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A Multigrid Krylov Method for Eigenvalue Problems
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We are interested in computing eigenvalues and eigenvectors of matrices derived

from differential equations. They are often large sparse matrices, including both

symmetric and non-symmetric cases.

Restarted Arnoldi methods are iterative methods for eigenvalue problems based

on Krylov subspaces. Multigrid methods solve differential equations by taking ad-

vantage of the hierarchy of discretizations. A multigrid Krylov method is proposed

by combining Arnoldi and multigrid methods. We compare the new approach with

other methods, and explore the theory to explain its efficiency.
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CHAPTER ONE

Introduction

We are interested in large eigenvalue problems Ax = λx, where A is often a

sparse matrice. Many of these problems are obtained by discretizing linear differen-

tial operators, which arise in a variety of areas of science and engineering. Eigen-

values and eigenvectors are very important in these applications, and they are also

very helpful in the iterative solution of systems of linear equations. In this thesis,

our goal is to find a few eigenvectors corresponding to the eigenvalues with smallest

magnitudes for a large sparse matrix A. We use finite difference discretization. A

can be either a symmetric or a non-symmetric sparse matrix.

There are two types of methods for eigenvalue problems, direct and iterative.

For dense matrices, the most popular direct method is the QR iteration, which is

the main idea used in the LAPACK software package [5] [6]. The QR iteration uses

a series of orthogonal similarity transforms and converges to a Schur decomposition.

For large sparse matrices, direct methods are too expensive, and in practice usually

only a few of the eigenpairs are desired. Therefore iterative methods are more effi-

cient. The Lanczos method [14] is a iterative method for symmetric matrices, and

the Arnoldi method [2] is a general procedure for non-symmetric case. In both meth-

ods only a matrix-vector product is needed in each iteration to generate a Krylov

subspace. These methods use the Rayleigh-Ritz procedure to extract eigenvalue

information from the Krylov subspace.

Arnoldi and Lanczos methods have several difficulties. The Arnoldi method

computes the orthogonal projection of A onto an m dimensional Krylov subspace

after m steps. Sometimes m has to be large to get the desired eigenpairs, so the com-

putational and storage requirements grow dramatically. Several restarted Arnoldi
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methods have been developed to overcome such difficulties. Sorensen’s Implicitly

Restarted Arnoldi method (IRAM) is a big success, and it was implemented in

the ARPACK package [16] [25]. It can be viewed as a truncation of the implicitly

shifted QR iteration. Morgan proposed another restated Arnoldi with approximate

eigenvectors (Arnoldi-E) method [18], where the Ritz eigenvectors are attached to a

Krylov subspace. It is proved to be mathematically equivalent to IRAM, but it also

has some other applications.

For a large sparse problem generated by a differential operator, another group

of efficient algorithms are multigrid methods. Multigrid methods can tackle the orig-

inal operator and exploit discretizations with different mesh sizes. The information

from coarse grids, especially the smooth eigenvectors, can help the computation on

the fine grid. In this thesis, we explore a multigrid Arnoldi method which combines

restarted Arnoldi methods and multigrid methods.

The dissertation is organized as follows. Chapter Two introduces variant

Arnoldi methods as well as Multigrid methods. A Multigrid Arnoldi method will be

presented in Chapter Three, followed by some comparisons with other methods and

details of implementation. We mainly discuss the Two-grid Arnoldi method in this

thesis. We first run restarted Arnoldi method on the coarse grid, and then Arnoldi-E

is applied on the fine grid with the approximations obtained from the coarse grid.

Chapter Four studies the relations of eigenpairs on coarse and fine grids, in order

to analyze the convergence for the symmetric case. Chapter Five gives theory for

Arnoldi-E on the fine grid. Near Krylov decomposition is explored and analyzed.

Chapter Six explores a more general Multiple-grid Arnoldi method. Lastly, Chapter

Seven discusses future work.
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CHAPTER TWO

Preliminaries

The Arnoldi method is a very well-known Krylov subspace method for non-

symmetric eigenvalue problems. It is an iterative method based on projection meth-

ods, which transform a matrix into a smaller matrix with nicer structure. However,

the expense and the storage increase as the method proceeds. Hence restarted

Arnoldi methods were invented, including explicit and implicit restarted methods.

In this thesis, we are interested in eigenvalue problems derived from differential op-

erators. We aim to explore a new restarted Arnoldi method combined with multigrid

techniques. Chapter Two is organized as follows: we start with general projection

methods(2.1) and Krylov subspaces(2.2). The basic Arnoldi method is given(2.3),

followed by explicitly restarted Arnoldi method(2.4) and implicitly restarted Arnoldi

methods(2.5)(2.6). We discuss the ideas of Krylov decompositions and near Krylov

decompositions(2.7)(2.8) for the analysis of our method later, as well as the Schur

decomposition(2.9). Then we turn to differential operators and introduce finite dif-

ference discretizations(2.10). Lastly we look at the multigrid method(2.11).

2.1 Orthogonal Projection Methods

Arnoldi methods are orthogonal projection methods [29] for solving eigenvalue

problems Ax = λx. An orthogonal projection method finds an approximate solution

in some subspace K by letting the residual be orthogonal to the same subspace K.

For an eigenvalue problem, we seek an approximate eigenpair (θ, y) in K, such

that the so-called Galerkin condition is satisfied:

Ay − θy ⊥ K.

Assume the columns of a matrix V are an orthonormal basis of K, then y can be
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written as y = V g. The Galerkin condition becomes:

V H(Ay − θy) = 0,

V H(AV g − θV g) = 0,

V HAV g = θg.

So (θ, g) is an eigenpair of B = V HAV . We have the following Rayleigh-Ritz proce-

dure to implement the above orthogonal projection idea.

Algorithm 2.1 Rayleigh-Ritz procedure

1. Compute an orthonormal basis {qi}i=1,··· ,m of the m dimensional subspace

K. Let Q = [q1, q2, · · · , qm].

2. Compute Bm = QHAQ.

3. Find the desired eigenvalues θi of Bm.

4. Compute the eigenvectors gi of Bm associated with the θi’s, and the corre-

sponding approximate eigenvectors of A are yi = Qgi.

The θi’s are called Ritz values, and yi = Qgi are Ritz vectors. The residual

of yi is computed by ri = Ayi − θyi. If the subspace K used in step 1 is a Krylov

subspace, which will be introduced in the next section, Algorithm 2.1 becomes the

Arnoldi method.

2.2 Krylov Subspaces

Given an n × n matrix A and a starting vector v, an m dimensional Krylov

subspace is spanned by a sequence of vectors, which are obtained by repeatedly

calculating matrix-vector multiplications:

Km(A, v) = Span{v,Av,A2v, · · · ,Am−1v}.

All vectors in the subspace Km(A, v) can be written as y = p(A)v, where p is a

polynomial of degree m− 1 or less. If A has a full set of eigenvectors z1, z2, · · · , zn,
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and v can always be expressed as v =
n∑
i=1

αizi, then

y = p(A)v =
n∑
i=1

αip(A)zi =
n∑
i=1

αip(λi)zi.

If we want y to be a good approximation to an eigenvector, say zj, then p has to be

large at λj and small at other eigenvalues. It is easy to find such p if λj is well sepa-

rated from the rest of the spectrum. The Krylov subspace is best at approximating

eigenvectors associated with eigenvalues on the periphery of the spectrum and not

close to another.

If the desired eigenvalues are in the interior close to some value τ , then the

shift-and-invert strategy [33] can be used. The corresponding Krylov subspace is:

Km((A− τI)−1, v) = Span{v, (A− τI)−1v, (A− τI)−2v, · · · , (A− τI)−(m−1)v}.

If (λ, x) is an eigenpair of A, then ((λ− τ)−1, x) is an eigenpair of (A− τI)−1. The

eigenvalues of A that are closest to τ are the eigenvalues of (A−τI)−1 that are of the

greatest modulus, and hence Km((A− τI)−1, v) obtains good approximations to x.

To implement the shift-and-invert Arnoldi method, we do not calculate (A− τI)−1v

explicitly. Instead, we solve (A− τI)u = v for u.

2.3 Arnoldi Decomposition and Parallel Property

The Arnoldi method was introduced by Arnoldi [2] in 1951. It builds an

orthonormal basis of the Krylov subspace using modified Gram-Schmidt and reduces

a dense matrix into a Hessenberg form. The following is the Arnoldi method with

modified Gram-Schmidt algorithm [29].

Algorithm 2.2 Arnoldi with modified Gram-Schmidt algorithm

1. Start. Choose a vector v1 of norm 1.

2. Iterate. For j = 1, 2, · · · ,m do:

(a) w := Avj
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(b) For i = 1, 2, · · · , j do:

hi,j = (w, vi)

w := w − hi,jvi

(c) hj+1,j = ‖w‖2

(d) vj+1 = w/hj+1,j

The algorithm stops if ‖w‖2 becomes zero, that means Avj is a combination

of v1, · · · , vj. Otherwise, the vectors v1, v2, · · · , vm are orthogonal to each other and

of unit length by construction, and they form a basis for the Krylov subspace.

Span{v1, v2, · · · , vm} = Span{v1, Av1, A
2v1, · · · ,Am−1v1} = Km(A, v1). (2.1)

Equation (2.1) can be proved by induction. Suppose

Span{v1, v2, · · · , vk} = Span{v1, Av1, A
2v1, · · · ,Ak−1v1},

and for every j, Avj =

j+1∑
i=1

hi,jvi.

Then

Akv1 ∈ ASpan{v1, Av1, A
2v1, · · · ,Ak−1v1} = ASpan{v1, v2, · · · , vk}

= Span{Av1, Av2, · · · , Avk} = Span{
2∑
i=1

hi,1vi,
3∑
i=1

hi,2vi, · · · ,
k+1∑
i=1

hi,kvi}

= Span{v1, v2, · · · , vk, vk+1}.

So

Span{v1, Av1, A
2v1, · · · , Ak−1v1, A

kv1} ⊂ Span{v1, v2, · · · , vk, vk+1}.

The above two subspaces are of the same dimension, so they are the same subspace

and (2.1) holds.

There is an Arnoldi decomposition based on Algorithm 2.2, which is an im-

portant relation in the study of Krylov methods. Let Vm = [v1, v2, · · · , vm] and Hm
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be the matrix whose entries hi,j are defined by the algorithm. From the algorithm,

we have hi,j = 0 for i > j + 1. Hm has zero entries below the first subdiagonal, and

we call it an upper Hessenberg matrix. The following relations hold:

AVm = VmHm + hm+1,mvm+1e
H
m, (2.2)

V H
m AVm = Hm. (2.3)

Equation (2.2) is the Arnoldi decomposition. The following implicit Q-theorem [25]

indicates that the Arnoldi decomposition is determined by the first column of V .

Therefore Arnoldi decompositions are essentially unique, and the Krylov subspace

corresponding to an Arnoldi decomposition has a unique starting vector.

Theorem 2.1. (Implicit Q-theorem) Suppose

AV = V H + reTm,

AQ = QG+ feTm,

where Q, V have orthonormal columns and G, H are both upper Hessenberg with

positive subdiagonal elements. If Qe1 = V e1 and QTf = V T r = 0, then Q = V ,

G = H, and f = r.

We can get the parallel property for residuals of Ritz vectors from the Arnoldi

decomposition. Suppose (θi, gi) are eigenpairs of Hm, then θi are Ritz values of A,

and yi = Vmgi are Ritz vectors. A well known formula for the residual of an Ritz

vector by using (2.2) is:

ri := Ayi − θiyi = AVmgi − θiVmgi

= VmHmgi + hm+1,mvm+1e
T
mgi − θiVmgi

= Vm(Hmgi − θigi) + hm+1,mvm+1e
T
mgi

= (hm+1,me
T
mgi)vm+1. (2.4)
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According to (2.4), we can calculate the norm of the residual by

‖ri‖ = |hm+1,me
T
mgi|,

and residuals of all Ritz vectors are multiples of the last Arnoldi vector vm+1.

2.4 Explicitly Restarted Arnoldi Methods

In Algorithm 2.2, the approximations of Ritz vectors will usually improve as

m gets bigger, but the cost of computation and storage increase, as well as the cost

of computing the eigenpairs of a Hessenberg matrix of order m. One way to avoid

large m is to restart the algorithm.

For restarted Arnoldi methods [29], the dimension of the subspace m is chosen

and fixed. After running basic Arnoldi iteration, residuals are computed to check the

convergence. If the approximations are not accurate enough, a new starting vector

is needed and another Arnoldi iteration proceeds until approximations converge.

Algorithm 2.3 Explicitly restarted Arnoldi method

1. Start. Choose a starting vector v1 with norm 1 and a dimension m.

2. Iterate. Perform m steps of Arnoldi Iteration (Algorithm 2.2).

3. Find approximate eigenvalues and eigenvectors. If desired, compute Ritz

values θi and Ritz vectors yi. Compute the residual norms for desired eigen-

vectors, if satisfied stop, else go to 4.

4. Restart. Choose a new starting vector. Normalize for v1 and go to 2.

A natural idea for the new starting vector is some linear combination of ap-

proximate eigenvectors obtained from the previous iteration. But it turns out that

the combination has to be determined in a certain way, otherwise such an approach

can be ineffective. The reasons were given by Morgan [18]. One efficient way to

construct the new starting vector is to use polynomial filters: take the new starting

vector to be vnew1 = ψ(A)v1, where ψ(A) is a polynomial determined from the knowl-

edge of the approximate spectrum. ψ can be chosen in different ways, one option
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has the form:

ψ(t) = (t− θ1)(t− θ2) · · · (t− θp), (2.5)

where θi are so-called unwanted values among the computed Ritz values.

2.5 Implicitly Restarted Arnoldi Methods (IRAM)

It is sometimes difficult and expensive to calculate the starting vector in ex-

plicitly restarted Arnoldi method, hence there is a lot of research about the implicitly

restarted Arnoldi approach. The implicitly restarted Arnoldi (IRAM) was proposed

by Sorensen [25] [29], and is more stable than most explictly restarted approaches.

This method exploits the QR algorithm within the Arnoldi iteration, but it is equiv-

alent to applying a polynomial filter to the initial starting vector.

Algorithm2.4 The p-step shift QR

For j = 1, · · · , p do:

(H − µjI) = QjRj

H := RjQj + µjI

End For

Algorithm2.5 Implicitly Resarted Arnoldi method (IRAM)

1. Choose m = k + p. Perform Arnoldi iteration to get AVm = VmHm +

hm+1,mvm+1e
T
m.

2. Select the p shifts µ1, · · · , µp from the eigenvalues of Hm.

3. Perform p-step shift QR: [H+
m, Q] := QR(Hm, µ1, · · · , µp)

4. Compute V +
m = VmQ. Let Vk = V +

m (:, 1 : k) and Hk = H+
m(1 : k, 1 : k).

5. Compute v = V +
m (:, k + 1)H+

m(k + 1, k) + hm+1,mvm+1Q(m, k). Let hk+1,k =

‖v‖2, vk+1 = v/hk+1,k. Now AVk = VkHk + hk+1,kvk+1e
T
k , go to 1.

Q is the unitary matrix such that H+
m = QHHmQ in step 3. In step 4, The

first column of V +
m is updated by v+

1 = φ(A)v1 after the implicit p-step shift QR

process, where φ(t) = (1/τ)(t−µ1)(t−µ2) · · · (t−µp) with τ a normalization factor.
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There are various choices for µi’s, but one immediate option is to take µi = θi,

where θi are unwanted Ritz values. We call θi’s exact shifts with respect to H, and

in this case φ(t) is the same as ψ(t) in (2.5). So when exact shifts are chosen, the

implicitly restarted Arnoldi is equivalent to restarting the Arnoldi with the updating

v+
1 = ψ(A)v1, and v+

1 is a combination of desired Ritz vectors.

2.6 Restarted Arnoldi Methods with Eigenvectors (Arn-E)

In Algorithm 2.5, we always have an Arnoldi decomposition AVk = VkHk +

hk+1,kvk+1e
T
k of order k from the last cycle, then we expand the decomposition

to order m. It means that in every cycle we implicitly restart Arnoldi with the

subspace Span{v1, v2, · · · , vk, vk+1}, and expand it to the m dimensional subspace

Span{v1, v2, · · · , vk, vk+1, Avk+1, A
2vk+1, · · · , Am−k−1vk+1}. If the exact shifts are

used, i.e, shits in step 2 are unwanted eigenvalues of Hm. There are some nice

theorems, which are proven by Sorensen, Lehoucq and Morgan [15] [18] [25].

Theorem 2.2. Suppose there is an Arnoldi decomposition AVm = VmHm+hm+1,mvm+1

eTm, and Sorensen restarting is used with exact shifts. Let the desired Ritz vec-

tors be y1, y2, · · · , yk. Then during the next Arnoldi run, the subspace of degree k

is Span{y1, y2, · · · , yk} = Span{v+
1 , v

+
2 , · · · , v+

k } and v+
k+1 = vm+1, where v+

i ’s are

Arnoldi vectors in the decomposition AV +
k = V +

k Hk + hk+1,kv
+
k+1e

T
k for restarting.

Theorem 2.3. Let y1, y2, · · · , yk be the desired Ritz vectors from an Arnoldi decom-

position AVm = VmHm+hm+1,mvm+1e
T
m, and Ayi = θiyi+(hm+1,me

T
mgi)vm+1 as shown

in (2.4). Then Span{y1, y2, · · · , yk, vm+1, Avm+1, · · · , Ap−1vm+1} = Span{y1, y2, · · · ,

yk, Ayi, A
2yi, · · · , Apyi}.

Theorem 2.4. Let m = k + p. The subspace generated during a run of the Sorensen

method after restarting is Span{y1, y2, · · · , yk, Ayi, A2yi, · · · , Apyi} for any i such

that 1 ≤ i ≤ k.
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Theorem 2.4 is based on Theorem 2.2 and 2.3. Let vm+1 be the last Arnoldi

vector from the previous cycle and v+
i be updated Arnoldi vectors for the next run.

The updated subspace with exact shifts is:

Span{v+
1 , v

+
2 , · · · , v+

m}

=Span{v+
1 , v

+
2 , · · · , v+

k , v
+
k+1, Av

+
k+1, · · · , A

p−1v+
k+1} (2.6)

=Span{y1, y2, · · · , yk, v+
k+1, Av

+
k+1, · · · , A

p−1v+
k+1} (use Thorem 2.2)

=Span{y1, y2, · · · , yk, vm+1, Avm+1, · · · , Ap−1vm+1} (use Thorem 2.2)

=Span{y1, y2, · · · , yk, Ayi, A2yi, · · · , Apyi} (use Thorem 2.3) (2.7)

According to Theorem 2.4, the following restarted Arnoldi with Ritz vectors,

which generates subspace (2.7), is equivalent to IRAM, which generates the subspace

(2.6). Both methods improve all approximations at the same time.

Algorithm 2.6 Restarted Arnoldi with Ritz vectors

1. Choose m = k + p and the target τ . Perform Arnoldi iteration to get

AVm = VmHm + hm+1,mvm+1e
T
m.

2. Small eigenvalue problem. Compute eigenpairs (θi, gi) of Hm nearest τ . If

satisfied stop, otherwise let G be a real orthonormal matrix whose columns

span [g1, · · · , gk].

3. Let Vk = VmG, Hk = GHHmG and vk+1 = vm+1, such that AVk = VkHk +

hvk+1(eTmG). Go to 1.

If some good approximations are known beforehand, such information can be

used at the beginning, and we have another way to restart Arnoldi with eigenvector

approximations (Arn-E).

Algorithm 2.7 Restarted Arnoldi with eigenvector approximations (Arn-E)

1. Choose m = k + p. Let y1, y2, · · · , yk be approximate eigenvectors, or the

real and imaginary parts of approximate eigenvectors. Let v1 = y1/‖y1‖.

2. Perform Arnoldi iteration. Get AVp = VpHp + hp+1,pvp+1e
T
p of order p.
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3. Addition of other approximate eigenvectors. Orthogonalize y2, · · · , yk against

previous vi to get vp+2, · · · , vm. ComputeH(:, p+1 : m) = V TA[vp+1, vp+2, · · · ,

vm] and H(p+ 1 : m, 1 : p) = [vp+1, vp+2, · · · , vm]TAVp.

4. Small eigenvalue problem. Compute eigenpairs (θi, gi) of Hm nearest τ . If

satisfied stop, otherwise go to 5.

5. Restart. Let y1 through yk be Ritz vectors, or the real and imaginary parts

of Ritz vectors.

2.7 Krylov Decomposition

The Arnoldi decomposition (2.2) is

AVm = VmHm + hm+1,mvm+1e
T
m.

Where Hm is upper Hessenberg and columns of Vm are orthonormal vectors. Stewart

[26] introduced a less constraining decomposition named Krylov decomposition as

the following:

Definition 2.5. A Krylov decomposition of order m is a relation of the form

AUm = UmBm + um+1b
T
m+1,

where Bm is arbitrary and (Um, um+1) has independent columns. The columns of

(Um, um+1) are called the basis for the decomposition, and they span the space of the

decomposition. If the basis is orthonormal, we say the decomposition is orthonormal.

This definition removes restrictions imposed on an Arnoldi decomposition

(2.2), but we have the following theorem.

Theorem 2.6. [26] let AU = UB + ubT be a Krylov decomposition of order k. Then

it is equivalent to an Arnoldi decomposition. If the Hessenberg part of the Arnoldi

decomposition is unreduced, the Arnoldi decomposition is essentially unique.
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This theorem allows us to explore new methods and theory since the Krylov

decomposition is much easier to maintain than the Arnoldi decomposition. Actu-

ally, the relation AVk = VkHk + hvk+1(eTmG) in step 3 of Algorithm 2.6 (restart

Arnoldi with Ritz vectors) is a Krylov decomposition, since Hk is not a strict upper

Hessenberg.

2.8 Near Krylov Decomposition and Krylov Residual

In this section we discuss approximate Krylov subspaces, since sometimes bases

for Krylov subspaces are inaccurate. There can be different approaches to assess the

quality of an approximate Krylov subspace. We adopt Stewart’s idea [27] to give

the definition of a near Krylov decomposition.

Definition 2.7. Assume (Um, um+1) has independent columns and (Bm, bm+1) is ar-

bitrary, then

AUm = UmBm + um+1b
T
m+1 +R. (2.8)

is a near Krylov decomposition, and R is called the Krylov residual of the decom-

position.

We assume ‖R‖ is small in (2.8). If a near Krylov subspace U is given, there

is a way to construct an orthogonal basis U for U so that the norm of the Krylov

residual ‖R‖ is minimal.

Theorem 2.8. [27] Let A be of dimension n and let W ∈ Cn×m be orthonormal.

Let S = AW − W (WHAW ) and σ1 ≥ · · · ≥ σm ≥ 0 be the singular values of

S. Let V = (Vm−1, vm) ∈ Cm×m be unitary with the columns Vm−1 being the right

singular vectors of S corresponding to σ2, · · · , σm. Set U = WV = (Um−1, um) and

R = SVm−1. Then the near Krylov decomposition AUm−1 = Um−1Bm−1 + umb
T
m +R

has the minimal residual norm ‖R‖ = σ2.
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We can project the Krylov residual R in (2.8) back on A. The following

theorem shows that a near Krylov decomposition is an exact decomposition of matrix

A with a perturbation.

Theorem 2.9. [26] Let AU = UB + ubT + R and assume that U is of full rank. Let

E = −RU †, where U † = (UHU)−1UH is the pseudoinverse of U . Then

(A+ E)U = UB + ubT ,

and

‖R‖
‖U‖

≤ ‖E‖ ≤ ‖R‖‖U †‖.

When U is an orthonormal matrix, U † = UT and ‖E‖ = ‖R‖.

2.9 Schur Decomposition

We have the following real Schur decomposition [9] [15] which will be used to

prove theorems later.

Theorem 2.10. Real Schur Decomposition If A ∈ Rn×n then there exists an orthogonal

Q ∈ Rn×n such that

QTAQ =



R11 R12 · · · R1m

0 R22 · · · R2m

...
...

. . .
...

0 0 · · · Rmm


= R,

where each Rii is a square block of order one or two. The blocks of order two contain

the complex conjugate eigenvalues of A. The matrix R is said to be in upper quasi-

triangular matrix form.

2.10 Discretization of Differential Operators

In this thesis, we solve eigenvalue problems from discretizing differential oper-

ators, and we mainly use finite difference discretization [2] [7].

14



2.10.1 Discretization of a 1D Differential Problem

Consider the following eigenvalue problem of a second order ordinary differen-

tial operator:

−u′′(x) + βu′(x) = λu(x), 0 ≤ u ≤ 1, (2.9)

u(0) = u(1) = 0.

The domain [0, 1] is partitioned into n subintervals with the same step length

h = 1/n. Let uj be a finite difference approximation to the exact solution u(xj),

where xj = jh is an interior grid point, for j = 1, · · · , n− 1.

−uj−1 + 2uj − uj+1

h2
+ β

uj+1 − uj−1

2h
= λuj,

(− 1

h2
− β

2h
)uj−1 +

2

h2
uj + (− 1

h2
+

β

2h
)uj+1 = λuj,

1

h2



2 −1 + βh
2

−1− βh
2

2 −1 + βh
2

. . .

. . .

−1− βh
2

2 −1 + βh
2

−1− βh
2

2





u1

u2

.

.

.

un−1


= λ



u1

u2

.

.

.

un−1


.

(2.10)

We denote (2.10) by

A~u = λ~u,

which is the matrix eigenvalue problem we want to solve.

The stencil representation of the matrix A is

A =
1

h2

(
−1− βh

2
2 −1 +

βh

2

)
. (2.11)
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When β = 0,

A =
1

h2

(
−1 2 −1

)
, (2.12)

and A is a symmetric matrix.

2.10.2 Discretization of a 2D Differential Problem

For a 2D Laplace problem

−∆u = −uxx − uyy = λu,

or a more general diffusion-convection problem

−∆u+ β · 5u = λu, (2.13)

−∆u+ aux + buy = λu, assume β = [a, b]T

on the domain [0, 1]× [0, 1], with Dirichlet boundary condition

u(x, y) = 0, for x = 0, or y = 0.

We partition each direction into n subintervals with the same step length

h = 1/n. Let ui,j be a finite difference approximation to the exact solution u(xi, yj),

where (xi, yj) = (ih, jh) for j = 1, · · · , n− 1. Then (2.13) is discretized as

−ui−1,j + 2ui,j − ui+1,j

h2
+
−ui,j−1 + 2ui,j − ui,j+1

h2
+ a

ui+1,j − ui−1,j

2h
+ b

ui,j+1 − ui,j−1

2h

= λui,j.

Let

~u = [u1,1, u1,2, · · · , u1,n−1, u2,1, · · · , u2,n−1, · · · , un−1,1, · · ·un−1,n−1]T ,
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then we have the matrix form

A~u =



B a1I

a2I B a1I

. . .

. . .

a2I B a1I

a2I B


~u = λ~u, (2.14)

where

a1 = − 1

h2
+

a

2h
,

a2 = − 1

h2
− a

2h
.

And if we use the same representation as (2.11), the block matrix B can be written

as

B =
1

h2

(
−1− bh

2
4 −1 +

bh

2

)
.

2.11 Eigenpairs of Symmetric Matrices from Discretization

We discuss eigenpairs of the symmetric matrix (2.12) for 1D and 2D differential

operators [7]. They will help us do some analysis later.

2.11.1 Eigenpairs of the Symmetric Matrix from 1D Problem

The eigenvectors of

A =
1

h2

(
−1 2 −1

)
are

ωk,j = sin
(jkπ
n

)
, 1 ≤ k ≤ n− 1, 1 ≤ j ≤ n− 1, (2.15)

and the eigenvalues are

λk(A) =
4

h2
sin2

(kπ
2n

)
. (2.16)
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2.11.2 Eigenpairs of the Symmetric Matrix from 2D Problems

For the 2D problem on the unit square Ω = [0, 1]× [0, 1]

−∆u = λu, u = 0 on ∂Ω.

The matrix problem A~u = λ~u is (2.14) with

a1 = − 1

h2
, a2 = − 1

h2
,

B =
1

h2

(
−1 4 −1

)
.

The eigenvalues of A are

λkl =
4

h2

[
sin2

(kπ
2n

)
+ sin2

( lπ
2n

)]
, (2.17)

1 ≤ k, l ≤ n− 1.

The eigenvectors for λkl, 1 ≤ k, l ≤ n− 1 are

wij =
(

sin
ikπ

n

)(
sin

jlπ

n

)
,

where wij is the value at each interior node (xi, yi),

wij = w(xi, yj) = w(ih, jh).

A significant difference from the 1D eigenvalue problem is that there are re-

peated eigenvalues for the 2D problem. Since from (2.17),

λkl = λlk,

when k 6= l, there would be at least two repeated eigenvalues. This property makes

the 2D eigenvalue problem harder than the 1D case.

2.12 Multigrid Methods

Multigrid methods [7] are used to solve linear systems obtained from differen-

tial equations. They take advantage of a hierarchy of discretizations. The idea of
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multigrid methods is to go back and forth among different grids to improve numer-

ical approximations. There are three important steps:

1. Iteratively relax on a grid to smooth the error;

2. Restrict the residual error from a finer grid to a coarser grid;

3. Interpolate a correction from a coarser grid to a finer grid.

Let us first define the notation.

Fine grid: Ωh is the grid with step length h. Ah is the matrix using discretization

on Ωh. rh is the residual rh = fh − Ahuh.

Coarse grid: Ω2h is the grid with step length h. A2h is the matrix using discretization

on Ω2h. r2h is the residual r2h = f 2h − A2hu2h.

Interpolation: Ih2h maps a vector on coarse grid to fine grid

Restriction: I2h
h maps a vector on fine grid to coarse grid

The two-grid scheme (Algorithm 2.8) is the basic algorithm for multigrid V-

cycle scheme (Algorithm 2.9). The details of iterative relaxation, interpolation and

restriction operators will be discussed in the following subsections.

Algorithm 2.8 Two-grid Correction Scheme

1. Relax υ1 times on Ahuh = fh on Ωh with arbitrary initial guess vh.

2. Compute rh = fh − Ahvh.

3. Compute r2h = I2h
h r

h.

4. Solve A2he2h = r2h on Ω2h.

5. Correct fine-grid solution vh ← vh + Ih2he
2h.

6. Relax υ2 times on Ωh with initial guess vh.

Algorithm 2.9 V-cycle Scheme

1. Relax υ1 times on Ahuh = fh on Ωh with a given initial guess vh.
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2. If Ωh = coarsest grid, then go to step 4. Else.

f 2h ← I2h
h (fh − Ahvh)

v2h ← 0

v2h ← V 2h(v2h, f 2h)

3. Correct vh ← vh + Ih2he
2h.

4. Relax υ2 times on Ωh with initial guess vh.

2.12.1 Weighted Jacobi

There are several relaxation methods which can be used on each grid. One of

the simplest schemes is the Jacobi method. For an equation Au = f , we split the

matrix A in the form

A = D − L− U,

where D is the diagonal of A, and −L and −U are the strictly lower and upper

triangular parts of A. Then the equation becomes

(D − L− U)u = f,

and then

Du = (L+ U)u+ f,

u = D−1(L+ U)u+D−1f.

Let the Jacobi iteration matrix be

RJ = D−1(L+ U),

the solution is obtained iteratively via

u(1) = RJu
(0) +D−1f.
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The weighted Jacobi is

u(1) = [(1− ω)I + ωRJ ]u(0) +D−1f,

where ω ∈ R.

2.12.2 1D Linear Interpolation

Interpolation is a technique to construct new data points from a set of known

data points. In multigrid, linear interpolation is used in step 5 of Algorithm 2.8 and

step 3 of Algorithm 2.9. We use Ih2h to denote the map from the coarse grid to the

fine grid.

Ih2h : Ω2h → Ωh.

Let vh and v2h be defined on Ωh and Ω2h. Then

Ih2hv
2h = vh,

where for 0 ≤ i ≤ N

2
− 1,

vh2i = v2h
i ,

vh2i+1 =
1

2
(v2h
i + v2h

i+1). (2.18)

So Ih2h can be written as

Ih2h =
1

2



1
2
1 1

2
1 . . .

1
2
1


(N
2
−1)×(N−1)

. (2.19)
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2.12.3 1D Cubic Spline Interpolation

In the multigrid Arnoldi method we will propose later, we use the spline in-

terpolation [11], because it gives more accurate and smooth approximations on the

fine grid.

Suppose we have n intervals and n+ 1 points, including the two endpoints of

the interval. The cubic spline interpolation is a piecewise continuous curve, passing

through all given points (xi, yi), i = 0, 1, · · · , n+ 1. On each interval [xi, xi+1], there

is a cubic polynomial

Si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di.

All these polynomials Si together are denoted S(x). The spline S(x) satisfies

Si(xi) = yi, Si(xi+1) = yi+1,

S ′i−1(xi) = S ′i(xi), S
′′
i−1 = S ′′i (xi).

2.12.4 1D Restriction

We use I2h
h to denote the restriction operator from the fine grid to the coarse

grid:

I2h
h : Ωh → Ω2h

I2h
h u

h = u2h,

where

u2h
i =

1

4
(uh2i−1 + 2uh2i + uh2i+1).

I2h
h can be written as

I2h
h =

1

4



1 2 1

1 2 1

· · ·

1 2 1


(n−1)×(n/2−1)

(2.20)
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2.12.5 Important Conditions

For 1D problems, if linear interpolation and restriction operators are defined

as (2.19) and (2.20), there is a relation:

Ih2h = 2(I2h
h )T . (2.21)

The coarse grid matrix A2h can be identified as

A2h = I2h
h A

hIh2h. (2.22)

If Ah is symmetric as in (2.4), then

A2h = I2h
h A

hIh2h =
1

(2h)2

(
−1 2 −1

)
,

which is the same as we do discretization on Ω2h. (2.22) is called the Galerkin

condition for multigrid.
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CHAPTER THREE

Multigrid Arnoldi Method

3.1 Motivation

Eigenvalue problems can be very difficult and matrices obtained from dis-

cretizations are very large in some situations. Even with the restarted Arnoldi

method, the convergence of all desired eigenvectors can be slow, and the storage and

computation are very expensive. Here is one example.

Example 3.1. We want to find the 10 smallest numerical eigenvalues and correspond-

ing eigenvectors of Laplacian operator on the unit square.

−∆u = λu

u = 0 on the boundary

Matrix A has the form (2.14). We use the restarted Arnoldi method (Algorithm

2.6). The Krylov subspace is of dimension 30, and 15 eigenvector approximations

are retained from previous Arnoldi iteration. We denote this by Arn(30,15).

In order to find more accurate eigenpairs, we need finer discretizations. But

finer discretizations lead to larger matrices and smaller eigenvalues, which make it

harder for the Arnoldi method.

Figure 3.1 and 3.2 illustrate the difficulty of having a large matrix. Both

figures show the residuals of 10 desired eigenvectors after each Arnoldi cycle. In

Figure 3.1 the matrix A is of size 65025× 65025, where there are 28 = 256 intervals

and hence 255 interior nodes on each direction. In Figure 3.2 the matrix A is of size

261121× 261121, where there are 29 = 512 intervals and 511 interior nodes on each

direction.

It takes 555 cycles to get all desired eigenvectors to converge to 1e-8, and 647

cycles to 1e-10 for the matrix of size 65025. From Table 3.1, we see that if the matrix
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size goes four times larger, the numbers of cycles needed becomes almost four times

more. Furthermore, one cycle on the fine grid is about four times more expensive

than one cycle on the coarse grid. The mvp in Table 3.1 shows the total number of

matrix-vector products for each matrix during the Arnoldi iteration.
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Figure 3.1: Restarted Arnoldi (30,15) for 2D problem with size 65025.

Table 3.1: Convergence for two matrices.

matrix size discretization size
tolorance 1e-8 tolerance 1e-10

cycles mvp cycles mvp

65025 1/256 555 8340 647 9720

261121 1/512 1283 19260 2469 37050
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Figure 3.2: Restarted Arnoldi (30,15) for 2D problem with size 261121.

For higher-dimensional problems, one difficulty is that there are many repeated

eigenvalues. Arnoldi methods may miss the repeated ones at first and then find

them when round off error occurs. We see some jump-ups in both two figures, which

happens when new eigenpairs are found. If we set up the tolerance larger, we may

miss some repeated eigenpair. Actually, in the table it shows 1283 cycles are needed

for the tolerance 1e-8 on the fine grid, but we do not have all 10 smallest eigenvalues

at this point. We need 2295 cycles to get the missed one. So sometimes certain

accuracy is needed in order to find missed ones. At the same time, as the size of

the matrix gets bigger, the computational cost and storage requirement increase

dramatically. This motivates us to find a new method to improve the restarted

Arnoldi method.

26



3.2 Multigrid Arnoldi Method

Figure 3.1 and 3.2 have different convergence rates but similar pattern, which

inspires us to use the information of eigenpairs from a coarser grid. We propose

the multigrid Arnoldi method by combining restarted Arnoldi methods and multi-

grid techniques. We present the method on two grids. First, approximations of

eigenvectors on a coarse grid are calculated. Then we interpolate them and get the

initial vectors on the fine grid. Lastly, we take the advantage of already known

approximations and improve them by using Arnoldi-E. The three steps are:

1. Run restarted Arnoldi on the coarse grid.

2. Use coarse grid eigenvectors to create approximate eigenvectors on the fine

grid (we use spline interpolation).

3. improve approximate eigenvectors on the fine grid with the Arnoldi-E method.

The starting vector in step 3 is taken by alternating through all desired eigen-

vectors. In Section 3.3, a more detailed algorithm will be given. Here we apply

the new method to the same problem in Example 3.1 and see if it can improve the

existing methods

Example 3.1 (continuing from p. 24). We apply the Two-grid Arnoldi to the 2D

problem in Example 3.1. Af on the fine grid is of size nf = 5112 = 261121 with 511

nodes on each direction. Ac on the coarse grid discretization size is half of the fine

grid, and we get the matrix of size nc = 2552 = 65025.

We run Arnoldi(30,15) with 555 cycles until 10 desired eigenvectors converge

to 1e-8 on the coarse grid. We use spline interpolation to get approximations on the

fine grid, and then we run Arnoldi-E(30,15). It turns out that only 10 cycles are

needed on the fine grid to make residuals of 10 desired eigenvectors be below 1e-8,

and 25 cycles for them to be below 1e-10.
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Figure 3.3 shows the convergence with Two-grid Arnoldi. The x-axis represents

the number of equivalent cycles, which is approximately the cost of a cycle on the

fine grid.

Equivalent cycle =
1

grid factor
× cg cycle + fg cycle.

With the concept of equivalent cycle, we are able to compare the Two-grid Arnoldi

method with the standard Arnoldi method.

In this example, the grid factor is considered to be 4. And if there are 555

cycles on the coarse grid and 10 cycles on the fine grid, the equavalent cycles are

1

4
× 555 + 10 ≈ 149. So there are approximately 149 equivalent cycles to get all

eigenvectors converge to 1e-8. Similarly there are
1

4
× 555 + 25 ≈ 164 equivalent

cycles to get them to 1e-10.

On Figure 3.3, the residuals of eigenvectors on the coarse grid are plotted for

the first
555

4
= 139 cycles, next we plot the residuals of eigenvectors on the fine grid,

which corresponds to 140-160 cycles.

Let us compare Two-grid Arnoldi with standard Arnoldi by plotting the con-

vergence of the two methods on the same figure.

We list the equivalent cycles for two methods in Table 3.2.

Table 3.2: Comparison between Two-grid Arnoldi and restarted Arnoldi.

Methods 1e-8 1e-10

Two-grid Arnoldi 149 164

Restarted Arnoldi 2295 2469

We list 2295 instead of 1283 cycles (as in Table 3.1) for standard Arnoldi with

tolerance 1e-8 to make sure all desired eigenpairs are found. Two-grid Arnoldi is as

about 15 times faster as the restarted Arnoldi in this example, which is a significant

improvement.
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Figure 3.3: Two-grid Arnoldi for 2D problem. Fine grid matrix size is 261121 and
coarse grid matrix size is 65025.

3.3 Implementation

We discuss details about the implementation of the Two-grid Arnoldi method.

Algorithm 3.1 Two-grid Arnoldi

1. Choose sizes of fine grid nf and coarse grid nc. Fix the dimension of sub-

space m, the number of eigenvectors retained from previous cycle k, and the

number of wanted eigenvectors numev. Fix the tolerance tol.

2. Do finite difference discretization and get Ac on the coarse grid, Af on the

fine grid.

3. Run restarted Arnoldi(m,k) with Ritz vectors (Algorithm 2.6) on the coarse

grid until residuals of desired numev vectors are below tol.

4. Interpolation. Let yci be approximate Ritz vectors on the coarse grid. Inter-

polate yci to the fine grid.
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Figure 3.4: Standard restarted Arnoldi compared to Two-grid Arnoldi. 2D problem.
Fine grid matrix size is 261121 and coarse grid matrix size is 65025.

5. Run restarted Arnoldi-E(m,k) with approximate eigenvectors (Algorithm

2.7) on the fine grid until residuals of desired numev vectors are below tol.

In step 5 of Algorithm 3.1, we restart Arnoldi-E for every cycle. The k vectors

y1, y2, · · · , yk are obtained from the previous cycle, and one of them is taken as the

starting vector to generate the Krylov subspace {yi, Ayi, A2yi, · · · , Am−kyi}. Then

other vectors are attached, so we will have the subspace.

{yi, Ayi, · · · , Am−kyi, y1, · · · , yi−1, yi+1, · · · , yk}

We discuss how to choose the starting vector in step 5. In 3.3.1 we compare

different ways to pick the starting vector, and in 3.3.2 we study the case when the

approximate eigenvectors happen to be complex.
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3.3.1 Starting Vector and the Size of Krylov Subspace

A natural way to choose the starting vector is alternating through all desired

vectors. It means that the first cycle has y1 as the starting vector, the second cycle

y2 is the starting vector, and so on. After ynumev is used as the starting vector, we

come back and restart with y1 again.

When the starting vectors for the fine grid are very accurate, alternating

through all vectors is very effective as we saw in Example 3.1. In the next ex-

ample, we discuss the situation that the starting vectors are not good enough and

many more cycles are needed. This may happen when the coarse grid is too coarse

or the eigenvectors have not converged to certain degree on the coarse grid.

Example 3.2. 1D Problem: −u′′ = λu. The matrix A has the form (2.12) of size

1023, and the coarse grid is 256. We run to accuracy of only 1e-3 for the smallest 10

eigenpairs on coarse grid. Then we do the following four tests and show the results.

1. Figure 3.5 shows the convergence when we alternate through all 15 vectors

with Arnoldi(30,15).

2. Figure 3.6 shows the convergence when we alternate through all 15 vectors

with Arnoldi(30,15). If the residual norm of one vector is below 1e-14, we will not

take it as the starting vector but move and check the next one.

3. Figure 3.7 shows the convergence when we alternate through the desired 10

vectors with Arnoldi(30,15). Converged to 1e-14 Ritz pairs are skipped.

4. Figure 3.8 shows the convergence when we fix the starting vectors until it

converges to some degree with Arnoldi(30,15).

5. Figure 3.9 shows the convergence when we alternate through all 15 vectors

with Arnoldi(40,15). Converged Ritz pairs are skipped.

The convergence slows down when some Ritz vectors get very accurate in

Figure 3.5. It is because if a Ritz vector has reached very high accuracy (about

1e-14), starting with this vector can not improve the approximations much. So in
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Figure 3.5: Alternate through 15 vectors with Arn(30,15).

the later experiments, if one vector has the residual norm below 1e-14, we skip this

vector and move to the next one. In this way we can work more on those vectors

which are not converged yet.

It takes 345 cycles in Figure 3.6, but only 266 cycles in Figure 3.7 for all desired

eigenvectors to converge below 1e-14. One reason is that the latter algorithm focuses

even more on the ten desired vectors. For example, the 10th vectors is taken as the

starting vector for 55 times in Figure 3.7, but only 31 times in Figure 3.6.

In Figure 3.8, we fix the starting vector until it converges to some degree. More

specially, we use the first vector as the starting vector until the residual converges

below 1e-6, then we restart Arnoldi-E with the second vector until it converges below

1e-6, and so on. After all desired vectors have the accuracy of 1e-6, we come back

to the first vector and work on it until it converges to 1e-7 and so on. It takes
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Figure 3.6: Alternate through 15 vectors with Arn(30,15). Skip the converged ones.

263 cycles to make residuals of the first 10 approximate eigenvectors to be less than

1e-14, almost the same as Figure 3.7.

In Figure 3.9 we apply Arn(40,15) instead of Arn(30,15) on the fine grid. We

alternate through 10 desired eigenvectors but skip converged ones. It takes 109

cycles with 2834 mvp’s on the fine grid, which is less than 266 cycles with 4256

mvp’s with Arn(30,15) in Figure 3.6.

We have the following conclusions of Example 3.5. If we emphasize more the

eigenvectors which are hard to converge, the overall convergence can be better. So

for the experiments we do later, we usually alternate through all desired eigenvectors.

When some eigenvectors are already very accurate (1e-14), we do not take them as

the starting vector.
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Figure 3.7: Alternate through 10 desired vectors with Arn(30,15). Skip the converged
ones.

3.3.2 Non-symmetric Matrices

Sometimes we need to deal with complex vectors, for instance when the matrix

is non-symmetric. In order to reduce the computational cost, we split a complex

vector into its real and imaginary parts. If we have y1 and y2 as a conjugate pair

with yi = x1 ± x2, we replace {y1, y2} by {x1, x2}.

Suppose we have {y1, y2, · · · , yk} from the previous cycle, and suppose y1 is

the starting vector, then for the next cycle, the subspace is

span{y1, y2, · · · , yk, Ay1, A
2y1, · · · , Am−ky1}. (3.1)

Suppose we can split complex vectors as

y1 = x1 + ix2, y2 = x1 − ix2, · · · , yi = xi + ixi+1, yi+1 = xi − ixi+1,
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Figure 3.8: Fix starting vector until it converges to some degree with Arn(30,15).

and we replace complex vectors by real vectors, then the subspace would be

span{x1, x2, · · · , xk−1, xk, Ax1, A
2x1, · · · , Am−kx1}. (3.2)

If the last vector yk is a complex vector but it is not a conjugate of other

vectors, k is decreased by 1 so that all complex vectors appear in pairs.

Splitting reduces the computation expense, because it keeps the subspace real

instead of complex. The next example shows that splitting complex vectors can

work as well as using complex vectors.

Example 3.3. We consider a more general 1D differential operator

−u′′ + βu′ = λu,where u(0) = u(1) = 0.
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Figure 3.9: Alternate through 10 desired vectors with Arn(40,15). Skip the converged
ones.

The matrix from finite discretization can be expressed as (2.11).

A =

(
−1− βh

2
2 −1 +

βh

2

)
.

Let β = 100, we want to find the 10 smallest eigenvalues and corresponding eigen-

vectors of A. The matrix size is 1023, and the coarse grid is 256. We run 36 cycles

of restarted Arnoldi(30,15) on the coarse grid until all 15 eigenvectors are converged

to 1e-8. Then we run Arnoldi-E(30,15) on the fine grid where we alternate through

desired eigenvectors.

Figure 3.10 shows the convergence of residuals when we restart Arnoldi-E

with original Ritz vectors (use subspace (3.1) for each cycle). Figure 3.11 shows the

convergence when we split complex Ritz vectors (use subspace (3.2) for each cycle).
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Figure 3.10: Restart with eigenvectors, 15 vectors have residuals below 1e-8 on the
coarse grid.

It takes 28 cycles for all vectors to converge to 1e-8, and 116 cycles to 1e-10

when we split complex vectors. It takes 28 cycles for all vectors to converge to 1e-8

and 107 cycles to 1e-10 when we do not split complex vectors.

There is one comment about the implemention with a non-symmetric matrix.

For the symmetric case, we only require all desired eigenvectors to converge to the

tolerance. But for non-symmetric case, experiments show that it may be better to

make all k vectors converge to the same degree on the coarse grid. Figure 3.12 shows

if only 10 eigenvectors converge to 1e-8 on the coarse grid. It takes 147 cycles on

the fine grid, which is more than Figure 3.11.

Therefore, for non-symmetric matrices, we run implicit Arnoldi(m,k) on the

coarse grid until all k eigenvectors converge to the tolarance, then we run Arnoldi-
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Figure 3.11: Restart with real and imaginary parts of eigenvectors, 15 vectors have
residuals below 1e-8 on the coarse grid.

E(m,k) on the fine grid, alternating through desired eigenvectors. In order to save

computational cost, we always split complex vectors into its real and imaginary parts

in our experiments. More study is needed of why this is effective.

3.4 Experiments and Comparisons

We test more examples with our new method in this section, and we also

compare the method with the shift-and-invert Arnoldi.

3.4.1 Test Different Coarse Grids

In the following example, the fine grid is fixed, but different coarse grids are

changed and tested.
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Figure 3.12: Restart with real and imaginary parts of eigenvectors. Only 10 vectors
have residuals below 1e-8 on the coarse grid.

Example 3.4. The symmetric matrix A has the form (2.12) of size 1023, and we want

to find 10 smallest numerical eigenvalues and corresponding eigenvectors.

We test different coarse grids of size 511, 255, 127, 63, or 31. Table 3.3 shows

the results. On both grids, the tolerance is 1e-8. The convergence is checked by

calculating the residual of the 10th Ritz vector. We alternate through all desired

eigenvectors on the fine grid. In Table 3.3, the equivalent matrix-vector multiplica-

tion is calculated as

equivalent mvp =
cg cycles ∗ 15 + 15

grid factor
+ fg cycles ∗ 31 + 9.

On the coarse grid, there are 15 matrix-vector multiplications for each cycle, except

that the first cycle needs 30 multiplications. This number is divided by the grid

factor to get the equivalent mvp on the fine grid. On the fine grid, there are 30
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matrix vector multiplications, plus one more for calculating the residual of the 10th

eigenvector for each cycle. The last 9 is from calculating the residual of the rest of

the eigenvectors as a final check.

Table 3.3: Experiments with different coarse grids.

coarse grid grid factor cg cycles fg cycles equivalent mvp’s time

31 32 2 170 5280 0.90

63 16 5 40 1255 0.28

127 8 11 10 342 0.15

255 4 25 10 417 0.22

511 2 63 10 799 0.46

The Two-grid Arnoldi works very well when the coarse grid is one quarter or

one eighth of the fine grid. But when the coarse grid goes too coarse, the interpola-

tion does not give very accurate approximations for the fine grid.

3.4.2 Comparisions with Shift-and-invert Arnoldi

We compare the Two-grid Arnoldi method with shift-and-invert Arnoldi where

multigrid is used as a linear solver. Both the symmetric case (Example 3.5) and non-

symmetric case (Example 3.6) are discussed.

Example 3.5. We deal with the same problem as in Example 3.4. A has the form

(2.12) of size 1023, and we want to find the 10 smallest numerical eigenvalues and

corresponding eigenvectors.

The shift-and-invert Arnoldi method is introduced in Section 2.2. If we are

interested in the smallest eigenvalues and corresponding eigenvectors, we just take
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τ = 0. The Krylov subspace is

Km(A−1, v) = Span{v, A−1v,A−2v, · · · , A−(m−1)v}

= Span{v1, v2, · · · , vm}. (3.3)

We solve Aw = v by using multigrid (Algorithm 2.9), so that w = A−1v, where one

Jacobi relaxation weighted by 2
3

is done on each grid.

The shift-and-invert Arnoldi with multigrid as a linear solver is basically an

inner-outer Krylov method. The unrestarted Arnoldi (Algorithm 2.2) is the outer

iteration. The size of the Krylov subspace m increases at each iteration when one

more vector is added in the subspace. Then at the mth iteration, there is the relation

BVn×m = Vn×mHm×m + vn+1e
T
m,where B = A−1.

We calculate the 10 largest eigenvalues each iteration since the eigenvalues are re-

ciprocals of those of the original problems.

Table 3.4 shows the number of equivalent matrix-vector products and total

time to run shift-and-invert Arnoldi. There are two rows in the table since we find

the solution of Aw = vm to the tolerance of 1e-6 and 1e-8 respectively. It takes about

12 V-cycles for multigrid to solve Aw = v to get the accuracy of 1e-6 and about 17

V-cycles to 1e-8. It works well even when the linear solver is not as accurate as the

tolerance. Some inner-outer Krylov method theory has an explanations for that [10].

The equivalent matrix-vector products is the sum of equivalent products for

solving equations with multigrid, the mvp needed for checking the residual of 10th

vector each cycle, and the mvp for the final check for all other vectors.

Table 3.4: Results of shift-and-invert Arnoldi.

m rtol for lin. eq’s equivalent mvp’s time

29 1e-6 1139 0.38

29 1e-8 1537 0.48
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Let us compare the mvp and time with the two methods. From Table 3.3 and

Table 3.4, we see that Two-grid Arnoldi is fairly competitive. It runs fast when the

coarse grid is not too coarse, and it can be even faster sometimes. The corresponding

numbers of equivalent matrix-vector products are also less.

The next example compares Two-grid Arnoldi with shift-and-invert Arnoldi for

non-symmetric case. We will see problems that shift-and-invert Arnoldi has trouble

with, but Two-grid Arnoldi can still work well.

Example 3.6. Consider the 1D differential operator

−u′′ + βu′ = λu,where u(0) = u(1) = 0.

The matrix can be expressed as

A =

(
−1− βh

2
2 −1 +

βh

2

)
of size 1023. We want to find the 10 smallest eigenvalues and corresponding eigen-

vectors of A.

A is not symmetric. Standard multigrid methods does not work very well when

the coefficient β gets bigger. We fix the maximum V-cycle number to be 100, which

means there will be at most 100 V-cycles to solve the linear equation Aw = v and get

A−1v. When β = 17 or less, the linear equations can be solved to the accuracy 1e-8

at each iteration. When β = 18, the linear equations can not be solved to even 1e-4

each time. Then not all eigenvectors converge to 1e-8. When β = 22 or larger, the

linear equations can not get good solutions in 100 V-cycles, shift-and-invert Arnoldi

fails. Table 3.5 gives more details.

However, Two-grid Arnoldi can work very well for a bigger β. Figure 3.9 and

3.10 showed the convergence when β = 100 for the same problem. Let the coarse grid

be 255, and we change the value of β. We split complex Ritz vectors into real and

imaginary parts. The tolerance is 1e-8 on both grids. We run implicit Arnoldi(m,k)
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on the coarse grid until all k eigenvectors converge to the tolarance, then we run

Arnoldi-E(m,k) on the fine grid, alternating through desired eigenvectors. Results

are listed in Table 3.6.

Table 3.5: Results of shift-and-invert Arnoldi.

β m rtol for lin eq’s eqivalent mvp’s time

16 26 1e-8 5562 1.51

17 26 1e-8 7793 1.88

18-21 not all eigenvectors converge to 1e-8

22 diverge

Since k is decreased by 1 if the last Ritz vector is complex, we use matlab to

count the matrix vector multiplications on the coarse grid, and then calculate

equivalent mvp =
cg mvp

grid factor
+ fg cycles ∗ 31 + 9.

Table 3.6: Results of Two-grid Arnoldi.

β coarse grid cg cycles fg cycles cg mvp equivalent mvp’s time

100 255 36 28 571 1020 0.45

150 255 39 81 616 2674 0.76

200 255 62 80 969 2731 0.86

Example 3.5 shows Two-grid Arnoldi can work as well as shift-and-invert

Arnoldi with multigrid as a linear solver for the symmetric case. Two-grid Arnoldi

is more useful for non-symmetric matrices as we saw in Example 3.6.
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3.4.3 Helmholtz Problem

We next consider a problem with an indefinite matrix. Standard multigrid

methods do not work for this matrix, but Two-grid Arnoldi does work.

Example 3.7. We consider a one-dimensional Helmholtz problem −u′′ − 40, 000u =

λu. For simplicity, we use zero boundary conditions. The fine grid matrix is of

size nf = nfg = 1023 and it has 63 negative eigenvalues. Our goal is to compute

the 10 eigenvalues closest to the origin, so this is an interior eigenvalue problem.

Therefore we switch to harmonic restarted Arnoldi [19] in the first phase of Two-grid

Arnoldi. For the second phase, we use harmonic Arnoldi-E [20]. These methods use

harmonic Rayleigh-Ritz [17] [23] which makes convergence more reliable for interior

eigenvalues. Figure 3.13 has harmonic Arnoldi compared to two tests of Two-grid

Arnoldi. Figure 3.14 has a close-up of Two-grid Arnoldi with nc = ncg = 511.

Harmonic Arnoldi uses 1148 cycles for 10 eigenvalues to converge to residual norms

below 10−8. However, it misses one of the 10 smallest eigenvalues in magnitude (non-

Harmonic takes 3058 cycles and misses two of the 10 smallest). Harmonic Two-grid

Arnoldi needs 124 fine-grid-equivalent cycles with nc = 511 and 217 for nc = 255.

Both find all of the 10 smallest eigenvalues. As mentioned earlier, Two-grid Arnoldi

can do much of its work on the coarse grid where the problem is easier. This makes

it more reliable.

We also tried a larger fine grid matrix with nf = 2047, and the harmonic

Two-grid approach with nc = 511 improves by a factor of almost 100 (59 fine-grid-

equivalent cycles compared to 5636 for harmonic Arnoldi).
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Figure 3.13: Standard Arnoldi compared to Two-grid Arnoldi for a 1-D simple Hel-
holtz matrix. Fine grid matrix size is nfg = 1023 and coarse grid matrix sizes are
ncg = 511 and ncg = 255.
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Figure 3.14: Two-grid Arnoldi for a 1-D simple Helholtz matrix. Fine grid matrix
size is nfg = 1023 and coarse grid matrix size is ncg = 511.
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CHAPTER FOUR

Eigenvalue Analysis for Symmetric Case

We notice in Example 3.2 that when the matrix is symmetric, the approxima-

tions from the coarse grid can be very good initial guesses for the fine grid, especially

when the coarse grid is not too coarse. The main goal in this chapter is to explore

the reasons.

We study the symmetric problem −u′′ = λu, and let the coarse grid size be

exactly one half as the fine grid. Let n be the number of subintervals and h =
1

n
be

the step length on the fine grid, and then 2h is the step length on the coarse grid.

We use the same notation introduced in Section 2.11. We prove that after the linear

interpolation Ih2h, the Ritz value of Ih2hw
2h has the accuracy of O(h), while w2h is an

exact eigenvector of A2h. Section 4.1 studies eigenvalues on two grids, and section

4.2 discusses eigenvectors.

4.1 Analysis of Eigenvalues

Proposition 4.1 gives the relation of eigenvalues on the coarse and the fine

grids.

Proposition 4.1. Let Ah =
1

h2

[
−1 2 −1

]
and A2h =

1

(2h)2

[
−1 2 −1

]
be the

matrices on the fine grid and the coarse grid respectively. Let {λhk}k=1,··· ,n and

{λ2h
k }k=1,··· ,n

2
be corresponding eigenvalues. For the first n

2
eigenvalues, λhk = λ2h

k +

O(h2) when h is very small.

Proof. According to (2.16), the eigenvalues of Ah are

λhk =
4

h2
sin2(

kπ

2n
),
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and the eigenvalues of A2h are

λ2h
k =

4

(2h)2
sin2(

kπ

2n
2

) =
4

(2h)2
sin2(

kπ

n
).

Since

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · = x+O(x3),

when x is very small. So when n is very big, and h =
1

n
is very small,

λhk =
4

h2
sin2(

kπ

2n
) =

4

h2
sin2(

kπh

2
) =

4

h2
(
kπh

2
+O((

kπh

2
)3))2

=
4

h2
(
kπh

2
+O(h3))2 =

4

h2
(
k2π2h2

4
+O(h4)) = k2π2 +O(h2),

and

λ2h
k =

4

(2h)2
sin2(

kπ

n
) =

4

(2h)2
sin2(kπh) =

4

(2h)2
(kπh+O(h3))2

=
4

4h2
(k2π2h2 +O(h4)) = k2π2 +O(h2).

So

λhk = λ2h
k +O(h2).

Proposition 4.1 implies that if we find an eigenvalue on the coarse grid with

the accuracy O(h2), then it is also an approximate eigenvalue on the fine grid with

the accuracy O(h2).

4.2 Analysis of Eigenvectors

We are also interested in how accurate an approximate eigenvector from the

coarse grid could be. Since the procedure involves interpolations, the norm of the

linear interpolation operator is discussed. Proposition 4.2 and 4.3 discuss the norm

of the interpolation operator Ih2h. Then we use these results and relations from

multigrid (Section 2.11.5) to prove Theorem 4.4.
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Proposition 4.2. Let

P = Ih2h =
1

2



1
2
1 1

2
1 . . .

1
2
1


(n−1)×(n

2
−1)

be the linear interpolation matrix, then

‖Ih2h‖2 = ‖P‖2 = 2 +O(h),where h =
1

n
.

Proof. We use P to represent Ih2h for convenience. Let

u =

[
x1, x2, · · · , xn

2
−1

]T
∈ R

n
2
−1, then

Pu =

[
1

2
x1, x1,

1

2
x1 +

1

2
x2, x2,

1

2
x2 +

1

x
x3, x3, · · · ,

1

2
xn

2
−2 +

1

2
xn

2
−1, xn

2
−1,

1

2
xn

2
−1

]T
∈ Rn−1.

We want to find the norm of P , first we have

‖Pu‖2 =
1

4
x2

1 + x2
1 +

1

4
(x1 + x2)2 + x2

2 +
1

4
(x2 + x3)2 + · · ·

+
1

4
(xn

2
−2 + xn

2
−1)2 + x2

n
2
−1 +

1

4
x2

n
2
−1

=
1

4
x2

1 + x2
1 +

1

4
x2

1 +
1

2
x1x2 +

1

4
x2

2 + x2
2 +

1

4
x2

2 +
1

2
x2x3 +

1

4
x2

3 + · · ·

+
1

4
x2

n
2
−2 +

1

2
xn

2
−2xn

2
−1 +

1

4
x2

n
2
−1 + x2

n
2
−1 +

1

4
x2

n
2
−1

=
3

2
(x2

1 + x2
2 + · · ·+ x2

n
2
−1) +

1

2
(x1x2 + x2x3 + · · ·+ xn

2
−2xn

2
−1)

=
3

2
‖u‖2 +

1

2
(x1x2 + x2x3 + · · ·+ xn

2
−2xn

2
−1) (4.1)

≤ 3

2
‖u‖2 +

1

4
(x2

1 + x2
2 + x2

2 + x2
3 + · · ·+ x2

n
2
−2 + x2

n
2
−1)

≤ 3

2
‖u‖2 +

1

4
(x2

1 + x2
1 + x2

2 + x2
2 + x2

3 + · · ·+ x2
n
2
−2 + x2

n
2
−1 + x2

n
2
−1)

≤ 3

2
‖u‖2 +

1

2
(x2

1 + x2
2 + · · ·+ x2

n
2
−1) =

3

2
‖u‖2 +

1

2
‖u‖2

= 2‖u‖2.
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So

‖Pu‖2 ≤ 2‖u‖2,

‖Pu‖ ≤
√

2‖u‖ for all u ∈ R
n
2
−1.

Therefore,

‖P‖ = max
‖Pu‖
‖u‖

≤
√

2. (4.2)

On the other hand, let us pick a particular vector

x0 =

[
1 1 1 · · · 1

]T
∈ R

n
2
−1,

then

Px0 =

[
1
2

1 1 · · · 1 1
2

]T
∈ Rn−1.

We can calculate that

‖Px0‖2

‖x0‖2
=

1
4

+ (n− 3) + 1
4

n
2
− 1

=
n− 5

2
n
2
− 1

=
2n− 5

n− 2

= 2− 1

n− 2
≥ 2− 1

n
= 2− h.

Since ‖P‖ ≥ ‖Px0‖
‖x0‖

, so

‖P‖2 ≥ ‖Px0‖2

‖x0‖2
≥ 2− h. (4.3)

Combine (4.2) and (4.3),

2− h ≤ ‖P‖2 ≤ 2.

We can say that

‖P‖2 = 2 +O(h),

which proves the proposition.
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From (2.15) the eigenvectors of matrix A corresponding to n subintervals are

ωhk,j = sin
(jkπ
n

)
, 1 ≤ k ≤ n− 1, 1 ≤ j ≤ n− 1.

So let m = n
2
, eigenvectors of A2h are

ω2h
k,j = sin

(jkπ
m

)
, 1 ≤ k ≤ m− 1, 1 ≤ j ≤ m− 1.

Proposition 4.3 finds the relation between the norm of an eigenvector ω2h
k and

the vector Pω2h
k after linear interpolation.

Proposition 4.3. Let P = Ih2h as defined in the above proposition, where h = 1
n
.

Let m =
n

2
and w =

[
sin
(kπ
m

)
sin
(2kπ

m

)
sin
(3kπ

m

)
· · · sin

((m− 1)kπ

m

)]T
∈

R
n
2
−1. Then Pw ∈ Rn−1, and

‖Ih2hw‖2 = ‖Pw‖2 = 2‖w‖2 +O(h).

Proof. Substitute w in equation (4.1) we get

‖Pw‖2 =
3

2
‖w‖2 +

1

2

(
sin
(kπ
m

)
sin
(2kπ

m

)
+ sin

(2kπ

m

)
sin
(3kπ

m

)
+ · · ·

+ sin
((m− 2)kπ

m

)
sin
((m− 1)kπ

m

))
. (4.4)

By Taylor expansion,

sin(x+ h) = sinx+ h cosx+O(h2),

and since
1

m
=

2

n
= 2h,

sin
((j + 1)kπ

m

)
= sin

(jkπ
m

+
kπ

m

)
= sin

(jkπ
m

)
+O(

kπ

m
) = sin

(jkπ
m

)
+O(h).

Then

sin
(jkπ
m

)
sin
((j + 1)kπ

m

)
= sin

(jkπ
m

)(
sin
(jkπ
m

)
+O(h)

)
= sin2

(jkπ
m

)
+O(h).
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Then (4.4) becomes

‖Pw‖2 =
3

2
‖w‖2 +

1

2

(
sin2

(kπ
m

)
+ sin2

(2kπ

m

)
+ · · ·+ sin2

((m− 2)kπ

m

)
+O(h)

)
=

3

2
‖w‖2 +

1

2

(
‖w‖2 − sin2

((m− 1)kπ

m

)
+O(h)

)
= 2‖w‖2 − 1

2
sin2

((m− 1)kπ

m

)
+O(h). (4.5)

Again use Taylor expansion,

sin
((m− 1)kπ

m

)
= sin

(
kπ − kπ

m
) = sin(kπ) +O(h) = O(h).

Finally, we have

‖Pw‖2 = 2‖w‖2 +O(h).

There are two important properties for multigrid method introduced in Section

2.11.5, Ih2h = 2(I2h
h )T (when the coarse grid is one half as the fine grid) and A2h =

I2h
h A

hIh2h. They are very useful in the following analysis. Theorem 4.4 shows the

Rayleigh quotient of an approximate eigenvector from the coarse grid is of accuracy

O(h) to the exact eigenvalue.

Theorem 4.4. Let Ah =
1

h2

[
−1 2 −1

]
and A2h =

1

(2h)2

[
−1 2 −1

]
. The inter-

polation Ih2h and restriction I2h
h are defined as (2.19) and (2.20). Suppose

A2hw2h = λ2hw2h,

and uh = Ih2hw
2h.

Then the Rayleigh quotient of uh would be

ρh =
(uh)TAhuh

(uh)Tuh
= λh +O(h).
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Proof. The numerator of ρh is

(uh)TAhuh = (Ih2hw
2h)TAh(Ih2hw

2h)

= (w2h)T (Ih2h)
TAhIh2hw

2h.

Apply (2.21) Ih2h = 2(I2h
h )T and (2.22) A2h = I2h

h A
hIh2h,

(uh)TAhuh = (w2h)T2(I2h
h )AhIh2hw

2h = (w2h)T2A2hw2h

= 2(w2h)TA2hw2h = 2(w2h)Tλ2hw2h

= 2λ2h‖w2h‖2. (4.6)

On the other hand, the denominator of ρh is

(uh)Tuh = (Ih2hw
2h)T (Ih2hw

2h)

= (Pw)T (Pw) (use the notation in Proposition (4.3))

= ‖Pw‖2 = ‖w‖2 +O(h) (use Proposition (4.3))

= 2‖w2h‖2 +O(h).

So the Rayleigh quotient is

ρh =
(uh)TAhuh

(uh)Tuh
=

2λ2h‖w‖2

2‖w‖2 +O(h)
=

λ2h

1 +O(h)
= (1 +O(h))λ2h. (4.7)

From Proposition (4.1)

λh = λ2h +O(h2).

Then (4.7) becomes

ρh = (1 +O(h))(λh +O(h2))

= (1 +O(h))λh +O(h2)

= λh +O(h).
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CHAPTER FIVE

Near Krylov Property Theory

In this chapter, we study how having subspaces that are nearly Krylov is key to

the success of our methods. For a different look at near Krylov for linear equations,

see [8] [31].

5.1 Observation

With Restarted Arnoldi on the coarse grid, it generally is the case that the

eigenvectors converge together. One does not wait for other ones to finish converging

before it starts to converge. We observe that the same thing can happen on the fine

grid with all eigenvectors converging together. This phenomena gives us a hint

that the approximations from the coarse grid may have some property that random

vectors do not have. In order to illustrate this point, we conduct the following

comparison.

Example 5.1. We are looking for the 10 smallest eigenvalues and corresponding

eigenvectors of −u′′ = λu. The matrix A has the form as (2.12) with size 1023.

We test two sets of starting vectors, one is the set we get from a coarser grid but

solved to low accuracy, and the other is from perturbing exact eigenvectors.

(1) Two-grid Arnoldi. The coarse grid is 256. After 18 cycles, we get the

accuracy of 1e-3 for the smallest 10 eigenpairs on the coarse grid. Then we

move to the fine grid of size 1023 and use Arnoldi-E.

(2) Arnoldi-E with perturbed eigenvectors. We find the 10 exact eigenvectors

of the matrix A and denote them together as a 1023 × 10 matrix, then we

perturb them by adding a random matrix with norm 1e-5. Then we apply

Arnoldi-E to these perturbed vectors.
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Now we have two different sets of starting vectors. If we fix the starting vector to

be y1 to generate the Krylov subspace for Arnoldi-E, and we run 10 cycles for each

set, we get Figure 5.1 and 5.2. If we alternate 10 vectors as starting vectors for

Arnoldi-E, we get Figure 5.3 and 5.4 with the two sets.

1 2 3 4 5 6 7 8 9 10
10
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10
−6

10
−5

10
−4
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re
si

du
al

 n
or

m
s

Figure 5.1: Arnoldi-E, using approximations from the coarse grid. Starting vector is
fixed as y1.

Figure 5.1 and 5.3 are almost the same, and this means that no matter which

vector is the starting vector, all the vectors converge together. Figure 5.2 and 5.4

show that a vector can converge only when it is the starting vector for Arnoldi-E.

We are interested in this behavior of eigenvectors converging together, since

this property can make the convergence of all desired eigenvectors fast.
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Figure 5.2: Arnoldi-E, using perturbed eigenvectors. Starting vector is fixed as y1.

5.2 Parallel Property and Krylov Decomposition.

We study the relation between the parallel residuals property and the Krylov

decomposition, and then we get the conclusion that the parallel property is a nec-

essary and sufficient condition for having a Krylov decomposition. Suppose there is

a Krylov decomposition

AUn×m = Un×mBm×m + um+1b
T
m+1, (5.1)

where (Un×m, um+1) is a linear independent basis. Suppose (θi, gi), i = 1, · · · , k are

eigenpairs of Bm×m, i.e

AUn×mgi = Un×mBm×mgi + um+1b
T
m+1gi,

Ayi = θiyi + (bTm+1gi)u,

Ayi = θiyi + aiu,where ai = bTm+1gi. (5.2)
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Figure 5.3: Arnoldi-E, using approximations from the coarse grid. Alternate starting
vectors.

Equation (5.2) shows the parallel property of all residuals, and it comes from the

Krylov decomposition (5.1).

On the other side, The parallel property of all residuals (5.2) implies there is

a Krylov decomposition (5.1).

AY = YΘ + uaT ,

where Y = [y1, y2, · · · , yk], Θ is a diagonal matrix with corresponding θi on the

diagonal, and a = [a1, a2, · · · , ak]T .

Theorem 2.6 indicates that any Krylov decomposition corresponds to a Krylov

subspace. Hence from the above analysis, we can say the parallel property can also

determine a Krylov subspace.

56



1 2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

cycles

re
si

du
al

 n
or

m
s

Figure 5.4: Arnoldi-E, using perturbed eigenvectors. Alternate starting vectors.

5.3 Parallel Property Helps Convergence

Theorem 2.3 explains why all eigenvectors can converge at the same time

for restarted Arnoldi methods (Algorithm 2.6 and 2.7). The key is the parallel

property. We can extend it to a more general setting by using the concept of Krylov

decomposition We can prove it by induction. Suppose we have (5.2), so we have

Ayi ∈ span{yi, u}.

Then A2yi ∈ span{Ayi, Au} ⊂ span{yi, u, Au}.

Now we use induction. Suppose

Ajyi ∈ span{yi, u, Au, · · · , Aj−1u},

then Aj+1yi ∈ span{Ayi, Au,A2u, · · · , Aju}

⊂ span{yi, u, Au,A2u, · · · , Aju}.
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So for any i = 1, · · · , k,

K = span{y1, y2, · · · , yk, Ayi, A2yi, · · · , Am−kyi}

= span{y1, y2, · · · , yk, u, Au, · · · , Am−k−1u}. (5.3)

The above says that no matter which vector yi is used to generate the subspace,

it will be equivalent to (5.3). The reason that all eigenvectors can be improved is

that

Span{yi, Ayi, A2yi, · · · , Am−kyi} ⊂ K. (5.4)

5.4 Near Parallel Property and Near Krylov Property

We have discussed that the parallel property helps convergence of Implicited

Restarted Arnoldi in last section. In our new method the parallel property is not

satisfied completely on the fine grid, since there is a loss of accuracy when the vectors

are moved from a coarser grid to a fine grid. But the idea motivates us to propose

the following near parallel property and near Krylov decomposition.

Definition 5.2. Suppose there is a vector r such that

Ayi = θiyi + air + fi, (5.5)

with fi to be small, we say the residuals of yi are nearly parallel.

Let Y = [y1, y2, · · · , yk], and Θ be a diagonal matrix with corresponding θi on

the diagonal. We can write the near parallel property in the matrix form:

AY = YΘ + raT + F. (5.6)

As shown in last section, the parallel property is induced from the Krylov

decomposition, so we also want to define near Krylov decomposition and see its re-

lation with the near parallel property. For further purpose, we give the most general

definition of Krylov decomposition, as well as some special Krylov decompositions

which satisfy more conditions.
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Definition 5.3. For the following three conditions:

(1)

AUm = UmBm + um+1b
T
m+1 +R, (5.7)

where the columns of (Um, um+1) are linear independent;

(2)

UT
mum+1 = 0 and UT

mR = 0, (5.8)

(3) Um is orthonormal,

we say there is a general near Krylov decomposition if condition (1) is satisfied. The

columns of (Um, um+1) are called the basis for the general near Krylov decomposition.

R is called the Krylov residual. If condition (3) is also satisfied, which means the

basis is orthonormal, we say the decomposition is orthonormal.

Sometimes we may not have condition (3) satisfied, but if condition (2) holds,

we can get useful results from the near Krylov decomposition. We may not have an

orthonormal basis in (5.7), but the following lemma shows that we can obtain the

same Ritz values as if we had an orthonormal basis, if condition (2) holds.

Lemma 5.4. Let AU = UB + ubT + R be a general near Krylov decomposition, the

columns of

[
U u

]
are linearly independent. Suppose (5.8) is satisfied. Assume Q

has orthonormal columns, and columns of Q and U span the same subspace. Then

B is similar to QTAQ.

Proof. Let U = QR1 be the QR decomposition of U , then

AQR1 = QR1B + ubT +R,

AQ = QR1BR
−1
1 + ubTR−1

1 +RR−1
1 . (5.9)
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Since UTu = 0 and UTR = 0,

QT (ubTR−1
1 ) = (UR−1

1 )T (ubTR−1
1 ) = (R−1

1 )T (UTu)bTR−1
1 = 0,

QT (RR−1
1 ) = (UR−1

1 )T (RR−1
1 ) = (R−1

1 )T (UTR)R−1
1 = 0.

Using the above relations and multiplying QT on both sides of (5.9),

QTAQ = QTQR1BR
−1
1 +QTubTR−1

1 +QTRR−1
1 = R1BR

−1
1 .

This means that B is similar to QTAQ.

So if (5.8) is satisfied, even if U is not an orthogonal matrix, we can still get

the same Ritz values and hence Ritz vectors from the near Krylov decomposition

AU = UB + ubT +R.

We are interested in the relation between the near parallel property and the

near Krylov property. It is obvious that (5.6) is a special case of (5.7), which means

that near parallel property of residuals of k Ritz vectors implies a near Krylov

decomposition of dimension k with independent basis. Theorem 5.5 shows that near

Krylov decomposition implies the near parallel property.

Theorem 5.5. Let AUm = UmB + um+1b
T + R, where columns of (Um, um+1) are

linearly independent. Suppose (θi, gi), i = 1, · · · , k are eigenpairs of B, denote it by

BG = GΘ. Let yi = Ugi and Y = [y1, · · · , yk], then AYk = YkΘ + uaT + F with

‖F‖ ≤ ‖R‖‖G‖. If A is symmetric, then ‖F‖ ≤ ‖R‖.

Proof.

AU = UB + ubT +R and BG = GΘ,

AUG = UBG+ ubTG+RG,

AY = UGΘ + ubTG+RG.
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Let aT = uTG and F = RG, then

AY = YΘ + uaT + F,

and ‖F‖ = ‖RG‖ ≤ ‖R‖‖G‖.

If A is symmetric, and G has orthonormal columns, then ‖G‖ = 1 and ‖F‖ ≤

‖R‖.

In some cases we may want U to have orthonormal columns in (5.7), and in

fact any near Krylov decomposition, including (5.6) can have a near Krylov decom-

position with orthonormal basis.

Theorem 5.6. Suppose there is a near Krylov decomposition

AU = UB + ubT +R,

where columns of (U, u) are linearly independent. Let U = QR1 be the QR decom-

position of U , then there is a near Krylov decomposition

AQ = QW + qwT + P,

where the columns of [Q, q] are orthonormal and ‖P‖ ≤ ‖R‖‖R−1
1 ‖.

Proof.

AU = UB + ubT +R,

AQR1 = QR1B + ubT +R,

AQ = QR1BR
−1
1 + ubTR−1

1 +RR−1
1 .

Orthogonalize u against columns of Q and get u = q +Qg where QT q = 0. Then

AQ = QR1BR
−1
1 + (q +Qg)bTR−1

1 +RR−1
1 ,

AQ = QR1BR
−1
1 + qbTR−1

1 +QgbTR−1
1 +RR−1

1 ,

AQ = Q(R1BR
−1
1 + gbTR−1

1 ) + qbTR−1
1 +RR−1

1 .
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Let W = R1BR
−1
1 + gbTR−1

1 , wT = bTR−1
1 and P = RR−1

1 , we have

AQ = QW + uwT + P,

and ‖P‖ = ‖RR−1
1 ‖ ≤ ‖P‖‖R−1

1 ‖.

5.5 Maintaining Near Krylov and Near Parallel Property

In Section 5.2, we see that because of the parallel property of all residuals, a

Krylov decomposition can be constructed at the end of each restarted Arnoldi cycle.

Then the residuals of updated eigenvectors are parallel to each other again, and the

algorithm continues. In our new method, we start with a near Krylov subspace S

which contains approximations of eigenvectors, and generate a Krylov subspace K.

Let W to be the overall subspace, then we have

W = S +K,

where S = span{y1, y2, · · · , yk},

and K = span{yj, Ayj, · · · , Am−kyj} for some j. (5.10)

Our goal in this section is to explore how the near Krylov decomposition of W is

constructed, and when the near parallel property of residuals of yi’s in S can be

maintained.

Theorem 5.7 proves that the Krylov residual of the whole subspaceW will not

be greater than the Krylov residual of S, if a certain basis is used. Then Theorem

5.8 shows that the Krylov residual of S will not increase during one cycle. Finally,

Corollary 5.9 indicates that if the matrix is symmetric, the near parallel property of

residuals will be maintained. Let us conduct a similar analysis for the Arnoldi-E in

the new method. At each cycle of Arnoldi-E, there is a certain index j such that

W = S +K

= span{y1, y2, · · · , yk, Ayj, A2yj, · · ·Am−kyj}

= span{y1, y2, · · · , yk, rj, Arj, · · ·Am−k−1rj} for fixed j, (5.11)
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where rj = Ayj − θjyj. Let

u =
rj
‖rj‖

,

then u can be considered as the starting vector of K. Although u is not parallel to

residuals of all other Ritz eigenvectors, there could be a near Krylov decomposition

of S

AUn×k = Un×kB + ubT +Rn×k, (5.12)

(5.11) and (5.12) play important role in the analysis of Arnoldi-E in the new method.

In the following theorem, we use the general definition of near Krylov decom-

position, which means the basis does not have to be orthonormal.

Theorem 5.7. (The Krylov residual of the whole subspace will not be greater than the

Krylov residual of its subspace spanned by approximate eigenvectors) Suppose there

is a near Krylov decomposition of a dimension k subspace:

AUn×k = Un×kB + ubT +Rn×k, (5.13)

where the columns of (Un×k, u) are independent, and[
Un×k, u

]T
R = 0. (5.14)

Suppose there is an Arnoldi decomposition of a dimension p subspace:

AVn×p = Vn×pH + hvp+1e
T
p , (5.15)

and u can be written as

u = V d. (5.16)

Assume columns of (U, V ) are linear independent, then there is a near Krylov de-

composition of dimension p+ k

AÛn×(p+k) = Ûn×(p+k)B̂ + ûb̂T + R̂n×(p+k), (5.17)
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where

Ûn×(p+k) = [V, U ], (5.18)

whose columns are independent. Furthermore,

ÛT
n×(p+k)û = 0 and ÛT

n×(p+k)R̂n×(p+k) = 0, (5.19)

‖R̂‖ ≤ ‖R‖. (5.20)

Proof. Combine (5.13) and (5.15)

A

[
V, U

]
=

[
V, U

]H
B

+

[
hvp+1e

T
p 0

]
+

[
0 ubT

]
+

[
0 R

]
.

Since u = V d from (5.16),

A

[
V, U

]
=

[
V, U

]H
B

+

[
hvp+1e

T
p 0

]
+

[
0 V dbT

]
+

[
0 R

]

=

[
V, U

]H dbT

B

+

[
hvp+1e

T
p 0

]
+

[
0 R

]
.

Let

vp+1 = v0 +

[
V U

]
c,

and R = R0 +

[
V U

]
K,

such that v0 and columns of R0 are orthogonal to the columns of V and U .

UTv0 = 0, V Tv0 = 0, (5.21)

UTR0 = 0, V TR0 = 0. (5.22)

Then

A

[
V, U

]
=

[
V, U

]H dbT

B

+

[
h(v0 +

[
V U

]
c)eTp 0

]
+

[
0 (R0 +

[
V U

]
K)

]
,

A

[
V, U

]
=

[
V, U

]
(

H dbT

B

+ hceTp +K) +

[
hv0e

T
p 0

]
+

[
0 R0

]
.
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Let Ûn×(p+k) =

[
V U

]
, B̂n×(p + k) =

H dbT

B

 + hceT + K, û = hv0, b̂ = ep,

R̂ =

[
0 R0

]
, then we have

AÛn×(p+k) = Ûn×(p+k)B̂ + ûb̂T + R̂n×(p+k).

From the construction of Û , û and R̂. Use (5.21) and (5.22), we have

ÛT û =

[
V U

]T
hv0 = 0,

ÛT R̂ =

[
V U

]T [
0 R0

]
= 0.

And

‖R̂‖ = ‖
[
0 R0

]
‖ = ‖R0‖ ≤ ‖R‖. (5.23)

From the proof of Theorem 5.7, (5.23) tells us that in order to make ‖R̂‖ to

be small, we need ‖R0‖ to be small. Since R = R0 +

[
V U

]
K, this means if the

Krylov residual R of the near Krylov subspace portion S can be expanded in terms

of the vectors of the Krylov subspace portion K as

[
V U

]
K, then the Krylov

residual of the overall subspace W can be reduced. Increasing the dimension of the

Krylov subspace portion K may be one way to do it.

Theorem 5.8. (Krylov residual of eigenvector subspace would not increase during one

cycle) Assume there is a near Krylov decomposition

AUn×k = Un×kB + ubT +Rn×k

corresponding to the basis {y1, y2, · · · , yk}, and

[
Un×k, u

]T
R = 0. Suppose the sub-

space we generate for Arnoldi-E procedure is

span{y1, y2, · · · , yk, u, Au,A2u, · · · , Am−k−1u},
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and the new k Ritz vectors {ynew1 , ynew2 , · · · , ynewk } are obtained. There is a near

Krylov decomposition

AUnew
n×k = Unew

n×kB
new + unew(bnew)T +Rnew

n×k,

where the columns of Unew
n×k span the same subspace as {ynew1 , ynew2 , · · · , ynewk }, and

‖Rnew‖ ≤ ‖R‖.

Proof. For the subspace {y1, y2, · · · , yk}, there is a near Krylov decomposition from

the assumption

AUn×k = Un×kB + ubT +Rn×k,

For the subspace span{u,Au,A2u, · · · , Am−k−1u}, there is an Arnoldi decomposition

AVn×(m−k) = Vn×(m−k)H + veTn×(m−k).

And u = V e1 since it is the starting vector of the Krylov subspace portion. According

to Theorem 5.7, there is a near Krylov decomposion

AÛn×m = Ûn×mB̂ + ûb̂T + R̂n×m, (5.24)

where Ûn×m =

[
V U

]
, (5.25)

and we also have

‖R̂n×m‖ ≤ ‖R‖, (5.26)

ÛT û = 0, ÛT R̂ = 0. (5.27)

According Lemma 5.4, B̂ is similar to the matrix QTAQ where columns of Q are

orthonormal basis of

span{y1, y2, · · · , yk, u, Au,A2u, · · · , Am−k−1u}.

Hence eigenvalues of B are Ritz values corresponding to the subspace.
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Here we assume the k Ritz values of B̂ that we want are separated from the

other m− k unwanted Ritz values. Which means {θ1, · · · , θk}∩ {θk+1, · · · , θm} = ∅.

Then according Theorem 2.10, we can write the Shur decomposition of B̂ as

B̂[G1, G2] = [G1, G2]

T11 T12

0 T22

 ,
where the eigenvalues of T11 are the new k Ritz values we want. And hence

B̂G1 = G1T11. (5.28)

Multiply both sides of (5.24) by G1, we get

AÛn×mG1 = Ûn×mB̂G1 + ûb̂TG1 + R̂n×mG1,

= Ûn×mG1T11 + ûb̂TG1 + R̂n×mG1. (5.29)

Let Unew = Ûn×mG1, Bnew = T11, unew = û, (bnew)T = b̂TG1 and Rnew = R̂n×mG1,

then

AUnew = UnewBnew + unew(bnew)T +Rnew.

The subspace spanned by the columns of Unew is span{ynew1 , ynew2 , · · · , ynewk }.

Use (5.26) and ‖G1‖ = 1,

‖Rnew‖ = ‖R̂n×(k+m)G1‖ ≤ ‖R̂n×(k+m)‖‖G1‖ ≤ ‖R‖.

If Un×k has orthonormal columns in the assumption of Theorem 5.8, then

Unew
n×k = Ûn×(k+m)G1 = [V, U ]G1

will be nearly orthonormal. This can happen when A is symmetric and Un×k has

Ritz vectors as its columns.
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Corollary 5.9. (Maintaining near parallel property) If A is symmetric, and the resid-

uals of {y1, y2, · · · , yk} are parallel,

AYn×k = Yn×kΘ + raT + Fn×k.

After one cycle of Arnoldi-E with the subspace K generated as (5.11), we can get

(5.24) as in the proof of Theorem 5.8. the residuals of updated Ritz vectors of

{ynew1 , ynew2 , · · · , ynewk } are near parallel,

AY new
n×k = Y new

n×k Θnew + rnew(anew)T + F new
n×k .

and ‖F new
n×k‖ ≤ ‖Fn×k‖‖R−1‖, where QR = Ûn×m (Ûn×m is from (5.24)).

Proof. We use the same proof as Theorem 5.8, and get

AÛn×m = Ûn×mB̂ + ûb̂T + R̂n×m with ‖R̂n×m‖ ≤ ‖Fn×k‖. (5.30)

Let Ûn×m = QR, the above equation becomes

AQR = QRB̂ + ûb̂T + R̂n×m,

AQ = QRB̂R−1 + ûb̂TR−1 + R̂n×mR
−1.

Notice since A is symmetric and RB̂R−1 = ÛTAÛ , so RB̂R−1 is symmetric. Hence

(5.28) becomes

RB̂R−1G1 = G1Θ,

where T11 in (5.28) becomes Θ with the desired eigenvalues on the diagonal, and

columns of G1 are eigenvectors of RB̂R−1 corresponding to them with ‖G1‖ = 1.

Since QG1 = Y new,

AQG1 = QRB̂R−1G1 + ûb̂TR−1G1 + R̂n×mR
−1G1,

AY new
n×k = Y new

n×k Θnew + rnew(anew)T + F new
n×k .
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where rnew = û, (anew)T = b̂TR−1G1, F new
n×k = R̂n×mR

−1G1. And we have

‖F new
n×k‖ = ‖R̂n×mR

−1G1‖ = ‖R̂n×mR
−1‖ ≤ ‖R̂n×mR

−1‖ ≤ ‖Fn×k‖‖R−1‖.

From experiments we observe that the matrix Ûn×m in (5.30) is almost or-

thonormal, and ‖R−1‖ is very close to 1.

5.6 Near Parallel Helps Convergence

In Section 5.3, we saw how the parallel property (5.2) works so that all approx-

imate eigenvectors can be improved at the same time in Arnoldi(m,k). It is because

the whole subspace contains Krylov subspaces with each eigenvector as the starting

vector (5.4), i.e, span{yi, Ayi, · · · , Am−kyi}. In this section we aim to explain the

convergence of Arnoldi-E with similar ideas.

We first prove the whole subspace contains Krylov subspaces with each eigen-

vector as the starting vector, except the matrix is the original matrix with a pertur-

bation E, i.e, span{yi, (A + E)yi, · · · , (A + E)m−kyi}. We give two proofs in 5.6.1

and 5.6.2 for it, one is from the near parallel perspective, and the other is from the

near Krylov perspective. Then we give a bound on the difference between two vec-

tors from the Krylov subspace span{yi, Ayi, · · · , Am−kyi} and the Krylov subspace

span{yi, (A+ E)yi, · · · , (A+ E)m−kyi} in 5.6.3.

5.6.1 From the Near Parallel Perspective

Let’s focus on only two vectors and see how the near parallel property can

help them converge together. This proof is motivated by the induction from (5.2)

to (5.3) in Section 5.3.

Theorem 5.10. Suppose

Ay1 = θ1y1 + a1r and Ay2 = θ2y2 + a2r + f,
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with ‖y1‖ = ‖y2‖ = 1. There is a matrix E such that

span{y2, (A+ E)y2, · · · , (A+ E)py2} ⊂ span{y1, Ay1, · · · , Apy1, y2}. (5.31)

Let

y2 = αyK2 + βy⊥K2 , (5.32)

where ‖yK2 ‖ = ‖y⊥K2 ‖ = 1, yK2 ∈ K = span{y1, Ay1, · · · , Apy1} and y⊥K2 ⊥ K,

then one choice of E is:

E = − 1

β
f(y⊥K2 )T and ‖E‖ ≤ ‖f‖

β
.

Proof. Let E = − 1

β
f(y⊥K2 )T , since y⊥K2 ⊥ y1,

(A+ E)y1 = Ay1 −
1

β
f(y⊥K2 )Ty1 = Ay1 = θ1y1 + a1r,

(A+ E)y2 = Ay2 −
1

β
f(y⊥K2 )Ty2 = Ay2 −

1

β
f(y⊥K2 )Ty2 = Ay2 − f = θ2y2 + a2r,

So y1 and y2 have parallel residuals under the multiplication of A+E. Use the same

induction from (5.2) to (5.3) in section 5.3, we can get:

span{y2, (A+ E)y2, · · · , (A+ E)py2} ⊂ span{y1, (A+ E)y1, · · · , (A+ E)py1, y2}.

Next we want to show that

span{y1, (A+ E)y1, · · · , (A+ E)py1, y2} = span{y1, Ay1, · · · , Apy1, y2}.

We have (A+ E)y1 = Ay1 from above, and suppose

(A+ E)jy1 = Ajy1,

then (A+ E)j+1y1 = (A+ E)Ajy1

= Aj+1y1 + EAjy1

= Aj+1y1 −
1

β
f(y⊥K2 )TAjy1

= Aj+1y1, since y⊥K2 ⊥ Ajy1 for j = 1, · · · , p− 1.
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So span{y2, (A+ E)y2, · · · , (A+ E)py2} ⊂ span{y1, (A+ E)y1, · · · , (A+ E)py1, y2}

= span{y1, Ay1, · · · , Apy1, y2}.

And

‖E‖ = ‖ − 1

β
f(y⊥K2 )T‖ ≤ ‖f‖‖(y

⊥K
2 )T‖
‖β‖

=
‖f‖
‖β‖

.

It seems when A is symmetric or near symmetric, the projection of y2 on

{y1, Ay1, · · · , Apy1} is very small. Hence α in (5.32) is small and β is close to 1. ‖E‖

is mainly determined by ‖f‖.

5.6.2 From the Near Krylov Perspective

There is another way to prove Theorem 5.10, from the perspective of near

Krylov decomposition. However, we get the same result by this different approach.

Any Krylov subspace has a corresponding Arnoldi decomposition AV = V H + veT ,

where (V, v) is orthonormal and H is an upper Hessenberg. V e1, the first column

of V , is the starting vector of the Krylov subspace. According to the implicit Q-

theorem, it is unique. We are going to prove under the context of Theorem 5.10,

there is an Arnoldi decomposition (A + E)Q = QH + qeT with (Q, q) orthonormal

and H upper Hessenberg. Q is constructed so that the eigenvector y2 is the first

column, and hence there is a Krylov subspace with y2 as the starting vector.

Theorem 5.10 (continuing from p. 69). Suppose Ay1 = θ1y1 + a1r and Ay2 = θ2y2 +

a2r + f with ‖y1‖ = ‖y2‖ = 1. Thereis a matrix E such that

(A+ E)Qn×p = Qn×pHp×p + qeTp+1 with Qe1 = y2.

We will show that

span{y2, (A+ E)y2, · · · , (A+ E)py2} = span{q1, q2, · · · , qp+1}

⊂span{y1, Ay1, · · · , Apy1, y2}. (5.33)
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Furthermore, let

y2 = αyK2 + βy⊥K2 ,

as in Theorem 5.10, E will be the same.

E = − 1

β
f(y⊥K2 )T and ‖E‖ ≤ ‖f‖

β
.

Proof. From (5.11), when there are only two Ritz vectors,

W = span{y1, y2, r, Ar, · · · , Ap−1r}.

If we put y2 as the first vector, we can have

A

[
y2 r · · · Ap−1y y1

]
n×(p+2)

=

[
y2 r · · · Ap−1y y1

]
θ2 0 ∗
a2 0 ∗
0 1 0 ∗
0 0 1 ∗
...

...
0 0 ··· 1 ∗
0 ··· ∗ θ1


(p+2)×(p+2)

+ veTp+1

+

[
f 0 · · · 0

]
n×(p+2)

, (5.34)

where [
y2 r · · · Ap−1y y1

]T
v = 0.

Let

H0 =



θ2 0 ∗

a2 0 ∗

0 1 0 ∗

0 0 1 ∗

· · ·

0 0 · · · 1 ∗

θ1


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be the upper Henssenberg matrix. (5.34) becomes

AQR = QRH0 + veTp+1 +

[
f 0 · · · 0

]
.

Let [
y2 r Ar · · · Ap−1y y1

]
= QR (5.35)

be the QR decomposition where Qe1 = y2, then

AQ = Q(RH0R
−1) + veTp+1R

−1 +

[
f 0 · · · 0

]
R−1.

Let H = RH0R
−1. Since H0 is Upper Hessenberg, R and R−1 are upper triangular,

so H is upper Hessenberg.

AQ = QH + veTp+1R
−1 +

[
f 0 · · · 0

]
R−1. (5.36)

Now we move the Krylov residual at the end of (5.36) back to A,

AQ−
[
f 0 · · · 0

]
R−1 = QH + veTp+1R

−1,

(A−
[
f 0 · · · 0

]
R−1QT )Q = QH + veTp+1R

−1.

And we get

(A+ E)Q = QH + veTp+1R
−1, (5.37)

where

E = −
[
f 0 · · · 0

]
R−1QT . (5.38)

Since

eTp+1R
−1 = [0, 0, · · · , 0, ∗, ∗](p+2)×(p+2)

= [0, 0, · · · , 0, R−1
(p+1)×(p+1), R

−1
(p+2)×(p+2)].
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Equating the first p columns on both sides of (5.37), we have

(A+ E)Q = QH + qeTp+1, (5.39)

where q = vR−1
(p+1)×(p+1).

According to the implicit Q-theorem, (5.39) indicates that the first p columns of Q

form a basis of a Krylov subspace with the starting vector y2 for the matrix A+E.

span{q1, q2, · · · , qp+1} = span{y2, (A+ E)y2, · · · , (A+ E)py2}

⊂span{q1, q2, · · · , qp+1, qp+2} = span{y1, Ay1, · · · , Apy1, y2}.

This proves (5.33).

Next we will show the bound for E. (5.38) shows that the norm of E is

determined byQ andR, whereQ andR is from (5.35) andQR =

[
y2 r Ar ··· Ap−1r y1

]
.

Instead of this matrix, we look at another matrix by changing the order of the

columns. Assume [
r Ar · · · Ap−1r y1 y2

]
= Q2R2, (5.40)

where

Q2(:, end) = Q2(:, p+ 2) = y⊥K2 , (5.41)

and R2(end, end) = R2(p+ 2, p+ 2) = β. (5.42)

Notice that

[
r Ar · · · Ap−1r y1 y2

]0 I(p+1)×(p+1)

1 0

 =

[
y2 r Ar · · · Ap−1r y1

]
.

(5.43)
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So

R = QT

[
y2 r Ar · · · Ap−1r y1

]

= QT

[
r Ar · · · Ap−1r y1 y2

]0 I(p+1)×(p+1)

1 0

 (use (5.43))

= QTQ2R2

0 I(p+1)×(p+1)

1 0

 .(use (5.40)) (5.44)

And then

E = −
[
f 0 · · · 0

]
R−1QT

= −
[
f 0 · · · 0

]0 I(p+1)×(p+1)

1 0


T

R−1
2 QT

2QQ
T (use (5.44))

= −
[
f 0 · · · 0

] 0 1

I(p+1)×(p+1) 0

R−1
2 QT

2

= −
[
0 0 · · · f

]
R−1

2 QT
2

= −R−1
2 (p+ 2, p+ 2)

[
0 0 · · · f

]
QT

2

= −R−1
2 (p+ 2, p+ 2)fQ2(:, p+ 2)T

= − 1

β
f(y⊥K2 )T .

The last step uses (5.41) and (5.42). So

|E‖ = ‖ − 1

β
f(y⊥K2 )T‖ ≤ ‖f‖

‖β‖
.

5.6.3 Bound for Vectors in Two Krylov Subspaces

Theorem 5.10 shows that span{y2, (A+E)y2, · · · , (A+E)py2} ⊂ span{y1, Ay1,

· · · , Apy1, y2}. In this subsection we want to discuss how such deviation affects the
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convergence of y2. There are a lot of discussions related to perturbation theory.

For the symmetric case or when matrices are diagonalizable, we can do spectral

analysis. Here we want to study general cases, and we use the Cauchy integral to

express matrix functions. The idea can be found in the reference [12] [13]. We first

introduce some background, and then give the theorem for our method.

Any vector in span{y, Ay, · · · , Apy} can be written as p(A)y with degree p,

and any vector in span{y2, (A+E)y2, · · · , (A+E)py2} is p(A+E)y. p(A) is a matrix

function, so by using the Cauchy integral, it would be

p(A) =
1

2πi

∫
Γ

p(z)(zI − A)−1dz.

And p(A+ E) is

p(A+ E) =
1

2πi

∫
Γ

p(z)(zI − A− E)−1dz.

In order to bound ‖p(A)− p(A+E)‖, we look at the bound of ‖(zI −A)−1− (zI −

A− E)−1‖. Since

(I − (zI − A)−1E)−1(zI − A)−1(zI − A− E)

=(I − (zI − A)−1E)−1(I − (zI − A)−1E) = I,

so the resolvent (zI − A− E)−1 for p(A+ E) is

(zI − A− E)−1 = (I − (zI − A)−1E)−1(zI − A)−1. (5.45)

If ‖(zI −A)−1E‖ ≤ ‖(zI −A)−1‖‖E‖ < 1, which means ‖E‖ < 1

‖(zI − A)−1‖
, then

(I − (zI −A)−1E)−1 has a convergent Neumann series, and (5.45) can be expanded

as

(zI − A− E)−1 =
∞∑
j=0

((zI − A)−1E)j(zI − A)−1.

Then

(zI − A− E)−1 − (zI − A)−1 =
∞∑
j=1

((zI − A)−1E)j(zI − A)−1.
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Let ‖E‖ = ε and
1

‖(zI − A)−1‖
= δ. Then ‖(zI −A)−1E‖ ≤ ‖(zI −A)−1‖‖E‖ =

ε

δ
.

And ‖(zI − A− E)−1 − (zI − A)−1‖ = ‖
∞∑
j=1

((zI − A)−1E)j(zI − A)−1‖

≤
∞∑
j=1

(
ε

δ
)j

1

δ
=

ε
δ

1− ε
δ

1

δ

=
ε/δ

δ − ε
. (5.46)

In the Cauchy integral the curve Γ is a finite union of Jordan curves in the

complex plane whose interior contains the spectra of A and A+E. To make bounds

for such integrals, we choose the curve Γ to be the boundary of the δ-psedospectrum

of A. There are several equivalent definitions of δ-psedospectrum, and here are two

of them.

σδ := {z ∈ C : ‖(zI − A)−1‖ > 1/δ}.

σδ := {z ∈ C : z ∈ σ(A+ E) for some ‖E‖ < δ}.

The following theorem finds the bound of p(A)y and p(A+E)y for our method.

It is based on the work of [28].

Theorem 5.11. Suppose there are two Krylov subspaces K1 = span{y, Ay, · · · , Am−1y}

and K2 = span{y, (A+E)y, · · · , (A+E)m−1y} with the perturbation matrix ‖E‖ = ε

and ‖y‖ = 1. Let δ =
1

‖(zI − A)−1‖
� ε, if the best approximation of an eigenvector

z is ŷ = p(A)y from K1, then ỹ = p(A + E)y is an approximation of z in K2 with

‖ŷ − ỹ‖ ≤ O(ε).
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Proof.

‖ŷ − ỹ‖ ≤ ‖p(A)y − p(A+ E)y‖

≤ ‖p(A)− p(A+ E)‖‖y‖

≤ 1

2π
‖
∫

Γ

p(z)((zI − A− E)−1 − (zI − A)−1)dz‖

≤ Lδ
2π

(max
z∈Γ
|p(z)|)(max ‖(zI − A− E)−1 − (zI − A)−1)‖) (use (5.43))

≤ (
ε

δ − ε
)(
Lδ
2πδ

) max
z∈Γ
|p(z)|

= O(ε),

where Lδ denotes the arc length of Γ = ∂σδ(A).

5.7 Examples

5.7.1 Fix the Starting Vector

Two examples are shown in this subsection, one has a symmetric matrix, and

the other deals with a non-symmetric problem. These experiments aim to verify

Theorems 5.7-5.10. In order to make explanations clearer, we fix the starting vector

as Arnoldi-E proceeds on the fine grid.

Example 5.12. Problem: −u′′ = λu. matrix size A is 1023 on the fine grid, and the

coarse grid is 256. The convergence tolerance for the smallest 10 eigenpairs on the

coarse grid is 1e-3. Then on the fine grid, we use the approximation for the first

eigenvector as the starting vector for Arnoldi-E. So instead of cycling through all

desired Ritz vectors, y1 is always the starting vector.

Here are three figures. Figure 5.5 shows that the near Krylov property is

maintained in each cycle, and Figures 5.6 and 5.7 show how the near Krylov property

can help the convergence of eigenvectors.
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Let the whole subspace be W = S + K as described in (5.11). The Krylov

decompositions for S and W are:

AUn×k = Un×kB + ubT +Rn×k,

AÛn×m = Ûn×mB̂ + ûb̂T + R̂n×m.

In Figure 5.5, stars are Krylov residuals of S at the beginning of each cycle, which

are ‖Rn×k‖. Dots are Krylov residuals of W at the same cycle, which are ‖R̂n×m‖.

We can see dots are always below stars, which verifies the result of Theorem 5.7

that ‖R̂n×m‖ ≤ ‖Rn×k‖. Then in the next cycle, ‖Rnew
n×k‖ is determined by ‖R̂n×m‖,

and the Krylov residual does not increase. We have ‖Rnew
n×k‖ ≤ ‖R̂n×m‖ ≤ ‖Rn×k‖

as shown in Theorem 5.8.
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Figure 5.5: Maintain near Krylov property. A is symmetric. Starting vector is fixed
as y1.
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Figure 5.6: Near parallel helps convergence. A is symmetric. Starting vector is fixed
as y1.

Figure 5.6 shows the residual norms of 10 approximate eigenvectors on the

fine grid. We restart each cycle with the first Ritz vector in this experiment, but

all other eigenvectors converge together for about 20 cycles, then they level off. It

seems each vector has a limit and when the residual reaches that limit, the accuracy

does not change.

In Figure 5.7 we only plot the residual of two eigenvectors and discuss what

the limit is for one specific vector. It shows the residuals of the first and second

vectors. Suppose

Ay1 = θ1y1 + a1r1,

Ay2 = θ2y2 + a2r1 + f2,

where f2 ⊥ r1.
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Figure 5.7: Near parallel helps convergence. A is symmetric. Starting vector is fixed
as y1.

In Figure 5.7, red stars represent ‖f2‖, which measures how parallel the two

vectors are. ‖f2‖ does not change much, and it slightly decreases, which illustrates

that the near parallel property is maintained. When the residual norm of the second

vector is bigger than ‖f2‖, the second vector is improved and the residual norm

converges down to ‖f2‖, which is about 1e-9. When the residual norm reaches the

level of ‖f2‖, it is not improved. According to Theorem 5.10, we find p(A + E)y2

in the subspace each time, where ‖E‖ is almost the same as ‖f2‖ in the symmetric

case. Finally we get the eigenvector of A+ E and E has norm about 1e-9.

We can see from Figure 5.6 that other vectors have their own limits of con-

vergence, which should be determined by ‖fi‖ where Ayi = θiyi + air1 + fi. So if

the residuals of approximate eigenvectors are more parallel to each other, then it is

more likely that they will converge together, and then Arnoldi-E is more efficient.
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In the next example, we add the coefficient to u′ in the differential equation

and then the matrix A is non-symmetric.

Example 5.13. Problem: −u′′+ 100u′ = λu. The matrix A has the form (2.11). The

size is 1023 on the fine grid, and the coarse grid is 255. We get the accuracy of 1e-3

for the smallest 15 eigenpairs on the coarse grid. Then on the fine grid, we fix the

first Ritz vector y1 as the starting vector.

We show three figures as in Example 5.12, which are supposed to verify the near

Krylov property and how it works for convergence. Since A is not symmetric, the

results are very different from the above symmetric problem. Figure 5.8 shows again

the Krylov residuals of the whole subspaceW are not bigger than the k-dimensional

subspace S, but Figure 5.8 is very different from Figure 5.5.
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Figure 5.8: Maintain near parallel and near Krylov property. A is non-symmetric.
Starting vector is fixed as y1.
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In Figure 5.5, the stars are slightly smaller in magnitude than the dots in the

previous cycle, but in Figure 5.8, there are stars larger than the dots in the previous

cycle. The reason is that in the figures we plot the norm of Rn×k and R̂n×m, where

AUn×k = Un×kB + ubT +Rn×k, with u = r1, (5.47)

AÛn×m = Ûn×mB̂ + ûb̂T + R̂n×m.

In theorem 5.8, we show that

AUnew
n×k = Unew

n×kB
new + û(bnew)T +Rnew

n×k, (5.48)

and ‖Rnew
n×k‖ ≤ ‖Rn×k‖.

However, in (5.47) the vector u is always taken as r1. We get (5.48) with

‖Rnew
n×k‖ ≤ ‖Rn×k‖ at the end of the cycle, but when we restart the next cycle, the

vector u is changed from û in (5.48) to r1. Therefore ‖Rn×k‖ for the next cycle is

not the same as ‖Rnew
n×k‖.

We observe from (5.48) that if the norm of the first column of Rnew
n×k is much

smaller than the norm of the first column of û(bnew)T , then the direction of r1 will be

mostly determined by û. In this case, there will not be much difference from (5.48)

to (5.47). This is one possible reason that why when A is symmetric, stars do not

get bigger than dots of the previous cycle in Figure 5.5.

Another difference between the symmetric and non-symmetric cases is that in

Figure 5.8, we see a greater decrease of the near Krylov residual.

Figure 5.9 shows the residual norms of 10 approximate eigenvectors on the fine

grid. We see that all eigenvectors are improved at the same time as we restart each

cycle with the first eigenvector. There are no limits as we see in Figure 5.6.
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Figure 5.9: Near parallel helps convergence. A is non-symmetric. Starting vector is
fixed as y1.

In Figure 5.10, the line shows the convergence of the second eigenvector. Dots

show the norm of f2, and stars are norms of f̂2, which are defined below.

Ay1 = θ1y1 + a1r1,

Ay2 = θ2y2 + a2r1 + f2

= θ̂2y2 + â2r1 + Σαiyi + f̂2,

where f2 ⊥ r1 and f̂2 ⊥ span{y1, · · · , yk, r1}.

The residual norm of y2 is roughly determined by ‖f̂2‖, which is compatible

with the results of Theorem 5.10 and 5.11.

Figure 5.10 shows that when A is non-symmetric, f2 and f̂2 can be very dif-

ferent. They are almost the same when A is symmetric, hence in Figure 5.7 we only

84



0 5 10 15 20 25 30 35 40
10

−9

10
−8

10
−7

10
−6

10
−5

Cycles

R
es

id
ua

l N
or

m
s

 

 
residual of y

2

||f
2
||

||fhat
2
||

Figure 5.10: Near parallel helps convergence. A is non-symmetric. Starting vector is
fixed as y1.

plot ‖f2‖ at each cycle. But for non-symmetric case, the example shows that fi have

components in the subspace S = span{y1, y2, · · · , yk}.

The norm of f̂2 decreases significantly unlike for f2 in Figure 5.7. This re-

sults in the decrease of the Krylov residual, and hence it helps the convergence of

eigenvectors.

5.7.2 Change the Starting Vector

In practice, we alternate through all desired Ritz vectors to speed up the

convergence. The following experiment deals with the same problem in Example

5.12, but we change the starting vector at each cycle. We are interested in the near

Krylov property and convergence behaviour.
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Example 5.12 (continuing from p. 78). Problem: −u′′ = λu. Matrix size of A is 1023

on the fine grid, and the coarse grid is 255. We get accuracy of 1e-3 for the smallest

10 eigenpairs on the coarse grid. On the fine grid, we alternate through all desired

approximate eigenvectors as starting vectors for Arnoldi-E.

Figure 5.11 shows the convergence of all desired eigenvectors.
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Figure 5.11: Near parallel helps convergence. A is symmetric. Alternate starting

vectors.

Figure 5.12 shows the residual of the second vector and the norm of f2, where

f2 is defined below. Suppose at cycle j, yj is the starting vector, and

Ayj = θjyj + ajrj,

Ay2 = θ2y2 + a2rj + f2,

where f2 ⊥ rj.
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Figure 5.12: Near parallel helps convergence. A is symmetric. Alternate starting
vector.

Compare Figure 5.12 with Figure 5.7, ‖f2‖ is changing all the time. Next is

some analysis about it. Suppose after a cycle we have

Ayj = θjyj + γj = θjyj + aju+ fj,

Ay2 = θ2y2 + γ2 = θ2y2 + a2u+ f2.

with f2 and fj small. Let yj be the starting vector of the Krylov subspace portion

for the next cycle. Then in fact we use the following parallel relation.

Ayj = θjyj + ãjr,

Ay2 = θ2y2 + ã2r + f̃2,

where ãjr = aju+ fj. (5.49)
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Equation (5.49) means that the vector r is the combination of u and fj, then ã2

may decrease, since γ2, the residual of y2, may not be so parallel to r, and ‖f̃2‖ may

increase. Although the stars jump up and down in Figure 5.12, Example 5.12 still

shows that the approximate eigenvectors will converge to norms of ‖fi‖’s. Since all

desired eigenvectors improve by alternating, ‖fi‖’s will decrease and hence residuals

will converge.
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CHAPTER SIX

Multiple Grids for Arnoldi

In this Chapter, we extend the Two-grid Arnoldi to Multiple-grid Arnoldi. We

give the Algorithm and two examples.

As before, the problem size is nf . We let p be the number of grid levels used,

with grid level 1 being the coarsest and grid level p being the finest one corresponding

to matrix size nf . We now give the algorithm. Basically it is the Two-grid Arnoldi

method, except we repeat Steps 2 and 3 for each of grid levels 2 through p, from

second coarsest up to finest grid.

Algorithm 6.1 Multiple-Grids Arnoldi

0. Initial Setup: Let the problem size be nf . Choose the grid levels. Let p

be the number of grids ordered from coarsest to finest. Choose m = the

maximum subspace size, k = the number of Ritz vectors retained at the

restart, nev = the number of desired eigenpairs, rtol = the residual norm

tolerance.

1. Coarsest Grid Computation: Run restarted Arnoldi(m,k) on the coarsest

grid until the nev smallest magnitude eigenvalues have converged to rtol.

2. For grid level = 2 . . . p :

A. Move to next finer grid: Move the k coarser grid Ritz vectors to the next

finer grid (we use spline interpolation). Apply Rayleigh-Ritz procedure

on the finer grid to these vectors. This gives the initial k finer grid

approximate eigenvectors.

B. Finer grid computation: Improve the approximate eigenvectors on the

finer grid with the Arnoldi-E [18] method. As starting vector for the

Krylov portion in the first cycle, we use the the Ritz vector correspond-
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ing to the smallest Ritz value in magnitude. Then for starting vectors of

subsequent cycles, we alternate through the nev smallest Ritz vectors.

However, converged Ritz pairs are skipped.

In the examples that follow, we are in 1-D, and we let the decreasing sizes of

the matrices be nf , nf+1
2
− 1, nf+1

22
− 1, . . . , nf+1

2p
− 1. Other choices are possible,

such as skipping some levels.

Example 6.1. We return to a matrix from the 1-D convection-diffusion equation,

but now with convection of β = 51.2. The size is again nf = 4095. Standard

Arnoldi(30,15) takes 1574 cycles for 10 Ritz pairs to converge to residual norm

below 10−8. Table 6.1 has the results with different choices of coarsest grid and

increasing the number of subintervals in the grid by a factor of 2 at each new phase.

The Multiple-grid Arnoldi result with coarsest grid of 2047 uses only two grids, while

with coarsest of 31, there are eight grid levels. The best Two-grid Arnoldi(30,15) re-

sult is 50.75 fine-grid-equivalent cycles with nc = 1023. With Multiple-grid Arnoldi,

we can get below 10 fine-grid-equivalents. So while Two-grid improves by a factor of

30 compared to regular Arnoldi, Multiple-grid is over 150 times better than regular

Arnoldi. Here we are getting the significant speedup that is characteristic of multi-

grid methods for linear equations on problems with less convection. Multiple-grid

Arnoldi also is very consistent for the choice of smallest matrix from size 31 up to

255. Two-grid is consistent for smallest matrix of size 255 up to 1023, but struggles

with smaller ones.

We next give an example for which Multiple-Grid Arnoldi does not work as

well.

Example 6.2. As in the previous example, we have a matrix from the 1-D convection-

diffusion equation, but the convection is increased to β = 102.4 and the size of the

matrix is reduced to nf = 1023. We use Arnoldi(30,16) since the matrix is more
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non-normal. Standard Arnoldi(30,16) takes 109 cycles for 10 Ritz pairs to converge

to residual norm below 10−8. Table 6.2 has the results with different choices of

coarsest grid and increasing the number of subintervals in the grid by a factor of 2

at each new phase. Multiple-grid Arnoldi beats the two-grid on some of the choices,

but not by as much as in the previous example. The important thing to note is that

using too small of a coarsest grid can make things worse. For coarsest grid of size 31,

the Multiple-grid method takes over twice as long as regular Arnoldi. The method

is not as effective as in the previous example, because approximations from a coarse

grid to the next are not as accurate with the increased convection. Also, there is

not the same opportunity versus regular Arnoldi, because the finer grids are missing

which are difficult for regular Arnoldi and for which approximations from the next

coarser grid are particularly accurate.

Table 6.1: Two-grid Arnoldi vs. Multiple-grid Arnoldi. Matrix is dimension
n = 4095 from 1-D Conv-diff with β = 51.2.

Coarsest grid matrix size 2047 1023 511 255 127 63 31

Two-grid Arnoldi cycle equiv’s 227 50.8 56.4 55.7 108 728 514

Multiple-grid Arn. cycle equiv’s 227 41.8 15.6 9.56 11.9 9.86 10.1

Table 6.2: Two-grid Arnoldi vs. Multiple-grid Arnoldi. Matrix is dimension
n = 1023 from 1-D Conv-diff with β = 102.4.

Coarsest grid matrix size 511 255 127 63 31

Two-grid Arnoldi cycle equiv’s 47 34.8 71.9 73.6 513

Multiple-grid Arnoldi cycle equiv’s 47 39.8 55.9 72.1 264
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CHAPTER SEVEN

Future Work

In order to improve multigrid Arnoldi methods both experimentally and the-

oretically, we have things to do in the future.

1 We have explored Multiple-grid Arnoldi in Chapter Six, but more work

needs to be done. Especially needed are more experiments to determine

when multiple grids are worthwhile and how many grids levels work best.

2 One challenge for the method is to reduce the Krylov residual when we

apply Arnoldi-E on the fine grid. Combing all Ritz vectors into one starting

vector and generating a Krylov subspace is one idea. This eliminates the

Krylov residual. It may also be easier to extend the method on more grids

by constructing a single vector on each grid. Then the most important

question is how to form such vector in a robust and cheap way because

there are stability issues. There may be other approaches to reducing the

Krylov residual.

3 More research about highly non-symmetric matrices is needed. Such ma-

trices are derived from convection-diffusion equations with big convection

coefficients. Our method works well for such problems compared to some

other methods in our experiments, but more general theory needs to be

developed. Multigrid Arnoldi should be tested on finite element problems.

Often a generalized eigenvalue problem needs to be solved.

4 We need to work on understanding the effectiveness of splitting complex

Ritz vectors into real and imaginary parts as starting vectors.
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5 We plan to adapt the methods in this work for deflating eigenvalues in the

solution of large systems of linear equations.

6 Development of an algebraic multigrid version would significantly extend the

applicability of Multigrid Arnoldi.
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