

ABSTRACT

Analysis of Transaction Throughput in P2P Environments

Arun Chokkalingam

Mentor: Gregory D. Speegle, Ph.D.

In recent years P2P systems have gained tremendous popularity. Support of a

transaction processing facility in P2P systems would provide databases at a low cost.

Extending distributed database algorithms such as 2PC and ROWA to P2P environments

might not provide the best performance because the P2P systems are characterized by high

site failure rates and an unpredictable network topology. The choice of algorithms in

building P2PDB is difficult because of the lack of information about the performance of

database algorithms in P2P environments. This thesis analyzes the performance of one such

algorithm, the epidemic algorithm against the performance of traditional database algorithms

in simulated P2P environments.

.

Copyright © 2005 by Arun Chokkalingam

All rights reserved

 iii

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF EQUATIONS x

LIST OF ABBREVIATIONS xi

ACKNOWLEDGMENTS xii

DEDICATION xiii

Chapters

1 Introduction 1

1.1 The Problem……………………………………………………………….. 4

1.2 Background………………………………………………………………… 4

1.2.1 DBMS and Transactions………………………………………….. 4

1.2.2 Distributed Databases……………………………………………... 6

1.2.3 Replication………………………………………………………… 7

1.3 Overview…………………………………………………………………… 7

2 Related Work. 8

2.1 Database Techniques………………………………………………………. 8

2.2 P2P Techniques……………………………………………………………. 10

3 Two Phase Locking Scheduler Simulation 13

3.1 Two Phase Locking Scheduler……………………………………………. 13

3.2 Two Phase Locking Scheduler Simulation Design and Implementation … 14

 iv

3.2.1 The Lock-Wait Table……………………………………………… 14

3.2.2 The Process Method Operation………………………………….... 15

3.3 The Centralized Database System ………………………………………... 15

3.3.1 Local Database ………………………………………………….. 16

3.3.2 Transaction Manager……………………………………………… 17

3.3.3 Scheduler………………………………………………………….. 17

3.3.4 Transaction………………………………………………………... 17

3.3.5 Operations…………………………………………………………. 18

3.4 Experiments for the verification of the correctness of the Scheduler
 Simulation ………………………………………………………............... 20

3.4.1 Description of Two Phase Locking and Thrashing Behavior …….. 20

3.4.2 Parameters………………………………………………………..... 21

3.4.3 Results……………………………………………………………… 23

4 Simulation of a Traditional Distributed Database Techniques 32

4.1 Traditional Database Techniques used in the Distributed Database
Systems……………………………………………………………….….. 27

4.1.1 Two Phase Locking Scheduler …………………………………… 27

4.1.2 Read One Write All Mechanism………………………………...... 27

4.1.2 The Two Phase Commit Protocol………………………………… 28

4.2 Distributed Database Simulation………………………………………...... 32

4.2.1 Global Manager…………………………………………………… 33

4.2.2 Transaction Manager……………………………………………… 35

4.2.3 Communication Manager……………………………………….... 36

4.2.4 Operations………………………………………………………… 37

4.3 Verification of the correctness of our distributed database simulation........ 37

 v

4.3.1 Description of the Simulation in (Carrey and Livny 1991)………. 37

4.3.2 Modeling our simulation to match the parameters of the
 experiments of Carrey and Livny (Carrey and Livny 1991)……… 40

4.3.3 Differences between our simulation and
 (Carrey and Livny 1991)………………………………………...... 41

4.3.3 Results of the Experiments……………………………………....... 42

5 Simulation of Epidemic Algorithms 43

5.1 Epidemic Algorithms……………………………………........................... 43

5.1.1 Optimistic Protocol…………………………………….................. 43

5.1.2 Pessimistic Protocol……………………………………................. 46

5.2 Simulation of Epidemic Algorithms……………………………………… 46

5.2.1 Global Manager……………………………………....................... 46

5.2.2 Transaction Manager……………………………………................ 47

5.2.3 Communication Manager…………………………………………. 49

5.2.4 Time Table……………………………………............................... 49

5.2.5 Transaction Record...……………………………………............... 49

5.2.5 Other Components....……………………………………............... 49

5.3 Verification of our Simulation of Epidemic Algorithms……………..…… 51

5.3.1 Verification Experiments…………………………………………. 51

6 Experiments and Results 59

6.1 Parameter Settings for the Experiments…………………………………... 59

6.1.1 Communication Time……………………………………............... 59

6.1.2 I/O Time………………………………………............................... 59

6.1.3 Duration of Read Write and Log Write…………………................ 59

6.1.4 Bandwidth…………………………….…………………............... 59

 vi

6.1.5 Time to Failure and Time to Recover…………………………...... 63

6.1.6 Other Parameters………………………………………………….. 63

6.2 Experiments and Results...………………….…………………………….. 65

6.2.1 Experiment 1: Time To Failure Fixed at 60 seconds and
 Time to Recover Fixed at 2 seconds ……………………………… 66

6.2.2 Experiment 2: Time To Failure Fixed at 60 seconds and
 Time to Recover Fixed at 10 seconds ……………………………. 67

6.2.3 Experiment 3: Time To Failure Fixed at 60 seconds and
 Time to Recover Fixed at 60 seconds ……………………………. 67

6.2.4 Experiment 4: Time To Failure Fixed at 60 seconds and
 Time to Recover Fixed Varied between 2 to 60 seconds… …........ 68

6.2.5 Experiment 5: Time To Failure Varied from 30 to 90 seconds and
 Time to Recover Fixed at 2 seconds ……………………………... 68

6.2.6 Experiment 6: Time To Failure Varied from 30 to 90 seconds and
 Time to Recover Fixed at 10 seconds …………………………….. 69

6.2.7 Experiment 7: Time To Failure Varied from 30 to 90 seconds and
 Time to Recover Fixed at 60 seconds ……………………….……. 69

6.2.8 Experiment 8: Time To Failure Varied from 30 to 90 seconds and
 Time to Recover Fixed Varied between 2 to 60 seconds …............ 70

6.2.9 Experiment 9: Low Conflict Scenario with Time To Failure Fixed
 Varied from 30 to 90 seconds and Time to Recover Varied from
 2 to 60 seconds and MPL = 5……………………………………... 70

7 Conclusion and Future Work 74

7.1 Conclusion………………………………………………………………… 74

7.2 Future Work and Recommendations……………………………….…….. 75

BIBLIOGRAPHY 78

 vii

LIST OF FIGURES

1.1 Example of a distributed database .. 3

1.2 Inventory table of a database .. 5

3.1 A transaction’s phases when it goes through a two phase locking scheduler 14

3.2 Algorithm used by ProcessOperation of 2PL Scheduler.................................... 16

3.3 The system model for the centralized database simulation experiments 17

3.4 Algorithm used by the process method of transaction manager 18

3.5 Graph that shows the variation of throughput with multi programming level

at the simulated 32 second interval ... 23

3.6 Results of analysis of Alexander Thomassian (Thomassian 1993) 24

3.7 Results from simulation at time = 32 seconds………………………………….. 25

3.8 Comparison of median experimental and estimated response times at 32

seconds………………………………………………………………………….. 25

3.9 Error between the median experimental time and estimated response…………. 26

4.1 Two Phase Commit protocol…………………………………………………… 30

4.2 The system model of the distributed database simulation……………………... 34

4.3 The algorithm of the process method of the global manager ………………..... 34

4.4 receiveOperation method of the global manager, parameter: operation 35

4.5 processOperationOrMessgage method of transaction manager 36

5.1 Transaction Record as perceived during the epidemic algorithms proposal....... 44

5.2 Process method of global manager for epidemic algorithms…………………... 47

5.3 ProcessTransactionRecord of transaction manager ... 62

6.1 Results for TTF = 60 seconds and TTR = 2 seconds ... 66

6.2 Results for TTF = 60 seconds and TTR = 10 seconds 67

6.3 Results for TTF = 60 seconds and TTR = 60 seconds 67

 viii

6.4 Results for TTF = 60 seconds and TTR varied from 2 to 60 seconds 68

6.5 Results for TTF varied from 30 to 90 seconds and TTR = 2 seconds 68

6.6 Results for TTF varied from 30 to 90 seconds and TTR = 10 seconds……….... 69

6.7 Results for TTF varied from 30 to 90 seconds and TTR = 60 seconds………… 69

6.8 Results for TTF varied from 30 to 90 seconds and TTR varied from 2 to 60
 seconds………... 70

6.9 Results for TTF varied from 30 to 90 seconds and TTR varied from 2 to 60
 seconds and MPL=5... 70

 ix

LIST OF TABLES

3.1 Structure of an operation ... 19

3.2 Status of an operation .. 10

3.3 The parameter settings for the centralized database simulation 21

4.1 The parameter settings for the experiments of (Carrey and Livny 1991) 40

4.2 The parameter settings for our distributed database simulation 41

4.3 The results of our distributed database simulation .. 42

5.1 The parameter settings for the epidemic algorithms simulation testing ……….. 51

5.2 Test case 1 for epidemic algorithms simulation…………….. 52

5.3 Test case 2 for epidemic algorithms simulation…………….. 53

5.4 Test case 3 for epidemic algorithms simulation…………….. 54

5.5 Test case 4 for epidemic algorithms simulation…………….. 56

5.6 Test case 5 for epidemic algorithms simulation…………….. 57

6.1 The parameter settings for p2p environment simulation..................................... 65

 x

LIST OF EQUATIONS

3.1 Thomassian’s formula for Mean Response Time ... 21

3.2 Duration of Read Operation derived by Ulusoy and Belford 22

5.2 Time Table Property for Epidemic Algorithms .. 45

 xi

LIST OF ABBREVIATIONS

P2P – Peer to Peer

P2PDB – Peer to Peer Database

2PL – Two Phase Locking

2PC – Two Phase Commit

ROWA – Read One Write All

SETI – Search for Extra Terrestrial Intelligence

 xii

ACKNOWLEDGMENTS

I would like to thank my mentor, Dr. Speegle, for his guidance and time which

helped me achieve this scholarly endeavor. His expertise and insights were invaluable. I

thank Dr. Donahoo, Dr. Gipson and Dr.Green for providing valuable comments and

suggestions on this work.

 xiii

To Mom for her love and support

1

CHAPTER ONE

Introduction

In recent years P2P systems have gained tremendous popularity and consumed a

tremendous amount of the global network traffic. Estimates are that 60 to 80 percent of the

capacity on consumer ISP networks is consumed by P2P applications (Peer to Peer

Estimation Website 2005). P2P file sharing applications like Gnutella (Gnutella 2005) and

Freenet (Clarke et al. 2000) have brought enormous attention to the P2P systems. However

there are many P2P applications. Chinook Online (Chinook 2005) dynamically discovers

new bioinformatics services across a heterogeneous network and allows the users to run

distributed bioinformatics programs. SETI (SETI Homepage 2005) uses the power of peer-

to-peer computing to search for extraterrestrial intelligence by analyzing radio telescope

data.

Another possibility for P2P systems is the idea of incorporating database

functionality. Let us consider a database application distributed among these peers. Consider

the scenario of a student group conducting an event and needing a database server to handle

the registration and management of the event. If they could achieve this by connecting to an

existing P2PDB network or using a network of student computers, they would save a lot of

time and cost. In this application, a user would register via a website. The web server would

then use the student computers in the P2PDB to store the data. This is better than a single

database because the availability is high (in our example, even if some of the student

computers experience failure, the P2PDB will still continue working). Once a user registers,

the database functionality would ensure that the data at sites contains this information.

 2

Thus, incorporating database functionality on the peer-to-peer systems would equip

organizations with powerful database servers for low cost.

Various problems like security, performance, storage, etc. emerge when we try to

incorporate database functionality into P2P environments. Storage management is a concern

because these peers are usually desktop computers with very little memory for sharing.

When data is stored in numerous unknown peers, security of data becomes an important

issue. This work is primarily concerned with performance. The peers in the P2P systems are

characterized by high failure rates and the composition of the system is not known

beforehand, which is not the case in typical distributed database applications. Thus the

performance of standard database techniques in P2P is unknown

While trying to choose algorithms for P2PDB, the natural solution is to extend the

already existing and stable algorithms used in distributed databases. Distributed databases

are those where the data is dispersed among multiple sites (which are stable). An example of

a distributed database is that of a company which has its department records (eg: HR,

Finance and Sales) in different cities (eg: Austin, Waco, Dallas) as shown in Figure 1.1.

Replication of data is done to increase availability. In this example, HR information could

be replicated at all three sites to increase its availability. For instance, failure of individual

nodes would not prevent retrieval. Likewise, the communication overhead of accessing the

data from a remote site is eliminated. When replicated data has to be handled by a

distributed database, DDMSs like PostgreSQL (Johnson, 2002) and Oracle (DBASupport’s

Oracle Replication Site 2005) implement a protocol called ROWA (Read One Write All) to

ensure consistency of data across all the sites. As the name implies, when a transaction

wants to read the data it does so from one site (usually the nearest) and when a transaction

wants to write data, it performs a write at all the database sites that contain a copy of the

 3

data. To ensure global atomicity (the effects of the committed transactions take place at all

sites), distributed database systems implement the 2PC (Two-Phase Commit Protocol)

(Bernstein et al. 1987). Detail descriptions of ROWA and 2PC can be found in Chapter

Four.

Fig. 1.1. Example of a distributed database

Since P2P systems are characterized by high failure rates of the peers, extension of

these techniques to the P2P systems might not scale well as many peers may end up waiting

for the response of peers which have already left the system. The lack of instantaneous

notification of peer failures also poses a threat to the performance of these algorithms since

the transactions would wait until all the peers update their local data without knowing that

some of them have failed. Deciding a timeout interval for these transactions is difficult as

 4

the nature of the network cannot be predicted. Hence investigation of other protocols is

necessary in order to decide the optimal choice of the algorithms for P2PDBs.

Epidemic Algorithms for replicated databases were proposed before the advent of

peer-to-peer systems (Agrawal et al. 1997). Here the transactions execute all their operations

locally at one site and the effects of these transactions are propagated through the system

later like a disease, hence the name “epidemic”. Since the effects of the transactions are

propagated later, transactions at peers do not get blocked due to the failure of other peers.

Hence epidemic algorithms should prove to be a better choice than the ROWA Protocol

coupled with Two Phase Commit for P2PDB. Conflicts detected during the propagation are

resolved by application specific rules and the epidemic algorithms work better in

environments with low probability of conflicts. A detailed description of epidemic

algorithms is presented in Chapter Five.

1.1 The Problem

This thesis compares the performance of 2PC under ROWA semantics against the

performance of the Epidemic Algorithms under simulated peer-to-peer environments so as

to determine the best approach for P2PDBs.

1.2 Background

1.2.1 DBMS and Transactions

This section presents the background information on databases and transaction

processing necessary to have a complete understanding of the thesis. Readers familiar with

these concepts can skip this section. A database is an organized collection of information

typically represented as tables (Bernstein et al. 1987). Each of these tables is a collection of

 5

records of related items. Figure 1.2 shows an inventory table containing inventory records in

a database.

Fig. 1.2 Inventory table of a database

Each of the rows of the table represents a record. A DBMS (Database Management

System) is a set of programs responsible for modification, extraction, security and storage

for the database system. Examples of commercially available DBMS are Oracle, DB2 etc.

A transaction is a unit of interaction with a DBMS. A user who wants to modify or

extract information from the database does so by means of a transaction. Modification and

extraction of information are achieved by operations, typically SQL statements. A

transaction is composed of one or more operations.

The DBMS ensures that the transactions acting in the system abide by the ACID

(Atomicity, Consistency, Isolation and Durability) properties (Bernstein et al. 1987).

Atomicity implies that whenever transactions take place, the database reflects the effect of

the transaction completely or not at all. In other words, no partial execution is allowed.

Consistency ensures that the database remains in a state consistent with respect to its

constraints after the execution of a transaction. Isolation refers to the property that each of

the concurrent transactions may execute as though they were the only one in the system.

 6

Durability denotes the property which ensures that the effects of successful transactions will

persist in the database.

Transactions that have completed successfully are said to have committed and the

others are said to have aborted. In a typical database environment, we have multiple

transactions active at the same time. Two such concurrent transactions are said to be

conflicting if the write set of one intersects with the read or write sets of another.

Transactions are said to be serializable if the effect of their concurrent executions is

equivalent to the effect of their serial execution in some order. Thus serialized transactions

provide isolation. Databases implement concurrency control algorithms to ensure

serializability. The most common of these is called Two-Phase Locking (2PL- explained in

Chapter Three) which ensures the serializability of transactions by the use of locks.

The DBMS is also responsible for recovery from a site failure. Whenever a site fails

the DBMS ensures that the effects of aborted transactions are removed and that the results of

committed transactions are not lost.

1.2.2 Distributed Databases

Distributed Databases do not store the data in a single physical location, but disperse

data over a network. These locations are known as sites. Transactions can start from any of

these sites and can span any number of sites depending on the availability of data.

Returning to the example in Figure 1.1, it shows the database setup of a company

whose financial records, HR records and marketing records are stored in three different

cities (Austin, Dallas and Waco). Transactions can start in any of these three sites and can

span one or more of these sites.

 7

1.2.3 Replication

To increase availability of data in the presence of site failures and network failures

and to avoid the communication overhead of reading the data from a remote site every time,

data can be replicated in more than one site of a distributed database. Consider the scenario

shown in Figure 1.1. If the financial department records (currently present at Austin only)

are accessed from all three sites very often, replicating the data at all sites eliminates the

delay due to the communication time to read the data from the Austin site. Replication is

more beneficial when the transaction mix has more reads than updates.

1.3 Overview

Chapter Two presents related research projects in the arenas of databases and P2P

systems. Since 2PL is used for concurrency control for both Epidemic Algorithms and the

traditional Distributed Database techniques, we developed a simulation of a 2PL scheduler.

Chapter Three describes our 2PL simulation and its verification in a centralized database

environment. The simulation is then extended to a distributed database environment

implementing 2PC and ROWA. Chapter Four presents a detail description of this extension

to a distributed database and its verification. The simulation was then modified to implement

Epidemic Algorithms, the explanation and performance of which are discussed in Chapter

Five. Chapter Six presents the results of the experiments conducted on these two algorithms

in simulated P2P environments. Chapter Seven presents the conclusion and future work.

8

CHAPTER TWO

Related Work

A substantial amount of research has been done in areas of transaction processing

and P2P systems. This chapter discusses the work in these areas related to our research. The

first half of this Chapter deals with the work in database transaction processing and the

second half deals with P2P systems followed by a discussion of the current P2PDBs.

2.1 Database Techniques

To handle replicated environments, an algorithm called Quorum Consensus

(Bernstein et al. 1987) was proposed where non-negative weights are assigned to each copy

of the data item. A read threshold (RT) and a write threshold (WT) for the data items are

defined such that both 2*WT and (RT + WT) are greater than the total weight of all copies

of the data item. This ensures consistency between read and write operations. Weights are

used to indicate the importance of the copies. The Quorum Consensus algorithm has three

problems. First, transactions in most applications read more data items than they write. The

performance of Quorum Consensus is not good for such applications as the transactions will

end up reading multiple copies of the data items from different sites. This can be overcome

by making the read quorum of the data item contain only one copy of the data item in which

case the write quorum would consist of all the data items. This is exactly the ROWA

protocol. A second problem with Quorum Consensus is that it needs a large number of

copies to tolerate a given number of site failures. Considering that the quorums are all

majority sets, it needs three copies to tolerate one failure, five copies to tolerate two failures,

and so forth. A third problem with it is that all the copies must be known in advance.

 9

An alternative to Quorum Consensus, called the Available Copies algorithm

(Bernstein et al. 1984), was proposed to handle site failures in distributed databases. Here

every read is translated into “read any copy” and every write is translated into “write all

available” copies. This however has two significant requirements. First, site failures should

be clean and detectable. Second network partitions should not occur. Both of these are not

always satisfied by P2P networks as peers fail without any notification and the networks

span the entire globe.

Another option is to add semantics to transactions. Such approaches have been

proposed with long lived transactions (LLT). An LLT holds on to resources for a long time,

thereby delaying the other common transactions. SAGAS (Molina and Salem, 1987)

alleviate problems that arise due to LLTs. These LLTs were written as sequence of

transactions that can be interleaved with other transactions and either all the transactions that

constitute the LLT are completed or compensating transactions are run to amend the partial

executions. ACTA (Chrysanthis and Ramamritham, 1990) allows for specification of

structure and behavior of transactions and reasoning for their concurrency and recovery

properties. The semantics of interactions are expressed in terms of transactions’ effects on

the commit and abort of other transactions and on objects’ state and concurrency status.

NT/PV (Korth and Speegle, 1994) enhanced the standard transaction model with nested

transactions, explicit predicates and multiple versions. These are extensions to transactions,

except ACTA which unifies existing models, and are not intended to attack the problems of

P2P environments like site failures, etc. Moreover sufficient information is not available

about their performance on P2P environments.

 Carrey and Livny (Carrey et al. 1991) have analyzed the performance of 2PC and

ROWA in replicated database environments. But this work does not deal with site failures of

 10

any sort. This work has been our reference model in our experiments to verify our

distributed database simulation.

 The performance of 2PC in the presence of site failures for a distributed database

environment is analyzed in (Agrawal et al. 1998). This cannot be extended to the peer-to-

peer environment since the failure rate of the peers is more frequent and the communication

network is larger. They also have not analyzed the performance of 2PC in replicated

environments.

Optimistic and Pessimistic Epidemic Algorithms (Agrawal et al. 1997) were

proposed in 1997 to be used in environments with low probability of conflicts. This work,

however, does not deal with site failures of any kind but was used as the reference for our

Epidemic Algorithm simulation.

2.2 P2P Techniques

P2P systems entered the arena of distributed systems with file sharing applications

like Gnutella (Gnutella), Napster (Napster) and FreeNet (Clarke et al. 2000). In these

applications, a rendezvous point of the P2P network is known and people can join these

networks by first connecting to the rendezvous point. Once part of the P2P network, the

person can query the system for the desired files. These queries are transferred across the

network until they reach the peer which has the file. This peer then responds back with the

results of the query. In Freenet (Clarke et al. 2000) the files, which are the results of the

query, are replicated along the return path to increase the availability for subsequent queries

from same or nearby peers until it reaches the peer from which the query originated. These

systems however support only file upload and download facility and do not support any

transaction processing facility.

 11

A survey of the current data management techniques in the current P2P sytems (Sung

et al., 2005) shows the various methodologies being used in the current P2P systems. P2P

overlay networks like CAN (Ratnasamy et al., 2001) and Chord (Stoica et al., 2003) provide

key-based routing. The introduction of JXTA (JXTA 2005), an open protocol which

facilitates any connected devices to communicate in a P2P manner by creating a virtual

network, increased the ease of building P2P systems. A Local Relational Model was

proposed (Giunchiglia et al., 2002) for the coordination of P2P systems. Piazza (Haley et al.,

2003) proposes a method of sharing semantically heterogeneous data in a scalable way

where it maintains storage mappings to associate queries with suitable relations and

description mappings to associate query results between peers. Multi-Attribute Queries were

supported by Multi-Attribute Addressable Network (Cai et al., 2003) and the PIER system

(Huebsh et al., 2003) supports join queries. Multi-Attribute Range based searches are

supported by Mercury (Bharambe et al., 2004). But none of these handle the issue of

incorporating transaction processing facility and ensuring ACID properties in the P2P

systems.

Maintaining replica consistency in P2P systems is a challenging problem as there is a

lack of global knowledge and low online probability. In the PAST system (Rowstron and

Druschel 2001), nodes and files are assigned identifiers and replicas of a file are stored at

nodes with identifiers matching closely to the file’s identifier. OceanStore (Kubiatowicz et

al. 2000) and Ivy (Muthitacharoen et al. 2002) rely on the underlying DHT to provide the

necessary replication. Again, these systems do not provide transaction processing facility.

 [Franconi et al. 2004] have proposed a P2PDB called DALET which uses a local

update technique, where the peers update their data from the data of their neighbors. Nodes

are interconnected by coordination rules which allow them to fetch data from their

neighbors. Coordination rules are called incoming links if they are used by other nodes for

 12

importing data and outgoing links if that node uses them to import data from its

acquaintances. When a node gets a query request it answers it immediately using local data

and forwards the query through all the outgoing links. A query request contains the sequence

of IDs of the nodes it passes through and a node does not propagate a query request if its ID

is present in the sequence already. This work however does not deal with transaction

processing and does not present results regarding the performance of this algorithm in a

transaction processing environment.

 [Vecchio et al., 2005] have proposed a P2PDB which uses an adapted version of the

Quorum Consensus Protocol (in which each individual peer is responsible for finding a set

of accessible copies of a data item) coupled with the Two-Phase Commit Protocol to take

care of update. If consistency cannot be relaxed, then the updates can proceed as long as a

write quorum is present. If the write quorum is lost then the transaction should abort. This

algorithm thus is threatened by the recurring site failures of a P2P system. Assuming that the

probability of reading old data is low when we do not enforce consistency, they propose that

the individual peers choose the quorum thresholds according to the tradeoff they can sustain.

They have given the performance of the network for an update and they have also presented

statistics about the probability of stale data access for different quorum and data replication

levels. However they have not given the performance with respect to transaction processing

and the effect of this algorithm on transactions in the presence of site failures.

13

3 CHAPTER THREE

Two Phase Locking Scheduler Simulation

The first half of this chapter explains the 2PL simulation and the centralized database

simulation. The experiments performed to verify the accuracy of our simulation compared to

the previous research are explained in the latter half of this chapter.

3.1 Two Phase Locking Scheduler

The scheduler of a database controls the concurrent executions of transactions by

ordering the reads, writes, commits and aborts of the different transactions such that the

resulting execution is recoverable and serializable. Databases usually implement a well

known scheduler called Two Phase Locking (denoted 2PL) (Bernstein et al. 1987).

Transactions submit read and write operations on data items to the 2PL scheduler.

The 2PL scheduler grants a lock on that data item if there are no conflicting locks held on

that data item. A read lock conflicts with a write lock held on that data item by another

transaction. A write lock conflicts with both read and write locks held on that data item by

another transaction. Once a transaction releases a lock, it cannot obtain further locks. This

gives rise to the two phases of the transaction: The Growing Phase – where the transaction

obtains locks and The Shrinking Phase – where the transaction releases locks. Typical

databases implement a version of 2PL called Strict Two Phase Locking, in which all the

locks of the transaction are released when the transaction commits.

14

Fig. 3.1. A transaction’s phases when it goes through a two phase locking scheduler

3.2 Two Phase Locking Scheduler Simulation Design and Implementation

A simulation of 2PL scheduler was built and tested on a centralized database

environment against the analytical results of Alexander Thomassian(Thomassian 1993) to

verify its correctness. The detailed high-level design and implementation of the simulation

are discussed in this section. The database is initialized with a starting data item and the

number of data items it will store, where the data items are continuous non-negative integers

starting with 0. There are two major components of the scheduler – the Lock-Wait Table and

the ProcessOperation Method.

3.2.1 The Lock-Wait Table

The Lock-Wait Table holds operations of different transactions that have either

requested or are holding a lock on the data item. The Lock-Wait Table is implemented as an

array of vectors, with a vector for each data item of the scheduler. The vectors for each data

item hold all the operations (simulated as JAVA objects and explained in Section 3.3.5) that

15

have either obtained or are waiting for a lock on that data item. The operations that hold the

lock precede the operations that are waiting for a lock in the vector in the FIFO order.

3.2.2 The ProcessOperation Method

The ProcessOperation method simulates the 2PL Protocol and ensures that the

transactions abide by it. A transaction (simulated as a JAVA object and explained in Section

3.3.4) that has to perform an operation, submits the operation to the scheduler and the

scheduler invokes the ProcessOperation Method on that operation. Figure 3.2 presents the

algorithm followed by the ProcessOperation method.

3.3 The Centralized Database System

To verify the correctness of our Two Phase locking simulation it was integrated in a

test bed of a centralized database simulation and analyzed against the results of Alexander

Thomassian’s analytical model (Thomassian 1993). The system model of the centralized

database simulation used in our experiments is described in this section. The centralized

database simulation experiments consist of the following main components.

1. Transaction Manager

2. Local Database

3. Scheduler

4. Transaction

5. Operation

Each of these is implemented as an object using the JAVA programming language.

The transaction is the unit of interaction with the database, comprising of a number of

operations. There is an event clock in the system. Every tick of the event clock executes the

16

process method of the TransactionManager. The system model of the experiment is shown

in Figure 3.3.

3.3.1 Local Database

The Local Database consists of the Two-Phase Scheduler simulation. When a Local

Database is initialized by the GlobalManager, it initializes the scheduler simulation with the

number of data items and the starting data item of the database.

Fig 3.2 Algorithm used by Process Operation of 2PL Scheduler

17

Fig. 3.3. The system model for the centralized database simulation experiments

3.3.2 Transaction Manager

The Transaction Manager is initialized with the multi programming level (number of

concurrent transactions) for the experiment. It then creates transaction objects (explained in

Section 3.3.4) equal to the multi-programming level and a local database object. The single

most important method for the transaction manger is called process. The process method is

called by the event clock for every clock tick. The algorithm of the process method is shown

in Figure 3.4.

3.3.3 Scheduler

The Scheduler used here is the Two-Phase Scheduler simulation described earlier in

Section 3.2.

3.3.4 Transaction

The Transaction object represents a transaction and is initialized with the number of

operations it should generate, the probability of generating a read operation, the

18

Fig. 3.4. Algorithm used by process method of transaction manager

Transaction Manager to which it is associated and the Transaction ID. The Transaction is

equipped with a generateNextOperation method which generates the next operation as

specified by the parameters during its initialization and a commit operation after the given

number of operations is generated. Alternatively the Transaction also has a

generateAbortOperation method which is used to generate an abort operation for the

transaction and reset it. After the invocation of a generateAbortOperation, the

generateNextOperation is designed such that it generates the same operation sequence as in

its previous instance. This simulates the restart of a transaction as the transaction will

generate the same operations that it generated before.

3.3.5 Operations

Operations are the basic actions of the system. Each transaction generates a specified

number of operations. The structure of the Operation is given in Table 3.1

19

Table 3.1: Structure of an operation

Trans
ID

Opn Data
Item

Submitted
Time

Done
Time

Time
Cntr

Status OpnNo Blocked
Time

Wait
On
Commit
Time

isBlocked
Flag

TransID represents the transaction to which the operation belongs. Opn indicates the

type of operation[r - read, w - write, c - commit, a - abort] set during the initialization of the

operation. DataItem indicates the data item for the read and write operations. It is ignored

for commit and abort operations. SubmittedTime indicates the time at which the operation

was submitted. DoneTime indicates the time at which the operation was completed.

TimeCntr is set to the time required to complete the operation. This is preset depending on

the type of the operation. Status indicates the status of the operation. The various statuses are

explained in Table 3.2. OpnNo indicates the position of this operation in the transaction’s

sequence of operations. Blocked Time gives the duration the operation was blocked, if any.

WaitOnCommitTime represents the time for which the operation has to wait on the commit

of another transaction, if any. This is assigned when the operation gets a lock based on the

commit of another transaction. isBlockedFlag indicates whether the operation was blocked

or currently is blocked.

3.4 Experiments for the Verification of the Correctness of the Scheduler Simulation

This section contains a description of the results of Alexander Thomassian

analytical model (Thomassian 1993), followed by our parameter setting of the Centralized

Database simulation to match with those of Alexander Thomassian’s (Thomassian 1993)

and the results of the experiments.

20

Table 3.2: Status of an operation

Status Meaning
Before Submission The operation has been created by

the transaction and has not yet
been submitted.

After Submission The operation has been submitted
to the scheduler by the
TransactionManager.

Decrementing The operation has been granted

lock and is decrementing its
counter which is the duration of
the operation.

Completed The operation has been completed

Lock Assigned The operation has been granted the
lock.

Aborted The operation has been aborted

Wait on Commit The operation is waiting on a
transaction to complete its commit
operation.

3.4.1 Description of Two Phase Locking and Thrashing Behavior

Alexander Thomassian(Thomassian 1993) analyzes a transaction-processing system

with 2PL considering transaction steps with identical processing time distributions and

determines the system performance by the fraction of blocked transactions (β). His results

state that regardless of the distribution of transaction size, the system reaches its peak

throughput at β = 0.3, which also holds for transactions with different per step processing

times. Also, the mean transaction response time equals the ratio of the sum of the processing

times for its steps (executed once) to 1 – the fraction of blocked transactions.

21

 Mean Response Time (MRT) = r(Ma)/(1- β) (3.1)

 and r(Ma)=(k+1) s(Ma)

 Where
 s(Ma) is the average per step processing time of a

transaction
 k is the number of operations
 β is the fraction of Blocked Transactions.

3.4.2 Parameters

The parameters of the simulation were set so that they correspond to the parameters

used in the analysis conducted by Thomassian (Thomassian 1993). They are shown in Table

3.3.

Table 3.3: The parameter settings for the centralized database simulation

Parameter Value

No of data items 16384
Probability of read
operations generated

0 (all are operations
are writes)

No of operations per
transaction

16

Duration of Read 1
Duration of Write 2
Duration of Commit 4
Duration of Abort 0
Multi programming
level

10-160 (in steps of
10)

The duration of a read operation was derived by Ulusoy and Belford to be (Ulusoy,

Belford 1992)

Tr = (1-mem_size/db_size)*io_time (3.2)

 Where
 mem_size is the memory size
 db_size is the database size
 io_time is the time taken for an i/o operation.

22

For the experiments performed by Ulusoy and Belford(Ulusoy, Belford 1992) the

memory size is 500 and the io_time is 18 msec. There are 16384 data items in analysis of

(Thomassian 1993) which we are comparing against. Assigning these values, the duration of

read operation becomes ((1-(500/16384))*18)=17.45 msec.

From Ulusoy’s and Belford’s analysis (Ulusoy, Belford 1992), the time for a write is

equal to the io_time (18 msec). During a write operation, the transaction first reads the data

item and then does a write. Thus the duration of write operation is 35.5 msec (17.5 + 18).

Thus we obtain the ratio of the duration of read : write operations as 1 : 2. The duration for a

commit operation is determined by a single forced write operation to the log, forced-written

to indicate that the transaction has been committed (Jim Gray and Andreas Reuter 1992).

The duration of the abort is ignored as there is only one log write involved and that is not a

forced log write operation. Thus the ratio of the duration of read: write: commit: abort

operations is 1:2:1:0. The size of the database was set to 16384. Transactions in

(Thomassian 1993) generate 16 write operations each. Hence the number of operations per

transaction was set to 16 and the probability of read was set to 0. Deadlocks are detected for

every cycle and the youngest transaction involved in the deadlock is aborted. The multi-

programming level (the number of transactions in the system at any point of time) was

varied from 10 to 160 in steps of 10. 14 experiments were performed with this setting to

avoid statistical anomalies.

3.4.3 Results

The results of 14 experiments are presented in this section. Throughput

measurements were taken at 2, 4, 8, 16 and 32 seconds respectively. Figure 3.5 shows the

variation of throughput with the Multi-Programming Level at a simulated 32 second

interval. It also contains the plot of the Mean β where β is the fraction of blocked

23

transactions. The throughput increases steadily with the Multi-Programming Level until it

reaches a maximum). Beyond that the throughput starts decreasing owing to the occurrence

of thrashing. Thrashing occurs because the degree of contention is high. Transactions

request locks on data items that are being held by another which in turn are waiting on other

transactions.

The results of Alexander Thomassian (Thomassian 1993) say that we would get

maximum throughput at β = 0.3. In the graph, we get maximum throughput at 90 where the

β value is 0.35. The throughput obtained at 2, 4, 8 and 16 seconds produce similar results

with the maximum throughput occurring near β = 0.3 in each case.

Figure 3.6 is taken from Alexander Thomassian (Thomassian 1993). It shows the

results of their analysis.

Fig. 3.5. Graph that shows the variation of throughput with multi programming level at the
simulated 32 second interval

Figure 3.7 shows the results of our experiments obtained at a simulated time interval

of 32 seconds. A comparison of Figures 3.6 and 3.7 shows that the results of our

experiments match with that of Alexander Thomassian’s (Thomassian 1993) to a great

extent.

24

Fig. 3.6. Results of analysis of Alexander Thomassian (Thomassian 1993)

We now show the comparison between the Mean Response Time from our simulation and

that obtained from the Response Time Equation from Alexander Thomassian(Thomassian

1993) for each of the experiments. For the latter, we obtain the fraction of blocked

transactions from our simulation results. The formula to estimate the response time is

obtained from [1] as r(Ma)/(1-β) and r(Ma)=(k+1) s(Ma) (Eqn 3.1) where k is the number

of operations per transaction (16 in our case), s(Ma) is the mean processing time for a

transaction step (2 in our case, as all the operations are writes), β is obtained from the

simulation. Figure 3.8 shows the comparison between the median estimated response time

and the median experimental response time at simulated time of 32 seconds. The response

times match each other closely until thrashing occurs. After thrashing, the median

experimental response time starts lagging behind the median estimated response time as the

formula to compute the estimated response time does not take into account the occurrence of

aborts due to deadlocks.

25

Fig. 3.7. Results from simulation at time = 32 seconds

Fig. 3.8. Comparison of median experimental and estimated response times at 32 seconds

The error between the median experimental time and median estimated response

time remains around 2% until they reach the point of thrashing after which they increase and

almost get to 20%. Figure 3.9 captures the error between the median experimental and

median estimated response times.

Thus our two-phase locking scheduler simulation matches the results of the

analytical model given by Alexander Thomassian.s

26

Fig. 3.9. Error between the median experimental and estimated response time at 32 secs

27

CHAPTER FOUR

Simulation of Traditional Distributed Database Techniques

 This chapter begins with a discussion of the traditional techniques that are employed

in distributed database systems (DDBMS). This is followed by a description of the

simulation of our distributed database and the experiments that were performed to verify the

correctness of our distributed database simulation.

4.1 Traditional Database Techniques Used in the Distributed Database Systems

In a distributed database system, the data is distributed among various sites. Current

distributed database systems like PostgreSQL(Johnson, 2002) and Oracle (UMBC’s Oracle

Site 2005) use the traditional database techniques for maintaining concurrency control and

for ensuring the ACID properties.

4.1.1 The Two Phase Locking Scheduler

The current DDBMS implement the 2PL Scheduler explained in the previous

chapter, at each of their sites, for maintaining concurrency control.

4.1.2 Read One Write All Mechanism

In an environment when the data is replicated in several sites of the system, DDBMS

like PostgreSQL (Johnson, 2002) and Oracle simultaneously (DBASupport’s Oracle

Replication Site 2005) employ the read one write all mechanism (ROWA) to ensure

consistency of data across all the sites. As the name implies, when a transaction wants to

read the data it does so from one site, preferably the one closest to the transaction and when

 28

a transaction wants to write the data, it performs a write at all the database sites that contain

the data. This ensures that data at all sites are consistent.

 The ROWA mechanism coupled with the 2PL ensures the consistency of the

transactions in the system. When a transaction does a “Write All“ on a data item, any

transaction performing a read on the data item will wait on the writing transaction, as the

schedulers at all the sites now have the write lock on the data item. The write lock will be

released only after the transaction commits or aborts. Thus the concurrency control of all the

transactions in the system is ensured. A transaction, while performing a write operation, has

to wait until the write locks on all the replicas have been obtained.

There are two different ways of implementing the ROWA mechanism. Typical

distributed databases implement a version where a transaction obtains locks on the data item

at every site. Then the transaction performs the write in all of them. The commercial

database Oracle implements a similar mechanism where in it uses triggers at all the sites

containing the replicated data and whenever one is updated, the triggers update every other

replicated version simultaneously (DBASupport’s Oracle Replication Site 2005).

Alternatively, databases like PostgreSQL (Johnson 2002), implement a variation where the

write operations of a transaction are transferred to the sites other than the coordinator during

the first phase of two-phase commit. In our simulation we model the first version where the

write locks at all the sites containing a replica are obtained at the time of performing the

operation.

4.1.3 The Two Phase Commit Protocol

To ensure global atomicity the distributed database systems use a well known

protocol called 2PC (Two Phase Commit Protocol) (Bernstein et al., 1987).

 29

 Every transaction has a site called the Coordinator, which acts as its coordinator for

the Two Phase Commit protocol. All other sites at which the transaction has done either a

read or a write operation are known as the “Participant” sites. As the name indicates the

protocol has two phases – a voting phase and a decision phase. The voting phases and

decision phases of the coordinator and the participant are alternately presented below.

The coordinator and the participant both start in an Initial State. During the first

phase the coordinator sends a “Prepare” message to all the participants, writes a “Prepared”

record to the log and goes into the Prepared State for that transaction.

When a participant receives a “Prepare” message, it checks if the transaction can be

committed at its site. If so the participant responds to the coordinator with a “Vote Yes”

message, force writes the transaction logs to stable storage, writes a “Vote Yes” record in its

log and goes into the Voted Yes State for that transaction. If the participant cannot commit

the transaction, it responds to the coordinator with a “Vote No”, writes a “Vote No” record

in its log and goes into the Voted No State for that transaction.

Whenever a coordinator receives a “Vote Yes” message it updates the list of

transactions that have replied with a “Vote Yes” message. It checks if all the participants

have replied with a “Vote Yes” message. If so, the coordinator decides to commit the

transaction, writes a “Commit” record to the log, force-writes it to stable storage, sends a

“Commit” message to all the participants and goes to Committed State for that transaction. It

then waits for the acknowledgement from the participants within a time out period. On the

contrary if the coordinator receives a “Vote No” message, it decides to abort the transaction,

writes a “Abort” record to the log, aborts the transaction, sends an “Abort” message to all

the participants and goes to Aborted State for that transaction. It then waits for the

acknowledgement from the participants within a time out period. Once all the

acknowledgements have been received, it writes an “End Transaction” record in the log. If it

 30

does not receive the acknowledgement from a site within the time out period, it resends the

global decision and resets the time out period.

When a participant receives a “Commit” message from the coordinator, it writes a

“Commit” record to the log and force-writes it to stable storage. It then commits the

transaction and sends an acknowledgement to the coordinator. On the contrary if it receives

an “Abort” message from the coordinator, it writes a “Abort” record to the log and force-

writes it to stable storage. It aborts the transaction and then sends an acknowledgement to

the coordinator. Figure 4.1 shows the two phase commit protocol.

Fig. 4.1. Two Phase Commit protocol

The coordinator or the participants can timeout in any of the states, due to a site

failure of the other or a delay in communication between the two. When a time out occurs

the following termination protocol is invoked.

The coordinators can time out in either the Prepared State or in the

Committed/Aborted State. If the coordinator times out in the Prepared State while waiting

for the vote from one or more of the participants, it decides to abort the transaction. If the

 31

coordinator times out in the Committed/Aborted state while waiting for the

acknowledgement of a transaction, it resends the decision to the sites which have not

acknowledged.

The participants can timeout in the Initial State before receiving a Prepare from the

coordinator or in the Voted Yes/No State. If a participant times out in the Initial State before

receiving the Prepare from the coordinator, the participant believes that the coordinator must

have failed and hence unilaterally aborts the transaction. If it receives a Prepare message

later from the coordinator (if the Prepare message was delayed by the traffic in the network,

and the participant timed out and aborted) then the participant responds with a Vote No

message. If a participant times out in the Vote Yes/No state then participant cannot make a

decision on its own as it has already sent the vote. The participant is blocked. Under a

variant of 2PC (Connolly and Begg, 2002) it could contact each of the other participants and

find any decision that may have been sent to them. If the coordinator failed before sending

the decision to any of the participants, the participant remains blocked until the coordinator

awakens and sends the decision. This is very critical in the peer-to-peer database

environment because peers may not recover.

We now have to consider the action taken by a failed site when it recovers. The

coordinator can fail in the Initial State when it has not sent a “Prepare” message, in the

Prepared State and in the Committed/Aborted State. If the coordinator fails in the Initial

State before sending the “Prepare” message, recovery of the coordinator just restarts the

commit procedure. If the coordinator fails in the Prepared State and its log indicates that it

has not received “Abort” messages from any of the participants, then the recovery of the

coordinator restarts the commit procedure. If the coordinator fails in the Committed/Aborted

State and the logs indicate that not all the participants have responded with an

 32

acknowledgement, recovery of the coordinator resends the decision to the sites which have

not sent the decision prompting them to send it again.

A participant can fail in the Initial State before receiving a “Prepare” message from

the coordinator, or in the Voted Yes/No state or in the Committed/Aborted State. Recovery

of the participant in the Initial State before receiving the “Prepare” message from the

coordinator prompts it to abort the transaction. Recovery of the participant in the Voted

Yes/No state prompts it to resend the decision to the coordinator. Recovery of the participant

in the Committed/Aborted state does not necessitate any action on its side, as it has

completed the transaction.

4.2 Distributed Database Simulation

The detailed high-level design and implementation of the distributed database

simulation are discussed in this section. The simulation contains the following components:

1. Global Manager

2. TransactionManager

3. Communication Manager

4. LocalDatabase

5. Scheduler

6. Transaction

7. Operations

Each of these is implemented as an object using the JAVA programming language.

Figure 4.2 shows the system model of the distributed database simulation. A site of a

distributed database system consists of a Transaction Manager and a Local Database which

contains a Scheduler. It differs from the site of the centralized database system simulation

explained in the Chapter Two only in that the Transaction Manager is modified to

 33

accommodate 2PC and ROWA. This system is also driven by an event clock which calls the

GlobalManager’s process method for every clock tick.

4.2.1 Global Manager

As the name indicates the Global Manager is responsible for the execution of all

transactions at the appropriate sites. The GlobalManager interacts with the transactions in

the system, receives their operations and ensures that they take place at the right sites by

sending them to the appropriate Transaction Manager via the Communication Manager.

Furthermore it decides the coordinator site for a transaction manager and implements the

ROWA protocol. It is also equipped with a distributed deadlock detection mechanism,

which is called at fixed intervals. If a deadlock is detected then the youngest deadlocked

transaction is aborted. At every clock tick, the GlobalManager has a method called Process,

which is executed by the event clock. Figure 4.3 gives a description of the Process method.

Apart from the Process Method, the GlobalManager has a receiveOperation method

which is called by the CommunicationManager whenever it wants to send an operation to

the GlobalManger for reporting the results of an operation. Algorithm 4.2 shown in Figure

4.4 describes the receiveOperation method of the GlobalManager.

The GlobalManager with the help of these two methods implements the ROWA

protocol and also ensures that the operations of various transactions take place at appropriate

sites.

4.2.2 Transaction Manager

The Transaction Manager is responsible for the execution of the operations at the

site, ensuring atomicity of the transactions by implementing the 2PC protocol. It also

maintains a TTF (Time To Failure) and a TTR (Time To Recover) for the particular site

 34

Fig. 4.2. The System Model of the distributed database Simulation

Fig. 4.3. The algorithm of the process method of global manager

 35

assigned during its instantiation. The event clock decrements the failure time counter of each

of the Transaction Managers for each of its ticks and as soon as the counter hits the TTF the

Transaction Manager makes the site unavailable for a period of time equal to the TTR thus

simulating site failure. After TTR has passed it executes the recoverFromFailure method and

then resets its TTF to the preset value and the cycle continues. The TransactionManager has

a processOperationOrMessage method which is called by the CommunicationManager every

time an operation has to be sent to this transaction manager. Figure 4.5 shows Algorithm 4.3

which describes the processOperationOrMessage method.

Fig. 4.4. receiveOperation method of the global manager, parameter: operation

The log writes of 2PC are simulated with log write operations which are assigned a

duration equal to the I/O time. 2PC is implemented as described in the Section 4.1.3.

Commits, aborts, reads and writes are performed as in Chapter Three by submitting these

operations to the scheduler and processing the resultant locks. The Transaction Manager is

also equipped with functions to take care of the recovery from failure by implementing the

Recovery protocol of the 2PC. It is also equipped with functions that take care of the time

outs of the transactions by implementing the Timeout protocol of the 2PC.

 36

Fig. 4.5. processOperationOrMessge method of transaction manager

4.2.3 Communication Manager

The Communication Manager mimics the network existing between the sites of the

distributed database. When the CommunicationManager receives an operation/message from

either the GlobalManager or the TransactionManger, it puts them in a queue. The event

clock calls a method of the CommunicationManager called handleOperations which goes

through the operations in the queue and decrements their communication counter. If the

communication counter becomes zero it delivers the operation to the respective

TransactionManager or the GlobalManager by calling their processOperationOrMessage

function or the receiveOperation function respectively. This simulates the delivery of the

operation or message through the network.

 37

The Local Database, Scheduler and Transaction are identical to that used in the

Centralized Database Simulation detailed in Chapter Three.

4.2.4 Operations

The Operations class used here is identical to the one used in the Centralized

Database detailed in Chapter Three, Section 3.3.5 except that it also serves as a message in

the 2PC and has a communication time parameter called commTime which is set before the

operation is placed in the CommunicationManager’s queue for the purpose of

communication.

There is a flag called isMessage which when set indicates that this is a message of

the 2PC. If it is a message, then the text of the message can be obtained from the parameter

message.

4.3 Verification of the Correctness of our Distributed Database Simulation

The correctness of the distributed database simulation was verified running the

simulation with the parameters of Carrey and Livny’s experiments (Carrey and Livny 1991).

This section contains a brief description of their simulation and experiments, followed by a

description of the changes to our system to coincide with their experiment settings and the

results we obtained from their simulation.

4.3.1 Description of the Simulation in (Carrey and Livny 1991)

 4.3.1.1 Transaction. A transaction has a coordinator process that runs at the site

where the transaction originated. The coordinator in turn starts a collection of cohort

processes to perform the transaction processing. There is at least one cohort for every site

the transaction accesses data from. The average length of the transactions is 22.5 operations

 38

(18 reads + 4.5 writes). They restrict the write operations to the data items that have been

already read.

In the case of replication, a cohort updating a remote data item has one or more

remote update processes associated with it at the sites containing the data item. The cohort

communicates with these remote update processes for concurrency control.

4.3.1.2 Two-phase commit protocol. The 2PC protocol resembles in every detail the

2PC protocol described in the first half of this chapter, except in the way the log writes are

done. The coordinator does not perform a log write for the prepared state. Usually the log

writes are done by appending the log record to the tail of the log. The log records of the site

are flushed only during the log writes of commit or abort.

4.3.1.3 Database model. The distributed database is modeled as a collection of files

at page level.

 4.3.1.4 Site. Each site in the model has the following components:

 Source

 Transaction manager

 Concurrency Control Manager

 Resource Manager

 Network Manager

4.3.1.5 Source. The source is responsible for generating the workload for a site. It

generates the transaction according to the parameters that are preset.

 4.3.1.6 Transaction manager. A transaction manager is initiated by the source with

the set of files that it will handle. The coordinator is created at the originating site, which

 39

starts the cohorts. Each cohort executes the operations assigned to it. A read operation

consists of a concurrency request, a disk I/O and a period of CPU processing time. Write

requests are almost similar involving a log record append to the tail of the log. Whenever a

transaction commits, the writes it performed are read and a separate disk I/O is done for

each. If the transaction has to be aborted, the transaction manager aborts the transaction, and

delays the transaction for a period of time (one average transaction response time) before

restarting it.

4.3.1.7 Resource manager. The resource manager manages the physical resources of

the site like CPU and the disks. Disk access times are uniformly taken from [MinDisk

Time, MaxDisk Time]. Disk writes are given priority over disk reads.

4.3.1.8 Network manager. The network manager models the communication

network. The network model acts as a switch which routes messages between sites as the

experiments assume a local-area network, where the actual time on the wire for messages is

negligible. The main cost of sending a message thus is the CPU processing cost at the sender

and receiver.

 4.3.1.9 Concurrency control manager. The concurrency control manager ensures that

the transactions abide by 2PL.

The parameters and their values are as presented in Table 4.1

 40

Table 4.1 The parameter settings for the experiments of (Carrey and Livny 1991)

Parameter Description Value
NumSites Total No of Sites 8
NumFiles Total No of Files 8
FileSize Size of each file 2400

Num Terminals

Each site has a set of
terminals. Each transaction
emanates from a terminal.

50 per site

ThinkTime Time between two
transactions

0-10s

Write Probability Probability of Write ¼
Page CPU Average CPU Time for

Processing a Page
8ms

Num Disks Total Number of Disks Per
Site

2 per site

Min Disk Time Minimum Disk Access
Time

10

Max Disk Time Maximum Disk Access
Time

30

InitWriteCPU Time to initiate a disk write

2ms

MsgCPUTime Message send/receive time 1 ms
LogDiskTime Sequential log write time 10 ms
LogPageSize Number of log records per

page before being flushed
100

Hit Rate (They have modeled 0%
and 80 %).We have taken
only the experiments with 0

0

Deadlock Detection Interval Interval at which the
distributed deadlock
detection is done

1s

4.3.2 Modeling our Simulation to match the Parameters of the Experiments of Carrey and
Livny(Carrey and Livny 1991)

The multiprogramming level was made 400 and the number of data items was made

19200. In Carrey and Livny’s experiments (Carrey and Livny 1991) the transactions read 18

data items and write 4 or 5 of those 18 read data items. Hence the transaction class is

modified so that half the transactions generate 18 operations out of which four are write and

the other half generate 19 operations out of which 5 are write (since a write operation reads

and writes the data item). The total time of a read operation was computed to be 28 ms (20

 41

Avg CPU Time + 8 Page CPU). The write operation was computed to be 60 ms (Avg Disk

time (for read) 20 ms + Page CPU (8 ms)+ Init Write CPU (2ms)+ Avg Disk time for write

(20 ms)+ Log Write Time as the writes are performed during the commit(10 ms)). Also local

deadlock detection at individual sites was done every time an operation is blocked and

distributed deadlock detection is done every 1000 ms as in (Carrey and Livny 1991). The

communication time for remote node is set to 1ms. When transactions are aborted they are

restarted after a period equal to the mean transaction response time at the site. The

parameters and their values are presented in Table 4.2

Table 4.2 The parameter settings for our distributed database simulation

Parameter Value
Communication time 1ms
Read Time 28ms
Write Time 60ms
Log Write 10ms
DeadLock Detection
Interval

1000ms

MultiProgrammingLevel 400
Reads&Writes per
transaction

200 transactions generate
14r+4w and 200 transactions
generate 14r+5w

4.3.3 Differences Between our Simulation and (Carrey and Livny 1991)

• In Carrey and Livny’s experiments, the resource manager always append the log

writes to the log tail and flush the log (which takes 10ms) when the page size is

100 or during the commit log writes. In our simulation we do not simulate the

paging of log writes and every log write takes 10ms.

• In Carrey and Livny’s experiments they do not write the log record for prepare

log during the coordinator’s first phase of the two phase commit.

 42

• In Carrey and Livny’s experiments the writes of a transaction take place during

the commit, whereas in our case they take place when the operation is submitted.

Thus we perform the writes for the transactions that are aborted and in Carrey

and Livny’s experiments (Carrey and Livny 1991) they do not.

• In Carrey and Livny’s experiments (Carrey and Livny 1991) there are two disks

per site whereas we have only one.

4.3.4 Results of the Experiments

The experiments of Carrey and Livny (Carrey and Livny 1991) have a throughput of

about 13. Eight experiments were conducted using our distributed database simulation and

the average throughput is as shown below in Table 4.3. The percent error with the

experiments of Carrey and Livny’s is also shown.

Table 4.3 Results of our distributed database simulation

Time
(secs) Median Throughput

Percents
Error

2 11.0 15.4
4 12.8 1.9
8 11.4 12.0
16 11.4 12.0
32 14.2 8.9
64 13.7 5.1
128 13.5 3.5
256 13.6 4.6

The slight variation in the results is because of the differences in the way the

simulations work.

43

5 CHAPTER FIVE

Simulation of Epidemic Algorithms

The first half of this chapter gives a brief description of the optimistic and the

pessimistic protocols of Epidemic Algorithms followed by the changes incorporated in our

distributed database simulation to implement it. The last half of this chapter presents the test

cases that serve as verification of our simulation.

5.1 Epidemic Algorithms

The Epidemic Algorithms under consideration were proposed in 1997 for

environments with low probability of conflict (Agrawal et al., 1997). Two algorithms were

proposed – a pessimistic protocol and an optimistic protocol. Detailed explanations of the

optimistic protocol and the pessimistic protocol are found in this section.

5.1.1 Optimistic Protocol

The philosophy behind the epidemic algorithms is to execute the update operations

of a transaction at a single site. The sites communicate at a later point of time to exchange

the up-to-date information. The user does not have to wait for this later communication.

Since the updates pass from system to system like an infectious disease it is called an

“epidemic” algorithm. Epidemic Algorithms satisfy a level of consistency weaker than

serializability. In the optimistic protocol the transactions commit as soon as they terminate

locally and inconsistencies are detected and resolved as the transactions pass through the

system.

 44

Each site Sj of the distributed database system maintains an event log. Each record of

the event log represents a transaction with its read and write sets, the time it occurred and

also has a flag to indicate whether it is in conflict with another transaction. Figure 5.1 gives

a description of the transaction record as obtained by (Agrawal et al., 1997). For the

optimistic algorithm the aborted flag is replaced by inconflict flag and there is a set called

readFrom which holds the set of transactions that this transaction has read from.

Fig. 5.1. Transaction Record as perceived during the epidemic algorithms proposal

The parameter RS defines the readset of the transaction (the dataitems that were read

by the transaction) and the parameter WS defines the writeSet of the transaction (the

dataitems that were written by the transaction). The values parameter represents the new

values written by the transaction. The parameter site represents the site where the transaction

originated. The parameter time defines the timestamp of the transaction. The aborted flag

indicates whether the transaction was aborted or not. It is replaced by an inconflict flag in

the case of Optimistic Epidemic Algorithm to indicate whether the transaction is marked

inconflict or not.

Each site Si keeps a two dimensional timetable Ti which corresponds to the logical

clocks of all sites such that if Ti[k,j]=v then Si knows that Sk has received records of all

events at Sj up to time v. Thus, the time-table can be used to define the HasRecvd predicate

 45

corresponding to some event. This is called the time table property. If t is a transaction

record,

HasRecvd(Ti, t, Sk) = Ti[k, Site(t)] > Time(t) (5.1)

 According to this, the kth row of Ti is the knowledge of Si about Sk’s knowledge of

events in the system. When Si does an epidemic communication to Sk it includes all records t

such that HasRecvd(Ti, t, Sk) is false, and it also includes its timetable Ti. When Si receives

an epidemic communication from Sk it applies the updates of all received log records and

updates its time-table in an atomic step to reflect the new information received from Sk.

When a transaction takes place at Site Si, the optimistic epidemic algorithm commits

a transaction locally with the assumption that no conflict will arise as the commit record of

this transaction disseminates through the network. Epidemic communication takes place at a

prefixed interval, and the Site Si checks it timetable and sends to the other sites, all

transaction records have not been received by these sites. It also sends its time table to these

sites so that they can update their respective time tables with the knowledge of site Si. Upon

receiving a transaction record, a site checks if the transaction conflicts with another

transaction in the system. If so, it sets the inconflict flag for the transaction record and

updates its timestamp. If the transaction does not conflict, the write operations of this

transaction are performed in this site as forced writes. Any other transaction holding locks of

data items that are required by these forced writes are aborted unless it is performing a

forced write too, in which case this transaction is made to wait. Also when a transaction is

marked as inconflict, all the transactions which read from this transaction are also marked as

inconflict. These conflicts are resolved by application specific rules.

 46

5.1.2 Pessimistic Protocol

In the case of pessimistic protocol, a transaction is considered committed only if it

commits at all sites without any conflict. When a transaction commits on a local site, the site

inserts a pre-commit record in the log and this is sent to the other sites during epidemic

communication. On receiving this pre-commit record, a site checks its knowledge about the

transactions in a system, to see if there is a conflicting transaction. If there is no conflicting

transaction then a pre-commit record is placed in its log. If there is a conflicting transaction

an abort record is placed in the log. The transaction is committed only if all the sites have

placed a pre-commit record in their logs for this transaction. It is proven that only the initial

precommit (Agrawal et al, 1997) record is necessary because the pre-commits at other sites

can be detected when their timetables are propagated and the aborts are detected when the

conflicting transactions are propagated to this site via epidemic communication

5.2 Simulation of Epidemic Algorithms

The detailed high-level design and implementation of the epidemic algorithms are

discussed in this section. The simulation has the same components as the distributed

database simulation implementing 2PC and ROWA discussed in the previous chapter but

modified to accommodate the optimistic epidemic protocol. Additionally the simulation

contains a TransactionRecord class which is used to represent a transaction record in the

event log and a TimeTable class representing the timetable maintained by each site. A

description of each of the components is found below.

5.2.1 Global Manager

The GlobalManager interacts with the transactions in the system, receives their

operations and ensures that they take place at the right sites by sending them to the

 47

appropriate Transaction Manager via the Communication Manager. The process method of

the GlobalManager is modified to accommodate the implementation of epidemic algorithms.

Algorithm 5.1 shown in Figure 5.2 describes the process method.

Fig. 5.2. Process Method of globalManager for Epidemic Algorithms

 Apart from the Process Method, the GlobalManager has a receiveOperation method

which is identical to the one shown in Figure 4.2 in the previous chapter. A transaction is

said to be partially committed if it hasn’t been committed at all sites. A transaction is said to

be fully committed if it is committed at all the sites. A transaction is considered to be active

until it has been processed at all sites. The GlobalManager also maintains the statistics of the

partially and fully completed transactions of the system.

5.2.2 Transaction Manager

The Transaction Manager is responsible for the execution of the operations at the site

and also maintains a TTF (Time To Failure) and a TTR (Time To Recover) for the particular

site assigned during its instantiation similar to that in the Chapter Four. Apart from this, the

Transaction Manager is responsible for performing the optimistic protocol of the epidemic

algorithms, which it does by maintaining a timetable and an event log.

 48

The process method of the Transaction Manager is responsible for performing the

operations at the site. It is identical to that present in the algorithm shown in Figure 3.3.

Every time a transaction is committed or aborted, a log record for that transaction

(TransactionRecord object) is inserted in the event log of the transaction manager and the

entry corresponding to its own knowledge about its time table is updated. The method

doEpidemicCommunication is called at a interval which is fixed for the simulation. The

doEpidemicCommunication checks the current site’s knowledge of other sites in the system

about the events of the current site and sends the transaction records that it believes were not

received by the other sites. It also sends its timetable to each of the sites.

To aid in the reception of messages during the epidemic communication each

transaction manager is equipped with two methods – processTransactionRecord and

processTimeTable. The processTransactionRecord is called every time a TransactionRecord

is received by the transaction manager. Figure 5.3 shows a description of the

processTransactionRecord Algorithm.

Fig. 5.3. ProcessTransactionRecord of Transaction Manager

When a force write to a data item is done, if there are transactions which are

currently holding locks on data-items that are being forced written, then those transactions

 49

are aborted and the force write is given more priority. If there are other forced writes on the

same data item, then this forced write is put in a queue. The processTimeTable method is

called whenever a timetable is received by this site. This updates the sender site’s

knowledge in the time table of this transaction manager from the received timetable.

5.2.3 Communication Manager

The Communication Manager is similar to that used in the Distributed Database with

2PC and ROWA simulation explained in the previous chapter, except that it can also transfer

timetables and transaction records.

5.2.4 TimeTable

Every TransactionManager instantiates an object of this type to maintain the

timetable at that site. The timetable has a two dimensional array to help store each of the

sites’ knowledge about the other sites in the system. It also has a fromSite, toSite and

communicationCounter to help in the epidemic communication. The value at (i,j) in the

timetable represents Site Si’s knowledge of the events that have taken place in Site Sj. It is a

time value t which indicates that the Site Si knows the events that took place at Site Sj before

time t.

5.2.5 Transaction Record

This represents a transaction and is the central object of an event log. When a

transaction is committed, aborted or found to be inconflict, a TransactionRecord object is

created for that transaction and is inserted in the event log. A TransactionRecord contains

the following information: TransactionID, startTime, endTime, siteID (where the transaction

began), readSet, writeSet and readFromSet (set of transactions from which this transaction

 50

read), inConflictFlag, fromSite, toSite and communicationTime (the last three parameters

are used only for epidemic communication).

An event clock drives the system. For every tick of the event clock the process

method of the GlobalManager is called and operations of transactions are submitted to the

various sites. The corresponding transaction managers and the schedulers perform the

operations. The communication manager transfers the timetables, operations and transaction

records that are queued in it. If the epidemic communication interval is reached at any of the

sites, epidemic communication is performed by that site. Whenever a TransactionManager

receives a TransactionRecord it performs the process outlined in Figure 5.3. Whenever it

receives a TimeTable it updates its own.

5.2.6 Other Components

The Operations class is identical to the one in the Distributed Database detailed in

Chapter Four, except that the transaction Id includes the start time of the transaction. The

Local Database, Scheduler and Transaction are similar to that used in the Distributed

Database Simulation detailed in Chapter Four, except that the Transaction object has a

starttime in order to uniquely identify the transaction, and an endtime to help detect

conflicts.

The communication model is changed to reflect network behavior for heavy traffic.

The transaction managers are equipped with a communication queue. Whenever an

Operation or TransactionRecord has to be sent, it is queued in the communication queue.

The simulation allows the network bandwidth to be set as a parameter and the

communication queue is processed depending on the bandwidth.

This simulation counts both the partial commits and full commits. The full commits

represent the transactions that are committed at all sites. The partial commits represent the

 51

transactions that are not committed at all sites and these transactions are resolved by

application specific rules. Thus the fully committed transactions alone represent the

performance of the Pessimistic Epidemic Algorithm. The fully committed and the partially

committed transactions together represent the performance of the Optimistic Epidemic

Algorithm.

5.3 Verification of our simulation of Epidemic Algorithms

The verification of our Epidemic Algorithms simulation was done by testing as no

published performance measurements exist. The test cases used for the verification of

epidemic algorithms are provided in this section. The parameters used for testing are shown

in the Table 5.1

Table 5.1 The parameter settings for the epidemic algorithms s imulation testing

Parameter Value
Number of Transactions 2 or 3
Number of Sites 2 or 3
Operations per Transaction 2
Read Time 28ms
Write Time 60ms
Commit Time 10ms
Abort Time 0ms
LogWriteTime 10ms
Epidemic Communication Time 350ms
Network Bandwidth 1Mbps
CommunicationTime 75ms

 The duration for read, write, commit and abort are fixed to be the same as 2PC.

5.3.1 Verification Experiments

The test cases used for verification are given below. Every Transaction is identified

by the tuple (a,b) where a denotes the transaction number and b denotes the start time. Every

operation is identified by tuple (c,d) where c denotes the data item and d denotes the type of

 52

operation (r-read, w-write, c-commit, a-abort). For commit and abort operations c can be

anything and is represented as *. The time is measured in milliseconds.

Case 1: Transactions executing at different sites are not found to conflict during the
process of epidemic communication and are committed everywhere

 This case depicts the execution of non-conflicting transactions being committed at

the sites they are propagated to during the process of epidemic communication. The table

5.2 represents the execution of two such transactions in our system.

Table 5.2 Test case 1 of epidemic algorithms simulation

 At Site 0 At Site 1 At Site 2
Tran(0,0) submits operation
(0,w) at time 0
Tran(0,0) submits operation
(2,w) at time 60

Tran(0,0) submits operation
(*,c) at time 121

Tran(1,0) submits operation
(1,w) at time 0
Tran(1,0) submits operation
(3,w) at time 60

Tran(1,0) submits operation
(*,c) at time 121

Epidemic Communication Take place at time 350

Tran(1,0) is received and
since it does not conflict
the write operations are

done as forced writes. The
operations are done at 426

and 486 respectively

Tran(0,0) is received and
since it does not conflict
the write operations are

done as forced writes. The
operations are done at 426

and 486 respectively

Tran(0,0) is received and
since it does not conflict,
the write operations are
done as forced writes.

Tran(1,0) is received and
since it does not conflict,
the write operations are

done as forced writes. The
operations are done at 426

and 486 respectively

 Transaction(0,0) takes place at site 0 and submits write operations on data items 0

and 2 at times 0 and 60ms after the simulation is started and a commit operation at 121ms.

Transaction(1,0) takes place at site 1 and submits write operations on data items 1 and 3 at

times 0 and 60ms after the simulation is started and a commit operation at 121ms. Both the

transactions get committed at 131ms, but new transactions are not started in their place until

 53

they have been processed at all the sites. At time 350ms, epidemic communication takes

place and transactions(1,0) and (0,0) are propagated to all the sites where they are not found

to conflict and their write operations are done as forced writes at 426 and 486 seconds

respectively.

Case 2: Transactions executing at different sites are found to conflict during the
process of epidemic communication

 In this case transactions occur at different sites and are propagated to other sites

during the process of epidemic communication where they are found to conflict. The table

5.3 represents the execution of two such transactions in our system.

Table 5.3 Test case 2 of epidemic algorithms simulation

At Site 0 At Site 1 At Site 2

Tran(0,0) submits operation
(0,w) at time 0
Tran(0,0) submits operation
(1,w) at time 60

Tran(0,0) submits operation
(*,c) at time 121

Tran(1,0) submits operation
(1,w) at time 0
Tran(1,0) submits operation
(0,r) at time 60
Tran(1,0) submits operation
(*,c) at time 89

Epidemic Communication Take place at time 350

Trans(1,0) is received and
found to conflict with
Tran(0,0) and are both

marked in conflict at time
425.

Trans(0,0) is received and
found to conflict with
Tran(1,0) and both are

marked in conflict at time
425.

Trans(0,0) is received and
since it does not conflict,
the write operations are

queued to be executed. The
operations are queued for

execution at times 426 and
428.

 Trans(1,0) is received and
since it found to conflict
with Trans(0,0) both are

marked in conflict at time
425.

Transaction(0,0) takes place at Site 0 and submits write operations on data items 0 and 1 at

times 0 and 60ms after the simulation is started and a commit operation at 121ms.

 54

Transaction(1,0) takes place at site 1 and submits a write operation on data items 1 and a

read operation on 0 at times 0 and 60ms after the simulation is started and a commit

operation at 89ms. At time 350ms, epidemic communication takes place. Site 0 receives

Transaction(1,0) at 425ms and finding that it conflicts with Transaction(0,0) it marks them

both inconflict. Similarly Site 1 marks them both inconflict when it receives

Transaction(0,0) at time 425ms. Site 2 receives Transaction(0,0) at time 425ms initially and

since it does not conflict with any other transaction, its operations are queued for execution.

Transaction(1,0) is received at 425ms but since Site 2 knows about Transaction(0,0) both

these transactions are found to conflict and are marked inconflict

Case 3: Transactions marked because the one it read from has been marked

This case tests the scenario of a transaction that read from a transaction that has been

marked. The table 5.4 represents this execution.

Table 5.4 Test case 3 of epidemic algorithms simulation

At Site 0 At Site 1

Tran(0,0) submits operation (0,w) at time
0
Tran(2,0) submits operation (2,w) at time
0

Tran(0,0) submits operation (1,w) at time
60
Tran(2,0) submits operation (0,w) at time
60 (Waits on Tran (0,0) to complete and
release lock on data item 0)

Tran(0,0) submits operation (*,c) at time
121

Tran(2,0) submits operation (*,c) at time
192

Tran(1,0) submits operation (1,w) at time 0

Tran(1,0) submits operation (0,w) at time 60

Tran(1,0) submits operation (*,c) at time
121

Epidemic Communication Take place at time 350

Continued on next page

 55

Table 5.4. Continued

At Site 0 Site 1

Trans(1,0) is received and found to
conflict with Tran(0,0) and are both
marked in conflict at time 425.
Tran(2,0) is marked in conflict because
it read from Tran(0,0) at time 425.

Trans(0,0) is received and found to conflict
with Tran(1,0) and both are marked in
conflict at time 425
Trans(2,0) is received and since it read from
Tran(0,0) which is marked inconflict it is
also marked inconflict at time 425.

 In this case Transaction(0,0) takes place at Site 0 and submits write operations on

data items 0 and 1 at times 0 and 60ms and a commit operation at time 121ms. Similarly

Transaction(2,0) submits write operations on data items 2 and 0 at times 0 and 60ms and a

commit operation at time 192ms. The write operation of Transaction(2,0) on data item 0

waits until the Transaction(0,0) has completed because Transaction(0,0) is holding a write

lock on data item 0. Transaction(1,0) takes place at Site 1 and submits write operations on

data items 1 and 0 at times 0 and 60ms and a commit operation at time 121. During the

process of epidemic communication Transaction(1,0) is received at time 425ms by Site 0

and is found to conflict with Transaction(0,0) and both are marked inconflict. Additionally

Transaction(2,0) is also marked in conflict as it contains Transaction(1,0) in its readFrom

set. At Site1 Transaction(0,0) is received first at 425ms since it conflicts with

Transaction(2,0) both are marked inconflict. Transaction(2,0) is received after that and since

it contains Transaction(0,0) in its readFrom set it is also marked as inconflict.

Case 4: Transaction received via epidemic communication conflicts with current
operations

This case tests the scenario of a transaction taking place at a site conflicting with

another transaction which arrived at the site by the process of epidemic communication. In

this case epidemic communication of Site 0 was done at time 100ms and the communication

time is set to10ms to capture this scenario.

 56

 Table 5.5 Test case 4 of epidemic algorithms simulation

At Site 0 At Site 1
Tran(0,0) submits operation (0,w) at
time 0
Tran(0,0) submits operation (2,r) at
time 60
Tran(0,0) submits operation (*,c) at
time 89

Epidemic Communication was done at
time 100

Tran(1,0) submits operation (0,w) at
time 0
Tran(1,0) submits operation (3,w) at
time 60

Tran(0,0) was received at 110 and
Tran(1,0) is aborted and all its locks
are released at the same. The write
operations of Tran(0,0) are queued
for execution and done at time 111

Tran(1,113) submits operation
(w,113) at time 113

 Transaction (0,0) takes place at site 0 and submits a write operation on data item 0 at

time 0ms, a read operation on data item 2 at time 60ms and a commit operation at time

89ms. Epidemic communication for Site 0 is done at time 100ms. Transaction(1,0) submits

write operations on data items 0 and 3 at times 0 and 60ms. But Site 1 receives

Transaction(0,0) via epidemic communication at time 110ms (since communication time is

set to 10ms) and it is found to conflict with Transaction(1,0). Transaction(1,0) is aborted

whereas the write operations of Transaction(0,0) are queued for execution and are executed

at 111ms. This is because the epidemic algorithms abort transactions that are taking place

currently and allows transactions that were committed at other sites to take place.

Case 5: Transaction current operations waiting on a forced write lock

 This captures the scenario of a transaction’s operations waiting on a forced write

lock of a transaction which came in via epidemic communication. Table 5.6 represents this

execution.

 57

Table 5.6 Test case 5 of epidemic algorithms simulation

At Site 0 At Site 1 At Site 2
Tran(0,0) submits operation
(0,w) at time 0
Tran(0,0) submits operation
(2,w) at time 60

Tran(0,0) submits operation
(*,c) at time 121

Tran(1,0) submits operation
(1,w) at time 0
Tran(1,0) submits operation
(3,r) at time 60
Tran(1,0) submits operation
(*,c) at time 89

Epidemic Communication Take place at time 350

Trans (1,0) is received and
since it does not conflict,
the write operations are
queued to be executed at

times 426 and 486
respectively

Trans(0,426) submits
operation (1,w) at 426---
waits on forced write

Trans(0,426) submits
operation(9,r) at time 556

Trans(0,426) submits
operation(*,c) at time 585

Trans(0,0) is received and
since it does not conflict,
the write operations are
queued to be executed at

times 426 and 486
respectively

Trans(1,426) submits
operation (0,r)—waits on
forced write

Trans(1,426) submits
operation(8,w) at time 523

Trans(1,426) submits
operation(*,c) at time 585

Trans(0,0) is received and
since it does not conflict,
the write operations are

queued to be executed at
times 426 and 486

respectively
.

Trans(1,0) is received and
since it does not conflict,
the write operations are

queued to be executed at
times 426 and 486

respectively

 Transaction(0,0) takes place at site 0 and submits write operations on data items 0

and 2 at time 0ms and 60ms respectively. It then submits a commit operation at time 121ms.

Transaction(1,0) takes place at site 1 and submits a write operation on data item 1 and a read

operation on data item 3 and a commit operation at times 0,60 and 121ms respectively.

Epidemic Communication takes place at time 350. At time 425ms, Transaction(1,0) is

received by Site 0 and since it does not conflict, its forced write operations take place at time

426 and 486ms respectively. Similarly Transacation(0,0) is received by Site 1 at time 425ms

 58

and its operations are executed as forced writes at time 426 and 486ms respectively. The

simulation was made so that the Transaction(0,426) starts at time 426ms and submits a write

operation on data item 1 at 426ms which is made to wait on the forced write of

Transaction(1,0) and it submits its read operation on data item 9 at time 556ms only. It then

submits a commit at time 585ms. Similarly at Site 1 Transaction(1,426) is made to submit a

read operation on data item 0 at time 426ms and it waits on the forced write of Trans(0,0).

Hence its write operation is submitted only at time 523ms and then it submits a commit

operation at time 585ms. At Site 2, Transactions(0,0) and(1,0) are received at 425ms and

since they do not conflict with any transactions their write operations are performed as

forced writes at time 426ms and 486ms.

 Thus five different scenarios of transaction execution where identified and the

simulation was tested against these scenarios. This strengthens the confidence on our

simulation.

59

CHAPTER SIX

Experiments and Results

The first section of this chapter describes the parameter settings for the experiments

that were conducted on the 2PC and ROWA simulation (explained in Chapter Four) and

Epidemic Algorithms simulation (explained in Chapter Five) to simulate P2P environments.

The second section of this chapter describes results of these experiments. The last section

presents the overall observations from our experiments.

6.1 Parameter Settings for the Experiments

The parameters of the experiments have to be set to reflect P2P environments. These

parameters have been modeled based on the available literature. This section describes the

parameters of our simulation and the literature that served as guides to assign their values.

6.1.1 Communication Time

Both these simulations necessitate the modeling of the communication time

parameter. This is the duration to send a message from one site to another. The simulations

assume a uniform communication model for all sites in the network (i.e. the duration to send

a message from site A to site B is the same for any A and B)

(Pei et al, 1998) estimates the number of hops and round trip from a UCLA host

computer to a randomly selected set of 3,219 hosts in four continents around the world.

They use a measurement methodology similar to that of traceroute to measure hop count.

Traceroute transmits packets with small TTL values which are decremented for every hop. If

the TTL reaches zero, an ICMP Time Exceeded message is sent to the sender. Sending

60

packets with incremental TTL values will make all the hosts in the path of the packet to send

back ICMP Time Exceeded messages, when the TTL expires on reaching them. This helps

to identify the route of the packet. The packet also contains a port id that is not normally

used by the destination host. When this reaches the destination host, it sends back a ICMP

Port Unreachable error. Thus the entire route to the destination is traced. Then the program

sends 20 - 48 byte UDP packets to the destination with a time interval of 5 seconds between

each. The time from sending a probe packet and receiving it back is calculated as the Round

Trip Time and the average is calculated as the Round Trip Delay. Their results show that the

round trip delays for 90% of the hosts are less than 153ms. The average delay for

international hosts vary from 116.74ms (Canada) to 1537.52ms (China). This is because

there were only two links between China and the US during the time of measurement (1997-

98) – one 2Kbps and the other 2Mbps and also the links within China were slow.

In (Graham et al., 1998) they present a novel and low-cost technique for accurately

measuring delay, delay variation and packet loss on the intercontinental internet. According

to their results the unidirectional delay between Waikato(NZ) and Cambridge(England)

varies from 0.15 secs to 0.5 secs at different times of the day with the majority values

around 0.2 to 0.25 secs.

(Kaladindi et al., 1998) is a measurement infrastructure that measures end-to-end

unidirectional delays, packet loss and route information along Internet paths deployed at

about 50 higher education and research sites around the world. The test packets were 12

bytes and sent using UDP (totaling to 40 bytes). The delay for US to Netherlands monitored

at different times varied from 60 to 200ms.

(Huitema et al., 2000) measures the quality of web service by selecting and polling a

random set of 100 web servers every day. The test was started at 3 pm EST, and the

61

homepages of 100 random servers were downloaded. According to their results, the median

round trip delay is around 130 milliseconds.

A report of the global response time (round trip time) can be obtained for each day

and for the past 30 day period from the Internet Traffic Report Website (Internet Traffic

Report website). Their reports show that the global response time varies from 30 to 145ms

during the time period 01/15/2005 to 02/14/2005.

Assuming symmetric paths (the packets follow the same path to and fro) then the one

way delay is equal to half the round trip time. In our experiments the sites have to send

operations, messages that are part of the 2PC, transaction records and timetables to other

sites. These are small messages (less than 128 bytes in our experiments) and will not usually

be segmented. Hence the delay is comparable to any of our references. To model the

network we have assumed the diameter of our P2P network to be similar to that of (Pei et al,

1998) spanning the entire U.S.A. Their report shows that the round trip delays for 90% of

the hosts are less than 153ms. Assuming a symmetric path the communication time

parameter for our experiments has been rounded and fixed at 75ms.

6.1.2 I/O Time

The durations of read and write operations have to be modeled for our experiments.

This necessitates the modeling of I/O time. (Chen et al., 2003) calculates the disk access per

data block for a disk with 73-GB capacity, 5ms average seek time and a rotational speed of

10,000 RPM or an equivalent of 3ms. The average rotational latency and sustained data

transfer rate is 29.8 – 58.0 MB/sec. Assuming 40 MB/sec average transfer rate and each data

block to be 40 KB the data transfer time is 1ms per data block. The average disk access time

per block obtained by summing up seek time (5ms), rotational latency (3ms) and transfer

time (1ms), is 9ms.

62

The PC Technology Guide (PC Technology Guide Disk Performance) says that by

late 2001 the fastest high-performance drives were capable of an average latency of less than

3ms, an average seek time between 4 and 7ms and maximum data transfer rates in the region

of 50 and 60 Mbps for EIDE and SCSI-based drives respectively which is similar to the

values of (Chen et al., 2003).

IBM (IBM 1998) reports that most of the desktop then had a seek time of 9.5ms and

a data transfer time of 0.3ms for 4KB of data. Using the equation that I/O time = command

overhead time + seek time + latency + time to transfer (0.5+9.5+4.2+0.3) they have

computed I/O time to be 14.5ms. This was calculated for a 7200 RPM harddrive.

73.4 GB Cheetah 15 K.3 has claimed read and write seek times of 3.6 and 4.0ms,

which is a littler slower than 3.4 and 3.8ms read and write seek times of Maxtor’2 73.4 GB

(Tech Report, 2003). Seagate also claims transfer rates as high as 86MB/sec for the Cheetah

15K but Maxtor’s Atlas 15K tops out at only 75MB/sec.

(Zhu et al., 2004) have measured the average disk access time on an IBM Ultrastar

36Z15 to be 10ms and have used this value in their simulation.

Based on this survey we model the average disk access time as 10ms.

6.1.3 Duration of Read, Write and Log-Write

Equation 3.2 shows the derivation for the duration of read operation (Ulusoy,

Belford 1992). Assuming a main memory equal to half the size of the database (Ulusoy,

Belford 1992) we get the duration of read operation to be 5ms. The duration for a write is

equal to the average disk access time (10ms). But a write operation consists of a read and a

write. Hence the duration of a write operation is 15ms. The duration for a log write

operation is equivalent to that of the average disk access time

63

6.1.4 Bandwidth

The epidemic algorithms simulation has a bandwidth parameter associated with it,

which defines the common bandwidth of the network explained in Chapter Five. A

bandwidth measurement study in P2P systems (Saroiu et al., 2001) reports that only 20% of

Napster users and 30% of Gnutella users have bandwidth greater than 3 Mbps, and 50% of

Napster users and 60% of Gnutella users have broadband connection. We assume that only

such peers will become part of a P2PDB network, and we have fixed our bandwidth

parameter at 1Mbps.

6.1.5 Time to Failure and Time to Recover

(Saroiu et al., 2001) monitors 17,215 Gnutella clients for a period of 60 hours and

7,000 Napster clients for a period of 26 hour and reports that the median session duration for

both Gnutella and Napster clients is 60 minutes. (Chu et al., 2002) studies the availability of

few thousand Gnutella peers for a five week period and observes that 30% of the peers of

Gnutella and Napster are available for 10 minutes. (Gummadi et al., 2003) have reported the

average session length of Kazaa users to be 2.4 minutes for a 200 day trace period in

University of Washington. (Birrer and Bustamante, 2004) have observed that measurement

studies of P2P systems have reported median session times ranging from an hour to a

minute. They have used two different failure rates for their experiments – one with high

failure rate (MTTF 5 minutes and MTTR 2 minutes) and another with low failure rate

(MTTF 60 and MTTR 10 minutes). (Rhea et al., 2004) have reported that median session

time in deployed P2P networks varies from an hour to few minutes. Furthermore they have

observed that the average session time of more than 50% of the peers in the experiments of

(Sen and Wang, 2004) is less than one minute.

64

In our experiments, we have modeled a severe P2P environment with high failure

rates resembling the high failure rate of (Birrer and Bustamantem, 2004) because our

simulations ran out of heap space if the simulations run for too long due to accumulation of

records in the CommunicationManager and event logs and other information needed to

maintain transaction history and details for epidemic algorithms. We classified our

experiments in two major categories. In the first series of experiments, we kept the time to

failure of a site constant at 60 seconds. Each site was assigned a random ∆failure value at

the startup in the range between 1 to 10 seconds. The first failure of each site occurs at

60+∆failure seconds, and the successive failures of each of the sites occur 60 seconds after

their subsequent recovery. The ∆failure ensures that the sites do not go down at the same

instant. For this failure scenario, experiments were carried out keeping the time for recovery

of the sites constant at 2 seconds, 10 seconds, 60 seconds and varying the time for recovery

from 2 to 60 seconds.

In the second series of experiments, the time to failure of each site is randomly

chosen to be between 30 and 90 seconds. For this scenario similar experiments were carried

out keeping the time for recovery of the sites constant at 2 seconds, 10 seconds, 60 seconds

and varying the time for recovery from 2 to 60 seconds.

6.1.6 Other Parameters

The multi-programming level is set at 50. Each transaction has 18 operations

operating on different data items, out of which 4 are write operations. Writesets might be

large, but we model low-conflict environments only in our experiments. There are 19,200

data items in each site/peer, and there are totally 8 sites/peers. The replication is maintained

at 8 (1 copy per site). The epidemic communication time is fixed at 200ms since it takes

65

110ms to perform all the operations of a transaction assuming the transaction does not

conflict. The parameters are listed in Table 6.1.

Table 6.1: The parameter settings for P2P environment simulation

Parameter Value
No of data items
No of Sites
Replication

19200
8
8 (1 copy per site)

No of operations per transaction
No of read operations
No of write operations

18
14
4

Duration of Read 5ms
Duration of Write 15ms
Duration of Log Write 10ms
Multi programming level 50
Bandwidth
Communication Time

1Mbps
75ms

Epidemic Communication Time 200

6.2 Experiment and Results

Three experiments were performed for each setting, and the number of transactions

committed for both the 2PC and ROWA simulation and the Epidemic Algorithms are

measured at time intervals in powers of 2 starting at 2 seconds (2s, 4s, 8s, 16s, 32s, 64s,

128s, and 256s). This section presents the comparative results of both the simulations for

different failure and recovery rates. All the experiments have a steady state time of 10

seconds, meaning the system runs for 10 seconds before any measurements are made.

The results of the experiments are presented below. The graphs present the number

of transactions committed in the system under the three different algorithms for the specific

parameter settings. The continuous line with the values marked in circles represent the

results of 2PC+ROWA simulation. The dotted line with the values marked in squares

represents the results of the Pessimistic Epidemic Algorithm for which we count the

66

transactions that are fully committed only. The dashed line with the values marked in

triangles represents the results of the Optimistic Epidemic Algorithm for which we count the

transactions that are both fully and partially committed. Eight different combinations of TTF

and TTR were identified, and 3 experiments were conducted for each setting. The settings

are explained in Section 6.15. The arithmetic mean of the three experiments was taken and

the results are plotted as below.

6.2.1 Experiment 1 : Time To Failure Fixed at 60 seconds and Time to Recover Fixed at
2 seconds

Fig. 6.1 Results for TTF = 60 seconds and TTR = 2 seconds

 In Experiment 1, Epidemic Algorithms simulation did not run to completion since

the JVM ran out of heap space. This might be because the TTR is very fast and the uptimes

of the sites are high. Thus more transactions are committed leading to a increase in the size

of the event logs and other information at each site requiring more heap space than the other

experiments.

67

6.2.2 Experiment 2 : Time To Failure Fixed at 60 seconds and Time to Recover Fixed at
10 seconds

Fig. 6.2. Results for TTF = 60 seconds and TTR = 10 seconds

6.2.3 Experiment 3: Time To Failure Fixed at 60 seconds and Time to Recover Fixed at
60 seconds

Fig. 6.3. Results for TTF = 60 seconds and TTR = 60 seconds

68

6.2.4 Experiment 4 : Time To Failure Fixed at 60 seconds and Time to Recover Varied
between 2 to 60 seconds

Fig. 6.4. Results for TTF = 60 seconds and TTR varied from 2 to 60 seconds

6.2.5 Experiment 5 : Time To Failure Varied from 30 To 90 seconds and Time to
Recover Fixed at 2 seconds

Fig. 6.5. Results for TTF varied from 30 to 90 seconds and TTR = 2 seconds

69

6.2.6 Experiment 6 : Time To Failure Fixed from 30 To 90 seconds and Time to Recover
Fixed at 10 seconds

Fig. 6.6. Results for TTF varied from 30 to 90 seconds and TTR = 10 seconds

6.2.7 Experiment 7 : Time To Failure Fixed from 30 To 90 s and Time to Recover Fixed
at 60 seconds

Fig. 6.7. Results for TTF varied from 30 to 90 seconds and TTR = 60 seconds

70

6.2.8 Experiment 8 : Time To Failure Varied from 30 to 90 seconds and Time to
Recover Varied from 2 to 60 seconds

Fig. 6.8. Results for TTF varied from 30 to 90 seconds and TTR varied from 2 to 60 seconds

6.2.9 Experiment 9 : Low Conflict Scenario with Time To FailureVaried from 30 to 90
seconds and Time to Recover Varied from 2 to 60 seconds and MPL = 5

Fig. 6.9. Results for TTF varied from 30 to 90 seconds and TTR varied from 2 to 60 seconds
and MPL=5

71

6.3 Observations and Analysis

For each simulation, except Experiments 3 and 7, the total number of the committed

transactions is within 12 % of the reported values. For these two scenarios the values spike

up to 28% and 38% respectively. In both these cases, one of the experiments is an outlier

[ignoring that experiment brings the variation below 12%]. This could be due to the

randomness in the operations of the transactions for each experiment, which gives rise to

differences in the number of conflicts. The 2PC+ROWA protocol performs better than the

Epidemic Algorithms in the first three settings. The first three cases present P2P

environments where the failures and recovery are uniform. As we move towards more non-

uniform environments more similar to expected P2P settings, the Epidemic Algorithms

commit more number of transactions than the 2PC+ROWA. The reason that the Epidemic

Algorithms perform better in Experiments 4 through 8 is because the failures and recoveries

happen at different intervals for each of the sites and not all the sites are available at most

instants of the experiment. For update, 2PC+ROWA protocol requires all the sites be

available to commit the transaction. In the case of Epidemic Algorithms, the transactions are

propagated at a later point of time when the sites become available and are performed then.

In all the cases, the Epidemic Algorithms start out better than the 2PC+ROWA

protocol because the 2PC+ROWA protocol sends write operations to all sites individually,

whereas in the case of Epidemic Algorithms, all the write operations are communicated

through one TransactionRecord. The number of transactions committed under the

EpidemicAlgorithms then drops due to redundancy in the communication or

TransactionRecords. The transaction records from a site will be communicated to other sites

repeatedly during the epidemic communication process until the notification of the

72

transaction being processed at those sites is received. Only after that the next transaction will

be started in place of the transaction to maintain the multi-programming level.

In our simulations of Epidemic Algorithms, a transaction is defined as active until it

has been processed at all sites. The next transaction is started in its place only after the

previous one has been processed at all sites. This definition is not fixed as in the case of

Optimistic Algorithms where a transaction is committed at a site after it has performed there.

Therefore we could start as soon as one has committed at its local site. In this case, the

number of transactions committed under of the Optimistic Epidemic Algorithms would be

much higher. It is a matter of future study to determine which is a better representation of

P2PDB.

On further analysis of the performance of 2PC+ROWA protocol for experiments 4

and 8, the transactions are found to have stopped committing after 64 seconds (indicated

from the flatness in the Figures 6.4 and 6.8). This is because in these severe failure

scenarios, some of the sites are always down after the failures start happening. Epidemic

Algorithms however manage to commit transactions even in these cases owing to the

property that the transactions are committed locally and then propagated at other sites and

processed there whenever the sites are available.

In a P2PDB environment, if a site leaves permanently then 2PC+ROWA will not

commit a transaction under full replication until the permanent unavailability of site is

sensed by the system (usually by a huge timeout). Then a replica detail for every site has to

be updated with removal of this site’s entry. In the case of Optimistic epidemic algorithms

permanent failure of sites does not have a drastic effect on the number of commits.

The availability of the database is increased under epidemic algorithms because

transactions with write operations can be committed even if one site is available, whereas

under 2PC+ROWA write transactions can be committed only when all sites are available.

73

However epidemic algorithms require more memory space due to the preservation of

the transaction in the event logs. Also time for detecting conflicts by searching through the

event logs will increase with increase in the event log size. If the size of the transaction

becomes large, then communication might get delayed due to segmentation. Similarly if the

number of sites is increased, the timetables will expand and similar delay during

communication will be experienced.

Experiment 9 represents a low conflict scenario where the multiprogramming level is

reduced to 50. As claimed in their proposal (Agrawal et al., 1997), the epidemic algorithms

perform extremely well in low conflict environments. This is true even in the case of severe

P2P failure environments as simulated in the experiment.

74

CHAPTER SEVEN

Conclusion and Future Work

The first section of this chapter describes the conclusions drawn from our

experiments. The next section of the Chapter presents the reader with the recommended

future work

7.1 Conclusion

In typical P2P environments peers or sites arise anywhere and anytime. Knowledge

of their location, start, failure and recovery is not available beforehand. Our experiments

show that epidemic algorithms commit more number of transactions in the case of fully

replicated P2P environments where the sites have varying failure and recovery rates

compared to traditional 2PC coupled with ROWA.

Furthermore, since all sites need not be available at the same time for epidemic

algorithms to commit transactions and transactions take place at a site and are propagated

and performed at a later time, epidemic algorithms handle permanent site failures better than

2PC + ROWA. This increases the chances of committing transactions.

Additionally, this increases the availability of the database because update

transactions can be committed even if only one site is available at a particular instant

whereas in the case of 2PC+ROWA, the presence of all the sites is necessary. Crucial

transactions can be completed even in high failure environments under epidemic algorithms.

Epidemic algorithms have certain drawbacks too. They require more memory as the

event log accumulates over time thus imposing a large main memory requirement for

participants in the P2PDB network. In the case of our experiments, considering the small

75

size of the transaction records (less than 100 bytes) and the ephemeral presence of peers,

this memory increase is insignificant. But considering a scenario where the transactions have

large write sets, this could be more critical.

Transaction-records are redundantly communicated to sites until an

acknowledgement of the transaction performed at that site is received. This is indicated in

the time table of the other sites. Thus even when the transactions are performed at all sites,

there is a duration where the site of origination does not know about this and keeps sending

this transaction’s transaction-record to the other site assuming that the previously sent ones

have not reached the receivers. Apart from the communication overhead, the response time

of the transaction is also delayed. Increase in the size of the event logs will increase the time

for detecting conflicts. Increase in the size of transactions or the number of sites might lead

to the segmentation of the transaction records and timetable during communication

increasing the communication delay.

7.2 Future Work and Recommendations

As much as my exploration provides insight into the behavior of epidemic

algorithms and 2PC+ROWA in P2P environments, further explorations in this arena would

bring to light the more precise behavior. This would provide a better understanding about

these algorithms. This section highlights some of our recommendations.

Since our simulation simulates all the sites in one program, our experiments have

been restricted to shorter run time due to the program running out of heap space in JAVA.

This could be overcome by making each site into a program. Communication between sites

can be simulated by using RMI. This could help us model P2P environments where failures

and recoveries are not severe.

76

We have assumed that a transaction remains active until they are processed at all

sites even in the case of Optimistic Epidemic Algorithms. The next transaction is started in

its place only after it has been processed at all sites. This perception may vary between

systems as in Optimistic Epidemic Algorithms transactions are committed at a local site and

are resolved when conflicts are discovered at another site during the process of epidemic

communication. Simulations can be built allowing transactions to be active only until they

commit at their local site and the next transaction could be started immediately. Such

simulations would yield better throughput for Optimistic Epidemic Algorithms.

In our experiments we have modeled transactions arising continuously one after the

other so that we maintain the multi-programming level at a constant number. In typical

database environments, the transactions are not uniform and tend to follow a Poisson

distribution. The performance of these algorithms under a Poisson distribution of

transactions can be studied.

Our experiments simulate fully replicated environments. Replication is a vast field

that requires more study. The performance of these algorithms under various replication

environments would be a separate study by itself.

The experiments are performed for a fixed class of transactions. In typical real world

environments we will have transactions of various lengths and natures. This can be studied

changing our simulation so that transactions of mixed classes exist in the system.

Environments with different conflict ratios could be modeled and the effect of larger

writesets of transaction on Epidemic algorithms could be analyzed.

We have assumed a uniform communication model, where the time taken for a

message to be sent from site A to site B for any site A, B is fixed. In typical P2P networks

this is different for every A, B pair. Investigation of typical P2P network topologies could be

done and our simulation can be tuned to model a non-uniform communication model.

77

Thus new studies based on many parameters used in our simulations can provide

further insight about the performance of P2PDB algorithms.

 78

BIBLIOGRAPHY

Agrawal, D., Abbadi, A.E., Steinke, R.C. 1997. Epidemic algorithms in replicated databases

(extended abstract). Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp.161-172.

Ashwin R. Bharambe, Mukesh Agrawal, Srinivasan Seshan. 2004. Mercury: supporting

scalable multi-attribute range queries. Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications
34: 353-366.

Bernstein, P.A. and Goodman, N. 1984. An algorithm for concurrency control and recovery

in replicated distributed databases. ACM Transactions on Database Systems (TODS) 9:
596-615.

Bernstein, P.A., Hadzilacos, V. and Goodman, N. 1987. Concurrency control and recovery

in Database Systems. Addison-Wesley.

Birrer, S. and Bustamante, F. 2004. Resilient peer-to-peer multicast from the ground up.

Proceedings of Network Computing and Applications 00: 351-355.

Cai, M.J., Frank, M., Chen, J. and Szekely, P. 2003. MAAN: A multi-attribute addressable

network for grid information services. Proceedings of the Fourth International
Workshop on Grid Computing, pp.184-206.

Chu, J., Labonte, K. and Levine, B. 2002. Availability and locality measurements of peer-to-

peer file systems. ITCom: Scalability and Traffic Control in IP Networks, Boston, MA
4868: 310-321.

Carrey, M.J. and Livny.M. 1991. Conflict detection tradeoffs for replicated data. ACM

Transactions on Database Systems (TODS) 16: 703-746.

Clarke, I., Sandberg, O., Wiley, B. and Hong,T.W. 2000. Freenet: a distributed anonymous

information storage and retrieval system. Proceedings of the International Workshop on
Design Issues in Anonymity and Unobservability 2009: 46-66.

Chen, C. and Cheng, C.T, 2003. Replication and retrieval strategies of multidimensional

data on parallel disks. In Proceedings of CIKM, pp. 32-39.

Connolly , T. and Begg, C. (1996). Database systems: a practical approach to design,

implementation and management. Addition Wesley.

Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I. 2004. Queries and updates in the

coDB peer to peer database system. http://www.inf.unibz.it/~franconi/papers/vldb-demo-
04.pdf.

79

 Franconi, E., Kuper, G., Lopatenko, A., Zaihrayeu, I. 2004. A distributed algorithm for
robust data sharing and updates in p2p database networks. Proceedings of the P2P&DB
International Workshop, Heraklion - Crete, Greece.

Giunchiglia, F. and Zaihrayeu, I. 2002. Making peer databases interact – a vision for an

architecture supporting data coordination. Proceedings of the Conference on Information
Agents 6: 18-35.

Gray, J. and Reuter,A.1992. Transaction processing concepts and techniques. Morgan

Kaufmann Publishers Inc.

Graham, I.D., Donnelly, S.F, Martin, S.,Martens, J. and Cleary, J,G. 1998. Nonintrusive and

accurate measurement of unidirectional delay and delay variation on the internet. ISOC
Inet , pp.21-24.

Gummadi, K.P, Dunn, R.J., Saroiu, S. and Gribble, S.D. 2003. Measurement, modeling and

analysis of a peer-to-peer file-sharing workload. Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pp. 314-329.

Halevy, A.Y., Ives, Z.G, Mork, P. and Tatarinov, I. 2003. Piazza: data management

infrastructure for semantic web applications. Proceedings of the 12th International
Conference on World Wide Web 2003, pp. 556-557.

http://www.csee.umbc.edu/help/oracle8/server.815/a67784/ds_ch3.htm#283. Sep 15, 2005.

UMBC’s Oracle site.

http://www.dbasupport.com/oracle/ora9i/ors.shtml. Sep 15, 2005. DBASupport Oracle

replication site.

http://internettrafficreport.com. Oct 12, 2005. Internet traffic report website.

http://www.jxta.org. Sep 15, 2005. JXTA.

http://www.pctechguide.com/04disks_Performance.htm. Oct 12, 2005. PC technology guide

disk performance.

http://techreport.com/reviews/2003q4/cheetah-15k/index. Oct 3, 2003. The Tech Report.

http://www.wired.com/news/business/0,1367,67202,00.html. Sep 15, 2005. Peer-to-Peer

estimation site.

http://www.seti.org. Sep 15, 2005. Seti homepage.

http://www.gnutella.com. Sep 15, 2005. Gnutella: The gnutella file-sharing protocol.

http://www.napster.com. Sep 15, 2005. Napster: The napster file sharing system.

80

 Huebsch,R., Hellerstein, J.M., Lanham, N., Loo, B. T., Shenker, S. and Stoic, I. 2003.
Querying the internet with PIER. Proceedings of 29th International Conference on Very
Large Data Bases, Berlin, Germany, pp. 321-332.

Huitema, C. and Weerahandi, S. 2000. Internet measurements: The rising tide and the DNS

snag. Proceedings of the 13th ITC Specialist Seminar on Internet Traffic Measurement
and Modelling, Monterey, CA.

IBM. 1998. Hard drive performance 7200 rpm versus 5400 rpm at interface disk drives.

http://www.cs.ccu.edu.tw/~wcshen/HD.pdf

Johnson, D. 2002. The PGReplication project. PostgreSQL Database Replication Options.

Kaladindi, S., and Zekauskas M.J. 1998. Surveyor: an infrastructure for internet

performance measurements. In ISOC inet 99.

Kubiatowicz, J., Wells, C., Zhao, B., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels,

D., Gummadi, R., Rhea, S. and Weatherspoon, H. 2000. OceanStore: an architecture for
global-scale persistent storage. Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems 2000, 28:
190-201.

Korth, H.F. and Speegle, G. 1994. Formal aspects of concurrency control in long-duration

transaction systems using the NT/PV model. ACM Transactions on Database Systems
(TODS) 19: 492 – 535.

Liu, M.L., Agrawal, D. and Abbadi, A.E. 1998. The performance of two phase commit

protocols in the presence of site failures. Distributed and Parallel Databases 1998 6:
157-182.

Molina, H.G. and Salem, K 1987. SAGAS. Proceedings of the 1987 ACM SIGMOD

International Conference on Management of Data, San Francisco, California, United
States 1987. 16: 249–259.

Muthitacharoen, A., Morris, R., Gil, T.M. and Chen, B. 2002. Ivy: a read/write peer-to-peer

file system. ACM SIGOPS Operating Systems Review 2002, pp. 31-44.

Pei, G., Liu, R. and Zhang, L. 1998. Measurement of delay and hop count on the internet.

IEEE GLOBECOM'98 - Internet Mini-Conference, 1998.

Ranasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S. 2001. A scalable content-

addressable network. Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications 31: 161-172.

Rhea, S., Geels, G., Roscoe, T. and Kubiatowicz, J. 2004. Handling churn in a DHT.

Proceedings of the USENIX Annual Technical Conference, June 2004.

81

 Rowstron, A., Druschel, P. 2001. Pastry: scalable, distributed object location and
routing for large-scale peer-to-peer systems. IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, Nov 2001, pp. 392-
350.

Rowstron, A., Druschel, P. 2001. Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility. Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles 35: 188-201.

Saroiu, S., Gummadi, K.P. and Gribble, S. 2002. A measurement study of peer-to-peer file

sharing systems. Proceedings of Multimedia Computing and Networking Conference,
January 2002.

 Stoica, I., Morris, R., Nowell, D.L., Karger, D.R., Kaashoek, M.F., Dabek, F.,

Balakrishnan, H. 2003. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking 2003 1: 17-32.

Subrata, S. and Wang, J. 2002. Analyzing peer-to-peer traffic across large networks.

Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement. 5: 137 -
150.

Sung, A.L.G., Ahmed, L., Blanco, R., Li, H., Soliman, M.A. and Hadaller, D. 2005. A

survey of data management in peer-to-peer systems.
http://www.cs.uoi.gr/~pitoura/courses/p2p/papers/survey3.pdf

Thomasian, A 1993. Two phase locking performance and its thrashing behaviour. ACM

Transactions on Database Systems, 18: 579-625

Ulusoy, Ö., Belford,G.G. 1992. A simulation model for distributed real-time database

systems. Proceedings of the 25th Annual Symposium on Simulation, pp. 232-240

Vecchio, D.D. and Son, S.H. 2005. Flexible update management in peer-to-peer database
systems. http://www.cs.virginia.edu/~son/publications/p2p.IDEAS05.pdf.

Zhu, Q., Shankar, A. and Zhou, Y. 2004. PB-LRU: a self-tuning power aware storage cache

replacement algorithm for conserving disk energy. Proceedings of the 18th annual
International Conference on Supercomputing, pp. 79-88.

