
  
 

ABSTRACT 
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In recent years P2P systems have gained tremendous popularity. Support of a 

transaction processing facility in P2P systems would provide databases at a low cost. 

Extending distributed database algorithms such as 2PC and ROWA to P2P environments 

might not provide the best performance because the P2P systems are characterized by high 

site failure rates and an unpredictable network topology. The choice of algorithms in 

building P2PDB is difficult because of the lack of information about the performance of 

database algorithms in P2P environments. This thesis analyzes the performance of one such 

algorithm, the epidemic algorithm against the performance of traditional database algorithms 

in simulated P2P environments. 
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CHAPTER ONE 

Introduction 

In recent years P2P systems have gained tremendous popularity and consumed a 

tremendous amount of the global network traffic. Estimates are that 60 to 80 percent of the 

capacity on consumer ISP networks is consumed by P2P applications (Peer to Peer 

Estimation Website 2005). P2P file sharing applications like Gnutella (Gnutella 2005) and 

Freenet (Clarke et al. 2000) have brought enormous attention to the P2P systems. However 

there are many P2P applications. Chinook Online (Chinook 2005) dynamically discovers 

new bioinformatics services across a heterogeneous network and allows the users to run 

distributed bioinformatics programs. SETI (SETI Homepage 2005) uses the power of peer-

to-peer computing to search for extraterrestrial intelligence by analyzing radio telescope 

data. 

Another possibility for P2P systems is the idea of incorporating database 

functionality. Let us consider a database application distributed among these peers. Consider 

the scenario of a student group conducting an event and needing a database server to handle 

the registration and management of the event. If they could achieve this by connecting to an 

existing P2PDB network or using a network of student computers, they would save a lot of 

time and cost. In this application, a user would register via a website. The web server would 

then use the student computers in the P2PDB to store the data. This is better than a single 

database because the availability is high (in our example, even if some of the student 

computers experience failure, the P2PDB will still continue working). Once a user registers, 

the database functionality would ensure that the data at sites contains this information. 
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Thus, incorporating database functionality on the peer-to-peer systems would equip 

organizations with powerful database servers for low cost. 

Various problems like security, performance, storage, etc. emerge when we try to 

incorporate database functionality into P2P environments. Storage management is a concern 

because these peers are usually desktop computers with very little memory for sharing. 

When data is stored in numerous unknown peers, security of data becomes an important 

issue. This work is primarily concerned with performance. The peers in the P2P systems are 

characterized by high failure rates and the composition of the system is not known 

beforehand, which is not the case in typical distributed database applications. Thus the 

performance of standard database techniques in P2P is unknown 

While trying to choose algorithms for P2PDB, the natural solution is to extend the 

already existing and stable algorithms used in distributed databases. Distributed databases 

are those where the data is dispersed among multiple sites (which are stable). An example of 

a distributed database is that of a company which has its department records (eg: HR, 

Finance and Sales) in different cities (eg: Austin, Waco, Dallas) as shown in Figure 1.1. 

Replication of data is done to increase availability. In this example, HR information could 

be replicated at all three sites to increase its availability. For instance, failure of individual 

nodes would not prevent retrieval. Likewise, the communication overhead of accessing the 

data from a remote site is eliminated. When replicated data has to be handled by a 

distributed database, DDMSs like PostgreSQL (Johnson, 2002) and Oracle (DBASupport’s 

Oracle Replication Site 2005) implement a protocol called ROWA (Read One Write All) to 

ensure consistency of data across all the sites. As the name implies, when a transaction 

wants to read the data it does so from one site (usually the nearest) and when a transaction 

wants to write data, it performs a write at all the database sites that contain a copy of the 
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data. To ensure global atomicity (the effects of the committed transactions take place at all 

sites), distributed database systems implement the 2PC (Two-Phase Commit Protocol) 

(Bernstein et al. 1987). Detail descriptions of ROWA and 2PC can be found in Chapter 

Four. 

 

 

Fig.  1.1. Example of a distributed database 

Since P2P systems are characterized by high failure rates of the peers, extension of 

these techniques to the P2P systems might not scale well as many peers may end up waiting 

for the response of peers which have already left the system. The lack of instantaneous 

notification of peer failures also poses a threat to the performance of these algorithms since 

the transactions would wait until all the peers update their local data without knowing that 

some of them have failed. Deciding a timeout interval for these transactions is difficult as 
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the nature of the network cannot be predicted. Hence investigation of other protocols is 

necessary in order to decide the optimal choice of the algorithms for P2PDBs. 

Epidemic Algorithms for replicated databases were proposed before the advent of 

peer-to-peer systems (Agrawal et al. 1997). Here the transactions execute all their operations 

locally at one site and the effects of these transactions are propagated through the system 

later like a disease, hence the name “epidemic”. Since the effects of the transactions are 

propagated later, transactions at peers do not get blocked due to the failure of other peers. 

Hence epidemic algorithms should prove to be a better choice than the ROWA Protocol 

coupled with Two Phase Commit for P2PDB. Conflicts detected during the propagation are 

resolved by application specific rules and the epidemic algorithms work better in 

environments with low probability of conflicts. A detailed description of epidemic 

algorithms is presented in Chapter Five. 

1.1 The Problem 

This thesis compares the performance of 2PC under ROWA semantics against the 

performance of the Epidemic Algorithms under simulated peer-to-peer environments so as 

to determine the best approach for P2PDBs. 

1.2 Background 

1.2.1 DBMS and Transactions 

This section presents the background information on databases and transaction 

processing necessary to have a complete understanding of the thesis. Readers familiar with 

these concepts can skip this section. A database is an organized collection of information 

typically represented as tables (Bernstein et al. 1987). Each of these tables is a collection of 
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records of related items. Figure 1.2 shows an inventory table containing inventory records in 

a database.  

 

 
 

Fig.  1.2 Inventory table of a database 

Each of the rows of the table represents a record. A DBMS (Database Management 

System) is a set of programs responsible for modification, extraction, security and storage 

for the database system. Examples of commercially available DBMS are Oracle, DB2 etc. 

A transaction is a unit of interaction with a DBMS. A user who wants to modify or 

extract information from the database does so by means of a transaction. Modification and 

extraction of information are achieved by operations, typically SQL statements. A 

transaction is composed of one or more operations. 

The DBMS ensures that the transactions acting in the system abide by the ACID 

(Atomicity, Consistency, Isolation and Durability) properties (Bernstein et al. 1987). 

Atomicity implies that whenever transactions take place, the database reflects the effect of 

the transaction completely or not at all. In other words, no partial execution is allowed. 

Consistency ensures that the database remains in a state consistent with respect to its 

constraints after the execution of a transaction. Isolation refers to the property that each of 

the concurrent transactions may execute as though they were the only one in the system. 
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Durability denotes the property which ensures that the effects of successful transactions will 

persist in the database. 

Transactions that have completed successfully are said to have committed and the 

others are said to have aborted. In a typical database environment, we have multiple 

transactions active at the same time. Two such concurrent transactions are said to be 

conflicting if the write set of one intersects with the read or write sets of another. 

Transactions are said to be serializable if the effect of their concurrent executions is 

equivalent to the effect of their serial execution in some order.  Thus serialized transactions 

provide isolation. Databases implement concurrency control algorithms to ensure 

serializability. The most common of these is called Two-Phase Locking (2PL- explained in 

Chapter Three) which ensures the serializability of transactions by the use of locks.  

The DBMS is also responsible for recovery from a site failure. Whenever a site fails 

the DBMS ensures that the effects of aborted transactions are removed and that the results of 

committed transactions are not lost. 

1.2.2 Distributed Databases 

Distributed Databases do not store the data in a single physical location, but disperse 

data over a network. These locations are known as sites. Transactions can start from any of 

these sites and can span any number of sites depending on the availability of data. 

Returning to the example in Figure 1.1, it shows the database setup of a company 

whose financial records, HR records and marketing records are stored in three different 

cities (Austin, Dallas and Waco). Transactions can start in any of these three sites and can 

span one or more of these sites.  
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1.2.3 Replication 

To increase availability of data in the presence of site failures and network failures 

and to avoid the communication overhead of reading the data from a remote site every time, 

data can be replicated in more than one site of a distributed database. Consider the scenario 

shown in Figure 1.1. If the financial department records (currently present at Austin only) 

are accessed from all three sites very often, replicating the data at all sites eliminates the 

delay due to the communication time to read the data from the Austin site. Replication is 

more beneficial when the transaction mix has more reads than updates. 

1.3 Overview 

Chapter Two presents related research projects in the arenas of databases and P2P 

systems. Since 2PL is used for concurrency control for both Epidemic Algorithms and the 

traditional Distributed Database techniques, we developed a simulation of a 2PL scheduler. 

Chapter Three describes our 2PL simulation and its verification in a centralized database 

environment. The simulation is then extended to a distributed database environment 

implementing 2PC and ROWA. Chapter Four presents a detail description of this extension 

to a distributed database and its verification. The simulation was then modified to implement 

Epidemic Algorithms, the explanation and performance of which are discussed in Chapter 

Five. Chapter Six presents the results of the experiments conducted on these two algorithms 

in simulated P2P environments. Chapter Seven presents the conclusion and future work. 
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CHAPTER TWO 
 

Related Work 

A substantial amount of research has been done in areas of transaction processing 

and P2P systems. This chapter discusses the work in these areas related to our research. The 

first half of this Chapter deals with the work in database transaction processing and the 

second half deals with P2P systems followed by a discussion of the current P2PDBs. 

2.1 Database Techniques 

To handle replicated environments, an algorithm called Quorum Consensus 

(Bernstein et al. 1987) was proposed where non-negative weights are assigned to each copy 

of the data item. A read threshold (RT) and a write threshold (WT) for the data items are 

defined such that both 2*WT and (RT + WT) are greater than the total weight of all copies 

of the data item. This ensures consistency between read and write operations. Weights are 

used to indicate the importance of the copies. The Quorum Consensus algorithm has three 

problems. First, transactions in most applications read more data items than they write. The 

performance of Quorum Consensus is not good for such applications as the transactions will 

end up reading multiple copies of the data items from different sites. This can be overcome 

by making the read quorum of the data item contain only one copy of the data item in which 

case the write quorum would consist of all the data items. This is exactly the ROWA 

protocol. A second problem with Quorum Consensus is that it needs a large number of 

copies to tolerate a given number of site failures. Considering that the quorums are all 

majority sets, it needs three copies to tolerate one failure, five copies to tolerate two failures, 

and so forth. A third problem with it is that all the copies must be known in advance.
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An alternative to Quorum Consensus, called the Available Copies algorithm 

(Bernstein et al. 1984), was proposed to handle site failures in distributed databases. Here 

every read is translated into “read any copy” and every write is translated into “write all 

available” copies. This however has two significant requirements. First, site failures should 

be clean and detectable. Second network partitions should not occur. Both of these are not 

always satisfied by P2P networks as peers fail without any notification and the networks 

span the entire globe. 

Another option is to add semantics to transactions. Such approaches have been 

proposed with long lived transactions (LLT). An LLT holds on to resources for a long time, 

thereby delaying the other common transactions. SAGAS (Molina and Salem, 1987) 

alleviate problems that arise due to LLTs. These LLTs were written as sequence of 

transactions that can be interleaved with other transactions and either all the transactions that 

constitute the LLT are completed or compensating transactions are run to amend the partial 

executions. ACTA (Chrysanthis and Ramamritham, 1990) allows for specification of 

structure and behavior of transactions and reasoning for their concurrency and recovery 

properties. The semantics of interactions are expressed in terms of transactions’ effects on 

the commit and abort of other transactions and on objects’ state and concurrency status.  

NT/PV (Korth and Speegle, 1994) enhanced the standard transaction model with nested 

transactions, explicit predicates and multiple versions. These are extensions to transactions, 

except ACTA which unifies existing models, and are not intended to attack the problems of 

P2P environments like site failures, etc. Moreover sufficient information is not available 

about their performance on P2P environments. 

 Carrey and Livny (Carrey et al. 1991) have analyzed the performance of 2PC and 

ROWA in replicated database environments. But this work does not deal with site failures of 
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any sort. This work has been our reference model in our experiments to verify our 

distributed database simulation. 

 The performance of 2PC in the presence of site failures for a distributed database 

environment is analyzed in (Agrawal et al. 1998). This cannot be extended to the peer-to-

peer environment since the failure rate of the peers is more frequent and the communication 

network is larger. They also have not analyzed the performance of 2PC in replicated 

environments.  

Optimistic and Pessimistic Epidemic Algorithms (Agrawal et al. 1997) were 

proposed in 1997 to be used in environments with low probability of conflicts. This work, 

however, does not deal with site failures of any kind but was used as the reference for our 

Epidemic Algorithm simulation. 

2.2 P2P Techniques 

P2P systems entered the arena of distributed systems with file sharing applications 

like Gnutella (Gnutella), Napster (Napster) and FreeNet (Clarke et al. 2000). In these 

applications, a rendezvous point of the P2P network is known and people can join these 

networks by first connecting to the rendezvous point. Once part of the P2P network, the 

person can query the system for the desired files. These queries are transferred across the 

network until they reach the peer which has the file. This peer then responds back with the 

results of the query. In Freenet (Clarke et al. 2000) the files, which are the results of the 

query, are replicated along the return path to increase the availability for subsequent queries 

from same or nearby peers until it reaches the peer from which the query originated. These 

systems however support only file upload and download facility and do not support any 

transaction processing facility. 
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A survey of the current data management techniques in the current P2P sytems (Sung 

et al., 2005) shows the various methodologies being used in the current P2P systems. P2P 

overlay networks like CAN (Ratnasamy et al., 2001) and Chord (Stoica et al., 2003) provide 

key-based routing. The introduction of JXTA (JXTA 2005), an open protocol which 

facilitates any connected devices to communicate in a P2P manner by creating a virtual 

network, increased the ease of building P2P systems. A Local Relational Model was 

proposed (Giunchiglia et al., 2002) for the coordination of P2P systems. Piazza (Haley et al., 

2003) proposes a method of sharing semantically heterogeneous data in a scalable way 

where it maintains storage mappings to associate queries with suitable relations and 

description mappings to associate query results between peers. Multi-Attribute Queries were 

supported by Multi-Attribute Addressable Network (Cai et al., 2003) and the PIER system 

(Huebsh et al., 2003) supports join queries. Multi-Attribute Range based searches are 

supported by Mercury (Bharambe et al., 2004). But none of these handle the issue of 

incorporating transaction processing facility and ensuring ACID properties in the P2P 

systems. 

Maintaining replica consistency in P2P systems is a challenging problem as there is a 

lack of global knowledge and low online probability. In the PAST system (Rowstron and 

Druschel 2001), nodes and files are assigned identifiers and replicas of a file are stored at 

nodes with identifiers matching closely to the file’s identifier. OceanStore (Kubiatowicz et 

al. 2000) and Ivy (Muthitacharoen et al. 2002) rely on the underlying DHT to provide the 

necessary replication. Again, these systems do not provide transaction processing facility. 

 [Franconi et al. 2004] have proposed a P2PDB called DALET which uses a local 

update technique, where the peers update their data from the data of their neighbors. Nodes 

are interconnected by coordination rules which allow them to fetch data from their 

neighbors. Coordination rules are called incoming links if they are used by other nodes for 
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importing data and outgoing links if that node uses them to import data from its 

acquaintances. When a node gets a query request it answers it immediately using local data 

and forwards the query through all the outgoing links. A query request contains the sequence 

of IDs of the nodes it passes through and a node does not propagate a query request if its ID 

is present in the sequence already. This work however does not deal with transaction 

processing and does not present results regarding the performance of this algorithm in a 

transaction processing environment. 

 [Vecchio et al., 2005] have proposed a P2PDB which uses an adapted version of the 

Quorum Consensus Protocol (in which each individual peer is responsible for finding a set 

of accessible copies of a data item) coupled with the Two-Phase Commit Protocol to take 

care of update. If consistency cannot be relaxed, then the updates can proceed as long as a 

write quorum is present. If the write quorum is lost then the transaction should abort. This 

algorithm thus is threatened by the recurring site failures of a P2P system. Assuming that the 

probability of reading old data is low when we do not enforce consistency, they propose that 

the individual peers choose the quorum thresholds according to the tradeoff they can sustain. 

They have given the performance of the network for an update and they have also presented 

statistics about the probability of stale data access for different quorum and data replication 

levels. However they have not given the performance with respect to transaction processing 

and the effect of this algorithm on transactions in the presence of site failures. 
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3 CHAPTER THREE 

Two Phase Locking Scheduler Simulation 

The first half of this chapter explains the 2PL simulation and the centralized database 

simulation. The experiments performed to verify the accuracy of our simulation compared to 

the previous research are explained in the latter half of this chapter. 

3.1  Two Phase Locking Scheduler 

The scheduler of a database controls the concurrent executions of transactions by 

ordering the reads, writes, commits and aborts of the different transactions such that the 

resulting execution is recoverable and serializable. Databases usually implement a well 

known scheduler called Two Phase Locking (denoted 2PL) (Bernstein et al. 1987). 

Transactions submit read and write operations on data items to the 2PL scheduler. 

The 2PL scheduler grants a lock on that data item if there are no conflicting locks held on 

that data item. A read lock conflicts with a write lock held on that data item by another 

transaction. A write lock conflicts with both read and write locks held on that data item by 

another transaction. Once a transaction releases a lock, it cannot obtain further locks. This 

gives rise to the two phases of the transaction: The Growing Phase – where the transaction 

obtains locks and The Shrinking Phase – where the transaction releases locks. Typical 

databases implement a version of 2PL called Strict Two Phase Locking, in which all the 

locks of the transaction are released when the transaction commits.  
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Fig.  3.1. A transaction’s phases when it goes through a two phase locking scheduler 

3.2  Two Phase Locking Scheduler Simulation Design and Implementation 

A simulation of 2PL scheduler was built and tested on a centralized database 

environment against the analytical results of Alexander Thomassian(Thomassian 1993) to 

verify its correctness. The detailed high-level design and implementation of the simulation 

are discussed in this section. The database is initialized with a starting data item and the 

number of data items it will store, where the data items are continuous non-negative integers 

starting with 0. There are two major components of the scheduler – the Lock-Wait Table and 

the ProcessOperation Method. 

3.2.1  The Lock-Wait Table 

The Lock-Wait Table holds operations of different transactions that have either 

requested or are holding a lock on the data item. The Lock-Wait Table is implemented as an 

array of vectors, with a vector for each data item of the scheduler. The vectors for each data 

item hold all the operations (simulated as JAVA objects and explained in Section 3.3.5) that 
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have either obtained or are waiting for a lock on that data item. The operations that hold the 

lock precede the operations that are waiting for a lock in the vector in the FIFO order. 

3.2.2  The ProcessOperation Method 

The ProcessOperation method simulates the 2PL Protocol and ensures that the 

transactions abide by it. A transaction (simulated as a JAVA object and explained in Section 

3.3.4) that has to perform an operation, submits the operation to the scheduler and the 

scheduler invokes the ProcessOperation Method on that operation. Figure 3.2 presents the 

algorithm followed by the ProcessOperation method. 

3.3 The Centralized Database System 

To verify the correctness of our Two Phase locking simulation it was integrated in a 

test bed of a centralized database simulation and analyzed against the results of Alexander 

Thomassian’s analytical model (Thomassian 1993). The system model of the centralized 

database simulation used in our experiments is described in this section. The centralized 

database simulation experiments consist of the following main components. 

1. Transaction Manager 

2. Local Database 

3. Scheduler 

4. Transaction  

5. Operation 

Each of these is implemented as an object using the JAVA programming language. 

The transaction is the unit of interaction with the database, comprising of a number of 

operations. There is an event clock in the system. Every tick of the event clock executes the 
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process method of the TransactionManager. The system model of the experiment is shown 

in Figure 3.3. 

3.3.1 Local Database 

The Local Database consists of the Two-Phase Scheduler simulation. When a Local 

Database is initialized by the GlobalManager, it initializes the scheduler simulation with the 

number of data items and the starting data item of the database. 

 

 

Fig 3.2 Algorithm used by Process Operation of 2PL Scheduler 
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Fig.  3.3. The system model for the centralized database simulation experiments 
 

3.3.2  Transaction Manager 

The Transaction Manager is initialized with the multi programming level (number of 

concurrent transactions) for the experiment. It then creates transaction objects (explained in 

Section 3.3.4) equal to the multi-programming level and a local database object. The single 

most important method for the transaction manger is called process. The process method is 

called by the event clock for every clock tick. The algorithm of the process method is shown 

in Figure 3.4. 

3.3.3 Scheduler 

The Scheduler used here is the Two-Phase Scheduler simulation described earlier in 

Section 3.2. 

3.3.4 Transaction 

The Transaction object represents a transaction and is initialized with the number of  
 

operations it should generate, the probability of generating a read operation, the 
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Fig.  3.4. Algorithm used by process method of transaction manager 

Transaction Manager to which it is associated and the Transaction ID. The Transaction is 

equipped with a generateNextOperation method which generates the next operation as 

specified by the parameters during its initialization and a commit operation after the given 

number of operations is generated. Alternatively the Transaction also has a 

generateAbortOperation method which is used to generate an abort operation for the 

transaction and reset it. After the invocation of a generateAbortOperation, the 

generateNextOperation is designed such that it generates the same operation sequence as in 

its previous instance. This simulates the restart of a transaction as the transaction will 

generate the same operations that it generated before. 

3.3.5 Operations 

Operations are the basic actions of the system. Each transaction generates a specified  
 

number of operations. The structure of the Operation is given in Table 3.1 
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Table 3.1: Structure of an operation 

Trans 
ID 

Opn Data 
Item 

Submitted 
Time 

Done 
Time 

Time 
Cntr 

Status OpnNo Blocked 
Time 

Wait 
On 
Commit 
Time 

isBlocked 
Flag 

 
 
 
TransID represents the transaction to which the operation belongs. Opn indicates the 

type of operation[r - read, w - write, c - commit, a - abort] set during the initialization of the 

operation. DataItem indicates the data item for the read and write operations. It is ignored 

for commit and abort operations. SubmittedTime indicates the time at which the operation 

was submitted. DoneTime indicates the time at which the operation was completed. 

TimeCntr is set to the time required to complete the operation. This is preset depending on 

the type of the operation. Status indicates the status of the operation. The various statuses are 

explained in Table 3.2. OpnNo indicates the position of this operation in the transaction’s 

sequence of operations. Blocked Time gives the duration the operation was blocked, if any. 

WaitOnCommitTime represents the time for which the operation has to wait on the commit 

of another transaction, if any. This is assigned when the operation gets a lock based on the 

commit of another transaction. isBlockedFlag indicates whether the operation was blocked 

or currently is blocked. 

3.4 Experiments for the Verification of the Correctness of the Scheduler Simulation 

This section contains a description of the results of  Alexander Thomassian 

analytical model (Thomassian 1993), followed by our parameter setting of the Centralized 

Database simulation to match with those of Alexander Thomassian’s (Thomassian 1993) 

and the results of the experiments. 
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Table 3.2: Status of an operation 

Status Meaning 
Before Submission The operation has been created by 

the transaction and has not yet 
been submitted. 
 

After Submission The operation has been submitted 
to the scheduler by the 
TransactionManager. 

 
Decrementing The operation has been granted 

lock and is decrementing its 
counter which is the duration of 
the operation. 
 

Completed The operation has been completed 
 

Lock Assigned The operation has been granted the 
lock.  
 

Aborted The operation has been aborted 
 

Wait on Commit The operation is waiting on a 
transaction to complete its commit 
operation. 
 

 
 

3.4.1 Description of Two Phase Locking and Thrashing Behavior 

Alexander Thomassian(Thomassian 1993) analyzes a transaction-processing system 

with 2PL considering transaction steps with identical processing time distributions and 

determines the system performance by the fraction of blocked transactions (β). His results 

state that regardless of the distribution of transaction size, the system reaches its peak 

throughput at β = 0.3, which also holds for transactions with different per step processing 

times. Also, the mean transaction response time equals the ratio of the sum of the processing 

times for its steps (executed once) to 1 – the fraction of blocked transactions. 
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    Mean Response Time (MRT)  =  r(Ma)/(1- β)           (3.1) 

                                    and r(Ma)=(k+1) s(Ma) 

    Where 
                                                        s(Ma) is the average per step processing time of a    

transaction 
                                                              k is the number of operations 
                                                              β is the fraction of Blocked Transactions. 
      

3.4.2 Parameters 

The parameters of the simulation were set so that they correspond to the parameters 

used in the analysis conducted by Thomassian (Thomassian 1993).  They are shown in Table 

3.3. 

Table 3.3: The parameter settings for the centralized database simulation 

 
Parameter Value 

No of data items  16384 
Probability of read 
operations generated 

0 (all are operations 
are writes) 

No of operations per 
transaction 

16 

Duration of Read 1 
Duration of Write 2 
Duration of Commit 4 
Duration of Abort 0 
Multi programming 
level 

10-160 (in steps of 
10) 

 

The duration of a read operation was derived by Ulusoy and Belford to be (Ulusoy, 

Belford 1992)   

Tr = (1-mem_size/db_size)*io_time                             (3.2) 

    Where 
                         mem_size is the memory size 
                         db_size is the database size  
                            io_time is the time taken for an i/o operation. 
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For the experiments performed by Ulusoy and Belford(Ulusoy, Belford 1992) the 

memory size is 500 and the io_time is 18 msec. There are 16384 data items in analysis of 

(Thomassian 1993) which we are comparing against. Assigning these values, the duration of 

read operation becomes ((1-(500/16384))*18)=17.45 msec.  

From Ulusoy’s and Belford’s analysis (Ulusoy, Belford 1992), the time for a write is 

equal to the io_time (18 msec). During a write operation, the transaction first reads the data 

item and then does a write. Thus the duration of write operation is 35.5 msec (17.5 + 18).  

Thus we obtain the ratio of the duration of read : write operations as 1 : 2. The duration for a 

commit operation is determined by a single forced write operation to the log, forced-written 

to indicate that the transaction has been committed (Jim Gray and Andreas Reuter 1992). 

The duration of the abort is ignored as there is only one log write involved and that is not a 

forced log write operation. Thus the ratio of the duration of read: write: commit: abort 

operations is 1:2:1:0. The size of the database was set to 16384. Transactions in 

(Thomassian 1993) generate 16 write operations each. Hence the number of operations per 

transaction was set to 16 and the probability of read was set to 0. Deadlocks are detected for 

every cycle and the youngest transaction involved in the deadlock is aborted. The multi-

programming level (the number of transactions in the system at any point of time) was 

varied from 10 to 160 in steps of 10. 14 experiments were performed with this setting to 

avoid statistical anomalies.  

3.4.3 Results 

The results of 14 experiments are presented in this section. Throughput 

measurements were taken at 2, 4, 8, 16 and 32 seconds respectively. Figure 3.5 shows the 

variation of throughput with the Multi-Programming Level at a simulated 32 second 

interval.  It also contains the plot of the Mean β where β is the fraction of blocked 
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transactions. The throughput increases steadily with the Multi-Programming Level until it 

reaches a maximum). Beyond that the throughput starts decreasing owing to the occurrence 

of thrashing. Thrashing occurs because the degree of contention is high. Transactions 

request locks on data items that are being held by another which in turn are waiting on other 

transactions.  

The results of Alexander Thomassian (Thomassian 1993) say that we would get 

maximum throughput at β = 0.3. In the graph, we get maximum throughput at 90 where the 

β value is 0.35. The throughput obtained at 2, 4, 8 and 16 seconds produce similar results 

with the maximum throughput occurring near β = 0.3 in each case.  

Figure 3.6 is taken from Alexander Thomassian (Thomassian 1993). It shows the 

results of their analysis. 

 
 

Fig.  3.5. Graph that shows the variation of throughput with multi programming level at the 
simulated 32 second interval 

 
 
 
Figure 3.7 shows the results of our experiments obtained at a simulated time interval 

of 32 seconds. A comparison of Figures 3.6 and 3.7 shows that the results of our 

experiments match with that of Alexander Thomassian’s (Thomassian 1993) to a great 

extent. 



24 

 

 

 
Fig.  3.6. Results of analysis of Alexander Thomassian (Thomassian 1993) 

We now show the comparison between the Mean Response Time from our simulation and 

that obtained from the Response Time Equation from Alexander Thomassian(Thomassian 

1993) for each of the experiments. For the latter, we obtain the fraction of blocked 

transactions from our simulation results. The formula to estimate the response time is 

obtained from [1] as r(Ma)/(1-β) and r(Ma)=(k+1) s(Ma) (Eqn 3.1)  where k is the number 

of operations per transaction (16 in our case), s(Ma) is the mean processing time for a 

transaction step (2 in our case, as all the operations are writes), β is obtained from the 

simulation. Figure 3.8 shows the comparison between the median estimated response time 

and the median experimental response time at simulated time of 32 seconds. The response 

times match each other closely until thrashing occurs. After thrashing, the median 

experimental response time starts lagging behind the median estimated response time as the 

formula to compute the estimated response time does not take into account the occurrence of 

aborts due to deadlocks.  
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Fig.  3.7. Results from simulation at time = 32 seconds 

 
Fig.  3.8. Comparison of median experimental and estimated response times at 32 seconds 

 
 

The error between the median experimental time and median estimated response 

time remains around 2% until they reach the point of thrashing after which they increase and 

almost get to 20%. Figure 3.9 captures the error between the median experimental and 

median estimated response times. 

Thus our two-phase locking scheduler simulation matches the results of the 

analytical model given by Alexander Thomassian.s 
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Fig.  3.9. Error between the median experimental and estimated response time at 32 secs 
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CHAPTER FOUR 
 

Simulation of Traditional Distributed Database Techniques 

 This chapter begins with a discussion of the traditional techniques that are employed 

in distributed database systems (DDBMS). This is followed by a description of the 

simulation of our distributed database and the experiments that were performed to verify the 

correctness of our distributed database simulation.  

4.1 Traditional Database Techniques Used in the Distributed Database Systems 

In a distributed database system, the data is distributed among various sites. Current 

distributed database systems like PostgreSQL(Johnson, 2002) and Oracle (UMBC’s Oracle 

Site 2005) use the traditional database techniques for maintaining concurrency control and 

for ensuring the ACID properties. 

4.1.1 The Two Phase Locking Scheduler 

The current DDBMS implement the 2PL Scheduler explained in the previous 

chapter, at each of their sites, for maintaining concurrency control. 

4.1.2 Read One Write All Mechanism 

In an environment when the data is replicated in several sites of the system, DDBMS 

like PostgreSQL (Johnson, 2002) and Oracle simultaneously (DBASupport’s Oracle 

Replication Site 2005) employ the read one write all mechanism (ROWA) to ensure 

consistency of data across all the sites. As the name implies, when a transaction wants to 

read the data it does so from one site, preferably the one closest to the transaction and when 
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a transaction wants to write the data, it performs a write at all the database sites that contain 

the data. This ensures that data at all sites are consistent. 

 The ROWA mechanism coupled with the 2PL ensures the consistency of the 

transactions in the system. When a transaction does a “Write All“ on a data item, any 

transaction performing a read on the data item will wait on the writing transaction, as the 

schedulers at all the sites now have the write lock on the data item. The write lock will be 

released only after the transaction commits or aborts. Thus the concurrency control of all the 

transactions in the system is ensured. A transaction, while performing a write operation, has 

to wait until the write locks on all the replicas have been obtained. 

There are two different ways of implementing the ROWA mechanism. Typical 

distributed databases implement a version where a transaction obtains locks on the data item 

at every site. Then the transaction performs the write in all of them. The commercial 

database Oracle implements a similar mechanism where in it uses triggers at all the sites 

containing the replicated data and whenever one is updated, the triggers update every other 

replicated version simultaneously (DBASupport’s Oracle Replication Site 2005). 

Alternatively, databases like PostgreSQL (Johnson 2002), implement a variation where the 

write operations of a transaction are transferred to the sites other than the coordinator during 

the first phase of two-phase commit. In our simulation we model the first version where the 

write locks at all the sites containing a replica are obtained at the time of performing the 

operation. 

4.1.3 The Two Phase Commit Protocol 

To ensure global atomicity the distributed database systems use a well known 

protocol called 2PC (Two Phase Commit Protocol) (Bernstein et al., 1987). 
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  Every transaction has a site called the Coordinator, which acts as its coordinator for 

the Two Phase Commit protocol. All other sites at which the transaction has done either a 

read or a write operation are known as the “Participant” sites. As the name indicates the 

protocol has two phases – a voting phase and a decision phase. The voting phases and 

decision phases of the coordinator and the participant are alternately presented below. 

The coordinator and the participant both start in an Initial State. During the first 

phase the coordinator sends a “Prepare” message to all the participants, writes a “Prepared” 

record to the log and goes into the Prepared State for that transaction.  

When a participant receives a “Prepare” message, it checks if the transaction can be 

committed at its site. If so the participant responds to the coordinator with a “Vote Yes” 

message, force writes the transaction logs to stable storage, writes a “Vote Yes” record in its 

log and goes into the Voted Yes State for that transaction. If the participant cannot commit 

the transaction, it responds to the coordinator with a “Vote No”, writes a “Vote No” record 

in its log and goes into the Voted No State for that transaction.  

Whenever a coordinator receives a “Vote Yes” message it updates the list of 

transactions that have replied with a “Vote Yes” message. It checks if all the participants 

have replied with a “Vote Yes” message. If so, the coordinator decides to commit the 

transaction, writes a “Commit” record to the log, force-writes it to stable storage, sends a 

“Commit” message to all the participants and goes to Committed State for that transaction. It 

then waits for the acknowledgement from the participants within a time out period. On the 

contrary if the coordinator receives a “Vote No” message, it decides to abort the transaction, 

writes a “Abort” record to the log, aborts the transaction, sends an “Abort” message to all 

the participants and goes to Aborted State for that transaction. It then waits for the 

acknowledgement from the participants within a time out period.  Once all the 

acknowledgements have been received, it writes an “End Transaction” record in the log. If it 
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does not receive the acknowledgement from a site within the time out period, it resends the 

global decision and resets the time out period. 

When a participant receives a “Commit” message from the coordinator, it writes a 

“Commit” record to the log and force-writes it to stable storage. It then commits the 

transaction and sends an acknowledgement to the coordinator. On the contrary if it receives 

an “Abort” message from the coordinator, it writes a “Abort” record to the log and force-

writes it to stable storage. It aborts the transaction and then sends an acknowledgement to 

the coordinator. Figure 4.1 shows the two phase commit protocol. 

 

 
 

Fig. 4.1. Two Phase Commit protocol 
 
 

The coordinator or the participants can timeout in any of the states, due to a site 

failure of the other or a delay in communication between the two. When a time out occurs 

the following termination protocol is invoked. 

The coordinators can time out in either the Prepared State or in the 

Committed/Aborted State.  If the coordinator times out in the Prepared State while waiting 

for the vote from one or more of the participants, it decides to abort the transaction. If the 
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coordinator times out in the Committed/Aborted state while waiting for the 

acknowledgement of a transaction, it resends the decision to the sites which have not 

acknowledged. 

The participants can timeout in the Initial State before receiving a Prepare from the 

coordinator or in the Voted Yes/No State. If a participant times out in the Initial State before 

receiving the Prepare from the coordinator, the participant believes that the coordinator must 

have failed and hence unilaterally aborts the transaction. If it receives a Prepare message 

later from the coordinator (if the Prepare message was delayed by the traffic in the network, 

and the participant timed out and aborted) then the participant responds with a Vote No 

message. If a participant times out in the Vote Yes/No state then participant cannot make a 

decision on its own as it has already sent the vote. The participant is blocked. Under a 

variant of 2PC (Connolly and Begg, 2002) it could contact each of the other participants and 

find any decision that may have been sent to them. If the coordinator failed before sending 

the decision to any of the participants, the participant remains blocked until the coordinator 

awakens and sends the decision. This is very critical in the peer-to-peer database 

environment because peers may not recover. 

We now have to consider the action taken by a failed site when it recovers. The 

coordinator can fail in the Initial State when it has not sent a “Prepare” message, in the 

Prepared State and in the Committed/Aborted State. If the coordinator fails in the Initial 

State before sending the “Prepare” message, recovery of the coordinator just restarts the 

commit procedure. If the coordinator fails in the Prepared State and its log indicates that it 

has not received “Abort” messages from any of the participants, then the recovery of the 

coordinator restarts the commit procedure. If the coordinator fails in the Committed/Aborted 

State and the logs indicate that not all the participants have responded with an 
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acknowledgement, recovery of the coordinator resends the decision to the sites which have 

not sent the decision prompting them to send it again. 

A participant can fail in the Initial State before receiving a “Prepare” message from 

the coordinator, or in the Voted Yes/No state or in the Committed/Aborted State. Recovery 

of the participant in the Initial State before receiving the “Prepare” message from the 

coordinator prompts it to abort the transaction. Recovery of the participant in the Voted 

Yes/No state prompts it to resend the decision to the coordinator. Recovery of the participant 

in the Committed/Aborted state does not necessitate any action on its side, as it has 

completed the transaction. 

4.2 Distributed Database Simulation 

The detailed high-level design and implementation of the distributed database 

simulation are discussed in this section. The simulation contains the following components: 

1. Global Manager 

2. TransactionManager 

3. Communication Manager 

4. LocalDatabase 

5. Scheduler 

6. Transaction 

7. Operations 

Each of these is implemented as an object using the JAVA programming language. 

Figure 4.2 shows the system model of the distributed database simulation. A site of a 

distributed database system consists of a Transaction Manager and a Local Database which 

contains a Scheduler. It differs from the site of the centralized database system simulation 

explained in the Chapter Two only in that the Transaction Manager is modified to 
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accommodate 2PC and ROWA. This system is also driven by an event clock which calls the 

GlobalManager’s process method for every clock tick. 

4.2.1 Global Manager 

As the name indicates the Global Manager is responsible for the execution of all 

transactions at the appropriate sites. The GlobalManager interacts with the transactions in 

the system, receives their operations and ensures that they take place at the right sites by 

sending them to the appropriate Transaction Manager via the Communication Manager. 

Furthermore it decides the coordinator site for a transaction manager and implements the 

ROWA protocol. It is also equipped with a distributed deadlock detection mechanism, 

which is called at fixed intervals. If a deadlock is detected then the youngest deadlocked 

transaction is aborted. At every clock tick, the GlobalManager has a method called Process, 

which is executed by the event clock. Figure 4.3 gives a description of the Process method. 

Apart from the Process Method, the GlobalManager has a receiveOperation method 

which is called by the CommunicationManager whenever it wants to send an operation to 

the GlobalManger for reporting the results of an operation. Algorithm 4.2 shown in Figure 

4.4 describes the receiveOperation method of the GlobalManager. 

The GlobalManager with the help of these two methods implements the ROWA 

protocol and also ensures that the operations of various transactions take place at appropriate 

sites. 

4.2.2 Transaction Manager 

The Transaction Manager is responsible for the execution of the operations at the 

site, ensuring atomicity of the transactions by implementing the 2PC protocol. It also 

maintains a TTF (Time To Failure) and a TTR (Time To Recover) for the particular site 
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Fig. 4.2.  The System Model of the distributed database Simulation 
 

  

 
 

Fig.  4.3. The algorithm of the process method of global manager 
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assigned during its instantiation. The event clock decrements the failure time counter of each 

of the Transaction Managers for each of its ticks and as soon as the counter hits the TTF the 

Transaction Manager makes the site unavailable for a period of time equal to the TTR thus 

simulating site failure. After TTR has passed it executes the recoverFromFailure method and 

then resets its TTF to the preset value and the cycle continues. The TransactionManager has 

a processOperationOrMessage method which is called by the CommunicationManager every 

time an operation has to be sent to this transaction manager. Figure 4.5 shows Algorithm 4.3 

which describes the processOperationOrMessage method. 

 

 
 

Fig.  4.4. receiveOperation method of the global manager, parameter: operation 

The log writes of 2PC are simulated with log write operations which are assigned a 

duration equal to the I/O time. 2PC is implemented as described in the Section 4.1.3. 

Commits, aborts, reads and writes are performed as in Chapter Three by submitting these 

operations to the scheduler and processing the resultant locks. The Transaction Manager is 

also equipped with functions to take care of the recovery from failure by implementing the 

Recovery protocol of the 2PC. It is also equipped with functions that take care of the time 

outs of the transactions by implementing the Timeout protocol of the 2PC. 
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Fig.  4.5. processOperationOrMessge method of transaction manager 

4.2.3 Communication Manager 

The Communication Manager mimics the network existing between the sites of the 

distributed database. When the CommunicationManager receives an operation/message from 

either the GlobalManager or the TransactionManger, it puts them in a queue. The event 

clock calls a method of the CommunicationManager called handleOperations which goes 

through the operations in the queue and decrements their communication counter. If the 

communication counter becomes zero it delivers the operation to the respective 

TransactionManager or the GlobalManager by calling their processOperationOrMessage 

function or the receiveOperation function respectively. This simulates the delivery of the 

operation or message through the network. 
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The Local Database, Scheduler and Transaction are identical to that used in the 

Centralized Database Simulation detailed in Chapter Three. 

4.2.4 Operations 

The Operations class used here is identical to the one  used in the Centralized 

Database detailed in Chapter Three, Section 3.3.5 except that it also serves as a message in 

the 2PC and has a communication time parameter called commTime which is set before the 

operation is placed in the CommunicationManager’s queue for the purpose of 

communication. 

There is a flag called isMessage which when set indicates that this is a message of 

the 2PC. If it is a message, then the text of the message can be obtained from the parameter 

message.  

4.3 Verification of the Correctness of our Distributed Database Simulation 

The correctness of the distributed database simulation was verified running the 

simulation with the parameters of Carrey and Livny’s experiments (Carrey and Livny 1991). 

This section contains a brief description of their simulation and experiments, followed by a 

description of the changes to our system to coincide with their experiment settings and the 

results we obtained from their simulation. 

4.3.1  Description of the Simulation in (Carrey and Livny 1991) 

 4.3.1.1 Transaction.  A transaction has a coordinator process that runs at the site 

where the transaction originated. The coordinator in turn starts a collection of cohort 

processes to perform the transaction processing. There is at least one cohort for every site 

the transaction accesses data from. The average length of the transactions is 22.5 operations 
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(18 reads + 4.5 writes). They restrict the write operations to the data items that have been 

already read. 

In the case of replication, a cohort updating a remote data item has one or more 

remote update processes associated with it at the sites containing the data item. The cohort 

communicates with these remote update processes for concurrency control. 

 
4.3.1.2 Two-phase commit protocol. The 2PC protocol resembles in every detail the 

2PC protocol described in the first half of this chapter, except in the way the log writes are 

done. The coordinator does not perform a log write for the prepared state. Usually the log 

writes are done by appending the log record to the tail of the log. The log records of the site 

are flushed only during the log writes of commit or abort. 

4.3.1.3 Database model. The distributed database is modeled as a collection of files 

at page level. 

 4.3.1.4 Site.  Each site in the model has the following components: 

 Source 

 Transaction manager 

 Concurrency Control Manager 

 Resource Manager 

 Network Manager 

4.3.1.5 Source.  The source is responsible for generating the workload for a site. It 

generates the transaction according to the parameters that are preset. 

 
 4.3.1.6 Transaction manager. A transaction manager is initiated by the source with 

the set of files that it will handle. The coordinator is created at the originating site, which 
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starts the cohorts. Each cohort executes the operations assigned to it. A read operation 

consists of a concurrency request, a disk I/O and a period of CPU processing time. Write 

requests are almost similar involving a log record append to the tail of the log. Whenever a 

transaction commits, the writes it performed are read and a separate disk I/O is done for 

each. If the transaction has to be aborted, the transaction manager aborts the transaction, and 

delays the transaction for a period of time (one average transaction response time) before 

restarting it. 

 
4.3.1.7 Resource manager. The resource manager manages the physical resources of 

the site like CPU and the disks.  Disk access times are uniformly taken from [MinDisk 

Time, MaxDisk Time]. Disk writes are given priority over disk reads. 

4.3.1.8 Network manager. The network manager models the communication 

network. The network model acts as a switch which routes messages between sites as the 

experiments assume a local-area network, where the actual time on the wire for messages is 

negligible. The main cost of sending a message thus is the CPU processing cost at the sender 

and receiver. 

 4.3.1.9 Concurrency control manager. The concurrency control manager ensures that 

the transactions abide by 2PL. 

The parameters and their values are as presented in Table 4.1 
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Table 4.1 The parameter settings for the experiments of (Carrey and Livny 1991)  
 

Parameter Description Value 
NumSites Total No of Sites 8 
NumFiles Total No of Files 8 
FileSize Size of each file 2400 
 
Num Terminals 

Each site has a set of 
terminals. Each transaction 
emanates from a terminal.  

50 per site 

ThinkTime Time between two 
transactions 

0-10s 

Write Probability Probability of Write ¼ 
Page CPU Average CPU Time for 

Processing a Page 
8ms 

Num Disks Total Number of Disks Per 
Site 

2 per site 

Min Disk Time Minimum Disk Access 
Time 

10 

Max Disk Time Maximum Disk Access 
Time 

30 

InitWriteCPU Time to initiate a disk write 
 

2ms 

MsgCPUTime Message send/receive time  1 ms 
LogDiskTime Sequential  log write time  10 ms 
LogPageSize Number of log records per 

page before being flushed 
100 

Hit Rate (They have modeled 0% 
and 80 %).We have taken 
only the experiments with 0 

0 

Deadlock Detection Interval Interval at which the 
distributed deadlock 
detection is done 

1s 

 
 

4.3.2 Modeling our Simulation to match the Parameters of the Experiments of Carrey and 
Livny(Carrey and Livny 1991) 
 

The multiprogramming level was made 400 and the number of data items was made 

19200. In Carrey and Livny’s experiments (Carrey and Livny 1991) the transactions read 18 

data items and write 4 or 5 of those 18 read data items. Hence the transaction class is 

modified so that half the transactions generate 18 operations out of which four are write and 

the other half generate 19 operations out of which 5 are write (since a write operation reads 

and writes the data item). The total time of a read operation was computed to be 28 ms (20 
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Avg CPU Time + 8 Page CPU). The write operation was computed to be 60 ms (Avg Disk 

time (for read) 20 ms + Page CPU (8 ms)+ Init Write CPU (2ms)+ Avg Disk time for write 

(20 ms)+ Log Write Time as the writes are performed during the commit(10 ms)). Also local 

deadlock detection at individual sites was done every time an operation is blocked and 

distributed deadlock detection is done every 1000 ms as in (Carrey and Livny 1991). The 

communication time for remote node is set to 1ms. When transactions are aborted they are 

restarted after a period equal to the mean transaction response time at the site. The 

parameters and their values are presented in Table 4.2 

 
Table 4.2 The parameter settings for our distributed database simulation  
   

Parameter Value 
Communication time 1ms 
Read Time 28ms 
Write Time 60ms 
Log Write 10ms 
DeadLock Detection 
Interval 

1000ms 

MultiProgrammingLevel 400 
Reads&Writes per 
transaction 

200 transactions generate 
14r+4w and 200 transactions 
generate 14r+5w 

 

4.3.3 Differences Between our Simulation and (Carrey and Livny 1991) 

• In Carrey and Livny’s experiments, the resource manager always append the log 

writes to the log tail and flush the log (which takes 10ms) when the page size is 

100 or during the commit log writes. In our simulation we do not simulate the 

paging of log writes and every log write takes 10ms. 

• In Carrey and Livny’s experiments they do not write the log record for prepare 

log during the coordinator’s first phase of the two phase commit. 
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• In Carrey and Livny’s experiments the writes of a transaction take place during 

the commit, whereas in our case they take place when the operation is submitted. 

Thus we perform the writes for the transactions that are aborted and in Carrey 

and Livny’s experiments (Carrey and Livny 1991) they do not. 

• In Carrey and Livny’s experiments (Carrey and Livny 1991) there are two disks 

per site whereas we have only one. 

4.3.4 Results of the Experiments 

The experiments of Carrey and Livny (Carrey and Livny 1991) have a throughput of 

about 13. Eight experiments were conducted using our distributed database simulation and 

the average throughput is as shown below in Table 4.3. The percent error with the 

experiments of Carrey and Livny’s is also shown. 

 
Table 4.3 Results of our distributed database simulation 

Time 
(secs) Median Throughput 

Percents 
Error 

2 11.0 15.4 
4 12.8 1.9 
8 11.4 12.0 
16 11.4 12.0 
32 14.2 8.9 
64 13.7 5.1 
128 13.5 3.5 
256 13.6 4.6 

 

The slight variation in the results is because of the differences in the way the 

simulations work. 
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5 CHAPTER FIVE 
 

Simulation of Epidemic Algorithms 

The first half of this chapter gives a brief description of the optimistic and the 

pessimistic protocols of Epidemic Algorithms followed by the changes incorporated in our 

distributed database simulation to implement it. The last half of this chapter presents the test 

cases that serve as verification of our simulation. 

5.1 Epidemic Algorithms 

The Epidemic Algorithms under consideration were proposed in 1997 for 

environments with low probability of conflict (Agrawal et al., 1997). Two algorithms were 

proposed – a pessimistic protocol and an optimistic protocol. Detailed explanations of the 

optimistic protocol and the pessimistic protocol are found in this section. 

5.1.1 Optimistic Protocol 

The philosophy behind the epidemic algorithms is to execute the update operations 

of a transaction at a single site. The sites communicate at a later point of time to exchange 

the up-to-date information. The user does not have to wait for this later communication. 

Since the updates pass from system to system like an infectious disease it is called an 

“epidemic” algorithm. Epidemic Algorithms satisfy a level of consistency weaker than 

serializability. In the optimistic protocol the transactions commit as soon as they terminate 

locally and inconsistencies are detected and resolved as the transactions pass through the 

system.  



    44 

  

Each site Sj of the distributed database system maintains an event log. Each record of 

the event log represents a transaction with its read and write sets, the time it occurred and 

also has a flag to indicate whether it is in conflict with another transaction. Figure 5.1 gives 

a description of the transaction record as obtained by (Agrawal et al., 1997). For the 

optimistic algorithm the aborted flag is replaced by inconflict flag and there is a set called 

readFrom which holds the set of transactions that this transaction has read from. 

 

Fig. 5.1.  Transaction Record as perceived during the epidemic algorithms proposal 

The parameter RS defines the readset of the transaction (the dataitems that were read 

by the transaction) and the parameter WS defines the writeSet of the transaction (the 

dataitems that were written by the transaction). The values parameter represents the new 

values written by the transaction. The parameter site represents the site where the transaction 

originated. The parameter time defines the timestamp of the transaction. The aborted flag 

indicates whether the transaction was aborted or not. It is replaced by an inconflict flag in 

the case of Optimistic Epidemic Algorithm to indicate whether the transaction is marked 

inconflict or not. 

Each site Si keeps a two dimensional timetable Ti which corresponds to the logical 

clocks of all sites such that if Ti[k,j]=v then Si knows that Sk has received records of all 

events at Sj up to time v. Thus, the time-table can be used to define the HasRecvd predicate 
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corresponding to some event. This is called the time table property. If t is a transaction 

record, 

HasRecvd(Ti, t, Sk) = Ti[k, Site(t)] > Time(t)                                    (5.1) 

 According to this, the kth row of Ti is the knowledge of Si about Sk’s knowledge of 

events in the system. When Si does an epidemic communication to Sk it includes all records t 

such that HasRecvd(Ti, t, Sk) is false, and it also includes its timetable Ti. When Si receives 

an epidemic communication from Sk it applies the updates of all received log records and 

updates its time-table in an atomic step to reflect the new information received from Sk.  

When a transaction takes place at Site Si, the optimistic epidemic algorithm commits 

a transaction locally with the assumption that no conflict will arise as the commit record of 

this transaction disseminates through the network. Epidemic communication takes place at a 

prefixed interval, and the Site Si checks it timetable and sends to the other sites, all 

transaction records have not been received by these sites. It also sends its time table to these 

sites so that they can update their respective time tables with the knowledge of site Si. Upon 

receiving a transaction record, a site checks if the transaction conflicts with another 

transaction in the system. If so, it sets the inconflict flag for the transaction record and 

updates its timestamp. If the transaction does not conflict, the write operations of this 

transaction are performed in this site as forced writes. Any other transaction holding locks of 

data items that are required by these forced writes are aborted unless it is performing a 

forced write too, in which case this transaction is made to wait. Also when a transaction is 

marked as inconflict, all the transactions which read from this transaction are also marked as 

inconflict. These conflicts are resolved by application specific rules. 
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5.1.2 Pessimistic Protocol 

In the case of pessimistic protocol, a transaction is considered committed only if it 

commits at all sites without any conflict. When a transaction commits on a local site, the site 

inserts a pre-commit record in the log and this is sent to the other sites during epidemic 

communication. On receiving this pre-commit record, a site checks its knowledge about the 

transactions in a system, to see if there is a conflicting transaction. If there is no conflicting 

transaction then a pre-commit record is placed in its log. If there is a conflicting transaction 

an abort record is placed in the log. The transaction is committed only if all the sites have 

placed a pre-commit record in their logs for this transaction. It is proven that only the initial 

precommit (Agrawal et al, 1997) record is necessary because the pre-commits at other sites 

can be detected when their timetables are propagated and the aborts are detected when the 

conflicting transactions are propagated to this site via epidemic communication 

5.2 Simulation of Epidemic Algorithms 

The detailed high-level design and implementation of the epidemic algorithms are 

discussed in this section. The simulation has the same components as the distributed 

database simulation implementing 2PC and ROWA discussed in the previous chapter but 

modified to accommodate the optimistic epidemic protocol. Additionally the simulation 

contains a TransactionRecord class which is used to represent a transaction record in the 

event log and a TimeTable class representing the timetable maintained by each site. A 

description of each of the components is found below. 

5.2.1 Global Manager 

The GlobalManager interacts with the transactions in the system, receives their 

operations and ensures that they take place at the right sites by sending them to the 
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appropriate Transaction Manager via the Communication Manager.  The process method of 

the GlobalManager is modified to accommodate the implementation of epidemic algorithms. 

Algorithm 5.1 shown in Figure 5.2 describes the process method. 

 

 

Fig.  5.2. Process Method of globalManager for Epidemic Algorithms 

 Apart from the Process Method, the GlobalManager has a receiveOperation method 

which is identical to the one shown in Figure 4.2 in the previous chapter. A transaction is 

said to be partially committed if it hasn’t been committed at all sites. A transaction is said to 

be fully committed if it is committed at all the sites. A transaction is considered to be active 

until it has been processed at all sites. The GlobalManager also maintains the statistics of the 

partially and fully completed transactions of the system.  

5.2.2 Transaction Manager 

The Transaction Manager is responsible for the execution of the operations at the site 

and also maintains a TTF (Time To Failure) and a TTR (Time To Recover) for the particular 

site assigned during its instantiation similar to that in the Chapter Four. Apart from this, the 

Transaction Manager is responsible for performing the optimistic protocol of the epidemic 

algorithms, which it does by maintaining a timetable and an event log.  
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The process method of the Transaction Manager is responsible for performing the 

operations at the site. It is identical to that present in the algorithm shown in Figure 3.3. 

Every time a transaction is committed or aborted, a log record for that transaction 

(TransactionRecord object) is inserted in the event log of the transaction manager and the 

entry corresponding to its own knowledge about its time table is updated. The method 

doEpidemicCommunication is called at a interval which is fixed for the simulation. The 

doEpidemicCommunication checks the current site’s knowledge of other sites in the system 

about the events of the current site and sends the transaction records that it believes were not 

received by the other sites. It also sends its timetable to each of the sites.  

To aid in the reception of messages during the epidemic communication each 

transaction manager is equipped with two methods – processTransactionRecord and 

processTimeTable. The processTransactionRecord is called every time a TransactionRecord 

is received by the transaction manager. Figure 5.3 shows a description of the 

processTransactionRecord Algorithm. 

 

 

Fig. 5.3. ProcessTransactionRecord of Transaction Manager 

When a force write to a data item is done, if there are transactions which are 

currently holding locks on data-items that are being forced written, then those transactions 
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are aborted and the force write is given more priority. If there are other forced writes on the 

same data item, then this forced write is put in a queue. The processTimeTable method is 

called whenever a timetable is received by this site. This updates the sender site’s 

knowledge in the time table of this transaction manager from the received timetable. 

5.2.3 Communication Manager 

The Communication Manager is similar to that used in the Distributed Database with 

2PC and ROWA simulation explained in the previous chapter, except that it can also transfer 

timetables and transaction records. 

5.2.4 TimeTable 

Every TransactionManager instantiates an object of this type to maintain the 

timetable at that site. The timetable has a two dimensional array to help store each of the 

sites’ knowledge about the other sites in the system. It also has a fromSite, toSite and 

communicationCounter to help in the epidemic communication. The value at (i,j) in the 

timetable represents Site Si’s knowledge of the events that have taken place in Site Sj. It is a 

time value t which indicates that the Site Si knows the events that took place at Site Sj before 

time t. 

5.2.5 Transaction Record 

This represents a transaction and is the central object of an event log. When a 

transaction is committed, aborted or found to be inconflict, a TransactionRecord object is 

created for that transaction and is inserted in the event log. A TransactionRecord contains 

the following information: TransactionID, startTime, endTime, siteID (where the transaction 

began), readSet, writeSet and readFromSet (set of transactions from which this transaction 
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read), inConflictFlag, fromSite, toSite and communicationTime (the last three parameters 

are used only for epidemic communication). 

An event clock drives the system. For every tick of the event clock the process 

method of the GlobalManager is called and operations of transactions are submitted to the 

various sites. The corresponding transaction managers and the schedulers perform the 

operations. The communication manager transfers the timetables, operations and transaction 

records that are queued in it. If the epidemic communication interval is reached at any of the 

sites, epidemic communication is performed by that site. Whenever a TransactionManager 

receives a TransactionRecord it performs the process outlined in Figure 5.3. Whenever it 

receives a TimeTable it updates its own. 

5.2.6 Other Components 

The Operations class is identical to the one in the Distributed Database detailed in 

Chapter Four, except that the transaction Id includes the start time of the transaction. The 

Local Database, Scheduler and Transaction are similar to that used in the Distributed 

Database Simulation detailed in Chapter Four, except that  the Transaction object has a 

starttime in order to uniquely identify the transaction, and an endtime to help detect 

conflicts. 

The communication model is changed to reflect network behavior for heavy traffic. 

The transaction managers are equipped with a communication queue. Whenever an 

Operation or TransactionRecord has to be sent, it is queued in the communication queue. 

The simulation allows the network bandwidth to be set as a parameter and the 

communication queue is processed depending on the bandwidth. 

This simulation counts both the partial commits and full commits. The full commits 

represent the transactions that are committed at all sites. The partial commits represent the 
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transactions that are not committed at all sites and these transactions are resolved by 

application specific rules. Thus the fully committed transactions alone represent the 

performance of the Pessimistic Epidemic Algorithm. The fully committed and the partially 

committed transactions together represent the performance of the Optimistic Epidemic 

Algorithm. 

5.3 Verification of our simulation of Epidemic Algorithms 

The verification of our Epidemic Algorithms simulation was done by testing as no 

published performance measurements exist. The test cases used for the verification of 

epidemic algorithms are provided in this section. The parameters used for testing are shown 

in the Table 5.1 

 
Table 5.1 The parameter settings for the epidemic algorithms s imulation testing 

 
Parameter Value 
Number of Transactions 2 or 3 
Number of Sites 2 or 3 
Operations per Transaction 2 
Read Time 28ms 
Write Time 60ms 
Commit Time 10ms 
Abort Time 0ms 
LogWriteTime 10ms 
Epidemic Communication Time 350ms 
Network Bandwidth 1Mbps 
CommunicationTime 75ms 

 
 
 The duration for read, write, commit and abort are fixed to be the same as 2PC. 

5.3.1 Verification Experiments  

The test cases used for verification are given below. Every Transaction is identified 

by the tuple (a,b) where a denotes the transaction number and b denotes the start time. Every 

operation is identified by tuple (c,d) where c denotes the data item and d denotes the type of 
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operation (r-read, w-write, c-commit, a-abort). For commit and abort operations c can be 

anything and is represented as *. The time is measured in milliseconds. 

Case 1: Transactions executing at different sites are not found to conflict during the 
process of epidemic communication and are committed everywhere 

 
 This case depicts the execution of non-conflicting transactions being committed at 

the sites they are propagated to during the process of epidemic communication. The table 

5.2 represents the execution of two such transactions in our system. 

 
Table 5.2 Test case 1 of epidemic algorithms simulation 

 
 At Site 0 At Site 1 At Site 2 
Tran(0,0) submits operation 
(0,w) at time 0 
Tran(0,0) submits operation 
(2,w) at time 60 
 
Tran(0,0) submits operation 
(*,c) at time 121 

Tran(1,0) submits operation 
(1,w) at time 0 
Tran(1,0) submits operation 
(3,w) at time 60 
 
Tran(1,0) submits operation 
(*,c) at time 121 
 

 

Epidemic Communication Take place at time 350 

Tran(1,0) is received and 
since it does not conflict 
the write operations are 

done as forced writes. The 
operations are done at 426 

and 486 respectively 

Tran(0,0) is received and  
since it does not conflict 
the write operations are 

done as forced writes. The 
operations are done at 426 

and 486 respectively 

Tran(0,0) is received and 
since it does not conflict, 
the write operations are 
done as forced writes. 

Tran(1,0) is received and 
since it does not conflict, 
the write operations are 

done as forced writes. The 
operations are done at 426 

and 486 respectively 
 

 Transaction(0,0) takes place at site 0 and submits write operations on data items 0 

and 2 at times 0 and 60ms after the simulation is started and a commit operation at 121ms. 

Transaction(1,0) takes place at site 1 and submits write operations on data items 1 and 3 at 

times 0 and 60ms after the simulation is started and a commit operation at 121ms. Both the 

transactions get committed at 131ms, but new transactions are not started in their place until 
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they have been processed at all the sites. At time 350ms, epidemic communication takes 

place and transactions(1,0) and (0,0) are propagated to all the sites where they are not found 

to conflict and their write operations are done as forced writes at 426 and 486 seconds 

respectively.   

Case 2: Transactions executing at different sites are found to conflict during the 
process of epidemic communication 

 
 In this case transactions occur at different sites and are propagated to other sites 

during the process of epidemic communication where they are found to conflict. The table 

5.3 represents the execution of two such transactions in our system. 

 
Table 5.3 Test case 2 of epidemic algorithms simulation 

 
At Site 0 At Site 1 At Site 2 

Tran(0,0) submits operation 
(0,w) at time 0 
Tran(0,0) submits operation 
(1,w) at time 60 
 
 
Tran(0,0) submits operation 
(*,c) at time 121 

Tran(1,0) submits operation 
(1,w) at time 0 
Tran(1,0) submits operation 
(0,r) at time 60 
Tran(1,0) submits operation 
(*,c) at time 89 
 

 

Epidemic Communication Take place at time 350 

Trans(1,0) is received and 
found to conflict with 
Tran(0,0) and are both 

marked in conflict at time 
425.  

Trans(0,0) is received and  
found to conflict with 
Tran(1,0) and both are 

marked in conflict at time 
425.  

Trans(0,0) is received and 
since it does not conflict, 
the write operations are 

queued to be executed. The 
operations are queued for 

execution at times 426 and 
428. 

 Trans(1,0) is received and 
since it found to conflict 
with Trans(0,0) both are 

marked in conflict at time 
425.  

 

Transaction(0,0) takes place at Site 0 and submits write operations on data items 0 and 1 at 

times 0 and 60ms after the simulation is started and a commit operation at 121ms. 
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Transaction(1,0) takes place at site 1 and submits a write operation on data items 1 and a 

read operation on 0 at times 0 and 60ms after the simulation is started and a commit 

operation at 89ms. At time 350ms, epidemic communication takes place. Site 0 receives 

Transaction(1,0) at 425ms and finding that it conflicts with Transaction(0,0) it marks them 

both inconflict. Similarly Site 1 marks them both inconflict when it receives 

Transaction(0,0) at time 425ms. Site 2 receives Transaction(0,0) at time 425ms initially and 

since it does not conflict with any other transaction, its operations are queued for execution. 

Transaction(1,0) is received at 425ms but since Site 2 knows about Transaction(0,0) both 

these transactions are found to conflict and are marked inconflict 

Case 3: Transactions marked because the one it read from has been marked 
 
This case tests the scenario of a transaction that read from a transaction that has been 

marked. The table 5.4 represents this execution. 

 
Table 5.4 Test case 3 of epidemic algorithms simulation 

 
At Site 0 At Site 1 

Tran(0,0) submits operation (0,w) at time 
0 
Tran(2,0) submits operation (2,w) at time 
0 
 
Tran(0,0) submits operation (1,w) at time 
60 
Tran(2,0) submits operation (0,w) at time 
60 (Waits on Tran (0,0) to complete and 
release lock on data item 0) 
 
Tran(0,0) submits operation (*,c) at time 
121 
 
Tran(2,0) submits operation (*,c) at time 
192 

Tran(1,0) submits operation (1,w) at time 0 
 
 
 
 
Tran(1,0) submits operation (0,w) at time 60 
 
 
 
 
 
Tran(1,0) submits operation (*,c) at time 
121 
 

Epidemic Communication Take place at time 350 
 

Continued on next page
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Table 5.4. Continued 

 
At Site 0 Site 1 

Trans(1,0) is received and found to 
conflict with Tran(0,0) and are both 
marked in conflict at time 425. 
Tran(2,0) is marked in conflict because 
it read from Tran(0,0) at time 425. 

 

Trans(0,0) is received and  found to conflict 
with Tran(1,0) and both are marked in 
conflict at time 425  
Trans(2,0) is received and since it read from 
Tran(0,0) which is marked inconflict it is 
also marked inconflict  at time 425. 

 

 In this case Transaction(0,0) takes place at Site 0 and submits write operations on 

data items 0 and 1 at times 0 and 60ms and a commit operation at time 121ms. Similarly 

Transaction(2,0) submits write operations on data items 2 and 0 at times 0 and 60ms and a 

commit operation at time 192ms. The write operation of Transaction(2,0) on data item 0 

waits until the Transaction(0,0) has completed because Transaction(0,0) is holding a write 

lock on data item 0. Transaction(1,0) takes place at Site 1 and submits write operations on 

data items 1 and 0 at times 0 and 60ms and a commit operation at time 121. During the 

process of epidemic communication Transaction(1,0) is received at time 425ms by Site 0 

and is found to conflict with Transaction(0,0) and both are marked inconflict. Additionally 

Transaction(2,0) is also marked in conflict as it contains Transaction(1,0) in its readFrom 

set. At Site1 Transaction(0,0) is received first at 425ms since it conflicts with 

Transaction(2,0) both are marked inconflict. Transaction(2,0) is received after that and since 

it contains Transaction(0,0) in its readFrom set it is also marked as inconflict. 

Case 4: Transaction received via epidemic communication conflicts with current 
operations 

 
This case tests the scenario of a transaction taking place at a site conflicting with 

another transaction which arrived at the site by the process of epidemic communication. In 

this case epidemic communication of Site 0 was done at time 100ms and the communication 

time is set to10ms to capture this scenario. 
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 Table 5.5 Test case 4 of epidemic algorithms simulation 

At Site 0 At Site 1 
Tran(0,0) submits operation (0,w) at 
time 0 
Tran(0,0) submits operation (2,r) at 
time 60 
Tran(0,0) submits operation (*,c) at 
time 89 
 
Epidemic Communication was done at 
time 100 
 

Tran(1,0) submits operation (0,w) at 
time 0 
Tran(1,0) submits operation (3,w) at 
time 60 
 
 
 
 
 
Tran(0,0) was received at 110 and 
Tran(1,0) is aborted and all its locks 
are released at the same. The write 
operations of Tran(0,0) are queued 
for execution and done at time 111 
 
Tran(1,113) submits operation 
(w,113) at time 113 
 

 

 Transaction (0,0) takes place at site 0 and submits a write operation on data item 0 at 

time 0ms, a read operation on data item 2 at time 60ms and a commit operation at time 

89ms. Epidemic communication for Site 0 is done at time 100ms. Transaction(1,0) submits 

write operations on data items 0 and 3 at times 0 and 60ms. But Site 1 receives 

Transaction(0,0) via epidemic communication at time 110ms (since communication time is 

set to 10ms) and it is found to conflict with Transaction(1,0). Transaction(1,0) is aborted  

whereas the write operations of Transaction(0,0) are queued for execution and are executed 

at 111ms. This is because the epidemic algorithms abort transactions that are taking place 

currently and allows transactions that were committed at other sites to take place. 

Case 5: Transaction current operations waiting on a forced write lock 

 This captures the scenario of a transaction’s operations waiting on a forced write  

lock of a transaction which came in via epidemic communication. Table 5.6 represents this 

execution. 
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Table 5.6 Test case 5 of epidemic algorithms simulation 

At Site 0 At Site 1 At Site 2 
Tran(0,0) submits operation 
(0,w) at time 0 
Tran(0,0) submits operation 
(2,w) at time 60 
 
Tran(0,0) submits operation 
(*,c) at time 121 

Tran(1,0) submits operation 
(1,w) at time 0 
Tran(1,0) submits operation 
(3,r) at time 60 
Tran(1,0) submits operation 
(*,c) at time 89 
 

 

Epidemic Communication Take place at time 350 

Trans (1,0) is received and 
since it does not conflict, 
the write operations are 
queued to be executed at 

times 426 and 486 
respectively 

 
 
 

Trans(0,426) submits 
operation (1,w) at 426---
waits on forced write 
 
 
 
Trans(0,426) submits 
operation(9,r) at time 556 
 
 
Trans(0,426) submits 
operation(*,c ) at time 585 

Trans(0,0) is received and  
since it does not conflict, 
the write operations are 
queued to be executed at 

times 426 and 486 
respectively 

 
 
 

Trans(1,426) submits 
operation (0,r)—waits on 
forced write 
 
Trans(1,426) submits 
operation(8,w) at time 523 
 
Trans(1,426) submits 
operation(*,c) at time 585 

Trans(0,0) is received and 
since it does not conflict, 
the write operations are 

queued to be executed at 
times 426 and 486 

respectively 
. 

Trans(1,0) is received and 
since it does not conflict, 
the write operations are 

queued to be executed at 
times 426 and 486 

respectively 
 
 
 
 
 

 

 Transaction(0,0) takes place at site 0 and submits write operations on data items 0 

and 2 at time 0ms and 60ms respectively. It then submits a commit operation at time 121ms. 

Transaction(1,0) takes place at site 1 and submits a write operation on data item 1 and a read 

operation on data item 3 and a commit operation at times 0,60 and 121ms respectively. 

Epidemic Communication takes place at time 350. At time 425ms, Transaction(1,0) is 

received by Site 0 and since it does not conflict, its forced write operations take place at time 

426 and 486ms respectively. Similarly Transacation(0,0) is received by Site 1 at time 425ms 
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and its operations are executed as forced writes at time 426 and 486ms respectively. The 

simulation was made so that the Transaction(0,426) starts at time 426ms and submits a write 

operation on data item 1 at 426ms which is made to wait on the forced write of 

Transaction(1,0) and it submits its read operation on data item 9 at time 556ms only. It then 

submits a commit at time 585ms. Similarly at Site 1 Transaction(1,426) is made to submit a 

read operation on data item 0 at time 426ms and it waits on the forced write of Trans(0,0). 

Hence its write operation is submitted only at time 523ms and then it submits a commit 

operation at time 585ms. At Site 2, Transactions(0,0) and(1,0) are received at 425ms and 

since they do not conflict with any transactions their write operations are performed as 

forced writes at time 426ms and 486ms. 

 Thus five different scenarios of transaction execution where identified and the 

simulation was tested against these scenarios. This strengthens the confidence on our 

simulation. 
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CHAPTER SIX 
 

Experiments and Results 

The first section of this chapter describes the parameter settings for the experiments 

that were conducted on the 2PC and ROWA simulation (explained in Chapter Four) and 

Epidemic Algorithms simulation (explained in Chapter Five) to simulate P2P environments. 

The second section of this chapter describes results of these experiments. The last section 

presents the overall observations from our experiments. 

6.1 Parameter Settings for the Experiments 

The parameters of the experiments have to be set to reflect P2P environments. These 

parameters have been modeled based on the available literature. This section describes the 

parameters of our simulation and the literature that served as guides to assign their values. 

6.1.1 Communication Time 

Both these simulations necessitate the modeling of the communication time 

parameter. This is the duration to send a message from one site to another. The simulations 

assume a uniform communication model for all sites in the network (i.e. the duration to send 

a message from site A to site B is the same for any A and B) 

(Pei et al, 1998) estimates the number of hops and round trip from a UCLA host 

computer to a randomly selected set of 3,219 hosts in four continents around the world. 

They use a measurement methodology similar to that of traceroute to measure hop count. 

Traceroute transmits packets with small TTL values which are decremented for every hop. If 

the TTL reaches zero, an ICMP Time Exceeded message is sent to the sender. Sending 
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packets with incremental TTL values will make all the hosts in the path of the packet to send 

back ICMP Time Exceeded messages, when the TTL expires on reaching them. This helps 

to identify the route of the packet. The packet also contains a port id that is not normally 

used by the destination host. When this reaches the destination host, it sends back a ICMP 

Port Unreachable error. Thus the entire route to the destination is traced. Then the program 

sends 20 - 48 byte UDP packets to the destination with a time interval of 5 seconds between 

each. The time from sending a probe packet and receiving it back is calculated as the Round 

Trip Time and the average is calculated as the Round Trip Delay. Their results show that the 

round trip delays for 90% of the hosts are less than 153ms. The average delay for 

international hosts vary from 116.74ms (Canada) to 1537.52ms (China). This is because 

there were only two links between China and the US during the time of measurement (1997-

98) – one 2Kbps and the other 2Mbps and also the links within China were slow. 

In (Graham et al., 1998) they present a novel and low-cost technique for accurately 

measuring delay, delay variation and packet loss on the intercontinental internet. According 

to their results the unidirectional delay between Waikato(NZ) and Cambridge(England) 

varies from 0.15 secs to 0.5 secs at different times of the day with the majority values 

around 0.2 to 0.25 secs. 

(Kaladindi et al., 1998) is a measurement infrastructure that measures end-to-end 

unidirectional delays, packet loss and route information along Internet paths deployed at 

about 50 higher education and research sites around the world. The test packets were 12 

bytes and sent using UDP (totaling to 40 bytes). The delay for US to Netherlands monitored 

at different times varied from 60 to 200ms.  

(Huitema et al., 2000) measures the quality of web service by selecting and polling a 

random set of 100 web servers every day. The test was started at 3 pm EST, and the 
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homepages of 100 random servers were downloaded. According to their results, the median 

round trip delay is around 130 milliseconds. 

A report of the global response time (round trip time) can be obtained for each day 

and for the past 30 day period from the Internet Traffic Report Website (Internet Traffic 

Report website). Their reports show that the global response time varies from 30 to 145ms 

during the time period 01/15/2005 to 02/14/2005. 

Assuming symmetric paths (the packets follow the same path to and fro) then the one 

way delay is equal to half the round trip time. In our experiments the sites have to send 

operations, messages that are part of the 2PC, transaction records and timetables to other 

sites. These are small messages (less than 128 bytes in our experiments) and will not usually 

be segmented. Hence the delay is comparable to any of our references. To model the 

network we have assumed the diameter of our P2P network to be similar to that of (Pei et al, 

1998) spanning the entire U.S.A. Their report shows that the round trip delays for 90% of 

the hosts are less than 153ms. Assuming a symmetric path the communication time 

parameter for our experiments has been rounded and fixed at 75ms.  

6.1.2 I/O Time 

The durations of read and write operations have to be modeled for our experiments. 

This necessitates the modeling of I/O time. (Chen et al., 2003) calculates the disk access per 

data block for a disk with 73-GB capacity, 5ms average seek time and a rotational speed of 

10,000 RPM or an equivalent of 3ms. The average rotational latency and sustained data 

transfer rate is 29.8 – 58.0 MB/sec. Assuming 40 MB/sec average transfer rate and each data 

block to be 40 KB the data transfer time is 1ms per data block. The average disk access time 

per block obtained by summing up seek time (5ms), rotational latency (3ms) and transfer 

time (1ms), is 9ms. 
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The PC Technology Guide (PC Technology Guide Disk Performance) says that by 

late 2001 the fastest high-performance drives were capable of an average latency of less than 

3ms, an average seek time between 4 and 7ms and maximum data transfer rates in the region 

of 50 and 60 Mbps for EIDE and SCSI-based drives respectively which is similar to the 

values of (Chen et al., 2003). 

IBM (IBM 1998) reports that most of the desktop then had a seek time of 9.5ms and 

a data transfer time of 0.3ms for 4KB of data. Using the equation that I/O time = command 

overhead time + seek time + latency + time to transfer (0.5+9.5+4.2+0.3 ) they have 

computed I/O time to be 14.5ms. This was calculated for a 7200 RPM harddrive. 

73.4 GB Cheetah 15 K.3 has claimed read and write seek times of 3.6 and 4.0ms, 

which is a littler slower than 3.4 and 3.8ms read and write seek times of Maxtor’2 73.4 GB 

(Tech Report, 2003). Seagate also claims transfer rates as high as 86MB/sec for the Cheetah 

15K but Maxtor’s Atlas 15K tops out at only 75MB/sec. 

(Zhu et al., 2004) have measured the average disk access time on an IBM Ultrastar 

36Z15 to be 10ms and have used this value in their simulation. 

Based on this survey we model the average disk access time as 10ms. 

6.1.3 Duration of Read, Write and Log-Write  

Equation 3.2 shows the derivation for the duration of read operation (Ulusoy, 

Belford 1992). Assuming a main memory equal to half the size of the database (Ulusoy, 

Belford 1992) we get the duration of read operation to be 5ms. The duration for a write is 

equal to the average disk access time (10ms). But a write operation consists of a read and a 

write. Hence the duration of a write operation is 15ms. The duration for a log write 

operation is equivalent to that of the average disk access time 
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6.1.4 Bandwidth 

The epidemic algorithms simulation has a bandwidth parameter associated with it, 

which defines the common bandwidth of the network explained in Chapter Five. A 

bandwidth measurement study in P2P systems (Saroiu et al., 2001) reports that only 20% of 

Napster users and 30% of Gnutella users have bandwidth greater than 3 Mbps, and 50% of 

Napster users and 60% of Gnutella users have broadband connection. We assume that only 

such peers will become part of a P2PDB network, and we have fixed our bandwidth 

parameter at 1Mbps. 

6.1.5 Time to Failure and Time to Recover 

(Saroiu et al., 2001) monitors 17,215 Gnutella clients for a period of 60 hours and 

7,000 Napster clients for a period of 26 hour and reports that the median session duration for 

both Gnutella and Napster clients is 60 minutes. (Chu et al., 2002) studies the availability of 

few thousand Gnutella peers for a five week period and observes that 30% of the peers of 

Gnutella and Napster are available for 10 minutes. (Gummadi et al., 2003) have reported the 

average session length of Kazaa users to be 2.4 minutes for a 200 day trace period in 

University of Washington.  (Birrer and Bustamante, 2004) have observed that measurement 

studies of P2P systems have reported median session times ranging from an hour to a 

minute. They have used two different failure rates for their experiments – one with high 

failure rate (MTTF 5 minutes and MTTR 2 minutes) and another with low failure rate 

(MTTF 60 and MTTR 10 minutes). (Rhea et al., 2004) have reported that median session 

time in deployed P2P networks varies from an hour to few minutes. Furthermore they have 

observed that the average session time of more than 50% of the peers in the experiments of 

(Sen and Wang, 2004) is less than one minute. 
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In our experiments, we have modeled a severe P2P environment with high failure 

rates resembling the high failure rate of (Birrer and Bustamantem, 2004) because our 

simulations ran out of heap space if the simulations run for too long due to accumulation of 

records in the CommunicationManager and event logs and other information needed to 

maintain transaction history and details for epidemic algorithms. We classified our 

experiments in two major categories. In the first series of experiments, we kept the time to 

failure of a site constant at 60 seconds. Each site was assigned a random ∆failure value at 

the startup in the range between 1 to 10 seconds. The first failure of each site occurs at 

60+∆failure seconds, and the successive failures of each of the sites occur 60 seconds after 

their subsequent recovery. The ∆failure ensures that the sites do not go down at the same 

instant. For this failure scenario, experiments were carried out keeping the time for recovery 

of the sites constant at 2 seconds, 10 seconds, 60 seconds and varying the time for recovery 

from 2 to 60 seconds. 

In the second series of experiments, the time to failure of each site is randomly 

chosen to be between 30 and 90 seconds. For this scenario similar experiments were carried 

out keeping the time for recovery of the sites constant at 2 seconds, 10 seconds, 60 seconds 

and varying the time for recovery from 2 to 60 seconds.  

6.1.6 Other Parameters 

The multi-programming level is set at 50. Each transaction has 18 operations 

operating on different data items, out of which 4 are write operations. Writesets might be 

large, but we model low-conflict environments only in our experiments.  There are 19,200 

data items in each site/peer, and there are totally 8 sites/peers. The replication is maintained 

at 8 (1 copy per site). The epidemic communication time is fixed at 200ms since it takes 
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110ms to perform all the operations of a transaction assuming the transaction does not 

conflict. The parameters are listed in Table 6.1. 

 
Table 6.1: The parameter settings for P2P environment simulation 

Parameter Value 
No of data items  
No of Sites 
Replication 

19200 
8 
8 (1 copy per site)

No of operations per transaction 
No of read operations 
No of write operations 

18 
14 
4 

Duration of Read 5ms 
Duration of Write 15ms 
Duration of Log Write 10ms 
Multi programming level 50 
Bandwidth 
Communication Time 

1Mbps 
75ms 

Epidemic Communication Time 200 
 

6.2 Experiment and Results 

Three experiments were performed for each setting, and the number of transactions 

committed for both the 2PC and ROWA simulation and the Epidemic Algorithms are 

measured at time intervals in powers of 2 starting at 2 seconds (2s, 4s, 8s, 16s, 32s, 64s, 

128s, and 256s). This section presents the comparative results of both the simulations for 

different failure and recovery rates. All the experiments have a steady state time of 10 

seconds, meaning the system runs for 10 seconds before any measurements are made. 

The results of the experiments are presented below. The graphs present the number 

of transactions committed in the system under the three different algorithms for the specific 

parameter settings. The continuous line with the values marked in circles represent the 

results of 2PC+ROWA simulation. The dotted line with the values marked in squares 

represents the results of the Pessimistic Epidemic Algorithm for which we count the 
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transactions that are fully committed only. The dashed line with the values marked in 

triangles represents the results of the Optimistic Epidemic Algorithm for which we count the 

transactions that are both fully and partially committed. Eight different combinations of TTF 

and TTR were identified, and 3 experiments were conducted for each setting. The settings 

are explained in Section 6.15. The arithmetic mean of the three experiments was taken and 

the results are plotted as below. 

6.2.1 Experiment 1 : Time To Failure Fixed at 60 seconds and Time to Recover Fixed at 
2 seconds 

 

 
Fig. 6.1 Results for TTF = 60 seconds and TTR = 2 seconds 

 
 In Experiment 1, Epidemic Algorithms simulation did not run to completion since 

the JVM ran out of heap space. This might be because the TTR is very fast and the uptimes 

of the sites are high. Thus more transactions are committed leading to a increase in the size 

of the event logs and other information at each site requiring more heap space than the other 

experiments.  
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6.2.2 Experiment 2 : Time To Failure Fixed at 60 seconds and Time to Recover Fixed at 
10 seconds 

 

 
Fig. 6.2. Results for TTF = 60 seconds and TTR = 10 seconds 

6.2.3 Experiment 3: Time To Failure Fixed at 60 seconds and Time to Recover Fixed at 
60 seconds 

 

 
Fig. 6.3. Results for TTF = 60 seconds and TTR = 60 seconds 
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6.2.4 Experiment 4 : Time To Failure Fixed at 60 seconds and Time to Recover Varied 
between 2 to 60 seconds 

 

 
Fig. 6.4. Results for TTF = 60 seconds and TTR varied from 2 to 60 seconds 

 

6.2.5 Experiment 5 : Time To Failure Varied from 30 To 90 seconds and Time to 
Recover Fixed at 2 seconds 

 

 
Fig. 6.5. Results for TTF varied from 30 to 90 seconds and TTR = 2 seconds 
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6.2.6 Experiment 6 : Time To Failure Fixed from 30 To 90 seconds and Time to Recover 
Fixed at 10 seconds 

 

 
Fig. 6.6. Results for TTF varied from 30 to 90 seconds and TTR = 10 seconds 

6.2.7 Experiment 7 : Time To Failure Fixed from 30 To 90 s and Time to Recover Fixed 
at 60 seconds 

 

 
Fig. 6.7. Results for TTF varied from 30 to 90 seconds and TTR = 60 seconds 
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6.2.8 Experiment 8 : Time To Failure Varied from 30 to 90 seconds and Time to 
Recover Varied from 2 to 60 seconds 

 

 
Fig. 6.8. Results for TTF varied from 30 to 90 seconds and TTR varied from 2 to 60 seconds 
 
 

6.2.9 Experiment 9 : Low Conflict Scenario with Time To FailureVaried from 30 to 90 
seconds and Time to Recover Varied from 2 to 60 seconds and MPL = 5 

 

 
Fig. 6.9. Results for TTF varied from 30 to 90 seconds and TTR varied from 2 to 60 seconds 
and MPL=5 
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6.3 Observations and Analysis 

For each simulation, except Experiments 3 and 7, the total number of the committed 

transactions is within 12 % of the reported values. For these two scenarios the values spike 

up to 28% and 38% respectively. In both these cases, one of the experiments is an outlier 

[ignoring that experiment brings the variation below 12%]. This could be due to the 

randomness in the operations of the transactions for each experiment, which gives rise to 

differences in the number of conflicts. The 2PC+ROWA protocol performs better than the 

Epidemic Algorithms in the first three settings. The first three cases present P2P 

environments where the failures and recovery are uniform. As we move towards more non-

uniform environments more similar to expected P2P settings, the Epidemic Algorithms 

commit more number of transactions than the 2PC+ROWA. The reason that the Epidemic 

Algorithms perform better in Experiments 4 through 8 is because the failures and recoveries 

happen at different intervals for each of the sites and not all the sites are available at most 

instants of the experiment. For update, 2PC+ROWA protocol requires all the sites be 

available to commit the transaction. In the case of Epidemic Algorithms, the transactions are 

propagated at a later point of time when the sites become available and are performed then. 

In all the cases, the Epidemic Algorithms start out better than the 2PC+ROWA 

protocol because the 2PC+ROWA protocol sends write operations to all sites individually, 

whereas in the case of Epidemic Algorithms, all the write operations are communicated 

through one TransactionRecord. The number of transactions committed under the 

EpidemicAlgorithms then drops due to redundancy in the communication or 

TransactionRecords. The transaction records from a site will be communicated to other sites 

repeatedly during the epidemic communication process until the notification of the 
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transaction being processed at those sites is received. Only after that the next transaction will 

be started in place of the transaction to maintain the multi-programming level. 

In our simulations of Epidemic Algorithms, a transaction is defined as active until it 

has been processed at all sites. The next transaction is started in its place only after the 

previous one has been processed at all sites. This definition is not fixed as in the case of 

Optimistic Algorithms where a transaction is committed at a site after it has performed there. 

Therefore we could start as soon as one has committed at its local site. In this case, the 

number of transactions committed under of the Optimistic Epidemic Algorithms would be 

much higher. It is a matter of future study to determine which is a better representation of 

P2PDB. 

On further analysis of the performance of 2PC+ROWA protocol for experiments 4 

and 8, the transactions are found to have stopped committing after 64 seconds (indicated 

from the flatness in the Figures 6.4 and 6.8). This is because in these severe failure 

scenarios, some of the sites are always down after the failures start happening. Epidemic 

Algorithms however manage to commit transactions even in these cases owing to the 

property that the transactions are committed locally and then propagated at other sites and 

processed there whenever the sites are available. 

In a P2PDB environment, if a site leaves permanently then 2PC+ROWA will not 

commit a transaction under full replication until the permanent unavailability of site is 

sensed by the system (usually by a huge timeout). Then a replica detail for every site has to 

be updated with removal of this site’s entry. In the case of Optimistic epidemic algorithms 

permanent failure of sites does not have a drastic effect on the number of commits. 

The availability of the database is increased under epidemic algorithms because 

transactions with write operations can be committed even if one site is available, whereas 

under 2PC+ROWA write transactions can be committed only when all sites are available. 
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However epidemic algorithms require more memory space due to the preservation of 

the transaction in the event logs. Also time for detecting conflicts by searching through the 

event logs will increase with increase in the event log size. If the size of the transaction 

becomes large, then communication might get delayed due to segmentation. Similarly if the 

number of sites is increased, the timetables will expand and similar delay during 

communication will be experienced. 

Experiment 9 represents a low conflict scenario where the multiprogramming level is 

reduced to 50. As claimed in their proposal (Agrawal et al., 1997), the epidemic algorithms 

perform extremely well in low conflict environments. This is true even in the case of severe 

P2P failure environments as simulated in the experiment. 
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CHAPTER SEVEN 
 

Conclusion and Future Work 

The first section of this chapter describes the conclusions drawn from our 

experiments. The next section of the Chapter presents the reader with the recommended 

future work 

7.1 Conclusion 

In typical P2P environments peers or sites arise anywhere and anytime. Knowledge 

of their location, start, failure and recovery is not available beforehand. Our experiments 

show that epidemic algorithms commit more number of transactions in the case of fully 

replicated P2P environments where the sites have varying failure and recovery rates 

compared to traditional 2PC coupled with ROWA. 

Furthermore, since all sites need not be available at the same time for epidemic 

algorithms to commit transactions and transactions take place at a site and are propagated 

and performed at a later time, epidemic algorithms handle permanent site failures better than 

2PC + ROWA. This increases the chances of committing transactions.  

Additionally, this increases the availability of the database because update 

transactions can be committed even if only one site is available at a particular instant 

whereas in the case of 2PC+ROWA, the presence of all the sites is necessary. Crucial 

transactions can be completed even in high failure environments under epidemic algorithms. 

Epidemic algorithms have certain drawbacks too. They require more memory as the 

event log accumulates over time thus imposing a large main memory requirement for 

participants in the P2PDB network. In the case of our experiments, considering the small  
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size of the transaction records  (less than 100 bytes) and the ephemeral presence of peers, 

this memory increase is insignificant. But considering a scenario where the transactions have 

large write sets, this could be more critical. 

Transaction-records are redundantly communicated to sites until an 

acknowledgement of the transaction performed at that site is received. This is indicated in 

the time table of the other sites. Thus even when the transactions are performed at all sites, 

there is a duration where the site of origination does not know about this and keeps sending 

this transaction’s transaction-record to the other site assuming that the previously sent ones 

have not reached the receivers. Apart from the communication overhead, the response time 

of the transaction is also delayed. Increase in the size of the event logs will increase the time 

for detecting conflicts.  Increase in the size of transactions or the number of sites might lead 

to the segmentation of the transaction records and timetable during communication 

increasing the communication delay. 

7.2 Future Work and Recommendations 

As much as my exploration provides insight into the behavior of epidemic 

algorithms and 2PC+ROWA in P2P environments, further explorations in this arena would 

bring to light the more precise behavior. This would provide a better understanding about 

these algorithms. This section highlights some of our recommendations. 

Since our simulation simulates all the sites in one program, our experiments have 

been restricted to shorter run time due to the program running out of heap space in JAVA. 

This could be overcome by making each site into a program. Communication between sites 

can be simulated by using RMI. This could help us model P2P environments where failures 

and recoveries are not severe. 
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We have assumed that a transaction remains active until they are processed at all 

sites even in the case of Optimistic Epidemic Algorithms. The next transaction is started in 

its place only after it has been processed at all sites. This perception may vary between 

systems as in Optimistic Epidemic Algorithms transactions are committed at a local site and 

are resolved when conflicts are discovered at another site during the process of epidemic 

communication. Simulations can be built allowing transactions to be active only until they 

commit at their local site and the next transaction could be started immediately. Such 

simulations would yield better throughput for Optimistic Epidemic Algorithms. 

In our experiments we have modeled transactions arising continuously one after the 

other so that we maintain the multi-programming level at a constant number. In typical 

database environments, the transactions are not uniform and tend to follow a Poisson 

distribution. The performance of these algorithms under a Poisson distribution of 

transactions can be studied. 

Our experiments simulate fully replicated environments. Replication is a vast field 

that requires more study. The performance of these algorithms under various replication 

environments would be a separate study by itself. 

The experiments are performed for a fixed class of transactions. In typical real world 

environments we will have transactions of various lengths and natures. This can be studied 

changing our simulation so that transactions of mixed classes exist in the system. 

Environments with different conflict ratios could be modeled and the effect of larger 

writesets of transaction on Epidemic algorithms could be analyzed. 

We have assumed a uniform communication model, where the time taken for a 

message to be sent from site A to site B for any site A, B is fixed. In typical P2P networks 

this is different for every A, B pair. Investigation of typical P2P network topologies could be 

done and our simulation can be tuned to model a non-uniform communication model. 
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Thus new studies based on many parameters used in our simulations can provide 

further insight about the performance of P2PDB algorithms. 
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