
ABSTRACT

Knot Equivalence through Braids and Rational Tangles
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A major goal in the study of knot theory is to discover more practical and universal

methods that determine knot equivalence. In this paper, we will explore two methods

of doing so through the use of rational tangles and braids. We begin by determining

a method of converting from knots to rational tangles, then find equivalence between

the tangles by means of continued fractions and Prime Fractional Sets, and then

convert the tangles back into knots. This leads to the conclusion that two knots have

corresponding rational tangles which are equivalent if and only if the original two

knots were themselves equivalent. Through a similar course of events, we then do the

same with braids through the use of Markovs Moves and come to the conclusion of

Markovs Theorem, where two knots are shown to be equivalent if and only if their

corresponding braids are determined to be Markov equivalent.
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Chapter One

Background

The study of knot theory is predominately concerned with the ability to distin-

guish different knots from each other and, more importantly, be able to tell whether

or not two knots are the same. The need for this field of mathematics came with

Lord Kelvin’s theory of the atom in which it was stated that the chemical properties

of elements are related to a system of knotting between atoms [7]. As a response

to this, P.G. Tait published the first series of papers devoted to the mathematics of

distinguishing knots in 1877 [7].

By 1932, with the German mathematician K. Reidemeister’s publishing of the

first book on knot theory, Knotentheorie, there were means of distinguishing almost

any pair of knots from each other, but with complicated calculations that were not

ideal for practical use [7]. Reidemeister’s techniques become especially difficult when

considering the complicated knots of modern knot theory application in the study of

DNA recombination [3]. Thus the continued study of knot theory has been dedicated

to finding more practical means of distinguishing knots, which has included the use

of multiple fields of mathematics such as combinatorics, algebra, geometry, topology,

and number theory. During the last century, the field has grown beyond the study

of knots, and into tangles and braids as well. In this paper, we will be exploring

methods of differentiating between knots through the use of tangles and braids as

mediators.
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Chapter Two

Introduction to Knots and Tangles

As this is a paper on Knot Theory, we will begin by defining a knot.

Definition 1 A knot is a simple closed polygonal curve in R
3 [7].

So our knotted material is not allowed to go through itself, rather only around

itself (simple), is connected at its endpoints (closed), and even though we depict it

with two dimensional figures, it is representing an object with length, width, and

height (polygonal curve in R
3). Given this definition of a knot, we can now define a

tangle.

Definition 2 A tangle is a portion of a knot-diagram from which emerges four arcs

[5].

More specifically we will be working with rational tangles, for which we will use

Kauffman and Lambropoulou’s definition as follows.

Definition 3 A rational tangle is a proper embedding of two unoriented arcs α1, α2

in a 3-ball B3 such that the embedding must send the endpoints of the arcs to 4 points

on the ball’s boundary and there exists a homeomorphism of the pairs:

h̄ : (B3, α1, α2) → (D2 × I, {x, y} × I).[6]

In other words, a rational tangle is created by taking two unknotted arcs and

applying finitely many twists to neighboring endpoints. Additionally, we may also

use the three following moves, called the Reidemeister moves.
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Definition 4 Figure 1 shows three operations defined as the Reidemeister moves [7].

Figure 1: Reidemeister moves

What we are really interested in is how to determine if two tangles or two knots

are equivalent, or isotopic.

Definition 5 Two knots K,N are said to be isotopic, or equivalent, denoted K ∼ N ,

if one knot can be transformed into the other through a finite sequence of Reidemeister

moves [7].

Definition 6 Two rational tangles, S, T , are said to be isotopic, which is denoted

S ∼ T , if and only if any diagrams representing S and T in the plane have identical

configurations of their four endpoints on the boundary of the projection disc and they

differ by a finite sequence of the well-known Reidemeister moves which take place in

the interior of the disc [6].

Once we have a rational tangle, we must have a means of naming it. Each tangle is

composed of smaller horizontal (top row of examples in Figure 2) and vertical tangles

(bottom row of examples in Figure 2). We denote horizontal tangles by [n], made of

n twists, and vertical tangles by 1
[n]
, made of n twists, where n ∈ Z. Figure 2 shows
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a few examples. Notice that the sign of n depends on the left most (for horizontal

twists) or top most (for vertical twists) overcrossing.

Figure 2: Naming tangles

While building a rational tangle, we can use both addition and multiplication

of horizontal and vertical tangles. The product of two rational tangles is defined

as connecting the top two endpoints of one tangle to the bottom two endpoints of

another. Similarly, the sum of two rational tangles is defined as connecting the

two leftmost endpoints of one tangle with the two rightmost points of the other

(as shown in Figure 3) [4]. Notice that while the product (sum) of two horizontal

(vertical) tangles may be another tangle, it is no longer rational. However, the product

(sum) of two vertical (horizontal) tangles will always result in another rational tangle.

Furthermore, the product (sum) of two rational tangles will be rational so long as

one of the two is a vertical (horizontal) tangle [6].
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Figure 3: Products and sums of tangles

Definition 7 A rational tangle is in twist form if and only if it is created by consec-

utive additions and multiplications by the tangles [±1], starting with one of the trivial

tangles [0] or [∞]. [6]

We can then represent rational tangles of twist form in the following algebraic

expressions:

[sk] + (...+ (
1

[r3]
∗ ([s1] + (

1

[r1]
∗ [s0] ∗ 1

[r2]
) + [s2]) ∗ 1

[r4]
) + ...) + [sk+1]

or

1

[rk]
∗ (... ∗ ([s3] + (

1

[r1]
∗ ([s1] + 1

[r0]
+ [s2]) ∗ 1

[r2]
) + [s4]) ∗ ...) ∗ 1

[rk+1]
[5]

depending on whether the tangle begins with a vertical or horizontal twist.

In addition to addition and multiplication, we have another move called a flype.

Definition 8 A flype is an isotopy of a tangle t of the form [±m] + t or 1
[±m]

∗ t. A

flype is considered rational if it is applied to a rational tangle [6]. Figure 4 gives an

example of a flype for addition and multiplication.
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Figure 4: Flype

Definition 9 A tangle in the form

((([an] ∗ 1

[rn−1]
) + [an−2]) ∗ ... ∗ 1

[a2]
) + [a1]

for a1 ∈ Z and a2, ..., an ∈ Z− {0}, is referred to as a tangle in standard form [6].

Lemma 1 Every rational tangle can be written in standard form [6].

Proof By the definition of rational tangle and the construction of the twist form,

every rational tangle can be written in twist form. Notice that by using flypes we can

rewrite [s1] +
1

[r0]
+ [s2] as

1
[r0]

+ [s2 + s1] and
1

[r1]
∗ [s0] ∗ 1

[r2]
as [s0] ∗ 1

[r2+r1]
. Given any

twist form tangle, we can start from the outside twists of the tangle, s0, and, through

the use of these horizontal and vertical flypes, we can make our tangle into the form

(((([s0] ∗ 1

[r1 + r2]
) + [s1 + s2]) ∗ 1

[r3 + r4]
) + ...) + [sk + sk+1]

as desired. �

Definition 10 A continued fraction in integer tangles is an algebraic description of

a rational tangle as a continued fraction built from the tangles [a1], [a2], ..., [an] where

a1 ∈ Z and a2, ..., an ∈ Z− {0} with all of the numerators equal to one, denoted as

T = [[a1], [a2], ..., [an−1], [an]] := [a1] +
1

[a2] + ...+
1

[an−1] +
1

[an]

.[4]
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Given Lemma 1 and this definition, it is easy to see that each rational tangle can

be written as a continued fraction. On the other hand, the following is by no means

trivial and was discovered by John Conway in 1970.

Theorem 1 Two rational tangles are isotopic if and only if they have the same frac-

tion [4]. (An extensive proof of this is given in Kauffman and Lambropoulou’s 2004

paper “On the classification of rational tangles” [6].)

This is truly a remarkable result upon which this paper will heavily rely.
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Chapter Three

Rational Tangles and Knot Equivalence

In order to use rational tangles as a method of finding equivalence between

two given knots, we must have a way of converting between rational tangles and

knots. We begin with the conversion from tangles to knots. Notice that in any given

rational tangle, there are 4 free strands. By connecting two of them together and

then connecting the remaining two, we have a closed figure.

Definition 11 A simple closed tangle is a tangle that undergoes the following:

1) strands may only be attached at their endpoints

2) two, and only two, strands may be attached at a given point

and 3) all strands must be connected to another strand.

By connecting three or four at the same point, or connecting two at a point other

than their endpoints, the resulting figure would be either not simple or not closed. For

the remainder of the paper, if a tangle is referred to as closed, we assume simplicity

as well.

Figure 5 shows the three possible ways in which the four strands may be connected.

Figure 5: Possible connections for arcs of tangles
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Lemma 2 Every rational tangle can be closed in such a way that it becomes a knot.

Proof Notice that the right most connection in Figure 5 creates an additional

overcrossing, changing the nature of the connected tangle. We will refer to the left and

middle connections of Figure 5 as numerator connection and denominator connection

respectively. Recall from the definition of rational tangles that these four strands are

from 2 unoriented arcs embedded in a 3-ball, B3. We will name these two arcs n and

m. The following are possibilities for the ordering of m and n in different tangles:

Figure 6: Possible m and n combinations

Notice that a and b are equivalent up to naming. The same is true for c with d

and e with f. Since T is isotopic to T T (the transverse of T ), notice that c and d are

isotopic to e and f as well. We are now left with 2 possibilities concerning methods

of naming the arcs. Let us now consider numerator and denominator connection for

each of these, as shown in Figure 7.

Notice that given any time an m connects to an m or an n connects with an n,

the arcs will close in on themselves and it will create a link of two knots. On the other

hand, if each m connects with an n, it would result in a simple closed figure. Since

the connected arcs will inherit the polygonal curve characteristic from the rational

tangle, we have a simple closed polygonal curve, which is a knot by definition.
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Figure 7: Closure of n and m

This is true with any rational tangle, as, when viewing Figure 7, we see that

regardless of how the two arcs are situated, there will always be a means, through

either numerator or denominator connection, of creating a closed knot rather than a

link.

�

Definition 12 We call a knot which results from the closure of a rational tangle a

rational knot.

Lemma 3 Every rational knot can be made into a rational tangle.

Proof Since by definition, a rational knot is derived from connecting the arcs of a

rational tangle, if we were to break the knot at the points where they were originally

connected, we would have the rational tangle from which the knot came.

�
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We must now explain a method of deciding whether or not a given knot is

rational.

Definition 13 The arcs that border the knot are called external arcs and the remain-

ing arcs are internal arcs. This is best shown through example.

Figure 8: full line = external arc, dotted line = internal arc

The following is the method to be used to test for rationality in a knot:

Let S be a knot, and let α1 and α2 be two external arcs of S that share a common

crossing, x. Let B3 be a 3-ball such that it completely contains S. Now, pull α1 and

α2 out of B3 without creating additional crossings. This creates a tangle within B3

by definition, which we will call S ′. Now check to see if S ′ is rational according to

the definition given in Chapter 1. If so, S is a rational knot.

This method is used in the following example.

Starting with the 61 knot, we choose our external arcs α1 and α2 with the

common crossing x.

11



We set it in a 3-ball

and then pull out, or extend, α1 and α2 out of the sphere,

giving us a tangle.

We now check to see if it is rational. First untwist the top strands twice.

12



Then untwist the right strands four times,

giving us the trivial tangle. Hence the tangle is rational by definition and therefore

the original knot, the 61 knot, is a rational knot. Through this method, it can be seen

that the first 24 knots are rational, except for 85 [5]. We will refer to this method as

the Rational Check Method.

We now have a method to convert from a rational knot to a rational tangle

and vice-versa! By applying this method to each pair of external arcs connected by a

common crossing, some interesting results emerge. Notice that in the example with

the 61 knot, the resulting rational tangle was [−2, 4] =
−7

4
. If the rational check

method is then applied to the other pairs of α1 and α2 choices, the [−1,−3,−2] = −9
5

tangle results.

Definition 14 Given a knot K, we call the set of fractions that correspond to tangles

which when closed form K, the fraction set of the knot K.

Examine this fraction set. In the previous example it was shown that the 61

knot could be formed from the connection of the [−2, 4] =
−7

4
tangle. But if one were

to twist the left two strands three times, it would create the [3,−2, 4] = 17
7

tangle.

Applying numerator closure and simplifying a bit, it would again give way to the 61
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knot. We could then have an arbitrary number of twists with those two left-most

strands, and with numerator closure still have the 61 knot. So for n ∈ Z, the tangle

[n,−2, 4] is in the fraction set of 61, giving way to an infinite set of fractions which,

when closed, will produce the 61 knot.

In order to navigate around these infinite sets, we will only look at the fractions

which, when connected, are indivisible, or, will not simplify through untwisting.

Definition 15 We call the corresponding fraction of the tangles which, when con-

nected, do not simplify through untwisting, prime fractions.

Definition 16 The set of prime fractions resulting from the rational tangles of a

given knot is the prime fraction set of a knot. The notation for this set is P (Kn),

where Kn is the name of the basic knot associated with the set.

In continuation of the example for the rational check method, notice that P (62) =

{−7
4
, −9

5
}. We are now equipped with the tools needed to prove the main theorem.

Theorem 2 Two knots are equivalent if and only if their corresponding rational tan-

gle fractions are of the same prime fraction set.

Proof First we show that if two knots are equivalent, then their corresponding

rational tangles are of the same prime fraction set. Suppose that the two fractions

are not of the same set. Then when the tangles corresponding to the two fractions are

reconnected, they will be two different basic knots. Therefore there are no sequence of

Reidemeister moves which will transform the first knot into the second, and they are

14



not equivalent. Thus if two knots are equivalent, then their corresponding rational

tangles are of the same prime fraction set.

We now show that given two fractions within the same prime fraction set, the

closure of their corresponding tangles will result in equivalent knots. Let t, s ∈ P (Kn),

for some basic knot Kn, and T, S be the two tangles represented by those fractions.

Now call T ′, S ′ the knots created by the closure of these two tangles. Then by the

definition of the prime fractional set of Kn, T
′ � Kn and S ′ � Kn so T ′ � Kn � S ′

thus T ′ � S ′ as desired.

�
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Chapter Four

Introduction to Braids

We must now address the issue of our inability to use rational tangles on knots

that are not rational. The problem was that two arcs were not enough to allow us to

transform all knots into rational tangles. So what would happen if we were to add

additional arcs? To examine this new territory, we must leave the realm of tangles

and enter the world of braids.

Definition 17 An n-braid is a collection of n strings in (x,y,t)-space, which are dis-

joint and monotone in the t direction [2].

To further get a picture of what this is, we begin by producing a cube bounded

by [0, 1] in the x direction, [−1
2
, 1
2
] in the y direction, and [0, 1] in the t direction [3].

Next, denote the set of n arcs as {ai}ni=1. Set one of the endpoints of ai on the bottom

of the cube at ( i
n+1

, 0, 0) and then the other endpoint of the arc on the top of the

cube at ( i
n+1

, 0, 1). Do this for each 1 ≤ i ≤ n. This creates the trivial braid; an

example of which is displayed by Figure 9.

Figure 9: The trivial 4-Braid
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The braids then deviate from this trivial braid when for some 1 ≤ i, j ≤ n, arc ai

begins at point ( i
n+1

, 0, 0) but ends at ( j
n+1

, 0, 1), where j �= i. An example of this is

given in Figure 10.

Figure 10: A non-trivial 4-Braid

Recall the three Reidemeister moves. We used these in order to define equivalence

between knots and tangles. Due to the monotonic increasing nature of the arcs of

the braids and the fact that more than just two arcs are being used, the three moves

need to be altered.

Definition 18 Two braids are said to be braid equivalent if and only if one can be

transformed into the other through a finite use of the three moves in Figure 11 [2]:

The set of braids with n arcs are denoted Bn. We now want to define braid mul-

tiplication, which is essentially done by stacking their respective cubes on top of each

other and then altering the t values to shift the two cubes back into the unit cube [2].

Let α and β be two braids in Bn. Let the x and y values remain the same for each of

the coordinates in the braids, but alter the t coordinates using the following two trans-

formations. For the t coordinates in α, we use the transformation T (x, y, t) = (x, y, t
2
)

17



Figure 11: Equivalence moves for braids

and for the t coordinates in β, we use the transformation T (x, y, t) = (x, y, t+1
2
) [2].

For an example, let the above trivial 4-braid be α and the above nontrivial 4-

braid be β. The following shows the stacking of their respective cubes and then the

coordinate shift, resulting in the product αβ or α ∗ β.

Figure 12: Braid multiplication

At this point, it is easy to see that braid multiplication is associative up to braid

equivalence. The order in which we multiply only effects how condensed the product

braid is. For α, β, γ ∈ Bn, notice that (α ∗ β) ∗ γ will result in a braid with α and β

more condensed than γ, and the braid resulting from α ∗ (β ∗ γ) will be such that β

18



and γ are more condensed than α. Through our altered Reidemeister moves, we can

easily stretch and condense the strands in the t direction to show equivalence.

For the remainder of the paper, we will draw the braids without the cube and

axes out of simplicity.

Next we will provide a manner of naming a given braid. Begin by taking the (y, t)

plane projection of the braid and orientating it such that the t axis is horizontal.

Then label the arcs 1,2,...,n starting from the bottom strand. Next, with the use

of the 3rd equivalence move from Figure 11, move the crossings such that no two

crossings occupy the same coordinate in the y value. We then split the braid up into

a product of braids such that each braid consists of one of the crossings of the original

braid. The original braid is then described by a sequence of permutations of the arcs.

There are two possibilities for each crossing: either the strand from the top comes

over the bottom strand, or the bottom comes over the top strand. These are shown

in Figure 13 by (a) and (b) respectively.

Figure 13: Braid crossings

We will call the bottom strand the ith strand, and the top strand the i+1 strand,

where 0 ≤ i ≤ n − 1. When case (a) in Figure 13 appears in a braid, we call the

permutation of strands σi, and when case (b) in Figure 13 appears in a braid, we

call the permutation of strands σ−1
i . We then multiply these permutations to get the

19



name of the braid [2]. We will use the braid from above as an example.

First, we orientate the braid as previously described.

Then we name the strands and split the braid into a product of braids with one

crossing in each braid and name each crossing accordingly.

Then multiply the braids back together, giving us the name σ2σ1σ3σ2σ
−1
3 .

Lemma 4 The set of braids Bn is a group under braid multiplication.

Proof We have already shown associativity, and for the identity, we will use the

trivial braid. So it remains to be shown that every n-braid has an inverse.

Recall the first of the altered Reidemeister moves given in Figure 11. Notice that

it is the product of two braids, σ1σ
−1
1 . When multiplied together, they are equivalent

to the trivial braid, or more specifically, the identity. Notice that this will then work

for any braid. Let μ = σ±1
i σ±1

j σ±1
k ...σ±1

m ∈ Bn where 1 ≤ i, j, k,m ≤ n− 1. Then we

20



can create the braid ν = σ∓1
m ...σ∓1

k σ∓1
j σ∓1

i ∈ Bn such that μν = 1 = Identity. Thus

Bn is a group. �

Let us use the σ2σ1σ3σ2σ
−1
3 from above as an example. We will create its inverse

by multiplying braids to the end of it until we obtain 1, or the trivial knot. In doing

so, we see that β−1 = σ3σ
−1
2 σ−1

3 σ−1
1 σ−1

2 is the inverse for β = σ2σ1σ3σ2σ
−1
3 . Notice

that β ∗ β−1 = σ2σ1σ3σ2σ
−1
3 ∗ σ3σ

−1
2 σ−1

3 σ−1
1 σ−1

2 = σ2σ1σ3σ2(σ
−1
3 ∗ σ3)σ

−1
2 σ−1

3 σ−1
1 σ−1

2 =

σ2σ1σ3(σ2 ∗σ−1
2 )σ−1

3 σ−1
1 σ−1

2 = σ2σ1(σ3 ∗σ−1
3 )σ−1

1 σ−1
2 = σ(2σ1 ∗σ−1

1 )σ−1
2 = σ2 ∗σ−1

2 = 1,

the identity. This process is shown in Figure 14.

Figure 14: The multiplication of β and β−1

With these tools, we are now ready to look at a method of finding equivalence

between knots through the use of braids.
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Chapter Five

Braids and Knot Equivalence

We will approach using braids as a method of finding equivalence between two

given knots in a way similar to our approach with rational tangles by first finding

a way of converting between braids and knots. We begin with the conversion from

braids to knots.

We will use a similar method for closing braids as we had for closing tangles, but,

we will be more exact in our choices of strands to be connected. Starting with an

n-braid, orient it in the same way as was done in Chapter 3 for naming braids. Then,

number the strands on both the left and right from the bottom to the top with 1

through n. Next, connect the strands on the right with the strands on the left with

the same number in such a way that no additional crossings are created. This results

in a knot or a link [1].

Definition 19 The use of the above method on a braid β illustrates what is known

as braid closure and the resulting braid is the closed braid, denoted β̃.

This differs from the rational tangle closure in that we are not guaranteed a knot.

We will find later that this is of little trouble to us, as we will never use braids that

close into links. Figure 15 is an example of the closure of a 4-braid. With little effort,

we see that this closure of the σ2σ1σ3σ2σ
−1
3 braid is actually the trivial knot.

We must now show how to go from a knot to a braid. We will do so by using the

following method.
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Figure 15: Braid Closure of a 4-braid

Begin by creating an axis through the knot according to the following rules:

1) the axis is a line that intersects every region of the knot projected onto the

plane at least once,

2) it begins and ends in the infinite regions,

3) we assign the under and overpasses of the knot over and under the axis

alternately by following the orientation of the knot.

Now, perform a coordinate transformation in such a way that the axis becomes

straight. At this point, we must check to make sure that our resulting figure will be

orientated in such a way that it is monotonously increasing. We do so by looking for

any time that a [0] apears. This [0] is of the same form as with the rational tangles.

A figure with this characteristic will, once opened, have arcs moving in the vertical

direction, against the monotone increasing orientation. In the cases where [0] occurs,

pull the top string to the bottom of the figure and the bottom arc to the top of the

figure. This will create more crossings, but will allow the resulting figure to be a

braid. Then cut the knot at the points where it is overcrosses the axis and then lay

the ends out on either side. This results in a braid.
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Definition 20 The above method of converting a knot into a braid is called the

Alexander Method [1].

We will show this in an example with the 41 knot. Start with the knot and

draw the axis through each of its regions, starting in the infinite region and create

alternating over and undercrossings in the intersections of the knot and the axis.

We then straighten the axis,

cut the knot at the overcrossings with the axis,

and then pull back the cut strands
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which, through some simplification, gives us a braid:

which is actually the σ1σ
−1
2 σ1σ

−1
2 braid.

Lemma 5 Every knot can be made into a braid through the use of the Alexander
Method.

Proof This is true by the construction of our conversion from knot to braid. We

already had a polygonally curved figure, as it was inherited from the knot, and we

assured its monotone increasing nature through the eradication of the [0] occurrences.

Thus resulting in a braid. �

Corollary 3 Let A be a knot and α be a braid resulting from the use of the Alexander

Method on A. Then the braid closure of α, α̃, is knot equivalent to A.

Proof Up until the breaking of the arcs in the Alexander Method, we only used

transformations which were equivalent to the Reidemeister moves. Notice then that

the breaking of the knot as defined by the Alexander Method has the broken strands

laid over the rest of the figure, at which point they are fixed. When we close the

braid, we use the method described in order to reconnect the strands in the same

manner they were broken, as to return to the original knot. �

We now have methods which allow us to convert any given knot into a braid, and

any given braid into a knot or link. In our attempt to come closer to being able to

find equivalence between two knots through the use of their corresponding braids, we
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will first look at two moves which, when applied to braids, do not effect the knot that

they close into.

Definition 21 The following two moves are called the Markov moves and they are

denoted, M1 and M2 respectively.

The First Markov Move: (M1)

Let β ∈ Bn. Then M1(β) := gβg−1 and likewise, we define M−1
1 such that

M−1
1 (β) := g−1βg, where g is any n-braid [3].

The Second Markov Move: (M2)

Let β ∈ Bn. Then define M2 : Bn → Bn+1 such that M2(β) := βσ±1
n . We then

define M−1
2 : Bn+1 → Bn such that M−1

2 (βσ±1
n ) := β [3].

Definition 22 Two braids, β ∈ Bn and b ∈ Bm are said to be Markov equivalent,

denoted β ∼M b if and only if there exist a finite sequence of Markov moves that take

β to b [3].

Theorem 4 (Markov’s Theorem) Given braids β ∈ Bn and δ ∈ Bm, β̃ ∼ δ̃ if and

only if β ∼M δ [3].

Proof Kurpita has a comprehensive proof of this in his book A Study of Braids, but

here we will show that β ∼M δ implies β̃ ∼ δ̃. To do so, we will show that the

application of the Markov moves do not alter the closure of the braid. We begin

with M1, and then M−1
1 follows similarly. Let β ∈ Bn and α be another n-braid.

Then M1(β) = αβα−1. If we take the closure of this transformed braid, we see that,

through the use of the braid Reidemeister moves, the α−1 braid can “travel” around

the closure and reconnect back on the bottom, attaching itself to the α braid as shown
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in Figure 16. This results in the identity multiplied with the β braid closure, which is

equivalent to the β braid closure [3]. Thus the application of the M1 move does not

change the closure of the braid and so the closure of the original braid is equivalent

to the closure of the braid after the use of the M1 move.

Figure 16: The traveling path of α−1 in the closure of M1

We now show that the braid closure is not effected by the M2 move. We will show

the βσ−1
n case, from which the βσ case follows. Notice, by referencing Figure 17,

after the closure of the M2(β) braid, the last crossing created by the σ−1
n is able to

be unlooped and we are left with the closure of the β braid [3]. Thus the application

of the M2 move does not change the closure of the braid and so the closure of the

original braid is equivalent to the closure of the braid after the use of the M2 move.

Therefore, the closure of a braid is equivalent to the closure of the same braid

with a finite number of the Markov moves applied to it.

�
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Figure 17: The the simplification of the closure of M2

So given two knots A and B, we can convert them to their corresponding braids α

and β. If, through a finite sequence of Markov moves, we can transform α into β, then

their corresponding braid closures α̃, β̃ are equivalent. Therefore, A ∼ α̃ ∼ β̃ ∼ B,

resulting in A ∼ B as desired.

There is currently no algorithm to ultimately know if two braids are Markov equiv-

alent [1]. That being said, there may be cases where two braids are Markov equivalent,

but we are unable to detect it. Even with this downside, Markov’s Theorem is still

very powerful as it can be applied to all knots, not just those that are rational.
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Chapter Six

Conclusion

As stated in Chapter One, one of the main goals of the study of knots is

to discover more practical methods of determining knot equivalence. In the method

given through the use of rational tangles, once the rationality of a given knot has been

determined, it is very simple (and quick) to put the tangle into standard form and

to determine the corresponding fraction. At which point, the equivalence to a basic

knot can be found instantaneously through finding the fraction in a P (Kn) table.

The difficulty is actually finding the rationality of the knot. If one is given a

random knot, it is difficult to tell where the original exterior arcs were and therefore

may take multiple attempts to discover the knot’s rationality. If a method could be

discovered to ultimately determine the rationality of a knot without using the guess

and check method I proposed, then this use of rational tangles to determine knot

equivalence would be a very quick and practical method. Also, in the creation of the

P (Kn) tables, I was unable to find a comprehensive method that would find all of the

fractions in the set. The method of using the external arcs outlined in Chapter Three

was a method that would find a rational tangle in the knot, but may have failed to

find all of the possible tangles.

We then left tangles and used a similar method using braids. Unlike with the

tangles, there does exist an algorithm that will consistently and successfully produce

a braid in the desired form. The issue then arises in Markov’s Theorem, where a

method for determining if two braids are Markov equivalent has yet to be discovered.
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This makes the method of using braids to determine knot equivalence only practical

when the number of Markov moves between the two braids is minimal and easily

determined. With that being said, if such a method were to be discovered, this braid

technique would be very practical in that it could be readily applied to any two knots

and their equivalence could be quickly determined.

Regardless of the practicality of the use of the methods, these connections

between knots, rational tangles, and braids are very insightful. The mere existence

of conversions between the three is amazing and the fact that there are correlations

that allow us to determine equivalence in the original knots is a wonderful result. It is

the discovery of connections between knots and other branches of mathematics, such

as braids and tangles, that will continue to aide in the discovery of a method that is

both universal and practical in determining knot equivalence.
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