variable” formulation of the underlying item response process in this

project. Still, my implementation was non-trivially different from the approach used

in blavaan and presumably commercial software. The code used to estimate the full

model is likely too verbose in how data were augmented relative to other approaches to

the latent response formulation. The verbosity potentially results in less efficient sam-
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pling from the posteriors of parameters of interest, such as reliability. For instance, the

approach used in this project maps the latent response variable back to the probabil-

ity scale as shown in the model specification diagrams (see Figure 3.2 and Figure 3.4).

However, other implementations have been proposed (Albert & Chib, 1993; Chib &

Greenberg, 1998; Gelman & Hill, 2006). The alternative implementations use the item

threshold parameters to truncate the latent response variables and use the observed

observations to define the regions of an individual’s latent response. Using truncated

latent response variables does not immediately illuminate how item-level misclassifi-

cation could be incorporated, which is why the current implementation of this project

was developed. The lack of congruence between the methods employed here for item

factor analysis and recommended implementations by other experts of item factor

analysis potentially limits the applicability of these methods. However, despite the

lack of congruence, the underlying idea of representing item-level measurement error

as a misclassified response has potential.

One potential area is for modeling misclassification in a broader nomological

network (i.e., a structural equation model with multiple latent constructs). Unfortu-

nately, the use of misclassification in such an application has not been conducted to

the best of my knowledge. However, misclassification methods have been explored in

univariate regression models (Goldstein et al., 2018; Goldstein et al., 2008; Gustafson

& Le Nhu, 2002; Richardson & Gilks, 1993). For instance, predictors measured with

error generally result in biased regression parameters (Fuller, 1987). However, ex-

panding the results from such investigations into a broader latent variable modeling

context has been less explored. Therefore, an open question is whether regressions

among latent variables are biased when those factors’ indicators are measured with

error.
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Recommendations for Analysts

Factor analytic methods are commonly used in social science for scale devel-

opment or construct validation. The uses of factor analytic methods are not without

potential downsides due to inherent uncertainty in measuring observed traits, which

has been shown to influence inferences (Rigdon et al., 2019; Rigdon et al., 2020).

Accounting for uncertainty in the effort or attention respondents give to item re-

sponses was the purpose of the current work. Accounting for inattentive responses

helps increase the validity of inferences from a factor-analytic method. The validity

of inferences also partially depends on how well the hypothesized model can be es-

timated with given statistical methods. In the two simulation studies of this work, I

have shown that traditional factor models estimated to data simulated with misclassi-

fication can severely underestimate model parameters and estimates of reliability. We

recommend that researchers using factor analytic methods investigate the sensitivity

of model results to potential sources of item-level measurement error. The methods

discussed in this project are one approach to probing those measurement error effects.

Discussion of Real Data Results

Two applied data examples were used in this study. The data for these two

examples were unidimensional scales, which is simpler than most applied studies

reviewed. However, the simplification helps demonstrate the misclassification’s appli-

cability in the proposed item factor analysis model. In the NAEP Data example, the

results were fairly straightforward in understanding the reliability of Math Identity as

measured by a set of five items selected by researchers at the American Institutes for

Research. Modeling misclassification resulted in tremendous gains in the magnitude

of estimates of McDonald’s ω. The use of response time to inform the misclassifica-

tion also resulted in a posterior distribution of ω with even higher values of reliability

on average. The increase in reliability estimates suggests that differentially weighting
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item-level responses based on response time can strengthen the relationship between

the underlying factor and the observed scores. Therefore, the methods developed in

this work could prove extremely useful for researchers utilizing surveys as all observed

data can be used while accounting for individuals that may be less attentive to their

responses. However, the approach to accounting for non-effortful responses contrasts

with many methods for accounting for inattentive respondents. Other approaches fo-

cus on identifying such responses (Bowling et al., 2021; Meade & Craig, 2012; Niessen

et al., 2016; Rios & Soland, 2021; Wise, 2017). The connection to response effort is

explored further in the general discussion below.

For the results of the applied examples, the observed data characteristics sug-

gested that individuals often took significantly longer to respond to the first item rel-

ative to the remaining items. In the NAEP data analysis, this occurred more clearly

when the average response time for item 1 was about 10 seconds (2.3 on a log scale),

but the remaining items decreased in average response time: 5 seconds, 4 seconds,

3.7 seconds, and 3 seconds, respectively. This trend was not observed in Extroversion

Data. Still, the documentation for those data was not clear on item order, how the

data were cleaned, or if all items from the survey were included in the open-access

data file. An increased response time for the first item is likely due to the time needed

to read the instructions for the item then this text is ignored on future screens. Know-

ing the first item is likely to result in a longer response time could be used in scale

development. For example, scale developers could organize items such that an item

is believed to require the most thought or most related to the underlying construct,

which aligns well with using a reference indicator for scaling the latent variable in a

unidimensional scale.

Choice of scaling method for latent variables impacts the prior specification.

For instance, a reference indicator approach specified a fixed factor loading but a free

factor variance. Therefore, researchers may need to decide which parameterization to
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use based on what prior knowledge available to create informative priors. Defining

defensible informative priors is a crucial step to Bayesian analysis, especially in smaller

sample sizes (Koenig et al., 2022; Smid et al., 2020). In the Extroversion example,

the priors chosen significantly impacted results. The priors for the factor loadings

were especially influentially on the posterior for reliability. However, contrary to the

recommendations for restricting the factor loadings to be positive (Levy & Mislevy,

2016), the sensitivity analysis results showed that the posterior for reliability was

essentially unaffected by this decision. More work on how to define informative priors

for factor loadings is needed.

The sensitivity analysis conducted as part of the extroversion data analysis was

difficult to interpret. The sensitivity analysis used 40 separate model specifications

defined by varying only the factor loading and tuning parameter prior values (see

Table 4.2). The results can be summarized as the posterior distribution for reliability

(McDonald’s ω) was sensitive to the prior specification for factor loadings but less

sensitive to the prior specification for the tuning parameter (see Figure 5.7). When

the factor loading prior was the theoretically defined λ ∼ N+(0, 0.44), the posterior

reliability was nearly the same as the induced prior on reliability. This result indicated

that restricting the factor loadings to positive values (similar to IRT discrimination

parameters) resulted in induced priors that were highly informative. The highly infor-

mative nature of the induced prior was especially true when the factor loading prior

was most diffuse with precision set to 0.01 in the second column of the plot. When

the prior precision for factor loadings was the largest at 10 (fourth column), the in-

duced priors pulled the posterior of reliability towards the lower end of the possible

values. The two extremes for diffuse and precise priors for the factor loadings resulted

in posteriors that were barely updated from the data. The least informative prior

on reliability was λ ∼ N(0, 0.44), which resulted in posteriors that were negligibly

different than when the prior was restricted to the positive reals. One interpretation
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of the sensitivity analysis is that reasonably precision priors for the factor loadings

(precision between 0.44-1) and most values for the tuning parameters will not impact

inferences. The inferences under these specifications would be that the scale is reliable

enough as all posteriors were above 0.70. The generally accepted lower threshold for

the reliability of scales constructed for social science research in low-stake scenarios.

Additionally, the inference above is conditional on the specification of a reason-

able precision for the prior on the factor loading. One potential way to account for

the uncertainty in what the prior precision would be to specify a hyper-prior for the

prior precision (see Gelman et al., 2013, p. 442-444 for an example). Gelman et al.

(2013) discussed how specifying hyper-priors for unknown parameters can be a way

to evaluate the sensitivity of posterior inferences to uncertainty in the prior specifica-

tion. Gelman and colleagues varied the degrees of freedom of the t-distribution using

a uniform prior to obtain a posterior that accounts for the uncertainty in the choice

of prior. A similar idea can be done by varying the prior for the variance component

of the normal priors for the factor loadings. For instance, the prior specification for

factor loadings could be changed to

λ ∼ Normal(0, τλ)

τλ ∼ Uniform(0.01, 10).

The posterior of reliability could then be summarized as a bivariate density plot of

the posterior for reliability by the posterior for the factor loading prior precision (as

shown in Figure 6.2). The posterior summary demonstrates how the posterior of ω

is insensitive the prior over a certain range of priors. However, the posterior was

found to be sensitive when the precision was fixed to the boundaries (0.01 or 10).

By accounting for uncertainty in the specification of the prior precision, inferences

about the posterior reliability are less conditional on the specific values chosen in the

initial sensitivity analysis. Hyper-priors other than uniform as are possible, such as
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Figure 6.2. Expanded sensitivity analysis using bivariate density plots. (a) Marginal
density of hyper-prior parameter τλ for factor loading prior precision; (b) Bivariate
posterior density plot of hyper-prior and reliability; and (c) marginal density of reli-
ability distribution with simulated induced prior on reliability. The MCMC samples
for are plotted with alpha-shading in (b) to demonstrate how disperse some draws
from the posterior were. The dashed line at 0.70 represents the common minimal
acceptable level of reliability for scales in the social sciences.

the half-Cauchy distribution also used by Gelman et al. (2013) in a latter part of

their analysis. This alternative specification for the hyper-prior is presented in the

Appendix, and the conclusion is similar to the results of the uniform hyper-prior.

The prior-to-posterior sensitivity analysis above was restricted to parameters

directly related to the posterior feature (reliability) of interest. The posterior distri-

bution of reliability may be sensitive to other parameters in the model such as factor

variances. Incorporating the prior for the (co)variance components would results in a

more robust approach to the sensitivity analysis.

Evaluating the prior-to-posterior sensitivity is one consideration when investi-

gating the results. Another consideration is the model specification. The model is

specified using theory to guide how measurement error is incorporated. However,

85



the model specification can be evaluated. The section on Model Evaluation discussed

model selection, but consideration of how inferences (e.g., how reliability is this scale)

change depending on how the model is specified. Any model specified simplifies the

data generating process to a degree, and by evaluating whether similar conclusion can

be drawn under different degrees of model complexity or hypotheses of how measure-

ment error may influence results lends more evidence to the decision we try to make

using these data. For example, evaluating the reliability of measuring math identity

using the NAEP data, the inferences about reliability could be drastically different

depending on what level of reliability we set is needed. If we only need reliability

to be at 0.70 for a low-stakes decision, then any of the models used meet the crite-

ria. But, if we are plan to make more high-stakes policy-related decisions using the

math identity construct as part of the model, we may say we need reliability to be at

least 0.9 or higher. Under those conditions, we would need to be careful as to which

model specification is used and be cautious of the appropriateness of which model

specification(s) to use to help inform decisions.

Recommendations for Analysts

The choice of priors is nontrivial, and relying on default priors for complex

models such as the one proposed in this project is not sufficient to decide based on

the model. The specification of hyper-priors may be a useful way to help summarize

results of sensitivity analyses. In the analysis conducted with the extroversion data,

the initial sensitivity analysis varied among priors specified by other software and

those suggested in the literature. However, the vast number of models results in the

conclusion that the posterior for reliability was sensitivity to the prior for the factor

loadings. Therefore, I recommend trying to identify over what priors the results are

insensitive. The hyper-prior on the precision can be used in such a way to capture

the range of theoretically defined priors plus all the values in-between to evaluate the
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posterior of reliability relative to the precision. This approach can be used with any

parameter of interest in the model to evaluate the sensitivity of the results to a range

of priors with a similar structure.

Future Research Directions

One of the major contentions of the methods developed in this work is the

specification of the relationship between response time and measurement error. Future

work can focus on modeling multiple specifications and evaluating which specification

is most likely for a given application. Model selection can be accomplished using the

model comparison approaches discussed in the Model Evaluation section. Another

approach is to develop a way to average over different specifications of measurement

error. Averaging over different model specifications may be done using Bayesian model

average (BMA; Hinne et al., 2020). BMA could provide a useful way to simultaneously

account for multiple possible specifications of the relationship between response time

and measurement error. However, the implementation of such an approach may be

far down the line as more work is needed to evaluate the estimation of the individual

models.

The implementation for item-factor analysis in this study should be compared

to alternative parameterizations and implementations. For example, the results should

be compared to the model estimated using the approach by Merkle and Rosseel (2018).

The latent response formulation approach to conceptualizing latent variable models

with categorical indicators is well documented (Kamata & Bauer, 2008; Muthén,

1984). The Bayesian approach to latent response variables, also known as data- aug-

mentation, is well used in various contexts (Albert & Chib, 1993; Chib & Greenberg,

1998; Gelman & Hill, 2006; Naranjo et al., 2019). However, each implementation

reviewed has been slightly different, resulting in the synthesized approach used in

this study. More work on developing the estimation properties would provide more
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evidence to utilize the method across contexts. Similarly, more understanding of effi-

ciently parameterizing and estimating these models would make developing an open-

source software package more user-friendly. For example, the motivation for develop-

ing an R package is that the software would provide a utility for these models to be

more easily estimated by other users. The development of an easy to use software for

such purposes would benefit the evaluation of more complex models within a wider

structural equation modeling framework.

The use of misclassification methods developed in this project to evaluate the

effects in a broader structural equation model could provide useful evidence as to the

extent such item-level measurement error influences inferences about latent variables.

In a model that specifies latent regressions, how are these structural parameters af-

fected by the error of the indicators? This open question could be investigated using

a Monte Carlo simulation study. In the study, the goal would be to evaluate the bias

in the latent regressions. The study could be conducted using a similar process as

simulation study 2, but focusing on the structural parameters. One of the simulation

conditions would also be model specification whether correctly or incorrectly specified

misclassification component. Additionally, the investigation would benefit from incor-

porating the prior as a condition to evaluate the performance over different degrees

of prior informativeness.

Incorporating the prior specification into the Monte Carlo simulation study

would provide evidence as to a potentially useful “initial” prior specification for other

researchers. Recommending default priors for complex models has potential to un-

duly influence results in scenarios where the defaults overwhelm the data. However,

providing guidance as to a prior specification that is relatively uninformative would

be of utility to researchers. Similar, developing an approach for researchers to derive

informative priors would be advantageous. For instance, Veen et al. (2020) used a

panel of 14 experts to generate informative priors for a latent growth curve model.
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Developing approaches to incorporate expert knowledge into measurement models

would provide a valuable test of the developed measurement model.

In this study, I focused primarily on the use of McDonald’s ω as defined in his

text (McDonald, 1999, p. 88). The rational for the applicability of this formulation

of ω is due to the use of latent response variables so that estimates of reliability are

based on the continuous latent responses and not the categorical observed indicators.

Another approach to investigate in future research is the use of categorical ω (Green

& Yang, 2009). Categorical ω is computed utilizing the information captured in the

thresholds and bivariate relationships among all items distinct from the commonly

used McDonald’s ω for linear factor analysis. The use of categorical ω is now rec-

ommended for estimating reliability in nonlinear factor models (Yang & Xia, 2019).

However, an interesting comparison may be possible when comparing the results of

categorical ω with the posterior of McDonald’s ω from the methods proposed in this

project that account for misclassification. The use of categorical ω instead of the tra-

ditional formula may help account for the last bit of under-estimation we found in

nearly all Monte Carlo simulation study conditions.

Similar to extending the evaluation of the misclasification item-factor analy-

sis methods and categorical-ω, the methods of this study can take an information

approach to reliability. Reliability is not a scale feature evaluated within an IRT

framework due to the use of the information function to evaluate which level of trait

the scale provides the most information on. The information function can be complex

as the model grows in complexity and deriving the item and test information functions

would be a useful alternative to point estimates of reliability. The differences between

the information functions of a traditional IRT model versus the effort-moderated IRT

model was a primary outcome from Wise and Demars (2006). Extending the informa-

tion approach to assessing the relative informativeness of the scale conditional on the
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level of the trait would be a useful facet to consider for evaluating the measurement

of a construct. Future work should be devoted to deriving these functions.

Concluding Remarks

In conclusion, the answers to the three research questions are

(1) Yes, modeling item-level misclassification can change inferences regarding

scale reliability as measurement by McDonald’s ω. How the inferences are

effected by item-level misclassification depends on how misclassification is

model (Simulation Study 1 ), characteristics of the data (number of cate-

gories, number of items, and sample size; see Simulation Study 2 ), and prior

specification (see Sensitivity Analysis).

(2) The relative bias of point estimates and coverage rates of the credible inter-

vals under the correctly specified model were adequate on average for most

parameters and conditions. . In conditions with higher response categories

(five and seven), the performance was worse in conditions with fewer items or

a lower sample size. Additionally, coverage rates tended to decrease as sam-

ple size increases for parameters such as factor loadings, residual variances,

person-item distance relationship, and reliability.

(3) Yes, using response time to differentially weight responses as informative pri-

ors for the misclassification rates changed inferences about the reliability of

the NAEP math identity scale and the Extroversion scale. Similar to question

one, the degree to which inferences were affected depended on how misclassi-

fication was specified.

Lastly, throughout this project, I have discussed a different perspective on mod-

eling measurement error in survey items. The alternative perspective brings in a new

way of thinking of the individual item-responses to highlight how external information

will inform item-level measurement error. The methods developed in this study will
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help researchers have more confidence in research findings when making inferences

about underlying constructs.
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APPENDIX A

Instruments

NAEP Math Identity

Due to restriction on the NAEP process data in place by NCES, the amount

of information available for sharing is limited. The summary tables provided below is

intended for illustrative use only and is not necessarily representative of the nation.

Table A.1

NAEP data description and summary statistics of responses and response times
NAEP ID TDDC ID Item statement Item Response Response Time
M831501 VH269049 I want other students

to think I am good at
math

3.3 (1.3) 2.3 (0.6)

M831502 VH269050 I want to show others
that my math
schoolwork is easy for
me

2.9 (1.3) 1.6 (0.8)

M831503 VH269053 I want to look smart
in comparison to the
other students in my
math class

2.9 (1.5) 1.4 (0.8)

M831504 VH269059 I want to learn as
much as possible in
my math class

3.9 (1.1) 1.3 (0.8)

M831505 VH269056 I want to become
better in math this
year

4.3 (0.9) 1.1 (0.7)

Note. Item stem - How much does each of the following statements describe a person like
you? Select one answer choice on each row.; item responses were recorded on a five-point
Likert-type scale with response options Not at all like me (1), A little bit like me (2), Some-
what like me (3), Quite a bit like me (4), and Exactly like me (5); response time is reported
in log seconds; estimates reported at the unweighted mean and standard deviation for item
responses and response times, respectively.
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Extroversion Data

A summary of all item in the extroversion dataset are given in Table A.2. Each

item is simply a statement (habit) and each respondent was asked whether they think

that statement describes them. The descriptors are translated from Dutch (Molenaar,

Tuerlinckx, & van der Maas, 2015a).

Table A.2

Extroversion data item description
Item Proportion Yes Response Time Average (SD)

active .74 1.49 (0.80)
noisy .53 1.36 (0.65)
energetic .85 1.12 (0.63)
enthusiastic .95 1.00 (0.66)
impulsive .92 1.30 (0.70)
jovial .53 1.26 (0.68)
viable .93 1.14 (0.54)
eupeptic .95 1.09 (0.63)
communicative .82 1.73 (0.75)
spontaneous .86 0.99 (0.53)
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APPENDIX B

Simulation Study 1

Data Conditions Simulated

The values for the parameters simulated are

• λ = 0.7

• τ =



−0.82 0.78

−0.75 0.88

−0.62 0.83

−0.39 1.03

−0.78 0.88


• σi = 1

• V (η1) = 1

• McDonald’s-ω = 0.83

• β = 1.5

• σlrt = 0.25

• σs = 0.1

• ρ = 0.1.
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R Code for Generating Item Threshold Parameters

getTau <- function (N_cat , N_items , seed =1){
set.seed(seed)
if(N_cat == 2){

tau <- matrix (
runif (N_items , -0.5, 0.5) ,
ncol=N_cat - 1,
nrow=N_items ,
byrow=T

)
tau = -tau

}
if(N_cat > 2 & N_cat < 7){

tau <- matrix (ncol=N_cat -1, nrow=N_items)
for(c in 1:(N_cat -1)){

if(c == 1){
$\tau_{,1] <- runif(N_items , -1, -0.33)

}
if(c > 1){

$\tau_{,c] <- $\tau_{,c -1] + runif (N_items , 0.25 , 1)
}

}
}
if(N_cat == 7){

tau <- matrix (ncol=N_cat -1, nrow=N_items)
for(c in 1:(N_cat -1)){

if(c == 1){
$\tau_{,1] <- runif(N_items , -2, -1.33)

}
if(c > 1){

$\tau_{,c] <- $\tau_{,c -1] + runif (N_items , 0.33 , 1.0)
}

}
}
tau = tau* lambda
return (tau)

}
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Posterior Predictive Distributions
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(a) Model 1
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(b) Model 2
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(c) Model 3
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(d) Model 4

Figure B.1. Simulation study 1 posterior predictive distributions
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Evidence of Posterior Convergence

Parameters in Model 1
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(c) Autocorrelation plot
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Figure B.2. Study 1 model 1: Posterior convergence evidence for factor loadings (stan-
dardized).
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(c) Autocorrelation plot
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Figure B.3. Study 1 model 1: Posterior convergence evidence for item thresholds.
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Figure B.4. Study 1 model 1: Posterior convergence evidence for reliability (ω).
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Parameters in Model 2
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Figure B.5. Study 1 model 1: Posterior convergence evidence for factor loadings (stan-
dardized).
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Figure B.6. Study 1 model 2: Posterior convergence evidence for item thresholds.
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Figure B.7. Study 1 model 2: Posterior convergence evidence for response time inter-
cepts.
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Figure B.8. Study 1 model 2: Posterior convergence evidence for response time item
and factor precision.
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Figure B.9. Study 1 model 2: Posterior convergence evidence for factor covariance.
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Figure B.10. Study 1 model 2: Posterior convergence evidence for ρ.
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Figure B.11. Study 1 model 2: Posterior convergence evidence for reliability (ω).
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Figure B.12. Study 1 model 3: Posterior convergence evidence for factor loadings (stan-
dardized).
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Figure B.13. Study 1 model 3: Posterior convergence evidence for item thresholds.
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Figure B.14. Study 1 model 3: Posterior convergence evidence for reliability (ω).

110



Parameters in Model 4

lambda.std[5]

lambda.std[4]

lambda.std[3]

lambda.std[2]

lambda.std[1]

0.00 0.25 0.50 0.75

(a) Posterior density

lambda.std[4] lambda.std[5]

lambda.std[1] lambda.std[2] lambda.std[3]

0 200 400 600 8001000 0 200 400 600 8001000

0 200 400 600 8001000 0 200 400 600 8001000 0 200 400 600 8001000
0.00

0.25

0.50

0.75

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Chain

1
2
3
4

(b) Posterior traceplot
lambda.std[1] lambda.std[2] lambda.std[3] lambda.std[4] lambda.std[5]

1
2

3
4

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Lag

A
ut

oc
or

re
la

tio
n

(c) Autocorrelation plot

lambda.std[4] lambda.std[5]

lambda.std[1] lambda.std[2] lambda.std[3]

0 250 500 750 1000 0 250 500 750 1000

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

Last iteration

R
ha

t

Shrinkage of Potential Scale Reduction Factors

(d) Gelem-Rubin-Brooks (R̂ Shrinkage)

Figure B.15. Study 1 model 4: Posterior convergence evidence for factor loadings (stan-
dardized).
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Figure B.16. Study 1 model 4: Posterior convergence evidence for item thresholds.
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Figure B.17. Study 1 model 4: Posterior convergence evidence for response time inter-
cepts.
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Figure B.18. Study 1 model 4: Posterior convergence evidence for response time item
and factor precision.
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Figure B.19. Study 1 model 4: Posterior convergence evidence for factor covariance.
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Figure B.20. Study 1 model 4: Posterior convergence evidence for ρ.
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Figure B.21. Study 1 model 4: Posterior convergence evidence for reliability (ω).
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JAGS Code for Specifying Models

Model 1: Item Factor Analysis

model {
for(p in 1:N){

for(i in 1: nit){
y[p,i] ~ dcat(omega[p,i, ]) # data model
ystar[p,i] ~ dnorm ( lambda [i]*eta[p], 1)# Latent Response

Variable
pi[p,i ,3] = phi(ystar[p,i] - tau[i ,2]) # Pr(nu = 3)
pi[p,i ,2] = phi(ystar[p,i] - tau[i ,1]) - phi(ystar[p,i] - tau[

i ,2]) # Pr(nu = 2)
pi[p,i ,1] = 1 - phi(ystar[p,i] - tau[i ,1]) # Pr(nu = 1)

}
}
### Priors
for(p in 1:N){

eta[p] ~ dnorm (0, 1) # latent ability
}
for(i in 1: nit){

tau[i, 1] ~ dnorm (0.0 ,0.1) # Thresholds
tau[i, 2] ~ dnorm (0, 0.1)T(tau[i, 1],)
lambda [i] ~ dnorm (0, .44)T(0,)# loadings
theta[i] = 1 + pow( lambda [i],2) # LRV total variance
lambda .std[i] = lambda [i]/pow(theta[i] ,0.5)# standardized

loading
}
# compute omega
lambda _sum [1] = lambda [1]
for(i in 2: nit){

lambda _sum[i] = lambda _sum[i -1]+ lambda [i]
}
reli.omega = (pow( lambda _sum[nit ],2))/(pow( lambda _sum[nit ],2)+nit)

}
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Model 2: Joint Item Factor Analysis with Response Time Model

model {
for(p in 1:N){

for(i in 1: nit){
y[p,i] ~ dcat(omega[p,i, ]) # data model
ystar[p,i] ~ dnorm ( lambda [i]*eta[p], 1)# Latent Response

Variable
pi[p,i ,3] = phi(ystar[p,i] - tau[i ,2]) # Pr(nu = 3)
pi[p,i ,2] = phi(ystar[p,i] - tau[i ,1]) - phi(ystar[p,i] - tau[

i ,2]) # Pr(nu = 2)
pi[p,i ,1] = 1 - phi(ystar[p,i] - tau[i ,1]) # Pr(nu = 1)
dev[p,i]<-lambda [i]*(eta[p] - (tau[i ,1]+ tau[i ,2])/2)
mu.lrt[p,i] <- icept[i] - speed[p] - rho * abs(dev[p,i])
lrt[p,i] ~ dnorm (mu.lrt[p,i], prec[i])

}
}
### Priors
for(p in 1:N){

eta[p] ~ dnorm (0, 1) # latent ability
speed[p]~dnorm (sigma.ts*eta[p],prec.s) # latent speed

}
sigma.ts ~ dnorm (0, 0.1)
prec.s ~ dgamma (.1 ,.1)
rho~dnorm (0 ,.1)I(0,)
sigma.t = pow(prec.s, -1) + pow(sigma.ts , 2) # speed variance
cor.ts = sigma.ts/(pow(sigma.t ,0.5)) # LV correlation
for(i in 1: nit){

icept[i]~dnorm (0 ,.1) # lrt parameters
prec[i]~ dgamma (.1 ,.1)
tau[i, 1] ~ dnorm (0.0 ,0.1) # Thresholds
tau[i, 2] ~ dnorm (0, 0.1)T(tau[i, 1],)
lambda [i] ~ dnorm (0, .44)T(0,)# loadings
theta[i] = 1 + pow( lambda [i],2) # LRV total variance
lambda .std[i] = lambda [i]/pow(theta[i] ,0.5)# standardized

loading
}
# compute omega
lambda _sum [1] = lambda [1]
for(i in 2: nit){

lambda _sum[i] = lambda _sum[i -1]+ lambda [i]
}
reli.omega = (pow( lambda _sum[nit ],2))/(pow( lambda _sum[nit ],2)+nit)

}
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Model 3: Item Factor Analysis with Misclassification Informed Directly by RT

model {
for(p in 1:N){

for(i in 1: nit){
y[p,i] ~ dcat(omega[p,i, ]) # data model
ystar[p,i] ~ dnorm ( lambda [i]*eta[p], 1)# Latent Response

Variable
pi[p,i ,3] = phi(ystar[p,i] - tau[i ,2]) # Pr(nu = 3)
pi[p,i ,2] = phi(ystar[p,i] - tau[i ,1]) - phi(ystar[p,i] - tau[

i ,2]) # Pr(nu = 2)
pi[p,i ,1] = 1 - phi(ystar[p,i] - tau[i ,1]) # Pr(nu = 1)
# MISCLASSIFICATION MODEL
for(c in 1: ncat){

# generate informative prior for misclassificaiton
for(ct in 1: ncat){

alpha[p,i,ct ,c] <- ifelse (c == ct ,
ilogit (lrt[p,i]),
(1/(ncat -1))*(1- ilogit (lrt[p,i])

)
)

}
# sample misclassification parameters using the informative

priors
gamma [p,i,c ,1: ncat] ~ ddirch (alpha[p,i,c ,1: ncat ])
# observed category prob (Pr(y=c))
omega[p,i, c] = gamma [p,i,c ,1]*pi[p,i ,1] +

gamma [p,i,c ,2]*pi[p,i ,2] +
gamma [p,i,c ,3]*pi[p,i ,3]

}
}

}
### Priors
for(p in 1:N){

eta[p] ~ dnorm (0, 1) # latent ability
}
for(i in 1: nit){

tau[i, 1] ~ dnorm (0.0 ,0.1) # Thresholds
tau[i, 2] ~ dnorm (0, 0.1)T(tau[i, 1],)
lambda [i] ~ dnorm (0, .44)T(0,)# loadings
theta[i] = 1 + pow( lambda [i],2) # LRV total variance
lambda .std[i] = lambda [i]/pow(theta[i] ,0.5)# standardized

loading
}
lambda _sum [1] = lambda [1]
for(i in 2: nit){

lambda _sum[i] = lambda _sum[i -1]+ lambda [i]
}
reli.omega = (pow( lambda _sum[nit ],2))/(pow( lambda _sum[nit ],2)+nit)

}
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Model 4: Joint Model with Misclassification Informed by ELRT

model {
for(p in 1:N){

for(i in 1: nit){
y[p,i] ~ dcat(omega[p,i, ]) # data model
ystar[p,i] ~ dnorm ( lambda [i]*eta[p], 1)# Latent Response
pi[p,i ,3] = phi(ystar[p,i]-tau[i ,2]) # Pr(nu = 3)
pi[p,i ,2] = phi(ystar[p,i]-tau[i ,1]) -phi(ystar[p,i]-tau[i ,2])
pi[p,i ,1] = 1-phi(ystar[p,i]-tau[i ,1]) # Pr(nu = 1)
dev[p,i]<-lambda [i]*(eta[p] - (tau[i ,1]+ tau[i ,2])/2)
mu.lrt[p,i] <- icept[i] - speed[p] - rho * abs(dev[p,i])
lrt[p,i] ~ dnorm (mu.lrt[p,i], prec[i])
elrt[p,i] <- (icept[i] - speed[p])/(rho*abs(dev[p,i])) # ELRT
# MISCLASSIFICATION MODEL
for(c in 1: ncat){

# generate informative prior for misclassificaiton
for(ct in 1: ncat){

alpha[p,i,ct ,c] <- ifelse (c == ct , ilogit (exp(elrt[p,i]))
, (1/(ncat -1))*(1- ilogit (exp(elrt[p,i]))))

}
gamma [p,i,c ,1: ncat] ~ ddirch ( alpha[p,i,c ,1: ncat ])
# observed category prob (Pr(y=c))
omega[p,i,c] = gamma [p,i,c ,1]*pi[p,i ,1] +

gamma[p,i,c ,2]*pi[p,i ,2] + gamma [p,i,c ,3]*pi[p,i ,3]
}

}
}
for(p in 1:N){

eta[p] ~ dnorm (0, 1) # latent ability
speed[p]~dnorm (sigma.ts*eta[p],prec.s) # latent speed

}
sigma.ts ~ dnorm (0, 0.1)
prec.s ~ dgamma (.1 ,.1)
rho~dnorm (0 ,.1)I(0,)
sigma.t = pow(prec.s, -1) + pow(sigma.ts , 2) # speed variance
for(i in 1: nit){

icept[i]~dnorm (0 ,.1) # lrt parameters
prec[i]~ dgamma (.1 ,.1)
tau[i, 1] ~ dnorm (0.0 ,0.1) # Thresholds
tau[i, 2] ~ dnorm (0, 0.1)T(tau[i, 1],)
lambda [i] ~ dnorm (0, .44)T(0,)# loadings
theta[i] = 1 + pow( lambda [i],2) # LRV total variance
lambda .std[i] = lambda [i]/pow(theta[i] ,0.5)# standardize

}
lambda _sum [1] = lambda [1]
for(i in 2: nit){

lambda _sum[i] = lambda _sum[i -1]+ lambda [i]
}
reli.omega = (pow( lambda _sum[nit ],2))/(pow( lambda _sum[nit ],2)+nit)

}
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APPENDIX C

Simulation Study 2

Results when Indicators are Trichotomous (Three Ordered Categories)

Table C.1

Posterior convergence by R̂ of three category items
Avg R̂ SD R̂ Prop. Converge

Parameter N 5 10 20 5 10 20 5 10 20
λ 500 1.06 1.03 1.02 0.03 0.01 0.00 87 98 99

2500 1.04 1.02 1.02 0.01 0.01 0.00 95 99 100
τ 500 1.02 1.01 1.01 0.01 0.00 0.00 98 100 100

2500 1.01 1.01 1.01 0.00 0.00 0.00 100 100 100
θ 500 1.07 1.03 1.02 0.04 0.01 0.00 80 98 99

2500 1.04 1.02 1.02 0.02 0.01 0.00 93 99 100
βlrt 500 1.03 1.02 1.01 0.02 0.01 0.01 96 100 100

2500 1.03 1.02 1.01 0.02 0.01 0.01 99 100 100
σlrt 500 1.00 1.00 1.00 0.00 0.00 0.00 100 100 100

2500 1.00 1.00 1.00 0.00 0.00 0.00 100 100 100
σs 500 1.01 1.00 1.00 0.01 0.01 0.00 100 100 100

2500 1.01 1.00 1.00 0.01 0.01 0.00 100 100 100
σst 500 1.01 1.01 1.01 0.01 0.01 0.01 100 100 100

2500 1.01 1.01 1.00 0.01 0.01 0.01 100 100 100
ρ 500 1.03 1.03 1.02 0.04 0.02 0.02 97 99 99

2500 1.03 1.02 1.02 0.02 0.02 0.01 98 100 100
ω 500 1.05 1.02 1.02 0.04 0.01 0.01 89 100 100

2500 1.02 1.02 1.01 0.02 0.01 0.02 100 100 99

Note. Number of items 5, 10, 20 are represented along the columns of this table.
Avg R̂ = Average R̂ across replications; SD R̂ = standard deviation of R̂ estimates
across replications; % Converge = percent of replications with R̂ < 1.10.
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Table C.2

Posterior bias of three category items
Average Relative Bias Average Bias

Parameter N 5 10 20 5 10 20
λ 500 -14.18 -13.31 -12.47 -0.13 -0.12 -0.11

2500 -15.38 -15.69 -15.88 -0.14 -0.14 -0.14
τ 500 58.04 -50.96 -67.29 0.12 0.11 0.11

2500 54.39 -48.43 -52.75 0.12 0.11 0.11
θ 500 -7.28 -8.71 -8.87 -0.13 -0.16 -0.16

2500 -11.89 -12.49 -12.77 -0.22 -0.23 -0.23
βlrt 500 0.35 0.05 -0.78 0.01 0.00 -0.01

2500 1.43 0.75 0.06 0.02 0.01 0.00
σlrt 500 0.96 0.27 0.08 0.04 0.01 0.00

2500 0.51 0.21 0.12 0.02 0.01 0.00
σs 500 8.40 6.76 6.08 0.84 0.68 0.61

2500 8.63 8.05 6.18 0.86 0.81 0.62
σst 500 -12.05 0.22 9.01 -0.01 0.00 0.01

2500 0.55 0.38 2.51 0.00 0.00 0.00
ρ 500 36.35 26.41 8.04 0.04 0.03 0.01
rho 2500 63.92 51.16 36.93 0.06 0.05 0.04
ω 500 -3.69 -3.16 -1.67 -0.03 -0.03 -0.02

2500 -6.82 -4.21 -2.35 -0.05 -0.04 -0.02
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Results when Indicators are Polytomous (Seven Ordered Categories)

Table C.3

Posterior convergence by R̂ of seven category items
Avg R̂ SD R̂ Prop. Converge

Parameter N 5 10 20 5 10 20 5 10 20
λ 500 1.07 1.05 1.05 0.03 0.02 0.01 78 85 88

2500 1.06 1.05 1.04 0.02 0.01 0.01 83 90 92
τ 500 1.03 1.02 1.02 0.01 0.00 0.00 95 99 99

2500 1.02 1.02 1.02 0.01 0.00 0.00 99 100 100
θ 500 1.08 1.06 1.05 0.03 0.02 0.01 75 84 86

2500 1.06 1.05 1.04 0.03 0.01 0.01 82 90 92
βlrt 500 1.03 1.02 1.01 0.02 0.01 0.01 96 99 100

2500 1.03 1.02 1.01 0.02 0.01 0.01 95 99 100
σlrt 500 1.00 1.00 1.00 0.00 0.00 0.00 100 100 100

2500 1.00 1.00 1.00 0.00 0.00 0.00 100 100 100
σs 500 1.01 1.00 1.00 0.01 0.01 0.00 100 100 100

2500 1.01 1.00 1.00 0.01 0.01 0.00 100 100 100
σst 500 1.02 1.01 1.01 0.02 0.01 0.01 100 100 100

2500 1.02 1.01 1.01 0.01 0.01 0.01 100 100 100
ρ 500 1.04 1.03 1.02 0.04 0.02 0.01 87 98 100

2500 1.04 1.02 1.02 0.03 0.02 0.01 90 98 100
ω 500 1.07 1.04 1.03 0.06 0.03 0.03 81 92 98

2500 1.04 1.03 1.02 0.04 0.02 0.02 86 98 100

Note. Number of items 5, 10, 20 are represented along the columns of this table.
Avg R̂ = Average R̂ across replications; SD R̂ = standard deviation of R̂ estimates
across replications; % Converge = percent of replications with R̂ < 1.10.
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Table C.4

Posterior bias of seven category items
Average Relative Bias Average Bias

Parameter N 5 10 20 5 10 20
λ 500 -14.66 -13.48 -12.76 -0.13 -0.12 -0.11

2500 -14.93 -14.61 -14.40 -0.13 -0.13 -0.13
τ 500 -3.81 -6.67 -22.63 0.00 -0.00 0.01

2500 -8.11 -9.11 -16.54 -0.02 -0.01 -0.01
θ 500 -9.39 -9.83 -9.50 -0.17 -0.18 -0.17

2500 -11.81 -11.84 -11.76 -0.21 -0.21 -0.21
βlrt 500 0.53 -0.30 -0.82 0.01 -0.00 -0.01

2500 1.42 0.57 0.39 0.02 0.01 0.01
σlrt 500 1.00 0.33 0.31 0.04 0.01 0.01

2500 0.15 0.08 0.13 0.01 0.00 0.01
σs 500 10.07 7.25 6.22 1.01 0.73 0.62

2500 8.09 6.86 5.71 0.81 0.69 0.57
σst 500 -6.78 -6.13 -4.97 -0.00 -0.00 -0.00

2500 -1.90 -3.69 -1.87 -0.00 -0.00 -0.00
ρ 500 35.60 21.37 10.46 0.04 0.02 0.01

2500 65.98 46.40 40.98 0.07 0.05 0.04
ω 500 -4.44 -3.17 -1.69 -0.04 -0.03 -0.02

2500 -6.57 -3.85 -2.08 -0.05 -0.03 -0.02
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Figure C.1. Bias of posterior median estimate of factor reliability. (A) relative bias
estimates where dashed lines represent ±10% relative bias, (B) average bias of pos-
terior median. ARB = average relative bias.
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Table C.5

Credible interval coverage rate
Dichotomous 3-Cat 5-Cat 7-Cat

N 5 10 20 5 10 20 5 10 20 5 10 20
λ 500 88 91 92 89 86 84 87 88 87 88 88 84

2500 83 85 78 68 56 43 74 61 49 70 57 44
τ 500 93 95 95 92 93 92 78 81 81 90 91 88

2500 96 95 95 79 80 78 52 50 52 71 69 66
θ 500 88 90 92 89 86 84 87 89 88 88 88 84

2500 83 84 79 69 57 44 75 62 50 69 58 46
βlrt 500 98 95 93 97 96 93 97 97 96 96 97 96

2500 94 93 97 90 96 97 93 94 97 91 97 98
σlrt 500 96 95 95 95 93 95 98 96 94 96 96 95

2500 96 94 95 94 94 96 95 96 96 96 96 95
σs 500 87 95 89 90 91 88 92 92 90 95 90 90

2500 75 64 74 74 69 72 72 54 69 80 72 71
σst 500 97 93 96 97 90 94 94 94 93 96 92 98

2500 95 98 94 93 96 96 90 91 92 92 98 89
ρ 500 100 95 98 92 95 93 93 93 97 97 92 98

2500 86 56 37 62 51 25 60 49 50 53 47 45
ω 500 94 97 92 89 46 33 92 66 45 88 59 33

2500 79 24 1 5 0 0 16 0 0 5 0 0
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Table C.6

Summary of credible interval width across conditions and replications
Avg. Width Width SD

3-Cat 7-Cat 3-Cat 7-Cat

N 5 10 20 5 10 20 5 10 20 5 10 20

λ 500 1.07 0.79 0.66 0.81 0.60 0.51 0.32 0.14 0.08 0.20 0.07 0.04
2500 0.45 0.34 0.28 0.34 0.26 0.22 0.06 0.03 0.02 0.03 0.02 0.01

τ 500 0.54 0.50 0.49 0.56 0.52 0.51 0.08 0.04 0.03 0.12 0.07 0.06
2500 0.23 0.22 0.21 0.24 0.23 0.22 0.02 0.01 0.01 0.03 0.02 0.02

θ 500 2.04 1.36 1.10 1.47 0.99 0.83 1.39 0.62 0.38 0.87 0.30 0.21
2500 0.71 0.52 0.42 0.53 0.41 0.34 0.21 0.10 0.06 0.10 0.06 0.04

βlrt 500 0.23 0.18 0.15 0.20 0.16 0.13 0.05 0.03 0.02 0.04 0.02 0.01
2500 0.12 0.09 0.07 0.10 0.08 0.06 0.02 0.01 0.01 0.01 0.01 0.00

σlrt 500 1.23 1.10 1.04 1.17 1.09 1.04 0.18 0.09 0.08 0.12 0.08 0.07
2500 0.53 0.49 0.46 0.52 0.48 0.46 0.03 0.02 0.02 0.02 0.02 0.02

σs 500 5.50 3.88 3.23 4.98 3.59 3.15 1.59 0.59 0.31 1.04 0.48 0.25
2500 2.51 1.78 1.46 2.19 1.62 1.38 0.33 0.14 0.08 0.20 0.10 0.06

σst 500 0.13 0.09 0.08 0.11 0.08 0.07 0.01 0.01 0.00 0.01 0.00 0.00
2500 0.06 0.04 0.03 0.05 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00

ρ 500 0.26 0.18 0.13 0.22 0.16 0.11 0.06 0.03 0.02 0.06 0.02 0.01
2500 0.16 0.10 0.07 0.13 0.09 0.06 0.02 0.01 0.00 0.02 0.01 0.00

ω 500 0.18 0.07 0.03 0.13 0.06 0.02 0.05 0.01 0.00 0.03 0.01 0.00
2500 0.08 0.03 0.01 0.06 0.03 0.01 0.01 0.00 0.00 0.01 0.00 0.00
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APPENDIX D

NAEP Math Identity Analysis and Posterior Investigation

Posterior Summaries

Table D.1

NAEP mathematics identity model 1 posterior distribution summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff
λ1 0.94 0.01 0.92 0.93 0.94 0.94 0.95 1.08 43
λ2 0.93 0.01 0.91 0.92 0.93 0.93 0.94 1.02 160
λ3 0.91 0.01 0.89 0.90 0.91 0.91 0.92 1.01 230
λ4 0.66 0.03 0.60 0.64 0.66 0.68 0.71 1.01 590
λ5 0.68 0.03 0.62 0.66 0.68 0.70 0.73 1.00 780
τ1,1 -3.50 0.19 -3.90 -3.60 -3.50 -3.40 -3.20 1.00 99
τ2,1 -2.40 0.14 -2.70 -2.50 -2.40 -2.30 -2.10 1.00 130
τ3,1 -1.90 0.11 -2.10 -1.90 -1.90 -1.80 -1.70 1.00 300
τ4,1 -3.00 0.13 -3.20 -3.10 -3.00 -2.90 -2.70 1.00 1500
τ5,1 -3.50 0.16 -3.90 -3.60 -3.50 -3.40 -3.20 1.00 4000
τ1,2 -2.01 0.14 -2.20 -2.10 -2.00 -1.90 -1.70 1.00 170
τ2,2 -0.84 0.11 -1.10 -0.91 -0.84 -0.76 -0.64 1.00 210
τ3,2 -0.65 0.10 -0.85 -0.71 -0.64 -0.58 -0.46 1.00 220
τ4,2 -1.91 0.08 -2.10 -2.00 -1.90 -1.90 -1.80 1.00 1200
τ5,2 -2.62 0.11 -2.80 -2.70 -2.60 -2.50 -2.40 1.00 1600
τ1,3 0.21 0.11 -0.01 0.14 0.21 0.29 0.44 1.00 560
τ2,3 1.14 0.11 0.87 1.00 1.10 1.10 1.30 1.00 1100
τ3,3 0.72 0.10 0.52 0.65 0.72 0.78 0.91 1.00 270
τ4,3 -0.71 0.07 -0.84 -0.75 -0.71 -0.66 -0.58 1.00 870
τ5,3 -1.53 0.08 -1.70 -1.60 -1.50 -1.50 -1.40 1.00 1100
τ1,4 2.42 0.17 2.10 2.30 2.40 2.50 2.70 1.00 84
τ2,4 3.01 0.16 2.70 2.90 3.00 3.10 3.30 1.00 410
τ3,4 2.00 0.12 1.80 2.00 2.00 2.10 2.30 1.00 340
τ4,4 0.41 0.06 0.28 0.36 0.41 0.45 0.53 1.00 1100
τ5,4 -0.27 0.06 -0.40 -0.32 -0.27 -0.23 -0.15 1.00 2900
ω 0.77 0.01 0.75 0.76 0.77 0.78 0.79 1.02 130

Note. Reported factor loadings are standardized.
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Table D.2

NAEP mathematics identity model 2 posterior distribution summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff
λ1 0.94 0.01 0.92 0.93 0.94 0.94 0.95 1.04 64
λ2 0.93 0.01 0.91 0.92 0.93 0.93 0.94 1.01 280
λ3 0.91 0.01 0.89 0.90 0.91 0.92 0.93 1.01 190
λ4 0.66 0.03 0.60 0.64 0.66 0.68 0.71 1.01 440
λ5 0.68 0.03 0.62 0.66 0.68 0.70 0.73 1.01 530
τ1,1 -3.42 0.18 -3.81 -3.54 -3.41 -3.29 -3.08 1.04 66
τ2,1 -2.39 0.14 -2.70 -2.48 -2.38 -2.29 -2.13 1.00 950
τ3,1 -1.86 0.11 -2.08 -1.94 -1.86 -1.79 -1.64 1.00 630
τ4,1 -2.97 0.12 -3.23 -3.06 -2.97 -2.89 -2.74 1.00 2700
τ5,1 -3.51 0.16 -3.85 -3.62 -3.51 -3.41 -3.21 1.00 690
τ1,2 -1.89 0.13 -2.16 -1.98 -1.89 -1.80 -1.64 1.03 89
τ2,2 -0.82 0.11 -1.04 -0.89 -0.82 -0.74 -0.61 1.00 1700
τ3,2 -0.62 0.09 -0.80 -0.68 -0.62 -0.56 -0.45 1.01 530
τ4,2 -1.91 0.08 -2.07 -1.96 -1.91 -1.85 -1.75 1.00 850
τ5,2 -2.56 0.11 -2.78 -2.64 -2.56 -2.49 -2.37 1.01 450
τ1,3 0.26 0.11 0.04 0.18 0.26 0.34 0.48 1.00 1400
τ2,3 1.12 0.11 0.92 1.05 1.12 1.2 1.33 1.01 230
τ3,3 0.76 0.09 0.58 0.70 0.76 0.83 0.95 1.01 300
τ4,3 -0.69 0.06 -0.82 -0.74 -0.69 -0.65 -0.57 1.01 460
τ5,3 -1.51 0.08 -1.66 -1.56 -1.51 -1.46 -1.36 1.00 620
τ1,4 2.41 0.16 2.12 2.29 2.40 2.52 2.74 1.01 190
τ2,4 3.09 0.16 2.77 2.98 3.09 3.20 3.40 1.01 200
τ3,4 2.12 0.12 1.89 2.03 2.11 2.20 2.35 1.01 280
τ4,4 0.42 0.06 0.30 0.38 0.42 0.46 0.55 1.00 910
τ5,4 -0.26 0.06 -0.39 -0.30 -0.26 -0.21 -0.13 1.00 780
βlrt,1 11.08 0.39 10.33 10.82 11.07 11.33 11.9 1.00 1700
βlrt,2 5.12 0.15 4.84 5.02 5.12 5.22 5.41 1.00 1200
βlrt,3 4.16 0.11 3.95 4.08 4.16 4.24 4.37 1.00 1300
βlrt,4 3.80 0.11 3.60 3.73 3.80 3.87 4.02 1.00 1200
βlrt,5 3.30 0.12 3.07 3.22 3.29 3.37 3.54 1.00 1100
σs 3.16 0.17 2.85 3.05 3.16 3.28 3.49 1.00 2600
σst

a 0.12 0.04 0.05 0.09 0.12 0.15 0.19 1.00 2500
ρ 0.03 0.01 0.01 0.02 0.03 0.03 0.04 1.00 770
ω 0.77 0.01 0.75 0.76 0.77 0.78 0.79 1.01 470

Note. Reported factor loadings are standardized. a Standardize to be a correlation.
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Table D.3

NAEP mathematics identity model 3 posterior distribution summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff
λ1 0.98 0.00 0.97 0.97 0.98 0.98 0.99 1.10 22
λ2 0.97 0.00 0.96 0.97 0.97 0.97 0.98 1.10 57
λ3 0.98 0.00 0.97 0.97 0.98 0.98 0.98 1.40 11
λ4 0.64 0.04 0.55 0.61 0.64 0.67 0.71 1.00 100
λ5 0.70 0.04 0.61 0.67 0.70 0.73 0.77 1.00 290
τ1,1 -5.50 0.51 -6.60 -5.90 -5.50 -5.20 -4.60 1.20 18
τ2,1 -3.60 0.30 -4.20 -3.80 -3.60 -3.40 -3.10 1.00 150
τ3,1 -3.50 0.42 -4.50 -3.80 -3.50 -3.20 -2.80 1.20 16
τ4,1 -3.80 0.44 -4.80 -4.00 -3.70 -3.50 -3.20 1.00 950
τ5,1 -5.90 1.30 -9.30 -6.50 -5.60 -5.00 -4.30 1.00 1300
τ1,2 -3.10 0.32 -3.70 -3.30 -3.00 -2.80 -2.50 1.20 21
τ2,2 -1.20 0.20 -1.60 -1.30 -1.20 -1.10 -0.83 1.00 500
τ3,2 -1.10 0.23 -1.60 -1.20 -1.10 -0.94 -0.66 1.10 39
τ4,2 -2.40 0.15 -2.70 -2.50 -2.40 -2.30 -2.10 1.00 1800
τ5,2 -3.80 0.37 -4.60 -4.00 -3.70 -3.50 -3.20 1.00 870
τ1,3 0.50 0.20 0.13 0.36 0.49 0.62 0.92 1.00 290
τ2,3 1.60 0.20 1.30 1.50 1.60 1.70 2.10 1.00 78
τ3,3 1.30 0.23 0.91 1.20 1.30 1.50 1.80 1.10 41
τ4,3 -1.00 0.09 -1.20 -1.10 -1.00 -0.97 -0.85 1.00 2900
τ5,3 -2.40 0.16 -2.80 -2.50 -2.40 -2.30 -2.10 1.00 980
τ1,4 4.00 0.44 3.30 3.70 4.00 4.30 5.00 1.10 26
τ2,4 4.50 0.33 3.90 4.30 4.50 4.70 5.20 1.10 61
τ3,4 3.60 0.38 2.90 3.30 3.60 3.90 4.40 1.30 14
τ4,4 0.19 0.08 0.03 0.13 0.19 0.25 0.36 1.00 3600
τ5,4 -0.69 0.09 -0.86 -0.74 -0.69 -0.63 -0.51 1.00 1700
ω 0.90 0.01 0.88 0.89 0.90 0.91 0.92 1.10 31

Note. Reported factor loadings are standardized.
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Table D.4

NAEP mathematics identity model 4 posterior distribution summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff
λ1 0.99 0.01 0.96 0.99 0.99 0.99 0.99 1.30 19
λ2 0.97 0.01 0.95 0.96 0.97 0.97 0.98 1.10 29
λ3 0.96 0.01 0.94 0.95 0.96 0.96 0.97 1.10 51
λ4 0.95 0.01 0.93 0.94 0.95 0.96 0.96 1.10 50
λ5 0.94 0.01 0.91 0.92 0.94 0.95 0.95 1.10 27
τ1,1 -2.10 0.58 -3.40 -2.60 -1.90 -1.70 -1.30 2.90 5
τ2,1 -1.70 0.13 -2.00 -1.80 -1.70 -1.60 -1.50 3.40 5
τ3,1 -0.98 0.12 -1.30 -1.00 -0.97 -0.90 -0.77 1.40 12
τ4,1 -0.59 0.11 -0.82 -0.64 -0.56 -0.51 -0.42 3.10 5
τ5,1 0.34 0.09 0.13 0.28 0.35 0.39 0.50 1.40 14
τ1,2 -0.93 0.44 -1.70 -1.20 -0.85 -0.59 -0.34 6.40 4
τ2,2 -0.35 0.17 -0.68 -0.47 -0.38 -0.21 -0.05 1.60 8
τ3,2 0.11 0.11 -0.11 0.04 0.13 0.19 0.32 1.30 12
τ4,2 0.13 0.10 -0.07 0.07 0.14 0.22 0.3 1.20 24
τ5,2 0.49 0.06 0.38 0.45 0.49 0.53 0.62 1.50 9
τ1,3 1.40 0.39 0.69 1.10 1.30 1.70 2.10 1.20 17
τ2,3 1.50 0.21 1.00 1.30 1.50 1.60 1.80 1.20 26
τ3,3 1.50 0.09 1.30 1.50 1.50 1.60 1.60 1.10 150
τ4,3 1.30 0.11 1.10 1.20 1.40 1.40 1.50 1.70 7
τ5,3 0.90 0.06 0.79 0.86 0.90 0.95 1.00 1.10 55
τ1,4 5.10 1.10 3.70 4.20 4.90 5.60 7.00 7.00 4
τ2,4 4.00 0.32 3.50 3.80 4.00 4.30 4.60 2.80 5
τ3,4 2.80 0.15 2.60 2.70 2.80 2.90 3.20 2.10 6
τ4,4 2.50 0.10 2.30 2.50 2.60 2.60 2.70 1.60 8
τ5,4 1.70 0.10 1.50 1.60 1.70 1.70 1.80 1.10 31
βlrt,1 8.30 1.7 0 4.00 7.30 8.80 9.60 10.00 1.30 16
βlrt,2 4.50 0.30 3.90 4.20 4.60 4.70 4.90 1.00 77
βlrt,3 3.80 0.25 3.30 3.60 3.80 4.00 4.10 1.10 53
βlrt,4 3.40 0.26 2.90 3.20 3.50 3.70 3.80 1.00 260
βlrt,5 3.00 0.21 2.60 2.80 3.00 3.10 3.20 1.00 210
σs 5.40 0.88 4.30 4.800 5.10 5.80 7.60 1.60 9
ρa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 120
σst 0.47 0.09 0.34 0.40 0.44 0.53 0.67 2.81 5
ω 0.94 0.02 0.90 0.93 0.95 0.95 0.96 1.10 45

Note. Reported factor loadings are standardized. a rho (ρ) was nearly zero (< .001)
across all samples. During the internship with AIR to examine these NAEP data, I did not
have enough time and access to data to investigate the prior-posterior sensitivity for these
models. This severely limits the generalizability of these results.
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Posterior Predictive Distributions
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(b) Model 2
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Figure D.1. NAEP data analysis posterior predictive distributions.
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APPENDIX E

Extroversion Inventory Analysis and Posterior Investigation

Posterior Summaries

Table E.1

Extroversion model 1 posterior distributions summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff
λ1 0.43 0.16 0.10 0.32 0.44 0.55 0.71 1.01 430
λ2 0.53 0.15 0.21 0.43 0.54 0.63 0.76 1.00 700
λ3 0.87 0.08 0.68 0.84 0.89 0.92 0.96 1.02 330
λ4 0.82 0.10 0.57 0.77 0.85 0.90 0.95 1.01 210
λ5 0.52 0.15 0.18 0.43 0.54 0.63 0.76 1.01 590
λ6 0.60 0.16 0.22 0.51 0.63 0.72 0.85 1.01 400
λ7 0.68 0.16 0.26 0.60 0.71 0.79 0.90 1.01 630
λ8 0.80 0.12 0.49 0.74 0.82 0.88 0.95 1.02 540
λ9 0.57 0.15 0.23 0.47 0.59 0.68 0.82 1.00 710
λ10 0.82 0.09 0.60 0.77 0.83 0.88 0.94 1.01 350
τ1,1 -0.96 0.18 -1.33 -1.07 -0.95 -0.83 -0.62 1.00 1400
τ2,1 -0.13 0.17 -0.46 -0.24 -0.13 -0.02 0.20 1.00 910
τ3,1 -2.50 0.58 -3.90 -2.82 -2.43 -2.08 -1.61 1.03 140
τ4,1 -3.06 0.64 -4.57 -3.40 -2.98 -2.61 -2.05 1.02 200
τ5,1 -0.15 0.17 -0.48 -0.26 -0.15 -0.04 0.17 1.00 4000
τ6,1 -2.13 0.30 -2.80 -2.31 -2.10 -1.91 -1.62 1.01 510
τ7,1 -2.80 0.46 -3.85 -3.06 -2.75 -2.48 -2.05 1.00 1600
τ8,1 -3.77 0.81 -5.77 -4.19 -3.62 -3.19 -2.55 1.00 2200
τ9,1 -1.48 0.23 -1.97 -1.62 -1.47 -1.33 -1.08 1.01 470
τ10,1 -2.32 0.46 -3.40 -2.58 -2.26 -2.00 -1.60 1.01 610
ω 0.92 0.02 0.88 0.91 0.93 0.94 0.95 1.01 370

Note. Reported factor loadings are standardized.
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Table E.2

Extroversion model 2 posterior distributions summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff

λ1 0.44 0.15 0.10 0.34 0.45 0.55 0.71 1.00 1200
λ2 0.47 0.15 0.14 0.37 0.49 0.59 0.73 1.00 2700
λ3 0.85 0.06 0.71 0.82 0.86 0.89 0.94 1.01 270
λ4 0.85 0.07 0.66 0.82 0.86 0.90 0.94 1.01 230
λ5 0.50 0.15 0.18 0.41 0.52 0.61 0.75 1.02 440
λ6 0.57 0.15 0.23 0.48 0.59 0.68 0.80 1.00 2800
λ7 0.72 0.11 0.45 0.67 0.74 0.80 0.88 1.01 450
λ8 0.76 0.10 0.52 0.71 0.78 0.84 0.90 1.02 330
λ9 0.59 0.13 0.28 0.52 0.61 0.69 0.80 1.01 690
λ10 0.86 0.05 0.74 0.83 0.86 0.89 0.93 1.01 650
τ1,1 -0.95 0.17 -1.30 -1.06 -0.94 -0.83 -0.62 1.00 3700
τ2,1 -0.10 0.16 -0.41 -0.20 -0.09 0.01 0.22 1.00 3200
τ3,1 -2.24 0.40 -3.15 -2.46 -2.20 -1.96 -1.56 1.01 340
τ4,1 -3.18 0.59 -4.58 -3.52 -3.11 -2.77 -2.19 1.03 160
τ5,1 -0.18 0.16 -0.50 -0.29 -0.18 -0.07 0.13 1.00 1500
τ6,1 -2.07 0.28 -2.64 -2.24 -2.05 -1.89 -1.59 1.00 3600
τ7,1 -2.85 0.41 -3.77 -3.11 -2.81 -2.55 -2.13 1.02 150
τ8,1 -3.48 0.56 -4.75 -3.82 -3.43 -3.09 -2.57 1.01 540
τ9,1 -1.46 0.22 -1.91 -1.60 -1.45 -1.31 -1.06 1.00 660
τ10,1 -2.45 0.37 -3.25 -2.69 -2.42 -2.18 -1.80 1.01 1100
βlrt,1 1.56 0.08 1.40 1.50 1.55 1.61 1.72 1.01 520
βlrt,2 1.40 0.06 1.29 1.37 1.40 1.44 1.51 1.00 620
βlrt,3 1.54 0.16 1.27 1.43 1.52 1.64 1.90 1.01 360
βlrt,4 1.64 0.31 1.14 1.41 1.60 1.83 2.33 1.03 99
βlrt,5 1.36 0.06 1.24 1.31 1.35 1.40 1.48 1.01 340
βlrt,6 1.43 0.10 1.26 1.35 1.42 1.49 1.67 1.01 330
βlrt,7 1.51 0.17 1.22 1.38 1.49 1.61 1.90 1.01 1200
βlrt,8 1.57 0.24 1.20 1.39 1.53 1.72 2.12 1.02 160
βlrt,9 1.86 0.09 1.71 1.80 1.86 1.92 2.05 1.00 830
βlrt,10 1.45 0.17 1.16 1.33 1.45 1.56 1.81 1.02 130
σlrt,1 1.77 0.22 1.39 1.62 1.76 1.91 2.23 1.00 4000
σlrt,2 3.69 0.49 2.80 3.34 3.67 4.00 4.71 1.00 1000
σlrt,3 4.16 0.56 3.17 3.78 4.13 4.52 5.31 1.00 2200
σlrt,4 2.54 0.33 1.96 2.31 2.52 2.76 3.21 1.00 1700
σlrt,5 2.86 0.37 2.18 2.60 2.84 3.10 3.64 1.00 3200
σlrt,6 3.03 0.39 2.33 2.76 3.02 3.28 3.84 1.00 2500
σlrt,7 5.00 0.68 3.77 4.52 4.97 5.43 6.43 1.00 3800
σlrt,8 3.91 0.51 2.97 3.55 3.89 4.24 5.01 1.00 630
σlrt,9 2.61 0.34 2.00 2.37 2.59 2.84 3.29 1.00 4000
σlrt,10 6.81 1.01 5.04 6.10 6.75 7.45 9.01 1.00 4000
σs 9.69 1.61 6.93 8.58 9.56 10.65 13.27 1.00 760
σts 0.00 0.06 -0.11 -0.03 0.00 0.04 0.11 1.02 120
rho 0.11 0.03 0.06 0.09 0.11 0.13 0.18 1.04 75
ω 0.92 0.02 0.88 0.91 0.92 0.93 0.95 1.01 200
Note. Reported factor loadings are standardized.
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Table E.3

Extroversion model 3 posterior distributions summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff
λ1 0.77 0.19 0.24 0.70 0.83 0.91 0.97 1.06 160
λ2 0.85 0.12 0.52 0.80 0.89 0.93 0.97 1.06 74
λ3 0.85 0.12 0.49 0.83 0.89 0.93 0.96 1.09 200
λ4 0.74 0.24 0.08 0.65 0.84 0.91 0.96 1.11 45
λ5 0.75 0.17 0.32 0.67 0.79 0.88 0.95 1.06 94
λ6 0.50 0.26 0.03 0.28 0.52 0.72 0.90 1.00 1500
λ7 0.53 0.27 0.03 0.32 0.58 0.76 0.92 1.02 160
λ8 0.53 0.27 0.03 0.31 0.55 0.76 0.92 1.03 130
λ9 0.76 0.19 0.22 0.68 0.82 0.89 0.96 1.14 52
λ10 0.81 0.17 0.25 0.77 0.87 0.92 0.96 1.13 65
τ1,1 -1.95 0.87 -4.33 -2.32 -1.75 -1.36 -0.87 1.08 66
τ2,1 0.03 0.44 -0.86 -0.24 0.02 0.30 0.90 1.02 200
τ3,1 -3.21 0.90 -5.20 -3.76 -3.11 -2.57 -1.77 1.01 590
τ4,1 -3.98 1.29 -7.17 -4.71 -3.74 -3.04 -2.15 1.14 27
τ5,1 -0.26 0.41 -1.12 -0.50 -0.24 0.00 0.50 1.05 60
τ6,1 -4.85 1.67 -8.79 -5.79 -4.57 -3.58 -2.48 1.02 120
τ7,1 -4.85 1.49 -8.32 -5.68 -4.59 -3.76 -2.70 1.02 140
τ8,1 -5.30 1.61 -9.22 -6.17 -5.01 -4.15 -2.98 1.01 250
τ9,1 -2.90 0.94 -5.14 -3.43 -2.74 -2.22 -1.51 1.04 69
τ10,1 -3.45 1.05 -5.89 -4.03 -3.30 -2.68 -1.86 1.02 150
ω 0.95 0.02 0.91 0.94 0.95 0.96 0.97 1.19 18
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Table E.4

Extroversion model 4 posterior distributions summary
Parameter Mean SD 2.5% 25% 50% 75% 97.5% R̂ Neff

λ1 0.82 0.13 0.47 0.78 0.86 0.91 0.96 1.09 63
λ2 0.87 0.09 0.61 0.84 0.90 0.93 0.97 1.18 27
λ3 0.90 0.06 0.74 0.88 0.92 0.94 0.97 1.08 78
λ4 0.66 0.25 0.07 0.51 0.74 0.86 0.95 1.09 41
λ5 0.71 0.20 0.20 0.62 0.76 0.86 0.94 1.05 84
λ6 0.50 0.25 0.04 0.30 0.52 0.70 0.88 1.03 100
λ7 0.44 0.24 0.02 0.24 0.45 0.63 0.84 1.00 1300
λ8 0.47 0.25 0.03 0.27 0.49 0.67 0.87 1.02 160
λ9 0.76 0.14 0.36 0.69 0.79 0.86 0.93 1.08 75
λ10 0.85 0.10 0.58 0.82 0.87 0.91 0.95 1.15 61
τ1,1 -1.97 0.64 -3.45 -2.31 -1.87 -1.52 -0.99 1.01 310
τ2,1 -0.21 0.39 -0.97 -0.45 -0.22 0.03 0.61 1.04 67
τ3,1 -3.77 0.98 -5.88 -4.45 -3.67 -3.02 -2.13 1.05 66
τ4,1 -3.91 1.37 -7.45 -4.61 -3.58 -2.91 -2.07 1.22 18
τ5,1 -0.44 0.43 -1.40 -0.71 -0.41 -0.14 0.30 1.02 120
τ6,1 -4.67 1.59 -8.51 -5.59 -4.36 -3.44 -2.46 1.12 26
τ7,1 -4.70 1.45 -8.24 -5.49 -4.44 -3.64 -2.65 1.01 250
τ8,1 -5.22 1.56 -9.01 -6.09 -4.95 -4.08 -2.90 1.00 1100
τ9,1 -2.54 0.64 -4.01 -2.93 -2.45 -2.08 -1.55 1.02 180
τ10,1 -3.61 0.86 -5.51 -4.15 -3.52 -2.98 -2.14 1.01 350
βlrt,1 1.69 0.16 1.45 1.58 1.66 1.77 2.07 1.02 180
βlrt,2 1.46 0.09 1.31 1.40 1.45 1.51 1.67 1.04 75
βlrt,3 1.61 0.31 1.16 1.38 1.56 1.78 2.34 1.07 43
βlrt,4 1.27 0.28 0.96 1.09 1.19 1.36 2.03 1.13 30
βlrt,5 1.38 0.09 1.23 1.32 1.37 1.42 1.60 1.00 710
βlrt,6 1.45 0.21 1.21 1.31 1.39 1.55 2.00 1.06 51
βlrt,7 1.30 0.15 1.10 1.19 1.26 1.37 1.68 1.02 210
βlrt,8 1.27 0.23 1.03 1.13 1.20 1.33 1.91 1.04 180
βlrt,9 1.93 0.17 1.70 1.82 1.90 2.01 2.36 1.01 430
βlrt,10 1.36 0.23 1.00 1.18 1.33 1.50 1.88 1.05 67
σlrt,1 1.78 0.23 1.37 1.62 1.76 1.92 2.25 1.00 3900
σlrt,2 3.53 0.47 2.67 3.20 3.49 3.83 4.53 1.01 470
σlrt,3 4.26 0.60 3.20 3.84 4.21 4.64 5.57 1.01 240
σlrt,4 2.49 0.32 1.91 2.27 2.47 2.69 3.14 1.01 500
σlrt,5 2.86 0.37 2.18 2.60 2.84 3.09 3.62 1.00 2400
σlrt,6 3.03 0.39 2.31 2.75 3.01 3.28 3.83 1.00 4000
σlrt,7 4.92 0.65 3.74 4.47 4.88 5.33 6.33 1.00 4000
σlrt,8 3.91 0.50 2.99 3.56 3.89 4.22 4.95 1.00 4000
σlrt,9 2.57 0.32 1.99 2.35 2.56 2.78 3.25 1.00 3700
σlrt,10 6.63 0.97 4.97 5.94 6.58 7.27 8.72 1.00 730
σs 11.81 2.65 7.81 9.96 11.42 13.13 18.47 1.01 350
ρ 0.06 0.03 0.01 0.03 0.05 0.08 0.12 1.02 280
σts 0.11 0.06 0.00 0.07 0.11 0.15 0.23 1.01 400
ω 0.95 0.02 0.90 0.94 0.95 0.96 0.97 1.18 22
Note. Reported factor loadings are standardized.
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Posterior Predictive Distributions
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(c) Model 3

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

0.00

0.25

0.50

0.75

1.00

Item CategoryP
os

te
rio

r 
P

re
di

ct
iv

e 
C

at
eg

or
y 

P
ro

po
rt

io
n

(d) Model 4

Figure E.1. Extroversion data analysis posterior predictive distributions.
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Posterior Sensitivity Analysis

Table E.5

Extroversion posterior sensitivity analysis
Quantiles

λ ∼ ξ ∼ Mean SD 2.5% 25% 50% 75% 97.5%

N+(0, 0.44) 1 0.94 0.02 0.89 0.94 0.95 0.96 0.97
0.1 0.94 0.02 0.89 0.93 0.94 0.95 0.97
10 0.94 0.02 0.89 0.93 0.95 0.96 0.97
U(0.5, 1.5) 0.95 0.02 0.90 0.94 0.95 0.96 0.97
G(1, 1) 0.95 0.02 0.90 0.94 0.95 0.96 0.98

N+(0, 0.01) 1 0.99 0.00 0.98 0.98 0.99 0.99 0.99
0.1 0.97 0.02 0.92 0.97 0.98 0.99 0.99
10 0.99 0.01 0.97 0.99 0.99 0.99 0.99
U(0.5, 1.5) 0.99 0.01 0.97 0.98 0.99 0.99 0.99
G(1, 1) 0.99 0.01 0.97 0.98 0.99 0.99 0.99

N+(0, 1) 1 0.90 0.03 0.83 0.89 0.91 0.92 0.95
0.1 0.90 0.03 0.83 0.89 0.91 0.92 0.94
10 0.91 0.03 0.85 0.90 0.92 0.93 0.96
U(0.5, 1.5) 0.91 0.03 0.84 0.89 0.91 0.93 0.95
G(1, 1) 0.91 0.03 0.84 0.89 0.91 0.93 0.95

N+(0, 10) 1 0.51 0.10 0.29 0.45 0.52 0.59 0.69
0.1 0.42 0.11 0.20 0.34 0.43 0.50 0.63
10 0.52 0.10 0.30 0.46 0.53 0.60 0.70
U(0.5, 1.5) 0.53 0.10 0.32 0.46 0.53 0.60 0.69
G(1, 1) 0.52 0.10 0.31 0.46 0.53 0.60 0.69

N(0, 0.44) 1 0.91 0.07 0.70 0.89 0.93 0.95 0.97
0.1 0.92 0.04 0.80 0.91 0.93 0.95 0.97
10 0.92 0.03 0.84 0.91 0.93 0.94 0.96
U(0.5, 1.5) 0.91 0.05 0.80 0.89 0.92 0.94 0.96
G(1, 1) 0.92 0.03 0.84 0.91 0.93 0.95 0.97

N(0, 0.01) 1 0.98 0.01 0.95 0.98 0.99 0.99 0.99
0.1 0.79 0.33 0.01 0.82 0.97 0.98 0.99
10 0.98 0.01 0.94 0.97 0.98 0.99 0.99
U(0.5, 1.5) 0.98 0.02 0.93 0.97 0.98 0.99 0.99
G(1, 1) 0.98 0.01 0.96 0.98 0.98 0.99 0.99

N(0, 1) 1 0.86 0.08 0.62 0.85 0.88 0.91 0.94
0.1 0.45 0.27 0.00 0.21 0.49 0.69 0.84
10 0.87 0.06 0.72 0.85 0.89 0.91 0.94
U(0.5, 1.5) 0.85 0.07 0.67 0.82 0.87 0.90 0.94
G(1, 1) 0.87 0.06 0.73 0.84 0.88 0.91 0.94

N(0, 10) 1 0.25 0.18 0.00 0.10 0.24 0.39 0.60
0.1 0.12 0.13 0.00 0.02 0.08 0.19 0.45
10 0.19 0.17 0.00 0.04 0.14 0.31 0.54
U(0.5, 1.5) 0.21 0.17 0.00 0.05 0.18 0.34 0.57
G(1, 1) 0.20 0.18 0.00 0.04 0.15 0.32 0.58
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Figure E.2. Half-Cauchy hyper-prior for expanded sensitivity analysis using bivariate
density plots. (a) Marginal density of hyper-prior parameter τλ for factor loading
prior precision; (b) Bivariate posterior density plot of hyper-prior and reliability; and
(c) marginal density of reliability distribution. The MCMC samples for are plotted
with alpha-shading in (b) to demonstrate how disperse some draws from the posterior
were.
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