
 
 
 
 
 
 
 
 

ABSTRACT 

Adaptive Radar Waveform Synthesis via Alternating Projections 
 

Dylan Eustice, M.S.E.C.E. 
 

Mentor: Charles P. Baylis II, Ph.D. 
 
 

 As the number of wireless broadband devices occupying our airwaves grows at a 

rapid rate, the resultant decrease in available spectrum for current technologies and 

increasingly stringent regulations on band compliance has necessitated adaptive radio 

frequency (RF) technologies which can respond to the spectrum crisis. The task of 

maintaining the effectiveness of our RF technology with a shrinking spectrum has 

generated work in a number of fields, notably cognitive radar. This work focuses on 

developing an algorithm which can adaptively produce waveforms with desired accuracy 

in the range-Doppler domain, measured by the ambiguity function, for radar detection 

while also having characteristics which allow for efficient amplifier operation and 

spectral compliance. 
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CHAPTER ONE 
Introduction 

 
 

 As wireless technology advances, the density of wireless applications in the 

available spectral range has skyrocketed while the demand for performance has increased 

significantly as well. In order to accommodate the increase of devices entering the 

spectrum, new, increasingly stringent, spectral restrictions have been placed on both 

current technologies and new devices. Additionally, the United States government has 

instituted provisions which are intended to regulate the spectral sharing needed to allow 

the spectral cooperation of wireless devices. The largest piece of evidence regarding the 

new emphasis on spectral sharing has been the National Broadband Plan from 2010, 

which required 500 MHz of government controlled spectrum to be auctioned to the 

commercial sector by 2020. A great deal of that spectrum will be taken from military 

applications, notably radar, which will leave our military to perform the same tasks with 

less spectrum. The decrease in available spectrum and increasing restrictions on spectral 

spreading affect radar in two main ways: higher waveform power, which is often 

associated with increased spectral spreading, is desired to insure targets are sufficiently 

“illuminated” and to maximize the efficiency of the transmitter and higher bandwidth is 

often desirable for better radar waveform resolution. 

One growing field which has attempted to address this problem is cognitive radar, 

which attempts to make radar systems adaptable to their environment and constraints. In 

order to make such a field become practically useful, there need to be algorithms which 

direct the adaptations of different components of radar systems depending on system 
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current needs and requirements. This thesis attempts to address and provide a solution for 

a large problem in radar systems with limited spectrum: how can a radar system provide 

desirable range-Doppler resolution in a changing environment with limited spectrum? 

Presented is a projections algorithm which synthesizes waveforms whose range-Doppler 

resolution properties have been optimized for the current environment. It allows the radar 

systems operator to select regions in the range-Doppler plane for which to minimize the 

magnitude of ambiguity function of synthesized waveform, while also ensuring that peak-

to-average power ratio and spectrum requirements are met. The inputs to the finalized 

algorithm are: a two-dimensional function specifying where to minimize the ambiguity 

function, the energy of the desired waveform, the desired peak-to-average power ratio of 

the waveform, and a spectral mask which the waveform’s frequency spectrum must 

comply. 

Chapter Two provides background on the mathematical theory upon which the 

projections algorithm is based, as well as state of the art in related literature. Chapter 

Three formulates the projections used to optimize a waveform based on desired 

ambiguity function characteristics. Finally, Chapter Four shows how peak-to-average 

power ratio and spectrum requirements are enforced, while still optimizing the 

waveform’s ambiguity function. Chapter Five presents conclusions and discusses 

possible future directions for this work. 
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CHAPTER TWO 
Background 

 
 

 In order to more properly convey both the technical aspects in the chapters which 

follow and the overall significance of the work, a background of the related fields will 

first be provided. Section 2.1 will give an overview of the ambiguity function, with 

Section 2.1.1 discussing its mathematical interpretation and Section 2.1.2 covering some 

of its more important properties. Section 2.2 gives a mathematical overview of the 

projections theory on which the work is based, and Section 2.3 covers prior work done in 

related fields. 

 
2.1 Background of the Ambiguity Function 

 
2.1.1 Mathematical Interpretation 

 First derived by Woodward [1], the ambiguity function (AF) is a two-dimensional 

function describing the detection capabilities of a temporal waveform. There is a great 

amount of literature describing the AF in its many forms, which include the monostatic 

case [1], the bistatic case [2], narrowband AF [1], wideband AF [3] [4], and ultra-

wideband AF [5]. For the purposes of this work, we will consider a narrowband, 

monostatic radar system and the subsequent AF definition used in this application. 

The AF is mathematically defined as 

 ( , ) = ( ) ∗( − )  (1) 

where  and  are the range and Doppler errors relative to the range and Doppler of the 

detected target, which is centered at the origin in the AF’s range-Doppler plane. An 
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equivalent definition of the AF in the frequency domain can be written by using the 

Fourier Transform of ( ), whose derivation follows. Start by rewriting (1) as 

( , ) = ( ) ⋅ ∗( − )  

and note the Fourier relationships ( ) ↔ ( + ) ( − ) ↔ ( )  

We then use the power theorem [6], which states that for any signals ( ) and ( ) and 

their Fourier pairs ( ) and ( ), 
 ( ) ∗( ) = ( ) ( )  (2) 

By setting the above ( ) = ( )  and ( ) = ∗( − ) we take advantage of the 

power theorem, 

( ) ⋅ ∗( − ) = ( + ) ⋅ ∗( )  

Trivially rearranging terms leads to the alternate definition of the ambiguity function: 

 ( , ) = ( + ) ∗( )  (3) 

In this work, the AF of a specific signal will be referenced by using a subscript notation. 

For instance, the AF of signal ( ) will be given by 

 ( ) ⇒ ( , )  

The AF, often referred to as a matched filter [7] [8] due to its foundational basis 

as a correlator, is a measure of a waveform’s range-Doppler resolution, accuracy, and 

clutter rejection properties relative to a target located at (Δ , Δ ) in the range-Doppler 

plane [1] [2]. The AF centered at the detected target is given by ( + Δ , + Δ ). 
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However, because of the AF’s invariance to shifts in time and frequency [8], the AF for a 

detection at any (Δ , Δ ) may be equivalently written as ( , ). 
There have been many tutorials written about the AF [9] [10] [11], and a more 

comprehensive overview which develops the AF from basic principles is available in [8]. 

It should be noted that many authors opt to define the AF as its magnitude, or | ( , )|. 
While the real part of the AF is what we desire to maximize when analyzing the AF as a 

correlator [8], the magnitude of the AF is often the component that is used to assess the 

quality of the range-Doppler resolution, accuracy, etc [7]. 

 
2.1.2 Notable Properties of the Ambiguity Function 

We will first discuss the extent of the range and Doppler axes which we will 

consider for the AF, known as the support of the AF. Let a time domain signal ( ) be 

constrained on the interval ≤  seconds with bandwidth  Hz. The zero-range and 

zero-Doppler cuts (setting = 0 and = 0) of the AF are given by the autocorrelation of 

the waveform and its Fourier transform 

 

(0, ) = ( + ) ∗( ) = ( ) ⋆ ( ) 
( , 0) = ( ) ∗( − ) = ( ) ⋆ ( ) (4) 

The support of the ambiguity function along the range axis is assessed by the support of ( ) ⋆ ( ), or | | ≤ 2 , and the support along the Doppler axis is given by the support 

of ( ) ⋆ ( ), which is | | ≤ 2 . 

 Throughout this work, the AF of a baseband waveform will be considered. While 

designing a waveform at baseband is common practice [12] [13] [14], it is notable 

because it dictates that the signal processing for detections must also be done at 
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baseband. The proof for this follows. Let the modulated waveform ( ) be uniquely 

defined by the baseband waveform ( ) and be expressed as 

 ( ) = ℜ ( )  (5) 

Where ℜ is an operator denoting the real part of its operand. ( , ) may then can be 

expressed in terms of ( , ) as 

 

( , ) = 14 ( , ) + ∗( , − )
+ 14 ( , + 2 )
+ ∗ , −( + 2 )  

(6) 

where  is the carrier frequency and  

 ( , ) = ( ) ( − )  (7) 

The derivation of this property may be found in [8]. The  terms, which look similar to 

that of the baseband AF and are called the “pseudo ambiguity function”, exist far enough 

along the Doppler axis such that they may be safely ignored in many situations to be 

encountered in practice, because these terms will have Doppler frequencies on the order 

of the carrier frequency.  In practice, most moving targets detectable by radar systems 

will have frequencies much lower than typical radio-frequency carriers.  Removing these 

terms, we are left with 

 ( , ) = 14 ( , ) + ∗( , − )  (8) 

which is closely related to ( , ), and is in fact simply the baseband AF modulated by 

the carrier frequency, . Because of sampling limitations at typical RF carrier 

frequencies, this relationship is very important in the formulation of this work. 
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Computing the AF of waveforms at RF frequencies is extremely computationally 

expensive due to the number of samples required to accurately represent the waveform. 

Because of the relationship in (8), the computational complexity may be vastly reduced 

by downconverting the waveform and computing its AF at baseband. Additionally, we 

see that our approach of synthesizing the waveform at baseband rather than RF when 

designing for AF is acceptable, as the two AFs will be virtually indistinguishable at RF 

frequencies. 

 
2.2 Background of Projection onto Convex Sets 

 Many problems in engineering and mathematics can be formulated as trying to 

find an intersection point or a point which is adequately near two or more convex sets. 

This type of problem is often referred to as the Convex Feasibility Problem [15], which is 

solved by finding the intersection between a finite number of -dimensional sets existing 

in the Euclidean space ℝ . Projection onto convex sets (POCS) is a commonly used, 

simple, and robust method for solving the Convex Feasibility Problem [16] [17] and has 

been used in a variety of applications [18] [19] [20] [21] [22]. Following the classic 

definition of convexity [6], a set of signals  is convex if and only if 

 ( ) + (1 − ) ( ) ∈  (9) 

for all 

 
( ), ( ) ∈  0 ≤ ≤ 1 

 

In other words, given any two signals ( ) and ( ) which are in the set ,  is 

convex if and only if the weighted combination of the two signals is also in . Using 
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Note the projections algorithm to find the intersection for a set of  sets ( , , …		 , ) 
will be 

 = ⋅⋅⋅ ( ) ⋅⋅⋅  (11) 

 It is important to note that the set of functions satisfying all the properties of AF, 

which will be referred to as , is not a convex set according to the definition in (9). To 

prove this, insert two ambiguity functions for ( ) and ( ), where 

( , ) = ( ) ∗( − )  

( , ) = ( ) ∗( − )  

Then, applying the above functions to (9) 

( ) ∗( − ) + (1 − ) ( ) ∗( − )  

= ( ) ∗( − ) + (1 − ) ( ) ∗( − )  

= ( ) ∗( − ) + (1 − ) ( ) ∗( − ) 										 
Assigning a signal ( ) such that 

 ( ) ∗( − ) = ( ) ∗( − ) + (1 − ) ( ) ∗( − ) (12) 

yields  

 ( ) ∗( − )  (13) 

We see that if a ( ) is found which satisfies (12) for any two signals ( ) and ( ), 
the weighted combination of the two functions can be put into the form of (1) and prove 

the set of AFs are convex. However, there exists no analytic way to solve for a ( ) 
which satisfies (12), thus the set of AFs is not convex. This is a weak mathematical proof 
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and can be supplanted with a practical example. Take two ambiguity functions produced 

by waveforms  ( ) = sin (6 ⋅ 10 ) 	( ) = cos (2 ⋅ 10 )  

Plugging their associated AFs into (9), where   is the set of AFs, we must show an 

example where ( , ) + (1 − ) ( , ) = ( , ) ∈ 	  

is not true to prove  is nonconvex. As will be explained in the next chapter, the time 

domain waveform associated with a particular AF can be calculated within a scaling 

constant from the AF. There are two different formulas by with this calculation is done,  

( ) = 1(0) (− , ) ∗	
( ) = ℱ 1∗(0) ( , )  

which produce matching signals only if the two dimensional function being operated on 

is an AF. If these calculations do not agree, the function is not in the set of AFs . We 

see the disagreement in their respective spectral magnitudes in Figure 2, thus showing an 

example for which (9) does not hold and proving the set of AFs is nonconvex. For this 

reason, convergence is not guaranteed when applying the classic POCS methodology to 

our problem and we apply a generalized variant of POCS, which will be referred to as 

generalized alternating projections.  
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2.3 Prior Art 

The topic of synthesizing a waveform optimized for its AF characteristics is an 

area which has been studied since the early 1960s. It is very important to note that most 

of the following work is tailored towards developed synthesis for the cross ambiguity 

function (CAF). The CAF is used in bistatic radar systems as opposed to the AF used in 

monostatic systems and is defined as 

 ( , ) = ( ) ∗( − )  (14) 

 Notable early work includes that done by Wilcox [23], who devises a least-

squares based approach of using a set of basis waveforms to synthesize a waveform 

whose CAF approximates that of a goal CAF. Sussman [24] and Wolf [25] also provide 

their own approach to synthesizing a waveform which approximates a desired CAF by 

utilizing an orthonormal set of basis functions. Gladkova and Chebanov [26] [27] extend 

Wilcox’s method by improving the practicality of creating a goal AF for the algorithm to 

Figure 2: Disagreement in the spectral magnitude between waveform calculations from ( , ), showing the set of AFs is nonconvex. 
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approximate. Rather than needing to provide a two dimensional function with all the 

analytic properties of an AF, their work made it possible to provide a more general two 

dimensional function to approximate. However, their solution involved using Hermite 

waveforms, whose generation in practice is not very straightforward [28] [29]. Sebt et al. 

[28] propose a technique to extend Sussman’s method using orthogonal frequency 

division multiplexed (OFDM) waveforms with a lowered peak-to-average power ratio, 

making their use in radar applications much more practical. Wang et al. [30] also derived 

methods which are used to lower the PAPR in OFDM signals. Additionally, Rowe et al. 

[31] give a fantastic overview of some of the state of the art work being done in 

waveform design with spectral compliance as a main objective. 

Using projections to synthesize waveforms is another technique which has been 

used previously in literature. Blunt et al. use projections to synthesize waveforms in radar 

embedded communications [32] [33] in work that is tailored towards enabling devices to 

spectrally coexist. Blunt et al. [34] has also recently used projections for spectral and 

pulse shaping in nonlinear FM chirps. Selesnick and Pillai [35] [36] utilize alternating 

projections as well, in work in which they demonstrate a method for synthesizing notched 

chirps. Kassab et al. [37] use alternating projections in a fashion similar to our algorithm, 

however, they focus on optimizing the autocorrelation function of the waveform rather 

than the AF.  

Our work is unique in that it allows a synthesis of a waveform which is not reliant 

on any set of basis functions and has no prior domain knowledge for waveforms or their 

associated ambiguity functions, it focuses on the entire supported range-Doppler region 
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rather than a single correlation, and it provides new metrics on which to judge the quality 

of an AF against a desired function.  
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CHAPTER THREE 

Fundamental Projections for Waveform Design 
 
 

 As previously noted, the waveform synthesis algorithm uses an alternating 

projections method. This method is based on the theory in the extensive literature 

pertaining to set and projection theory [38] [39] and the invaluable techniques which 

have arisen based on their mathematics. This chapter will provide an overview for the 

foundation of the waveform synthesis algorithm and provide results from the basic 

algorithm. Section 3.1.1 will introduce the minimization function and demonstrate how to 

project onto it, Section 3.1.2 demonstrates how to project from the range-Doppler plane 

to the time domain, Section 3.2 introduces and details the distance functions used, 

Section 3.3.1 provides a brief recap of the algorithm through this chapter, and Section 

3.3.2 provides simulation and measurement results using this method. 

 
3.1 Overview of Projections 

 
3.1.1 The Minimization Function 

 As seen in previous AF synthesis literature [25] [23] [24] [40] [26] [27] [41], it is 

commonplace to generate an AF which is used as the goal AF for waveform 

optimization. Most AF synthesis techniques presented in the literature attempt to 

minimize the mean-square error (MSE) between the AF synthesized and the desired AF.  

In several works [25] [23] [24], the goal AF must adhere to the analytic properties of AF. 

Some of these properties [8], notably the energy and area properties shown in (15) and  

(16), greatly constrain the number of two-dimensional functions which can be used as 

AF.  
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 | ( , )| = | (0,0)|  (15) 

 ( , ) = (0) ∗(0) (16) 

By the energy property (15) we see that the squared magnitude of the origin of the AF is 

equal to the energy of the AF as a whole. The area property (16) states that the area under 

the AF is equal to the value of the time domain waveform at = 0, multiplied by the 

value of the conjugate of its  Fourier pair at = 0.  

Because of the specific nature of all the different properties of the AF, in practical 

applications, the radar designer will likely not know or be able to quickly design a two-

dimensional function with the analytic properties of AF that can serve as the goal for 

optimization. Realistically, only a general idea of the desired shape will be known, with 

the designer seeking to minimize the ambiguity in certain range-Doppler regions.  

 We introduce the minimization function, denoted as ( , ), which serves as the 

goal for AF optimization. Rather than trying to find an AF which minimizes the MSE 

between ( , ) and the synthesized AF ( , ), we are only concerned with ensuring 

the ambiguity in  does not exceed that in the corresponding range-Doppler regions in 

. Consider a possibly complex baseband waveform ( ) with pulse duration  seconds, 

bandwidth  Hz, and energy  given by 

 = | ( )|  (17) 

An ( ) is desired with AF ( , ) having normalized magnitude less than ( , ) for 

all range-Doppler combinations which have support, or 
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Lastly, note that we are only concerned with restricting the magnitude of the AF and no 

AF generated will have a shape which does not obey the symmetry property [8]: 

 
∗(− , ) = ( , − )  | (− , )| = | ( , − )| (20) 

Because no AF generated will have a shape which is not axially symmetrical, as shown in 

(20), and axial symmetry is not a difficult property to impose on our minimization 

function (we simply build  for two quadrants and reflect them), we assume that the 

magnitude of the minimization function will adhere to (20). Note that none of these 

assumptions are necessarily required when choosing  for convergence to occur, but 

choosing an  with these properties will in most cases allow for quicker and better 

optimization.  

 The first projection used will be the projection from the set of AFs  to the set of 

minimized functions ℳ. We seek to enforce (18) in the projection, and do so by lowering  

 

the magnitude of  at range-Doppler combinations where it is not satisfied. The 

projection, ℳ, is expressed mathematically as 

 Φ ( , ) = ℳ( ) = ( , ) ( , )| ( , )| ,( , ), ( , ) ∈ ℬ( , ) ∉ ℬ (21) 

where ℬ is the set of range-Doppler combinations for which (18) is not satisfied. The 

result is a possibly complex, two dimensional function for which Φ ∈ ℳ. An example 

of the projection process is shown in Figure 4. Once we have the minimized function Φ , 

an estimate for the waveform whose AF will most closely resemble Φ  must be made. 

For this, a projection to the set of temporal waveforms is needed.  
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 ( , ) = ( + ) ∗( ) , (23) 

where ( ) is the Fourier transform of ( ) ( ) = ℱ ( )  

 The inversion from (22) will first be explored. Note that this equation is an 

equivalent expression to ( , ) = ℱ ( ) ∗( − )  

Taking the inverse Fourier transform gives 

ℱ ( , ) ≡ ( , ) = ( ) ∗( − ) 
and setting = 0 and = − , we arrive at 

(− , ) = (0) ∗( ) 
which can be simplified to the final form of the inversion 

 ℐ ( ) = 1(0) (− , ) ∗ = ( ) (24) 

where  is the inversion operator for the above case. 

 The inversion from (23) can be found in a similar fashion and will now be 

explored. (23) can be expressed as ( , ) = ℱ ( + ) ∗( )  

Taking the Fourier transform gives 

ℱ ( , ) ≡ ( , ) = ( + ) ∗( ) 
and setting = 0 
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( , ) = ( ) ∗(0) 
which can be simplified to the final form of the inversion 

 ℐ ( ) = 1∗(0) ( , ) = ( ) (25) 

where  is the inversion operator for the above case. 

 The projections used to estimate a waveform from Φ  will be based on the 

inversions shown in (24), denoted as ℐ ( ), and (25), denoted as ℐ ( ). Note that if  is 

in the set of AF ( ∈ ), taking the inversion via  will yield the time domain waveform ( ) corresponding to its uniquely defined Fourier transform ( ), produced by taking 

the inversion via . Mathematically, this is expressed as 

 ℐ ( ) = ℱ ℐ ( ) ⇔ ∈  (26) 

Additionally, note that that Φ ∉  unless the intersection Φ ∈ ∩ℳ has been found. 

This is because Φ  is the projection from  to ℳ, and the only time a projection doesn’t 

leave the set from which it is being projected when the intersection has been found [38]. 

Therefore the relationship between the two inversion operations shown in (26) will not 

usually hold when applying  and  to Φ . For this reason, we use both inversions to 

form two projections which will be combined to better approximate Φ . This style of 

projection is typically used in Generalized Projections, an algorithm based on the same 

principles as POCS [38], which was discussed in the previous chapter. 

The projections are done by applying the inversion principles that were derived 

and shown in (24) and (25). However, we are not projecting from the set of AFs , but 

rather from the set of minimized functions ℳ. As was previously discussed in the above 

paragraph, we cannot expect the minimized function Φ  we are now operating on to be in 
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the set of AF. Therefore, we cannot expect the relationship in (26) to hold, meaning the 

function we are operating on, Φ , will not be an AF. As a result, the operations (Φ ) 
and (Φ ) cannot be called inversions, because applying them separately to a function 

which is not an AF will result in two different time domain functions, as the two only 

agree when they are operating on a function which is an AF. These operations will still be 

used, but will be referred to as projections, or 

 ( ) = (Φ ) = 1(0) Φ∗(− , )  (27) 

 ( ) = (Φ ) = 1(0)ℱ Φ ( , )  (28) 

where ( ) is the inversion of the original AF , ( ) = ℐ ( ) = ℱ ℐ ( )  

Note that the inverse Fourier transform is taken in (28) to convert the frequency domain 

projection to a time domain waveform, ( ). 
Each projection gives different information about Φ : (Φ )  shows the 

summation along the  axis, giving information about changes in Doppler, while (Φ ) 
shows the summation along the  axis, giving information about changes in range. Thus, 

a weighted combination of the two projections is likely to give us more information about 

how the next candidate waveform needs to be adjusted in both the range and Doppler 

regions than a single projection could. 

 We consider two different types of weighting the projections: a minimax 

weighting and a mean squares weighting. The purpose of having two weighting methods 

will be further explored when the distance functions are examined, but both are based on 

the amount of change that occurs in the range or Doppler dimension when projecting 
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from  to ℳ. If there is a lot of change in the Doppler summation when compared to the 

range summation, we can assume that the AF of the waveform needs to be changed more 

in the frequency domain. On the other hand, if there is a lot of change in the range 

summation when compared to the Doppler summation, we can assume that the AF of the 

waveform needs to be changed more in the time domain. Thus, the projection with more 

change in its respective summation dimension will be weighted higher. 

The minimax weighting is determined by the largest difference between the 

summation in each projection’s respective dimension, and is given by the functions 

 

(Φ , ) = max ( , ) − Φ ( , )  

(Φ , ) = max ( , ) − Φ ( , )  

(29) 

The mean-squares weighting are determined by the largest MSE between the summation 

in each projection’s respective dimension, and is given by the functions 

 

(Φ , ) = ( , ) − Φ ( , )  

(Φ , ) = ( , ) − Φ ( , )  

(30) 

The weighted combination of ( ) and ( ) is then given by 

 ( ) = (Φ , ) ⋅ ( ) + (Φ , ) ⋅ ( ) (31) 

with the either the minimax or mean-squares weighting functions being used, depending 

on the type of optimization. Thus, the projection from ℳ to  is given by 

 ( ) = (Φ , ) = (Φ , ) ⋅ (Φ ) + (Φ , ) ⋅ (Φ ) (32) 

The algorithm can then be concisely written as 
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1. ( ) = ℳ ,  

2. ( ) = ( )  
(33) 

where  is the energy of ( ). 
 

3.2 Distance Functions 
 
 In order to assess the quality of the candidate waveform synthesized at each 

iteration, a distance function must be created to serve as a numerical metric. The distance 

function is designed with the intent of measuring how well  is fitted to  and is named 

as such because we are attempting to measure the distance between the current location in 

the set of AFs, , to the closest point in the set of minimization functions, ℳ. The 

smaller the distance, the better our synthesized AF adheres to the minimization properties 

we desire. Two types of optimization, with their respective distance functions, are 

available: minimax and mean-squares optimization. The corresponding weighting 

functions are used for each optimization type, and the waveform with the lowest 

corresponding distance function is chosen as the optimum. 

 The minimax distance function finds the worst case range-Doppler ambiguity and 

is given by 

 ( , Φ ) = max( , )∈ℬ | ( , )|| (0,0)| − |Φ ( , )||Φ (0,0)| (34) 

Note that the value of  will always between 0 and 1, since |Φ ( , )| will never 

exceed | ( , )| and the normalized values will never exceed 1 [1]. 

 The mean-square distance function is determined by the MSE between  and Φ  

and is given by 
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 ( , Φ ) = 1(4 ) | ( , )|| (0,0)| − |Φ ( , )||Φ (0,0)|  (35) 

Note that the value of  will always be between 0 and the mean of the normalized 

magnitude of . 

 At each iteration, the value of  or  is calculated. If the value of the  

distance function is lower than that of the previous optimum, ( ) is chosen to be the 

new optimum waveform. The algorithm can continue to iterate while checking for a new 

optimum waveform at each iteration. 

 
3.3 Results and Conclusions 

 
3.3.1 Results 

 The algorithm was tested in both simulation and with measurements using a 

Keysight Technologies signal generator and oscilloscope. Results are provided for four 

trials, each with a different minimization function. Each trial generated a 540 sample 

waveform in a maximum of 100 iterations with = 16.81	  and = 8	 . The 

initial AF  was a ones array in all trials. The results are summarized in Table 1. 

Graphical results for the simulated mean-squares optimization are shown in Figure 5 

through Figure 8 while measured results are shown in Figure 9 through Figure 12; the 

results from the minimax optimization are now shown because the convergence is 

extremely similar to that of the mean-squares. 

Trial I (Figure 5 and Figure 9) shows the resulting AF produced when initialized 

with a checkerboard style minimization function. The resulting waveform appears almost 

periodic and fits most of the AF volume into the five squares on the zero-Doppler axis. 

Trial II (Figure 6 and Figure 10) shows the result when initialized with a minimization 
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function consisting of a sharp diagonal crest. The result is a chirp waveform, which fits 

most of its ambiguity volume into the crest. Trial III (Figure 7 and Figure 11) is 

initialized with a minimization function which has several circles depressed into the 

surface. This might be what a practical implementation looks like, with circles with 

varying sizes placed near the approximated interferers. Trial IV (Figure 8 and Figure 12) 

shows the result for a minimization function which has a constrained main lobe and an 

acceptable region for the ambiguity in a box around the main lobe.  

 
TABLE 1: SUMMARY OF RESULTS 

Trial I II III IV 

Optimization 
Type MS MM MS MM MS MM MS MM 

Optimum 
Iteration 16 14 100 11 81 16 100 100 

PAPR (dB) 8.425 8.335 1.714 2.356 8.413 8.891 9.149 9.660 

Mean-
Squares 
(Simulation) 

14.34e-6 15.00e-6 331.9e-6 464.7e-6 0.427e-6 1.952e-6 0.748e-6 1.073e-6 

Minimax 
(Simulation) 0.04983 0.04774 0.39679 0.35103 0.03346 0.02561 0.01829 0.02688 

Mean-
Squares 
(Measured) 

15.02e-6 15.07e-6 335.0e-6 469.7e-6 0.796e-6 3.181e-6 0.715e-6 0.953e-6 

Minimax 
(Measured) 0.05751 0.05165 0.40037 0.35218 0.03312 0.03226 0.01503 0.02321 

 

 However, there are some results in Table 1 which at face value may be 

unexpected. We see that the optimum iteration for Trials II and III is much lower in 

minimax optimization as opposed to mean-squares optimization. This would suggest that 

the minimax-based algorithm is converging much quicker than the mean-squares. 

However, looking at Figure 13, we see that while convergence is slightly quicker for 
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minimax, they both stop making large improvements around the same iteration. The 

mean-squares optimization continues to slightly improve, while the minimax hits a local 

minimum early on. We see the quality of the AF in both instances doesn’t change a 

significant amount after a certain number of iterations, meaning that any waveform after 

a certain point would have practically been just as good and the large difference in the 

optimum iteration number is not nearly as big of a performance difference as it appears. 
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3.3.2 Conclusions 

 As seen in the above results, the projections algorithm does a good job of 

producing waveforms whose AF volume is constrained to regions specified by a chosen 

minimization function . The results shown are expected; the lower magnitude regions 

of the synthesized AF correspond well with the lower magnitude regions in the 

minimization function. Additionally, we see the expected implication of minimizing in 

certain regions: the higher magnitude regions of the synthesized AF correspond with the 

higher magnitude regions in the minimization function.  

An algorithm has been proposed which used alternating projections to 

dynamically optimize a waveform based on ambiguity minimization criteria in selected 

range-Doppler regions. Two types of optimization are presented: minimax optimization 

and mean-squares optimization. Slight variations between the two in the algorithmic 

process were explained, as well as the differing distance functions used to assess 

waveform quality. The algorithm is outlined below. 

Algorithm 1 Waveform synthesis via alternating projections for AF optimization with no 
external constraints 
Input: Minimization function ( , ), initial AF ( , ), # iterations, optimization 
type, , , desired energy  
Output: Optimum waveform ( ) 

1. for = 0 ∶ # iterations 
2.      if , ℳ <  

3.           = , ℳ  
4.           ( ) = ( ) 
5.      end if 
6.      ( ) = ℳ ,  

7.      ( ) = ( )  

8. end for 
9. Return ( ) 
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CHAPTER FOUR 
Designing for Additional Waveform Considerations 

 
 

 In the previous chapter, projections which serve as the basis for our waveform 

synthesis algorithm were examined. The algorithm outlined was designed to synthesize a 

waveform ( ) with pulse duration  seconds and bandwidth  Hz with desired 

ambiguity function (AF) properties. While this approach is very good at designing radar 

waveforms with an optimized AF, other waveform characteristics must also be 

considered when designing for radar. This chapter will focus on two very important [45] 

[7] characteristics: peak-to-average power ratio (PAPR) and the spectrum of the 

waveform. The PAPR for waveform ( ) is defined in dB as  

 = 10 ⋅ log | |MAX

RMS
 (36) 

where | |MAX is the maximum magnitude of ( ), or | |MAX = argmax | ( )| 
and RMS  is the root-mean square (RMS) value of ( ) given by 

 RMS = 1 | ( )|  (37) 

The spectrum is defined as the magnitude of the Fourier Transform of ( ) in the region − ≤ ≤  Hz. Section 4.1 will discuss why we are concerned with the PAPR and 

spectrum of the waveform. Section 4.2.1 will demonstrate how to project onto the set of 

waveforms with acceptable PAPR, while Section 4.2.2 examines the projection onto the 

set of waveforms with an acceptable spectrum, and Section 4.2.3 explains how the 
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projections are combined and fit into the overall algorithm. Section 4.3 gives a brief recap 

of the algorithm through this chapter, and Section 3.4.2 provides simulation and 

measurement results using this method. 

 
4.1 Considering PAPR and Spectrum 

 
4.1.1 Importance in Waveform Design 

 This section will explain why a radar operator would care about a waveform’s 

PAPR and Spectrum, focusing first on PAPR. In order to properly address the importance 

of PAPR in waveform design, we must first understand some basic operation 

characteristics of analog RF. There are multiple metrics of measuring the efficiency of a 

power amplifier [46] [47] [48] [49], including: collector efficiency, overall efficiency, 

power-added efficiency, and power output capability. These metrics differ slightly and 

allow us to measure different aspects of an RF power amplifier, but most have a common 

theme. Increased efficiency is usually associated with increased gain and RF output 

power, while decreases in efficiency can often be related to increases in DC input power 

or lower gain. Because of these relationships, a power amplifier will typically be most 

efficient when operating in the saturation region and will be inefficient when operating 

over a larger amplitude range or in the linear region. Because operation in the linear 

region is inefficient and can even have a negative impact on the lifetime of the transmitter 

[28] [50], lower PAPR can allow operation with increased efficiency of the amplifier. 

Due to the increasing number of wireless devices and the United States’ National 

Broadband Plan to convert 500 MHz to broadband wireless communications by 2020, the 

value of spectrum is currently at an all-time high. While the available spectrum for 
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civilian and military radar systems is tightening, the importance of these systems 

mandates the preservation of their accuracy and performance [51]. In addition to using 

waveforms with lower bandwidth requirements, complications arising from sharing 

nearby spectral space must also be addressed. A growing area dealing with this is 

cognitive radio, a technology whose potential implications could allow for great 

flexibility between devices, resulting in a more efficient use of the spectral space [52]. 

Cognitive radar has emerged as the use of a similar cognitive approach in radar systems 

[53] [54]. A waveform synthesis technique which can dynamically adjust its spectrum to 

allow for coexistence with other wireless devices is of utmost importance when moving 

towards cognitive radio-friendly technologies. It is well known that non-linearities in 

power amplifiers result in spectral spreading. One common method of combating this 

problem in cognitive radio through signal processing is by the use of spectral notching 

[55], which will be further explored in Section 4.2.2. This work focuses on the use of 

spectral masks, a measure which is often used in cognitive radio [56] and in wireless 

transmissions [57] [58]. 

In short, this chapter will explain methods allowing the waveform we synthesize 

to be both amplifier and spectrally friendly. 

 
4.2 Projections for PAPR and Spectrum 

 Let us again consider possibly complex baseband waveform ( ), with pulse 

duration  seconds and bandwidth  Hz. Recall that the set of waveforms with pulse 

duration  seconds and bandwidth  Hz is referred to as . This section will provide the 

mathematical tools to ensure that ( ) will also have a user-specified PAPR and energy, 

as well as a spectrum fitting inside a user-defined spectral mask. Both waveform 



40 
 

characteristics are ensured via a separate alternating projections technique which is 

computationally inexpensive and will run at the end of each iteration in the main 

projections algorithm. 

 
4.2.1 Projections to Ensure Desired PAPR 

 Let the set of waveforms with PAPR less than or equal to Γ be  and the set of all 

waveforms with energy to  be ℰ. Starting from ( ) ∈ ℰ ∩ , we seek to find an ( ) 
which has an acceptable PAPR and energy, or such that 

 ( ) ∈ ∩ ℰ ∩  (38) 

It is also useful to note that the intersection between ℰ and  is non-empty and that a 

closed form solution for the maximum possible magnitude of a signal existing in the 

intersection may be easily derived. In other words, consider a signal ( ) for which (38) 

is satisfied. The RMS value for ( ) is first found with (37) and, assuming Γ is given in 

dB, the calculation for PAPR in (36) is then easily inverted to yield 

 | |MAX = RMS 10 = 1 ⋅ 10  (39) 

The set of signals with a maximum magnitude of equal to or less than that given by (39) 

will be called . This means that, given a desired PAPR Γ and energy , we can calculate 

the maximum acceptable value of the waveform. This value will be referred to as  

 = 1 ⋅ 10  (40) 

Note that because any weighted combination of any two signals with an acceptable PAPR 

will also have an acceptable PAPR,  is a convex set. Additionally the intersection of 
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waveforms with acceptable energy and maximum magnitude will be a subset of the set of 

waveforms with acceptable PAPR, or 

 ℰ ∩ ⊂  (41) 

This means that once the intersection of ℰ and  has been found, (38) is satisfied and a 

solution has been found. 

Because  is extremely easy to project to and is convex, it will be used as the set 

onto which we project from ℰ instead of projecting directly to . This projection is done 

by limiting the maximum magnitude of the waveform to the magnitude calculated by 

(40), mathematically expressed as 

 ( ) = ( ) = ( ) | ( )| , | ( )| > | |MAX( ), | ( )| ≤ | |MAX

 (42) 

The projection back to ℰ is done via a simple energy normalization 

 ℰ( ) = ℰ( ) = ( ) | ( )|  (43) 

These projections are applied alternately until the intersection has been found. The 

algorithm to find a waveform which satisfies (38) can then be written concisely as 

 ( ) = ℰ ( )  (44) 

 
4.2.2 Projections to Ensure Desired Spectrum 

 The spectral projection is done in a manner very similar manner to the PAPR 

projections. Denote the set of all signals whose spectral magnitude falls under a given 

spectral mask, ( ), as . An examples of a spectra which do and do not comply with a 

given spectral mask are shown in Figure 14. Note that because any weighted combination 

of any two signals with an acceptable spectrum will also have an acceptable spectrum,  
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One interesting aspect of the method used to ensure spectral compliance is that it 

only depends on the shape of the desired spectral magnitude. An implication of this is 

that useful waveform characteristics, such as spectrum notching, can be easily 

implemented by altering . An example of a notched waveform created using this 

method is shown in Figure 15.  

 
4.2.3 Ensuring Both Desired Spectrum and Desired PAPR 

 The previous two subsections discussed methods which ensure that the 

synthesized waveform will have a desired PAPR and spectrum, respectively. Building off 

of these methods, we can easily combine the projections to jointly ensure both criteria are 

met. We find a waveform with acceptable PAPR, spectrum, and energy, such that 

 ( ) ∈ ∩ ℰ ∩ ∩  (49) 

with an alternating projections algorithm based on the previous projections, written as 

 ( ) = ℰ ( )  (50) 

Figure 15: Spectrum of a notched waveform created using the projections algorithm 
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which iterates until either (49) is satisfied or adequately near. 

 
4.3 Results and Conclusions 

 
 

4.3.1 Results 

The algorithm is tested in both simulation and with measurements using a 

Keysight Technologies signal generator and oscilloscope. Results are provided for four 

trials, each with a different minimization function. Each trial generated a 540 sample 

waveform in a maximum of 100 iterations with = 16.81	  and = 8	 . The 

initial AF  was a ones array in all trials. The maximum allowed PAPR is 2 dB in all 

trials and the spectral mask is shown in red in the middle figure of the spectrum on each 

page. The results are summarized in Table 2. Graphical results for the simulated mean-

squares optimization are shown in Figure 16 through Figure 19 while measured results 

are shown in Figure 20 through Figure 23. The results for minimax optimization are not 

shown, as their convergence is graphically very similar to that of the mean-squares 

optimization. 

Trial I (Figure 16 and Figure 20) shows the resulting AF produced when 

initialized with a checkerboard style minimization function. The resulting waveform 

appears almost periodic and fits most of the AF volume into the five squares on the zero-

Doppler axis. Trial II (Figure 17 and Figure 21) shows the result when initialized with a 

minimization function consisting of a sharp diagonal crest. The result is a chirp 

waveform, which fits most of its ambiguity volume into the crest. Trial III (Figure 18 and 

Figure 22) is initialized with a minimization function which has several circles depressed 

into the surface. This might be what a practical implementation looks like, with circles 
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with varying sizes placed near the approximated interferers. Trial IV (Figure 19 and 

Figure 23) shows the result for a minimization function which has a constrained main 

lobe and an acceptable region for the ambiguity in a box around the main lobe.  

 
TABLE 2: SUMMARY OF RESULTS 

Trial I II III IV 

Optimization 
Type MS MM MS MM MS MM MS MM 

Desired 
Energy 3400 3400 3400 3400 3400 3400 3400 3400 

Desired 
PAPR 2 dB 2 dB 2 dB 2 dB 2 dB 2 dB 2 dB 2 dB 

PAPR (dB) 1.9998 1.9998 1.4734 1.9999 2.0000 1.9996 1.9999 1.9999 

Optimum 
Iteration 100 43 89 100 53 61 15 20 

Mean-
Squares 
(Simulation) 

240.0e-6 260.3e-6 275.8e-6 511.9e-6 147.4e-6 215.9e-6 205.9e-6 208.5e-6 

Minimax 
(Simulation) 0.23994 0.22426 0.36475 0.43895 0.16660 0.14282 0.24662 0.14560 

Mean-
Squares 
(Measured) 

236.6e-6 255.7e-6 276.0e-6 515.0e-6 146.0e-6 212.9e-6 190.8e-6 185.4e-6 

Minimax 
(Measured) 0.24195 0.22239 0.37018 0.44106 0.16621 0.14128 0.25200 0.13660 
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4.3.2 Conclusions 

As seen in the above results, the projections algorithm does a good job of 

producing waveforms whose AF volume is constrained to regions specified by a chosen 

minimization function , while also ensuring that the spectrum of the waveform 

produced conforms to the user-specified spectral mask and the PAPR of the waveform is 

below a required user-defined value. The results shown are expected; the lower 

magnitude regions of the synthesized AF correspond well with the lower magnitude 

regions in the minimization function. Additionally, we see the expected implication of 

minimizing in certain regions: the higher magnitude regions of the synthesized AF 

correspond with the higher magnitude regions in the minimization function.  

Note that the waveforms produced in these results have higher distance function 

values than those shown in the previous chapter, when PAPR and spectrum were 

unconstrained. This result is also expected, because imposing both of these requirements 

on the synthesized waveform greatly constrains the size of the set of waveforms we can 

choose from. In the previous chapter, the set of waveforms was mostly unconstrained: 

any waveform with a normalized energy and of a certain temporal length and bandwidth 

which was in the support of the AF was acceptable. Constraining the set of waveforms in 

both the potential amplitude space and the potential frequency space will reduce the size 

of the set of acceptable waveforms, thus making it more likely for convergence to occur 

at a greater distance from the set of minimization functions. 

Building off of the algorithm outlined in Chapter 3, techniques were examined 

which guarantee that the synthesized waveform meets user-specified spectral and PAPR 

constraints. The algorithm is outlined below. 
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1. Algorithm 2 Waveform synthesis via alternating projections for AF optimization 
with constraints on PAPR and spectrum 

2. Input: Minimization function ( , ), initial AF ( , ), # iterations, 
optimization type, , , desired energy , desired PAPR Γ, and spectral mask  

3. Output: Optimum waveform ( ) 
4. for = 0 ∶ # iterations 
5.      if , ℳ <  

6.           = , ℳ  
7.           ( ) = ( ) 
8.      end if 
9.      ( ) = ℰ ℳ ,  

10.      while PAPR > Γ or | ( )| > ( ) or <  

11.           ( ) = ℰ ( )   

12.      end while 
13. end for 
14. Return ( ) 
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CHAPTER FIVE 
Conclusions 

 
 

 An algorithm has been presented which uses projections to synthesize radar 

waveforms which have desired range-Doppler resolution properties under user-defined 

PAPR and spectral constraints. This algorithm will allow for real-time radar waveform 

synthesis which can respond to changes in the targets’ locations and adaptively prioritize 

the importance of the waveform’s accuracy, power amplifier efficiency, and bandwidth. 

Based on results from the unconstrained optimization in Chapter Three and the 

constrained optimization in Chapter Four, a tradeoff between the quality of the 

synthesized waveform’s AF and the degree to which PAPR and spectrum is constrained 

is apparent. This tradeoff can also be theoretically understood by realizing that 

constraining the set of waveforms to those with acceptable PAPR and bandwidth will 

reduce the size of the set, which likely further separates the set of minimized functions to 

the set of associated AFs. In addition to PAPR and bandwidth requirements, the 

algorithm can easily synthesize waveforms with notched spectrums or non-uniform 

frequency magnitude in its band based on the spectral mask given as an input. 

 This work is novel in several ways, most notably in the approaches which allow it 

to be very robust. Unlike previous works [41] [26] [27] [34] [40] [23] [24] [25] which 

often use a library of basis functions or pulses to construct waveforms, no prior domain 

knowledge is required for the algorithm to converge to a useful solution. Additionally, 

the minimization function on which the algorithm optimizes is very general, in that it 

does not necessarily need to conform to typical AF properties for convergence as is 
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required in some other works [23] [24]. Additionally, while some works focus on the 

autocorrelation properties in either range or Doppler [34] [58], the entirety of the support 

on the range-Doppler plane for a waveform is considered. Some works also focus on 

providing a more general AF [41] [27] whose shape resembles that of a thumbtack, while 

this work allows for adaptive design based on the target environment. These two 

approaches may be well-suited for combination in a practical radar system, with 

waveforms having the more general AF shape used to come up with an initial target 

location map which can be used to construct a minimization function which will be used 

to construct a more custom waveform using this approach. 

 One potential issue with this approach is that the nonlinearities of the high power 

amplifier are not taken into account when synthesizing the waveform. Not considering 

the effects of the amplifier has several consequences. Firstly, the amplifier non-linearities 

may cause intermodulation distortion which can result in spectral spreading, creating 

potential to interfere with adjacent bands. Secondly, our previous work [59] has shown 

that these non-linearities will have a subsequent impact on the output waveform’s AF, 

which will likely have a negative effect on the quality of the synthesized AF’s adherence 

to the desired minimization function. This is an issue that should be taken into 

consideration in the continuing progression of this work.  

 The spectral consequences discussed above may be remedied by applying load-

pull based circuit optimization techniques which have been developed concurrently with 

this research in Baylor’s Wireless and Microwave Circuits and Systems lab [60] [61] [62] 

[63] [64] [51]. These techniques alter circuit parameters to optimize the power added 

efficiency and adjacent channel power ratio of the system. While preventing spectral 
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spreading in the waveform optimization process would be ideal, cascading the waveform 

synthesis algorithm with the load-pull optimization should minimize the effect of spectral 

spreading by finding a circuit configuration with a spectrally compliant output. This leads 

us to the overall goal of this work: providing a joint waveform and circuit optimization. A 

joint optimization would be able to simultaneously adjust the waveform and circuit 

parameters in response to changes in the operating environment and would be a fantastic 

contribution towards a cognitive radar system. 
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